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Abstract

Variationally based algorithms for the partitioned solution of structural mechanics problems are pre-

sented. Two key features of the present algorithms are the judicious application of the d’Alembert-

Lagrange principal equations and the use of dominant substructural deformation modes. The paper

includes three developments:

1. Variational derivation of AFETI parallel solution methods.

2. One-level and two-level AFETI implicit transient analysis algorithms with coarse problem included

in the projector and based on free floating rigid body modes.

3. A new AFETI implicit transient solution algorithm derived by constraining the interface equilib-

rium equations with the floating and dominant deformational modes.

In addition to variational derivations of solution algorithms, the present paper is strived to o↵er new

physical and/or numerical insight as each of variational derivational steps is succinctly explained. Per-

formance evaluations of the algorithms described herein are presented.
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1. Introduction

It is by now a well established practice to employ variational principles (e.g., [1, 2, 3, 4, 5, 6]) in the

finite element discretization of continuum structural models. Once the discrete equations are generated,

the prevailing practice in the solution of the discrete model equations is to leave the variational framework

behind and adopt matrix algebraic solvers. This transition phase from variational approaches for the

equation generation to algebraic solution procedures is justified when the resulting matrix equation

can be e�ciently treated in the standard form of a linear system, for which there exist a host of
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solution methods. The growing interest in the modeling and parallel solution algorithms development for

large-scale structural systems or multi-physics problems has prompted a number of solution algorithms

developers to employ matrix algebraic utilities [7, 8, 9].

The present paper is an attempt to utilize variational framework as much as possible in the devel-

opment of solution algorithms for parallel computations of structural mechanics and multi-physics or

coupled-field problems. In that sense the paper may be viewed a sequel to our earlier work [10, 11,

12, 13, 14, 15] which may be regarded collectively as a precursor to truly variational derivations of

solution algorithms. Others may view our attempt to utilize variational framework for solution methods

development a daunting e↵ort. We believe we have two historical precedents in our favor. One is the

gradual transition from the matrix structural analysis to variational treatment in the construction of

finite elements; and, the other is from the use of finite di↵erence methods in the development of transient

time integration algorithms to the direct time discretization of Hamilton’s principle.

The underlying theme of our variational derivation of solution algorithms is the partitioned modeling

and analysis where a partition is defined as a spatial subdivision based on physics; for example, a seismic

excited dam model might be divided into a fluid, a structure and a soil partition [16, 17]. A partitioned

subdomain interacts with its adjacent subdomains through the interface forces and moments or Lagrange

multipliers. The treatment of Lagrange multiplier-connected components of a mechanical system has

been addressed by many authors, particularly in multibody dynamics [18, 19, 20], parallel computation

[21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32], multistep integration [33, 34], contact problems [35, 36]

and multiphysics simulation [37, 38, 16, 39].

It is well known that the self-equilibrium equations for each partition or the d’Alembert-Lagrange

principal equations, play a pivotal role in the variational derivation of solution methods [40]. We should

mention that they have been utilized in the formulation of classical force method for relating the reaction

forces to the applied forces [1, 41], in the development of finite elements [42, 43] for satisfying zero-strain

modes, in the solution of singular systems for quasi-static problems [44], and for the parallel solution

of static linear structures [21]. We take the view that a full potential use of the d’Alembert-Lagrange

principal equations for the development of partitioned solution algorithm is still wanting, especially for

dynamic problems.

The benefits of using the rigid body modes to accelerate the convergence of implicit transient FETI

methods, were first reported by Farhat et. al. [45] for second order elasticity problems. It was demon-

strated that, by introducing the floating or rigid-body motions into the projector, the condition number 

of the interface problem and consequently the number of iterations, deteriorates at most logarithmically
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with the number of elements per substructure:

 ⇡ O
�
1 + logm

�
H

h

��
, m  3 (1)

where H indicates the size of the subdomains and h denotes the size of the elements. Note that

this condition number estimate is independent of the number of subdomains, a necessary condition to

achieve numerical scalability. The same optimality bound was later achieved for fourth order plates

and shell elements [25] by enforcing continuity of the transverse displacement field at the substructure

corners throughout the preconditioned conjugate projected gradient iterations. In the context of AFETI

methods [10, 11, 13, 14, 46], we will see that for optimal convergence of fourth order problems, corner

constraints can be substituted by complete interface deformational modes plus regularization.

In an e↵ort to create a common solver applicable for both static and dynamic analyses, Farhat and

his coworkers eventually succeeded in developing the FETI-DP algorithm [31, 47] whose solver is not only

applicable to both static and dynamic problems but also significantly improves the solution e�ciency.

In the FETI-DP algorithm, the interface nodes are divided into a selected set of corner nodes and a

remaining set of boundary nodes. The corner nodes are used to formulate a primal interface problem,

maintaining the corner displacement DOFs as unknowns, while the boundary nodes are utilized to

formulate a coupled dual interface problem with classical Lagrange multipliers. Hence, the corner nodes

form a coarse finite element representation of the global problem that ensures scalability by propagating

local substructure equilibrium globally, eliminating the need for introducing rigid body modes in the

formulation. Nowadays, two-level FETI-DP method is the de facto parallel algorithm for solid and

structural mechanics, that has demonstrated optimal numerical and parallel scalability properties up to

billions of DOFs [48].

The paper is organized as follows. Section 2 begins with the variational formulation of partitioned

equations of motion for structures employing the method of localized Lagrange multipliers, leading

to three-variable equations of motion. The substructural displacement is decomposed into deforma-

tional attributes and rigid-body motions, leading to four-variable partitioned equation set. Utilizing

the implicit time discretization of the three or four-variable partitioned equations of motion, previously

developed AFETI algorithms are reviewed in Sections 3 and 4. The importance of rigid-body modes

(RBMs), referred to d’Alembert-Lagrange principal equations, is elucidated in Section 5. Specifically,

it is shown that the rigid-body components of the residual of the interface force equilibrium equations

dictate the substructure-by-substructure global equilibrium. This suggests that the rigid-body modes

constitute the principal constraint on the interface force equilibrium.
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A culminating stage of the present paper is the development of a new AFETI algorithm, labelled

as AFETI-C, presented in Section 6. We believe that AFETI-C is simple to understand and easy to

implement. In essence, AFETI-C utilizes a combination of rigid-body modes and dominant substructural

deformation modes in enforcing the interface force equilibrium equation as constraint conditions. In

addition, a regularization of heterogeneities of partitioned systems [13, 14, 49] is appended to AFETI-C

to treat fourth order structural problems. Section 7 presents the performance of AFETI-C compared

with some of the existing algorithms, illustrating the good performance of AFETI-C with regularization.

Finally, we note that the solver presented in this paper is applicable to a large family of time-dependent

problems, providing convergence acceleration with minimum implementation complications.

2. Variational derivation of AFETI methods

In this section, the classical AFETI methods are derived from the same variational form, proposing

di↵erent decompositions for the localized Lagrange multipliers using selected projectors that will give

place to the diverse AFETI variants.

We have observed that the fundamental solution of a floating structural dynamical system is given

by the corresponding rigid-body modes. For structural dynamical problems to be treated by partitioned

subsystems, the basic solution components of the interface Lagrange multipliers are also governed by

the rigid-body modes. To this end, we first derive the equations of motion for a partitioned structural

system. The explicit inclusion of the floating modes then follows.

2.1. Partitioned equations for a linear structural dynamical system

To derive the partitioned equations of motion of a linear structural dynamical system, we use the

variational formulation proposed by Park and Felippa [12, 15] where the problem is treated like if all

bodies were entirely free. Then, the total virtual work of the complete system is obtained by summing

up the contributions of each substructure, plus the contribution of the interface constraints via the

method of localized Lagrange multipliers:

�Wt = �Wd + �Wc (2)

terms corresponding to the virtual work of the free-floating substructures and localized interface con-

straints, respectively.

The displacement-based discrete energy functional Wd(u), for a group of N free-floating linear
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Figure 1: Connection of two substructures using localized Lagrange multipliers. Localized Lagrange multipliers introduce
an explicit definition of the interface with its own DOFs denominated frame. Multipliers localization avoid the non-unique
definition problem presented by classical Lagrange multipliers at corner and cross-points.

undamped substructures under dynamic loading, can be expressed in matrix form as:

�Wd (u) =
NX

i=1

�Wdi (ui) =
NX

i=1

�uT
i

{Miüi +Kiui � f i} = �uT
{Mü+Ku� f} (3)

with the following definitions,

M =

2

6664

M1 · · · 0
...

. . .
...

0 · · · MN

3

7775
, K =

2

6664

K1 · · · 0
...

. . .
...

