

Hanoi VIETNAM

11-14 Sept. 2023 Melia Hanoi Hotel

BOOK OF ABSTRACTS

Agronomy | Chemistry | Technology | Physiological effects

www.alphavisa.com/asic/2023

S2-O-11

Oral presentations

Potential association of HCF164, a chloroplast nuclear-encoded thioredoxin-like protein, with *Coffea* S₁9 resistance factor against *Hemileia vastatrix*

<u>Guerra-Guimarães Leonor^{1, 2}</u> (leonorguimaraes@edu.ulisboa.pt), Pinheiro Carla^{3, 4}, Oliveira A. Sofia F.⁵, Mira-Jover Andrea^{6, 7}, Valverde Javier^{8, 9}, Guedes Fernanda A.F. Guedes⁸, Azevedo Herlander^{10, 11, 8}, árzea Vitor^{1, 2}, Muñoz-Pajares Antonio Jesús^{12, 6, 8}

¹ CIFC - Centro de Investigação das Ferrugens do Cafeeiro, Instituto Superior de Agronomia (ISA), Universidade de Lisboa, Oeiras, Portugal; ² LEAF--Linking Landscape, Environment, Agriculture and Food Researcenter, and ssociated Laboratory TAgronomia, Universidade de Lisboa, Lisboa, Portugal; ³ UCIBIO Applied Molecular Biosciences Unit, Department of LifeSciences,, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal; ⁴ Associate Laboratory i4HB Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal; ⁵ Center for Computational Chemistry, School of Chemistry, University of Bristol, Bristol, United Kingdom; ⁶ Departamento de Genética, Universidad de Granada, Granada, Spain; ⁷ Área de Ecología, Departamento de Biología Aplicada, Universidad Miguel Hernández, Elche, Spain; ⁸ CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, Vairão, Portugal; ⁹ Estación Biológica de Doñana, Consejo Superior de Investigaciones Científicas (CSIC), Sevilla, Spain; ¹⁰ BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, Vairão, Portugal; ¹¹ Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal; ¹² Research Unit Modeling Nature, Universidad de Granada, Granada, Spain

Rationale:

Coffee leaf rust, caused by *Hemileia vastatrix*, is one of the diseases most significantly affecting Arabica coffee production on a global scale. Previous studies of coffee-*H. vastatrix* interactions have identified nine coffee resistance factors, designated as $S_H 1$ to $S_H 9$. Considering the significance of primary carbon metabolism in plant fitness and coffee-*H. vastatrix* interactions, the chloroplast represents a prime target for pathogen manipulation. In this study we have performed whole genome sequencing of coffee genotypes to explore the connection between chloroplast and coffee resistance S_H factors. **Methods:**

The chloroplast genome of 42 coffee genotypes from the CIFC collection with different resistance factors to *H. vastatrix* was sequenced and de novo assembled. A chloroplast phylogenetic haplotype network was performed. An *in-silico* analysis of 132 selected nuclear-encoded protein families acting on chloroplasts, focusing on gene families previously highlighted as being involved in *H. vastatrix* resistance, was also performed.

Results:

No maternal inheritance of coffee resistance factors throughout the chloroplast genome was evidenced. Indeed, the chloroplast phylogenetic haplotype network clustered individuals per species instead of per S_{μ} factors. Nevertheless, it was possible to verify for the first time that *C. arabica* is the maternal parent of the Híbrido de Timor (HDT), a spontaneous hybrid between *C. arabica x C. canephora*. From all the 132 proteins analysed, only the thioredoxin-like membrane protein HCF164 was able to discriminate between individuals with and without the $S_{\mu}9$ factor. Thioredoxins are known to play crucial roles in redox regulation and defence mechanisms in plants and the lack of the thioredoxin domain and redox-active disulphide center in the HCF164 protein found in $S_{\mu}9$ individuals could potentially have functional implications.

Conclusions & Perspectives:

Our work reinforces the role of chloroplast-mediated defences against leaf rust and introduces an unexplored strategy for identifying protein/genes associated with S_{H} factors and candidate targets of *H. vastatrix* effectors, thereby creating new perspectives for coffee breeding programs.

110