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Abstract

This thesis explores topics in causal mediation analysis with multiple possibly related
mediators. The goal of this thesis is to propose innovative methodologies for joint mod-
eling of multiple uncausally related mediators, selecting mediators from high-dimensional
candidates while simplifying their dependency structures and performing multiply robust
estimations to uncover causal effects of interest.

Causal mediation analysis aims to enhance understanding of the effects of an exposure
on an outcome by examining direct and indirect effects. In settings where multiple media-
tors are involved, the relations among these mediators play an important role. Traditional
studies focus on the scenario that the multiple mediators are either related under specified
causal structures or independent given baseline covariates. Our studies focus on multiple
uncausally related mediators, where the mediators are associated with each other condi-
tioning on pre-treatment covariates and treatment but there is no causal ordering among
them.

In Chapter 2, we begin by reviewing and expanding upon the concept of mediators that
are uncausally related, followed by the introduction of causal effects defined under such
settings and the associated identification assumptions. We propose to jointly model the
uncausally related mediators using copula functions. An important advantage of employing
copula functions in joint modeling is the significant flexibility it offers, as this method allows
for multiple mediators to have different distributions and be correlated in various ways.
Subsequently, we propose methods estimating causal effects within this framework.

In Chapter 3, we center our attention on the sparse mediation phenomenon, where
only a handful of true mediators, from a pool of possibly high-dimensional candidates,
exhibit nonzero indirect effects. We propose a LASSO-based penalization technique that
selects the true mediators by considering their indirect effects. Acknowledging that the
selected mediators often still exhibit complex dependency structures even after selection,
our method also simplifies these structures by selecting non-zero correlation entries within
the correlation matrix using a similar penalized estimation technique. To facilitate the
correlation structure selection, we transform the correlation matrix selection problem into
a standard variable selection problem within the framework of a linear model. Moreover,
our proposed method allows the mediator selection and the dependency structure selection
processes, to be conducted either via either a parallel or a sequential approach. The grouped
and individual causal effects are defined under such settings with estimation approaches
discussed.

In Chapter 4, we discuss the issue of model misspecification within the context of causal
mediation analysis. Following the discussion, we propose two ways of constructing multiply
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robust estimators. In causal mediation analysis, typically three working models must be
specified: the treatment model, the mediator model, and the response model. Both of our
multiply robust estimation methods yield consistent estimation of the causal quantities of
interest, provided that any two out of the three models are correctly specified.

For each proposed method introduced in Chapters 2, 3 and 4, we provide theoretical
results with proofs of the consistency and other properties. We also derive large sample
properties and investigate finite sample properties via simulations. Each chapter includes
an application of the proposed method to a genetic study in psychiatry to investigate DNA
methylation loci as mediators on the causal path between childhood trauma and stress re-
activity. In Chapter 2, the proposed method estimates the mediation effects of three DNA
loci on the Kit ligand gene. Chapter 3 extends this analysis and applies the proposed
mediator selection method to the entire DNA methylation dataset, revealing 12 mediating
loci, with 10 showing a strong association. We estimate the grouped indirect effect from
them and the individual effects of the remaining two loci. In Chapter 4, we employ our
multiply robust estimation methods to re-evaluate the mediation effects of these 12 loci,
demonstrating enhanced robustness to previous findings.
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Chapter 1

Introduction

1.1 General introduction of causal inference and the

potential outcomes framework

Causal analysis aims to identify and evaluate causal effects resulting from a treatment
(in an experiment) or exposure (in an observational study) on the outcome of interest.
The concept of causality is believed by many philosophers to be metaphysical [127, 82,
18]. However, in contemporary statistical studies, causal effects are defined in terms of
counterfactual relations. To begin with, Robin et al. [106] state that “the causal effect
of one treatment, E, over another, C, for a particular unit and an interval of time from
t1 to t2 is the difference between what would have happened at time t2 if the unit had
been exposed to E initiated at t1 and what would have happened at t2 if the unit had
been exposed to C initiated at t1”. For example, an interesting research topic in the field
of social sciences is examining the impact of college education on individuals’ income. A
related research question in the domain of causal inference is to evaluate the causal effect
of attending college on a person’s income at the age of 40. According to the definition,
such a causal effect can be calculated by comparing the income that an individual might
earn at age 40 if they had attended college versus if they had not attended. Throughout
this thesis, we explore causal inference and causal mediation analysis, applicable to both
experimental and observational studies. Therefore, unless otherwise specified, the terms
”treatment” and ”exposure” are used interchangeably to refer to the assignment of study
groups (either treatment or control) for each subject.

As per the definition, the different possible outcomes under varying treatment assign-
ments, such as the two potential income levels at age 40, play a pivotal role in defining
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the causal effect. These alternative outcomes are defined by Rubin et al. [106] as the po-
tential outcomes. Moreover, such definitions of the causal effect are established within the
potential outcomes framework, which is the cornerstone of modern causal inference studies
[106, 46]. The preliminary concept of the potential outcomes framework was first intro-
duced by Jerzy Neyman in his Master’s thesis in 1923 [87], though such introduction was
albeit in the context of completely randomized experiments [112]. Rubin et al. [106] later
expanded this into a comprehensive framework for understanding causation in both obser-
vational and experimental studies [115]. Consequently, the potential outcomes framework,
along with its associated models, is often referred to as the Rubin Causal Model (RCM).
However, in real life, it is impossible to observe both potential outcomes at once: one of
the potential outcomes is always unobservable. This unobserved outcome is sometimes
referred to as the counterfactual outcome, in contrast to the observed (factual) one. This
is why the potential outcomes framework is also known as the counterfactual framework,
particularly when emphasizing the contrast between observed and unobserved outcomes.
This dilemma that “one of the potential outcomes is always unobservable” is often denoted
as the “fundamental problem of causal inference” [46].

Another essential challenge in causal analysis is the confounding issue. A confounding
issue refers to a situation where the observed relationship between the treatment and the
outcome may not be a direct cause-and-effect relationship but is instead influenced by a
third variable [139]. The third variable that affects both the exposure and the outcome is
called confounder. The existence of the confounder can lead to a misleading or incorrect
conclusion about the true causal relationship between the treatment and the outcome. In
other words, the confounding variable can create the appearance of causality when there
may not be a true causal connection. Moreover, for most studies, there usually exists a set
of confounding variables or even a high-dimensional set of such variables, which imposes
extra difficulties in eliminating the confounding issue.

A straightforward approach to address the confounding issue is the regression approach,
which is to include confounders as predictors in the regression model expressing the effect
of treatment on the outcome. However, this approach has a significant drawback: it often
proves challenging to accurately specify the underlying regression models. The relationship
between the confounders and the outcome is hard to determine, particularly if there exist
multiple, potentially high-dimensional, confounders. An alternative strategy to tackle this
challenge is to utilize methods based on the propensity score, which transforms the problem
of modeling the relationship between the covariates and the outcome to modeling the
treatment assignment conditioning on covariates. Such methods are commonly employed
in observational research, especially within the scope of causal inference. The propensity
score is a single numerical value assigned to each individual in a study, representing their
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likelihood or probability of receiving the treatment. Furthermore, Rosenbaum et al. [102]
show that the propensity score is a balancing score such that the conditional distribution of
covariates given the propensity score is the same for the treated and the control. Therefore,
by conditioning on the propensity score, it is assumed that observations from different arms
of the study, whether the treatment or control group, have an equal likelihood of receiving
the treatment assignment. Consequently, comparing subjects with similar propensity score
values across different arms is akin to conducting comparisons between subjects that had
been randomly assigned to each arm. In essence, this mimics the process of analyzing data
from randomized trials, where each subject’s assignment to either the treatment or control
arm is random, which effectively eliminates bias induced by confounding.

Some typical ways of incorporating the propensity score in causal analysis include
inverse probability weighting (IPW) [57, 44], stratification [102], and matching [104, 105].
Particularly, the IPW method is used widely due to its favorable mathematical properties.
Specifically, it employs a smoothing weighting approach to maintain the continuous nature
of propensity values. Propensity values are typically assessed on continuous scales, and
IPW assigns unique continuous-scale weights to each subject, preserving this continuity.
In contrast, methods like matching or stratification, either match or group subjects based
on similar propensity values. Since finding two subjects with exactly the same propensity
scores is often impractical, applying those methods leads to the continuous propensity
values being transformed into categorical scales during the process. Additionally, the IPW
method is relatively easy to implement. Such an approach works by assigning each observed
data point a weight that is proportional to the inverse of the probability of receiving its
observed treatment assignment, so that after the process, we are treating each data point as
if they were assigned to each arm (treatment or control) randomly. Therefore, calculating
the average causal effect with inverse propensity weighting can eliminate the bias due to
confounding between the treatment assignment and the outcome.

In mathematical notation, we denote the binary exposure or treatment indicator as T =
t ∈ {0, 1} and the outcome as Y . The treatment T may affect Y directly and/or through
the mediator M . We denote Y (t) as the potential value of the variable Y observed under
the treatment t. E{Y (t)} is used to represent the expected potential outcome, where the
expectation is taken with respect to the distribution of the potential value in the population
[42]. Then according to the definition, the average causal effect is E{Y (1)} − E{Y (0)}.
Additionally, X is used to denote the covariates.
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1.2 General introduction of causal mediation analysis

On top of the aforementioned causal effects, researchers in most fields of studies are often
not only interested in the impact of a treatment or exposure on an outcome, but also the
underlying mechanism involved within the process [28]. Furthermore, in many cases, there
exist intermediate variables positioned along the causal pathway between the treatment and
the outcome. When specific conditions are met, these intermediate variables are referred as
mediators [54]. An understanding of the relationship among treatment, mediator(s), and
outcome provides insights into how the treatment precisely influences the outcome. Causal
mediation analysis offers an essential tool for disentangling the effects of a treatment on
an outcome via a variety of paths through either the mediator(s) or the treatment itself
[13, 136].

Though the rigorous definition of causal mediation analysis is a relatively recent concept
in statistics or biostatistics, the initial analysis of intermediate variables, which is akin to
modern mediation analysis, has a long history predating the modern concepts of causal
inference and the potential outcomes framework. Such analysis has been employed in
various fields, primarily in early studies on psychology and other social sciences [151, 152,
153]. Baron and Kenny [4], along with some other scholars[64, 59], contributed some
initial work on mediation analysis. Baron and Kenny [4] were the first to clarify the
criteria for considering a variable a mediator. Then, they introduced the mediation effects
in terms of a series of regression coefficients and provided methods for estimating and
testing the effects. To illustrate their models, we consider the simplest mediation scenario
as presented by Baron and Kenny. In this scenario, there is a binary exposure or treatment
T , a continuous mediator M , and a continuous outcome Y . The exposure may affect the
outcome directly and/or through the mediator. This mediation scenario can be represented
graphically using a causal diagram (see Figure 1.1). Such a figure is also called the directed
acyclic graph (DAG) [90].

Based on the mediation problem, they propose several models, which are,

Y = β1 + τT + ε1

Y = β2 + τ ′T + βM + ε2

M = β3 + αT + ε3,

where εi ∼ N(0, σ2
i ), for i = 1, 2, 3. Following their proposed models, they identify the

total effect as τ , the direct effect as τ ′, and the indirect effect (mediation effect) as αβ.
Notice that when Baron and Kenny propose their model, they do not utilize the potential
outcomes framework; instead, they purely define the mediation effects as functions of
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Figure 1.1: The causal diagram of Baron and Kenny’s model

regression coefficients. In addition, they do not discuss causal effects, where confounding
issues may exist in real applications.

James et al. [59], Judd et al. [64] and MacKinnon et al. [81] also make contributions
on either methodologies or applications of mediation analysis using regression-based ap-
proaches. The traditional regression-based mediation effect models are summarized as the
structural equation modeling (SEM) framework, according to Imai et al. [54], Gunzler et
al. [37] and other scholars [149, 19].

The conceptualization of the potential outcomes framework greatly influences studies
on mediation analysis and modern mediation analysis is based on that. Several studies
define the causal mediation effects in more rigorous ways. We introduce some additional
notations. The notation M(t) is used to denote the potential value of mediator M under
treatment assignment t and Y (t,m) is used to denote the potential value of the out-
come Y when the associated treatment is assigned to the level of t and the mediator
has taken value m. Following Pearl[91], the controlled indirect effect CIE(t,m,m′) =
E{Y (t,m)} −E{Y (t,m′)}, which depicts the changes of the potential outcome if control-
ling the treatment to the level t and changing the mediator value from m to m′. Similarly,
the controlled direct effect CDE(t, t′,m) = E{Y (t,m)} − E{Y (t′,m)}, which depicts the
changes of the potential outcome if setting the mediator to the level of m and changing the
treatment level from t′ to t. However, compared with the controlled effect, another defi-
nition called the natural effect is more widely used. Under the natural effect setting, the
nested potential outcome Y (t,M(t′)) is used to denote the potential value of the outcome
Y if the associated treatment is assigned t and the mediator takes the value that it should
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have taken had the treatment affecting the mediator been assigned t′. Then the natural
indirect effect NIE(t) is defined as E{Y (t,M(t))}−E{Y (t,M(t′))}, which represents the
changes of the expected outcome if the treatment assignment is assigned t and the value of
the mediator changes from the value it should have taken under treatment t to that under
t′. The natural direct effect NDE(t) is defined as E{Y (t,M(t))}−E{Y (t′,M(t))}, which
represents the changes of the expected outcome if the treatment assignment is changed
from t to t′ and the value of the mediator fixed at the value it should have taken under
treatment t. Because the natural effects are more commonly used, people sometimes sim-
plify the natural indirect effect (NIE) as indirect effect (IE) and the natural direct effect
(NDE) as direct effect (DE).

In terms of the estimation, Imai et al. [54], in their groundbreaking work on causal
mediation analysis, argue that the SEM framework is problematic. Instead, in a series
of studies [55, 54, 56], based on the new counterfactual thinking, Imai et al. [54, 55, 56]
propose a unified framework for the definition, identification, estimation, application, as
well as sensitivity analysis of causal mediation effects. Meanwhile, Pearl et al. [92, 91, 93]
propose the mediation formula that non-parametrically estimates causal mediation effects.
Other scholars also contribute to the identification and estimation of causal mediation
effects [137, 1, 163], application of causal mediation analysis [43] as well as performing
sensitivity analysis under the mediation settings[138]. In the causal mediation analysis
framework, we call the model that associates the mediators to the treatment and baseline
covariates the “mediator model”, and the model that associates the outcome with the
treatment, the mediators and the baseline covariates the “response model”. Sometimes,
the “response model” is also called the “outcome model” and the two terms are used
interchangeably in this thesis.

1.3 Joint modeling of multiple uncausally related me-

diators

In early studies on mediation analysis, researchers mainly focus on the case of a single
mediator[136]. Moving forward to the past two decades, quite a number of papers[136,
16, 124] extend the single-mediator framework to account for multiple mediators. In the
presence of multiple mediators, the relationship among the multiple mediators plays an
essential role when conducting analysis. However, traditional studies on causal mediation
analysis of multiple mediators mostly concentrate on the scenarios in which the mediators
are either sequentially causally related [124, 136] (the causal pathways among the mediators
can be clearly identified), or independent with each other conditioning on covariates[124].
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Figure 1.2: A DAG of two sequentially
causally related mediators
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Figure 1.3: A DAG of two causally unre-
lated mediators

Among them, one of the most well-known estimating frameworks is the study of Tingley et
al. [132] that assumes the multiple mediators are sequentially causally related. See Figure
3.3 for a DAG illustrating an example of two mediators sequentially causally related. In
the example, M1 is causally affected by T , while M2 is causally affected by both M1 and
T .

Recently, a new concept that mediators are uncausally related has been proposed and
formalized by Jerolon et al. [60]. Even before the formal definition of “uncausally” related
is proposed, there are already some studies on modeling uncausally related mediators, even
though these studies do not explicitly state that the multiple mediators are uncausally
related. For example, Wang et al. [147] propose modeling bivariate mediators when one
is continuous and the other one is discrete; Huang et al. [52] study mediation analysis on
survival outcome when multiple mediators are involved and Yu et al. [156, 158] proposes
using the multivariate normal framework to jointly model multiple mediators. Also, some
applied studies can be found [26, 47, 168, 155] utilizing the idea of uncausally correlated
mediators in applications without explicitly formalizing the concept. In short, uncausally
correlated mediators depict the scenario that the mediators are conditionally dependent
given the treatment and measured covariates, but regarding their dependencies, it is hard
to establish causalities [60]. For example, there are no deterministic conclusions regarding
whether M1 causally affects M2 or vice versa. Such a new concept offers higher practical
value, as in many real-life scenarios, drawing the causal relationships among the mediators
is often challenging.

In this thesis, we propose a framework for modeling uncausally related mediators based
on the work of Jerolon et al. [60]. When modeling multiple mediators, one of the most
important issues is modeling the correlation structure, because failing to do so may lead to
biased estimations of the causal effects or invalid estimation of standard errors [60, 147].
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In our proposed method, we utilize copula functions to model the dependencies among
mediators.

There have been pioneer works utilizing copula functions for mediation analysis. The
literature on copula-based methodologies in causal inference and mediation analysis en-
compasses a rich array of significant contributions. Zheng et al. [166] dig into the intricate
domain of multi-treatment causal inference, employing copula functions to disentangle
complex causal relationships involving multiple interventions. Their work revolutionizes
the understanding of multifaceted treatment effects by considering dependencies and inter-
actions among various interventions, enhancing the precision of causal inference in complex
settings. Falkenström et al. [23] significantly advance causal inference by focusing on de-
pendent variable modeling. Through the wide use of copula functions, they illuminate the
associations between the dependent variable and other factors within a causal framework,
providing nuanced insights that surpass traditional linear approaches. Meanwhile, Huang
et al. [50] pioneer the application of copula-based methodologies in semi-competing risk
modeling within mediation analysis. Their work addresses the challenges posed by multiple
risk factors influencing competing events, showcasing copula functions’ utility in model-
ing complex risk relationships and refining the precision of causal inference. In another
study, Vanderweele et al. [136] introduce the innovative use of the Plackett copula for han-
dling dichotomous mediators in mediation analysis, offering a robust tool to comprehend
and quantify indirect effects in diverse causal mediation models. Together, these studies
demonstrate the versatility and efficacy of copula functions across various domains.

A copula function can be used to connect the associated marginal distributions to form
the joint distribution. Following [86], we define C : [0, 1]d → [0, 1] a d-dimensional copula
if C is a joint cumulative distribution function of a d-dimensional random vector on the
unit cube [0, 1]d with uniform marginals. Sklar’s theorem [119, 21] further states that every
multivariate cumulative distribution function FZ1,...,Zd

(z1, . . . , zd) = Pr[Z1 ≤ z1, . . . , Zd ≤
zd] of a random vector {Z1, . . . , Zd} can be expressed in terms of its marginal cumulative
distribution function FZi

(zi) = Pr[Zi ≤ zi] and a copula C. Indeed:

FZ1,...,Zd
(z1, . . . , zd) = C(FZ1(z1), . . . , FZd

(zd) ;ϱ) = C(u1, . . . , ud ;ϱ).

In the equation, all the u1, . . . , ud are realizations of probability integral transformations
U1, . . . , Ud such that

Ui = FZi
(Zi) ∼ Uniform(0, 1),

where ϱ is the correlation structure of random variables Z1, . . . , Zd. In some literature, ϱ
is considered a part of the copula and therefore is omitted in the equation, but here to
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emphasize the modeling of the correlation parameters among the variables, we put ϱ into
the equation. In case that the multivariate distribution has a density fZ1,...,Zd

, and if this
is available, it holds further that

fZ1,...,Zd
(z1, . . . , zd) = c(FZ1(z1), . . . , FZd

(zd) ;ϱ)
d∏

i=1

fZi
(zi) = c(u1, . . . , ud ;ϱ)

d∏
i=1

fZi
(zi),

where c denotes the density corresponding to the copula C. Some recent studies on copula
include Kolve et al. [71], Song et al. [120] and Zimmer et al. [169]. The copula technique
has also been applied widely in many areas of research to model the dependencies among
multivariate variables, especially in finance, biomedical and social science studies[89, 65,
22].

1.4 Mediator selection and dependency structure sim-

plification for high-dimensional causal mediation

analysis

In real-life problems, a common issue we encounter involves high-dimensional mediators.
For instance, consider a human neuroimaging study [2] aimed at investigating the relation-
ship between brain regions and pain perception. In this context, brain neural connectors
serve as natural mediators, facilitating the transition from a stimulus to pain perception.
These neural connectors exhibit high dimensionality, which poses a challenge for analysis.
Another example can be found in a study exploring the mediation effect of DNA methy-
lation on the relationship between childhood trauma and the development of long-term
psychiatric disorders [69, 49]. DNA methylation is postulated to mediate the process of
connecting childhood trauma to psychiatric outcomes. However, DNA methylation occurs
at multiple DNA loci, often in large numbers, resulting in high-dimensional mediators.
This example also serves as the real data application problem that we are going to address
throughout the thesis. A detailed introduction to the study is going to be presented in
Section 2.8. Conducting causal mediation analysis on original datasets that involve high-
dimensional mediators can lead to estimation problems. The high dimensionality typically
results in large standard errors for estimated parameters, leading to inaccurate estima-
tions. Moreover, in some cases, the number of mediators may even exceed the sample size,
a situation commonly referred to as the “p > n” problem. Under such circumstances, tra-
ditional analysis methods become invalid, and issues such as non-invertible design matrices
can hinder the fitting of response models.
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On the other hand, the high dimensionality of mediators gives rise to the challenge of
proper interpretation. In practical scenarios, not all variables classified as ‘mediators’ truly
fulfill that role. In our earlier example of pain perception, the human brain is a complex
structure with numerous circuits, yet only a specific brain region mediates the process
from stimulus to pain perception. In the case of DNA methylation, it is unlikely that all
DNA methylation loci mediate the process, but usually, only a small number of them play
the role of mediators. The phenomenon that among the large number of variables that
should be regarded as candidate mediators, it is usually the case that only a small number
of them contribute non-zero indirect effects from the treatment to the outcome, is called
the sparse mediation problem by Zhao et al. [165]. In this thesis, we only refer to the
mediators with nonzero indirect effects as true mediators, whereas, we regard the original
large set of variables where true mediators are picked from as candidate mediators. For
the sake of precise estimation and clearer interpretation, the essential step of mediator
selection is crucial before conducting causal analysis. This selection process also results in
dimension reduction that benefits estimations and statistical inferences in subsequent steps.
The exploration of potential relationships among the exposure, candidate mediators, and
the outcome, along with the selection of potential true mediators before causal analysis,
constitutes the process of ‘exploratory mediation analysis’ (EMA), following Van Kesteren
et al.[134].

Several methods have been proposed to address the issue. A natural approach involves
fitting a series of univariate regression models, where each model associates one mediator
with either the treatment or the outcome [7, 78]. Such techniques are commonly categorized
as ‘filter methods’ following Guyon et al. [38]. However, these methods have limitations
in that they only consider the marginal effect of each mediator individually, overlooking
potential relationships among multiple mediators. In certain scenarios, a group of medi-
ators may jointly exhibit significant mediating effects, even if their individual marginal
effects are not significant when considered separately. A more comprehensive approach is
to extend the Structural Equation Model (SEM) framework introduced in Section 1.2 and
incorporate multivariate regression models to account for multiple mediators (Preacher et
al. [96]). In the multivariate regression model proposed by Preacher et al. [96], the mul-
tiple mediators are treated as a multivariate vector and the multivariate regression model
is therefore fitted to assess the mediation effects. Mediator selection can be addressed
by examining the mediators associated with non-zero regression coefficients. Figure (1.4)
illustrates the process. In the figure, M1 . . . ,MJ are candidate mediators and each one
is associated with coefficient α linking it with the treatment and coefficient β linking it
with the outcome. Selection can be made by investigating if αjβj = 0 for all j = 1, . . . , J .
However, such a method also comes with drawbacks. For example, if the dimension of
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mediators is higher than the sample size, regression models may not be valid to fit due to
the design matrices being non-invertible.

T
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MJ

Y
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αJ

β1

βJ

τ
...

Figure 1.4: An extended SEM framework for mediator selection

Other methods approach the issue from different perspectives. Instead of conducting
mediator selection, these methods focus on projecting the original mediators into linear
combinations. By transforming mediators from their original high-dimensional space into
potential lower-dimensional linear combinations, these approaches effectively reduce the
dimension of the mediator space. Huang et al. [51] employ the principal component
analysis (PCA) to reduce the dimensionality of the multivariate mediators first and then
perform mediation analysis on the reduced linear combinations. Zhao et al. [164] extend the
method introduced by Huang et al. [51] by replacing the regular PCA with the sparse PCA
technique to enhance estimation efficiency. These PCA-based methods work by projecting
the original mediator values to a reduced space, which leads to dimension reduction and
efficiency gains. However, when considering the problem under the “sparse mediation”
settings, these methods may not be ideal, as they do not inherently facilitate the proper
selection of true mediators from the candidate pool.

Some studies propose mediator selection and dimension reduction simultaneously using
penalized estimation techniques. Shojaie et al. [117] employs the LASSO technique [130]
to penalize effects through each possible mediator candidate connecting the treatment
to the outcome in directed acyclic graphs. Their method fits a set of multiple models
relating candidate mediators to either the treatment or outcome. Then they perform
variable selection for each model via the standard LASSO penalization method. Zhao
et al. [165] extend the standard LASSO framework by modifying the penalization term
and propose a pathway LASSO method to select mediators with strong connections with
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both the treatment and the outcome. Their new penalization terms are constructed by
adding the absolute values of the intersections of coefficients (|αβ| in their paper) and
second-ordered terms of α and β to the original first-order ones, where α and β are the
regression coefficients associated with the mediator variables in the mediator models and
the response model respectively. Our method shares a similar spirit with their work in
terms of mediator selection, but we modify the penalization terms for better computation
efficiency. We remove the second-order term to make the penalization target the indirect
effects only and thus, the penalized objective function is much simpler to solve. We further
add a second part of selection to the dependency structures, which is introduced in the
next paragraph. Moreover, the proposed method not only picks up true mediators from
the set of candidate variables, but also picks up the proper covariates from the remaining
variables to be included in the response model.

Other penalization-based variable selection methods include the de-biased LASSO ap-
proach proposed by Gao et al.[30], the minimax concave penalty approach proposed by
Zhang et al. [161], and the adaptive LASSO approach proposed by Zhang [162]. The
de-biased LASSO approach [30] first performs sure independence screening (SIS) to choose
a relatively small number of mediators that are most associated with the outcome or the
exposure, based on p-values from linear regression, then fit the outcome model for the re-
maining mediators using de-biased LASSO approach. Such a step is followed by fitting the
mediator models using linear regression among those mediators that have both survived
the screening (in step 1) and been identified by the LASSO (in step 2). Finally, the global
indirect effect is estimated by summing the mediation contributions and the direct effect is
estimated by subtracting the global indirect effect from an estimate of the total effect. The
difference between our proposed method and the de-biased LASSO is that, we penalized a
joint objective function including the contribution from both the mediator model and the
response model simultaneously. The minimax concave penalty approach works [160] by
first reducing the pool of potential mediators from a very large to a moderate number that
is less than the sample size, followed by conducting the variable selection with the minimax
concave penalty and finally carrying out joint significance testing for the mediation effects.
We do not impose the concave restriction for the objective function and our objective func-
tion targets the indirect effects of interest only. The adaptive LASSO approach [161] works
by first obtaining an initial model fit using either LASSO or elastic net depending on the
user. Then, estimates from this fit are used to compute the adaptive weights used in the
adaptive LASSO. Once the final adaptive LASSO estimates are obtained for the outcome
model, estimates for the selected mediator models are obtained by linear regression. The
mediation contributions (indirect effects) are computed as products of coefficients from
the two models, the joint indirect effect is estimated by summing the mediation contribu-
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tions, and the direct effect is estimated by subtracting the global indirect effect from an
estimate of the total effect. Similarly, compared to the adaptive LASSO technique, the
objective function of our method consists of both the mediator model and the response
model. Moreover, our proposed method penalizes the indirect effects of interest in a more
straightforward way.

Once the true mediators have been selected, estimations of causal effects of interest
(throughout the true mediator(s)) become a focal point for researchers. It’s worth noting
that their interest often extends beyond the overall joint mediation effects resulting from
all mediators collectively when more than one true mediator is selected, but also on the
individual mediation effects and the effects mediated by specific subsets of mediators [147].
Expanding on this notion, typically a large number of mediation effects can be defined.
In fact, the count of conceivable mediation effects grows exponentially as the number of
mediators increases. However, not every effect carries significance or requires estimation.
In practice, only a select few of these effects hold significance and warrant precise estima-
tion. To illustrate, consider a scenario involving three mediators. Among the estimable
mediation effects, there are three individual effects, each stemming from a single mediator.
Additionally, there are three grouped effects, arising from pairs of mediators. Finally, the
joint effect encompassing all mediators is also estimable. While in total seven mediation
effects can be derived in this simple example, only a subset of meaningful ones merit careful
estimation. In this thesis, unless provided with additional information (e.g. in a specific
context for a real problem), we believe that the grouped mediation effects from multiple
mediators are only meaningful and worth precise estimating if the component mediators
contributed to those effects exhibit associations with each other. On the other hand, we
also believe that only for mediators that are not associated with others, their correspond-
ing individual effects are meaningful and need to be estimated. Moreover, we assume that
among the possible high-dimensional mediators, only a small subset of them are associated
with each other. Figure 1.5 illustrates an example involving 3 mediators. In this example,
M1 and M2 are uncausally related while M3 is independent of the others. Though there
are in total 7 causal effects that can be defined, among the 7 estimable effects, only the
grouped indirect effect from M1 and M2, the individual indirect effect from M3 and the
direct effect are meaningful enough and worth estimation.

Following such notions, it remains imperative to understand the dependency structures
among the mediators, even after selecting them from a large set of candidates, before delv-
ing into the estimation of causal effects. In a similar manner, challenges arising from high
dimensionality continue to exist, owing to the quadratic surge in the number of correla-
tions in accordance with the number of mediators, even if only pairwise correlations are
considered. As a consequence, the reduction in dimensionality achieved by selecting me-
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Figure 1.5: A 3 mediator illustrating example

diators from the initial high-dimensional candidates does not entirely alleviate the issue.
The exponential growth rate of correlations implies that the dimension of the correlation
parameter remains sufficiently substantial to pose challenges. To illustrate, in the DNA
methylation example, there is an initial mediator candidate pool of 385882 variables. Even
if only 100 mediators are selected from this set, there still exist 4950 pairs of correlations
demanding estimation, and 2100 different estimable causal effects can be defined. To ad-
dress this challenge, we propose an innovative approach that encompasses the simultaneous
selection of mediators from high-dimensional candidates while implementing selection and
dimension reduction on their dependency structures. This dual-process strategy seeks to
effectively pick up the correct mediators and simplify their correlation patterns within
high-dimensional mediator contexts, where causal effects can be estimated based on that.
Following Jerolon et al. [61], we estimate the grouped indirect effects for mediators show-
ing strong correlations and individual effects for mediators that are believed independent
of the others.
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1.5 Multiply robust methods of causal mediation anal-

ysis

As introduced in Section 1.1, addressing the confounding issues is an essential part of causal
inference studies. The two most common approaches addressing the issue are the regres-
sion approach and the inverse-propensity weighting approach. Depending on the different
approaches, two models need to be specified: 1. a response model, which is a regression
model linking the treatment and baseline covariates with the outcome; and 2. a treatment
model (also called the propensity model), which models exposure/treatment assignment
conditioning on baseline covariates. When used individually to estimate causal effects of
interest, for whichever approach, consistent estimation of the causal effects requires the
corresponding statistical model to be correctly specified. However, when the underlying
model that expresses the effect of the confounder(s) on the outcome or the treatment is
misspecified, none of the approaches is able to eliminate the bias caused by confounding.
In addition, model misspecification frequently arises due to the high dimensionality of
confounders and limited knowledge of the causal mechanism [140, 145].

The concept of doubly robust estimation, introduced by Robins et al. [100], is designed
to mitigate selection bias arising from uncontrolled nonresponse and attrition, nonrandom
treatment assignment in observational studies and noncompliance in randomized experi-
ments [67]. The doubly robust (DR) estimation approaches work by combining the afore-
mentioned two models together, such that consistent estimates of the causal effects can be
drawn if either one of the two models is correctly specified [29, 67]. Therefore, combining
the two models together provides double protection from confounding. Robins et al. [100]
and Rotnitzky et al. [103] propose augmented inverse probability-weighted estimators in
models with missing data, where Scharfstein et al. [114] show the double robustness prop-
erty of such estimators. Kang et al. [67] and Schafer et al. [113] extend the estimating
framework to causal inference settings and further propose different forms of estimators
that enjoy double robust properties. According to their studies, two of the most popular
ways of constructing DR estimators are the inverse propensity weighted regression (WR)
approach and the augmented inverse propensity weighting (AIPW) approach. Suppose
for each subject, we observe a treatment assignment (T ), a vector of covariates X (that
has a leading 1) and an outcome Y . The response model refers to the model associating
the conditional mean of outcome Y with treatment T and covariates X. If we denote
τ = E{Y (1) − Y (0)}, as the average causal effect, then the two methods estimate τ in a
doubly robust way as follows:

• The WR approach assumes a response model under treatment (T = 1): E{Y (1)} =
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X ′β1; and a model under control (T = 0): E{Y (0)} = X ′β0. Here, β0 and β1 are
estimated by solving the following two estimating equations:

Pn

{
I(T = 1)

P (T = 1|X)
(Y −X ′β1)X

}
= 0, (1.1)

and

Pn

{
I(T = 0)

P (T = 0|X)
(Y −X ′β0)X

}
= 0, (1.2)

where the probabilities on the denominators are the probability of being assigned
treatment (control) arms and Pn is a short-form notation for 1/n

∑n
i=1, where the

sample of n independent realization of X, T, Y is denoted {X i, Ti, Yi, i = 1, . . . , n}.
Solutions to the above two estimating equations are denoted as β̂0

WR and β̂1
WR re-

spectively, then,

τ̂WR = Pn{X ′β̂
1

WR −X ′β̂
0

WR} (1.3)

is a DR estimator for τ ;

• The AIPW approach assumes the response model as E{Y |X} = µ1
Y (X) for T = 1

(under treatment) and E{Y |X} = µ0
Y (X) for T = 0 (under control). We let τ̂1,AIPW

be an AIPW estimator for the expected potential outcome E{Y (1)} and τ̂0,AIPW be
an AIPW estimator for the expected potential outcome E{Y (0)}, where

τ̂1,AIPW = Pn

{
I(T = 1)

Pr(T = 1|X)
[Y − µ1

Y (X)] + µ1
Y (X)

}
, (1.4)

and

τ̂0,AIPW = Pn

{
I(T = 0)

Pr(T = 0|X)
[Y − µ0

Y (X)] + µ0
Y (X)

}
, (1.5)

then

τ̂AIPW = τ̂1,AIPW − τ̂0,AIPW (1.6)

is a DR estimator for the average causal effect τ .
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The intuition of both approaches is as follows: the WR approach weighs each observation to
the aforementioned inverse of their propensity to create a pseudo sample mimicking random
sampling. Therefore, fitting regression models on the weighted dataset is similar to working
with random sampling data. So the weights provide protection on the consistent estimation
of the regression coefficients β0 and β1; the AIPW approach using the aforementioned
inverse propensity weights to correct for bias remains in the residuals (Y − µ0

Y (X) and
Y − µ1

Y (X)) and thus correct for the bias of the estimation of τ . Some other approaches
for constructing doubly robust estimators include combining the regression model with
the propensity score matching and stratification approach. The propensity score matching
algorithm matches each subject from the treated group to one from the control group
with a “similar” propensity score. The stratification approach splits the data into multiple
strata, where within each strata, data points have “similar” values of propensity scores.
Then causal effects are calculated by making comparisons between data from the treatment
and control groups within each stratum. Both approaches adjust the observational dataset
to a dataset that aims to mimic a randomized experiment, in a way that treatment status
is randomly assigned to each subject. There are other ways of constructing doubly robust
estimators. See Schafer et al.[67] for more details on doubly robust approaches in causal
analysis.

When it comes to mediation analysis, in addition to the previously mentioned treatment
model (propensity model) and the response model, we require an additional set of mediator
models. As a consequence, since our framework comprises more than two models, the
concept of ‘double robustness’ is not valid, but instead, researchers propose the concept of
‘multiple robustness (MR)’. However, there exist varying perspectives among researchers on
the definition of multiply robust methods. Han et al. [39] define multiply robust methods
as: for an estimation method that consists of multiple (usually more than two) working
models, consistent estimations can be achieved under the correct specification of one or
multiple working models. On the other hand, Wang et al. [146] use the term ‘multiple
robustness’ to denote the situation where consistent estimations are achieved as long as
one of the multiple working models is correctly specified. For our proposed method, it
is required that at least two out of the three models that are going to be introduced are
correctly specified, in order to achieve consistent estimations of the causal effects and/or
potential outcomes.

In this thesis, we extend the aforementioned two ways of constructing DR estimators
(the WR approach and the AIPW approach) to mediation analysis settings and propose two
ways of constructing MR estimators for causal mediation analysis with multiple possibly
correlated mediators.
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1.6 Structure of the thesis

This thesis is organized as follows: In Chapter 2, we first review the concept of multiple un-
causally related mediators, define causal effects of interest under such settings and provide
assumptions on identifiability. We then propose a copula-based regression method that
jointly models the multiple uncausally related mediators. Finally, we illustrate estimations
of causal effects of interest under the proposed joint modeling framework. In Chapter 3,
we introduce the proposed penalization-based method that is able to both select mediators
from the high-dimensional candidates and simplify their dependency structures. In Chap-
ter 4, we propose two ways of constructing multiply robust estimators for causal mediation
analysis when multiple possibly correlated mediators exist.
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Chapter 2

Causal mediation analysis of multiple
uncausally related mediators

2.1 Introduction

We consider the causal model presented in Figure 2.1 that includes a treatment or exposure
variable T , J uncausally related mediators M1, . . . ,MJ , an outcome Y and pre-treatment
covariates X. The bold format notations in this thesis are used to denote vectors (e.g.
X denotes the vector of covariates). The causal relationships among the variables are
represented by solid arrows while non-causal associations are represented using bi-directed
dashed arrows. In this setting, the exposure may have a direct effect on the outcome
and/or an indirect effect through one or more of the mediator(s). Lowercase letters are
used to denote the corresponding realizations of the random variables. From Figure 2.1,
the treatment has a causal effect on both the mediators and the outcome and the outcome
is causally affected by the mediators. The multiple mediators are uncausally related. In
our model, as presented in Figure 2.1, we are considering all the mediators to be uncausally
related.