0 · · · KN

3

7775
, u =

8
>>><

>>>:

u1

...

uN

9
>>>=

>>>;
, f =

8
>>><

>>>:

f1
...

fN

9
>>>=

>>>;
(4)

where u is the partitioned subsystem-by-subsystem displacement vector, f the assembled vector of ex-

ternal forces, K and M are the block diagonal substructure-by-substructure sti↵ness and mass matrices,

respectively, the subindex i = 1, . . . , N refers to partition number and the superscript dot denotes time

di↵erentiation.

The key to obtain a partitioned formulation of the problem is to treat the connection interfaces by the

method of localized Lagrange multipliers that produces independent multipliers for each substructure.

Specifically, see case represented in Figure 1 with N = 2 partitions, instead of carrying out a direct

coupling of the two bodies, we will introduce an explicit representation of the interface boundary �,

denominated frame in the AFETI literature, with its own displacement DOFs uf , and consider the

coupling in terms of interaction of the substructures with the frame.
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We can write the substructure-frame boundary displacement compatibility equations as:

BT
i
ui = Lfiuf (i = 1 · · ·N) )

8
>>><

>>>:

BT
1u1

...

BT
N
uN

9
>>>=

>>>;
=

8
>>><

>>>:

Lf1

...

LfN

9
>>>=

>>>;
uf (5)

where Bi is the Boolean assembly matrix corresponding to ith substructure and Lfi is the Boolean matrix

relating the frame displacements uf to the substructural displacements ui. These boundary constraints

can be written in matrix form:

BTu� Lfuf = 0 (6)

by making use of the block-matrices:

B =

2

6664

B1 · · · 0
...

. . .
...

0 · · · BN

3

7775
, Lf =

2

6664

Lf1

...

LfN

3

7775
(7)

whereB is the global boundary assembly operator and Lf is the frame-substructure interpolation matrix.

The partition interface constraint functional is simply obtained multiplying the boundary compati-

bility condition (6) by a field of Lagrange multipliers:

Wc (u,uf ,�) = �T
�
BTu� Lfuf

 
(8)

where �T =
⇥
�T

1 · · · �T
N

⇤
represents the independent localized Lagrange multipliers of the substructures.

Finally, the total virtual work of the discrete partitioned system �Wt is derived combining (3) and

(8) in the form:

�Wt (u,uf ,�) = �uT
{Mü+Ku� f} + �

�
�T

�
BTu� Lfuf

� 
(9)

and from the stationary-point condition of this virtual work, the partitioned equations of motion are

obtained: 2

6664

K+M d
2

dt2
B 0

BT 0 �Lf

0 �LT
f

0

3

7775

8
>>><

>>>:

u

�

uf

9
>>>=

>>>;
=

8
>>><

>>>:

f

0

0

9
>>>=

>>>;
(10)

where all terms can be clearly identified; first equation represents the dynamic equilibrium of the elastic

substructures, second equation imposes the interface constraint condition between the substructure

boundaries and the frame, and last equation imposes the frame equilibrium condition.
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We note that the above equation set, when specialized to finite element formulation, may be traced

to the form of hybrid finite-element models [4].

Implicit integration in time of the displacements u by the Newmark method, gives the following

relations 8
><

>:

un+1 = un +�tu̇n +�t
2
��

1
2 � �

�
ün + �ün+1

 

u̇n+1 = u̇n +�t {(1� �) ün + �ün+1
}

(11)

where n and n+1 denote the current and next time step index, respectively, �t = t
n+1
�t

n the time-step

size, while � and � are time integration parameters that determine stability and accuracy characteristics.

Suppose that computations using this method have successfully proceeded until t = t
n so we know

un, u̇n and ün. Substitution of the Newmark approximation (11) into the first equation of system (10)

and moving next-step accelerations to the left-hand side, leads to the following set of equations:

2

6664

Kd B 0

BT 0 �Lf

0 �LT
f

0

3

7775

8
>>><

>>>:

ü

�

üf

9
>>>=

>>>;

n+1

=

8
>>><

>>>:

gu

0

0

9
>>>=

>>>;

n+1

(12)

in which

Kd = M+ ��t
2K, gn+1

u
= fn+1

�K
�
un +�tu̇n +�t

2
�
1
2 � �

�
ün
 

(13)

are the assembled discrete dynamic masses and equivalent forces.

In a final step, eliminating the substructure accelerations ün+1 from the first equation, we arrive to

the classical flexibility form of the AFETI method:

2

4Fbb Lf

LT
f

0

3

5

8
<

:
�

üf

9
=

;

n+1

=

8
<

:
b�

0

9
=

;

n+1

(14)

where the boundary flexibility matrix and the free-term vector are given by the expressions

Fbb = BTK�1
d
B, bn+1

�
= BTK�1

d
gn+1
u

(15)

This is a saddle-point problem that can be solved using the classical methodology described in

Appendix A.1 that we will denominate here AFETI-B (Basic). For that purpose, we need to introduce

here the projector concept.

In general, a projector is a linear operator constructed using two di↵erent matrices; matrix B 2 Rn⇥m

7



with m < n and a symmetric matrix A 2 Rn⇥n such that BTAB is positive definite. Then, the projector

P
A
B is obtained using the following systematic definition:

P
A
B = I�AB

⇥
BTAB

⇤�1
BT (16)

satisfying the basic conditions P
A
BAB = 0 and BT

P
A
B = 0. When matrix A is not indicated, it is

assumed to be the identity matrix, i.e., A = I, and the projector becomes symmetric. Recursively, matrix

A itself can be constructed using another projector, giving place to the di↵erent levels of projection.

A formal definition of the projection concept, together with rules for selecting matrices A and B at

di↵erent levels of projection, is contained in the Appendices.

Hence, we can construct a basic projector PLf
using rule (16) and write:

� = PLf
�d (17)

where �d is a general vector of localized multipliers, not necessarily in equilibrium, that after filtered

by the projector PLf
produces a new vector of multipliers � satisfying the frame equilibrium condition

LT
f
� = 0.

Substituting the filtered multipliers back in (14), the problem is reduced to a minimization of the

residual:

r� (�) = P
T
Lf

{b� � Fbb�} (18)

a problem than can be solved iteratively using the iterative PCG process described in Algorithm 1, by

simply substituting in the pseudocode A = Fbb and P = PLf
.

Remark 1. The complete expression for PLf
is obtained applying the projector definition (16), substi-

tuting A = I and B = Lf to yield:

PLf
= I� Lf

⇥
LT

f
Lf

⇤�1
LT

f
.

This is the basic multipliers averaging projector of AFETI, hence the name of AFETI-B method. Note

that its computation is trivial, because
⇥
LT

f
Lf

⇤
is a diagonal matrix containing the number of localized

multipliers connected to each frame node.

Finally, an e�cient iterative solution of (18) requires the use of an adequate preconditioner. For this

8



Algorithm 1 Preconditioned conjugate-gradient (PCG) algorithm. This algorithm solves for Px by

minimizing the residual r (x) = P
T

{b�Ax} using the preconditioner A+.

r0 = P
T

{b�Ax0} . Initial projected residual

k=0 . Initialize iteration counter

while krk+1k/kr0k > " do . Check convergence

zk = A+rk . Precondition step

yk = Pzk . Project preconditioned residual

�k =
yT
krk

yT
k�1rk�1

. Conjugation (for k = 0, set �0 = 0)

sk = yk + �ksk�1 . Search direction (for k = 0, set s0 = y0)

dk = Ask . Solution step

↵k =
yT
krk

sTkdk
. Minimization

xk+1 = xk + ↵ksk . Update solution

rk+1 = rk � ↵kP
Tdk . Update projected residual

k  k + 1 . Increment iteration counter

end while . Repeat until convergence

task, we construct the following approximation to be used as preconditioner,

F+
bb
= BTKdB (19)

that is known in the FETI literature as lumped preconditioner.

Remark 2. It is well known that the lack of a coarse problem, makes AFETI-B algorithm not scalable.

Also, note that the main di↵erences between (14) and the classical FETI-T formulation for transient

dynamics, lie in the presence of localized Lagrange multipliers and presence of the interface displacements

uf .

2.2. Partitioned equations of motion with explicit rigid-body modes

The localized partitioned equations of motion (10) have a full rank. However, rank su�ciency is not

enough when one solves the equation in a partitioned manner. For example, when a subsystem becomes

completely free-free as a result of partitioning, its self-equilibrium state must be part of the solution

[42]. The variational infusion of the self-equilibrium states for all the subsystems can be accomplished

by decomposing the subsystem total displacements into the deformation states and the self-equilibrium

states.

In linear FEM, the floating modes emanate intrinsically from the rank deficiency of the substructural

sti↵ness matrix [50], but can also be directly constructed from simple geometrical considerations [10, 11].