We focus on a binary treatment (or exposure) with T ∈ {0, 1}, and let Mj(tj) denote
the potential value taken by the jth mediator if the corresponding treatment were assigned
to level tj ∈ {0, 1}, j = 1, . . . , J . Extensions to deal with continuous exposure variables are
possible. We use the notation Y (t,m) = Y (t,m1, . . . ,mJ) to denote the potential value of
the outcome when the corresponding treatment is assigned to level t and each of the medi-
ators Mj takes value mj, where m denotes the vector {m1, . . . ,mJ}. The nested potential
outcome notation Y (t0,M1(t1), . . . ,MJ(tJ)) is used to define natural effects [90]; a more
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Figure 2.1: The causal diagram of multiple uncausally related mediators

compact notation for Y (t0,M1(t1), . . . ,MJ(tJ)) is Y (t0,M (t)), where t = {t1, . . . , tJ}; this
notation denotes the potential value of Y under the scenario that the treatment was set to
t0 and the mediator Mj takes a value that it would be obtained if the treatment associated
with it were assigned to the level tj respectively for j = 1, . . . , J . While it is impossible to
observe Y (t0,M(t)) if ti ̸= tj for some i ̸= j, defining the potential outcome in this way
makes it possible to define causal effects using flexible expressions involving the potential
values, including the individual indirect effect, which is defined in terms of counter-factual
values. See Wang et al.[147] and Lange et al.[73] for details on the definition of causal ef-
fects using nested potential outcomes with multiple mediators. If tj = t′, where t′ ∈ {0, 1}
for all j = 1, . . . , J , then we denote Y (t,M1(t

′), . . . ,MJ(t
′)) as Y (t,M (t′)). Note that in

this notation, t′ is not in a bold format since it does not denote a vector involving multiple
values, but rather a single value.

The total effect of T on Y is

TE = E {Y (1,M (1))} − E {Y (0,M(0))} , (2.1)

which represents the expected change in outcome Y when T is set to 1 versus 0. Here the
expectation is taken with respect to the distribution of the potential value in the population
[42].

Following Pearl[91], the natural direct effect DE(t) = DE(t1, . . . , tJ) denotes the ex-
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pected change in outcome Y from changing T from control (0) to treatment (1) while
setting all mediators at whatever value they would have obtained if their corresponding
treatment levels were set to levels t1, . . . , tJ . It is defined as,

DE(t) = E {Y (1,M (t))} − E {Y (0,M(t))} .

The natural direct effect reflects the expected change in the outcome from changing the
treatment only. When there are J mediators, there are 2J+1 potential outcomes, so there
are 2J natural direct effects. However, one can only observe the potential outcomes when
treatment assignments for the mediators are all equal to the received treatment, e.g. only
potential outcomes with the form Y (1,M (1)) (under the treatment arm) or Y (0,M (0))
(under the control arm) are observable. Researchers aim to evaluate the effect when me-
diators within the same individual are simultaneously observed under the same treatment
level t (see [147]). Therefore a simplified definition DE(t) (as a simplified notation for
DE(t, . . . , t)) is often used:

DE(t) = E {Y (1,M(t))} − E {Y (0,M(t))} . (2.2)

Such a definition represents the direct effect when controlling all the mediators to be the
values that they would have taken under treatment status t. In practice, when evaluating
the direct effect, it is often reasonable to keep the mediators at the control level, since it
is more common for researchers to regard control as the reference level [147]. Therefore
DE(0) is often more of interest. For ease of notation, we denote DE(0) as DE unless
stated otherwise. At treatment t, the joint indirect effect is

IE(t) = E {Y (t,M (1))} − E {Y (t,M (0))} , (2.3)

which reflects the causal effect of the treatment on the outcome through the mediator.
Finally, we note that TE = DE(0)+ IE(1) = DE(1)+ IE(0), so the joint natural indirect
effect and the natural direct effect sum to the total causal effect. If there are no treatment-
mediator interactions, we have that DE = DE(1) = DE(0) and IE = IE(1) = IE(0).

In models with multiple mediators, interest may lie in the causal indirect effect(s)
through an individual or a set of mediator(s) [147]. The individual indirect effect cap-
tures the causal indirect effect only through a particular mediator while the indirect effect
through a subset of mediators captures the causal indirect effects from a subset of me-
diators. We use IEj(t0, t1, . . . , tj−1, tj+1, . . . , tJ) to denote the mediation effect through
the jth mediator (Mj), with exposure set to be t0 and values of the other mediators ex-
cept for Mj to be fixed at values that they would have attained under exposure levels
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t1, . . . , tj−1, tj+1, . . . , tJ , respectively. Then,

IEj(t0, t1, . . . , tj−1, tj+1, . . . , tJ)

=E {Y (t0,M1(t1), . . . ,Mj−1(tj−1),Mj(1),Mj+1(tj+1), . . . ,MJ(tJ))}
− E {Y (t0,M1(t1), . . . ,Mj−1(tj−1),Mj(0),Mj+1(tj+1), . . . ,MJ(tJ))} .

(2.4)

Similarly, we can define 2J indirect effects corresponding to 2 treatment levels and 2J−1

settings for the J − 1 mediators. For example, in the setting of two mediators, if we fix t
to 1, we can define the individual indirect effect through mediator M1 as either

E{Y (1,M1(1),M2(0))} − E{Y (1,M1(0),M2(0))}

or

E{Y (1,M1(1),M2(1))} − E{Y (1,M1(0),M2(1))},

which are also called the ‘exit’ and ‘entrance’ indirect effects by Fan et al. [154]. To retain
the additive property as in Wang et al. [147], we define individual indirect effects as,

IEj =IEj(1, 1, . . . , 1, 0, . . . , 0)

=E {Y (1,M1(1), . . . ,Mj−1(1),Mj(1),Mj+1(0), . . . ,MJ(0))}
− E {Y (1,M1(1), . . . ,Mj−1(1),Mj(0),Mj+1(0), . . . ,MJ(0))} .

(2.5)

With this definition, IE = IE1 + IE2 + · · · + IEJ , and the indirect effect from a set
of mediators can be defined as the sum of the individual indirect effects through the
components. Moreover, if A is the set of mediators of interests, the joint indirect effects
through this set are calculated as IEA =

∑
i∈A IE.

When defining the causal mediation effects through individual or group of mediators,
the ordering of the mediators matters: different orderings lead to different definitions based
on 2.5. We acknowledge that this is a major limitation of the definition 2.5 for the indirect
effects. Other possible definitions with similar forms (i.e. expected differences between
two or more potential outcomes) can be handled similarly with the proposed method. For
example, one may also define

IE∗
j =IEj(0, . . . , 0, 1, 0, . . . , 0)

=E {Y (1,M1(0), . . . ,Mj−1(0),Mj(1),Mj+1(0), . . . ,MJ(0))}
− E {Y (1,M1(0), . . . ,Mj−1(0),Mj(0),Mj+1(0), . . . ,MJ(0))} ,
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such that IE∗
j captures the change applied to Mj only while all the other mediators remain

at the baseline levels.

In mediation analysis with multiple causally related mediators, following Imai et al.
[55, 58], the hierarchical potential outcomes are usually adopted to investigate the ef-
fect contributed by each mediator in orders. For example, when dealing with problems
as depicted in 3.3, the hierarchical potential outcome has the form Y (t0,M2(t2,M1(t1)))
reflecting the fact that M1 causally affects M2. Our proposed framework can be ex-
tended to incorporate causally related mediators as well. For example, in a problem
involving 3 mediators, where M1 and M2 are uncausally related but they both causally
affect M3 (as illustrated in Figure 2.2), the potential outcome can be adjusted to the form
Y (t0,M3(t3,M1(t1),M2(t2))) and similar analysis can be proceeded with the adjusted
forms of potential outcomes. However, this flexibility is not explored here as the focus of
this thesis is on dealing primarily with uncausally related mediators.

T

M1

M2

M3

Y

Figure 2.2: A scenario where M1 and M2 are uncausally related and they causally affect
M3

2.2 Assumption and Identifiability

2.2.1 Brief review of simple mediation

We first begin with a brief review of simple mediation analysis. Following Imai et al.
[54], when there is only one mediator M , causal effects based on the potential outcomes
framework can be identified and estimated via approaches built on the mediation formula
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(a) The DAG with different confounding
structures when a single mediator exists

T M Y

X

(b) The simplified DAG when a single me-
diator exists

Figure 2.3: The DAG with different confounding structures when a single mediator exists

(Formula (2.6), to be introduced) under a set of assumptions. Imai et al. call the set of
assumptions Sequential Ignorability Assumptions (SIA). These assumptions state that:

(a) conditioning on the observed pretreatment covariates, the observed treatment is in-
dependent of all potential values of the outcome and mediating variables, i.e. the
treatment assignment is assumed to be ignorable; and

(b) the observed mediator is independent of all potential outcomes given the observed
treatment and pretreatment covariates, i.e. the mediator is ignorable.

To be specific, following Imai et al. [55], the SIA state as follows:

Assumption 1 (The Sequential Ignorability Assumptions (SIA)). [55]

The following two statements of conditional independence hold:

1. {Y (t′,m),M(t)} ⊥ T |X = x

2. Y (t′,m) ⊥ M |X = x, T = t

where 0 < Pr(T = t|X = x) < 1 and 0 < P (M(t) = m|X = x, T = t) < 1, for t, t′ ∈ T
and m ∈ M.

Figure 2.3a presents the mediation structure when only a single mediator is involved.
Under such a scenario, there could be several sets of pre-treatment covariates (e.g. X i(i =
1, . . . , 4)), which should be addressed respectively in the assumptions. For simplicity, we
consider a simplified case such that X is the union of the covariates included in the model,
as presented in Figure 2.3b. We also require X to fulfill the conditions that:
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1. X should be pre-treatment covariates; and

2. X confound one or some of the pathways among T to Y , T to M and M to Y .

Further, Imai et al. [54] show that under SIA, the distribution of the potential outcome
conditioning on the respective covariates, can be estimated via the formula:

f(Y (t,M(t′))|X = x) =

∫
M

f(Y |X = x, T = t,M = m) d F (m|X = x, T = t′). (2.6)

In the above equation, f(Y |M = m,T = t,X = x) denotes the distribution of outcome
Y given mediator, treatment and baseline covariates and F (m|X = x, T = t′) denotes
the conditional distribution of the mediator M given treatment and baseline covariates.
When facing discrete random variables, one should replace the integration by summation.
Therefore, the average direct and indirect effects are calculated as follows,

IE(t)

=

∫
X

{∫
M

E(Y |X = x, T = t,M = m) dF (m|X = x, T = 1)

−
∫
M

E(Y |X = x, T = t,M = m) dF (m|X = x, T = 0)

}
dFX(x),

DE(t)

=

∫
X

{∫
M

E(Y |X = x, T = 1,M = m) dF (m|X = x, T = t)

−
∫
M

E(Y |X = x, T = 0,M = m) dF (m|X = x, T = t)

}
dFX(x).

Similarly, when the random variables are discrete, the integration should be replaced by
summation. Such estimation formulas are called the “mediation formula” by Pearl [92].

2.2.2 Identifiability of multiple uncausally related mediators

Jerolon et al. [60] formalize the concept of uncausally related mediators and extend SIA
to account for the situation when multiple uncausally related mediators exist. When
extending SIA, the biggest challenge is that the mediators themselves are the confounders
of each other. In addition, one of the most prevailing reasons for mediators uncausally
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related is the existence of unmeasured covariates U causally affecting all or some of the
mediators. Under such situations, U are unobserved confounders between the mediators
and the outcome, so SIA does not hold [60]. The extended version of SIA to account
for multiple uncausally related mediators, is called the Sequential Ignorability for Multiple
Mediators Assumption (SIMMA) by Jerolon et al. [60]. In the original version of SIMMA
by Jerolon et al., mediators are categorized into the ones of primary interest and the others.
In this thesis, we do not distinguish them. Therefore, by generalizing SIMMA from Jerolon
et al. [60], we propose our version of SIMMA, which is stated as follows:

Assumption 2 (The Sequential Ignorability for Multiple Mediators Assumption (SIMMA)).
The following two statements hold:

1. {Y (t0,m1,m2, . . . ,mJ),M1(t1), . . . ,MJ(tJ)} ⊥ T |X = x

2. Y (t0,m1,m2, . . . ,mJ) ⊥ {M1, . . . ,MJ} |X = x, T = t

where 0 < P (T = t|X = x) < 1, and for any j ∈ {0, . . . , J}, 0 < P (Mj(t) = mj|X =
x, T = t) < 1, tj ∈ T and mj ∈ M.

The SIMMA indicates that:

(a) conditioning on the observed pre-treatment covariates, the observed treatment is
independent of all potential values of the outcome and all mediating variables; and

(b) the observed mediators are jointly independent of all potential outcomes given the
observed treatment and pre-treatment covariates.

An intuitive understanding of SIMMA is that, this assumption treats the multiple media-
tors, no matter uncausally related or not, as a whole and considers the joint distribution of
all mediators. Our modeling method is also based on such an idea and considers modeling
the set of mediators jointly. One needs to be cautious that, both SIA and SIMMA can be
violated even with randomized treatment assignment, this is because the randomization
can only solve the confounding issue for the first part (confounding between treatment
and mediator, or treatment and the outcome), it cannot solve the confounding issue be-
tween mediator and outcome. For detailed discussion related to randomization and the
ignorability assumptions, please refer to Imai et al. [55, 54]
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Under SIMMA,

E{Y (t0,M1(t1), . . . ,MJ(tJ))}

=

∫
X

{∫
. . .

m1,...,mJ

∫
E{Y |X = x, T = t0,M1 = m1, . . . ,MJ = mJ}

dJFM1 ... MJ
(m1, . . . ,mJ |X = x, T1 = t1, . . . , TJ = tJ)

}
dFX(x),

which can be simplified as∫
X

{∫
. . .
M

∫
E{Y |x, t0,m} dF (m|x, t)

}
dFX(x). (2.7)

Similarly, one may replace the integration by summation to account for discrete random
variables. With the estimated potential outcomes, causal effects of interest, as functions
of potential outcomes, are calculated respectively via (2.1), (2.3), (2.2), (2.5).

Having the SIMMA is not adequate for the individual indirect effects (and its extension
e.g. the indirect effects through a subset of mediators) to be identifiable. We therefore
propose the following assumptions.

Assumption 3 (Invariant correlations among mediators). The conditional correlations among
the multiple mediators do not vary with any arbitrary combinations of treatment assign-
ments t1, . . . , tJ .

Cor(M1(t1), . . . ,MJ(tJ)|X) = ϱ

for any t1, . . . , tJ ∈ {0, 1}J , where Cor(·) denotes the correlation matrix among the follow-
ing elements and ϱ denotes the conditional correlation matrix among mediators.

Assumption 3 guarantees that ϱ is fixed and not affected by t, which makes estimation
of correlation structure among mediators feasible. Moreover, Assumption 3 also guarantees
that such an estimated correlation structure could be used when imputing the potential
outcomes under counterfactual scenarios, particularly, under counterfactual combinations
of treatment schemes (i.e. ti ̸= tj for some i ̸= j). Even though we may relax Assumption
3 to some extent, we still need to assume two fixed correlations under either the treatment
or control arm and it is impossible to drop Assumption 3 completely. Assumption 3R
states the relaxed version of Assumption 3.

Assumption 3R (Invariant correlations among mediators (relaxed version)). The condi-
tional correlations among the multiple mediators under either the treatment or control
setting are assumed to be fixed.

Cor(M1(0), . . . ,MJ(0)|X) = ϱ0 and Cor(M1(1), . . . ,MJ(1)|X) = ϱ1
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The reason why we cannot drop Assumption 3 completely is that the mediator values
under arbitrary counterfactual combinations of treatment assignments (ti ̸= tj for some
i ̸= j) are never observed. Therefore, without Assumption 3, the correlation structure
among mediators cannot be estimated and the proposed analysis cannot proceed. Hence,
Assumption 3 provides fundamentals for the proposed analysis framework, particularly,
if our interest lies within the estimation of individual indirect effects, though such an
assumption may sometimes be violated in practice and is untestable. Nevertheless, if our
interests lie only within the direct and joint indirect effects, and we are not interested in
individual indirect effects, then Assumption 3 can be dropped. We acknowledge that this is
a main limitation of the proposed method. In addition, throughout this chapter, we assume
Assumption 3 is satisfied and also ϱ is a fixed but unstructured matrix. If Assumption 3R,
rather than Assumption 3 is adopted, then in Section 2.3.2, when estimating the correlation
structure, we model two different correlation matrices under either the treatment or control
arm separately. Following the same logic, a partial test can be proposed to test if variance
among mediators does not vary with changing exposure(s), i.e. testing Assumption 3
versus Assumption 3R, using observed data. Assumption 3 cannot be fully tested due to
unobservable counterfactual values.

Moreover, the consistency and the positivity assumptions are also assumed analogous
to most studies for causal analysis. The consistency assumption implies that an individ-
ual’s potential outcome, given their observed exposure history, aligns precisely with their
observed outcome [99]. On the other hand, the positivity assumption dictates that there
exists a non-zero (i.e., positive) probability of receiving each level of exposure for every
possible combination of exposure and confounding variables present among individuals in
the population [41]. These two assumptions are widely adopted in studies involving causal
inferences. While integral to our analysis, we refrain from delving further into extensive
discussions regarding these assumptions.

2.3 Method

Formula (2.7) involves modeling both the distribution of mediators conditioning on treat-
ment and covariates (F (m|X,T )) and the outcome conditioning treatment, covariates and
mediators (E{Y |X, T,M}). We call the model for F (m|X,T ) the mediator model and
it is denoted as MM . Throughout this thesis, we assume M has a density and we denote
the density as f(m|X,T ). We call the model for E{Y |X, T,M} the response model,
which is denoted as MY . With the estimated F̂ (m|X,T ) and µ̂Y (X, T,M ), potential
outcomes are imputed via (2.7) and causal effects of interest are estimated according to
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their defining forms.

2.3.1 Model

We denote the marginal conditional CDF and the respective PDF of Mj as Fj(mj|t,x;θj)
and fj(mj|t,x;θj) respectively, where θj denotes the marginal parameters. This thesis
proposes a general framework for joint modeling using copula functions and we denote
their joint model as MM . If we let C be the associated copula function (note that here C
denotes the conditional copula function given the treatment and baseline covariates) and
c be the corresponding density function, then we have

F (m|X, T ;θM) = C(F1(m1|X, T ;θ1), . . . , FJ(mJ |X, T ;θJ),ϱ), (2.8)

and

f(m|X, T ;θM) = c(F1(m1|X, T ;θ1), . . . , FJ(mJ |X, T ;θJ),ϱ)

f1(m1|X, T ;θ1) · · · fJ(mJ |X, T ;θJ),
(2.9)

where ϱ denotes parameters for the conditional correlations depending on the copula func-
tion. One of the advantages of using a copula function for joint modeling is that the
marginal distributions and the dependence structures can be modeled separately. When
choosing copula functions, one must ensure that Assumption 2 is satisfied. We consider
the Gaussian copula function with an unstructured dependence, under which, Assumption
2 is satisfied. Under such case, we also denote the conditional covariance as Σ.

For the joint response model MY , we assume

E{Y |X, T,M} = µY (X, T,M ;θY ), (2.10)

where θY denotes the parameters in MY .

In the following illustration, there are occasions that both i and j appear in the subscript
of the mediator or treatment variables, and the first subscript is used to denote the ith
subject and the second one to denote the jth mediator, where j = 1, . . . , J . We assume
the covariates have a dimension of p, so xir denotes the rth covariate of subject i, r =
1, . . . , p, i = 1, . . . , n. In addition, we denote the column vector {Mi1, . . . ,MiJ}′ as M i.,
and the same rule applies to other variables with two subscripts. Similarly, we denote
vector {M1j, . . . ,MnJ} as M .j and the same rule also applies to other variables with two
subscripts. For example, the notation M .j denotes the values of the jth mediator across all
subjects and M i. denotes the values of all mediators within subject i. Finally, a bold form
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variable without subscript is used to denote the entire data matrix. Furthermore, in our
model, we can allow for different covariates to be used for each marginal or the response
model, but for simplicity, we denote all covariates including a leading 1 associated with
the intercept as X.

2.3.2 Estimation

We begin with the estimation of MM . A straightforward way to optimize the joint likeli-
hood function. If denoting the n observations of independent samples as (m, t,x), the full
data log-likelihood for MM is

lM(θM ;m, t,x)

=log

{
n∏

i=1

f(mi.|ti,xi ;θM)

}

=log

{ n∏
i=1

[
c (F1(mi1|ti,xi;θ1), . . . , FJ(miJ |ti,xi;θJ);ϱ)

J∏
j=1

fj(mij|ti,xi;θj)
]}

=
n∑

i=1

{
log
[
c (F1(mi1|ti,xi;θ1), . . . , FJ(miJ |ti,xi;θJ);ϱ)

]
+

J∑
j=1

log
[
fj(mij|ti,xi;θj)

]}
.

(2.11)

Optimizing (2.11) yields the MLE,

θ̂M = argmax
θM

lM(θM ; m, t,x).

When certain requirements as stated by Gijbels et al. [32] are satisfied, alternative
methods can be implemented to simplify the estimation process. Here we propose using
the two-stage approach [62, 32]. Such a procedure is also called the method of inference
functions for margins (IFM) [62]. For this approach, we first estimate the parameters of
marginal models. Let lj(θj; t,m.j,x) be the log-likelihood of Mj where

lj(θj; t,m.j,x) =
n∑

i=1

log {fj(mij|ti,xi;θj)} .

For each j = 1, . . . , J , we estimate θj as θ̃j = argmax
θj

lj(θj; t,m.j,x). Then plugging these

estimators into the joint likelihood in (2.11), we estimate the dependency parameters as

ϱ̃ = argmax
ϱ

lM(ϱ; θ̃1, . . . , θ̃J ,m, t,x).
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When the two-stage method is used, under conditions stated by Joe et al. [63, 62], we
obtain consistent estimators. However, the variances of the estimators will mostly be
different from the ones obtained by MLE and usually, we have slightly larger variances,
which can be treated as the cost we pay for easier computation. As a special case, when
the copula is Gaussian, the estimators under the two-stage approach are identical to the
ones obtained by MLE. For more details on the two-stage method, one may also refer to
Joe et al. [63, 62].

For either the direct or the two-stage estimation method, we denote the estimated
parameter as θ̂M for simplicity. Once we obtain the estimated parameters, we plug them
in (2.8) and (2.9) to get estimates of the joint conditional distributions of mediators, such
that,

F̂ (m|X,T ) = F (m|X,T ; θ̂M), and f̂(m|X,T ) = f(m|X,T ; θ̂M). (2.12)

Estimation ofMY is straightforward. If lY (θY ;y|t,m,x) is denoted as the log-likelihood,
then

lY (θY ;y|t,m,x) =
n∑

i=1

log {fYi
(yi|ti,mi.,xi;θY )} .

Therefore,

θ̂Y = argmax
θY

lY (θY ;y|t,m,x).

When deciding whether to use the direct optimization of the joint likelihood or the two-
stage approach, the trade-off is efficiency versus computation burden. When the two-stage
approach is used, the variances of the estimators are usually larger than the ones obtained
from optimizing the joint likelihood directly, and such an efficiency loss is usually the cost
we pay for less computation.

2.3.3 Estimation of causal effects

Potential outcomes are then imputed following (2.7), where true values are replaced by
estimated ones, and hence, causal effects of interest are calculated via their definitions as
shown by (2.1)-(2.5). Following (2.7), the expected potential outcome E{Y (t0,M(t))} is
imputed as∫

X

{∫
. . .
m

∫
µ̂Y (x, t0,m; θ̂Y ) d F̂ (m|x, t; θ̂M)

}
dFX(x). (2.13)
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Integration over the distribution of baseline covariates X can be replaced by averaging
over the distribution of X in the data. Therefore, an estimated version of (2.13) based on
data is

1

n

n∑
i=1

{∫
. . .
m

∫
µ̂Y (xi, t0,m; θ̂Y ) d F̂ (m|xi, t; θ̂M)

}
. (2.14)

The causal effects of interest are estimated from (2.1)-(2.5).

The inner integration with respect to m can be carried out analytically, numerically or
via the Monte-Carlo [54] approach. The Monte-Carlo approach works as follows. For each
subject i, Monte-Carlo samples of sizeN are drawn from the fitted distribution F̂ (m|X, ti).

The vector of mediators in the kth Monte-Carlo sample is denoted as m
(k)
i , k = 1, . . . , N .

Then, kth Monte-Carlo outcome is taken to be the value µ̂
(k)
Y,i = ŷ(t0,m

(k)
i ,X i). Next,

by averaging over the N Monte-Carlo samples (N−1
∑N

k=1 µ̂
(k)
i ), we obtain an estimated

outcome for individual i. Finally, by averaging over the n subjects, we obtain an estimate
of E{Y (t0,M(t))} as desired.

In addition, we also show that, under some particular model specifications, closed forms
of the results can be obtained, which is introduced in Section 2.5.

A summary of the algorithm (when a two-stage approach is used) is provided as follows:

Algorithm 1. Algorithm of the copula-based estimator using the two-stage approach:

Step 1: Solve for mediator model marginal parameters θj by optimizing mediator marginal
data likelihood, then obtain a fitted marginal distribution for each mediator.

Step 2: For a given copula function, solve for correlation parameters ϱ and obtain a
fitted joint distribution of the mediators by combining the fitted margins with
the estimated correlation parameters.

Step 3: Solve for response model parameters θY and obtain the fitted conditional mean
model of response.

Step 4: Impute the expected potential outcome under each combination of treatment
assignments.

Step 5: Estimate the causal effects of interest.
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2.4 Theoretical Properties

2.4.1 Consistency

In this section, we provide the consistency property of the proposed estimators. The
following two lemmas (Lemma 1 and Lemma 2) state the consistency of the estimators of
the parameters.

Lemma 1 (Consistent estimation of the parameters of the mediator model). Provided that
the joint distribution model of mediators is correctly specified, under regularity conditions
listed in Appendix A,

θ̂M
p→ θM as n → ∞.

Lemma 2 (Consistent estimation of the parameters of the response model). Provided
that the conditional mean model for the response is correctly specified, under regularity
conditions listed in Appendix A,

θ̂Y
p→ θY as n → ∞.

The proofs of the two lemmas utilize the consistency properties of MLE. Because both
models are estimated via a likelihood-based approach, under regularity conditions (see
Appendix A), we naturally have the consistency of the estimated parameters [11].

Theorem 1 (Consistency of the estimated causal effects). Provided that the models for
both the joint distribution of mediators and the conditional mean of the response are
correctly specified, when the regularity conditions listed in Appendix A are satisfied, we
have that, as n → ∞,

T̂E
p→ TE, D̂E

p→ DE, ÎE
p→ IE, and ÎEj

p→ IEj for j ∈ {1, . . . , J}.

The proof of Theorem 1 is shown in Appendix B, where the general idea is to combine
the continuous mapping theorem as well as the law of large number [11] with Lemma 1
and 2 to show the overall consistency.

2.4.2 Asymptotic normality

The following theorem helps us obtain the asymptotic variance-covariance matrix of esti-
mated parameters from MM and MY .
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Theorem 2 (Diagonal block pattern of the variance-covariance matrix of estimated param-
eters). If we let V ar(θ̂M |X,T ) = V M (the variance-covariance matrix of θ̂M), V ar(θ̂Y |X,T ) =
V Y (the variance-covariance matrix of θ̂Y ) and θMY = {θ′

Mθ′
Y }′, then,

V = V ar(θ̂MY |X,T ) =

(
V M 0
0 V Y

)
.

When a standard MLE is used, an asymptotic version of V M can be obtained by
taking the inverse of the observed Fisher-information of MM (denoted as IM). If a two-
stage approach is used, the asymptotic V M is obtained differently, see Shih et al. [116]
and Joe et al. [62, 63] for details. An asymptotic version of V Y can be obtained by
taking the inverse of the observed Fisher-information of MY in a similar way (denoted as
IY ). The importance of Theorem 2 is that it reduces the complexity of the correlation
structure of the estimated parameters. In addition, a corollary of Theorem 2 is that
Cor(θ̂M , θ̂Y |X,T ) = 0. The proof is in Appendix B.

On top of Theorem 2, the multivariate delta method could be utilized to obtain the
asymptotic distribution of the estimated causal effects. Using λ(θ̂MY ) to represent any
estimated causal effects, as a function of estimated parameters θ̂MY , we have,

√
n(λ(θ̂MY )− λ(θMY ))

d→ N (0,∇′λ(θMY )V ∇λ(θMY )). (2.15)

Closed-form expressions of point estimators and variances under particular model set-
tings are introduced in the next session.

2.5 Closed form results under linear and Gaussian

model settings

In this section, we show that under some particular model settings, explicit mathematical
results can be derived with respect to the proposed method.

2.5.1 The mediator model

We begin with the introduction of marginal models in MM . We assume:

µij(X i, Ti;Ψj) = X ′
iηj + αjTi, i = 1, . . . , n, j = 1, . . . , J, (2.16)
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where αj is the unknown coefficient of treatment. When introducing the specified models,
we assume X is a p + 1-dimensional vector of covariates including a leading 1, so ηj =
{ηj0, . . . , ηjp}′ is the p+1-dimensional vector of regression coefficients with the first element
represents the intercept. We denote the mean parameters of the j-th marginal model as
Ψj and in this case Ψj = {η′

j, αj}′. Additionally, Ψ = {Ψ′
1, . . . ,Ψ

′
J}′ denotes mean

parameters from all marginal models. While we could allow treatment-covariates, between
covariates interactions and higher-order terms of the covariates to be included in the model,
for simplicity we only consider the settings as shown in (2.16). Therefore, if we let W i

denotes the covariates used for each marginal model of µij, then under our case, W i =
{X i, Ti}′.

We further assume a Gaussian copula is used to model the joint distribution of media-
tors, which is equivalent to assume

M i|X i, Ti ∼ MVN(µi,Σ), i = 1, . . . , n, (2.17)

where “MVN” stands for multivariate normal distribution, µi = {µi1, . . . , µiJ}′ and Σ =
Cov(M i|X i, Ti). We additionally let Cor(M i|X i, Ti) = ϱ, so that Σ and ϱ denotes the
conditional variance-covariance matrix and correlation matrix of mediators respectively.
Furthermore, we denote V ar(Mik|X i, Ti) = σ2

k and Cor(Mik,Mil|X i, Ti) = ρkl for k =
1, . . . , J , l = 1, . . . , J and k ̸= l, so that the k, lth element of ϱ is ρkl for k ̸= l and 1 for
k = l, and the k, lth element of Σ is ρklσkσl for k ̸= l and σ2

k(σ
2
l ) for k = l. Under these

settings, θj = {Ψ′
j, σj}′ and θM = {θ′

1, . . . ,θ
′
J , ρ12, . . . , ρJ−1,J}′.

The following theorem helps us obtain the closed-form solution of ΨM and its variances.

Theorem 3 (Multivariate regression model). We assume, for each subject i (i = 1, . . . , n),
the p-dimensional outcome Y i|X i ∼ MVN(µi,Σ, where µi and Σ are the marginal mean
and variance-covariance parameters. For the jth margin (j = 1, . . . , p), we assume µij =∑qj

k=0 βjkXijk, where for each k = 0, . . . , qj, Xijk denotes the kth covariate with Xij0 = 1,
βjk is the corresponding coefficient with βj0 representing the intercept and qj denotes the
total number of covariates for the jth marginal model.

If we let the design matrix of subject i be

X i =


Xi10, . . . , Xi1q1 , 0, . . . , 0, . . . , 0, . . . , 0
0, . . . , 0, Xi20, . . . , Xi2q2 , . . . , 0, . . . , 0

. . . ,
. . . , . . . ,

. . . ,
0, . . . , 0, 0, . . . , 0, . . . , Xip0, . . . , Xipqp


︸ ︷︷ ︸

marginal 1
︸ ︷︷ ︸

marginal 2
︸ ︷︷ ︸

marginal p

(2.18)
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such that the j-th row denotes covariates associated with the jth marginal model and the
corresponding coefficient vector β be

β = { β10, . . . , β1q1︸ ︷︷ ︸
marginal 1

, β20, . . . , β2q2︸ ︷︷ ︸
marginal 2

, . . . , βp0, . . . , βpqp︸ ︷︷ ︸
marginal p

}′ (2.19)

such that the first 1 to q1+1 elements are coefficients for the 1st marginal model, the q1+2
to q1 + q2 + 1 elements are coefficients for the 2nd model and so on, until the last qp + 1
elements are coefficients associated with the the pth model, then we have

Y i ∼ MVN(X iβ,Σ).

The estimated values

β̂ =

(
n∑

i=1

X
′
iX i

)−1( n∑
i=1

X
′
iY i

)
and Σ̂ =

1

n

n∑
i=1

{
(Y i −X iβ)(Y i −X iβ)

′} .
The score vectors are

S(β) =
n∑

i=1

{
X

′
iΣ

−1(Y i −X iβ)
}
;

and

S(Σ) = −n

2
Σ−1 +

1

2

n∑
i=1

{
(Y i −X iβ)(Y i −X iβ)

′Σ−2
}
.

The Information matrix and Fisher information matrix for β is given as

I(β) = I(β) =
n∑

i=1

{
X

′
iΣ

−1X i

}
.

Proof of Theorem 1 is in Appendix B. In our case, if we let

W i =

 Xi10, . . . , Xi1q1 , Ti, 0, . . . , 0
...

. . .
...

0, . . . , XiJ0, . . . , XiJqJ , Ti

 ,
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denotes the re-organized design matrix for the mediator model illustrated in Theorem 3,
then we have

Ψ̂M =

(
n∑

i=1

W
′
iΣ

−1W i

)−1( n∑
i=1

W
′
iΣ

−1M i

)
,

and

Σ̂ =
1

n

n∑
i=1

{
(M i −W iΨM)(M i −W iΨM)′Σ−2

}
,

And we have the score vectors:

SM(ΨM) =
n∑

i=1

SM,i(ΨM) =
n∑

i=1

{
W

′
iΣ

−1(M i −W iΨM)
}
;

as well as the Fisher information matrix

IM(ΨM) =
n∑

i=1

IM,i(ΨM) =
n∑

i=1

{
W

′
iΣ

−1W i

}
.

2.5.2 Linear additive response model

Next, we let

µY,i(X i, Ti,M i;ΨY ) = X ′
iγ + τTi +M ′

i.β, i = 1, . . . , n, (2.20)

where τ is the unknown coefficient of the treatment assignment Ti, β = {β1, . . . , βJ}′ is
the J-dimensional vector of regression coefficients on the vector of mediators and γ =
{γ0, . . . , γp}′ is the p + 1-dimensional vector of regression coefficients on the vector of
covariates including the intercept. Similarly, we denote the mean paramters in MY as ΨY

and in this case, ΨY = {γ ′, τ,β′}′. We also assume V ar(Yi|X i,M i, Ti) = σ2
Y . For this

model, θY = {Ψ′
Y , σY }′.

Under this model setting, if we let Zi = {X i, Ti,M i}′ to denote the covariates used
for MY , then,

Ψ̂Y =

(
n∑

i=1

Z ′
iZi

)−1( n∑
i=1

Z ′
iYi

)
and IY =

n∑
i=1

{Z ′
iZi} .
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From (2.7),

E{Y (t0,M1(t1), . . . ,MJ(tJ))}

=

∫
X

{∫
. . .
m

∫
µY (x, t0,m;ΨY ) d F (m|x, t;θM)

}
d FX(x)

=

∫
X

{∫
. . .

m1,...,mJ

∫
(γ ′x+ τt0 + β′m) d F (m|x, t;θM)

}
d FX(x)

=

∫
X

{
EM

(
γ ′x+ τt0 + β′M | x, t

)}
d FX(x)

=

∫
X

{
γ0 + τt0 +

J∑
j=1

βjE
(
Mj|tj,x

)
+ γ ′x

}
d FX(x)

=

∫
X

{
γ0 + τt0 +

J∑
j=1

βj

(
η′
jx+ αjtj

)
+ γ ′x

}
d FX(x).

The third step is because of the linear additive property of expectation and in the last
step, we plug in the mean value of the mediator from its marginal mean model.

It follows that, the individual indirect effect IEj (defined in (2.5)), the joint indirect
effect (defined in (2.3)) and the direct effect DE (defined in (2.2)), are shown to be:

IEj = αjβj, IE =
J∑

j=1

αjβj, DE = τ.

From the above formula, we see that, if we assume the multiple uncausally related mediators
as causally related, then our method yields the same results on the individual indirect
effects as Imai et al. [54] and VanderWeele et al. [139]. This alignment in outcomes
is coincidental since the formulas for computing individual indirect effects are identical
to formulas in Imai et al. [54] and VanderWeele et al. [139] (the product approach),
despite our focus on uncausally related mediators while their work centers on causally
related mediators. However, differences arise in defining the joint indirect effect and direct
effect due to the distinct focal points of our method compared to the aforementioned
works. Variances of estimated causal effects are calculated following (2.15). For example,

ÎEj = λIEj
(θ̂MY ) = α̂jβ̂j, then

ÎEj = α̂jβ̂j
d→ N(αjβj,∇′λIEj

(θ̂MY )V IEj
∇λIEj

(θ̂MY )),

where ∇λIEj
(θ̂MY ) = {β̂j, α̂j}′ and V IEj

is calculated by extracting the corresponding
elements from V = diag(I−1

M , I−1
Y ).
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2.5.3 Response model with mediator-treatment interactions

Suppose mediator-treatment interactions are included in the response model and (2.20)
changes to

µY,i = X ′
iγ + τ0Ti +M ′

iβ +
J∑

j=1

τjTiMij,

where the parameter τj reflects the mediator-treatment interactions. Under this scenario,
we have,

IEj = αjβj + αjτj, IE =
J∑

j=1

(αjβj + αjτj) ,

and,

DE|X i = τ0 +
J∑

j=1

τj
(
αj +X ′

iηj

)
.

A detailed derivation can be found in Appendix C. We can see that when the response
model includes mediator-treatment interactions, the direct effect varies with baseline co-
variates. Under such settings, the population-level effects can be treated as the expectation
of conditional (individual-level) effects. It can also be understood as a double-expectation
procedure, such that,

DE = EX

{
τ0 +

J∑
j=1

τj
(
αj +X ′ηj

)}
.

In practice, the population-level effects can be calculated using the sample mean, i.e.

D̂E =
1

n

n∑
i=1

{
τ̂0 +

J∑
j=1

τ̂j
(
α̂j +X ′

iη̂j

)}
.