Grouping all the nodal components in a global vector, the total displacements of the substructure

can then be separated into a pure deformational component plus a rigid-body part, decomposition that

9



is written [51]:

u = d+R↵ (20)

where u 2 Rn are the nodal displacements with n the number of DOFs, d 2 Rn represents the vector

of pure-deformational displacements, R 2 Rn⇥n↵ is a basis of rigid-body modes and vector ↵ 2 Rn↵

collects the amplitudes of the n↵ rigid-body motions.

The variational energy functional derived previously can be further decomposed by dividing the total

displacements into deformations and rigid-body motions. This is accomplished by using the projector

[46, 20]:

P
M
R = I�MRM�1

↵
RT (21)

where M is a symmetric definite positive mass matrix and M↵ = RTMR is the principal mass matrix

introduced by Park et al. in [40], a (6 ⇥ 6) matrix for a three-dimensional floating substructure. This

operator presents the following filtering properties

P
M
R

T
R = 0, P

M
R MR = 0 (22)

allowing to separate pure deformational modes from rigid-body motions using the following expressions:

d = P
M
R

T
u, R↵ = (I� P

M
R

T
)u (23)

where, by definition, the projector P
M
R

T
2 Rn⇥n performs an orthogonal projection in the subspace

defined by the rigid-body modes and therefore is acting as a filter for the deformational component of

displacements.

Grouping all the nodal components in a global vector, the total displacements of the substructure

can then be separated into a pure deformational component plus a rigid-body part, decomposition that

is written

u = P
M
R

T
d+R↵ (24)

where dT =
⇥
dT
1 · · ·dT

N

⇤
is the partitioned subsystem-by-subsystem deformational displacement vector

and ↵T =
⇥
↵T

1 · · · ↵T
N

⇤
groups the amplitudes which multiply substructural RBMs.

In particular, for a system partitioned into N subsystems, the matrices in (24) take the following

10



block-diagonal form:

P
M
R =

2

6664

P
M1
R1

· · · 0
...

. . .
...

0 · · · P
MN
RN

3

7775
, R =

2

6664

R1 · · · 0
...

. . .
...

0 · · · RN

3

7775

with each diagonal entry a↵ecting their corresponding amplitudes di and ↵i, respectively. Substructural

modes Ri are defined through the following orthogonality property:

KiRi = 0 (i = 1 . . . N). (25)

Substituting displacement decomposition (24) into the variational form (9), leads to:

�Wt (d,↵,uf ,�) = �
�
dT

P
M
R + ↵TRT

�n
M

⇣
P

M
R

T
d̈+R↵̈

⌘
+K

⇣
P

M
R

T
d+R↵

⌘
� f

o
+

�

n
�T

⇣
BT

⇣
P

M
R

T
d+R↵

⌘
� Lfuf

⌘o
(26)

an equivalent variational form expressed in terms of deformational and rigid body displacements.

Exploiting the mass-orthogonality between the deformational and rigid body modes (22) and sub-

stituting (25), the stationarity condition �Wt = 0 of equation (26) yields the following four-variable

partitioned equations of motion:

2

6666664

K+ M̄ d
2

dt2
0 Bd 0

0 M↵
d
2

dt2
RT

b
0

BT
d

Rb 0 �Lf

0 0 �LT
f

0

3

7777775

8
>>>>>><

>>>>>>:

d

↵

�

uf

9
>>>>>>=

>>>>>>;

=

8
>>>>>><

>>>>>>:

fd

f↵

0

0

9
>>>>>>=

>>>>>>;

(27)

with the following definitions

M̄ = P
M
R MP

M
R

T
= P

M
R M, Bd = P

M
R B, Rb = BTR, fd = P

M
R f , f↵ = RTf (28)

where all terms can be clearly identified; first equation represents the equilibrium of the deformational

part of the FEM elastic equations, second equation is the rigid-body dynamic equilibrium condition,

third equation imposes the interface constraint condition between the substructure boundary and the

frame and last equation imposes the frame equilibrium condition.

Equation (27) consists of coupled four-variable partitioned equations. The first row represents the

11



equations of motion for the deformable modes for each of the partitioned subsystems; the second is

d’Alembert’s principal equation for each of the partitioned subsystems; the third is the interface kine-

matical constraints; and, the fourth is the Newton’s third law along the interfaces in terms of localized

Lagrange multipliers.

This means that the three variables (d,↵,�) are localized. It is the frame displacement uf that

connects the interfaces of partitioned subsystems.

To obtain the time discrete equations, suppose computations have proceeded until t = t
n. Substi-

tution of Newmark time integration scheme (11) into the first and second equation of (27) and moving

next-step accelerations to the left-hand side, leads to the following set of discrete equations:

2

6666664

K̄d 0 Bd 0

0 M↵ RT
b

0

BT
d

Rb 0 �Lf

0 0 �LT
f

0

3

7777775

8
>>>>>><

>>>>>>:

d̈

↵̈

�

üf

9
>>>>>>=

>>>>>>;

n+1

=

8
>>>>>><

>>>>>>:

gd

f↵

0

0

9
>>>>>>=

>>>>>>;

n+1

(29)

with separated deformational and rigid body accelerations, in which:

K̄d = M̄+ ��t
2K, gn+1

d
= P

M
R gn+1

u
(30)

and where we have replaced the fourth equation of (27) by its twice time-di↵erentiated expression.

Since K̄d = KdP
M
R

T
and using the idempotent property of the projector, deformational accelerations

can be isolated from the first equation of (29):

P
M
R

T
d̈n+1 = F̄(gn+1

u
�B�n+1) (31)

where F̄ is the projected dynamic flexibility matrix, that can be expressed as:

F̄ = P
M
R

T
K�1

d
P

M
R = K�1

d
�RM�1

↵
RT (32)

a relation that is demonstrated in [20].
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Now, eliminating d̈n+1 from (29) yields the following three-variable di↵erence equation set:

2

6664

F̄bb �Rb Lf

�RT
b
�M↵ 0

LT
f

0 0

3

7775

8
>>><

>>>:

�

↵̈

üf

9
>>>=

>>>;

n+1

=

8
>>><

>>>:

b̄�

�f↵

0

9
>>>=

>>>;

n+1

(33)

with

F̄bb = BTF̄B = Fbb �RbM
�1
↵
RT

b
, b̄n+1

�
= bn+1

�
�RbM

�1
↵
f↵ (34)

which will be called as the basic dual-primal partitioned equations of motion. This equation will serve

as the basis from which we will develop a series of partitioned solution algorithms that are applicable

both for static and dynamic problems.

This partitioned flexibility system represents the basic dual-primal partitioned equations of motion

with localized Lagrange multipliers, first proposed by Park et. al. for statics [12, 15, 14], generalized

to structural dynamics by Gumaste et al. [13] and later extended to multi-body dynamics with large

rotations [20].

Remark 3. Time-integration stability of partitioned systems with localized Lagrange multipliers has

been studied by Ross et al. [16] for di↵erent time integration schemes, demonstrating that partitioning

does not a↵ect the A-stability condition of the Newmark method, obtained with � � 1/2 and � � �/2,

whereas global second order accuracy is achieved for � = 1/2.

3. Review of existent AFETI algorithms for dynamics

In this section we summarize existent AFETI methods for the solution of the dynamic partitioned

equations of motion. We will focus here on fully implicit solution algorithms, explicit-implicit methods

for the AFETI dynamic equations were previously studied in [46].

3.1. Implicit solution algorithm AFETI-I without coarse problem

From a historical perspective, first parallel solution algorithms in the context of AFETI methods

in dynamics were proposed by Gumaste et al. [13]. In this section, our intention is to introduce that

formulation by adding some minor changes to the parallel implicit dynamic solution method initially

proposed. This implicit scheme is based on a straight iterative solution of system (33) using PCG

algorithm, a technique that can be simplified introducing the following modifications:

1. Project the interface Lagrange multipliers using the filter PLf
to automatically satisfy the frame

equilibrium condition.
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2. Solve for the substructure-by-substructure global multipliers �↵ = RT
b
PLf

� instead of solving for

the rigid body accelerations ↵̈, performing the change of variable,

↵̈ = M�1
↵

{f↵ � �↵} . (35)

After introducing these modifications in (33) and performing the time discretization, we obtain a

new system where the vector of unknowns is composed only by the localized and global multipliers,

2

4P
T
Lf
F̄bbPLf

P
T
Lf
RbM�1

↵

M�1
↵
RT

b
P

Lf
�M�1

↵

3

5

8
<

:
�

�↵

9
=

;

n+1

=

8
<

:
P

T
Lf
b�

0

9
=

;

n+1

(36)

which can be solved using the PCG solution algorithm combined with an appropriated preconditioner.