2.5.4 Response model with mediator-mediator interactions

Suppose mediator-mediator interactions are included in the response model to accommo-
date the uncausal correlations among mediators, where (2.20) changes to,
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µY,i = X ′
iγ + τTi +

J∑
j=1

βjMij +
∑

k=1,...,J
l=1,...,J

k≤l

βk,lMikMil,

where the parameters βk,l reflect the interactions among mediators.

Under this scenario, we have,

IEj|Ti,X i = αjβj + αj

{ ∑
k=1,...,J

k ̸=j

βj,k (αkTi +X ′
iηk)

}
,

and

ÎEj =
n∑

i=1

{
α̂jβ̂j + α̂j

{ ∑
k=1,...,J

k ̸=j

β̂j,k (α̂kTi +X ′
iη̂k)

}}
.

We can see from the results that the individual indirect effect for the jth mediator depends
not only on the marginal distribution of the jth mediator itself but also on the margins
of other mediators. A detailed derivation can be found in Appendix C. The joint indirect
effect can be derived similarly. In addition, the direct effect can be shown to be τ as well.
We do not further consider more complicated models.

2.6 Results under some non-normal settings

In this section, we consider some particular cases where either (both) the mediator or (and)
the response are non-normally distributed. To accommodate the non-normality, the linear
model assumptions for both the mediator model and the response model are replaced by
the generalized linear model assumptions. To be specific, (2.16) is changed to

µij(X i, Ti;Ψj) = g(X ′
iηj + αjTi), i = 1, . . . , n, j = 1, . . . , J,

where g is a known link function. And (2.20) is replaced by

µY,i(X i, Ti,M i;ΨY ) = h(X ′
iγ + τTi +M ′

i.β), i = 1, . . . , n,

where h is a known link function. In the following, we introduce details under some specific
model settings.
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2.6.1 One mediator is log-normally distributed

In our simulation studies, we include a scenario where one of the mediators is assumed
to be log-normally distributed and the other one is normally distributed. The log-normal
distribution is a convenient and useful model used widely in engineering, sciences, medicine,
as well as economics. For example, in biology, the measures of size of living tissue (length,
skin area, weight) can be well approximated by log-normal distribution [53]. Here we
provide analytical results.

We assume the distributions of the mediators are: Mi1|Ti,X i ∼ Lognormal(µi1, σ
2
1) and

Mi2|Ti,X i ∼ Normal(µi2, σ
2
2). For Mi2, E(Mi2|Ti,X i) = µi2 and V ar(Mi2|Ti,X i) = σ2

2.
However, for Mi1, E(Mi1|Ti,X i) ̸= µi1 and V ar(Mi1|Ti,X i) ̸= σ2

1. Instead,

E(Mi1|Ti,X i) = exp(µi1+
σ2
1

2
) and V ar(Mi2|Ti,X i) = {exp(σ2

1)−1}exp(2µi1+σ2
1).

Furthermore, for M1, a log link is used and for M2, an identity link is used. Therefore,

E(Mi1|Ti,X i) = exp(X ′
iη1+α1Ti+σ2

1/2) and µi2 = E(Mi2|Ti,X i) = X ′
iη2+α2Ti.

Further, we assume Cor(Mi1,Mi2|Ti,X i) = ρ.

For simplicity, the response model is assumed to be linear additive, such that,

µY,i = X ′
iγ + τTi + β1Mi1 + β2Mi2.

Therefore, for the individual potential outcome (the effect conditioning on covariates
X i), we have

Yi(t0,Mi1(t1),Mi2(t2))

=

∫∫
m1,m2

(τt0 + β1m1 + β2m2 +X ′
iγ) d

2 FMi1,Mi2
(m1,m2|t1, t2,X i)

=τt0 + β1E (Mi1|t1,X i) + β2E (Mi2|t2,X i) +X ′
iγ

=τt0 + β1exp(α1t1 +X ′
iη1 + σ2

1/2) + β2(α2t2 +X ′
iη2) +X ′

iγ.

It follows that,

IE1i|X i = β1{exp(X ′
iη1 + σ2

1/2)(exp(α1)− 1)}, (2.21)

IE2i|X i = β2α2,
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where IEji|X i, j = 1, . . . , J denotes the individual indirect effect conditioning on baseline
covariates X i. The conditional joint indirect effect is the combination of the two, i.e.

IEi|X i = β1{exp(X ′
iη1 + σ2

1/2)(exp(α1)− 1)}+ β2α2,

where IEi|X i denotes the joint indirect effect conditioning on baseline covariates X i. And
the conditional direct effect,

DEi|X i = τ,

where similarly, DEi|X i denotes the direct effect conditioning on baseline covariates X i.
In this case, the conditional direct effect equals the unconditional one.

Similarly, the population-level effects are the expectation of the individual-level effects,
with expectation taken with respect to the distribution of the covariates (i.e. X). One can
also regard such a procedure as a double expectation procedure since the individual-level
effects are the effects conditioning on covariates. The estimated causal effects of interest
are obtained by replacing the parameters with their estimated values and calculating the
sample mean, for example:

ÎE1 =
1

n

n∑
i=1

{
β̂1{exp(X ′

iη̂1 + σ̂2
1/2)(exp(α̂1)− 1)}

}
,

ÎE and D̂E are calculated similarly.

When it comes to estimating the variances of the causal effects of interest, one needs to
be cautious that, under these non-linear model settings, the variation of the covariates (X i)
needs to be incorporated, because the effects usually involve covariates. The procedure of
obtaining the variances is as follows: We first obtain the asymptotic variance-covariance
matrix of parameters V following Theorem 2. Under the model settings, if we denote
θ = {θ′

M ,θ′
Y }′, where θM = {α1,η

′
1, σ1, α2,η

′
2, σ2, ρ}′ and θY = {τ, β1, β2,γ

′}′, then,

V = diag(I−1
M , I−1

Y ).

Then, following (2.15), the conditional variances are approximated using the delta-method.

For example, if we denote ÎE1|X = λ(θ̂,X) to emphasize it is a function of both estimated
parameters θ̂ and baseline covariates X, then,

ÎE1|X = λ(θ̂,X)
d→ N

(
λ(θ,X), ∇′λ(θ̂,X)V ∇λ(θ̂,X)

)
. (2.22)
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where, if only considering elements appear in the estimated effect,

∇λ(θ̂,X) =



∂ λ(θ̂,X)
∂ α1

∂ λ(θ̂,X)
∂ η1

∂ λ(θ̂,X)
∂ σ1

∂ λ(θ̂,X)
∂ α2

∂ λ(θ̂,X)
∂ η2

∂ λ(θ̂,X)
∂ σ2

∂ λ(θ̂,X)
∂ τ

∂ λ(θ̂,X)
∂ β1

∂ λ(θ̂,X)
∂ β2

∂ λ(θ̂,X)
∂ γ



=



β1exp(η
′
1X + σ2

1/2)exp(α1)
β1exp(η

′
1X + σ2

1/2){exp(α1)− 1}X
β1exp(η

′
1X + σ2

1/2){exp(α1)− 1}σ1

0
0
0
0

exp(η′
1X + σ2

1/2){exp(α1)− 1}
0
0



In applications, we replace the variance-covariance matrix of the parameters V in the
middle of the formula with the estimated V̂ .

For the unconditional variance, the final step is to utilize the law of total variance, such
that,

V ar(ÎE1) = E{V ar(ÎE1|X)}+ V ar{E(ÎE1|X)}.

In practice, without assuming the distribution of X,

1. E{V ar(ÎE1|X)} is obtained from caluating sample mean of V ar(ÎE1|X i), with each

of V ar(ÎE1|X i) approximated by (2.22).

2. V ar{E(ÎE1|X)} is obtained from taking sample variance of E(ÎE1|X i), with each

of E(ÎE1|X i) approximated by the point estimate following (2.21).

A detailed derivation on the variance of the population-level causal effects of interest (with
a focus on IE1) is provided in Appendix C.2.

An alternative approach for variance estimation is to apply the multivariate Taylor’s
expansion to approximate the exponential function in order to get rid of the non-linearity.
The results are provided in Appendix C.2. In scenario 3 of the simulation study (Section
2.6.3), a comparison between the results from direct calculation and approximation using
the Taylor’s expansion is provided.
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2.6.2 The outcome is binary

We assume a logistic model for the outcome (for simplicity, we assume no mediator-
treatment or mediator-mediator interactions), such that:

log

{
P{Yi = 1|Ti,M i,X i}

1− P{Yi = 1|Ti,M i,X i}

}
= X ′

iγ + τTi +M ′
iβ.

Then the response probability from the logistic model can be formulated as:

P (Yi = 1|Ti,M i,X i) = expit {τTi + β′M i + γ ′X i} =
exp(X ′

iγ + τTi +M ′
iβ)

1 + exp(X ′
iγ + τTi +M ′

iβ)
.

The potential outcome can be shown as,

E{Y (t0,M1(t1), . . . ,MJ(tJ))}

=

∫
X

{∫
. . .
m

∫ (
exp(X ′γ + τt0 +m′β)

1 + exp(X ′γ + τt0 +m′β)

)
d FM (m|X, t;θY )

}
d FX(x)

(2.23)

It is hard to derive an explicit formula for the integration. Therefore, under this sce-
nario, we turn to the Monte Carlo method to numerically calculate the result, which is
briefly summarized in Section 2.3.5. In addition, readers may refer to Imai et al. [55] for
more details.

2.6.3 Some of the mediators are discrete

In this section, we describe a special setting where some mediators are discrete. We in-
troduce a latent variable approach. Without loss of generality, we may assume that the
mediator Mj is discrete and the others are continuous. Suppose Mj can take value 0 or
1, the latent variable approach assumes that there exists a latent continuous variable M∗

j

that is associated with Mj and

Mj =

{
0, if M∗

j ∈ (−∞, s∗j ]

1, if M∗
j ∈ (s∗j ,∞)

where s∗j is the unknown threshold. When Mj takes more than two values, the proposed
method can still be applied by re-coding Mj into a number of binary variables. In a more
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complicated case where Mj takes value from K + 1 ordered values, sj0, . . . , sjK cut points
are required. The latent variable approach can still be applied, except that a total of K
ordered thresholds are needed to model Mj, which is represented as,

Mj =



sj,0, if M∗
j ∈ (−∞, s∗j,1]

...

sj,k, if M∗
j ∈ (s∗j,k, s

∗
j,k+1]

...

sj,K , if M∗
j ∈ (s∗j,K ,∞)

where s∗j,1 < · · · < s∗j,K are unknown thresholds.

For simplicity, we consider the case of two mediators, M1 and M2, where M1 is discrete
taking values s1, . . . , sK and M2 is continuous. The following can be extended to accom-
modate circumstances including more than two mediators. This is also the scenario we
include in the simulation study (Section 2.7). M∗

1 is assumed to be the latent continuous
variable associated with M1 with threshold values s∗1, . . . , s

∗
K . Then, the joint distribution

of M1 and M2 is given by:

P (Mi1 = m1,Mi2 ≤ m2)

=



FM∗
i1,Mi2

(s∗1,m2) if m1 = s1
...

...

FM∗
i1,Mi2

(s∗k+1,m2)− FM∗
i1,Mi2

(s∗k,m2) if m1 = sk
...

...

FMi2
(m2)− FM∗

i1,Mi2
(s∗K ,m2) if m1 = sK

(2.24)

and the joint density is given by taking derivatives such that,

fMi1,Mi2
(m1,m2) =

∂ P (Mi1 = m1,Mi2 ≤ m2)

∂ m2

. (2.25)

We further assume that the joint distribution of M∗
1 and M2 is determined by a copula

C, for individual i, the model for FM∗
i1,Mi2

(m∗
1,m2|Ti,X i;θM) is denoted as

FM∗
i1,Mi2

(m∗
1,m2|Ti,X i;θM) = C(FM∗

i1
(m∗

1|Ti,X i;θ1), FMi2
(m2|Ti,X i;θ2);ϱ),
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Following (2.24),

P (Mi1 = m1,Mi2 ≤ m2|Ti,X i)

=



FM∗
i1,Mi2

(s∗1,m2|Ti,X i;θM) if m1 = s1
...

...

FM∗
i1,Mi2

(s∗k+1,m2|Ti,X i;θM)

− FM∗
i1,Mi2

(s∗k,m2|Ti,X i;θM) if m1 = sk
...

...

FMi2
(m2|Ti,X i;θ2)− FM∗

i1,Mi2
(s∗K ,m2|Ti,X i;θM) if m1 = sK

=



C(FM∗
i1
(s∗1|Ti,X i;θ1), FMi2

(m2|Ti,X i;θ2);ϱ) if m1 = s1
...

...

C(FM∗
i1
(s∗k+1|Ti,X i;θ1), FMi2

(m2|Ti,X i;θ2);ϱ)

− C(FM∗
i1
(s∗k|Ti,X i;θ1), FMi2

(m2|Ti,X i;θ2);ϱ) if m1 = sk
...

...

FMi2
(m2|Ti,X i;θ2)

− C(FM∗
i1
(s∗K |Ti,X i;θ1), FMi2

(m2|Ti,X i;θ2);ϱ) if m1 = sK

From (2.25),

fMi1,Mi2
(m1,m2|Ti,X i;θM)

=



c(FM∗
i1
(s∗1|Ti,X i;θ1), FMi2

(m2|Ti,X i;θ2);ϱ)

fM∗
i1
(s∗1|Ti,X i;θ1)fMi2

(m2|Ti,X i;θ2) if m1 = s1
...

...{
c(FM∗

i1
(s∗k+1|Ti,X i;θ1), FMi2

(m2|Ti,X i;θ2);ϱ)fM∗
i1
(s∗k+1|Ti,X i;θ1)

− c(FM∗
i1
(s∗k|Ti,X i;θ1), FMi2

(m2|Ti,X i;θ2);ϱ)fM∗
i1
(s∗k|Ti,X i;θ1)

}
fMi2

(m2|Ti,X i;θ2) if m1 = sk
...

...{
1− c(FM∗

i1
(s∗K |Ti,X i;θ1), FMi2

(m2|Ti,X i;θ2);ϱ)fM∗
i1
(s∗K |Ti,X i;θ1)

}
fMi2

(m2|Ti,X i;θ2) if m1 = sK

Conventionally, the marginal distribution for modeling the latent variable can be chosen
as either the Normal distribution based on a probit copula model [12, 36], or logistic
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distribution based on a logit copula model [88]. It is also possible to choose a (generalized) t-
distribution [72] to model FM∗

1
and that would induce a robit regression model for the binary

outcome and therefore a robit copula model [77]. Moreover, the dependency parameter ϱ
represents the dependencies between the latent variable M∗

1 and the continuous variable
M2[17].

Maximum likelihood estimation approach can be used to estimate the parameters, such
that,

θ̂M = argmax
θM

n∑
i=1

log fMi1,Mi2
(m1,m2|ti,xi;θM).

The two-stage approach could also be used to simplify the estimation, but with a modified
procedure. One may refer to Joe et al. [62, 63] for details. However, it should be noted
that, using the two-stage approach will yield a different variance estimation. For details on
estimating the copula joint distribution with the latent variable approach, one may refer
to [17].

2.6.4 Under more general settings

If we do not specify any particular forms of the mediator model or the response model, we
still need to turn to the Monte Carlo method for the estimation. Bootstrap can always be
used to obtain the variance estimations.

2.7 Simulation study

We perform simulation studies to test the performance of the proposed method and make
comparisons between the proposed method and the existing methods. We have three
scenarios with 1000 replications for each (N = 1000).

We acknowledge that there are existing methods performing similar analyses. How-
ever, these methods impose different assumptions and perform the analysis under different
mechanisms. Therefore, we cannot compare the results obtained from each one directly.
Nevertheless, we report the results obtained from the other three methods (listed by the
names of their R packages): package ‘mediation’[132], ‘mma’[157] and ‘medflex’[125] for
references. The package ‘mediation’ [132] is one of the most widely used packages for
performing causal mediation analysis. This package conducts the analysis by fitting a set
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of linear or nonlinear regressions to both the outcome and the mediators and calculates
the causal effects from the estimated regression coefficients. For example, in a situation
with two mediators, before applying the package, the user first needs to order them. We
denote the ordered ones as M1 and M2. Then the package fits the following regressions
sequentially: first

E{M1|X, T} = X ′η1 + α1T,

followed by

E{M2|M1,X, T} = X ′η2 + α1T + λM1

and finally

E{Y |X,M1,M2, T} = X ′γ + τT + β1M1 + β2M2.

Results are obtained by investigating functions of the regression coefficients α, λ, τ and β.
Confidence intervals are obtained by bootstrap for this package. This package also provides
flexible ways to conduct sensitivity analysis. The major difference between the proposed
method and package ‘mediation’ is that, package ‘mediation’ fits regression for each medi-
ator one at a time while treating the other mediators as post-treatment confounders, while
the proposed method models the joint distribution of the multiple mediators simultane-
ously.

The package ‘mma’ was designed specifically for multiple mediation analysis with de-
tails of the method described in Yu et al. [156]. This method improves traditional methods
to enable the consideration of multiple mediators by fitting several linear or nonlinear me-
diator models simultaneously and uses linear or nonlinear predictive models for estimating
mediation effects. Moreover, package ‘mma’ incorporates nonparametric algorithms like
the spline functions or the ‘LOESS’ regression to fit each model. The major difference
between the proposed method and package ‘mma’ is that, package ‘mma’ assumes a mul-
tivariate normal distribution on the mediators only. For example, Formula (2.26), (2.27)
and (2.28) from Yu et al. [156] describe the three models to be fit by the package if there
are two mediators. We adjust the three formulas with our notations for convenience:

M1i = g1(Ti, Xi) + ϵ1i; (2.26)

M2i = g2(Ti, Xi) + ϵ2i; (2.27)
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and

Yi = h(M1i,M2i, Ti, Xi) + ϵ3. (2.28)

In the above three formulas from Yu et al. [156], g1(·) and g2(·) are non-parametric mediator
models associating the mediators with the exposure and the covariates, while h(·) is a non-
parametric response model that associates the response with the mediators, the exposure
and the covariates. The default choice of nonparametric functions g1(·), g2(·) and h(·)
are spline functions. Additionally, in Yu et al. [156], (ϵ1i, ϵ2i) are assumed following a
multivariate normal distribution such that(

ϵ1i
ϵ2i

)
∼ N

((
0
0

)
,

(
σ2
1, ρσ1σ2

ρσ1σ2, σ2
2

))
,

and are independent with ϵ3i, which are iid N(0, σ2), for i = 1, . . . , n. Another difference
between our proposed model and package ‘mma’ is that, package ‘mma’ does not fit the
correlation model and ρ is treated as a nuisance parameter. Similar to package ‘mediation’,
confidence intervals are obtained by bootstrap.

The package ‘medflex’ [125] is no longer available in CRAN currently. ‘medflex’ imple-
ments mediation analysis embedded within the natural effect models, which are a novel
class of causal models that directly parameterize the path-specific effects of interest. The
analysis framework of package ‘medflex’ is quite different from our proposed one and we
provide a brief introduction to it for reference. Following Steen et al. [125], the second
equation of Section 3 elaborates the model that package ‘medflex’ fits when there is one
mediator, which is

E{Y (x,M(x∗))|C} = β0 + β1x+ β2x
∗ + β3C. (2.29)

In (2.29), x and x∗ are used to denote exposure (treatment) under either factual or counter-
factual status, and C is used to denote baseline covariates. Though there is no explicit
formula in Steen et al. [125] elaborating the models for multiple mediators under linear
settings, from Equation (6) (the model for binary outcome), we can infer the model for
multiple mediators to be as follows,

E{Y (x, L(x∗),M(x∗;L(x∗)))|C} = β0 + β1x+ β2x
∗ + β3C, (2.30)

where L is used to denote the first mediator under exposure (treatment) x∗ and M is
used to denote the second mediator under exposure (treatment) x∗ and the first mediator
L evaluated at L(x∗). Therefore, package ‘medflex’ assumes hierarchical orders of the
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mediators (modeling M as a function of L and then Y as a function of both M and L),
which is different from our proposed method. On top of that, since the potential outcomes
Y (x,M(x∗)) and Y (x, L(x∗),M(x∗;L(x∗))) are unobservable when x ̸= x∗, (2.29) and
(2.30) cannot be fitted directly with the observed data. Therefore, package ‘medflex’ uses
either the imputation method that imputes such outcomes under counterfactual scenarios
or the weighting approach that assigns each observation a weight and fit (2.29) and (2.30)
on the weighted data. However, when there is only a single mediator, package ‘medflex’
offers both the weighting approach and the imputation approach to estimate the natural
causal effects, but when multiple mediators exist, the package only allows the imputation
approach. For details on the imputation or weighting approach, one may refer to Steen et
al. [125]

We evaluate the performance of each approach in terms of the biases on both the
point estimation and the variance estimation. The raw bias was calculated by taking the
difference between the average estimated and the true value of a statistic. Suppose the
true value of the statistic of interest is θ0 and the estimated value for each replication i
(i = 1, . . . , N) is θ̂(i), then the average estimated value of the statistic is θ̂ = 1/n

∑n
i=1 θ̂

(i),

so Bias = θ̂−θ0. One may also calculate the relative bias that is defined as: Relative Bias =
|Bias|/θ0. These performance metrics tell us information on how accurate our proposed
method as well as the existing method are. In terms of the variance estimation, we calculate
the average estimated standard error from each replication. The SE is calculated from
two approaches, via (2.15) and via bootstrap. We also calculated the empirical standard

error of the estimated values, which is: Empirical SE =
√
1/(n− 1)

∑n
i=1(θ̂

(i) − θ̂)2. When

assessing the accuracy of the variance estimation, one may compare the estimated standard
error with the empirical standard error.

2.7.1 Scenario 1: 2 mediators distributed as Normal with differ-
ent correlations

In this scenario, we consider 2 mediators that are both normally distributed but with
different correlations. Our goal is to test the model performance under the situation that
there are relatively strong, moderate, weak, and even no or negative correlations between
the uncausally related mediators.

We consider a sample size of 200 pseudo-observations. For each simulated observa-

tion, we first generate three covariates Xi,1, Xi,2 andXi,3
i.i.d∼ N(0, 1). The treatment as-

signment for subject i is generated from a logistic model where the probability of re-
ceiving treatment P (Ti = 1) = expit(0.3Xi,1 + 0.3Xi,2 + 0.3Xi,3). After generating the
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Scenario
estimated
statistics

Point estimation Variance Coverage rate

average
value

bias
empirical
SE

SE
(theore-
tical)

SE
(boots-
trap)

coverage
(theore-
tical)

coverage
(boots-
trap)

Strong
correlation,
ρ = 0.9

IE of M1 1.005 0.005 0.222 0.221 0.228 0.923 0.926
IE of M2 1.013 0.013 0.218 0.222 0.228 0.929 0.933
Joint IE 2.018 0.018 0.286 0.293 0.293 0.937 0.941
Total DE 0.993 -0.007 0.176 0.163 0.167 0.915 0.919

Moderate
correlation,
ρ = 0.5

IE of M1 0.996 -0.004 0.174 0.168 0.172 0.934 0.937
IE of M2 0.995 -0.005 0.176 0.169 0.172 0.933 0.938
Joint IE 1.991 -0.009 0.284 0.266 0.270 0.933 0.933
Total DE 1.005 0.005 0.17 0.167 0.171 0.952 0.948

Weak
correlation,
ρ = 0.1

IE of M1 1 0 0.162 0.163 0.166 0.942 0.947
IE of M2 0.992 -0.008 0.159 0.163 0.166 0.952 0.952
Joint IE 1.992 -0.008 0.236 0.237 0.241 0.946 0.948
Total DE 0.997 -0.003 0.178 0.174 0.179 0.949 0.946

No
correlation,

ρ = 0

IE of M1 1.001 0.001 0.167 0.164 0.167 0.939 0.944
IE of M2 1.005 0.005 0.167 0.165 0.168 0.936 0.948
Joint IE 2.006 0.006 0.233 0.232 0.237 0.949 0.945
Total DE 0.992 -0.008 0.186 0.178 0.183 0.937 0.943

Negative
correlation,
ρ = −0.5

IE of M1 0.994 -0.006 0.168 0.169 0.172 0.940 0.943
IE of M2 0.993 -0.007 0.164 0.169 0.172 0.950 0.951
Joint IE 1.987 -0.013 0.203 0.205 0.211 0.949 0.950
Total DE 1.005 0.005 0.204 0.204 0.211 0.949 0.957

Table 2.1: Performance of proposed method under scenario 1

covariates and treatment assignments, we proceed to the generation of multiple media-
tors. The mean and the variance across each mediator are set to be the same, such that
E(Mi,1) = E(Mi,2) = 0.5 + 1Ti + 0.3Xi,1 + 0.3Xi,2 + 0.3Xi,3 and V ar(M1) = V ar(M2) =
12. With respect to the correlation between mediators (ρ = Cor(Mi,1,Mi,2)), we set
ρ = 0.9, 0.5, 0.2, 0,−0.5 to represent strong, moderate, weak, no and negative correlations.
The two uncausally related mediators are generated using a bi-variate normal distribution.
With the mediators generated, we proceed to the final step where the outcome is calculated
as Yi = 0.5+1Mi,1+1Mi,2+1Ti+0.3Xi,1+0.3Xi,2+0.3Xi,3+ εi, where εi ∼ N(0, 1). The
true values of the three types of effects are generated according to the definition and with
true potential outcomes.

The simulation results for the proposed method are shown in Table 2.1, whereas the
performances of existing methods can be accessed in Table 2.2 and 2.3.
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package scenarios
estimated
statistics

Point
estimation

Variance Coverage
rate

average
value

bias
empirical
SE

SE

package
‘mediation’

Strong
correlation,
ρ = 0.9

IE of M1 1.010 0.010 0.224 0.228 0.945
IE of M2 1.006 0.006 0.223 0.227 0.948
Joint IE 2.016 0.016 0.290
Total DE 0.996 -0.004 0.173

Moderate
correlation,
ρ = 0.5

IE of M1 0.997 -0.003 0.173 0.17 0.936
IE of M2 0.994 -0.006 0.172 0.171 0.943
Joint IE 1.992 -0.008 0.280
Total DE 1.005 0.005 0.168

Weak
correlation,
ρ = 0.1

IE of M1 1 0 0.160 0.165 0.948
IE of M2 0.992 -0.008 0.159 0.165 0.948
Joint IE 1.993 -0.007 0.235
Total DE 0.998 -0.002 0.178

No
correlation,

ρ = 0

IE of M1 1 0 0.167 0.166 0.945
IE of M2 1.006 0.006 0.167 0.167 0.942
Joint IE 2.006 0.006 0.233
Total DE 0.991 -0.009 0.184

Negative
correlation,
ρ = -0.5

IE of M1 0.994 -0.006 0.168 0.170 0.945
IE of M2 0.992 -0.008 0.164 0.171 0.961
Joint IE 1.986 -0.014 0.205
Total DE 1.007 0.007 0.202

Table 2.2: Performance of package ‘mediation’ under scenario 1
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package scenario
estimated
statistics

Point
estimation

Variance Coverage
rate

average
value

bias
empirical
SE

SE

package
‘mma’

Strong
correlation,
ρ = 0.9

IE of M1 1.232 0.232 0.255 0.269 0.897
IE of M2 1.231 0.231 0.264 0.266 0.888
Joint IE 2.457 0.457 0.326 0.337 0.737
DE 0.995 -0.005 0.196 0.189 0.939

Moderate
correlation,
ρ = 0.5

IE of M1 1.236 0.236 0.196 0.197 0.793
IE of M2 1.232 0.232 0.198 0.198 0.800
Joint IE 2.469 0.469 0.321 0.316 0.687
DE 1.007 0.007 0.186 0.191 0.953

Weak
correlation,
ρ = 0.1

IE of M1 1.211 0.211 0.182 0.188 0.829
IE of M2 1.198 0.198 0.177 0.187 0.845
Joint IE 2.411 0.411 0.279 0.287 0.716
DE 0.995 -0.005 0.198 0.195 0.938

No
correlation,

ρ = 0

IE of M1 1.286 0.286 0.191 0.193 0.701
IE of M2 1.293 0.293 0.195 0.195 0.690
Joint IE 2.578 0.578 0.290 0.299 0.510
DE 0.986 -0.014 0.203 0.200 0.935

Negative
correlation,
ρ = -0.5

IE of M1 1.233 0.233 0.193 0.198 0.804
IE of M2 1.235 0.235 0.187 0.197 0.793
Joint IE 2.465 0.465 0.267 0.279 0.618
DE 1.007 0.007 0.210 0.220 0.950

package
‘medflex’

Strong
ρ = 0.9

Joint IE 2.016 0.016 0.290 0.162 0.720
DE 0.995 -0.005 0.171 0.292 0.999

Moderate
ρ = 0.5

Joint IE 1.992 -0.008 0.28 0.166 0.742
DE 1.005 0.005 0.168 0.264 0.998

Weak
ρ = 0.1

Joint IE 1.993 -0.007 0.235 0.174 0.849
DE 0.998 -0.002 0.177 0.236 0.992

No
ρ = 0

Joint IE 2.007 0.007 0.233 0.177 0.845
DE 0.990 -0.010 0.181 0.230 0.987

Negative
ρ = -0.5

Joint IE 1.987 -0.013 0.202 0.202 0.945
DE 1.007 0.007 0.200 0.203 0.949

Table 2.3: Performance of package ‘mma’ and ‘medflex’ under scenario 1
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2.7.2 Scenario 2: 2 mediators with 1 distributed as Normal and
the other one as Lognormal

The second scenario is to test the performance of the proposed model when the mediators
are not normally distributed. We design the study such that the two mediators follow
different distributions to see if the proposed method can capture the changes precisely.
For the proposed method, we specify the models according to their true distributions re-
spectively. However, when performing the analysis using the other packages, we can only
proceed by treating all mediators as normal since it is the only way supported. In other
words, we are performing the analysis under incorrect model assumptions when investigat-
ing the other methods. We expect that, under this scenario, the proposed method achieves
much lower bias and higher CI coverages since the proposed method takes advantage of
capturing the true distributions in terms of model assumptions.

We fix the correlation to be ρ = 0.5 to avoid distractions. The data-generating proce-
dures and the parameters are the same, except that, this time we assume the first mediator
(Mi,1) to be distributed as a log-normal distribution.

The simulation results for the proposed method are shown in Table 2.4, whereas the
results from other packages can be accessed in Table 2.5. Under this scenario, the package
‘mediation’ cannot provide variance estimations for the joint IE or DE and the package
‘medflex’ cannot provide estimations on individual IE. Therefore, the corresponding cells
in the table are left blank.

We also conduct simulations where M1 is treated as normally distributed and apply the
proposed method. These simulations reflect common practice where, either unintentionally
or due to lack of precise information, the distribution of the mediator(s) is assumed to be
normal though in reality it is not. The results obtained under this scenario are presented
in Table 2.6.

2.7.3 Scenario 3: 2 mediators distributed as Normal with binary
outcome

This scenario is designed to test the performance of the proposed model when the response
model is no longer linear. We assume a logistic model for the outcome. The data generating
procedure is similar to scenario 1 except that, (1) we fix the correlation to be 0.5 to
avoid distraction and (2) we generate the outcome values as Yi ∼ Bernoulli(πi) where
πi = expit(0.5 + 1Mi,1 + 1Mi,2 + 1Ti + 0.3Xi,1 + 0.3Xi,2 + 0.3Xi,3). In this scenario, the
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scenario
estimated
statistics

Point estimation Variance Coverage Rate

average
value

bias
empirical
SE

SE
(theore-
tical)

SE
(boots-
trap)

coverage
(theore-
tical)

coverage
(boots-
trap)

Monte
Carlo

IE of M1 5.298 -0.002 0.937 0.971 0.957
IE of M2 0.994 -0.006 0.198 0.191 0.939
Joint IE 6.392 0.092 1.012 1.041 0.953
Total DE 0.999 -0.001 0.166 0.167 0.952

theoretical
(without
approx)

IE of M1 5.326 0.026 0.435 0.423 0.434 0.942 0.951
IE of M2 1 0 0.074 0.074 0.074 0.953 0.950
Joint IE 6.326 0.026 0.469 0.455 0.465 0.939 0.951
Total DE 1.001 0.001 0.070 0.073 0.074 0.955 0.949

theoretical
(1st order
approx)

IE of M1 4.644 -0.656 0.390 0.378 0.388 0.583 0.565
IE of M2 1 0 0.074 0.074 0.074 0.953 0.970
Joint IE 5.644 -0.656 0.426 0.412 0.420 0.620 0.885
Total DE 1.001 0.001 0.070 0.073 0.074 0.955 0.945

theoretical
(2nd order
approx)

IE of M1 5.287 -0.013 0.432 0.420 0.432 0.941 0.950
IE of M2 1 0 0.074 0.074 0.074 0.953 0.950
Joint IE 6.287 -0.013 0.466 0.452 0.464 0.938 0.950
Total DE 1.001 0.001 0.070 0.073 0.074 0.955 0.925

Table 2.4: Performance of the proposed method under scenario 2

package
estimated
statistics

Point estimation Variance Coverage
rateaverage

value
bias

empirical
SE

SE

package
‘mediation’

IE of M1 5.205 -0.095 1.212 1.250 0.903
IE of M2 0.996 -0.004 0.174 0.169 0.943
Joint IE 6.201 -0.100 1.270
Total DE 1.004 0.004 0.196

package
‘mma’

IE of M1 6.524 1.224 1.567 1.568 0.884
IE of M2 1.238 0.238 0.199 0.193 0.785
Joint IE 7.762 1.462 1.629 1.640 0.842
Total DE 0.983 -0.017 0.407 0.415 0.951

package
‘medflex’

Joint IE 6.104 -0.196 1.267 0.162 0.195
Total DE 1 0 0.163 1.278 0.999

Table 2.5: Performance of other methods under scenario 2
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Estimated
statistics

Point estimation Variance Coverage
rateaverage

value
bias

empirical
SE

estimated
SE

IE of M1 5.109 -0.191 1.209 1.223 0.926
IE of M2 0.995 -0.005 0.173 0.164 0.961
Joint IE 6.104 -0.196 1.267 1.278 0.885
Total DE 1.000 0 0.163 0.162 0.974

Table 2.6: Performance of the proposed method under scenario 2 when M1 is treated as
normally distributed

proposed method can provide estimations in either the probability scale or the odds-ratio
scale. When considering the odds ratio scale, the effects are calculated by comparing

log
{

P [Y (t0,M1(t1),...,MJ (tJ ))=1]
1−P [Y (t0,M1(t1),...,MJ (tJ ))=1]

}
under different combinations of t0, . . . , tJ . The calculation

results under the odds-ratio scale are equivalent to the coefficients obtained from the logistic
regression outcome model. Two reasons contribute to this phenomenon: 1. under the
odds-ratio scale, the effects are obtained by contradicting linear predictors of the expected
potential outcomes; 2. the mediator models are assumed to be linear and in each mediator
model, the α coefficient is assumed to be 1. When considering calculations under the
probability scale, the effects are calculated by taking the difference between the potential
outcomes (defined in (2.23) ) under different combinations of t0, . . . , tJ directly.

With respect to other packages, the package ‘mediation’ allows for binary outcomes
when the model only includes one mediator, and results are reported as risk differences.
However, when considering multiple mediators, the package only supports those mediators
to be causally related and models them with hierarchical linear models. Therefore, the
package ‘mediation’ does not address our scenario. For the others, we proceed with the
analysis following their respective model assumptions and it turns out that both packages
‘mma’ and ‘medflex’ provide results on the odds-ratio scale. The simulation results of the
proposed method are shown in Table 2.7 while the results from other methods are provided
in Table 2.8.

2.7.4 Discussion on simulation results

In the first scenario, we include two mediators that are normally distributed with different
correlations. Under this scenario, both our proposed model and the other existing ones
perform well with low bias and variation, as well as close to 95% CI coverage rates. This
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Calculation
method

estimated
statistics

Point estimation Variance coverage
rateaverage

value
bias

empirical
SE

SE
(bootstrap)

probability
scale

IE of M1 0.094 -0.001 0.03 0.031 0.949
IE of M2 0.070 0 0.025 0.026 0.940
Joint IE 0.164 -0.001 0.033 0.035 0.942
DE 0.083 -0.026 0.053 0.052 0.942

odds-ratio
scale

IE of M1 1.099 0.099 0.397 0.528 0.952
IE of M2 1.097 0.097 0.410 0.531 0.959
Joint IE 2.197 0.197 0.568 0.785 0.955
DE 0.995 -0.005 1.593 1.539 0.945

Table 2.7: Performance of the proposed method under scenario 3

package
estimated
statistics

Point estimation Variance coverage
rateaverage

value
bias

empirical
SE

SE
(bootstrap)

package
‘mma’

IE of M1 1.470 0.470 0.523 0.634 0.963
IE of M2 1.463 0.463 0.499 0.645 0.982
Joint IE 2.884 0.884 0.748 0.936 0.917
DE 1.029 0.029 1.535 1.858 0.941

package
‘medflex’

Joint IE 1.485 -0.515 0.322 0.519 0.862
DE 0.861 -0.139 1.075 0.312 0.653

Table 2.8: Performance of other methods under scenario 3 (under odds-ratio scale)

is as expected, because under such model settings, the effects of interest for all methods
are framed in similar ways and they estimate them with similar approaches. However, in
terms of variance estimation, our proposed method provides not only the ones obtained
from bootstrap but also the ones calculated by formulas based on large sample properties,
which are introduced in Sections 2.4 and 2.5, while the other packages only provide results
obtained by bootstrap. Additionally, the results obtained from both methods are similar
and are also similar to the empirical SE, which indicates that the calculations from the
large sample properties illustrated in Section 2.4.2 are robust. if we take into consideration
that calculations using the bootstrap method are much more time-consuming compared
with calculations using large sample formulas, it is always recommended to calculate the
SE via large sample formulas provided in Section 2.4.2. Such large sample variance calcu-
lation formulas are also major contributions of our proposed method as it does not require
conducting the time-consuming bootstrap anymore, which is the conventional way of ob-
taining variance calculations of most other packages. Moreover, the proposed method can
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provide variance estimations on the joint indirect effect, their individual ones, and on the
direct effect, while the latter two cannot be obtained from package ‘mediation’. Similarly
package ‘medflex’ also only provides variance estimation on the joint indirect effect and
the direct effect and is slightly less precise than the proposed method. Finally, when com-
paring with package ‘mma’, since ‘mma’ incorporates nonparametric algorithms like the
spline functions for the model fitting, in simple linear cases, the bias is even larger. Ad-
ditionally, the proposed method outperforms them in terms of precision when correlations
among mediators exist.