A generalized inverse of block matrices with an structure like the one present in the left-hand side of (36)

can be found in [52], from where we construct the following approximation to be used as preconditioner,

S+ =

2

4 F̂+
bb

�F̂+
bb
Rb

�RT
b
F̂+

bb
�M↵ +RT

b
PLf

F̂+
bb
P

T
Lf
Rb

3

5 (37)

where F̂+
bb
is also an approximation to the generalized inverse of P

T
Lf
F̄bbPLf

defined as

F̂+
bb
= P

T
Lf
K̄bbPLf

⇡

h
P

T
Lf
F̄bbPLf

i+
(38)

Remark 4. Although this solution method is simple, it was demonstrated in [13] that it utilizes no

coarse solver, hence its performance is comparable to the AFETI-B dynamic algorithm. However, im-

portant convergence improvements were obtained in the same reference using a flexibility normalization

technique with infusion of substructural deformation modes.

3.2. Explicit-implicit solution algorithm AFETI-EI with coarse problem

This algorithm transforms the transient problem in an equivalent static problem with explicitly

predicted inertia forces [46].

From inspection of system (33) together with previous considerations, it is deduced that the only

thing we need to proceed with a dynamic analysis using the classical AFETI algorithm designed for

static problems, is a good approximation of the substructure-by-substructure rigid body accelerations

↵̈n+1
p

to construct a prediction of the global multipliers �p

↵
= fn+1

↵
�M↵↵̈n+1

p
and simplify the second
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row of the system. The system adopts then the classical AFETI form:

2

6664

F̄bb �Rb Lf

�RT
b

0 0

LT
f

0 0

3

7775

8
>>><

>>>:

�

↵̈

üf

9
>>>=

>>>;

n+1

=

8
>>><

>>>:

b̄�

��p

↵

0

9
>>>=

>>>;

n+1

(39)

that can be solved using e�cient AFETI algorithms for statics available in the literature [53].

This way, we have transformed a dynamic problem into an equivalent static problem and now the

same solver can be used for statics and dynamics. The simplest projector to solve this problem, thus

the slowest to converge, is:

� = P
PRb
Lf

�
PRb

�d +Rb�r

 
(40)

decomposition employed in the original development of the AFETI method [10, 11]. Although this

decomposition is very e↵ective, it has the inconvenience that the size of its coarse problem is equal to

the size of the interface. Another method, based on decomposition (C.8), was proposed by Gumaste et

al. [13] using the following projection:

� = PLf

⇢
P

PT
Lf

Rb
�d +Rb�r

�
(41)

a better option than decomposition (40), because the size of the coarse problem is now equal to the

number of rigid-body modes and it is also simpler to evaluate.

After introducing decomposition (41) into the system (39), we can solve iteratively for the deforma-

tional part of the multipliers �d, by using Algorithm 1 to minimize the residual:

rS
�
(�) = P

PLf

Rb
P

T
Lf

�
b̄� � F̄bb�

 
(42)

satisfying by design the condition RT
b
rS
�
(�) = 0, thanks to the projector that repeatedly enforces global

static equilibrium at each iteration. The problem with this approach is the accumulation of errors in

time, due to prediction of the substructural net multipliers �p

↵
, requiring the use of extra correction

steps to maintain accuracy and stability [46].

4. AFETI dynamic solution algorithms with projection

The weakness of the solution algorithms mentioned in Section 3, reside in the absence of a natural

projector capable of enforcing at the same time, the equilibrium of the localized Lagrange multipliers
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and the dynamic global equilibrium of the substructures. In this Section we propose natural projectors

that satisfy both requirements.

The first one is inspired by the classical FETI-T decomposition of Lagrange multipliers proposed by

Farhat et al. [23, 24] in the context of FETI methods for dynamic problems. The second algorithm

represents a natural extension to second level decompositions. Some discussion about the benefits and

drawbacks of each solution method is included.

4.1. One-level projection - AFETI-1

In this section we develop an AFETI algorithm for dynamics equivalent to the classical FETI-T

method proposed by Farhat et al. for classical Lagrange multipliers, that supposes a generalization to

the case of localized Lagrange multipliers. As in the case of classical Lagrange multipliers, the advantage

of this new method will be the presence of a coarse problem that makes the problem numerically scalable

for second order elasticity problems. By analogy with the FETI-T method, this new method will be

named AFETI-1 method with coarse problem. AFETI-1 can be considered as a localized version of the

FETI-T method.

We propose a one-level decomposition of the localized multipliers of the form (C.8):

� = PLf

n
P
 
Rb

T
�d +Rb�r

o
(43)

with  = P
T
Lf
FbbPLf

, a projection that combined with system (14) yields the following decoupled

equation set: 2

4P
 
Rb
 P

 
Rb

T
0

0 RT
b
 Rb

3

5

8
<

:
�d

�r

9
=

;

n+1

=

8
<

:
P
 
Rb

P
T
Lf
bn+1
�

RT
b
P

T
Lf
bn+1
�

9
=

; (44)

that is associated with a new projected residual given by

rD1
�

(�) = P
 
Rb

P
T
Lf

{b� � Fbb�} (45)

and can be solved iteratively through PCG Algorithm 1 with projector P = PLf
P
 
Rb

T
.

This new residual is related with (18) by the following projection:

rD1
�

(�) = P
 
Rb
r� (�) (46)

where the projector P
 
Rb

introduces a new coarse problem of the form
⇥
RT

b
 Rb

⇤
x = b that has to be

solved at the projection step of each iteration during the solution process.
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Note that �r in decomposition (43) does not represent the substructure-by-substructure global mul-

tipliers, because RT
b
� 6= �r. However, the following equality holds RT

b
P

T
Lf
Fbb� = RT

b
 Rb�r.

Remark 5. This algorithm can be considered as a localized version of the FETI-T algorithm, inheriting

its basic properties and characteristics. Among them the numerical scalability for second order elasticity

problems, that is recovered thanks to the introduction of the new coarse problem given by the global

equilibrium equation.

Remark 6. Finally, note that the coarse problem
⇥
RT

b
 Rb

⇤
x = b introduced by this algorithm de-

pends on the time-step size �t through the dynamic flexibility matrix Fbb. Hence, when time-step

changes during the solution process a new orthogonalization of the coarse problem is required. Also

note that solving the coarse problem requires inter-process communication.

4.2. Two-level projection - AFETI-2

Now, we extend the space of rigid body motions R with an orthogonal subspace of deformational

displacements C and extract the boundary components, computed as BT [R|C] = [Rb|Cb], to construct

two di↵erent subspaces. These separated subspaces are then used to expand the localized Lagrange

multipliers by using a two-level decomposition like (C.9) in the form:

� = PLf

n
P
 
Rb

T
⇣
P
⌦
Cb

T
�d +Cb�c

⌘
+Rb�r

o
(47)

with matrices  = P
T
Lf
FbbPLf

and ⌦ = P
 
Rb
 P

 
Rb

T
. This is a second level projection that, introduced

in system (14) and using the new projector properties, yields the following equation set:

2

6664

P
⌦
Cb
⌦P

⌦
Cb

T
0 0

0 CT
b
P
 
Rb
 P

 
Rb

T
Cb 0

0 0 RT
b
 Rb

3

7775

8
>>><

>>>:

�d

�c

�r

9
>>>=

>>>;

n+1

=

8
>>><

>>>:

P
⌦
Cb

P
 
Rb

P
T
Lf
bn+1
�

CT
b
P
 
Rb

P
T
Lf
bn+1
�

RT
b
P

T
Lf
bn+1
�

9
>>>=

>>>;
(48)

where the three solutions are now completely decoupled. This system is associated with a new two-level

projected residual:

rD2
�

(�) = P
⌦
Cb
rD1
�

(�) (49)

that can be simply expressed as a projection of the previous one-level residual (45). Note that this

residual satisfies two di↵erent constraints, i.e., RT
b
rD2
�

= 0 and CT
b
rD2
�

= 0, thanks to properties (C.3)

and (C.4) of the second level AFETI projectors. Therefore, this algorithm is capable of separating the

rigid-body equilibrium constraints from the additional deformational constraints.
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Figure 2: Illustration of the physical interpretation of the d’Alembert-Lagrange balance equations as a substructure-by-
substructure net equilibrium condition for the individual partitions.

When it comes to implementation, the component P�d of decomposition (47), with the two-level

projector P = PLf
P
 
Rb

T
P
⌦
Cb

T
, can be computed iteratively using PCG Algorithm 1. This separated

decomposition reduces the size of the coarse problem with respect to AFETI-C, to be described later,

because extra constraints are introduced through an additional projection. However, upon a close

examination of projector P
⌦
Cb
, we observe that its construction can be extremely expensive for numerical

purposes.