In scenario 2, under the circumstance that one of the mediators is non-normally dis-
tributed, the proposed method provides estimations with small biases and high CI coverage
rates. This is also expected since the proposed method is designed to utilize the flexibility
of copula functions modeling non-normal distributions. For the other methods, because
their estimations are based on incorrect model assumptions, the biases are much larger
and the CI coverage rates are also different from expected. Futhermore, those results are
obtained with knowledge of the mediator distributions. However, from Table 2.6, we see
that without such knowledge of the mediator distributions, if we mistakenly treat M1 as
normally distributed, then the proposed method performs as poor as the other existing
ones.

In scenario 3, the proposed method also provides desirable estimation performances,
with low bias and close to 95% CI coverage rates in terms of both the probability and
odds-ratio scale. Package ‘mma’ also provides comparable results, though it only provides
estimations under odds-ratio scales. The performance of package ‘medflex’ is relatively
poor. Though it provides relatively comparable point estimations with package ‘mma’,
the CI coverage rates are far from 95%. We suspect it is because of the relatively more
complicated estimation framework that induces more uncertainty.

2.8 Real data application

In psychological studies, experiencing childhood trauma is believed to play an important
role in leading to psychiatric disorder [69]. However, the question of the mechanism of
how persistent adverse effects of brain functioning are imposed by childhood trauma is still
not well studied [49]. Recently, some researches suggest that DNA methylation is likely
acting as a key factor, associated with both childhood trauma and long-term psychological
disorder, especially adult stress reactivity and behavior [14, 148]. On one hand, long-term
changes on brain stress reaction is believed to be partially caused by epigenetic alternations
[101, 68, 85]. On the other hand, there are several studies revealing long-lasting effects
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of environmental risk factors on DNA methylation changes [143]. However, most of them
concentrate on a single gene [143] and the persistent effect of childhood trauma is un-
likely the consequence of epigenetic changes of a single gene [83]. A preliminary study by
Houtepen et al. [49] suggests that three loci in the Kit ligand gene (KITLG; cg27512205,
cg05608730, cg26179948) have the strongest association between both exposure of child-
hood trauma and stress reactivity. However, Houtepen et al. [49] do not conduct joint
mediation analysis on the three DNA methylation loci, but only investigate the effect of
the single gene loci (cg27512205), which is suggested as having the strongest association.

In this section, following Houtepen et al. [49], we apply the proposed causal mediation
analysis method on the same dataset, to identify the joint mediation effect of the three
DNA methylation loci, as well as the individual indirect effect of each of them. The dataset
consists of 85 healthy individuals recruited from the general population at the University
Medical Center, Utrecht, the Netherlands [49]. In the dataset, only participants not taking
any prescription medication and having not been enrolled in stress-related research before
participation are included. For details on the dataset, one may refer to Houtepen et al.
[49]. The stress procedure is performed by using a version of the Trier Social Stress Test
(TSST) as a stress induction task. This task includes the public speaking test (PST) and
arithmetic task [70]. The cortisol levels were measured with an in-house radioimmunoassay.
In total eight saliva samples (Salivette) are collected within a 90-minute time period [144].
Measurements is calculated by the area under the curve (AUC) in terms of the increase
(AUCi) of cortisol. Childhood trauma exposure was assessed using the short version of the
Childhood Trauma Questionnaire (CTQ) [6, 129]. Genome-wide DNA methylation levels
were measured by using Illumina Infinium HumanMethylation450K BeadChip (Illumina)
arrays [123]. For details, please refer to Houtepen et al. [49]. In our analysis, age, sex,
as well as the ethnicity of the subjects are also included as covariates, as suggested by
researches [40, 48, 84]. Some descriptive statistics of the variables in our analysis can be
found in Table 3.22.

In our analysis, a normal copula is chosen to jointly model the three gene loci as
mediators. The residual histograms as well as normal Q-Q plots of the three mediators
are shown in Figure 2.4. We see that normality assumptions are satisfied and therefore
a normal copula is suitable. The correlation structure between the three mediators are
shown in Table 2.10, which indicates weak to moderate pairwise correlations among all
three gene loci.

The results of mediation analysis are shown in Table 2.11 (using bootstrap CI) and 2.12
(using theoretical CI). The three loci jointly has significant mediation effect on the causal
pathway of childhood trauma to stress reactivity. The results with variances obtained via
either bootstrap or theoretical derivations are similar and therefore, we use the results
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characteristics mean range
sex (% of female) 50.589
age (in years) 33.800 18 to 69
stress (cortisol stress reactivity, AUCi1) 243.460 -1029.850 to 1876.280
trauma (total CTQ2 score) 31.906 24 to 63
cg05608730 (methylation in percentage) 0.380 0.293 to 0.469
cg26179948 (methylation in percentage) 0.093 0.093 to 0.159
cg27512205 (methylation in percentage) 0.125 0.125 to 0.188

Table 2.9: Descriptive statistics of variables

cg05608730 cg26179948 cg27512205
cg05608730 1.000 0.219 0.322
cg26179948 0.219 1.000 0.425
cg27512205 0.322 0.425 1.000

Table 2.10: Pearson correlations between the three methylation loci

with theoretical variances for later discussions. The joint indirect effect from the three
mediators is −9.167, with a 95% confidence interval of (−15.925,−2.408). However, when
considering the individual indirect effect through each of the mediators, none of them is
identified as having significant mediation effect at 95% significance level. However, under
90% significance level, two loci (‘cg05608730’ and ‘cg26179948’) are shown to have strong
mediation effect. In the end, the direct effect is estimated as −5.49, with a 95% confidence
interval of (−14.514, 3.535), which indicates non-significance at α = 0.05.

point
estimation

SE
theoretical

95%CI.LB.
theoretical

95%CI.UB.
theoretical

90%CI.LB.
theoretical

90%CI.UB.
theoretical

IE of: cg05608730 -3.512 1.968 -7.369 0.344 -6.739 -0.285
IE of: cg26179948 -3.190 1.906 -6.926 0.547 -6.316 -0.064
IE of: cg27512205 -2.464 1.718 -5.832 0.903 -5.282 0.354
joint IE -9.167 3.448 -15.925 -2.408 -14.822 -3.512
DE -5.490 4.604 -14.514 3.535 -13.04 2.061

Table 2.11: Mediation effects of three methylation loci (using theoretical CI)

60



Histogram of ‘cg05608730’ Q-Q plot of ‘cg05608730’

Histogram of ‘cg26179948’ Q-Q plot of ‘cg26179948’

Histogram of ‘cg27512205’ Q-Q plot of ‘cg27512205’

Figure 2.4: Residual histogram and normal Q-Q plot of the three methylation loci
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point
estimation

SE
bootstrap

95%CI.LB.
bootstrap

95%CI.UB.
bootstrap

90%CI.LB.
bootstrap

90%CI.UB.
bootstrap

IE of: cg05608730 -3.512 1.756 -6.954 -0.070 -6.392 -0.632
IE of: cg26179948 -3.190 1.829 -6.775 0.395 -6.190 -0.190
IE of: cg27512205 -2.464 1.783 -5.959 1.031 -5.389 0.460
joint IE -9.167 3.865 -16.741 -1.592 -15.505 -2.829
DE -5.490 5.207 -15.695 4.716 -14.029 3.050

Table 2.12: Mediation effects of three methylation loci (using bootstrap CI)

2.9 Discussion

In this chapter, we first clarify conceptual definitions of uncausally related mediators based
on the idea of Jerolon et al. [60] We then introduce the causal effects and lay out the as-
sumptions for estimating the causal effects. The main contribution of the work is that we
propose a joint modeling method performing causal mediation analysis under the scenario
that multiple uncausally correlated mediators are presented. The method utilizes copula
framework to model the joint distribution of the multiple uncausally correlated mediators.
The main advantages of our model are that: (1) our proposed model allows for large flexi-
bility in terms of the distributions of either the mediators or the response; (2) our proposed
method is able to estimate the individual indirect effects explicitly and (3) theoretical ex-
pressions include the point estimation and standard error can be given under particular
settings.

Our proposed method also comes with certain limitations that warrant acknowledg-
ment. The primary limitation pertains to the stringent assumption that the correlation
between mediators remains constant across different treatment assignments. Real-world
scenarios often involve more complex and dynamic relationships among variables, and this
assumption may not always hold.

Furthermore, the definition of individual indirect effects in the proposed method is
not entirely general. It relies heavily on the order in which mediators are considered,
meaning that altering the order can yield different results. To enhance the robustness and
applicability of our approach, future research could explore more flexible and generalized
definitions of causal effects, as well as develop estimation methods that can handle a
broader range of cases. This would be particularly valuable when dealing with multiple
mediators that are interrelated, and their causal correlation structures are both uncertain
and intricate.
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Chapter 3

Mediator and dependency structure
selection for high-dimensional causal
mediation analysis

3.1 Introduction

In Chapter 2, we discussed causal mediation analysis when multiple mediators exist and
introduced the concept of multiple uncausally related mediators. We also discussed esti-
mations of causal effects of interest in such contexts. However, as introduced in Section
1.4, real-life problems are often more complicated and it is usually infeasible to conduct
causal mediation analysis with the observed data directly. Proper mediator selection and
dependency structure simplification are usually needed prior to conducting such analysis.
In this chapter, we propose a penalization-based technique that selects both mediators
from the high-dimensional candidates and their dependency structures. Estimations of
causal effects and further analysis are then conducted on the selected data based on the
learned data structure.

Figure 3.1 presents a DAG that illustrates the problem we are considering in this
Chapter. Multiple candidate mediators are possibly high-dimensional. We use M and N
to denote all the variables that are candidate mediators. Among them, only M are true
mediators. Further, among the true mediators, some of them are uncausally related to each
other while others are independent. We further suppose the uncausally related mediators
form L groups, where within each group, mediators are uncausally related but across
groups, they are independent. We denote M

(l)
1 , . . . ,M

(l)
Jl

as uncausally related mediators
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in group l, where J1, . . . , JL denote the group sizes. For the independent mediators, we
denote them as M1, . . . ,MJ , where J denotes the total number of independent mediators.
Finally, N

(1)
1 , . . . , N

(1)
R1

and N
(2)
1 , . . . , N

(2)
R2

are not mediators because N
(1)
1 , . . . , N

(1)
R1

do not

affect Y though they are affected by T and on the contrary N
(2)
1 , . . . , N

(2)
R2

are not affected
by T though they affect Y .

T

N
(1)
1

N
(1)
R1

N
(2)
1

N
(2)
R2

M
(1)
1 M

(1)
J1

M
(L)
1 M

(L)
JL

M1

MJ

Y

...

... ...

...

Figure 3.1: Mixture of uncausally related and independent mediators

Similar to Chapter 2, in the following illustration, a subscript i is often added to denote
the subject i, where i = 1, . . . , n and n is the sample size. For example, Yi(t0,M1(t1), . . . ,MJ(tJ))
is used to denote the respective potential outcome for subject i. There are also occasions
that both i and j appear in the subscript of the mediator or treatment variables, and the
first subscript is used to denote the ith subject and the second one to denote the jth me-
diator. We assume the covariates have a dimension of p, so the notation xir, r = 1, . . . , p
denotes the rth covariate of subject i. In addition, we denote the vector {Mi1, . . . ,MiJ}′
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as M i., and the same rule applies to other variables with two subscripts. Similarly, we
denote vector {M1j, . . . ,Mnj}′ as M .j and the same rule also applies to other variables
with two subscripts. Readers should not be confused with the notations. The former de-
notes the values of all mediators within subject i and the latter denotes the values of the
jth mediator across all subjects. Finally, a bold form variable without subscript is used to
denote the entire data matrix.

3.2 Method

We propose a penalized variable selection technique that both selects the mediators from
candidates and their dependency structures. After these two procedures, we proceed to
the estimation of causal effects based on the learned causal structure of the data. Here we
assume the mediators and the response are all continuous and our proposed method can
be extended to deal with other cases with proper adjustments.

3.2.1 Model

Suppose there are J candidate mediators and we denote them as M = {M1, . . . ,MJ}′. We
first introduce a marginal model for each potential mediator. We let µij = E(Mij|Ti,Xi),
then the marginal model is written as follows:

µij = X ′
iηj + αjTi, i = 1, . . . , n; j = 1, . . . , J, (3.1)

whereX i = {1, Xi1, . . . , XiP}′, αj is the unknown coefficient of treatment, ηj = {ηj0, . . . , ηjp}′
is the p + 1-dimensional vector of regression coefficients including the intercept. We can
also allow treatment-covariates and between covariates interactions and higher order terms
of the covariates in the model. We also specify the variance V ar(Mij|Ti,X i) = σ2

j .

We then assume the candidate variables follow a multivariate normal distribution. To be
specific, we assume M i.|Ti,X i ∼ MVN(µi,Σ), where µi = {µi1, . . . , µiJ}′. The (k, l)th
entry of Σ is Σkl = ρklσkσl for k ̸= l and Σkk = σ2

k. The corresponding conditional
correlation matrix is assumed to be ϱ and we denote Cor(Mik,Mil|Ti,X i) = ρkl.

We then let µY,i = E{Yi|Ti,M i.,X i} and assume

µY,i = X ′
iγ + τTi +M ′

i.β, i = 1, . . . , n, (3.2)

where τ is the unknown coefficient of the treatment assignment Ti, β = {β1, . . . , βJ}′ is the
J-dimensional vector of regression coefficients on the vector of candidate mediators and
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γ = {γ0, . . . , γp}′ is the p+ 1-dimensional vector of regression coefficients on the vector of
covariates including the intercept. We also assume V ar(Yi|X i,M i., Ti) = σ2

Y . We further
assume Yi|Ti,M i.,X i ∼ N(µY,i, σ

2
Y )

3.2.2 Mediator Selection

Though the mediators are possibly correlated, we first assume an independent working
correlation among them. We impose a square loss and a penalization term to form an
objective function. Denoting the loss function as L, we have,

LM =
n∑

i=1

J∑
j=1

{
Mij − αjTi −X ′

iηj

}2
︸ ︷︷ ︸

(1)

+
n∑

i=1

{Yi − τTi − β′M i. −X ′
iγ}

2

︸ ︷︷ ︸
(2)

. (3.3)

In (3.3), term (1) calculates the squared error loss from the mediator model and term (2)
calculates the squared error loss from the response model. We then add an L1 penalized
term to the loss function to form the objective function, which is to solve that,

argmax
αj ,βj ,j=1,...,J

LM/n− λ1

J∑
j=1

|αjβj| − λ2

J∑
j=1

(|αj|+ |βj|). (3.4)

In Equation (3.4), λ1 and λ2 are the penalization parameters that need to be tuned. The
first penalization term penalizes the absolute value of the indirect effect, while the second
term penalizes the absolute values of coefficients associated with each candidate mediator
in both the mediator and the response models. The two penalization parameters, λ1 and λ2

control the relative magnitude of each penalization. The first penalization term is relatively
more important, as it directly shrinks the indirect effect (αβ) for each candidate mediator,
aligning with our primary goal of mediator selection. However, in certain scenarios, there
are candidate mediators that exhibit a large value in one of α and β, while simultaneously
having a very small value in the other. Such candidates are generally not considered as
mediators, but employing a model with only the first penalization term may mistakenly
select them as mediators. Therefore, in these cases, relying solely on the first penalization
term is insufficient for precise mediator selection. The second penalization term serves to
aid the selection process by shrinking one of the coefficients to zero. Subsequently, some
values of α and β will be shrunk to 0. We then select variables associated with non-zero
values of αβ and regard them as mediators. Figure 3.2 illustrates the process of mediator
selection, where red dashed lines represent zero effect (|α2| = |β3| = |αJ | = |βJ | = 0). In
the figure, only M1 will be selected as mediators following the proposed selection rules.
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M1

M2

M3

MJ

Y

α1

α2

α3

αJ

β1

β2

β3

βJ

τ
...

Figure 3.2: An illustration figure of the mediator selection process

3.2.3 Dependency structure selection

In this section, we present the method for selecting the dependency structure among the
candidate mediators. We assess their dependency structures by analyzing their correlation
matrices and choose to retain only the nonzero elements found in the off-diagonal entries
of these matrices. There are two methods for handling the selection problem. The first
approach is that we select off-diagonal entries from the correlation matrix of the candidate
mediators and then extract a sub-matrix that only contains the elements related to the
selected mediators obtained in Section 3.2.2. Since for this method, we select mediators
and correlations from the same candidates and such two processes can be done indepen-
dently without interfering with each other, we call such a method the parallel approach
or the independent approach in some rare cases. Another approach is called the two-stage
approach as it involves selecting mediators and dependency structures in two steps. The
first stage is to select the mediators from the candidates. Then in the second stage, we
select the correlations of the mediators obtained from stage one. In this section, we are
going to introduce the first approach (the parallel approach), while the second approach
(the two-stage approach) is going to be introduced in Section 3.2.5.

For the parallel approach, we first standardize the candidate mediators before making
any selections. For each j = 1, . . . , J , we estimate µ̂ij using model (3.1) and also σ̂j using
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the sample variance. Thereafter, we calculate the standardized values of Mij (denoting as
M∗

ij) by

M∗
ij = (Mij − µ̂ij)/σ̂ij.

We denote M ∗ = {M∗
1 , . . . ,M

∗
J} with realization m∗ = {m∗

1, . . . ,m
∗
J}. For subject i, we

denote m∗
i = {m∗

i1, . . . ,m
∗
iJt
}.

We calculate the log-likelihood of the standardized candidate variables as

lM∗(ϱ;m∗) =
n∑

i=1

log{fM∗(m∗
i ;ϱ)} =

n∑
i=1

log{ϕ(m∗
i ;ϱ)}, (3.5)

where ϕ(·;ϱ) denotes the density of a multivariate normal distribution with marginal mean
0, marginal variance 1 and correlation structure ϱ. Because of standardization, (3.8) is a
function of ϱ. We then add another L1 penalized term and the objective function becomes,

argmax
ϱ

lM∗(ϱ;m∗)/n− η
J−1∑
k=1

J∑
l=k+1

|ρkl|, (3.6)

where similarly, η is the penalization parameter for this objective function and needs to
be tuned. The penalization term will penalize some of ρkl’s to zero. We denote the
selected correlation matrix as ϱs, then the selected correlation matrix associated with the
mediators is obtained by extracting the corresponding entries from ϱs according to the
mediator selection results from Section 2.2. We take the non-zero correlation coefficients
as an indication of correlated mediators and the zero ones as uncorrelated. Under the
multivariate Gaussian settings, uncorrelated mediators can be regarded as independent
ones. In addition, we group correlated mediators into several groups as shown by Figure
3.1. This is done by investigating the block-wise structure of the selected correlation
matrix. After all the steps, we complete the selection of the dependency structure of the
mediators.

3.2.4 Dependency structure selection on correlation matrices us-
ing standard LASSO technique

Solving (3.6) can be hard because the function is non-convex. To account for this issue,
we propose a method that re-codes the data into a particular data frame where the regular
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LASSO technique (variable selection under linear model settings) can be applied. The
method works as follow: for each observation i and each pair of {k, l} ∈ 1, . . . , J where
k < l, we generate Wikl = M∗

ikM
∗
il. We then let Z = {Z12, . . . , ZJ−1,J}′ be a J(J − 1)/2× 1

vector associated with each generated Wikl, such that the entry Zkl = 1 and the values for
all the other entries are zero. We provide an example illustrating the process: we suppose
M1,M2 and M3 are 3 mediator candidates and we have 2 observations. The original data
frame is shown in Table 3.1. The re-coded data frame after the aforementioned process is

M1 M2 M3

i = 1 m11 m12 m13

i = 2 m21 m22 m23

Table 3.1: Original data frame in illustrative example

shown in table 3.2. We then perform the standard LASSO technique on the re-coded data

Z12 Z13 Z23

W112 1 0 0
W113 0 1 0
W123 0 0 1
W212 1 0 0
W213 0 1 0
W223 0 0 1

Table 3.2: Re-coded data frame in illustrative example

frame. We assume

E(Wikl) =
J−1∑
k=1

J∑
l=k+1

ρklZkl.

The objective function is to solve,

argmax
ϱ

n∑
i=1

(Wikl −
J−1∑
k=1

J∑
l=k+1

ρklZkl)
2/n− ϕ

J−1∑
k=1

J∑
l=k+1

|ρkl|, (3.7)

where ϱ = {ρkl; k, l ∈ {1, . . . , J}, k < l} and ϕ is the tuning parameter for this case.

Ideally, solving (3.7) would yield the same selection results as solving (3.6). This is
because the correlation coefficient between two random variables can be transformed to
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the expectation of their product, provided that the two variables have mean 0 and variance
1. For instance, considering two random variables X and Y with E(X) = E(Y ) = 0 and
V ar(X) = V ar(Y ) = 1, by definition, we have

Cor(X, Y ) =
E(XY )− E(X)E(Y )√

V ar(X)V ar(X)
= E(XY ).

Therefore, following our procedures, we obtain a random vectorM ∗ that consists of random
variables that all have mean 0 and variance 1, selecting the correlations ρk,l among them
is equivalent to picking up the non-zero pairwise products among them. With such a
technique, we transfer the correlation selection problem to the variable selection issue on
the mean model, which can be handled in more convenient ways using the standard LASSO
technique and existing software packages.

Moreover, since the correlation coefficient always takes on values within [−1.1], in
practice, we may obtain estimated results outside the range when fitting the penalized
model as shown in (3.7) under extreme cases. An ad hoc method tackling this issue is
performing a transformation on the variable with range constraints. Any function mapping
[−1.1] → R satisfies our requirement. Some examples include g(x) = 2arctan(x)/π or
g(x) = 2Φ(x)− 1, where Φ(·) is the CDF function of a standard normal distribution.

3.2.5 Dependency structure selection in a two-stage approach

In this section, we introduce the dependency selection method in a two-stage approach.
The two-stage approach reduces computational burden because we only need to focus on a
relatively low-dimensional sub-matrix that reflects the correlations of the selected media-
tors, rather than the original correlation matrix generated by all candidates. Furthermore,
modeling the correlation structure of only the selected variables would decrease the dimen-
sionality of the parameters quadratically. However, the less computational burden of using
a two-stage approach comes with a cost of less robustness. For the two-stage approach, if
we do not select the mediators correctly in the first stage, then the dependency structure
selection in the second stage can be adversely impacted.

The procedure is similar to the one introduced in Section 2.3 except that we working
on the selected mediators from Section 2.2 only rather than all possible candidates. Af-
ter mediator selection, we denote the selected mediators among all candidates as M s =
{M s

1 , . . . ,M
s
Js
}, where Js denotes the total number of selected mediators. Similarly, we

standardize the selected mediators first by subtracting the estimated conditional mean and
dividing by the estimated conditional variance. We denote the standardized mediators as
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M s∗ = {M s∗
1 , . . . ,M s∗

Js
} with realization ms∗ = {ms∗

1 , . . . ,ms∗
Js
}. Similarly, for subject i,

we denote ms∗
i = {ms∗

i1 , . . . ,m
s∗
iJs

}. We calculate the log-likelihood of the standardized
selected mediators as

lMs∗(ϱs;ms∗) =
n∑

i=1

log{fMs∗(ms∗
i ;ϱs)}. (3.8)

We then select the correlation coefficients by solving

argmax
ϱs

lMs∗(ϱs;ms∗)/n− η
∑∑

k,l∈{1,...,Js};k<l

|ρkl|. (3.9)

Similarly, the penalization term will penalize some of ρkl’s to zero.

When choosing between the parallel and the two-stage approach, the trade-off is ro-
bustness versus computation burden. The advantage of the parallel approach is that, we
have more robustness in terms of correlation selection because the correlation selection
step does not depend on the results from the mediator selection step. However, the disad-
vantage is that it imposes more computational burden because of modeling the correlation
of the high dimensional candidates. On the contrary, the two-stage approach requires less
computation, but the results are less robust. The rule of thumb is that, if computational
burden is not an issue, one should always go with the parallel approach.

3.2.6 Parameter tuning

A remaining issue of the proposed method is tuning the parameters that appeared in each
model. We implement the cross-validation method for parameter tuning similar to the
algorithm used by R package ‘glmnet’ [27].

The first step is to determine candidate values of tuning parameters. For the mediator
selection process, there are two tuning parameters as shown in (3.4). We first re-code the
two penalization parameters λ1 and λ2 as λ and ω, such that,

λ1 = λω and λ2 = λ(1− ω).

In the updated parametrization, the parameter λ indicates the overall strength of penal-
ization while ω represents the relative importance of λ1 and λ2. For a larger ω, we impose
stronger penalization on the indirect effect compared with the coefficient absolute values,
while a smaller one indicates vice versa. We then obtain the candidate values for the pa-
rameters that form a tuning grid. For λ, we first find λmax, which is the smallest possible
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value of λ such that all the coefficients are shrunk to zero. λmax acts as an upper bound for
candidate values of λ. Then, with a user-specified value rλ, which represents the ratio of
the smallest candidate value of λ to λmax, we specify the range of λ to be (λmaxrλ, λmax).
A typical example of rλ is 1/10000. Finally, with another user-specified number nλ, which
specifies the number of candidate values for λ, we create a length-nλ sequence of candi-
date values for λ. In this sequence, the distances between the logarithm of each element
are placed equally within the range (log(λmaxrλ), log(λmax)). For example, if λmax = 1,
rλ = 1/1000 and nλ = 4, then the sequence of candidates for λ is {0.001, 0.01, 0.1, 1}. The
candidate values of the parameter ω are an equally distanced sequence between 0 and 1.
For example, ω = {0, 0.2, 0.4, . . . , 1}. Each pair of candidate values λ and ω forms a tuning
candidate that uniquely determines λ1 and λ2. Therefore the two candidate sets expand
into a two-dimensional tuning grid for the mediator selection model. For tuning the pa-
rameter of the dependency structure selection, the procedures are similar. In both (3.6)
and (3.9), we pick up the candidate values of η similar to the ways we pick up candidate
values of λ.

Then, we begin the cross-validation process. Suppose a K-fold cross-validation method
is used, we split the dataset into K fractions randomly. For each k = 1, . . . , K, we regard
the kth fraction of data as the validation data and the remaining K − 1 fractions as the
training data. For each candidate value of the parameters, we fit the model on the training
dataset (i.e. fitting objective function (3.4)), and validate the model performance on the
validating data. In the validating step, we predict the results on the validation set with
the fitted parameters and calculate the mean square error (MSE), as the performance
measurement. In terms of determining the optimal value for the tuning parameters, we
adopt the one standard error (1SE) criteria following the suggestion by Fang et al. [25].
We pick the values of the parameters such that under the particular values, the average
validation MSE is within 1 standard error from the smallest one and the model is in the
most parsimony form. With the determined tuning parameter, we fit the entire model with
the whole dataset.

3.2.7 Estimation of causal effects

We notice that the complete data involves 4 components: the treatment (exposure), the
mediator(s), the response and the covariate(s). If we assume the exposure and covariates
are given and denote the complete data likelihood as L(θMY ;y,m|t,x), we can factor the
likelihood as

L(θMY ;y,m|t,x) = LY (θY ;y|m, t,x) · LM (θM ;m|t,x), (3.10)
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where θY denotes the parameters for the response model, θM denotes the parameters for
the mediator model and θMY = {θM ,θY } denotes the parameters used for the entire
model. Under the multivariate normal setting, θM = {α′,η′,ϱ}′ and θY = {τ,β′,γ ′}′. We
call the model for LY (θY ;y|m, t,x) the response model and LM (θM ;m|t,x) the mediator
model.

For mediators that fall within groups, we model their group-wise joint distributions.
Suppose M

(l)
1 , . . . ,M

(l)
Jl

are the mediators in group l, first the marginal model for mediator

M
(l)
j is fitted similarly to (3.1), such that,

µ
(l)
ij = X ′

iη
(l)
j + α

(l)
j Ti, i = 1, . . . , n; j = 1, . . . , Jl, (3.11)

The marginal standard deviation is then calculated from the residuals and they are denoted
as σ

(l)
j . After that, we calculate the joint conditional density of mediators within group l

following our multivariate normal assumption. If we denote the joint conditional density
of mediators within group l as f

(l)
M (m(l)|X, T ), the corresponding conditional likelihood

function is L
(l)
M (θ(l);m(l)|t,x) =

∏n
i=1 f

(l)
M (m

(l)
i |xi, ti). θ(l) refers to parameters used in

grouped mediator model l and θ(l)′ = {α(l)
j ,η

(l)′
j , j = 1, . . . , Jl}.

For mediators that are determined not associated with any others, we fit their individual
mediator models respectively. SupposeMj, j = 1, . . . , J is a mediator that is not associated
with any others, the mean model based on (3.1) is assumed to be

µij = X ′
iηj + αjTi, i = 1, . . . , n; j = 1, . . . , J. (3.12)

The standard deviation is then calculated from the residuals and they are denoted as σj.
Following our assumption, the conditional density of Mj is denoted as fMj

(mj|X,T ) and
the corresponding conditional likelihood function is LMj

(θj;mj|x, t) =
∏n

i=1 fMj
(mij|xi, ti),

where θj refers to parameters used in model for individual mediator j and θ′
j = {αj,η

′
j}.

Combining the likelihood of mediators that fall within groups and the individual ones, we
then have the mediator model likelihood shown as follows:

LM (θM ;m|t,x) =
L∏
l=1

L
(l)
M (θ(l);m(l)|x, t)

J∏
j=1

LMj
(θj;mj|x, t),

where θ′
M = {θ(l)′(l = 1 . . . , L),θ′

j(j = 1, . . . , J)} denotes the parameters used in mediator
model.

The response model is also updated to include only the selected mediators. The updated
response model based on (3.13) is

µY,i = X ′
iγ + τTi +M s′

i.β
s, i = 1, . . . , n, (3.13)
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where βs′ = {β(l)′(l = 1, . . . , L),β′
j(j = 1, . . . , J)}. β(l) denotes the coefficients in the

response model that correspond to the mediators in group l and βj denotes the coefficient
in the response model that corresponds to the individual mediator j. The conditional
likelihood function for the response is LY (θY ;y|t,m,x) =

∏n
i=1 fY (yi|ti,mi,xi), where

θ′
Y = {τ,βs′,γ ′} denotes parameters appear in the response model. Following (3.10),

we have the entire data conditional likelihood and parameters can be estimated through
maximizing the logarithm of L(θMY ;y,m|t,x).

In our settings, following [61], for mediators that are associated with each other, we
group them into multiple groups and estimate group-wise joint indirect effects. For medi-
ators that are not associated with any others, we estimate their individual indirect effects
respectively. Furthermore, under the normality assumptions are that assumed throughout
this paper, closed-form expressions can be attracted. Denote IE(l) as the grouped indirect
effect of group l, then

IE(l) =

Jl∑
j=1

α
(l)
j β

(l)
j .

And denote IEj as the individual indirect effect of mediator j, then

IEj = αjβj.

The direct effect (DE) is τ and the total effect (TE) is the summation of all grouped
and individual indirect effects as well as the direct effect. Variances of the causal effects
of interest can be estimated by treating them as functions of estimated parameters of
the model and applying the delta-method on the asymptotic model parameter variance-
covariance matrix. The asymptotic variance-covariance matrix of model parameters is
derived by taking Fisher information of the joint model as shown in (3.10). It should be
noticed that though the point estimations are the same for our proposed method and models
assuming working independent or unspecified correlation structures among the mediators,
the variance estimations are different. Our model yields a more precise estimation when
the correlation structure among mediators is correctly specified.

Such an estimation procedure is similar to the one introduced in Chapter 2 except
that we are now considering some of the mediators as grouped while others individually.
For the grouped ones, we consider them uncausally related. In addition, in the next
chapter, we are going to introduce multiple robust estimation methods. Researchers may
also choose to use these multiple robust estimators for additional robustness. One needs
to be cautious that, the variances and confidence intervals constructed by using the large
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sample properties introduced in Chapter 2 with selected data only reflect the post-selection
variations, and variations that occur due to the selection procedures are not incorporated
in those confidence intervals.

3.3 Simulation study

To evaluate the performance of our proposed method in terms of mediator selection, cor-
relation selection and mediators grouping, as well as estimation and inference in finite
samples, we perform simulation studies of several scenarios.

3.3.1 Simulation setup

Throughout each scenario, we assume there are n subjects in the dataset and for each sub-
ject, we observe J candidate mediators. Furthermore, we denote Mij as the jth candidate
mediator for subject i and assume that Mij|ti ∼ N(µij, σ

2
j ). We let µij = E{Mij|ti} and

assume that

µij = αjti, i = 1, . . . , n; j = 1, . . . , J. (3.14)

σj is always assumed to be 1. In addition, across each scenario, for the response, we assume
Yi|ti,mi. ∼ N(µY,i, σ

2
Y ) and let µY,i = E{Yi|ti,mi.}. In addition, the response model across

each scenario is assumed to be

µY,i = τti +m′
i.β, i = 1, . . . , n, (3.15)

and we always let τ = 1 and σY = 1. With respect to the correlation structure in the
simulated dataset, we follow Zhao et al. [165] and generate a sparse correlation matrix
to reflect the sparsity of the dependency structures among the mediators. If we have n
mediators, there should be n(n − 1)/2 pairs of correlations among them. However, to
reflect the sparsity, we only let 20% of the off-diagonal entries of the correlation matrix be
randomly chosen as nonzero. The values of the entries are chosen from {0, ρ}.

We implement a 2×3×3 study design. The first “2” represents two different dimensions
of the candidate mediators (J), which are specified to be 10 and 200 respectively. Since
the sample size n is fixed at 100, the two scenarios represent either the “n > p” or the
“n < p” case respectively. Under either scenario, only M6, M7 and M8 are true mediators.
To be specific, the models are specified as follows: under either scenario, for j = 6, . . . , 10,
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we let αj = α ̸= 0, and we let αj = 0 for all other values of j. With respect to β, we let
βj = β ̸= 0 only for j = 4, . . . , 8 and we let βj = 0 for all the other values of j. In addition,
under either scenario, only the first 10 candidate mediators are assumed to be correlated.
The second “3” represents three different signal levels of the mean models, which are
strong, moderate and weak respectively. Under the strong signal scenario, we specify that
α = β = 1, whereas for the moderate and weak signal scenario, we let α = β = 0.7 and
α = β = 0.4 respectively. It should be noticed that under our model settings, the signal
of indirect effects is the product of α and β. Table 3.3 illustrates the values for αj and βj

under the 10-candidate mediators scenario, where the elements in blue are corresponding
to real mediators. The third “3” represents three different signal levels of the correlations.
We specify ρ = 0.8, 0.5 and 0.2 to reflect the strong, moderate and weak signals. Table
3.4 provides an example of a generated correlation matrix among the candidate mediators
for the 10 candidate mediators scenario, where the sub-matrix in blue is the correlation
matrix among the three real mediators. In addition, Table 3.5 presents the causal effects
and Figure 3.3 illustrates the structure of the three mediators across all scenarios in the
simulation study.

j αj βj

1 0 0
2 0 0
3 0 0
4 0 β
5 0 β
6 α β
7 α β
8 α β
9 α 0
10 α 0

Table 3.3: An illustration of α and β under the J = 10 setting

For each simulation scenario, N = 1000 replications are performed. Under the “n > p”
scenarios, both the two-stage and parallel approaches are evaluated. We report the per-
formance of mediator selection, correlation selection and estimation of causal effects. For
the mediator selection, we report the true positive (TP) and false positive (FP) number of
mediators identified for each approach. For fairness of comparison, the corresponding rates
(the TP and FP numbers divided by the true numbers) are also calculated. Particularly,
when evaluating the performance of correlation selection using a two-stage approach, the
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M1 M2 M3 M4 M5 M6 M7 M8 M9 M10
M1 1 0 0 ρ 0 0 ρ 0 ρ 0
M2 0 1 0 0 0 ρ 0 0 0 0
M3 0 0 1 0 ρ 0 ρ 0 0 0
M4 ρ 0 0 1 0 0 0 0 0 ρ
M5 0 0 ρ 0 1 ρ 0 ρ 0 0
M6 0 ρ 0 0 ρ 1 ρ 0 0 0
M7 ρ 0 ρ 0 0 ρ 1 0 0 0
M8 0 0 0 0 ρ 0 0 1 0 0
M9 ρ 0 0 0 0 0 0 0 1 0
M10 0 0 0 ρ 0 0 0 0 0 1

Table 3.4: An illustration of the correlation matrix of the candidate mediators under the
J = 10 scenario

causal effect value
Grouped IE (of M6 and M7) 2αβ
Individual IE (of M8) αβ
IE of all other candidate mediators 0
DE 1
TE 1 + 3αβ

Table 3.5: Causal effects in simulation study across scenarios

T

M6

M7

M8

Y

Figure 3.3: A DAG illustrating the causal relationship in the simulation study

denominator for TP and FP rates are different each time. This is because the correla-
tion structure of the selected mediators varies with results obtained in the first stage of
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mediator selection. Therefore, TP and FP numbers of the correlation selection under a
two-stage approach are not reported because these values are meaningless. For the esti-
mation results, we evaluate the bias and the empirical standard error. Additionally, for
statistical inference purposes, we also calculate the standard error of the estimated causal
effects using the method described in Section 2.6. The coverage rate of a 95% confidence
interval is also evaluated using the asymptotic standard error.

We also compare the simulation results from the proposed method with several existing
ones. The existing packages only perform mediator selection and do not perform the de-
pendency structure selection procedure, so we only compare results on mediator selections.
The package ‘hdmed’ was used when performing simulations with existing methods. This
package contains a collection of various methods performing mediator selection from high-
dimensional candidates and user may choose different methods that best fit their needs by
specifying different commands from the package. The existing methods that are included
in our simulation study include the de-biased LASSO approach proposed by Gao et al.[30],
the minimax concave penalty approach proposed by Zhang et al. [161], and the adap-
tive LASSO approach proposed by Zhang [162]. The simulation parameters settings are
the same when compared with existing methods. Similarly, for each simulation scenario,
N = 1000 replications are performed. The tuning procedures are conducted automatically
using functions embedded in each corresponding package.

3.3.2 Results

When p < n, across each scenario, in terms of both mediator selection and correlation
selection, the proposed method shows high TP rates and low FP rates. Table 3.6 shows
the performances of mediator selection across scenarios under the 10 candidate mediators
setting. Generally, the proposed method performs better when the signal gets larger (values
of α and β represent the signal for mediator selection). For the same values of α and β, the
proposed method performs better in terms of mediator selection with a smaller value of ρ.
In comparison, Table 3.7 presents the results of mediator selection for the three existing
methods: the de-biased LASSO method, the minimax concave penalty method and the
adaptive LASSO method under the p = 10 scenario. We can see that in terms of the true
positive, all of the methods perform well and such phenomena are observed across different
settings (different α, β and ρ). The performance of the proposed method is comparable to
existing ones in terms of the true positive rates. In terms of false positive, when p = 10,
all the methods do not perform well compared with the proposed one, with false positive
rates greater than 0.3.
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The mediator selection procedure is shared for both parallel and two-stage approaches.
Table 3.8 shows the performances of correlation selection using the parallel approach under
the 10 candidate mediators setting while Table 3.9 shows the performances of correlation
selection using a two-stage approach. In Table 3.9, both the unconditional and the condi-
tional results are presented, where the unconditional parts show the results of correlation
selection in all 1000 replications regardless of mediator selection results, whereas the condi-
tional parts present the results of correlation selection when only replications with correct
mediator selection are considered. The “No.” column (7th column) of Table 3.9 indicates
the number of replications with correct mediator selection among the total 1000 simula-
tion replications. Similar to the mediator selection results, the proposed method performs
better when the signal gets larger, in terms of the correlation selection (values of ρ reflect
the signal for correlation selection). When comparing conditional results with uncondi-
tional results, we see that the model performs better on correlation selection if the model
correctly identifies the mediators.