In Section 6, we will propose a new method named AFETI-C that is able to enforce the same

constraints to the residual without the need of constructing expensive projectors.

5. Significance of the d’Alembert-Lagrange balance equations

The second equation of (27) represents the self-equilibrium equations of the partitions or d’Alembert-

Lagrange principal equation, that describes the floating rigid motions [40]. This equation can be written

for the floating substructures in the form:

�n+1
↵

+M↵↵̈
n+1 = fn+1

↵
(50)

where fn+1
↵

= RTfn+1, defined in (28), represents the net external forces, M↵↵̈n+1 are the global inertia

forces and �n+1
↵

= RT
b
�n+1 are defined as the d’Alembert interface forces. This principle is illustrated

in Figure 2 as the necessary condition for global dynamic equilibrium in every partition.

Remark 7. The d’Alembert-Lagrange equation represents the substructure-by-substructure dynamic

equilibrium condition.The above solvability condition forms a natural coarse problem which can be used

to accelerate the convergence of dynamic and quasi-static partitioned problems.

Theorem 1. From a mechanical point of view, the convergence improvement of the AFETI-1 method

observed when driving to zero the projected residual (46) using the PCG iterative solution algorithm,
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comes from an enforcement of the substructure-by-substructure global equilibrium at each iteration. This

will reduce the search space of the iterative solver only to those solutions fulfilling the global equilibrium

condition.

Proof. The proof follows from consideration of the projected residual (45) where projector P
 
Rb

is used

to eliminate all the rigid-body components of r�, making RT
b
rD1
�

= 0. In order to gain some insight into

what this projection represents, let us solve for the rigid body accelerations ↵̈ in the first row of (33)

to obtain

↵̈ =
h
RT

b
P

T
Lf
Rb

i�1

RT
b
P

T
Lf

�
F̄bb�� b̄�

 
(51)

and use the definitions of (28) to write

�M↵↵̈�RT
b
� +RTf = M↵

h
RT

b
P

T
Lf
Rb

i�1

RT
b
r� (52)

where we can identify the d’Alembert-Lagrange principal balance equation [40] on the left, condition

for substructure-by-substructure global equilibrium, with an expression for the global disequilibrium on

the right. This global disequilibrium force, defined as f " = M↵

h
RT

b
P

T
Lf
Rb

i�1

RT
b
r�, is related with our

original residual (18) by the following expression

h
RT

b
P

T
Lf
Rb

i
M�1

↵
f " = RT

b
r� (53)

showing that the rigid-body components of the residual are related with the substructure-by-substructure

global disequilibrium. This disequilibrium is eliminated when the residual r� is projected using P
 
Rb

in

order to satisfy the condition RT
b
rD1
�

= 0.

6. A new AFETI-C method with constraints

The AFETI-B problem (14), combined with a group of extra constraints of the type CT
b
r� = 0, can be

mathematically expressed as the first-order optimality condition for the following equality-constrained

quadratic programming problem:

minimize
�d

1
2�

T
d
Fbb�d � bT

�
�d

subject to CT
b
(b� � Fbb�d) = 0

(54)
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where the projected multipliers, defined now as �d = PLf
�, are selected as the problem unknowns. It

is well known [54] that this minimization problem is associated with the Lagrangian:

W� (�d,µb) =
1
2�

T
d
Fbb�d � bT

�
�d + µT

b
(b� � Fbb�d) (55)

where a new variable µb = Cbµ, representing a vector of Lagrange multipliers, is introduced to enforce

the constraints. Furthermore, from the first-order optimality condition of this functional, the following

system arises: 2

4P
T
Lf
FbbPLf

P
T
Lf
FbbCb

CT
b
FbbP

T
Lf

0

3

5

8
<

:
�

µ

9
=

;

n+1

=

8
<

:
b�

0

9
=

;

n+1

(56)

a saddle-point problem equivalent to the initial quadratic minimization problem with constraints.

Remark 8. In AFETI methods, the classical PCG iterative solver described in Algorithm 1 needs to

apply a projector P two times per iteration. When adopting complicated projectors, like in AFETI-1

with (43) or AFETI-2 with (47), the projection step becomes the most expensive operation creating a

bottleneck in the algorithm performance. This e↵ect can be alleviated by introducing simple modifi-

cations into the PCG algorithm. The basic idea here is to solve the AFETI-B system (14), with the

simplest projector (17), enforcing the constraints directly on the search directions of the PCG solver

during the iterative resolution process. This new algorithm is denominated AFETI-C.

6.1. Construction of the boundary constraints matrix

In the AFETI-C algorithm we group all the constraints, namely rigid-body and deformational modes,

together into a single diagonal block matrix:

Ci = [Ri|�i] (i = 1 · · ·N) ) C =

2

6664

C1 · · · 0
...

. . .
...

0 · · · CN

3

7775
(57)

where�i 2 Rni⇥nd corresponds to the lower deformational modes of the ith partition and nd is the number

of these deformational modes included as constraints per subdomain. For computational e�ciency, the

lower modes are obtained for each substructure using inverse iteration based methods. Note that the

computation of these modes suppose an extra computational e↵ort, but their calculation is required only

once. After that, the constraint matrix is computed as Cb = BTC, a block diagonal matrix defining

substructure-by-substructure the boundary linear constraints.
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Remark 9. The construction of a matrix C combining the rigid-body modes plus corner equilibrium

constraints and combined with a two-level decomposition was proposed by Farhat et al. [25, 26, 55] in

the context of FETI for the solution of plate and shell problems.

6.2. The proposed AFETI-C algorithm

For the solution of the saddle point problem (56), we adopt AFETI-B with the residual r�(�) = 0

defined in (18), subject to the extra constraint:

CT
b

⇣
b� � FbbPLf

�
⌘
= 0 (58)

that will be enforced during the PCG iterative process. For this purpose, we propose the following

structure for the solution:

� = PLf

(
Cb�c0 +

X

k

(�k +Cb�ck)

)
(59)

where subindex k indicates the iteration number, �k is the search direction obtained by the classical

PCG Krylov subspace iteration and �ck is a correction of the k-th search direction introduced to fulfill

the residual constraint (58).

The AFETI-C computes the initial component to identically satisfy the residual constraint and the

rest of the search directions are modified so they do not contribute to the constrained residual. Then,

the iterative process continues until the norm of the residual is smaller than a predefined tolerance.

The first term of the solution, �c0, is obtained forcing the fulfillment of the residual constraint (58):

CT
b
P

T
Lf

n
b� � FbbPLf

Cb�c0

o
= 0 (60)

producing a coarse problem:
⇥
CT

b
 Cb

⇤
�c0 = CT

b
P

T
Lf
b� (61)

with a reduced dimension, equal to the total number of constraints imposed to the residual.

After the initial component has been computed, we proceed with the Krylov subspace iteration and

for every new search direction �k, that in general will not satisfy the constraint equation, we compute

a modification �ck by imposing the constraint:

CT
b
P

T
Lf

n
FbbPLf

(�k +Cb�ck)
o
= 0 (62)

to eliminate the contribution of the new direction to the constrained residual. This modification vector

21



Algorithm 2 Preconditioned conjugate-gradient (PCG) with constraints. This algorithm solves for

Px by minimizing the residual r (x) = P
T

{b�Ax} using the preconditioner A+ and enforcing the

constraint CTr = 0 to the search directions.⇥
CT

P
TAPC

⇤
e0 = CT

P
Tb . Solve initial coarse problem

x0 = PC e0 . Compute initial solution thus CT
P

T (b�Ax0) = 0

r0 = P
T

{b�Ax0} . Initial projected residual

k=0 . Initialize iteration counter

while krk+1k/kr0k > " do . Check convergence

zk = A+rk . Precondition step⇥
CT

P
TAPC

⇤
ek = �CT

P
TAPzk . Solve coarse problem for correction ek

yk = P (zk +Cek) . Correct direction to enforce CT
P

TAyk = 0

�k =
yT
krk

yT
k�1rk�1

. Conjugation (for k = 0, set �0 = 0)

sk = yk + �ksk�1 . Search direction (for k = 0, set s0 = y0)

dk = Ask . Solution step

↵k =
yT
krk

sTkdk
. Minimization

xk+1 = xk + ↵ksk . Update solution

rk+1 = rk � ↵kP
Tdk . Update projected residual

k  k + 1 . Increment iteration counter

end while . Repeat until convergence

is calculated solving with iterative methods the coarse problem:

⇥
CT

b
 Cb

⇤
�ck = �C

T
b
 �k (63)

to obtain the modification of the direction �ck that is added to the search direction �k to complete

the constrained solution component. Thanks to the simplicity of the projector PLf
and the localized

character of the boundary flexibility Fbb, this problem can be solved in a fully parallel manner requiring

minimum interprocess communication.