In terms of causal effects estimations, Table 3.10 presents the performance of causal
effects estimations using the parallel approach across each simulation replication regardless
of mediator selection and correlation selection results (unconditional results), while Table
3.11 presents the results of causal effects estimations using the same parallel approach
and conditioning on the replications with correct mediator selection results and Table 3.12
presents the results of causal effects estimations using the same parallel approach and
considering the replications with both correct mediator selection and correct correlation
selection results. Similarly, Table 3.13, 3.14 and 3.15 present the results of causal effects
estimation using the two-stage approach under the unconditional, conditioning on correct
mediator selection and conditioning on both correct mediator selection and correct correla-
tion selection situations. For each table, “ESE” refers to the empirical standard error (i.e.
square root of the empirical variance of the estimated causal quantities across each repli-
cation) while “ASE” refers to the average estimated standard error (i.e. sample average of
the estimated standard error for each simulated sample). We see that the biases become
smaller and the coverage rates become closer to 95% each time when we narrow our focus
to the conditional results. For example, in the scenario that α = β = 1 and ρ = 0.5, the
unconditional performances are summarized from all 1000 replications. However, among
the 1000 replications, for 932 of them, the proposed method correctly identified the three
mediators M6,M7 and M8. If we only consider these 932 replications that correctly select
the three mediators, performances improve. Furthermore, among the 932 replications, 928
of them both identify mediators and select correlations correctly. If we further narrow
our scope to these 928 replications only, then the performances improve further. Such a
phenomenon is observed across both the parallel and the two-stage approach.
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mean model correlation TP TP rate FP FP rate

α = β = 1
ρ = 0.8 3.000 1.000 0.055 0.008
ρ = 0.5 3.000 1.000 0.066 0.009
ρ = 0.2 3.000 1.000 0.126 0.018

α = β = 0.7
ρ = 0.8 2.992 0.997 0.133 0.019
ρ = 0.5 2.990 0.997 0.141 0.020
ρ = 0.2 2.995 0.998 0.198 0.028

α = β = 0.4
ρ = 0.8 2.718 0.906 0.414 0.059
ρ = 0.5 2.712 0.904 0.462 0.066
ρ = 0.2 2.710 0.903 0.455 0.065

Table 3.6: Results of mediator selection under the J = 10 scenario

When considering the p > n settings, Table 3.18 shows the performances of mediator
selection across scenarios under the 200 candidate mediators setting. The results obtained
are similar to the ones observed under the J = 10 scenarios, with high true positive rates
and low false positive rates. The proposed method performs better when the signal gets
larger and for the same values of α and β, the proposed method performs better in terms
of mediator selection with a smaller value of ρ. In contrast, Table 3.17 presents the results
of mediator selection for the three existing methods under the p = 200 scenarios. Similar
trends are observed for the p = 200 settings as well. We can see that in terms of the
true positive, all of the methods perform well and such phenomena are observed across
different settings (different α, β, ρ and p). The performance of the proposed method is
comparable to existing ones in terms of the true positive rates. In terms of false positive,
however, under the p > n(p = 200) scenario, the false positive rates drop to below 0.05. We
believe it is the tunning logic embedded in each method contributes to such phenomena.
When it comes to the trade-off between false positives and false negatives, all the existing
methods adopt the logic that it is worse to omit a true variable than mistakenly select a
redundant one. Therefore, when p is relatively low, the existing methods tend to select
redundant variables. Apart from that, the selection performances get better when the
signals get larger, and for the same values of α and β, each method performs better in
terms of mediator selection with a smaller value of ρ. Table 3.18 shows the performances
of correlation selection under the 200 candidate mediators setting. Under the settings with
200 candidate mediators, only the two-stage approach is used for correlation selection. This
is because the parallel approach involves performing selection on the 200× 200 correlation
matrix of the candidates, which turns out to be infeasible due to the large computational
burden. Similarly, results presented in Table 3.18 consist of two parts: the unconditional
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method scenario TP TP rate FP FP rate

The
de-biased
LASSO

α = β = 1
ρ = 0.8 3.000 1.000 2.150 0.307
ρ = 0.5 3.000 1.000 2.160 0.309
ρ = 0.2 3.000 1.000 2.240 0.320

α = β = 0.7
ρ = 0.8 2.970 0.990 2.200 0.314
ρ = 0.5 3.000 1.000 2.230 0.319
ρ = 0.2 3.000 1.000 2.270 0.324

α = β = 0.4
ρ = 0.8 2.120 0.707 1.700 0.243
ρ = 0.5 2.890 0.963 1.960 0.280
ρ = 0.2 2.950 0.983 2.130 0.304

The
minimax
concave
penalty

α = β = 1
ρ = 0.8 3.000 1.000 2.090 0.299
ρ = 0.5 3.000 1.000 2.170 0.310
ρ = 0.2 3.000 1.000 2.150 0.307

α = β = 0.7
ρ = 0.8 2.930 0.977 2.290 0.327
ρ = 0.5 3.000 1.000 2.230 0.319
ρ = 0.2 3.000 1.000 2.260 0.323

α = β = 0.4
ρ = 0.8 2.100 0.700 1.690 0.241
ρ = 0.5 2.880 0.960 2.300 0.329
ρ = 0.2 2.940 0.980 2.430 0.347

The
adaptive
LASSO

α = β = 1
ρ = 0.8 3.000 1.000 2.500 0.357
ρ = 0.5 3.000 1.000 2.500 0.357
ρ = 0.2 3.000 1.000 2.430 0.347

α = β = 0.7
ρ = 0.8 2.980 0.993 2.740 0.391
ρ = 0.5 3.000 1.000 2.740 0.391
ρ = 0.2 3.000 1.000 2.700 0.386

α = β = 0.4
ρ = 0.8 2.720 0.907 2.740 0.391
ρ = 0.5 2.960 0.987 2.750 0.393
ρ = 0.2 2.960 0.987 2.810 0.401

Table 3.7: Performance of existing methods on mediator selections under p = 10 scenario

ones (results on correlation selection regardless of mediator selection) and the conditional
ones (results on correlation selection if only focusing on the ones with correct mediator
selection). Furthermore, the model performs better on correlation selection if provided
that the model correctly identifies the mediators.

In terms of estimation of causal effects and statistical inferences, Table 3.19 presents
the results of estimations and statistical inferences of causal effects of interest. Table 3.20
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mean model correlation TP TP rate FP FP rate

α = β = 1
ρ = 0.8 9.000 1.000 0.000 0.000
ρ = 0.5 9.000 1.000 0.065 0.002
ρ = 0.2 7.541 0.838 3.416 0.098

α = β = 0.7
ρ = 0.8 9.000 1.000 0.000 0.000
ρ = 0.5 9.000 1.000 0.051 0.001
ρ = 0.2 7.342 0.816 3.142 0.090

α = β = 0.4
ρ = 0.8 9.000 1.000 0.002 0.000
ρ = 0.5 9.000 1.000 0.057 0.002
ρ = 0.2 7.495 0.833 3.114 0.089

Table 3.8: Results of dependency structure selection using the parallel approach under the
J = 10 scenario

Settings Unconditional Conditional
mean model correlation TP rate FP rate TP rate FP rate No.

α = β = 1
ρ = 0.8 1.000 0.000 1.000 0.000 949
ρ = 0.5 1.000 0.017 1.000 0.017 936
ρ = 0.2 0.858 0.193 0.873 0.201 882

α = β = 0.7
ρ = 0.8 1.000 0.003 1.000 0.001 886
ρ = 0.5 1.000 0.014 1.000 0.014 867
ρ = 0.2 0.817 0.191 0.839 0.198 819

α = β = 0.4
ρ = 0.8 1.000 0.029 1.000 0.002 567
ρ = 0.5 1.000 0.062 1.000 0.006 486
ρ = 0.2 0.816 0.190 0.841 0.189 466

Table 3.9: Results of dependency structure selection using the two-stage approach under
J = 10 scenario

presents the performances of causal effects estimations calculated from replications with
correct mediator selection results while Table 3.21 presents the performances of causal ef-
fects estimations calculated based on replications with both correct mediator selection and
correct correlation selection. Similarly, the last column records the number of replications
with correct mediator selection only and both correct mediator selection and correct corre-
lation selection. We see that the proposed method performs poorly when considering the
general (unconditional) results of causal effects estimations. That is due to the inclusion
of replications with incorrect mediator selection and (or) correlation selection. If we only
consider replications with correct mediator selection and both correct mediator selection
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and correct correlation selection, the performances improve under each case. Other results
are similar to the ones obtained under J = 10 scenarios.

3.4 Apply the proposed method to a psychological

study

In psychological studies, experiencing childhood trauma is believed to be a key factor
that leads to long-term psychiatric disorder [69]. However, the underlying mechanism of
persistent adverse effects of brain functioning induced by childhood trauma is still under
investigation [49]. Some researchers suggest that DNA methylation is likely mediating the
process between childhood trauma and long-term psychological disorder, especially adult
stress reactivity and behavior [14].

Epigenetic changes may happen at multiple gene loci [83] and one of the challenges
faced by researchers is the high dimensionality of genetic data. Some preliminary studies
identify a few gene loci that may have strong associations between both exposure of child-
hood trauma and long-term stress reactivity [49], but to the best of our knowledge, few
studies perform variable selection and correlation reduction on gene loci data under causal
mediation analysis framework.

In this section, we apply the proposed method on the dataset used by Houtepen et
al. [49], to identify causal mediation effects of DNA methylation loci. The dataset con-
sists of 85 healthy individuals recruited at the University Medical Center, Utrecht, the
Netherlands. In the dataset, only participants not taking any prescription medication and
having not been enrolled in stress-related research before participation are included. The
stress procedure is performed by using a version of the Trier Social Stress Test (TSST) as
a stress induction task, which includes the public speaking test (PST) and arithmetic task
[70]. The cortisol levels were measured with an in-house radioimmunoassay. In total eight
saliva samples (Salivette) are collected within 90 minute time period [144]. Measurements
are calculated by the area under the curve (AUC) in terms of the increase (AUCi) of cor-
tisol. Childhood trauma exposure was assessed using the short version of the Childhood
Trauma Questionnaire (CTQ) [6]. Genome-wide DNA methylation levels were measured
by using Illumina Infinium HumanMethylation450K BeadChip (Illumina) arrays [123]. For
details on the dataset, one may refer to Houtepen et al. [49]. In addition, age and sex
of the subjects are also included as covariates as suggested by Heim et al. [40]. Some
descriptive statistics of the variables in our analysis can be found in Table 3.22.

The original dataset consists of 385882 methylation variables in total, which makes us
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infeasible to proceed with the original dataset directly due to the ultra-high dimension. In
order to scale down the computational burden, we first apply sure independence screening
(Fan et al. [24]) to reduce the dimension to a reasonable scale, before applying the proposed
method. Following Perara et al. [94] and Cai et al. [10], we select a total number of m
candidate mediators with the largest values of αjβj from the following model:

Mj = X ′γj + αjT + εj, for j = 1, . . . , 385882

Y = X ′η + τT +M ′β + ϵ;

When it comes to determining m, there is a trade-off between estimation precision and
computational burden. The more variables we include, the lower the chances we omit an
important variable, but on the contrary, the higher the computational burden we have to
face. Different scholars propose different strategies for determining m. We specify two
different values of m and apply the proposed method under each setting respectively. For
the first value, as suggested by Cai et al. [10], we consider m1 = 200 candidate mediators.
However, noticing that m1 = 200 exceeds the sample size (n = 85), as a reference, we also
follow the suggestion by Perara et al. [94], and select m2 = 2n/log(n) ≈ 38 candidate
mediators. In the following, we report the results based on m1 = 200. Results obtained
under m2 = 38 can be found in Appendix D Additional results from real data application.

Figure 3.4a and 3.4b shows the (10-fold) cross-validation mean square error (MSE)
versus the original and natural logarithm of the penalization parameter λ. When λ = 0.01,
we obtain the smallest value of cross-validation MSE. We adopt the “1SE” criteria for
choosing penalization parameters. Following this criteria, instead of choosing λ to be 0.01,
we choose λ = 0.04, because under such a value of λ, we obtain the most parsimony model
while the corresponding cross-validation MSE is within one standard error of the smallest
one. Figure 3.5a and 3.5b shows values of αβ versus λ and log(λ), and it is clear that when
λ increases, αβ decreases and eventually shrinks to zero with sufficiently large value of λ.

When considering 200 candidate variables, the proposed method identifies 15 DNA
methylation loci that have mediation effects on the process of childhood trauma to persis-
tent psychological disorders on stress reaction. Of the 15 DNA methylation loci, 13 of them
(cg18634806, cg25626453, cg00096307, cg06992213, cg25448067, cg26657045, cg03643137,
cg01696984, cg05292310, cg06001786, cg09211256, cg05051734, cg16180796) form a group
due to associations among them and similar mediation effects. Within each group, the
pairwise association between any two DNA methylation loci is greater than 0.1. These 13
loci have a grouped indirect effect of -10.802 (95$CI: (-20.401, -1.203)). The result can
be interpreted as: when changing the treatment status for the 20 methylation loci from
control to treated, while holding all the other factors including the overall treatment at the
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(a) Cross-validation MSE versus λ (b) Cross-validation MSE versus log(λ)

(a) αβ versus λ (b) αβ versus log(λ)

same level, the response will exhibit a change of -10.802, with a 95% CI of (-20.401, -1.203).
Such a result indicates a very strong grouped mediation effect of the 20 DNA methylation
loci. In addition, two single DNA methylation loci cg05608730 and cg00578039 show indi-
vidual indirect effects of -3.305 and 2.010 with 95% CI (-6.976, 0.365) and (-1.061, 5.082)
respectively. The individual effects from the two single loci do not show significant indi-
rect effects on the pathway from childhood trauma to long-term psychiatric disorder. The
direct effect of childhood trauma exposure is -2.555, with a 95% CI of (-12.977, 7.887),
which is also insignificant. Figure 3.6 shows the mediation structure identified by the
proposed method. Table 3.23 illustrates details on the grouped and individual indirect
effects of DNA methylation loci with 95% confidence intervals. In this chapter, we only
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provide results on the estimation of causal effects using conventional methods. In Chapter
4, we further provide results on the estimation of causal effects using the multiple robust
methods that are proposed in that Chapter.

Childhood
trauma
exposure

Grouped loci: cg18634806,
cg25626453, cg00096307, cg06992213,
cg25448067, cg26657045, cg03643137,
cg01696984, cg05292310, cg06001786,
cg09211256, cg05051734, cg16180796

Single locus: cg05608730

Single locus: cg00578039

Psychological
disorders

Figure 3.6: Mediation structure of DNA methylation loci on the process of childhood
trauma exposure to long-term psychological disorders

Moreover, in Chapter 4, we will revisit this problem and analyze the causal effects of
interest using the multiply robust methods proposed in that chapter. However, the current
version of the MR estimators proposed in Chapter 4 requires the exposure variable to be
binary, but in the data, the exposure (childhood trauma) is recorded as the total score of
the Childhood Trauma Questionnaire (CTQ) and is measured on a continuous scale. To
tackle the issue, we use the Bernstein and Fink [5] cut-off points to categorize continuous
exposures into binary ones. In this study, we regard each individual with a total higher
than 41 as being exposed and the opposite as being unexposed. For detailed discussions on
the cut-off values, please refer to Section 4.5 of this thesis. Table 3.24 presents the results if
the exposure is re-categorized into binary measures. It can be seen that both the direction
and the level of significance for each estimated causal effect remain the same, with only
the magnitude being changed due to the transformation of exposure type.
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3.5 Discussion

In this chapter, we address the challenge of conducting causal mediation analysis in the
presence of high-dimensional correlated candidate mediators. We introduce a penalization-
based technique that serves a dual purpose: it helps select the most relevant mediators
from the pool of high-dimensional candidates and the dependency structures among them
as well. This selection approach enhances the precision and efficiency of the following
statistical analysis and inference procedures.

On one hand, by penalizing the potential indirect effects throughout each candidate
mediator directly, our proposed method effectively identifies the mediators exhibiting non-
zero indirect effects in a straightforward way. On the other hand, we transform the problem
of selecting dependency structures among the mediators into a linear penalization-based
variable selection problem. This transformation eliminates the need for performing opti-
mization that involves matrix calculations while ensuring the precise and fast selection of
non-zero elements within the correlation matrix. By working with the selected dataset,
researchers have a better understanding of the causal mechanism underlining the prob-
lem. This not only enhances their understanding of the problem at hand but also facili-
tates better explanations. Moreover, the selection process offers advantages for subsequent
statistical inferences by reducing computation costs, particularly in scenarios involving
high-dimensional data.

There are also limitations to the proposed approach. In terms of the mediator selection,
the objective function is constructed by augmenting the loss function with a penalization
term corresponding to the potential indirect effect through each candidate mediator. As
a consequence, the objective function may not always be convex and therefore finding the
global optima is not guaranteed for most cases. Additionally, in practice, the optimization
procedure could be time-consuming and sensitive to starting values. Due to the nature of
the optimization problem, it is possible that with poor starting values, the algorithm may
face convergence issues of boundary solutions. When implementing the proposed method,
we recommend running the proposed algorithm with randomized starting values to alleviate
the problem. One may also refer to Friedman et al. [27], Simon et al. [118] and Tibshirani et
al.[131] regarding optimization issues in similar penalization-based problems. Additionally,
concerning the selection of dependence structures, our method currently focuses solely on
pairwise correlations. In practice, it is possible to obtain a special phenomenon where the
dependency relationships among the mediators are hard to identify. For example, suppose
there are 3 mediators in total and we denote them as M1,M2 and M3, it is possible that M1

and M2 are correlated, M1 and M3 are correlated but M2 and M3 are not. At present, there
is no better way to deal with such a special phenomenon. Under such a special scenario,
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the ad hoc method we are currently using is to treat all of the three mediators as a group
and estimate their grouped indirect effect. We acknowledge this is another limitation of
the proposed method. Moreover, we require a common true list of mediators to exist for
all subjects in the study. In the DNA methylation study that is discussed in Section 3.4,
such an assumption is satisfied naturally. However, this assumption may not always hold,
particularly, if the list of mediators is not of the same type. Future research can explore
these areas to address these limitations and further refine our approach. In addition, since
the main contribution of this study is the novel approach of grouping mediators based on
their correlations and assessing the grouped effects for those highly correlated ones, such
a strategy can be extended to other problems. For example, in a study involving multiple,
potentially high-dimensional correlated exposures (treatments), a similar strategy can be
implemented to group exposures first before assessing their grouped/individual effect(s).
Future research may concentrate on extending the current framework.
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mean model correlation causal effect bias ESE ASE
coverage
rate

α = β = 1

ρ = 0.8

Grouped IE (of M6 and M7) -0.005 0.285 0.263 0.925
Individual IE (of M8) -0.003 0.185 0.186 0.935
Joint IE -0.004 0.348 0.323 0.924
DE 0.004 0.269 0.265 0.946

ρ = 0.5

Grouped IE (of M6 and M7) 0.006 0.266 0.232 0.913
Individual IE (of M8) -0.010 0.165 0.164 0.938
Joint IE -0.003 0.316 0.285 0.932
DE -0.002 0.214 0.219 0.940

ρ = 0.2

Grouped IE (of M6 and M7) 0.005 0.246 0.226 0.923
Individual IE (of M8) -0.001 0.165 0.159 0.936
Joint IE 0.004 0.306 0.278 0.927
DE -0.002 0.207 0.213 0.960

α = β = 0.7

ρ = 0.8

Grouped IE (of M6 and M7) -0.003 0.200 0.186 0.928
Individual IE (of M8) 0.005 0.133 0.133 0.942
Joint IE 0.004 0.256 0.231 0.914
DE -0.017 0.213 0.212 0.953

ρ = 0.5

Grouped IE (of M6 and M7) -0.003 0.189 0.163 0.917
Individual IE (of M8) 0.002 0.121 0.116 0.942
Joint IE 0.004 0.282 0.203 0.915
DE 0.003 0.182 0.185 0.955

ρ = 0.2

Grouped IE (of M6 and M7) 0.005 0.167 0.159 0.937
Individual IE (of M8) 0.000 0.109 0.112 0.953
Joint IE 0.007 0.214 0.197 0.934
DE 0.003 0.178 0.182 0.958

α = β = 0.4

ρ = 0.8

Grouped IE (of M6 and M7) 0.075 0.310 0.119 0.884
Individual IE (of M8) 0.012 0.148 0.079 0.871
Joint IE 0.327 1.533 0.169 0.862
DE 0.000 0.168 0.170 0.944

ρ = 0.5

Grouped IE (of M6 and M7) 0.031 0.221 0.098 0.841
Individual IE (of M8) 0.000 0.097 0.066 0.890
Joint IE 0.149 0.953 0.136 0.853
DE 0.003 0.159 0.160 0.951

ρ = 0.2

Grouped IE (of M6 and M7) 0.038 0.244 0.096 0.838
Individual IE (of M8) 0.005 0.106 0.065 0.901
Joint IE 0.202 1.130 0.137 0.859
DE 0.010 0.160 0.158 0.942

Table 3.10: Overall performance of causal effects estimations under J = 10 scenario using
the parallel approach
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mean model correlation causal effect bias ESE ASE
coverage
rate

No.

α = β = 1

ρ = 0.8

Grouped IE (of M6 and M7) -0.002 0.285 0.279 0.950

952
Individual IE (of M8) -0.003 0.183 0.186 0.936
Joint IE -0.005 0.340 0.335 0.945
DE 0.006 0.266 0.265 0.947

ρ = 0.5

Grouped IE (of M6 and M7) 0.004 0.265 0.259 0.944

932
Individual IE (of M8) -0.009 0.164 0.164 0.939
Joint IE -0.005 0.309 0.306 0.948
DE 0.001 0.211 0.219 0.943

ρ = 0.2

Grouped IE (of M6 and M7) 0.002 0.243 0.236 0.942

875
Individual IE (of M8) 0.002 0.162 0.160 0.937
Joint IE 0.004 0.297 0.287 0.945
DE -0.001 0.205 0.213 0.963

α = β = 0.7

ρ = 0.8

Grouped IE (of M6 and M7) 0.002 0.198 0.196 0.942

886
Individual IE (of M8) 0.008 0.130 0.133 0.949
Joint IE 0.010 0.236 0.237 0.941
DE -0.014 0.215 0.212 0.949

ρ = 0.5

Grouped IE (of M6 and M7) -0.001 0.182 0.182 0.945

866
Individual IE (of M8) 0.004 0.119 0.116 0.942
Joint IE 0.004 0.216 0.216 0.961
DE 0.004 0.178 0.186 0.958

ρ = 0.2

Grouped IE (of M6 and M7) 0.009 0.163 0.165 0.952

817
Individual IE (of M8) 0.003 0.108 0.113 0.955
Joint IE 0.013 0.198 0.201 0.962
DE 0.002 0.173 0.182 0.966

α = β = 0.4

ρ = 0.8

Grouped IE (of M6 and M7) 0.019 0.101 0.115 0.975

561
Individual IE (of M8) 0.008 0.075 0.081 0.970
Joint IE 0.028 0.129 0.141 0.970
DE -0.007 0.166 0.171 0.948

ρ = 0.5

Grouped IE (of M6 and M7) 0.015 0.085 0.107 0.977

485
Individual IE (of M8) 0.004 0.061 0.068 0.977
Joint IE 0.019 0.107 0.126 0.981
DE 0.000 0.155 0.161 0.971

ρ = 0.2

Grouped IE (of M6 and M7) 0.011 0.088 0.097 0.973

452
Individual IE (of M8) 0.006 0.057 0.067 0.987
Joint IE 0.018 0.104 0.118 0.971
DE 0.003 0.159 0.159 0.942

Table 3.11: Performance of causal effects estimations under J = 10 scenario using the
parallel approach conditioning on correct mediator selection
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mean model correlation causal effect bias ESE ASE
coverage
rate

No.

α = β = 1

ρ = 0.8

Grouped IE (of M6 and M7) -0.002 0.285 0.279 0.950

952
Individual IE (of M8) -0.003 0.183 0.186 0.936
Joint IE -0.005 0.340 0.335 0.945
DE 0.006 0.266 0.265 0.947

ρ = 0.5

Grouped IE (of M6 and M7) 0.004 0.265 0.259 0.944

928
Individual IE (of M8) -0.009 0.164 0.164 0.939
Joint IE -0.005 0.309 0.306 0.948
DE 0.001 0.212 0.219 0.943

ρ = 0.2

Grouped IE (of M6 and M7) -0.003 0.241 0.240 0.946

606
Individual IE (of M8) 0.001 0.158 0.159 0.946
Joint IE -0.002 0.287 0.288 0.954
DE 0.002 0.202 0.213 0.967

α = β = 0.7

ρ = 0.8

Grouped IE (of M6 and M7) 0.002 0.198 0.196 0.942

886
Individual IE (of M8) 0.008 0.130 0.133 0.949
Joint IE 0.010 0.236 0.237 0.941
DE -0.014 0.215 0.212 0.949

ρ = 0.5

Grouped IE (of M6 and M7) 0.000 0.182 0.182 0.945

865
Individual IE (of M8) 0.005 0.119 0.116 0.942
Joint IE 0.004 0.216 0.216 0.962
DE 0.004 0.178 0.186 0.958

ρ = 0.2

Grouped IE (of M6 and M7) 0.006 0.161 0.169 0.955

538
Individual IE (of M8) -0.002 0.102 0.112 0.957
Joint IE 0.003 0.191 0.203 0.967
DE 0.005 0.175 0.182 0.968

α = β = 0.4

ρ = 0.8

Grouped IE (of M6 and M7) 0.019 0.101 0.115 0.975

561
Individual IE (of M8) 0.008 0.075 0.081 0.970
Joint IE 0.028 0.129 0.141 0.970
DE -0.007 0.166 0.171 0.948

ρ = 0.5

Grouped IE (of M6 and M7) 0.015 0.085 0.107 0.977

485
Individual IE (of M8) 0.004 0.061 0.068 0.977
Joint IE 0.019 0.107 0.126 0.981
DE 0.000 0.155 0.161 0.971

ρ = 0.2

Grouped IE (of M6 and M7) 0.009 0.087 0.099 0.974

313
Individual IE (of M8) 0.005 0.058 0.067 0.987
Joint IE 0.013 0.104 0.120 0.971
DE 0.003 0.153 0.159 0.949

Table 3.12: Performance of causal effects estimations under J = 10 scenario using the
parallel approach conditioning on both correct mediator selection and correct correlation
selection
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mean model correlation causal effect bias ESE ASE
coverage
rate

α = β = 1

ρ = 0.8

Grouped IE (of M6 and M7) -0.005 0.285 0.263 0.925
Individual IE (of M8) -0.003 0.185 0.186 0.935
Joint IE -0.004 0.348 0.323 0.926
DE 0.004 0.269 0.265 0.946

ρ = 0.5

Grouped IE (of M6 and M7) 0.006 0.266 0.232 0.913
Individual IE (of M8) -0.010 0.165 0.164 0.938
Joint IE -0.003 0.314 0.285 0.929
DE -0.002 0.214 0.219 0.940

ρ = 0.2

Grouped IE (of M6 and M7) 0.005 0.246 0.226 0.923
Individual IE (of M8) -0.001 0.165 0.159 0.936
Joint IE 0.003 0.306 0.278 0.928
DE -0.002 0.207 0.213 0.960

α = β = 0.7

ρ = 0.8

Grouped IE (of M6 and M7) -0.004 0.201 0.186 0.928
Individual IE (of M8) 0.005 0.133 0.133 0.942
Joint IE 0.002 0.256 0.231 0.912
DE -0.017 0.213 0.212 0.953

ρ = 0.5

Grouped IE (of M6 and M7) -0.005 0.190 0.163 0.917
Individual IE (of M8) 0.002 0.121 0.116 0.942
Joint IE -0.002 0.240 0.203 0.910
DE 0.003 0.182 0.185 0.955

ρ = 0.2

Grouped IE (of M6 and M7) 0.005 0.167 0.159 0.937
Individual IE (of M8) 0.000 0.109 0.112 0.953
Joint IE 0.008 0.213 0.197 0.933
DE 0.003 0.178 0.182 0.958

α = β = 0.4

ρ = 0.8

Grouped IE (of M6 and M7) -0.006 0.132 0.109 0.893
Individual IE (of M8) -0.007 0.087 0.076 0.864
Joint IE -0.012 0.182 0.140 0.866
DE 0.000 0.168 0.170 0.944

ρ = 0.5

Grouped IE (of M6 and M7) -0.013 0.122 0.092 0.838
Individual IE (of M8) -0.007 0.077 0.065 0.873
Joint IE -0.021 0.162 0.120 0.850
DE 0.003 0.159 0.160 0.951

ρ = 0.2

Grouped IE (of M6 and M7) -0.016 0.116 0.089 0.847
Individual IE (of M8) -0.006 0.073 0.063 0.890
Joint IE -0.022 0.151 0.115 0.867
DE 0.010 0.160 0.158 0.942

Table 3.13: Overall performance of causal effects estimations under J = 10 scenario using
the two-stage approach
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mean model correlation causal effect bias ESE ASE
coverage
rate

No.

α = β = 1

ρ = 0.8

Grouped IE (of M6 and M7) -0.002 0.286 0.279 0.949

949
Individual IE (of M8) -0.004 0.183 0.186 0.936
Joint IE -0.005 0.341 0.335 0.946
DE 0.006 0.267 0.266 0.946

ρ = 0.5

Grouped IE (of M6 and M7) 0.007 0.266 0.258 0.943

936
Individual IE (of M8) -0.010 0.164 0.164 0.938
Joint IE -0.003 0.310 0.306 0.947
DE -0.001 0.212 0.219 0.941

ρ = 0.2

Grouped IE (of M6 and M7) 0.003 0.243 0.234 0.939

882
Individual IE (of M8) 0.001 0.163 0.160 0.937
Joint IE 0.005 0.293 0.287 0.947
DE 0.000 0.206 0.213 0.964

α = β = 0.7

ρ = 0.8

Grouped IE (of M6 and M7) 0.004 0.196 0.196 0.945

886
Individual IE (of M8) 0.006 0.130 0.133 0.948
Joint IE 0.010 0.236 0.237 0.941
DE -0.016 0.214 0.212 0.950

ρ = 0.5

Grouped IE (of M6 and M7) -0.001 0.181 0.182 0.943

867
Individual IE (of M8) 0.004 0.120 0.116 0.940
Joint IE 0.003 0.216 0.216 0.958
DE 0.002 0.178 0.186 0.960

ρ = 0.2

Grouped IE (of M6 and M7) 0.007 0.165 0.164 0.947

819
Individual IE (of M8) 0.003 0.108 0.113 0.954
Joint IE 0.009 0.199 0.201 0.961
DE 0.004 0.174 0.182 0.962

α = β = 0.4

ρ = 0.8

Grouped IE (of M6 and M7) 0.018 0.102 0.115 0.975

567
Individual IE (of M8) 0.008 0.074 0.081 0.972
Joint IE 0.027 0.130 0.141 0.968
DE -0.006 0.165 0.171 0.951

ρ = 0.5

Grouped IE (of M6 and M7) 0.015 0.085 0.107 0.977

486
Individual IE (of M8) 0.005 0.061 0.068 0.975
Joint IE 0.020 0.107 0.127 0.979
DE 0.000 0.154 0.161 0.973

ρ = 0.2

Grouped IE (of M6 and M7) 0.012 0.089 0.097 0.968

466
Individual IE (of M8) 0.007 0.058 0.067 0.989
Joint IE 0.019 0.106 0.119 0.972
DE 0.004 0.160 0.159 0.944

Table 3.14: Performance of causal effects estimations under J = 10 scenario using the
two-stage approach conditioning on correct mediator selection
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mean model correlation causal effect bias ESE ASE
coverage
rate

No.

α = β = 1

ρ = 0.8

Grouped IE (of M6 and M7) -0.002 0.286 0.279 0.949

949
Individual IE (of M8) -0.004 0.183 0.186 0.936
Joint IE -0.005 0.341 0.335 0.946
DE 0.006 0.267 0.266 0.946

ρ = 0.5

Grouped IE (of M6 and M7) 0.004 0.265 0.259 0.943

910
Individual IE (of M8) -0.010 0.165 0.164 0.938
Joint IE -0.006 0.309 0.306 0.946
DE -0.001 0.212 0.219 0.942

ρ = 0.2

Grouped IE (of M6 and M7) 0.002 0.238 0.241 0.948

502
Individual IE (of M8) 0.000 0.158 0.159 0.956
Joint IE 0.002 0.277 0.289 0.964
DE 0.002 0.203 0.213 0.964

α = β = 0.7

ρ = 0.8

Grouped IE (of M6 and M7) 0.004 0.196 0.196 0.945

885
Individual IE (of M8) 0.006 0.130 0.133 0.948
Joint IE 0.010 0.236 0.237 0.941
DE -0.016 0.214 0.212 0.950

ρ = 0.5

Grouped IE (of M6 and M7) 0.000 0.181 0.182 0.943

847
Individual IE (of M8) 0.004 0.119 0.116 0.940
Joint IE 0.004 0.215 0.216 0.961
DE 0.002 0.179 0.186 0.959

ρ = 0.2

Grouped IE (of M6 and M7) 0.006 0.171 0.170 0.944

444
Individual IE (of M8) 0.000 0.101 0.112 0.962
Joint IE 0.006 0.201 0.203 0.962
DE 0.005 0.171 0.182 0.966

α = β = 0.4

ρ = 0.8

Grouped IE (of M6 and M7) 0.018 0.101 0.115 0.975

566
Individual IE (of M8) 0.008 0.075 0.081 0.972
Joint IE 0.027 0.130 0.141 0.968
DE -0.006 0.165 0.171 0.951

ρ = 0.5

Grouped IE (of M6 and M7) 0.015 0.085 0.107 0.977

480
Individual IE (of M8) 0.004 0.061 0.068 0.975
Joint IE 0.020 0.107 0.127 0.979
DE 0.001 0.154 0.161 0.973

ρ = 0.2

Grouped IE (of M6 and M7) 0.007 0.089 0.100 0.969

259
Individual IE (of M8) 0.004 0.060 0.067 0.988
Joint IE 0.011 0.109 0.120 0.961
DE 0.003 0.155 0.159 0.946

Table 3.15: Performance of causal effects estimations under J = 10 scenario using the two-
stage approach conditioning on both correct mediator selection and correct correlation
selection
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mean model correlation TP TP rate FP FP rate

α = β = 1
ρ = 0.8 3.000 1.000 0.326 0.002
ρ = 0.5 3.000 1.000 0.337 0.002
ρ = 0.2 3.000 1.000 0.430 0.002

α = β = 0.7
ρ = 0.8 2.996 0.999 0.296 0.002
ρ = 0.5 2.996 0.999 0.348 0.002
ρ = 0.2 2.997 0.999 0.432 0.002

α = β = 0.4
ρ = 0.8 2.118 0.706 0.191 0.001
ρ = 0.5 2.200 0.733 0.223 0.001
ρ = 0.2 2.202 0.734 0.335 0.002

Table 3.16: Results of mediator selection under J = 200 scenario
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method scenario TP TP rate FP FP rate

The
de-biased
LASSO

α = β = 1
ρ = 0.8 2.990 0.997 5.970 0.030
ρ = 0.5 2.960 0.987 6.310 0.032
ρ = 0.2 3.000 1.000 6.940 0.035

α = β = 0.7
ρ = 0.8 2.990 0.997 7.080 0.036
ρ = 0.5 2.980 0.993 7.140 0.036
ρ = 0.2 3.000 1.000 7.090 0.036

α = β = 0.4
ρ = 0.8 2.580 0.860 7.760 0.039
ρ = 0.5 2.830 0.943 8.280 0.042
ρ = 0.2 2.840 0.947 8.830 0.045

The
minimax
concave
penalty

α = β = 1
ρ = 0.8 2.940 0.980 4.730 0.024
ρ = 0.5 2.960 0.987 3.820 0.019
ρ = 0.2 3.000 1.000 3.320 0.017

α = β = 0.7
ρ = 0.8 2.560 0.853 7.110 0.036
ρ = 0.5 2.980 0.993 4.950 0.025
ρ = 0.2 3.000 1.000 4.880 0.025

α = β = 0.4
ρ = 0.8 1.760 0.587 7.790 0.040
ρ = 0.5 2.530 0.843 10.690 0.054
ρ = 0.2 2.720 0.907 11.930 0.061

The
adaptive
LASSO

α = β = 1
ρ = 0.8 2.940 0.980 2.040 0.010
ρ = 0.5 2.970 0.990 2.090 0.011
ρ = 0.2 3.000 1.000 2.150 0.011

α = β = 0.7
ρ = 0.8 2.940 0.980 2.290 0.012
ρ = 0.5 2.920 0.973 2.400 0.012
ρ = 0.2 2.950 0.983 2.530 0.013

α = β = 0.4
ρ = 0.8 2.400 0.800 3.160 0.016
ρ = 0.5 2.700 0.900 4.150 0.021
ρ = 0.2 2.690 0.897 5.070 0.026

Table 3.17: Performance of existing methods on mediator selections under p = 200 scenario
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Settings Unconditional Conditional
mean model correlation TP rate FP rate TP rate FP rate No.

α = β = 1
ρ = 0.8 1.000 0.000 1.000 0.000 765
ρ = 0.5 1.000 0.015 1.000 0.014 740
ρ = 0.2 0.822 0.173 0.876 0.202 670

α = β = 0.7
ρ = 0.8 1.000 0.002 1.000 0.001 791
ρ = 0.5 1.000 0.015 1.000 0.013 733
ρ = 0.2 0.798 0.181 0.838 0.199 678

α = β = 0.4
ρ = 0.8 1.000 0.061 1.000 0.000 425
ρ = 0.5 1.000 0.117 1.000 0.010 395
ρ = 0.2 0.833 0.244 0.843 0.201 345

Table 3.18: Results of correlation selection under J = 200 scenario using the two-stage
approach
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mean model correlation causal effect bias ESE ASE
coverage
rate

α = β = 1

ρ = 0.8

Grouped IE (of M6 and M7) -0.009 0.284 0.260 0.922
Individual IE (of M8) -0.008 0.164 0.158 0.940
Joint IE -0.015 0.365 0.311 0.914
DE -0.003 0.186 0.177 0.944

ρ = 0.5

Grouped IE (of M6 and M7) -0.002 0.266 0.230 0.912
Individual IE (of M8) -0.017 0.161 0.157 0.928
Joint IE -0.019 0.338 0.284 0.902
DE -0.007 0.189 0.178 0.937

ρ = 0.2

Grouped IE (of M6 and M7) -0.003 0.245 0.224 0.920
Individual IE (of M8) -0.008 0.165 0.157 0.930
Joint IE -0.012 0.326 0.281 0.910
DE -0.006 0.187 0.183 0.941

α = β = 0.7

ρ = 0.8

Grouped IE (of M6 and M7) -0.007 0.198 0.184 0.927
Individual IE (of M8) -0.006 0.113 0.111 0.938
Joint IE -0.013 0.251 0.219 0.905
DE -0.008 0.170 0.159 0.923

ρ = 0.5

Grouped IE (of M6 and M7) -0.009 0.184 0.162 0.915
Individual IE (of M8) -0.004 0.117 0.110 0.937
Joint IE -0.012 0.239 0.200 0.898
DE -0.003 0.168 0.160 0.944

ρ = 0.2

Grouped IE (of M6 and M7) -0.004 0.166 0.157 0.931
Individual IE (of M8) -0.005 0.108 0.110 0.947
Joint IE -0.001 0.218 0.197 0.918
DE -0.005 0.169 0.162 0.944

α = β = 0.4

ρ = 0.8

Grouped IE (of M6 and M7) -0.052 0.176 0.098 0.704
Individual IE (of M8) -0.037 0.096 0.055 0.663
Joint IE -0.089 0.225 0.115 0.681
DE -0.002 0.155 0.147 0.931

ρ = 0.5

Grouped IE (of M6 and M7) -0.054 0.156 0.084 0.685
Individual IE (of M8) -0.031 0.094 0.056 0.700
Joint IE -0.087 0.203 0.103 0.687
DE -0.005 0.152 0.148 0.938

ρ = 0.2

Grouped IE (of M6 and M7) -0.058 0.149 0.079 0.689
Individual IE (of M8) -0.031 0.092 0.056 0.716
Joint IE -0.091 0.194 0.100 0.686
DE -0.003 0.158 0.147 0.922

Table 3.19: Performance of causal effects estimations under J = 200 scenario using the
two-stage approach
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mean model correlation causal effect bias ESE ASE
coverage
rate

No.

α = β = 1

ρ = 0.8

Grouped IE (of M6 and M7) -0.004 0.284 0.278 0.950

765
Individual IE (of M8) -0.004 0.159 0.158 0.941
Joint IE -0.008 0.331 0.320 0.950
DE -0.005 0.185 0.177 0.941

ρ = 0.5

Grouped IE (of M6 and M7) -0.001 0.265 0.257 0.946

740
Individual IE (of M8) -0.018 0.161 0.157 0.922
Joint IE -0.018 0.304 0.302 0.953
DE -0.007 0.184 0.178 0.951

ρ = 0.2

Grouped IE (of M6 and M7) -0.002 0.242 0.233 0.937

670
Individual IE (of M8) -0.006 0.170 0.157 0.925
Joint IE -0.008 0.297 0.284 0.936
DE -0.005 0.185 0.183 0.945

α = β = 0.7

ρ = 0.8

Grouped IE (of M6 and M7) -0.002 0.194 0.196 0.956

791
Individual IE (of M8) 0.000 0.110 0.112 0.942
Joint IE -0.002 0.224 0.225 0.946
DE -0.007 0.166 0.159 0.930

ρ = 0.5

Grouped IE (of M6 and M7) -0.012 0.181 0.180 0.950

733
Individual IE (of M8) -0.002 0.113 0.111 0.944
Joint IE -0.014 0.215 0.212 0.947
DE -0.003 0.164 0.160 0.951

ρ = 0.2

Grouped IE (of M6 and M7) 0.001 0.165 0.163 0.944

678
Individual IE (of M8) -0.005 0.108 0.110 0.945
Joint IE -0.003 0.194 0.198 0.953
DE -0.002 0.172 0.163 0.941

α = β = 0.4

ρ = 0.8

Grouped IE (of M6 and M7) 0.024 0.096 0.116 0.960

425
Individual IE (of M8) 0.008 0.059 0.067 0.976
Joint IE 0.032 0.113 0.134 0.955
DE -0.008 0.154 0.149 0.934

ρ = 0.5

Grouped IE (of M6 and M7) 0.018 0.081 0.106 0.972

395
Individual IE (of M8) 0.006 0.052 0.065 0.987
Joint IE 0.024 0.092 0.125 0.980
DE -0.002 0.149 0.149 0.957

ρ = 0.2

Grouped IE (of M6 and M7) 0.013 0.080 0.096 0.974

345
Individual IE (of M8) 0.006 0.054 0.066 0.988
Joint IE 0.019 0.092 0.117 0.968
DE -0.001 0.154 0.149 0.948

Table 3.20: Performance of causal effects estimations under J = 200 scenario using the
two-stage approach conditioning on correct mediator selection
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mean model correlation causal effect bias ESE ASE
coverage
rate

No.

α = β = 1

ρ = 0.8

Grouped IE (of M6 and M7) -0.004 0.284 0.278 0.950

765
Individual IE (of M8) -0.004 0.159 0.158 0.941
Joint IE -0.008 0.331 0.320 0.950
DE -0.005 0.185 0.177 0.941

ρ = 0.5

Grouped IE (of M6 and M7) -0.003 0.265 0.258 0.945

723
Individual IE (of M8) -0.018 0.161 0.157 0.920
Joint IE -0.020 0.305 0.302 0.953
DE -0.007 0.184 0.178 0.952

ρ = 0.2

Grouped IE (of M6 and M7) 0.002 0.238 0.239 0.948

385
Individual IE (of M8) -0.003 0.170 0.157 0.938
Joint IE -0.001 0.287 0.286 0.945
DE -0.002 0.179 0.183 0.958

α = β = 0.7

ρ = 0.8

Grouped IE (of M6 and M7) -0.002 0.194 0.196 0.956

790
Individual IE (of M8) 0.000 0.110 0.112 0.942
Joint IE -0.002 0.224 0.225 0.946
DE -0.007 0.166 0.159 0.930

ρ = 0.5

Grouped IE (of M6 and M7) -0.011 0.182 0.181 0.950

716
Individual IE (of M8) -0.003 0.113 0.111 0.943
Joint IE -0.014 0.214 0.212 0.948
DE -0.003 0.165 0.160 0.950

ρ = 0.2

Grouped IE (of M6 and M7) 0.002 0.165 0.168 0.953

364
Individual IE (of M8) -0.003 0.102 0.110 0.953
Joint IE 0.000 0.194 0.201 0.967
DE -0.002 0.171 0.163 0.945

α = β = 0.4

ρ = 0.8

Grouped IE (of M6 and M7) 0.024 0.096 0.116 0.960

425
Individual IE (of M8) 0.008 0.059 0.067 0.976
Joint IE 0.032 0.113 0.134 0.955
DE -0.008 0.154 0.149 0.934

ρ = 0.5

Grouped IE (of M6 and M7) 0.018 0.081 0.106 0.972

389
Individual IE (of M8) 0.006 0.052 0.065 0.987
Joint IE 0.024 0.092 0.125 0.979
DE -0.001 0.148 0.149 0.959

ρ = 0.2

Grouped IE (of M6 and M7) 0.007 0.077 0.098 0.979

187
Individual IE (of M8) 0.004 0.054 0.066 0.995
Joint IE 0.011 0.092 0.118 0.973
DE 0.001 0.145 0.149 0.952

Table 3.21: Performance of causal effects estimations under J = 200 scenario using the
two-stage approach conditioning on both correct mediator selection and correct correlation
selection
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Table 3.22: Descriptive statistics for selected variables

Variable mean SD min, max
sex (% of female) 0.506 0.503 0, 1
age (in years) 33.800 15.900 18, 69
stress (cortisol stress reactivity, AUCi tn:1) 243.460 420.613 -1029.85, 1876.28
trauma (total CTQtn:2 score) 31.906 8.228 24, 63
1 area under the curve (AUC) with respect to the increase
2 Childhood Trauma Questionnaire

value 95% CI
Grouped IE of cg18634806,
cg25626453, cg00096307, cg06992213,
cg25448067, cg26657045, cg03643137,
cg01696984, cg05292310, cg06001786,
cg09211256, cg05051734, cg16180796

-10.802 (-20.401, -1.203)

Individual IE of cg05608730 -3.305 (-6.976, 0.365)
Individual IE of cg00578039 2.01 (-1.061, 5.082)
DE -2.555 (-12.997, 7.887)

Table 3.23: grouped and individual indirect effects of DNA methylation loci

causal effects value 95% CI
Grouped IE of cg18634806,
cg25626453, cg00096307, cg06992213,
cg25448067, cg26657045, cg03643137,
cg01696984, cg05292310, cg06001786,
cg09211256, cg05051734, cg16180796

-287.022 (-544.167,-29.877)

Single IE of cg05608730 -86.928 (-161.754,-12.103)
Single IE of cg00578039 32.465 (-27.678,92.608)
DE -48.609 (-225.783,128.565)

Table 3.24: Estimated grouped and individual indirect effects of DNA methylation loci
when treatment (childhood trauma) is treated as binary
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Chapter 4

Multiply Robust Estimation for
Mediation Analysis with Multiple
Mediators

4.1 Introduction

In Chapter 3, we introduce methods for mediator selection and dependency structure
simplification, which are essential steps prior to estimations of causal effects. In this
chapter, we focus on the estimation of causal effects and conducting related statistical
inferences on the selected dataset. We propose two ways of constructing multiple robust
estimators in causal mediation analysis based on weighted regression (WR) and augmented
inverse propensity weighting (AIPW).

Following the introduction in Section 1.5, we extend the aforementioned two DR esti-
mation models and propose two ways of constructing MR estimators for causal mediation
analysis with multiple possibly correlated mediators. First, three working models must be
specified:

1. The treatment model: Modeling P (T = 1|X). We denote it as MP and specify
P (T = 1|X) = π(X;θP ), where θP denotes the parameters used in MP . The
treatment model is also called the propensity model by some scholars and in this
thesis, they are used interchangeably.

2. The mediator joint conditional density model: fM |X,T (m|X, T ). We denote it as
MM and simplify it as f(m|X, T ;θM), where θM denotes the parameters used in

102



MM . We also need to model the joint CDF FM |X,T (m|X, T ) and it is simplified as
F (m|X, T ;θM) similarly.

3. The response model: E(Y |X, T,M ). We denote it asMY and specifyE(Y |X, T,M) =
µY (X, T,M ;θY ), where θY denotes the parameters used in MY .

In the following, the notation MA&MB are used to denote models A and B are correctly
specified.

For the MR estimators discussed in this chapter, we still require the SIMMA that is
introduced in Chapter 2. Additionally, under SIMMA, the following theorem is essential
for ensuring the MR properties of the two proposed estimators:

Theorem 4 (The Sequential Ignorability for Multiple Mediators Assumption with Propen-
sity Score and Conditional Distribution of Mediators). For any outcome Y , multiple me-
diators M and treatment indicator T ,

1. {Y (t0,m),M1(t1), . . . ,MJ(tJ)} ⊥ T |PS(X)

2. Y (t0,m
′) ⊥ {M1, . . . ,MJ} |F (m|X, T )

where 0 < PS(X) < 1, 0 < F (m|X, T ) < 1.

In the second part of the theorem, F (m|X, T ) denotes the conditional joint distribution
of the mediators given treatment indicator and covariates. We assume M has density
f(m|X, T ). The proof of the first half of the theorem is an extension of Rubin et al.
[104, 106]. Our proof concentrates on the second half and it is shown in Appendix E.

4.2 Method 1: weighted regression (WR) approach

The first MR estimator we propose is based on weighted regression. This estimator is
constructed by estimating two sets of weighted regression functions using different weights
respectively. Two sets of regression models are considered: the set of mediator models
and the response model. The mediator regression models are estimated with weights equal
to the inverse of the propensity score and the outcome regression model is fitted with
weights given by the product of the inverse propensity score and inverse of the conditional
density of the mediators given treatment and covariates. Causal effect estimates can be
then calculated from the functions of the estimated regression parameters from different
models.
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4.2.1 Models

For the weighted regression MR estimator, we require the mediators to be linearly related
to the treatment and the outcome to be linearly related to both the treatment and the
mediators, conditioning on the covariates.

Starting withMM , we first introduce the marginal models. If we let µij = E(Mij|Ti,Xi),
then under the linearity assumption, we let

µij(X i, Ti;Ψj) = g(X ′
iηj) + αjTi, i = 1, . . . , n; j = 1, . . . , J,

where ηj = {ηj0, . . . , ηjp}′ is the vector of coefficients associating with the covariates, αj

is the coefficient of treatment, g(·) is some known functions associating µij and X ′
iηj and

Ψj = {η′
j, αj}′ denote the mean parameters for the marginal model. The linearity assump-

tion means that, the conditional mean µij must be linearly related to the treatment Ti,
though we do not require such a strictly linear relationship between µij and X i. However,
for the remainder of this chapter, without loss of generality, we may assume the following
form of the marginal model for simplicity:

µij(X i, Ti;Ψj) = X ′
iηj + αjTi, i = 1, . . . , n; j = 1, . . . , J, (4.1)

We also assume

V ar(Mij|X i, Ti) = σ2
j , (4.2)

and further

Mij|X i, Ti ∼ N(µij, σ
2
j ), (4.3)

Therefore, for each subject i, if we denote the marginal conditional distribution of Mij as
Fj(Mij|X i, Ti;θj), then Fj(Mij|X i, Ti;θj) = Φ{[Mij−µij(X i, Ti)]/σj}, where Φ(·) denotes
the CDF of a standard normal distribution and θj denotes parameters for marginal distri-
bution model of the jth mediator and in this case θj = {Ψ′

j, σj}′. We also denote the asso-
ciated density as fj(Mij|X i, Ti;θj), so fj(Mij|X i, Ti;θj) = ϕ{[Mij − µij(X i, Ti)]/σj}/σj,
where ϕ(·) denotes the density of a standard normal distribution.

We further assume that, for the joint conditional distribution of M i,

M i|X i, Ti ∼ MVN(µi,Σ), (4.4)

where MVN(·) denotes multivariate normal distribution, where the conditional mean vec-
tor is µi = {µij, j = 1, . . . , J}′. If we denote the (k, l)th entry of Σ as Σkl, where
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k, l = 1, . . . , J , then Σkl = σ2
k for k = l and Σkl = ρklσkσl for k ̸= l. It follows that,

Cor(Mik,Mil|X i, Ti) = ρkl and we also use ϱ to denote the conditional correlation matrix.
Additionally, we use θM to denote the parameters used for the joint mediator distribution
model and in this case θM = {θ′

j, ρjk, j = 1, . . . , J, k = j + 1, . . . , J}′. We also use ΨM to
denote the mean parameters from all marginal models (i.e. ΨM = {Ψ′

j, j = 1, . . . , J}′).
Furthermore, we denote the joint conditional CDF of M i as F (M i|X i, Ti;θM), then

F (M i|X i, Ti;θM) = Φ{Σ− 1
2 [M i − µi(X i, Ti)]}, (4.5)

where Φ(·) denotes the CDF of a standard multivariate normal distribution. As a conse-
quence, the conditional density has the form

f(M i|X i, Ti;θM) = Σ− 1
2ϕ{Σ− 1

2 [M i − µi(X i, Ti)]}, (4.6)

where ϕ(·) denotes the density of a standard multivariate normal distribution.

ForMY , we let µY,i = E{Yi|X i, Ti,M i.}. Similarly, under the linear model assumption,
we assume

µY,i(X i, Ti,M i;θY ) = h(X ′
iγ) + τTi +M ′

i.β i = 1, . . . , n,

where τ is the unknown coefficient of the treatment indicator Ti, β = {β1, . . . , βJ}′ is the
J-dimensional vector of regression coefficients on the vector of mediators, γ = {γ0, . . . , γp}′
is the p+1-dimensional vector of regression coefficients on the vector of covariates including
the intercept, h(·) is some known function associating µY,i with X ′

iγ and ΨY = {γ ′, τ,β′}′
denote the mean parameters in the response model. In a similar manner, the linearity
assumption means that, µY,i must be linearly related to the treatment Ti and M i, though
we do not impose such a strict restriction between µY,i and X i. However, for the remainder
of this chapter, without loss of generality, we may assume the following form of the response
model for simplicity:

µY,i(X i, Ti,M i;θY ) = X ′
iγ + τTi +M ′

i.β i = 1, . . . , n, (4.7)

A natural extension of the proposed method is that, the normality assumptions for the
mediator distributions can be dropped. The proposed method is still valid if (4.3) and
(4.4) are dropped, but (4.1) and (4.2) are kept and (4.5) is changed to

F (M i|X i, Ti;θM) = C[F1(Mi1|X i, Ti;θ1), . . . , FJ(MiJ |X i, Ti;θj);ϱ], (4.8)
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where C(·) denotes any copula function that factorizes the joint distribution of M into
marginal distributions and correlation structures. It follows that, (4.6) is changed accord-
ingly to

f(M i|X i, Ti;θM) = c[F1(Mi1|X i, Ti;θ1), . . . , FJ(MiJ |X i, Ti;θj);ϱ]

J∏
j=1

fj(Mij|X i, Ti;θj),
(4.9)

where c(·) denotes the density of copula C(·).
We allow the covariates X in (4.1), (4.8), (4.9) and (4.7) to be different and we also

allow interactions and higher order terms of covariates to be included in X with proper
adjustment of coefficients. For simplicity of notations, we denote all covariates including a
leading 1 as X. In addition, in (4.10) and (4.11), W i = {X ′

i, Ti}′ and Zi = {X ′
i, Ti,M

′
i}′,

which denote the covariates appears in (4.1) and (4.7) respectively. Throughout the thesis,
X, W and Z are used to denote covariates for MP , MM and MY respectively, with a
subscript i denotes individual value.

4.2.2 Estimations

The proposed method estimates Ψj by solving the following weighted regression estimating
equations

Pn {ωM,i[Mij − µij(X i, Ti;Ψj)]W i} = 0, where ωM,i =
1

P (Ti|X i)
(4.10)

and estimates parameters θY by solving another sets of weighted regression estimating
equations

Pn

{
ωY,i[Yi − µY,i(X i, Ti,M i;θY )]Zi

}
= 0, where ωY,i =

1

P (Ti|X i)f(M i|X i, Ti)
.

(4.11)

ωM and ωY are called the weights for the mediator model and the response (outcome)
model respectively, with a subscript i to denote the ith individual value. The causal effects
of interest can be calculated as functions of the estimated parameters, as introduced in
Chapter 1 of this thesis. Additionally, one may also use the stabilized weights for the
estimation, by changing

ω∗
M,i =

P (Ti)

P (Ti|X i)
and ω∗

Y,i =
f(M i|Ti)P (Ti)

P (Ti|X i)f(M i|X i, Ti)
. (4.12)
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In the above equation, the numerator values denote the marginal distribution of the treat-
ment and the mediators.

In practice, we estimate the parameters and the causal effects of interest using iterative
ways that are introduced as follows.

Algorithm 2. Algorithm of the MR estimator using weighted regression approach

Step 1: We first estimate the parameters for the treatment model as

θ̂P = argmax
θP

n∑
i=1

{Ti log[π(X i;θP )] + (1− Ti) log[1− π(X i;θP )]} ,

and with θ̂P , we fit π̂i(X i; θ̂P ) = π(X i; θ̂P ).

Step 2: We then solve (4.10) by solving:

Pn {ω̂M,i[Mij − µij(X i, Ti;Ψj)]W i} = 0, (4.13)

for all j = 1, . . . , J , where

ω̂M,i =
I(Ti = 1)

π̂i(X i; θ̂P )
+

I(Ti = 0)

1− π̂i(X i; θ̂P )

is an estimated version of ωM,i in (4.10). We denote the solution of Ψj as Ψ̂j

and particularly, the solution of αj as α̂j,WR.

Step 3: With Ψ̂j from Step 2, using a two-stage approach, we estimate Σ by

Σ̂ = argmax
Σ

n∑
i=1

lW,M,i(M i|X i, Ti; Ψ̂M ,Σ), (4.14)

where

lW,M,i(M i|X i, Ti) = ω̂M,i(X i, Ti; θ̂P )lM,i(M i|X i, Ti; Ψ̂M ,Σ)

is the weighted log-likelihood function and

lM,i(M i|X i, Ti; Ψ̂M ,Σ) = log [f(M i|X i, Ti; Ψ̂M ,Σ)]

is the log-likelihood function of M i conditioning on X i and Ti.
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Step 4: we estimate θY in (4.7) by solving:

Pn

{
ω̂Y,i[Yi − µY (X i, Ti,M i;θY )]Zi

}
= 0, (4.15)

where

ω̂Y,i =
ω̂M,i(X i, Ti; θ̂P )

f̂i(M i|X i, Ti; θ̂M)
,

is an estimated version of ωY,i in (4.11). The solutions of θY to estimating

equations (4.15) are denoted as θ̂Y , and particularly, the solutions of τ and β
are denoted as τ̂WR and β̂WR respectively, where β̂WR = {β̂1,MR, . . . , β̂J,MR}′.

Step 5: Causal effects of interest are estimated under the model assumptions introduced
in Section 3.2.1 and according to definitions introduced in Chapter 1 of this
thesis. For example,

ÎEj,MR1 = α̂j,WRβ̂j,WR, for each j = 1, . . . , J ;

ÎEMR1 =
J∑

j=1

α̂j,WRβ̂j,WR, and D̂EMR1 = τ̂WR.

The grouped indirect effects of mediators in group G are estimated as follows:

ÎEG,MR1 =
∑
j∈G

α̂j,WRβ̂j,WR.

4.2.3 Using Matching or Stratification Approaches

One may also construct a multiply robust estimation via a matching approach. When
matching is used, one can generate a matched dataset with subjects matched in pairs.
Depending on different methods of the matching algorithm used, the matched dataset can
include observations such that each (or multiple) observation(s) from the treatment group is
matched with an (or multiple) observation(s) from the control group with similar estimated
propensity scores as well as values of inverse joint conditional density of mediators (within
a pre-specified caliber). For details on how the matching process is conducted, one can
refer to Stuart, E. A. (2010)[126]. When the matching approach is used to construct a
doubly robust estimator, the parameters estimated via weighting approaches should be
replaced by conducting the same estimation on the respective matched dataset.
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4.2.4 Theoretical Properties

In this section, we derive the consistency and asymptotic properties of the MR estimators
constructed by the weighted regression approach.

Consistency of the weighted regression MR estimator

The following theorem states the DR property of weighted regression estimators in causal
analysis settings.

Theorem 5 (DR property of the weighted regression estimator for average causal effect).
If for each subject, we observe X, T and Y , and we assume (1.1) and (1.2), then τ̂WR

calculated as (1.3) is a DR estimator for τ .

We then proceed with the DR property in mediation analysis settings. We start with
the following lemmas.

Lemma 3 (DR property of the mediator marginal conditional mean model). If the marginal
conditional mean model for each jth mediator is assumed as (4.1), then αj = E{Mj(1)−
Mj(0)}, where M(t) denotes the potential value of the mediator Mj under treatment (ex-
posure) status t = 0, 1, and the expectation is taken with respect to covariates in the
population. Additionally, if θj are estimated by solving (4.10), then the estimator α̂j,WR

is a DR estimator for the causal effect E{Mj(1)−Mj(0)}.

The first part of Lemma 3 states that, if the marginal conditional mean model for each
mediator is assumed as (4.1), then the coefficient αj always equals the causal effect defined
as E{Mj(1) − Mj(0)}, which can be interpreted as the change of the expected potential
value of the mediator if the treatment (exposure) is changed from 0 to 1. This can be
shown since under our model assumptions, E{Mj|T = 0,X} = X ′ηj and E{Mj|T =
1,X} = T + X ′ηj. The second part of Lemma 3 states that if the model parameters
θj in (4.1) are estimated by solving the weighted regression estimating equations (4.10),
then α̂j,WR, as an estimator of coefficient αj, is also a DR estimator for the causal effect
E{Mj(1)} − E{Mj(0)}. Proof of the DR property is an application of Theorem 5 with
details provided in Appendix E.

The following lemma states the DR property of the estimated parameter in the response
model.
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Lemma 4 (DR property of the response model). If the response model is assumed as in
(4.7), then τ = E{Y (1,m)− Y (0,m)} and β = [E{Y (t,m)− Y (t,m′)}]/(m−m′) for any
t,m andm′, where Y (t,m) denotes the potential outcome under treatment (exposure) t and
mediator valuem, and the expectation is taken with respect to covariates in the population.
Additionally, if θY are estimated by solving (4.11), then the estimators τ̂WR and β̂WR are
DR estimators of causal effects E{Y (1,m)−Y (0,m)} and [E{Y (t,m)−Y (t,m′)}]/(m−m′)
respectively.

Similar to the proof of Lemma 3, the first part of Lemma 4 states that, if the re-
sponse model is assumed as in (4.7), then under the model assumptions, the coefficients τ
and β always equal the causal effect defined as E{Y (1,m) − Y (0,m)} and [E{Y (t,m) −
Y (t,m′)}]/(m −m′) respectively, where the former one can be regarded as the controlled
direct effect (the change of the expected outcome if the treatment (exposure) is changed
from 0 to 1 and the mediator value is kept at m) and the later one can be regarded as
the change of the expected outcome for one unit change of the mediator value and the
treatment (exposure) remains unchanged at value t. These are due to our linear additive
model assumption for the response as shown in (4.7). The second part of Lemma 4 states
that if the model parameters θY in (4.7) are estimated by solving the weighted regression
estimating equations (4.11), then τ̂WR and β̂WR, as estimators of the coefficient τ and β,
are also DR estimators for their respective causal effects, which are also proved by utilizing
Theorem 5 with details provided in Appendix E.

We then introduce the following lemmas stating the consistency of MLE and its asso-
ciated plug-in estimators.

Lemma 5 (Consistency of the propensity model). Under regularity conditions and pro-
vided that the model is correctly specified, we have, for each subject i

θ̂P
p→ θP and π̂i(X i; θ̂P )

p→ π(X i), as n → ∞.

Lemma 6 (Consistency of the mediator model). Under regularity conditions and provided
that the model is correctly specified, we have, for each subject i

θ̂M
p→ θM and f̂(M i|X i, Ti; θ̂M)

p→ f(M i|X i, Ti;θM), as n → ∞.

Lemma 7 (Consistency of the response model). Under regularity conditions and provided
that the model is correctly specified, we have, for each subject i

θ̂Y
p→ θY and µ̂Y (Yi|X i, Ti,M i; θ̂Y )

p→ µY (Yi|X i, Ti,M i;θY ), as n → ∞.
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These lemmas are straightforward to prove and hold due to the consistency property
of MLE and the continuous mapping theorem.

In the end, by summarizing Lemma 3 - 7, we have the MR property of the estimated
causal effects of interest, which is stated by the following theorem.

Theorem 6 (MR property of the weighted regression estimator). For the method intro-
duced in Section 4.2, from the following 3 models:

1. The propensity model (the treatment (exposure) model): P (T = t|X;θP );

2. The mediator joint conditional density model: f(m|X, T ;θM);

3. The response model: E(Y |X, T,M ;θY ).

provided that two out of three of the aforementioned models are correctly specified, the
causal effects of interest are consistently estimated, i.e., as n → ∞,

ˆTE
p→ TE, D̂E

p→ DE, ÎE
p→ IE, and ÎEj

p→ IEj for j ∈ {1, . . . , J}.

Consistency of the estimated grouped indirect effect is a corollary of Theorem 6.

Asymptotic properties of the weighted regression MR estimator

In the proposed method, the parameters consist of three parts: θP for the propensity
model (MP ); θM for the mediator model (MM) and θY for the response model (MY ).
We denote θ = {θ′

P ,θ
′
M ,θ′

Y }′ as the vector consisting all parameters used in the model. We
further denote V = V (θ) as the asymptotic variance-covariance matrix of the estimated
parameters and V (θ) are obtained using the robust covariance estimation (the sandwich
estimation formula). For the three models and associated three sets of parameters, there
are three sets of estimating functions correspondingly. Throughout the illustration, we
denote all estimating equations using the notation U (·).

We begin with θP . The estimating equation for θP is denoted as UP (θP ), so θ̂P is the
solution to equation

UP (θP ) =
n∑

i=1

UP,i(θP ) = 0, (4.16)

where UP,i(θP ) is the treatment model estimating equation for each individual. In the
proposed method, we do not specify any particular form for MP (e.g. MP can be either
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logistic regression, tree-based model or more sophisticated non-parametric models), so
(4.16) is the most general expression for UP . Detailed expressions of UP under logistic
model settings are presented in Section 3.2.5.

With respect to θM , we start with the mean parameters. Ψ̂M = {Ψ̂
′
1, . . . , Ψ̂

′
J}′, where

each of Ψ̂j is the solutions to the equation

UΨ,j(Ψj,θP ) =
n∑

i=1

UW,Ψ,j,i(Ψj,θP ;Mij,X i, Ti) = 0,

where UW,Ψ,j,i(Ψj,θP ;Mij,X i, Ti) is the weight-adjusted estimating equation for mean
parameters of the jth mediator for each individual such that

UW,Ψ,j,i(Ψj,θP ;Mij,X i, Ti) = ωM,i(θP ;X i)UΨ,j,i(Ψj;Mij,X i, Ti),

and

UΨ,j,i(Ψj;Mij,X i, Ti) = [Mij − µij(X i, Ti;Ψj)]W i.

Detailed expressions of UΨ,j,i under the linear model settings are presented in Section
3.2.5.

For the covariance parameters,

UΣ(Σ,ΨM ,θP ) =
n∑

i=1

UW,Σ,i(Σ,ΨM ,θP ) = 0,

where UW,Σ,i(Σ,ΨM ,θP ) is the weight-adjusted estimating equation for the covariance
parameters of the mediator model for each individual, such that,

UW,Σ,i(Σ,ΨM ,θP ) = vec

{
∂

∂Σ
lW,M ,i(M i|X i, Ti;Σ,ΨM ,θP )

}
,

where vec{A} denotes vectorization of a matrix A and lW,M ,i(M i|X i, Ti;Σ,ΨM ,θP ) is
the weighted log-likelihood function of M i given X i and Ti from (4.14). Notice that the
estimating equation for covariance (correlation) parameters can be different under different
model settings.

Therefore, by stacking all estimating equations, we have

U ′
M(θM ,θP ) = [U ′

Ψ,1(Ψ1,θP ), . . . ,U
′
Ψ,J(ΨJ ,θP ),U

′
Σ(Σ,ΨM ,θP )]

′,
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and for each individual

U ′
W,M,i(θM ,θP ) = [U ′

W,Ψ,1,i(Ψ1,θP ), . . . ,U
′
W,Ψ,J,i(ΨJ ,θP ),U

′
W,Σ,i(Σ,ΨM ,θP )]

′.

For θY , θ̂Y are the solutions to the equation

UY (θY ,θM ,θP ) =
n∑

i=1

UW,Y,i(θY ,θM ,θP ) = 0.

where UW,Y,i(θY ,θM ,θP ) is the weight-adjusted estimating equation for response model
parameter θY for each individual such that

UW,Y,i(θY ,θM ,θP ) = ωY,i(θM ,θP )UY,i(θY )

and

UY,i(θY ) = [Yi − µY,i(X i, Ti,M i;θY )]Zi.

Detailed expressions of UY,i under the linear model settings are presented in Section 3.2.5.

Combining all estimating equations, we have,

U(θ)

=
n∑

i=1

U i(θ)

=
n∑

i=1

[
U ′

P,i(θP ),U
′
W,M,i(θM ,θP ),U

′
W,Y,i(θY ,θM ,θP )

]′
=

[
n∑

i=1

U ′
P,i(θP ),

n∑
i=1

U ′
W,M,i(θM ,θP ),

n∑
i=1

U ′
W,Y,i(θY ,θM ,θP )

]′
.

Due to the unbiased property of estimating equations, under regularity conditions and
provided that the models are all correctly specified, θ is consistent and asymptotically
normal, such that,

√
n(θ̂ − θ)

d→ N (0,V (θ)) as n → ∞.

The asymptotic variance-covariance matrix has the form

Σ(θ) = I−1(θ)C(θ)I(θ),
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where

I(θ) = E {−∂U i(θ)/∂θ
′} , and C(θ) = E {U i(θ)U

′
i(θ)} .

In the equation, I(θ) can be partitioned that,

I(θ) = −E


∂UP,i(θP )

∂ θ′
P

∂UP,i(θP )

∂ θ′
M

∂UP,i(θP )

∂ θ′
Y

∂UW,M,i(θM ,θP )

∂ θ′
P

∂UW,M,i(θM ,θP )

∂ θ′
M

∂UW,M,i(θM ,θP )

∂ θ′
Y

∂UW,Y,i(θY ,θM ,θP )

∂ θ′
P

∂UW,Y,i(θY ,θM ,θP )

∂ θ′
M

∂UW,Y,i(θY ,θM ,θP )

∂ θ′
Y



= −E


∂UP,i(θP )

∂ θ′
P

0 0
∂UW,M,i(θM ,θP )

∂ θ′
P

∂UW,M,i(θM ,θP )

∂ θ′
M

0
∂UW,Y,i(θY ,θM ,θP )

∂ θ′
P

∂UW,Y,i(θY ,θM ,θP )

∂ θ′
M

∂UW,Y,i(θY ,θM ,θP )

∂ θ′
Y



=


−E

(
∂UP,i(θP )

∂ θ′
P

)
0 0

−E
(

UW,M,i(θM ,θP )

∂ θ′
P

)
−E

(
UW,M,i(θM ,θP )

∂ θ′
M

)
0

−E
(

UW,Y,i(θY ,θM ,θP )

∂ θ′
P

)
−E

(
UW,Y,i(θY ,θM ,θP )

∂ θ′
M

)
−E

(
UW,Y,i(θY ,θM ,θP )

∂ θ′
Y

)
 .

If we further denote

IP (θP ) = −E

(
∂UP,i(θP )

∂ θ′
P

)
,

IM,P (θM ,θP ) = −E

(
UW,M,i(θM ,θP )

∂ θ′
P

)
,

IM,M(θM ,θP ) = −E

(
UW,M,i(θM ,θP )

∂ θ′
M

)
;

and

IY,P (θY ,θM ,θP ) = −E

(
UW,Y,i(θY ,θM ,θP )

∂ θ′
P

)
,

IY,M(θY ,θM ,θP ) = −E

(
UW,Y,i(θY ,θM ,θP )

∂ θ′
M

)
,

IY,Y (θY ,θM ,θP ) = −E

(
UW,Y,i(θY ,θM ,θP )

∂ θ′
Y

)
,

114



then I(θ) can be partitioned to

I(θ) =

 IP (θP ) 0 0
IM,P (θM ,θP ) IM,M(θM ,θP ) 0

IY,P (θY ,θM ,θP ) IY,M(θY ,θM ,θP ) IY,Y (θY ,θM ,θP )


With V (θ), the delta-method could be applied to get the asymptotic distributions of

the estimated causal effects of interest, such that

√
n[κ(θ̂)− κ(θ)]

d→ N(0,∇′κ(θ)V (θ)∇κ(θ)), (4.17)

where κ(θ) denotes the causal effects of interest, that can be expressed as functions of
parameters θ and ∇κ(θ) denotes the gradient of κ(θ) on θ.

4.2.5 Closed form results under particular model settings

The propensity model

A logistic regression model is used to model the treatment. We assume:

g[π(X;θP )] = logit[P (T = 1|X;θP )] = X ′
Pξ, i = 1, . . . , n, (4.18)

where logit(p) = log[p/(1 − p)] is the logit link function, θP = ξ denotes the parameters
used for the propensity model and X denotes the p+1-dimensional covariates that include
an intercept.

Under such a setting, MLE can be used to estimate θP , with the score vector

SP (θP ) =
n∑

i=1

SP,i(θP ) =
n∑

i=1

[Ti − expit(X ′
iθP )]X i;

so the estimating equations equal to the score equations such that UP,i(θP ) = SP,i(θP ).
Further,

IP (θP ) =
∂ SP (θP )

∂ θP

=
n∑

i=1

X iX
′
iexpit(X

′
iθP )[1− expit(X ′

iθP )],

where expit(·) is the inverse of the logit link function such that expit(x) = g−1(x) =
exp(x)/[1 + exp(x)].
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The mediator model

The multivariate normal distribution is assumed for the joint distribution of mediators.
The marginal models are assumed as in (4.1). Following (4.13),

Ψ̂j =

(
n∑

i=1

ωM,iW iW
′
i

)−1( n∑
i=1

ωM,iW iMij

)
,

for j = 1, . . . , J . Since µ̂ij = W ′
iθ̂j and µ̂i = {µ̂i1, . . . , µ̂iJ}′, then,

Σ̂ =

[
n∑

i=1

ωM,i(M i − µ̂i)(M i − µ̂i)
′

]
/

(
n∑

i=1

ωM,i

)

Additionally, we have, the estimating equations

UW,Ψ,j,i(Ψj,θP ) = ωM,i(θP )W i(Mij −W ′
iΨj).

and

UW,Σ,i(Σ,ΨM ,θP ) = vec {ωM,i(θP )[Σ− (M i − µi)(M i − µi)
′]} .

Furthermore, we have,

∂UW,Ψ,j,i(Ψj,θP )

∂ θP

= W i(Mij−µij)

{
− Ti

π2
i (X i;θP )

+
1− Ti

[1− πi(X i;θP )]2

}
∂ πi(X i;θP )

∂ θP

,

where

∂ πi(X i;θP )

∂ θP

=
∂ expit(X ′

iθP )

∂ θP

= X i
exp(X ′

iθP )

[1 + exp(X ′
iθP )]2

,

and

∂UW,Ψ,j,i(Ψj,θP )

∂Ψj

= ωM,i(θP )W iW
′
i.