The complete solution process of AFETI-C is summarized in Algorithm 2, that is reproduced sub-

stituting P = PLf
as projector, the constraint matrix C = Cb and the system matrix A = Fbb, together

with the lumped preconditioner defined in (19). Note that, in order to enforce the global equilibrium

at each iteration, the PCG Algorithm 1 has been enhanced with two simple steps. When we obtain a

new candidate zk for our solution vector, that in general will not satisfy the constraints, we calculate

a correction of the solution component ek and after that we compute the modified component yk, see

Algorithm 2.

Remark 10. Using only the RBMs as constraints, i.e. constraint matrix Cb = Rb, we obtain an

algorithm equivalent to AFETI-1 described in Section 4.1, with the advantage of substituting two
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applications per iteration of a complicated projector P
 
Rb
, needed by Algorithm 1, by the application of

a simpler projector PLf
plus the solution of a coarse problem in Algorithm 2.

Remark 11. It was demonstrated in Section 5, that the residual constraint (58) using as constraints

the rigid body modes, i.e., Cb = Rb, enforces global equilibrium in the substructures. In that particular

case, the convergence properties of AFETI-1 are exactly the same than AFETI-C without deformational

modes.

6.2.1. Regularization of the AFETI system

Considering that the localized method of Lagrange multipliers utilizes di↵erent Lagrange multipliers

for each substructure, it is possible to introduce independent normalization factors for each group of

Lagrange multipliers. This way the system is regularized, controlling the condition number of the final

system [13, 14, 49].

In our case, the regularization process is done by performing in the basic AFETI system (12) the

change of variable u = Suû and � = S��̂, where Su and S� are linear transformations, to obtain an

equivalent system: 2

6664

ST
u
KdSu ST

u
BS� 0

ST
�
BTSu 0 �ST

�
Lf

0 �LT
f
S� 0

3

7775

8
>>><

>>>:

ˆ̈u

�̂

üf

9
>>>=

>>>;

n+1

=

8
>>><

>>>:

ST
u
gu

0

0

9
>>>=

>>>;

n+1

(64)

that can be solved using the same AFETI solver. To regularize the system coe�cients, our choice is to

define Su = diag (Kd)
� 1

2 and S� = diag
�
BTKdB

� 1
2 , so the new boundary extraction matrix ST

u
BS�

is of order one. For a subsequent application of the AFETI-C algorithm, the constraints matrix (57)

should also be scaled using Ĉ = S�1
u
C to produce a scaled boundary constraints matrix Ĉb = ST

�
BTC.

Although this regularization process is not necessary for second order problems with displacement DOFs,

we will demonstrate in Section 7 that its use becomes imperative for plate and shell finite elements.

7. Numerical examples

In this section, the performance of the proposed AFETI methods is assessed for second order and

fourth order linear elastic problems. For this task, we will solve di↵erent example problems using the

AFETI-1 method described in Section 4.1 and the proposed AFETI-C equipped with di↵erent number

nd of deformational modes, as described in Section 6.2. It will be particularly interesting to study the

e↵ect of introducing di↵erent number of deformational constraints in the convergence of the AFETI-C

algorithm developed in the paper.
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In all the examples, time integration is performed using the Newmark method with parameters � = 1
4

and � = 1
2 to ensure unconditional stability. For all cases, the same convergence criterion is used, based

on the relative error of the residual:
krk+1k2

kr0k2
< " = 10�4 (65)

where rk+1 is the projected residual at iteration (k + 1), see Algorithms 1 and 2. The convergence

results presented, correspond to the first time-step solution, obtained using the corresponding dynamic

algorithm equipped with the simple lumped preconditioner given by (19).

7.1. Second-order elasticity problems

We start the study with second order elasticity problems discretized with pure displacement finite

elements. In this case and assuming material homogeneity, the AFETI system is well behaved and the

regularization process described in Section 6.2.1 is not used.

7.1.1. Plane elasticity in a unit square

The first problem considered is a homogeneous and elastic two-dimensional plate modeled with four

node quadrilateral elements. The mesh is defined in a square domain ⌦ = [0, 1]⇥ [0, 1] that is partitioned

into N regular subdomains of size H and element size h, see Figure 3. The nodes located on the two left

corners of the domain are completely fixed and it is considered the e↵ect of a sudden vertical uniform

body load of value g = 9.81. This body load is applied entirely at the first time step of the simulation

producing a transient response that is integrated in time with a fixed time step �t = 0.025.

Figure 3 (right) demonstrates the influence of RBM equilibrium enforcement during iterations in the

convergence of di↵erent AFETI methods. For a particular case of N = 5 ⇥ 5 partitions with 10 ⇥ 10

elements per partition, it is compared the convergence of the basic AFETI-B algorithm, with AFETI-1

and AFETI-C, without using deformational-mode constraints, i.e. nd = 0. It is observed that AFETI-C,

equipped with the RBMs as constraints, is completely equivalent to AFETI-1. As previously mentioned,

for second order elastic problems and introducing the RBMs as constraints, produces fast convergence

to the solution. Now, the question arises if it is possible to improve that convergence rate by including

deformational modes as extra constraints.

The answer to this question is contained in Figure 4. Now, maintaining the same element size

h, the number of subdomains N is varied to study also the influence of partitioning in the global

convergence of AFETI-C. Specifically, two di↵erent values of N = {9, 36}, respectively with H/h =

{20, 10}, are considered. First observation is that for nd = 0, including only RBMs as constraints, we

need approximately three iterations to reduce the residual one order of magnitude and the total number
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Figure 3: Regularly partitioned mesh with N = 5 ⇥ 5 subdomains of side dimension H = 1/5, where each subdomain is
composed of 10⇥ 10 quadrilateral elements of size h = H/10 (left). Convergence of the AFETI-B method without global
equilibrium enforcement, the one-level AFETI-1 and the constrained AFETI-C with nd = 0, obtained for the particular
case N = 5⇥ 5 and h = H/20 (right). The triangle with slope 1/2 indicates a reduction of the residual by a factor of two
per iteration.
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Figure 4: Convergence of the regular 2D plate problem for N = 3⇥3 subdomains of 20⇥20 elements (left) and N = 6⇥6
subdomains of 10 ⇥ 10 elements (right) using AFETI-C equipped with di↵erent number of deformational-mode residual
constrains nd = {0, 5, 10, 15}. Higher convergence rates are observed when deformational modes are included as additional
constraints.
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AFETI-C (ms)

Partitions H/h nd = 0 nd = 5 nd = 10 nd = 15

N = 3⇥ 3 20 28.6 21.4 16.7 17.1
N = 6⇥ 6 10 37.7 34.7 43.1 57.3

Table 1: Execution times of the elastic unit square problem. Wall clock time (in milliseconds) required by AFETI-C to
solve the cases contained in Figure 4.

of iterations is not severely a↵ected by the partitioning. This result is a well known scalability property

of FETI-T for elastic problems. The same problem has been studied with two-level FETI including rigid

body motions in the projector [45]. In particular, for H/h = 40, FETI-T equipped with the lumped

preconditioner requires between 17 � 30 iterations for a convergence criterion of 10�6 on the global

primal residual, that is in agreement with our experience.

We introduce nd = {0, 5, 10, 15} extra deformational modes in AFETI-C as constraints, increasing at

the same time the size of the coarse problem to N · (n↵ + nd), where n↵ = 3 is the number of RBMs per

substructure. A rapid acceleration of the convergence is clearly observed in Figure 4, with a progressive

increase in the order of convergence with the number of deformational modes included. A reasonable

number of deformational modes to use per subdomain is nd = 5, solving the problem in 8�10 iterations.

Moreover, by introducing nd = 15 deformational constraints per subdomain, it is possible to reduce the

residual one order of magnitude in less than two iterations.

Finally, it is reported in Table 1 the wall clock time required by AFETI-C running Algorithm 2 to

solve the cases contained in Figure 4. Analyzing the execution times we observe that, for a fixed number

of partitions, there exists an optimum number of deformational modes that minimizes the execution

time. In our case, nd = 10 for H/h = 20 and nd = 5 for H/h = 10. It is also observed that this optimum

number of deformational modes, to be included as residual constraints, increases with the number of

elements per partition, i.e., with the size of the interface problem.

7.1.2. Concrete gravity dam

Next, we move to a more realistic three dimensional example with a relatively complex geometry.