The higher-order derivative of UW,Σ,i(Σ,ΨM ,θP ) (Particularly ∂UW,Σ,i(Σ,ΨM ,θP )/∂Σ)
involves complex matrix calculation and is therefore omitted here.
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The response model

The response model is assumed as in (4.7), then

θ̂Y =

(
n∑

i=1

ωY,iZiZ
′
i

)−1( n∑
i=1

ωY,iZiY
′
i

)
Additionally, we have the score vector

UY,W,i(θY ,θM ,θP ) = ωY,i(θM ,θP )(Yi − µY i)Zi,

and

IY,P (θY ,θM ,θP )

=
∂UY (θY ,θM ,θP )

∂ θP

=
n∑

i=1

(Yi − µY i)Zi
∂ ωY,i

∂ θP

=
n∑

i=1

(Yi − µY i)
1

fM ,i(θM)

{
− Ti

π2
i (θP )

+
1− Ti

[1− πi(θP )]2

}
Zi

∂ πi(θP )

∂ θP

,

where

∂ πi(θP )

∂ θP

=
∂ expit(X ′

iθP )

∂ θP

= X i
exp(X ′

iθP )

[1 + exp(X ′
iθP )]2

,

IY,M(θY ,θM ,θP )

=
∂UY (θY ,θM ,θP )

∂ θM

=
n∑

i=1

(Yi − µY i)Zi
∂ ωY,i

∂ θM

=
n∑

i=1

(Yi − µY i)
1

f 2
M ,i(θM)

[
Ti

πi(θP )
+

1− Ti

1− πi(θP )

]
Zi

∂ fM ,i(θM)

∂ θM

,

and

IY,Y (θY ,θM ,θP ) =
∂UY (θY ,θM ,θP )

∂ θY

=
n∑

i=1

ωY,i(θP ,θM)ZiZ
′
i.
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4.3 Method 2: augmented inverse propensity weight-

ing (AIPW) approach

Another method of constructing MR estimator we consider is utilizing the augmented
inverse propensity weighting (AIPW) approach. For this approach, we estimate the three
models, the propensity model (MP ), the mediator model (MM) and the response model
(MY ) separately, but the potential outcome is imputed in a sophisticated way combining
the three models such that MR properties are achieved. We extend the idea of Tchetgen
et al. [128] to accommodate multiple mediators.

4.3.1 Model

For the AIPW approach, we do not impose any particular forms for MP , MM and MY

and we write the models in the general forms. The estimation procedures are different
from the WR approach: the three models are estimated separately first, then the potential
outcomes are imputed as follows using the three fitted models, and hereby the causal effects
of interest are then estimated with multiple robustness.

For potential outcomes with the form Y (t,M (t)), if we denote it as κ(t), where t = 0, 1,
then it is estimated as follow:

κ(t) = Pn

{
I(T = t)

P (T = t|X)
[Y − r1(t,X)] + r1(t,X)

}
, (4.19)

where r1(t,X) is an imputation model for potential outcome Y (t,M (t)) conditioning on
X and it is obtained using the mediation formula introduced in Chapter 1, which is stated
below (throughout this chapter, we assume M has a density),

r1(t,X) =

∫
m

E(Y |T = t,X,M ) dF (m|T = t,X)

=

∫
m

E(Y |T = t,X,M ) f(m|T = t,X) dm.

(4.20)

For potential outcome with the form Y (t,M(t′)), where t ̸= t′, if we denote it as κ(t, t′),
then it is estimated as:

κ(t, t′) =Pn

{
I(T = t)f(M |T = t′,X)

P (T = t|X)f(M |T = t,X)
[Y − E(Y |T = t,X,M)]

+
I(T = t′)

P (T = t′|X)
[E(Y |T = t,X,M )− r2(t, t

′,X)] + r2(t, t
′,X)

}
,

(4.21)
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where similar to (4.20), r2(t, t
′,X) is an imputation model for potential outcome Y (t,M (t′))

conditioning on X and it has the form

r2(t, t
′,X) =

∫
m

E(Y |T = t,X,M ) dF (m|T = t′,X)

=

∫
m

E(Y |T = t,X,M ) f(m|T = t′,X) dm.

(4.22)

Note that r1(t,X) = r2(t, t,X) and r1(t,X) is a simplified notation. Additionally, both
imputation models r1(t,X) and r2(t, t

′,X) are functions of MM and MY .

Estimation of causal effects is then conducted by investigating functions of estimated
potential outcomes, according to their definitions. For example, in a linear framework,
according to our definition in Chapter 1,

IE(1) = κ(1)− κ(1, 0),

and

DE(0) = κ(1, 0)− κ(0).

The following algorithm summarizes the estimation procedure in practice.

Algorithm 3. Algorithm of the MR estimator using augmented inverse propensity weighting
approach

Step 1: We estimate the three model parameters separately, which are denoted as θ̃P , θ̃M

and θ̃Y respectively, to distinguish them from parameters estimated by weighted
regression approach introduced in Section 4.2.

Step 2: We fit the three models separately, which are denoted as:

1. The fitted treatment model: π̃i(X i; θ̃P ) = P (T = 1|X i; θ̃P );

2. The fitted mediator model under treatment t:

f̃i(M i|X i, t; θ̃M) = fi(M i|X i, t; θ̃M)

3. The fitted response model under treatment t:

µ̃Y (X i, t,M i; θ̃Y ) = E(Yi|X i, t,M i; θ̃Y )
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Similarly, the fitted models are denoted with a tilde mark to distinguish them
from the ones introduced in Section 4.2.

Step 3: Following (4.19) - (4.22), we impute the potential outcomes with the fitted models
from Step 2. For example: for the potential outcome Y (t,M (t)), where t = 0, 1,
if we denote the imputed value as κ̃(t), then

κ̃(t) = Pn

{
I(Ti = t)

Ti π̃i(X i; θ̃P ) + (1− Ti)[1− π̃i(X i; θ̃P )]
[Yi − r̃1(t,X i; θ̃M , θ̃Y )]

+ r̃1(t,X i; θ̃M , θ̃Y )

}
,

where

r̃1(t,X i; θ̃M , θ̃Y ) =

∫
m

µ̃Y,i(X i, t,m; θ̃Y ) f̃(m|X i, t; θ̃M) dm

Step 4: Calculate the causal effects of interest using functions of imputed potential out-
comes according to their definitions.

4.3.2 Statistical inference

We denote θ = {θ′
P ,θ

′
M ,θ′

Y }′ as the vector consisting all parameters used in the model.
Note that θ,θP ,θM and θY are different from those in Section 4.2. Similar to Section
4.2, we denote V = V (θ) as the asymptotic variance-covariance matrix of θ that can be
obtained as follows. We denote the overall estimating equation as U(θ), with estimating
equations for MP as UP (θP ), for MM as UM(θM) and for MY as UY (θY ). It follows
that (for simplicity of notations, we omit the data elements inside each function),

U(θ)

=
n∑

i=1

U i(θ)

=
n∑

i=1

[
U ′

P,i(θP ),U
′
M,i(θM),U ′

Y,i(θY )
]′

=

[
n∑

i=1

U ′
P,i(θP ),

n∑
i=1

U ′
M,i(θM),

n∑
i=1

U ′
Y,i(θY )

]′
(4.23)
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Since we do not specify particular forms for MP , MM and MY , we leave (4.23) as the
general form of estimating equations for the models. Detailed expressions of UP,i(θP ),
UM,i(θM) and UY,i(θY ) under specific model settings are presented in Section 4.3.3. Due
to the unbiased property of estimating equations, under regularity conditions and provided
that the models are all correctly specified, θ is consistent and asymptotically normal, such
that,

√
n(θ̂ − θ)

d→ N (0,V (θ)) as n → ∞.

The asymptotic variance-covariance matrix has the form

V (θ) = I−1(θ)C(θ)I(θ), (4.24)

where

I(θ) = E [−∂U i(θ)/∂θ
′] , and C(θ) = E [U i(θ)U

′
i(θ)] .

In the equation, I(θ) can be partitioned that,

I(θ) = −E


∂UP,i(θP )

∂ θ′
P

∂UP,i(θP )

∂ θ′
M

∂UP,i(θP )

∂ θ′
Y

∂UM,i(θM )

∂ θ′
P

∂UM,i(θM )

∂ θ′
M

∂UM,i(θM )

∂ θ′
Y

∂UY,i(θY )

∂ θ′
P

∂UY,i(θY )

∂ θ′
M

∂UY,i(θY )

∂ θ′
Y



=


−E

[
∂UP,i(θP )

∂ θ′
P

]
0 0

0 −E
[
∂UM,i(θM )

∂ θ′
M

)
]

0

0 0 −E
[
∂UY,i(θY )

∂ θ′
Y

]


=

 IP (θP ) 0 0
0 IM(θM) 0
0 0 IY (θY )

 ,

If MLE is used to fit MP , MM and MY , then UP,i(θP ), UM,i(θM) and UY,i(θY ) can equal
to their respective Score equations (denoted as S ′

P,i(θP ), S
′
M,i(θM) and S ′

Y,i(θY )), and Ip,
IM and IY equals to the Fisher information matrix for each model respectively.

It follows that, from (4.19), by applying the delta method, we obtain:

√
n[κ̂MR(t)− κMR(t)]

d→ N(0,∇′κ(t;θ)V (θ)∇κ(t;θ)), (4.25)
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where ∇κ(t;θ) denotes the gradient of κ(t;θ) on θ that is to be derived in the following.
Additionally, following (4.21) and applying the delta method, we have:

√
n[κ̂MR(t, t

′)− κMR(t, t
′)]

d→ N(0,∇′κ(t, t′;θ)V (θ)∇κ(t, t′;θ)), (4.26)

where ∇κ(t, t′;θ) denotes the gradient of κ(t, t′;θ) on θ that is to be derived in the follow-
ing. The asymptotic variances of the estimated causal effects are calculated in similar ways
except for replacing κ by functions of it. For example, in a linear framework, according to
our definition in Chapter 2,

√
n[ÎE(1)− IE(1)]

d→ N(0,∇′{κ(1)− κ(1, 0)}V (θ)∇{κ(1)− κ(1, 0)}), (4.27)

and
√
n[D̂E(0)−DE(0)]

d→ N(0,∇′{κ(1, 0)− κ(0)}V (θ)∇{κ(1, 0)− κ(0)}). (4.28)

The derivations of ∇κ(t;θ), ∇κ(t, t′;θ) and V are as follows. We begin with ∇κ(t;θ),
since ∇κ(t;θ) =

∑n
i=1∇κ(t,X i;θ), for any κ(t,X;θ),

∇κ(t,X;θ)

=
∂κ(t,X;θ)

∂θ

=
∂
{

I(T=t)
π(X;θP )

[Y − r1(t,X;θM ,θY )] + r1(t,X;θM ,θY )
}

∂ θ

=I(T = t)Y [−π(X;θP )
−2]

∂ π(X;θP )

∂ θ
− I(T = t)r1(t,X;θM ,θY )[−π(X;θP )

−2]
∂ π(X;θP )

∂ θ

− I(T = t)

π(X;θP )

∂ r1(t,X;θM ,θY )

∂ θ
+

∂ r1(t,X;θM ,θY )

∂ θ

If we write in a vector format,

∇κ(t,X;θ) =

∂ κ(t,X;θ)/∂ θP

∂ κ(t,X;θ)/∂ θM

∂ κ(t,X;θ)/∂ θY

 ,

where

∂ κ(t,X;θ)

∂ θP

=I(T = t)Y [−π−2(X;θP )]
∂ π(X;θP )

∂ θP

− I(T = t)r1(t,X;θM ,θY )[−π−2(X;θP )]
∂ π(X;θP )

∂ θP

122



∂ κ(t,X;θ)

∂ θM

=− I(T = t)π−1(X;θP )
∂ r1(t,X;θM ,θY )

∂ θM

+
∂ r1(t,X;θM ,θY )

∂ θM

and

∂ κ(t,X;θ)

∂ θY

=− I(T = t)π−1(X;θP )
∂ r1(t,X;θM ,θY )

∂ θY

+
∂ r1(t,X;θM ,θY )

∂ θY

respectively. The gradient functions involved include:

• The gradient of propensity model: ∂ π(X;θP )/∂ θP ;

• The gradient of the potential outcome imputation model: ∂ r1(t,X;θM ,θY )/∂ θM

and ∂ r1(t,X;θM ,θY )/∂ θY .

Similarly, ∇κ(t, t′;θ) =
∑n

i=1 ∇κ(t, t′,X i;θ), then for any κ(t, t′,X;θ), we have:

∇κ(t, t′,X;θ) =

∂ κ(t, t′,X;θ)/∂ θP

∂ κ(t, t′,X;θ)/∂ θM

∂ κ(t, t′,X;θ)/∂ θY

 ,

where

∂ κ(t, t′,X;θ)

∂ θP

=
I(T = t)f(M |X, t′;θM)

f(M |X, t;θM)
[Y − µY (X, t,M ;θY )]

∂ π−1(X;θP )

∂ θP

+ I(T = t′)[µY (X, t,M ;θY )− r2(t, t
′,X;θM ,θY )]

∂ [1− π(X;θP )]
−1

∂ θP

=
I(T = t)f(M |X, t′;θM)

f(M |X, t;θM)
[Y − µY (X, t,M ;θY )][−π−2(X;θP )]

∂ π(X;θP )

∂ θP

+ I(T = t′)[µY (X, t,M ;θY )− r2(t, t
′,X;θM ,θY )][1− π(X;θP )]

−2 ∂ π(X;θP )

∂ θP

;
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∂ κ(t, t′,X;θ)

∂ θM

=I(T = t)π−1(X;θP )[Y − µY (X, t,M )]f−1(M |X, t;θM)
∂ f(M |X, t′;θM)

∂ θM

+ I(T = t)π−1(X;θP )[Y − µY (X, t,M )]f(M |X, t′;θM)
∂ f−1(M |X, t;θM)

∂ θM

− I(T = t′)[1− π(X;θP )]
−1 ∂ r2(t, t

′,X;θM ,θY )

∂ θM

+
∂ r2(t, t

′,X;θM ,θY )

∂ θM

=I(T = t)π−1(X;θP )[Y − µY (X, t,M )]f−1(M |X, t;θM)
∂ f(M |X, t′;θM)

∂ θM

− I(T = t)π−1(X;θP )[Y − µY (X, t,M)]f(M |X, t′;θM)

f−2(M |X, t;θM)
∂ f(M |X, t;θM)

∂ θM

− I(T = t′)[1− π(X;θP )]
−1 ∂ r2(t, t

′,X;θM ,θY )

∂ θM

+
∂ r2(t, t

′,X;θM ,θY )

∂ θM

and

∂ κ(t, t′,X;θ)

∂ θY

=− I(T = t)f(M |X, t′;θM)

π(X;θP )f(M |X, t;θM)

∂ µY (X, t,M ;θY )

∂ θY

+
I(T = t′)

1− π(X;θP )

[
∂ µY (X, t,M ;θY )

∂ θY

− ∂ r(t, t′,X;θM ,θY )

∂ θY

]
+

∂ r(t, t′,X;θM ,θY )

∂ θY

respectively. The gradient functions involved include:

• The gradient of the propensity model: ∂ π(X;θP )/∂ θP ;

• The gradient of the mediator model: ∂ f(M |X, t;θM)/∂ θM and ∂ f(M |X, t′;θM)/∂ θM ;

• The gradient of the response model: ∂ µY (X, t,M ;θY )/∂ θY ;

• The gradient of the potential outcome imputation model: ∂ r2(t, t
′,X;θM ,θY )/∂ θM

and ∂ r2(t, t
′,X;θM ,θY )/∂ θY .

Closed-form expressions of the gradients in the aforementioned equations, together with
the estimated causal effects and variance under specific model settings are given in the next
section.
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4.3.3 Closed form results under particular model settings

We provide a standard specification of the three models used for MR estimations and
derive closed-form expressions in this section. We also derive the closed-form asymptotic
variances of the MR estimators under standard settings.

The propensity model

We assume the same model settings as with the weighted regression approach, which is
introduced in Section 4.2.5. Therefore, we have the same derivations and conclusions as in
Section 4.2.5.

The mediator model

We have similar model settings as with the weighted regression approach, which is intro-
duced in Section 4.2.1. We assume the same marginal model as (4.1), (4.2) and (4.3), as
well as the same joint distribution as (4.4).

However, the estimation results are different since there are no weights involved for the
AIPW approach. Following Theorem 3 in Chapter 1, if we let

W i =

 Xi10, . . . , Xi1q1 , Ti, 0, . . . , 0
...

. . .
...

0, . . . , XiJ0, . . . , XiJqJ , Ti

 ,

which denotes the re-organized design matrix for the mediator model illustrated in the
theorem, we have

Ψ̃M =

(
n∑

i=1

W
′
iW i

)−1( n∑
i=1

W
′
iM i

)
,

where ΨM denotes the mean parameters in a similar way and

Σ̃ =
1

n

n∑
i=1

[(M i − µi)(M i − µi)
′] ,

Additionally, we have

UM ,i(θM) = [U ′
Ψ,i(θM),U ′

Σ,i(θM)]′,
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where

UΨ,i(θM) = W
′
iΣ

−1(M i − µi);

and

UΣ,i(θM) = vec [Σ− (M i − µi)(M i − µi)
′] .

Furthermore, we have

∂UΨ,i(θM)

∂ΨM

= W
′
iΣ

−1W i.

Similarly, the higher-order derivative of UΣ,i(θM) involves complex matrix calculation and
is therefore omitted here.

The response model

The response model is assumed to be the same as introduced in Section 4.2.1. However,
the estimation is different as there are no weights involved.

For the AIPW approach, we have

θ̃Y = (Z ′Z)−1Z ′Y .

Additionally, we have

UY,i(θY ) = [Yi − µY i(θY )]Zi, and IY,i(θY ) = ZiZ
′
i.

The imputation model

r1(t,X) and r2(t, t
′,X) are calculated in similar ways under our model settings and

r1(t,X) = r2(t, t,X). Without loss of generality, we only show the results from r2(t, t
′,X).

Under (4.22),

r2(t, t
′,X) =

∫
m

µY (X, t,m;θY )f(m|X, t′;θM) dm

=τt+
J∑

j=1

[αjt
′ +X ′ηj]βj +X ′γ.
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Gradients and Asymptotic variance

Following Section 1.3.2, we derive the gradient functions for each model. Under the model
settings,

The gradient of the propensity model:

∂ π(X;θP )

∂ θP

=
∂ expit(X ′θP )

∂ θP

=
exp(X ′θP )

1 + exp(X ′θP )
X;

The gradient of the mediator model:

∂ f(M |X, T ;θM)

∂ΨM

=
∂Σ− 1

2ϕ[Σ− 1
2 (M −W ′ΨM)]

∂ΨM

= ϕ′[Σ− 1
2 (M−W ′ΨM)]Σ−1W ′;

and

∂ f(M |X, T ;θM)

∂Σ

=
∂Σ− 1

2ϕ[Σ− 1
2 (M −W ′ΨM)]

∂Σ

=− 1

2
Σ− 3

2ϕ[Σ− 1
2 (M −W ′ΨM)]− 1

2
Σ−2ϕ′[Σ− 1

2 (M −W ′ΨM)](M −W ′ΨM)

The gradient of the response model:

∂ µY (X, T,M ;θY )

∂ θY

=
∂Z ′θY

∂ θY

= Z,

The gradient of the potential response model:

∂ r2(t, t
′,X)

∂ θM

= βj[t
′,η′

1, . . . ,η
′
J ]

′,

and

∂ r2(t, t
′,X)

∂ θY

= [t, (α1t
′ +X ′η1), . . . , (αJt

′ +X ′ηJ),X
′]′.

It therefore follows that, by (4.24), (4.25) and (4.26), asymptotic distributions of the es-
timated potential outcomes are obtained. And following (4.27) and (4.28), asymptotic
distributions of the estimated causal effects are obtained in similar ways.
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4.4 Simulation study

4.4.1 Simulation study set up

We conduct simulation studies to investigate the properties of the proposed MR methods.
We introduce the general setups across each scenario first.

• For each subject i, we assume there are three covariates. The correct covariates
are denoted as Xi,1, Xi,2 and Xi,3 and they are all generated from standard normal
distributions independently.

• The exposure is generated as, P (Ti = 1) = expit(0.3Xi,1 + 0.3Xi,2 + 0.3Xi,3).

• For each subject, three mediators are generated following E(Mi,1) = E(Mi,2) =
E(Mi,3) = 0.5 + 1Ti + 0.3Xi,1 + 0.3Xi,2 + 0.3Xi,3, with V ar(M1) = V ar(M2) =
V ar(M3) = 12.

• With respect to their correlations, we specify ρ1,2 = 0.5 and ρ1,3 = ρ2,3 = 0, so that
only M1 and M2 is correlated and M3 is independent with either of them.

• The outcome Yi = 0.5+ 1Mi,1 +1Mi,2 +1Mi,3 +1Ti +0.3Xi,1 +0.3Xi,2 +0.3Xi,3 + εi,
where εi ∼ N(0, 1).

We specify the correlation structure to mimic the scenario that appears in Chapter 2. Under
these settings, we investigate the grouped indirect effect of M1 and M2, the individual
indirect effect of M3 and the direct effect.

To test the multiple robustness, we need to introduce the misspecified models, which re-
quire specifying the incorrect covariates. The incorrect covariates are denoted as Z1, Z2, Z3.
Following Kang et al.[67], Z1, Z2, Z3 are generated as:

Z1 = exp(X1/2); Z2 = X2/exp(1 +X1) + 10; and Z3 = (X1 ·X3/25 + 0.6)3.

The incorrect covariates are generated such that the distributions of the incorrect covariates
are similar to the true ones. In the following, “correct specification” means using the
correct covariatesX for the model while “incorrect specification” means using the incorrect
counterparts Z.
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4.4.2 Scenarios

Because there are in total three models involved (MP , MM and MY ) in each of the pro-
posed MR estimators, we design 23 = 8 scenarios to test the performance of the proposed
method under each combination of model specifications. The notation “&” denotes correct
model specification among different models. For example, “MP&MM” denotes the sce-
nario that the propensity and the mediator model are correctly specified while the response
model is not. The term “None” denotes none of the three models is correctly specified.

For each scenario, both of the two proposed MR estimation methods are examined. In
order to better examine the consistency property of either method, we design the study to
investigate the behaviour of each method when the sample size increases. We specify two
sample sizes: n = 100 reflects a moderate sample size while n = 1000 reflects a large one.

Performance measurements include bias and the 95% confidence interval coverage rates.
Additionally, for each simulation study, we calculate the empirical standard error (“ESE”,
the square root of the empirical variance of the estimated causal quantities across each
replication) and the average estimated standard error (“ASE”, the sample average of the
estimated standard error for each simulated sample). The standard deviations are cal-
culated using methods presented in sections 3.1.5 and 3.2.4. For each study, m = 1000
Monte-Carlo replications are conducted.

4.4.3 Simulation study results and discussions

Table (4.1) and (4.2) present the simulation results of the WR approach under n = 100 and
n = 1000 settings respectively while Table (4.3) and (4.4) present the simulation results of
the AIPW approach under n = 100 and n = 1000 settings respectively.

In terms of the point estimates, we see that, for both methods, when all of the three
models are correctly specified or at least two among the three models are correctly specified,
we can get small biases for the estimations of the causal effects of interest. The biases reduce
as the sample size increases. However, if only one of the three models is correctly specified
or none of the three models is correctly specified, the biases tend to be much larger and
they do not reduce as the sample size grows larger.

In terms of the variance estimates and the 95% CI coverage rates, for both methods
and across different sample sizes, when all of the three models are correctly specified, the
average estimated SDs are close to the ESEs and the 95% CI coverage rates are close to 0.95.
When two among the three models are correctly specified, across different sample sizes,
the SD estimations are slightly worse than when all of the models are correctly specified.
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Similarly, the 95% CI coverage rates are slightly further from 0.95 compared with the
results obtained under the scenarios that all models are correctly specified. On the other
hand, if only one or none of the three models is correctly specified, the average estimated
SDs are much different from their empirical counterparts and the 95% CI coverage rates
deviate much from the true value of 0.95, with the worst results obtained when none of
the three models is correctly specified. In addition, such differences are not mitigated as
the sample size grows, on the contrary, they are enlarged when the sample size gets larger.

Both the WR and the AIPW methods achieve multiple robustness such that when two
or more models among the three are correctly specified, the biases tend to become smaller
with the increasing sample sizes. Additionally, the 95% CI coverage rates are close to 0.95
if two or more models are correctly specified compared with other cases. If we take a closer
look at the two methods, we do not find significant differences between them. In terms of
the bias, the estimated SD and the 95% CI coverage rate, both methods provide results in
very comparable scales.
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model causal effect estimate bias ESE ASE 95% CI coverage

MP&MM&MY

Grouped IE 1.995 -0.005 0.410 0.395 0.941
Individual IE 0.991 -0.009 0.257 0.233 0.905
DE 1.008 0.008 0.311 0.373 0.972

MP&MM

Grouped IE 2.069 0.069 0.420 0.415 0.952
Individual IE 1.032 0.032 0.264 0.249 0.927
DE 0.853 -0.147 0.318 0.423 0.982

MM&MY

Grouped IE 1.993 -0.007 0.410 0.412 0.952
Individual IE 0.991 -0.009 0.259 0.242 0.912
DE 1.009 0.009 0.310 0.383 0.975

MP&MY

Grouped IE 2.033 0.033 0.423 0.502 0.972
Individual IE 1.011 0.011 0.261 0.291 0.953
DE 1.006 0.006 0.310 0.375 0.975

MP

Grouped IE 2.172 0.172 0.437 0.527 0.973
Individual IE 1.117 0.117 0.276 0.312 0.951
DE 0.782 -0.218 0.315 0.400 0.951

MM

Grouped IE 2.066 0.066 0.419 0.430 0.958
Individual IE 1.031 0.031 0.266 0.258 0.926
DE 0.938 -0.062 0.321 0.404 0.981

MY

Grouped IE 2.270 0.270 0.442 0.436 0.922
Individual IE 1.130 0.130 0.276 0.258 0.919
DE 1.007 0.007 0.304 0.375 0.971

None
Grouped IE 2.425 0.425 0.461 0.449 0.855
Individual IE 1.247 0.247 0.294 0.271 0.868
DE 0.863 -0.137 0.313 0.373 0.954

Table 4.1: Performance of the WR approach under sample size n = 100
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model causal effect estimate bias ESE ASE 95% CI coverage

MP&MM&MY

Grouped IE 2.008 0.008 0.122 0.124 0.955
Individual IE 1.003 0.003 0.083 0.082 0.947
DE 0.999 -0.001 0.095 0.096 0.949

MP&MM

Grouped IE 2.086 0.086 0.125 0.129 0.946
Individual IE 1.041 0.041 0.086 0.086 0.936
DE 0.945 -0.055 0.098 0.110 0.957

MM&MY

Grouped IE 2.009 0.009 0.124 0.127 0.956
Individual IE 1.002 0.002 0.083 0.084 0.951
DE 0.999 -0.001 0.094 0.098 0.954

MP&MY

Grouped IE 2.022 0.022 0.127 0.158 0.982
Individual IE 1.010 0.010 0.084 0.099 0.979
DE 0.998 -0.002 0.095 0.097 0.951

MP

Grouped IE 2.175 0.175 0.134 0.168 0.881
Individual IE 1.122 0.122 0.088 0.106 0.853
DE 0.740 -0.260 0.098 0.109 0.310

MM

Grouped IE 2.086 0.086 0.129 0.132 0.909
Individual IE 1.040 0.040 0.086 0.088 0.939
DE 0.918 -0.082 0.099 0.104 0.886

MY

Grouped IE 2.308 0.308 0.139 0.137 0.410
Individual IE 1.152 0.152 0.091 0.092 0.625
DE 0.998 -0.002 0.093 0.097 0.955

None
Grouped IE 2.480 0.480 0.147 0.143 0.072
Individual IE 1.279 0.279 0.096 0.095 0.154
DE 0.845 -0.155 0.097 0.100 0.664

Table 4.2: Performance of the WR approach under sample size n = 1000

4.5 Data application

The data application in this chapter continues the study from Chapter 3. In Chapter
3, applying the proposed method, we identify 15 DNA methylation loci that mediate
the process between childhood trauma and long-term psychiatric disorder. Based on the
correlation selection results, 13 of the 15 identified loci are grouped together, while 2 loci
are considered separately. In this section, we estimate the causal effects of interest using
the multiple robust methods proposed in this chapter.

However, there is an issue when applying the proposed multiply robust estimation
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model causal effect estimate bias ESE ASE 95% CI coverage

MP&MM&MY

Grouped IE 1.996 -0.004 0.431 0.426 0.947
Individual IE 0.998 -0.002 0.26 0.264 0.943
DE 1.008 0.008 0.473 0.380 0.933

MP&MM

Grouped IE 2.006 0.006 0.436 0.456 0.954
Individual IE 1.003 0.003 0.264 0.287 0.959
DE 1.014 0.014 0.575 0.416 0.943

MM&MY

Grouped IE 1.993 -0.007 0.431 0.424 0.944
Individual IE 0.997 -0.003 0.261 0.265 0.940
DE 1.011 0.011 0.5 0.384 0.933

MP&MY

Grouped IE 2.061 0.061 0.465 0.485 0.953
Individual IE 1.028 0.028 0.287 0.299 0.962
DE 0.993 -0.007 0.427 0.431 0.953

MP

Grouped IE 2.203 0.203 0.482 0.504 0.941
Individual IE 1.136 0.136 0.306 0.314 0.941
DE 0.775 -0.225 0.450 0.453 0.920

MM

Grouped IE 2.004 0.004 0.439 0.463 0.951
Individual IE 1.002 0.002 0.264 0.294 0.961
DE 1.098 0.098 0.637 0.427 0.934

MY

Grouped IE 2.274 0.274 0.466 0.460 0.912
Individual IE 1.134 0.134 0.281 0.282 0.921
DE 0.998 -0.002 0.380 0.359 0.940

None
Grouped IE 2.430 0.43 0.488 0.489 0.861
Individual IE 1.251 0.251 0.300 0.305 0.887
DE 0.862 -0.138 0.406 0.379 0.918

Table 4.3: Performance of the AIPW approach under sample size n = 100

methods to the DNA methylation data. Currently, the proposed method requires the ex-
posure variable to be binary, but in the data, the exposure (childhood trauma) is recorded
as the total score of the Childhood Trauma Questionnaire (CTQ) and is measured on a
continuous scale. To tackle the issue, we use the Bernstein and Fink [5] cut-off points to
categorize continuous exposures into binary ones. For the Childhood Trauma Question-
naire, Bernstein and Fink’s cut-off points classify “Low to Moderate” severity of childhood
trauma as having: physical abuse ≥ 8; sexual abuse ≥ 6; emotional abuse ≥ 9; physical
neglect ≥ 8; emotional neglect ≥ 10). Thus, the presence of maltreatment was considered
if a participant had a CTQ score equal to or higher than the low to moderate cut-off point

133



model causal effect estimate bias ESE ASE 95% CI coverage

MP&MM&MY

Grouped IE 2.009 0.009 0.125 0.125 0.955
Individual IE 1.002 0.002 0.077 0.078 0.955
DE 0.994 -0.006 0.126 0.113 0.946

MP&MM

Grouped IE 2.012 0.012 0.126 0.135 0.960
Individual IE 1.003 0.003 0.078 0.085 0.957
DE 1.000 0.000 0.134 0.124 0.944

MM&MY

Grouped IE 2.009 0.009 0.124 0.123 0.950
Individual IE 1.001 0.001 0.077 0.077 0.952
DE 0.994 -0.006 0.124 0.111 0.936

MP&MY

Grouped IE 2.035 0.035 0.136 0.145 0.962
Individual IE 1.014 0.014 0.083 0.090 0.964
DE 0.993 -0.007 0.148 0.152 0.965

MP

Grouped IE 2.195 0.195 0.145 0.155 0.773
Individual IE 1.133 0.133 0.089 0.095 0.736
DE 0.709 -0.291 0.203 0.200 0.539

MM

Grouped IE 2.011 0.011 0.127 0.137 0.973
Individual IE 1.002 0.002 0.078 0.087 0.969
DE 1.099 0.099 0.138 0.126 0.897

MY

Grouped IE 2.300 0.300 0.139 0.136 0.437
Individual IE 1.146 0.146 0.083 0.084 0.603
DE 0.994 -0.006 0.121 0.117 0.949

None
Grouped IE 2.470 0.470 0.147 0.147 0.096
Individual IE 1.273 0.273 0.090 0.092 0.144
DE 0.831 -0.169 0.140 0.139 0.705

Table 4.4: Performance of the AIPW approach under sample size n = 1000
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for each maltreatment type [5]. However, then there comes another issue, in the dataset,
there is only a total score for each subject and there is no information on detailed scores
within each category of the questionnaire. Therefore, we sum the threshold values and
regard each individual with a total higher than 41, which is the sum of the cut-off value
for each category, as experienced childhood trauma. We acknowledge that this is a ma-
jor limitation and further study can be conducted when data including detailed scores is
available.

For both MR estimation methods, we need to calculate the weights ω̂M and ω̂Y . In this
data application, we use the stabilized weights (4.12) for both methods. To avoid extreme
weights, we truncate the weights at the value 3 (i.e. for either ω̂M > 3 or ω̂Y > 3, we let
ω̂M = 3 or ω̂Y = 3). Figure 4.1 presents boxplots illustrating the distribution of calculated
weights before and after truncation.

The results of applying the proposed MR methods to the DNA methylation dataset
are presented in Table 4.5. We can see that both methods provide similar estimates on

method causal effects value 95% CI

AIPW

Grouped IE of cg18634806,
cg25626453, cg00096307, cg06992213,
cg25448067, cg26657045, cg03643137,
cg01696984, cg05292310, cg06001786,
cg09211256, cg05051734, cg16180796

-242.776 (-379.519, -106.033)

Individual IE of cg05608730 -72.994 (-126.042, -19.946)
Individual IE of cg00578039 55.814 (-21.822, 133.45)
DE -90.461 (-192.781, 11.859)

WR

Grouped IE of cg18634806,
cg25626453, cg00096307, cg06992213,
cg25448067, cg26657045, cg03643137,
cg01696984, cg05292310, cg06001786,
cg09211256, cg05051734, cg16180796

-289.166 (-480.655, -97.678)

Individual IE of cg05608730 -100.808 (-179.235, -22.38)
Individual IE of cg00578039 66.375 (-2.86, 135.61)
DE -136.295 (-263.222, 90.632)

Table 4.5: Estimated grouped and individual indirect effects of DNA methylation loci using
both the AIPW and WR approaches

the effects of interest and they are also similar to the ones obtained from the conven-
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ωM before truncation ωM after truncation

ωY before truncation ωY after truncation

Figure 4.1: Calculated Weights applying the proposed MR methods to the DNA methyla-
tion dataset
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tional method (without multiple robustness properties) that are presented and discussed
in Chapter 2.

We discuss the results under the 95% significance level. The results from both methods
show that, the grouped gene loci of cg18634806, cg25626453, cg00096307, cg06992213,
cg25448067, cg26657045, cg03643137, cg01696984, cg05292310, cg06001786, cg09211256,
cg05051734, cg16180796 impose significant indirect effects on the pathway from childhood
trauma to long term psychiatric disorder. The single locus cg05608730 shows a significant
indirect effect mediating the process also, but cg00578039 does not. Childhood trauma
itself shows a negative direct effect leading to long-term psychiatric disorders, though the
effect is insignificant from both methods.

Additionally, Table 3.24 in Chapter 3 presents the analysis results for the same data
without using the MR estimation methods. The results obtained from either the MR or
the non-MR methods are comparable: both the direction and the level of significance for
each estimated causal effect remain the same, with only the magnitude slightly changed.

4.6 Discussion

In this chapter, we address the common challenge of model misspecification in causal
inference and causal mediation analysis. Aiming to enhance robustness in estimations,
we propose two approaches for constructing multiply robust estimators. The first way of
constructing such a multiply robust estimator is rooted in the idea of weighted regression
and the second one is based on the augmented inverse propensity weighting technique. Both
of these estimators exhibit the desirable property of multiple robustness, which means that
when at least two out of the three required models (the treatment model, the mediator
model, and the response model) are correctly specified, the estimations remain consistent.

However, it’s important to note that the weighted regression technique has stricter as-
sumptions regarding model specifications. Specifically, it assumes linearity for both the
mediator and the response models, although these linear assumptions can be relaxed with
appropriate adjustments. In the simple causal inference problem without mediators in-
volved, the weighted regression technique can be extended to accommodate generalized
linear models for the outcome while still demonstrating a double robustness property. Fu-
ture research can focus on extending this technique to handle non-linear settings in causal
mediation analysis. Despite its stricter assumptions, the weighted regression approach
offers the advantage of being straightforward to implement. It involves fitting two regres-
sions for both the mediator and the response model with appropriate weights, which can be
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easily accomplished using existing software packages. In contrast, the multiply robust es-
timator based on the augmented inverse propensity weighting method requires calculating
more complex estimation formulas and involving the fitting of multiple models. However,
it provides the advantage of broader applicability.

In our real data application study, we apply the proposed method to a psychiatric study
dataset, investigating the mediation effects of multiple DNA methylation loci, considering
them both as grouped and individual factors. To accommodate the model requirements, we
transform the treatment variable from its original continuous scale to a binary scale. It’s
worth noting that the proposed method can also handle continuous treatments by replacing
the propensity score with a generalized propensity score that still captures the distribution
of treatment given baseline covariates. The multiple robustness property remains intact
in this extended framework. For further details on this extension, readers may refer to
Hirano et al. [45] for details.

We also acknowledge that there are major limitations associated with the proposed
multiply robust estimation methods. In addition to the aforementioned linear assumptions
imposed by the weighted regression-based estimator, similar to the method proposed in
Chapter 2, both estimators require the assumption that the correlation structure among
the mediators remains constant across different treatment assignments. We are aware that
in real-world scenarios, this assumption may not always hold, and correlation structures
can vary. Future research endeavors may focus on addressing this limitation by develop-
ing methods capable of accommodating varying correlation structures among mediators,
thereby enhancing the applicability and robustness of our approach.

138



Chapter 5

Discussion and future works

This thesis presents a thorough investigation into the domain of causal mediation anal-
ysis in the presence of multiple correlated mediators. Chapter 2 serves as a foundation
that conceptualizes the “uncausally related” relationship among the multiple mediators.
Based on that, we introduce a general framework for conducting causal mediation analysis
within these contexts. Particularly, in this chapter, we introduce a copula-based method
that conveniently and effectively models the joint conditional distribution of multiple un-
causally related mediators, which constitutes a pivotal component forming the analysis
process. Moving forward, Chapter 3 is inspired by real-life problems where mediators
are not typically given explicitly but need to be selected from a large set of candidate
variables. Additionally, complex dependency structures among the mediators could pose
challenges to estimations of causal effects. We therefore propose a novel method that both
selects true mediators from the possibly high-dimensional set of candidates and reduces
dependency structures among mediators. These selection processes enhance the precision
and efficiency of subsequent investigation of causal effects to a great extent. Chapter 5,
on the other hand, emphasizes more on the model misspecification issues that arise in
the causal effects estimation process. We introduce two ways of constructing multiply
robust estimators within the context of causal mediation analysis that are grounded in
the concepts of weighted regression and augmented inverse propensity weighting approach
respectively. The three chapters investigate the topic of causal mediation analysis with
multiple correlated mediators through different yet interconnected aspects.