It is the case of a concrete gravity dam with seven spillways, represented in Figure 5, with dimensions:

67 m high, 50 m wide and 210 m long. The elastic material properties of the structure correspond to

plain concrete, with elastic modulus Ec = 20GPa, Poisson’s ratio ⌫c = 0.2 and density ⇢c = 2450kg/m3.

The geometry is discretized using 45,496 tetrahedral elements and 10,589 nodes, with a total of 31,767

displacement DOFs. All the nodes located at the bottom plane of the dam are fixed in the three

directions, and a uniform body load due to vertical gravity acceleration is applied to all elements at the
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Figure 5: Finite element model of a gravity dam with seven spillways. The mesh is composed of 45,496 tetrahedral elements
and 10,589 nodes (left) and partitioned into N = 5 substructures using the recursive algorithm of METIS (right).

AFETI-C

Partitions AFETI-1 nd = 4 nd = 8 nd = 12 nd = 16 nd = 20

N = 6 31 26 23 19 18 17
N = 8 35 27 24 23 21 20
N = 10 36 28 23 20 19 18
N = 12 39 31 23 21 19 18

Table 2: Iterations of the PCG algorithm for the 3D dam problem with AFETI-1 and AFETI-C equipped with nd =
{4, 8, 12, 14, 20} deformational-mode residual constraints. Note that for nd = 0, AFETI-C needs the same number of
iterations than AFETI-1.

initial instant of the simulation. Time integration step size is fixed to �t = 0.025 s.

The problem is first solved with algorithm AFETI-1. For this purpose, the finite element mesh is

partitioned into N = {6, 8, 10, 12} substructures using the recursive algorithm of METIS [56] and the

first time step solved by reducing the residual (45) with the classical PCG, described in Algorithm 1. The

results are presented in the second column of Table 2, where it is observed that increasing the number of

partitions produces a small influence in the total number of iterations required for convergence. Although

the e↵ect is more pronounced than that observed in the previous example with regular partitions. Note

that here we are dealing with highly irregular partitions.

Then, we solve exactly the same problem with AFETI-C introducing a di↵erent number nd =

{4, 8, 12, 14, 20} of deformational-mode residual constraints. The results contained in Table 2 demon-

strate the scalability of the AFETI-C method, where the total number of iterations performed now by

Algorithm 2 is mildly a↵ected by the number of partitions N used to divide the mesh. It is also observed

that the optimal number of deformational modes to utilize is nd ⇠ 8� 10, that produces a reduction in

the number of iterations between 30% and 50% without overloading the size of the coarse problem. This

conclusion is also in accordance with the behavior of AFETI-C observed in two-dimensional problems.
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Figure 6: Model of a cantilever plate fixed at X = 0 composed of 2,500 quadrilateral 4-node ANS C
0 plate elements with

2,601 nodes and 7,803 DOFs. The mesh is partitioned into N = 5⇥ 5 identical substructures of size H = 1/5 and 10⇥ 10
elements of size h = H/10.

7.2. Fourth-order elasticity problems

The inherent di�culties associated to the solution of fourth-order elasticity problems with FETI

methods are well described in the literature [22, 25, 26, 47]. The main problem lies in the ill-conditioning

of the system matrices, due to the combination of displacement and rotation DOFs present in plate and

shell structural elements.

7.2.1. Plate bending

First we consider a simple and regular geometry, studying the case of a square cantilevered plate of

side length L = 1 and thickness t = 0.01. The selected material properties are E = 1 ⇥ 106, Poisson’s

ratio ⌫ = 0.3 and density ⇢ = 1000. Again, a constant gravity body load g = 9.81 is applied entirely

at the first time step of the simulation, but now the time integration step is fixed to �t = 0.05 ⇡ T1
150 ,

where T1 is the first period of the structure. The plate is discretized with a regular mesh of 50 ⇥ 50

quadrilateral 4-ANS C0 plate elements of three DOFs per node, vertical displacement ant the two plane

rotations. Then, the mesh is partitioned into N = 5 ⇥ 5 identical substructures of size H = 1/5 and

10⇥ 10 elements per subdomain of size h = H/10, see Figure 6.

Using AFETI-C, the problem is solved with and without regularization, obtaining the results shown

in Figure 7. For both cases, the e↵ect of including deformational interface residual constraints is studied

varying nd = {0, 5, 10, 15}. We observe that without deformational modes, nd = 0, convergence is

uniform but very slow (left) and regularization (right) has a small influence, reducing the required

number of iterations from 73 to 69.

Without regularization, the total number of iterations is divided by two after augmenting the number

of deformational constraints to nd = 15, at the cost of increasing the size of the coarse problem. However,
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Figure 7: E↵ect of regularization in the convergence of the 3D plate problem with N = 5 ⇥ 5 subdomains of 10 ⇥ 10
elements and di↵erent number of deformational-mode residual constrains nd = {0, 5, 10, 15}. Convergence of AFETI-C
without system regularization (left) and AFETI-C with system regularization (right).

combining deformational modes with regularization has a tremendous impact on the convergence, where

the required number of iterations is now reduced by a factor of 7 after introducing nd = 15 deformation

constraints in the residual. The same plate bending problem was studied in [25] using a two-level

decomposition method specifically designed for plates and shells, requiring around 30 iterations when

PCG is equipped with the lumped preconditioner. In our case, this level of convergence can be achieved

with AFETI-C using nd = 5 deformational modes with system regularization.

7.2.2. Semi-cylindrical shell

This final example is taken from Fragakis et al. [57] and considers a semi-cylindrical panel under the

action of uniform gravity load, see Figure 8. The radius of the panel is R = 0.5, its length L = 1.6 and

the thickness t = 0.01. We assume pure elastic behavior, with Young’s modulus E = 1 ⇥ 106, Poisson

ratio ⌫ = 0.30 and material density ⇢ = 1000. The panel is modeled with triangular ANS shell elements

[58] of 6 DOFs per node, using a structured mesh of 131⇥ 131 nodes. Furthermore, the nodes located

at Z = 0 are completely fixed along the two linear edges of the panel. The model has 102,966 DOFs

and is decomposed into 130 irregular subdomains using the partitioning library METIS, as depicted in

Figure 8 (right). The time step for time integration is set to �t = 0.05 ⇡ T1
120 , with T1 the first period

of the structure.

In Figure 9, convergence results with (left) and without (right) regularization are presented for

di↵erent number of deformational modes. It is observed a similar behavior than in the previous ex-

ample, the benefit of using regularization without deformational interface constraints (nd = 0) is very
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Figure 8: Dimensions and finite element model of a semi-cylindrical shell with 33,800 triangular ANS shell elements
and 17,161 nodes with 6 DOFs per node (left). Same mesh partitioned into N = 130 substructures using the recursive
algorithm of METIS (right).

modest, reducing from 180 to 144 the required number of iterations. Without regularization, between

130� 180 iterations are needed for convergence depending on the number of deformational constraints

nd = {0, 5, 10, 15} used in the coarse problem. Using regularization and nd = 15 deformational modes,

the required number of iterations is divided by 7 and reduced to a total of 19 iterations for convergence.

The same problem, modeled with triangular TRIC shell elements and solved with classical FETI meth-

ods using coarse problem embedded in the preconditioner [57], required 202 iterations for FETI-T, 75

iterations for FETI-T equipped with special precondition, while FETI-DP only needed 39 iterations.

This means that FETI-DP is able to divide by a factor of 5 the total number of iterations required by

FETI-T and approximately reduces the residual by about one order of magnitude every 10 iterations.

For this particular experiment, we find that AFETI-C with regularization and 5 deformational modes

is able to perform similar performance than FETI-DP. More importantly, the number of iterations can

be progressively reduced by introducing more deformational constraints.

8. Conclusions

A variational framework for a formal derivation of partitioned analysis methods with localized La-

grange multipliers is proposed. A distinct feature of the present variational formulation is an a priori

inclusion of the rigid-body motions of the substructures. We summarize our findings in the following:

• One-level AFETI-1, with coarse problem included in the projector, can be considered the AFETI

alternative to FETI-T with equivalent properties. It enforces RBM equilibrium of the substructures
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Figure 9: Convergence results of the semi-cylindrical shell problem with AFETI-C and di↵erent number nd = {0, 5, 10, 15}

of deformational modes, without system regularization (left) and including regularization of the system (right). Regular-
ization for nd = 0 produces a modest gain in the convergence of 36 iterations, but provides a dramatic improvement when
deformational modes are included as additional interface constraints.

and requires application of the projector twice per PCG iteration.

• Two-level AFETI-2 embodies a complicated projector that enforces RBM equilibrium and extra

constraints in two di↵erent steps. However, its implementation is considered excessively compli-

cated and extremely expensive for numerical applications.

• One-level AFETI-C is considered the simplest alternative, requiring the solution of only one coarse

problem solution per iteration. Interface constraints come from rigid and deformational modes that

can be computed locally in the partitions and reused for every time step.

• AFETI-C with heterogeneity regularization and infusion of a small number of interface deforma-

tional modes is considered the best candidate for fourth order problems, providing iteration counts

that are competitive with existing parallel solution algorithms and implementation simplicity.

In comparing the proposed AFETI-C method with the FETI-DP method, it is noted that in FETI-

DP the elimination of global corner nodes from the system, produces a final symmetric and positive

definite linear system with an embedded coarse problem that is solved by PCG iteration, just like the

original FETI method. Hence, one di�culty of the method lies in the evaluation of the coarse problem

operator that are functions of the interface flexibilities and the inverse of the Schur complement of

the dynamic sti↵ness associated to the corner nodes. This Schur complement matrix involves a global

assembly that requires interprocess communications for its construction. In contrast, the AFETI-C

coarse problem (61) is a completely partitioned system, where the rigid and deformational constraints of
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partitioned domains can be computed and applied locally for each partition with minimum interprocess

communication.

In conclusion, the proposed AFETI-C algorithm is easy to understand, simple to implement and

employs the same solution strategy developed for static problems. It turns out that regularization for

handling system heterogeneities is easy to incorporate into the proposed AFETI-C and, unlike FETI-DP,

it needs no special treatment of corners and cross points.

Appendix A. Review of null space methods and projectors

The projection operation is a basic ingredient of the FETI and AFETI methods. It is widely used

in the derivation of many di↵erent FETI solution algorithms and much e↵ort has been dedicated to

describe and formalize its use, see for example the works by Farhat et al. [27] and Fragakis et al.

[59, 57], defining its properties and operational algebra in a general FETI framework. In this Appendix

we define the projection concept and summarize its basic properties under the AFETI framework. These

properties are repeatedly used through the paper.

Appendix A.1. Introduction

The solution by projections of FETI saddle point problems, is known in mathematics as null space

methods [54]. The null space approach has been extensively used in structural mechanics since the

early 70s, initially known under the name of force method [60], where a vector � of internal forces with

constraints, that needs to satisfy the saddle point problem:
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can be computed introducing the decomposition:

� = PB↵ +B
⇥
BTB

⇤�1
g (A.2)

where PB is a linear operator that projects the new solution ↵ into the subspace orthogonal to the

constraints matrix B. This decomposition transforms the initial constrained problem (A.1) into the

linear system:
⇥
PB

TFPB

⇤
↵ = b (A.3)

with b = PB
T
⇣
f � FB

⇥
BTB

⇤�1
g
⌘

and where the constraints are now enforced implicitly by the

projector.
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Figure A.10: Geometric representation in R3 of the projection operation into a subspace B with basis {b1,b2}. The
projector P̄B projects a vector � 2 R3 into B while PB projects � into B?, fulfilling the condition BT

PB� = 0.

Appendix A.2. The projection operation

Definition 1. Let B ⇢ Rn be a subspace with basis {b1, ...,bm} and let B = [b1...bm] 2 Rn⇥m be the

matrix with columns bi. The symmetric projector P̄B : Rn
! B given by

P̄B = B
⇥
BTB

⇤�1
BT (A.4)

is a linear and continuous mapping that projects every vector � 2 Rn onto B. As any projector, P̄B is

an idempotent operator, i.e., P̄BP̄B = P̄B.

Definition 2. Let B? =
�
� 2 Rn : BT� = 0

 
be the subspace of Rn orthogonal to B that extends its

range to Rn = B�B?. If I 2 Rn⇥n is the identity matrix, then PB = I�P̄B is also a projector that maps

every � 2 Rn onto B?. This property follows immediately from the identity � = P̄B� +
�
�� P̄B�

 
,

(see Figure A.10). Finally, expressing � 2 Rn as � = A↵ + B� using a matrix A 2 Rn⇥n such that

BTA = 0 with vectors ↵ 2 Rn and � 2 Rm, we say that the projector PB : Rn
! B? filters out (or

eliminates) the components of � in R(B) because PB� = A↵.

Corollary 1. Any vector � 2 Rn
can be decomposed with full support of Rn

as

� = PB↵ +B� (A.5)

by projection into orthogonal subspaces B?
and B.

Appendix B. Projectors for FETI methods

Some particularities and extensions of the projection operation defined above have been used in the

context of FETI methods. We summarize them as follows.
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Definition 3. Let A 2 Rn⇥n be an arbitrary symmetric matrix such that BTAB 2 Rm⇥m is a positive

definite matrix, we define a new A-orthogonal projector P
A
B as

P
A
B = I�AB

⇥
BTAB

⇤�1
BT (B.1)

an idempotent and non-symmetric operator that eliminates the components of any vector � 2 Rn in

R(AB). This filtering process is achieved thanks to the property

P
A
BAB = 0 (B.2)

revealing that AB belongs to the kernel of P
A
B . Note also that the non symmetrical projector P

A
B

presents the following symmetry

P
A
BA = AP

A
B

T
(B.3)

with respect to matrix A.

Proposition 1. From definition (B.1) it follows that P
A
B

T
: Rn

! B?
is also a projector, thanks to

property

P
A
B

T
B = 0 (B.4)

meaning that P
A
B

T
applied to a general vector of Rn

acts as a filter eliminating the components in R(B),

i.e. projecting into B?
.

Corollary 2. Using projector (B.1) every vector � 2 Rn
can be decomposed with full support of Rn

,

obtaining the one-level decompositions

� = P
A
B↵ +AB� (B.5)

� = P
A
B

T
↵ +B� (B.6)

based on properties (B.2) and (B.4). Moreover, a second decomposition of the vector ↵ can be introduced

using (B.6) in (B.5) and vice-versa, obtaining the two-level decompositions

� = P
A
B

n
P

D
C

T
↵ +C�

o
+AB� (B.7)

� = P
D
C

T �
P

A
B↵ +AB�

 
+C� (B.8)

with C 2 Rn⇥p
and � 2 Rp

, that are also valid decompositions of �.
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Example 1. Given a constant vector g 2 Rm, the space of all � 2 Rn such that BT� = g can be

represented using the one-level decomposition (B.5) as

� = P
A
B↵ +AB

⇥
BTAB

⇤�1
g (B.9)

with ↵ 2 Rn.

Appendix C. Projectors for AFETI methods

An additional refinement within the projection concept is used for the derivation of AFETI algo-

rithms.

Definition 4. The projector P
 
R

T
where  = P

A
BFP

A
B

T
, with matrices F 2 Rn⇥n and R 2 Rn⇥q such

that RT R 2 Rq⇥q is nonsingular, presents the following properties

P
 
R

T
R = 0 (C.1)

P
 
R

T
B = B (C.2)

i.e., acts as a filter of R components while retaining B components of a vector of Rn.

Proposition 2. Consequence of previous definition is that the composition P
A
B

T
P
 
R

T
is a double-filter

of two di↵erent subspaces, that is,

P
A
B

T
P
 
R

T
R = 0 (C.3)

P
A
B

T
P
 
R

T
B = 0 (C.4)

showing that it can be used to eliminate components of subspaces with basis R and B, with the additional

property,

RT
P

A
BFP

A
B

T
P
 
R

T
= 0 (C.5)

Proof. Note that (C.3) is a direct consequence of (B.4), that (C.4) comes from the consecutive application

of (C.2) and (B.4), and that (C.5) is property (B.2) transposed.

Proposition 3. The following symmetry condition holds between P
 
R and P

A
B :

P
A
BP

 
RP

A
B = P

 
RP

A
B = P

 
RP

A
BP

 
R (C.6)
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where the first equality is a direct consequence of the idempotent property of P
A
B , but the second relation

is less evident. A direct consequence of (C.6) is that P
 
RP

A
BP

 
RAB = 0.

Corollary 3. A complete space of vectors � 2 Rn
fulfilling the constraint RT� = 0, can be expressed

for example using a one-level decomposition equivalent to (B.6) in the form,

� = P
 
R

�
P

A
B↵ +AB�

 
(C.7)

� = P
 
R

n
P

A
B

T
↵ +B�

o
(C.8)

or with a two-level decomposition similar to (B.8) like,

� = P
 
R

n
P

D
C

T
n

P
A
B

T
↵ +B�

o
+C�

o
. (C.9)

Example 2. Given a constant vector g 2 Rm, the space of all � 2 Rn such that BT� = g and fulfilling

at the same time the condition RT� = 0, can be represented as the one-level decomposition (C.7) as

� = P
 
R

n
P

A
B↵ +AB

⇥
BTAB

⇤�1
g
o

(C.10)

with ↵ 2 Rn.
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