Although this thesis offers comprehensive insights into the subject, there remain unre-
solved challenges that future researchers may address. The issue of missing data presents a
prominent challenge. Within the framework of causal mediation analysis involving multi-
ple potentially related mediators, missingness on some of the mediators may cause trouble
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since it may lead to biased estimations of both the direct effects and the indirect effects
if not handled appropriately. Depending on the different missing mechanisms, researchers
may address the issue from different aspects. One way to tackle the issue is by introducing
another weight that accounts for the missingness, which leads to a weight-based approach.
Alternatively, the imputation-based approach imputes the missing mediator values using
available information from either other mediators or baseline covariates. However, it’s
noteworthy that for either approach, tackling the dependencies among the mediators may
impose challenges. There are also occasions when missingness may appear in the covariates
or outcomes, prompting the exploration of relevant solutions in these domains. As such,
comprehensive studies into solutions for missing data problems within the context of causal
mediation analysis with multiple potentially related mediators remain a valuable avenue
for future research.

Another topic that may be of great interest to researchers is extending the joint mod-
eling framework of mediators to the outcomes. We may consider the scenario where the
outcome is multivariate and correlated. Compared with the univariate outcome scenario,
one of the difficulties of performing mediation analysis when multivariate outcomes exist is
that, it is hard to define and capture the causal effects under this setting. In the univariate
case, causal effects can be defined by comparing differences in the potential outcomes under
different treatment or mediator values. However, when dealing with multivariate outcomes,
though a simple idea could be to consider causal effects for each outcome element sepa-
rately, doing so may lead to information loss on retrieving the effects of treatment towards
correlations of the multiple outcomes. Therefore, for the synthesis of information from
mediation analyses on each outcome, some form of adjustment of the correlations among
the multivariate outcomes is necessary, especially when conducting statistical inferences.
The joint modeling framework discussed in this thesis may be extended to accommodate
such settings.

Another possible approach to address the issue of multiple uncausally related mediators
is utilizing the mixture effects models. Such an approach draws inspiration from the
inherent logic of the formation of these uncausally related mediators. One of the most
common reasons for the existence of uncausally related mediators is that there might be
some unknown factors that are affecting all or some of the mediators simultaneously. The
random effects can be employed to capture such unobservable factors. By modeling each
mediator as a function of the exposure, the baseline covariates, and the random effects, we
emulate the natural process underlying the formation of such uncausally related mediators,
allowing us to capture their inherent correlations. However, a significant challenge in
applying this method is defining causal effects when random effects are involved. In the
context of longitudinal data modeling with mixture effect models, causal effects can be
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defined from both marginal and conditional effects perspectives and similar approaches
can be applied here.

Regarding multiply robust estimation, the method proposed in this thesis requires two
out of the three models to be correctly specified for consistent estimation of the desired
causal effects. However, there is room to further enhance the flexibility of multiply robust
estimations. Future research may aim for methods that achieve consistent estimation with
only one correctly specified model.

141



References

[1] Jeffrey M Albert and Suchitra Nelson. Generalized causal mediation analysis. Bio-
metrics, 67(3):1028–1038, 2011.

[2] Lauren Y Atlas, Martin A Lindquist, Niall Bolger, and Tor DWager. Brain mediators
of the effects of noxious heat on pain. PAIN®, 155(8):1632–1648, 2014.

[3] Heejung Bang and James M Robins. Doubly robust estimation in missing data and
causal inference models. Biometrics, 61(4):962–973, 2005.

[4] Reuben M Baron and David A Kenny. The moderator–mediator variable distinction
in social psychological research: Conceptual, strategic, and statistical considerations.
Journal of Personality and Social Psychology, 51(6):1173–1182, 1986.

[5] David P Bernstein, Laura Fink, Leonard Handelsman, and Jeffrey Foote. Childhood
trauma questionnaire. Assessment of family violence: A handbook for researchers
and practitioners., 1998.

[6] David P Bernstein, Judith A Stein, Michael D Newcomb, Edward Walker, David
Pogge, Taruna Ahluvalia, John Stokes, Leonard Handelsman, Martha Medrano,
David Desmond, et al. Development and validation of a brief screening version
of the childhood trauma questionnaire. Child Abuse & Neglect, 27(2):169–190, 2003.

[7] Simina M Boca, Rashmi Sinha, Amanda J Cross, Steven C Moore, and Joshua N
Sampson. Testing multiple biological mediators simultaneously. Bioinformatics,
30(2):214–220, 2014.

[8] Kenneth A Bollen. Structural equations with latent variables, volume 210. John
Wiley & Sons, 1989.

142



[9] Simon J Bond, Vernon T Farewell, Catherine T Schentag, and Dafna D Gladman.
Predictors for radiological damage in psoriatic arthritis: results from a single centre.
Annals of the Rheumatic Diseases, 66(3):370–376, 2007.

[10] Xizhen Cai, Yeying Zhu, Yuan Huang, and Debashis Ghosh. High-dimensional causal
mediation analysis based on partial linear structural equation models. Computational
Statistics & Data Analysis, 174:107501, 2022.

[11] George Casella and Roger L Berger. Statistical inference. Cengage Learning, 2021.

[12] Paul J Catalano and Louise M Ryan. Bivariate latent variable models for clustered
discrete and continuous outcomes. Journal of the American Statistical Association,
87(419):651–658, 1992.

[13] Viviana Celli. Causal mediation analysis in economics: Objectives, assumptions,
models. Journal of Economic Surveys, 36(1):214–334, 2022.

[14] Jun Chen, Andrew N Evans, Ying Liu, Masaru Honda, Juan M Saavedra, and Greti
Aguilera. Maternal deprivation in rats is associated with corticotrophin-releasing
hormone (crh) promoter hypomethylation and enhances crh transcriptional responses
to stress in adulthood. Journal of Neuroendocrinology, 24(7):1055–1064, 2012.

[15] Oliver Y Chén, Ciprian Crainiceanu, Elizabeth L Ogburn, Brian S Caffo, Tor D
Wager, and Martin A Lindquist. High-dimensional multivariate mediation with ap-
plication to neuroimaging data. Biostatistics, 19(2):121–136, 2018.

[16] Rhian M Daniel, Bianca L De Stavola, SN Cousens, and Stijn Vansteelandt. Causal
mediation analysis with multiple mediators. Biometrics, 71(1):1–14, 2015.

[17] Alex R de Leon and Bohsiu Wu. Copula-based regression models for a bivariate
mixed discrete and continuous outcome. Statistics in Medicine, 30(2):175–185, 2011.

[18] Louis De Raeymaeker. The metaphysical problem of causality. Philosophy Today,
1(4):219–229, 1957.

[19] Bianca L De Stavola, Rhian M Daniel, George B Ploubidis, and Nadia Micali. Medi-
ation analysis with intermediate confounding: structural equation modeling viewed
through the causal inference lens. American Journal of Epidemiology, 181(1):64–80,
2015.

143



[20] Andriy Derkach, Ruth M Pfeiffer, Ting-Huei Chen, and Joshua N Sampson. High
dimensional mediation analysis with latent variables. Biometrics, 75(3):745–756,
2019.

[21] Fabrizio Durante, Juan Fernandez-Sanchez, and Carlo Sempi. A topological proof of
sklar’s theorem. Applied Mathematics Letters, 26(9):945–948, 2013.

[22] Gabriel Escarela and Jacques F Carriere. Fitting competing risks with an assumed
copula. Statistical Methods in Medical Research, 12(4):333–349, 2003.

[23] Fredrik Falkenström, Sungho Park, and Cameron N McIntosh. Using copulas to
enable causal inference from nonexperimental data: Tutorial and simulation studies.
Psychological Methods, 28(2):301, 2023.

[24] Jianqing Fan and Jinchi Lv. Sure independence screening for ultrahigh dimensional
feature space. Journal of the Royal Statistical Society: Series B (Statistical Method-
ology), 70(5):849–911, 2008.

[25] Zicheng Fang. One standard error cross validation criterion for tuning a classification
prediction model. Master’s thesis, 2023.

[26] Marco Fornili, Vittorio Perduca, Agnès Fournier, Allan Jérolon, Marie Christine
Boutron-Ruault, Gertraud Maskarinec, Gianluca Severi, and Laura Baglietto. As-
sociation between menopausal hormone therapy, mammographic density and breast
cancer risk: results from the e3n cohort study. Breast Cancer Research, 23(1):1–10,
2021.

[27] Jerome Friedman, Trevor Hastie, and Rob Tibshirani. Regularization paths for gen-
eralized linear models via coordinate descent. Journal of statistical software, 33(1):1,
2010.
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[97] A Sklar RF. Fonctions de répartition à n dimensions et leurs marges. Publ. Inst.
Statist. Univ. Paris, 8:229–231, 1959.

[98] James M Robins and Sander Greenland. Identifiability and exchangeability for direct
and indirect effects. Epidemiology, 3(2):143–155, 1992.

[99] James M Robins, Miguel Angel Hernan, and Babette Brumback. Marginal structural
models and causal inference in epidemiology. Epidemiology, 11(5):550–560, 2000.

[100] James M Robins, Andrea Rotnitzky, and Lue Ping Zhao. Estimation of regression
coefficients when some regressors are not always observed. Journal of the American
statistical Association, 89(427):846–866, 1994.

150



[101] Tracy Robson, MC Joiner, GD Wilson, William McCullough, ME Price, Ian Logan,
H Jones, SR McKeown, and DG Hirst. A novel human stress response-related gene
with a potential role in induced radioresistance. Radiation Research, 152(5):451–461,
1999.

[102] Paul R Rosenbaum and Donald B Rubin. The central role of the propensity score in
observational studies for causal effects. Biometrika, 70(1):41–55, 1983.

[103] Andrea Rotnitzky, James M Robins, and Daniel O Scharfstein. Semiparametric
regression for repeated outcomes with nonignorable nonresponse. Journal of the
American Statistical Association, 93(444):1321–1339, 1998.

[104] Donald B Rubin. Matching to remove bias in observational studies. Biometrics,
29(1):159–183, 1973.

[105] Donald B Rubin. The use of matched sampling and regression adjustment to remove
bias in observational studies. Biometrics, 29(1):185–203, 1973.

[106] Donald B Rubin. Estimating causal effects of treatments in randomized and nonran-
domized studies. Journal of Educational Psychology, 66(5):688–701, 1974.

[107] Donald B Rubin. Inference and missing data. Biometrika, 63(3):581–592, 1976.

[108] Donald B Rubin. Assignment to treatment group on the basis of a covariate. Journal
of Educational Statistics, 2(1):1–26, 1977.

[109] Donald B Rubin. Bayesian inference for causal effects: The role of randomization.
The Annals of Statistics, 6(1):34–58, 1978.

[110] Donald B Rubin. Randomization analysis of experimental data: The fisher random-
ization test comment. Journal of the American Statistical Association, 75(371):591–
593, 1980.

[111] Donald B Rubin. Using propensity scores to help design observational studies: appli-
cation to the tobacco litigation. Health Services and Outcomes Research Methodology,
2(3):169–188, 2001.

[112] Donald B Rubin. Causal inference using potential outcomes: Design, modeling,
decisions. Journal of the American Statistical Association, 100(469):322–331, 2005.

151



[113] Joseph L Schafer and Joseph Kang. Average causal effects from nonrandomized
studies: a practical guide and simulated example. Psychological Methods, 13(4):279–
313, 2008.

[114] Daniel O Scharfstein, Andrea Rotnitzky, and James M Robins. Adjusting for nonig-
norable drop-out using semiparametric nonresponse models. Journal of the American
Statistical Association, 94(448):1096–1120, 1999.

[115] Jasjeet S Sekhon. The neyman-rubin model of causal inference and estimation via
matching methods. The Oxford Handbook of Political Methodology, 2:1–32, 2008.

[116] Joanna H Shih and Thomas A Louis. Inferences on the association parameter in
copula models for bivariate survival data. Biometrics, 51(4):1384–1399, 1995.

[117] Ali Shojaie and George Michailidis. Penalized likelihood methods for estimation of
sparse high-dimensional directed acyclic graphs. Biometrika, 97(3):519–538, 2010.

[118] Noah Simon, Jerome Friedman, Trevor Hastie, and Rob Tibshirani. Regularization
paths for cox’s proportional hazards model via coordinate descent. Journal of sta-
tistical software, 39(5):1, 2011.

[119] M Sklar. Fonctions de repartition an dimensions et leurs marges. Publ. inst. statist.
univ. Paris, 8:229–231, 1959.

[120] Peter X-K Song, Mingyao Li, and Ying Yuan. Joint regression analysis of correlated
data using gaussian copulas. Biometrics, 65(1):60–68, 2009.

[121] Yanyi Song, Xiang Zhou, Min Zhang, Wei Zhao, Yongmei Liu, Sharon LR Kardia,
Ana V Diez Roux, Belinda L Needham, Jennifer A Smith, and Bhramar Mukherjee.
Bayesian shrinkage estimation of high dimensional causal mediation effects in omics
studies. Biometrics, 76(3):700–710, 2020.

[122] Aris Spanos. Probability Theory and Statistical Inference: Empirical Modeling with
Observational Data. Cambridge University Press, 2019.

[123] B Stamm. Measurement of stress, trauma, and adaptation. The Sidran Press, 1996.

[124] Johan Steen, Tom Loeys, Beatrijs Moerkerke, and Stijn Vansteelandt. Flexible
mediation analysis with multiple mediators. American Journal of Epidemiology,
186(2):184–193, 2017.

152



[125] Johan Steen, Tom Loeys, Beatrijs Moerkerke, and Stijn Vansteelandt. Medflex: an
r package for flexible mediation analysis using natural effect models. Journal of
Statistical Software, 76(11), 2017.

[126] Elizabeth A Stuart. Matching methods for causal inference: A review and a look
forward. Statistical Science: a Review Journal of the Institute of Mathematical Statis-
tics, 25(1):1, 2010.
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Appendix A

The regularity conditions of MLE

Here we provide the regularity conditions of MLE [11].

1. The parameter space Θ is an open set on R.

2. The probability density function fθ(x) has common support set for all θ ∈ Θ.

3. The log-likelihood function l(θ) is continuous and three-times differentiable with re-
spect to any θ ∈ Θ.

4. Interchange of differentiation and integration of fθ(x) is valid for first and second
derivatives with respect to parameter θ, i.e.

∂k

∂θk

∫
fθ(x)dx =

∫
∂k

∂θk
fθ(x)dx

for k = 1, 2.

5. The third derivative of the log-likelihood function must be bounded. i.e. for every
θ0 ∈ Θ, there exists a positive C and a function M(x) (both C and M(x) depend on
θ + 0), such that for every θ ∈ (θ0 − C, θ0 + C), we have:

| ∂
3

∂θ3
log(fθ(x))| < M(x)

for every x in the support set and

E(M(x)) < 0.
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6. The second moment of the score function is finite, i.e.

E[(
∂

∂θ
log(fθ(x)))

2] < ∞

7. {fθ(x) : θ ∈ Θ} is identifiable.
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Appendix B

Proofs of Theorems in Chapter 2

B.1 Proof of Theorem 1

We keep the notations. With respect to the mediator model, from Lemma 1,

θ̂M
p→ θM as n → ∞.

Now, with the response model, similarly, from Lemma 2, we have,

θ̂Y
p→ θY as n → ∞.

Then, by the continuous mapping theorem [11], provided that the model is correctly
specified, we have,

F̂ (m|X, T ; θ̂M)
p→ F (m|X, T ),

and

µ̂Y (X, T,M ; θ̂Y )
p→ µY (X, T,M).

Therefore, the expected potential outcome of the form E{Y (t0,M (t))}, which is im-
puted as∫

X

{∫
. . .
m

∫
µ̂Y (x, t0,m; θ̂Y ) d F̂ (m|x, t; θ̂M)

}
dFX(x),
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converges in probability to the true values. Similarly, the estimated causal effects of interest
converge in probability to the true values.

If the integration step is done by Monte Carlo, by the Law of Large Numbers, the con-
clusion still holds. If the integration is done via numerical integration methods, consistency
is provided by the respective properties.

B.2 Proof of Theorem 2

We first factorize the joint conditional likelihood of mediators and outcomes as follows:

L(Y ,M |T ,X;θMY ) = L(Y |M ,T ,X;θY )× L(M |T ,X;θM).

Taking log on both sides yield the log-likelihood such that,

l(Y ,M |T ,X;θMY ) = l(Y |M ,T ,X;θY ) + l(M |T ,X;θM).

Therefore, the score vectors for estimating θM and θY are,

S(θY ;Y ,M |T ,X) =
∂l(Y ,M |T ,X;θMY )

∂θY

=
∂l(Y |M ,T ,X;θY )

∂θY

;

and

S(θM ;Y ,M |T ,X) =
∂l(Y ,M |T ,X;θMY )

∂θM

=
∂l(M |T ,X;θM)

∂θM

respectively. From here, it’s clear that the off-diagonal element of the block information
matrix,

IθY ,θM
=

∂2l(Y ,M |T ,X;θMY )

∂θY ∂θM

= 0. (B.1)

So, we have asymptotically cor(θ̂M , θ̂Y |X,T ,Y ) = 0. The key point of the proof is that
we are assuming the response model and the mediator model does not share parameters.
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Appendix C

Derivations of closed forms in
Chapter 2

C.1 The mediators and outcome are all continuous

with various models

When mediator-treatment interactions are included in the response model and the model
is

µY (X, T,M ) = γ0 +

p∑
l=1

γkXk + τT +
J∑

j=1

βjMj +
J∑

j=1

τjT Mj,

where the parameter τj reflects the interactions among mediators.
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Under this scenario, we have:

E{Y (t0,M1(t1), . . . ,MJ(tJ))}

=

∫
X

{∫
. . .
m

∫
µY (x, t0,m) dJF (m|x, t)

}
d FX(x)

=

∫
X

{∫
. . .
m

∫
(γ0 +

p∑
l=1

γkxk + τt0 +
J∑

j=1

βjmj +
J∑

j=1

τjt0mj) d
JF (m|x, t)

}
d FX(x)

=EX

(
γ0 +

p∑
l=1

γkXk + τt0 +
J∑

j=1

βjE(Mj|tj,X) +
J∑

j=1

τjt0E(Mj|tj,X)

)

=EX

(
γ0 + τt0 +

J∑
j=1

βj

(
λjtj + αj0 +

p∑
l=1

αjlXl

)
+

J∑
j=1

τjt0

(
λjtj + αj0 +

p∑
l=1

αjlXl

))
.

The statistics of interest are then calculated according to the definitions.

When mediator-mediator interactions are included in the response model, the model
changes to,

µY (X, T,M) = γ0 +

p∑
l=1

γkXk + τT +
J∑

j=1

βjMj +
∑

m=1,...,J
n=1,...,J
m≤n

ηm,n ·Mm ·Mn,

where the parameters η reflect the interactions among mediators. Under this scenario, we
have,

E{Y (t0,M1(t1), . . . ,MJ(tJ))}

=EX

γ0 +

p∑
l=1

γkXk + τt0 +
J∑

j=1

βjE (Mj|tj,X) +
∑

m=1,...,J
n=1,...,J
m≤n

ηm,nE (MmMn|tj,X)


=EX

{
γ0 + τt0 +

J∑
j=1

βj

(
αj0 +

p∑
l=1

αjlXil + λjtj

)

+
∑

m=1,...,J
n=1,...,J
m≤n

ηm,n

{(
αm0 +

p∑
l=1

αmlXml + λmtm

)(
αn0 +

p∑
l=1

αnlXnl + λntn

)
+ ρm,nσ

2
mσ

2
n

}}
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With respect to the statistic of interest, following the definitions respectively, we derive
the individual indirect effect for the kth mediator as:

IEk = EX

{
βkλk +

∑
n=1,...,J

n̸=k

ηk,n

{
λk

(
λntn + αn0 +

p∑
l=1

αnlxnl

)}}
.

C.2 One mediator is log-normally distributed

Here we provide detailed derivations of the variance of the population-level estimator. We
first notice that the population level estimator is an average over each individual estimator,

i.e. ̂̄IE1 = 1
n

∑n
i=1 ÎEi1, therefore V ar{̂̄IE1} = V ar{ 1

n

∑n
i=1 ÎEi1} = 1

n2V ar{
∑n

i=1 ÎEi1}.
Applying the law of total variance, we decompose the variance of the population level
estimator as

V ar(̂̄IE1) = E{V ar(̂̄IE1|X)}+ V ar{E(̂̄IE1|X)}. (C.1)

Notice that here the covariate matrix X = {X1, . . . ,Xn}, which represent all the covari-

ates used from the data. For V ar{̂̄IE1|X},

V ar{̂̄IE1|X} =
1

n2
V ar{(

n∑
i=1

ÎEi1)|X}.

Due to the difficulties of calculating the covariance, we may apply the delta-method to
approximate the entire variance of the summation directly, since the inner part (

∑n
i=1 ÎEi1)

is a function of parameters and covariates,

V ar{̂̄IE1|X}

=
1

n2
V ar{(

n∑
i=1

ÎEi1)|X}

=
1

n2
V ar

{
n∑

i=1

ζ̂1exp(α̂
′
1X i + σ̂2

1/2)[exp(λ̂1)− 1)]

∣∣∣∣X
}

=
1

n2
V ar

{
ζ̂1exp(σ̂

2
1/2)[exp(λ̂1)− 1)]

n∑
i=1

exp(α̂′
1X i)

∣∣∣∣X
}
.
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Denote h(θ,X) = ζ1exp(σ
2
1/2)[exp(λ1)−1)]

∑n
i=1 exp(α

′
1X i) representing the items inside

the variance. From the delta-method, we approximately,

V ar{h(θ̂,X)} ≈ ∇h′(θ,X)V ∇h(θ,X),

where

∇h(θ,X) =



∂h(θ,X)
∂λ1

∂h(θ,X)
∂α1

∂h(θ,X)
∂σ1
...

∂h(θ,X)
∂ζ1
...


=



ζ1exp(σ
2
1/2)exp(λ1)

∑n
i=1 exp(α

′
1X i)

ζ1exp(σ
2
1/2)[exp(λ1)− 1]

∑n
i=1 exp(α

′
1X i)X i

ζ1exp(σ
2
1/2)[exp(λ1)− 1]

∑n
i=1 exp(α

′
1X i)σ1

...
exp(σ2

1/2)[exp(λ1)− 1]
∑n

i=1 exp(α
′
1X i)

...


Similarly, by replacing the parameters in the above formula by their estimated values, one
can obtain an estimation of the conditional variance of the estimated statistic.

Furthermore, back to (C.1), with respect to the second part, the conditional expectation

E(̂̄IE1|X) is also a function of the covariates X and the variances are obtained in a
similar manner. From here, we can see that we need information on the distribution of

the covariates X in order to fully obtain V ar(̂̄IE1), though sometimes, it suffices to have
the mean and variance information of the covariates X. One way to get rid of assuming
distributions of X is to use the empirical estimates from the data that are introduced in
the main body of the thesis. Another way is assuming the covariates X to be fixed and

use the conditional variance V ar{̂̄IE1|X} for inference. The variance estimation of IE2

and DE are trivial as they only involve the parameters. Estimation procedures are already
covered in the main body of the thesis.

In the thesis, we also mention using Taylor’s expansion to approximate the expression
of the causal effects of interest, here we show the results:

IEi1

=ζ1[exp(α
′
1X i + σ2

1/2)(exp(λ1)− 1]

≈ζ1[e
α10+σ2

1/2(α′
1X i +

1

2
(X i)

′α1α
′
1X i)(exp(λ1)− 1)]

≈ζ1[e
α10+σ2

1/2α′
1X i(exp(λ1)− 1)],

with the third line representing approximate the results using second-order Taylor’s expan-
sion and the fourth line representing the first-order. The estimation of the other statistics
remains the same. Asymptotic variances can also be approximated via the delta-method
and the law of total variance.
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Appendix D

Additional Real Data Application
Results in Chapter 3

D.1 Real data application results under 38 candidates

Here we provide the real data application results under m2 = 38 candidate settings.

value 95% CI
Grouped IE of cg05781698, cg06992213,
cg25448067, cg15663823, cg05051734,
cg04000159

-4.299 (-12.821,-4.222)

Grouped IE of cg26801646, cg25626453 -3.972 (-9.828,1.885)
Grouped IE of cg24516147, cg10822172,
cg16181903

-5.161 (-11.065,0.742)

Individual IE of cg18634806 -3.477 (-7.955,1.001)
DE 9.312 (-1.197,19.821)

Table D.1: grouped and individual indirect effects of DNA methylation loci under m2 = 38
candidates
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Appendix E

Proofs of Theorems in Chapter 4

E.1 Proof of Theorem 4

We only prove the second part of Theorem 3 as the first part is the property of propensity
score and is proved in Robin et al. [106]. For any t0 ∈ T and {m1, . . . ,mJ} ∈ M, we have
that,

P (M ≤ m|FM (m|T,X), Y (t0,m1, . . . ,mJ))

=E {I(M ≤ m)|FM (m|T,X), Y (t0,m1, . . . ,mJ)}
=E {E {I(M ≤ m)|T,XFM (m|T,X), Y (t0,m1, . . . ,mJ)} |FM (m|T,X), Y (t0,m1, . . . ,mJ)}
=E {E {I(M ≤ m)|T,X} |FM (m|T,X), Y (t0,m1, . . . ,mJ)}
=E {FM (m|T,X)|FM (m|T,X), Y (t0,m1, . . . ,mJ)}
=FM (m|T,X).

On the other hand, we have,

P (M ≤ m|FM (m|T,X))

=E {I(M ≤ m)|FM (m|T,X)}
=E {E {I(M ≤ m)|T,X} |FM (m|T,X), Y (t0,m1, . . . ,mJ)}
=FM (m|T,X).

So, we have,

P (M ≤ m|FM (m|T,X), Y (t0,m1, . . . ,mJ)) = P (M ≤ m|FM (m|T,X)).

Therefore, Y (t0,m1,m2, . . . ,mJ) ⊥ {M1, . . . ,MJ} |FM1,...,MJ
(m′

1, . . . ,m
′
J |T,X) for any t0 ∈

T and {m1, . . . ,mJ} ∈ M.
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E.2 Proof of Theorem 5

From (1.2) and (1.1), we assume a response model under treatment (T = 1): E{Y (1)} =
X ′β1; and a model under control (T = 0): E{Y (0)} = X ′β0. In the following proof, we
denote the correct covariates as X and the incorrect ones as Z. We denote the regression
coefficients associated with the correct covariates X as β and the ones associated with the
incorrect covariates Z as β∗. We denote the correct propensity model as P (T |X) and the
incorrect ones as P ∗(T |Z).

First, we see that (1.2) and (1.1) yields the following because X includes intercept:

Pn

{
I(T = 1)

P (T = 1|X)
(Y −X ′β1

WR)

}
= 0, (E.1)

and

Pn

{
I(T = 0)

P (T = 0|X)
(Y −X ′β0

WR)

}
= 0, (E.2)

We consider the following two cases:

1. When the regression model is correctly specified but the propensity model is not.
Under this setting, Formula (E.1) becomes:

Pn

{
I(T = 1)

P ∗(T = 1|Z)
(Y −X ′β1

WR)

}
= 0.

Taking expectation inside Pn yields:

E

{
I(T = 1)

P ∗(T = 1|Z)
(Y −X ′β1

WR)

}
=E

{
I(T = 1)

P ∗(T = 1|Z)
E
{
(Y −X ′β1

WR)|X
}}

=E

{
I(T = 1)

P ∗(T = 1|Z)
· 0
}

=0.

Following our assumptions stated at the beginning of the proof, the inner expectation

E
{
(Y −X ′β1)|X

}
= 0. Therefore, we have that β̂

1

WR

p→ β1 and similarly β̂
0

WR

p→
β0. Therefore, under our assumption, X ′β̂

1 p→ Y 1 and X ′β̂
0 p→ Y 0, so τ̂WR

p→ τ ,
which is desired.
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2. When the propensity model is correctly specified but the regression model is not.
Under this setting, we first need to show that:

τWR

=Pn{Z ′β1∗
WR −Z ′β0∗

WR}

=Pn


I(T = 1)

P (T = 1|X)
(Y −Z ′β1∗

WR)︸ ︷︷ ︸
(A)

− I(T = 0)

P (T = 0|X)
(Y −Z ′β0∗

WR)︸ ︷︷ ︸
(B)

+Z ′β1∗
WR −Z ′β0∗

WR

 .

(E.3)

This is because, β̂
1∗

and β̂
0∗

are solutions to the following incorrect estimating equa-
tions:

Pn

{
I(T = 1)

P (T = 1|X)
(Y −Z ′β1∗

WR)

}
= 0,

and

Pn

{
I(T = 0)

P (T = 0|X)
(Y −Z ′β0∗

WR)

}
= 0.

Therefore, though β̂
1∗
WR and β̂

0∗
WR does not converge in probability to the true β1 and

β0, β∗, but part (A) and (B) in (E.7) are always zero. Then, from Formula (E.7),
taking expectation inside Pn and re-arranging, we have that:

E
{
Z ′β1∗

WR −Z ′β0∗
WR

}
=E

{
I(T = 1)

P (T = 1|X)
Y

}
︸ ︷︷ ︸

(C)

−E

{
I(T = 0)

P (T = 0|X)
Y

}
︸ ︷︷ ︸

(D)

+ E

{(
1− I(T = 1)

P (T = 1|X)

)
Z ′β1∗

WR

}
︸ ︷︷ ︸

(E)

−E

{(
1− I(T = 0)

P (T = 0|X)

)
Z ′β0∗

WR

}
︸ ︷︷ ︸

(F)

.
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We start with part (E) and (F),

(E) = E

{(
1− I(T = 1)

P (T = 1|X)

)
Z ′β1∗

WR

}
= E

{
E

{(
1− I(T = 1)

P (T = 1|X)

)
|X
}
Z ′β1∗

WR

}
= E

{
0 ·Z ′β1∗

WR

}
= 0,

and similarly, (F) = 0. For (C) and (D), the proof is standard, such that,

(C) = E

{
I(T = 1)

P (T = 1|X)
Y

}
= E

{
I(T = 1)

P (T = 1|X)
Y 1

}
= E

{
E

{
I(T = 1)

P (T = 1|X)
Y 1|X

}}
= E

{
Y 1
}
,

and similarly, (D) = E{Y 0}. Therefore, we prove that E
{
Z ′β1∗

WR −Z ′β0∗
WR

}
=

E {Y 1 − Y 0} = τ . So ˆτWR
p→ τ under this setting.

We summarize the two cases and prove that τWR, constructed by using a weighted least
square approach, is a doubly robust estimator for τ .

E.3 Proof of Lemma 3

We start with the first part that states αj = E{Mj(1)−Mj(0)}. We notice that under our
model assumptions,

E{Mj(1)} = E{E{Mj|T = 1,X}} = E{T + η′
jX}

and

E{Mj(0)} = E{E{Mj|T = 0,X}} = E{η′
jX},
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where the outer expectation is taken with respect to the covariates X. Therefore it is
straightforward to show that αj = E{Mj(1)−Mj(0)}.

The second part of the lemma is a direct application of Theorem 5. By replacing Y in
Theorem 5 with Mj, it is straightforward to show that α̂j,WR, which is obtained via solving
the weighted regression estimating equation (4.10), is a DR estimator for the causal effect
E{Mj(1)−Mj(0)}.

E.4 Proof of Lemma 4

Similarly, we start with the first part of the lemma. Since the response model is assumed
as in (4.7), under our assumptions,

E{Y (t,m)} = E{E{Y |T = t,M = m,X}} = E{γ ′X + τt+ βm}.

Therefore, it is straightforward to see that τ = E{Y (1,m)−Y (0,m)} and β = (E{Y (t,m)−
Y (t,m′)})/(m−m′) for any t,m and m′.

For the second part of the lemma, we notice that θY are estimated by solving (4.11).
Therefore, similar to the proof of Theorem 5, solving (4.11) implies solving

Pn

{
I(T = t,M = m)

P (T = t|X)f(m|T = t,X)
[Y − µY (t,m,X;θY )]

}
= 0, (E.4)

because X includes a leading 1 representing the intercept. Additionally, in a similar
manner, we denote the correct covariates as X and the incorrect ones as Z. We add a
superscript ∗ sign to the coefficients associated with the incorrect covariates. We denote
the correct propensity model as P (T |X) and the incorrect ones as P ∗(T |Z), the correct
conditional density of M as f(m|X, T ) and the incorrect ones as f ∗(m|Z, T ).

We consider the following two cases:

1. When the regression model is correctly specified but the weight models are not.
Under this setting, Formula (E.4) becomes:

Pn

{
I(T = t,M = m)

P ∗(T = t|Z)f ∗(m|Z, t)
[Y − µY (X, t,m;θY )]

}
= 0, (E.5)
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and θ̂
∗
Y,WR are solutions of θY to (E.5). Taking expectation inside Pn yields (capital

letters are used to denote random variables):

E

{
I(T = t,M = m)

P ∗(T = t|Z)f ∗(M = m|Z, t)
(Y − µY (X, t,m;θY )

}
=E

{
E
{ I(T = t,M = m)

P ∗(T = t|Z)f ∗(M = m|Z, t)
(Y − µY (X, t,m;θY )|T = t,M = m,X,Z

}}
=E

{
E
{ I(T = t,M = m)

P ∗(T = t|Z)f ∗(M = m|Z, t)
|T = t,M = m,Z

}
E
{
(Y − µY (X, t,m;θY )|T = t,M = m,X

}}
=E

{
E
{ I(T = t,M = m)

P ∗(T = t|Z)f ∗(M = m|Z, t)
|T = t,M = m,Z

}
· 0
}

=0.

Since we have zero expected value inside Pn, we have θ̂
∗
Y,WR

p→ θY . Therefore,

τ̂WR
p→ τ and similarly β̂WR

p→ β, which is desired.

2. When the weight models are correctly specified but the regression model is not.
Under this setting, the estimating equation (E.4) becomes:

Pn

{
I(T = t,M = m)

P (T = t|X)f(m|X, t)
[Y − µ∗

Y (Z, t,m;θ∗
Y )]

}
= 0 (E.6)

and θ̂
∗
Y,WR are solutions of θY to (E.6). We start with β, our goal is to show, for any

t, m and m′, the solution of β to (E.6) (denoted as β̂∗
WR ) still consistently estimate

E{Y (t,m)− Y (t,m′)}/(m−m′). First, we see that:

µ∗
Y (Z, t,m;θ∗

Y )− µ∗
Y (Z, t,m′;θ∗

Y )

=

{
I(T = t,M = m)

P (T = t|X)f(M = m|T = t,X)
[Y − µ∗

Y (Z, t,m;θ∗
Y )]

}
︸ ︷︷ ︸

(A)

−
{

I(T = t,M = m′)

P (T = t|X)f(M = m′|T = t,X)
[Y − µ∗

Y (Z, t,m′;θ∗
Y )]

}
︸ ︷︷ ︸

(B)

+ µ∗
Y (Z, t,m;θ∗

Y )− µ∗
Y (Z, t,m′;θ∗

Y ).

(E.7)
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This is because, θ̂
∗
Y are solutions to (E.4). Therefore, for any values of t, m and Z,

(A) and (B) are always zero, despite θ̂
∗
Y do not converge to the true θY , but they do

converge to some other values θ∗
Y . Then, following Formula (E.7), taking expectation

and re-arranging, we have:

E {µ∗
Y (Z, t,m;θ∗

Y )− µ∗
Y (Z, t,m′;θ∗

Y )}

=E

{
I(T = t,M = m)

P (T = t|X)f(M = m|T = t,X)
Y

}
︸ ︷︷ ︸

(C)

− E

{
I(T = t,M = m′)

P (T = t|X)f(M = m′|T = t,X)
Y

}
︸ ︷︷ ︸

(D)

+ E

{(
1− I(T = t,M = m)

P (T = t|X)f(M = m|T = t,X)

)
µ∗
Y (Z, t,m;θ∗

Y )

}
︸ ︷︷ ︸

(E)

− E

{(
1− I(T = t,M = m′)

P (T = t|X)f(M = m′|T = t,X)

)
µ∗
Y (Z, t,m′;θ∗

Y )

}
︸ ︷︷ ︸

(F)

.

(E.8)

We start with parts (E) and (F),

(E) = E

{(
1− I(T = t,M = m)

P (T = t|X)f(M = m|T = t,X)

)
µ∗
Y (Z, t,m;θ∗

Y )

}
= E

{
E

{(
1− I(T = t,M = m)

P (T = t|X)f(M = m|T = t,X)

)
µ∗
Y (Z, t,m;θ∗

Y )|X,Z

}}
= E

{
E

{(
1− I(T = t,M = m)

P (T = t|X)f(M = m|T = t,X)

)
|X
}
E

{
µ∗
Y (Z, t,m;θ∗

Y )|Z
}}

= E

{(
1− E {I(T = t,M = m)|X}

fT,M(T = t,M = m|X)

)
E

{
µ∗
Y (Z, t,m;θ∗

Y )|Z
}}

= E {0 · µ∗
Y (Z, t,m;θ∗

Y )}
= 0,
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and similarly, (F) = 0. For (C) and (D), we have,

(C) = E

{
I(T = t,M = m)

P (T = t|X)f(M = m|T = t,X)
Y

}
= E

{
I(T = t,M = m)

fT,M(T = t,M = m|X)
Y (t,m)

}
= E

{
E

{
I(T = t,M = m)

fT,M(T = t,M = m|X)
|X
}
Y (t,m)

}
= E

{
E {I(T = t,M = m)|X}
fT,M(T = t,M = m|X)

Y (t,m)

}
= E {Y (t,m)} ,

and similarly, (D) = E {Y (t,m′)}. Therefore, from (E.8), we show that

E {µ∗
Y (Z, t,m;θ∗

Y )− µ∗
Y (Z, t,m′;θ∗

Y )} = E{Y (t,m)} − E{Y (t,m′)}

By the unbiasedness property of estimating equations, we have

β̂∗
WR = Pn{(µ∗

Y (Z, t,m;θ∗
Y )− µ∗

Y (Z, t,m′;θ∗
Y ))/(m−m′)} p→ β,

In a similar way, we can also show

τ̂ ∗WR

p→ τ = E{Y (1,m)− Y (0,m)}.

We summarize the two cases and prove that τWR and βWR, constructed by using the
weighted regression approach, are doubly robust estimators for τ and β.
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