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Abstract: In this paper, we formulate and solve the urban line planning problem considering a
multilayer representation of a bimodal transportation network. Classical formulations are usually
constructed over a planar network, which implies the need to introduce several strong non-linearities
in terms of frequencies when modeling transfer times. In the proposed network representation,
each candidate line is stored in a specific layer and the passengers’ movements for each origin–
destination pair are modelled considering a strategy subgraph, contributing to a sparse model
formulation that guarantees feasibility and simplifies the assignment process. The methodology is
first tested using the Mandl network, obtaining results that are comparable in terms of quality with
the best metaheuristic approaches proposed in the scientific literature. With the aim of testing its
applicability to large scenarios, the proposed approach is then used to design the main urban transit
network of Seville, a large scenario with 141 nodes and 454 links, considering artificial unfavorable
demand data. The reasonable computation time required to exactly solve the problem to optimality
confirms the possibility of using the multilayer approach to deal with multimodal network design
strategic problems.
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1. Introduction

The line planning problem (LPP) is a critical strategic stage in the urban transit trans-
portation planning process. Also known as the urban transit network design problem
(UTNDP), it is concerned with the design of a set of transit routes and the determination
of their frequencies with the aim of matching, in the most convenient way, the passenger
demand and the supply; see, for instance, Goossens et al. [1], Guan et al. [2]. It is worth
mentioning that several authors working in the field of passenger railway transportation
have used the term line planning to specifically refer to the problem of determining the
stopping pattern, frequency and capacity of different service types moving along a corridor
(Wang et al. [3], Zhou et al. [4], Zhao et al. [5]). In this work, we focus on the conven-
tional UTNDP, an NP-hard problem (Magnanti and Wong [6]), which, given its practical
importance, has attracted the interest of researchers in the transportation field since the
1960s. For a comprehensive review of the different approaches used to solve this prob-
lem, we recommend that readers consult the chronologically ordered works of Ceder [7],
Wirasinghe [8], Guihaire and Hao [9] and Kepaptsoglou and Karlaftis [10]. More recent
reviews by Shöbel [11], Farahani et al. [12] and Ibarra-Rojas et al. [13] present a classification
of the different variants of the problem, objective functions and solving procedures.

The objective functions generally considered in urban transit network design prob-
lems can be passenger- and/or operator-oriented (Guihaire and Hao [9]). From the point
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of view of the passengers, the designed network should cover the largest possible area
of the scenario under study; the set of final lines should allow the maximum number
of direct trips (that is, a lower number of transfers) and ensure the minimum travel
time (Jiang et al. [14], Feng et al. [15]). From the operator point of view, the main goal
is to reduce as much as possible the operating or even the construction costs (typically
when dealing with urban railways), an objective that is essentially attained by minimiz-
ing the number of lines, their lengths and their frequencies. These aspects are usually
considered in models where the demand is supposed to be inelastic. Otherwise, a pure
cost reduction policy could imply an important loss of passengers (Robenek et al. [16],
Canca et al. [17]). Multi-objective formulations consider both the user and operator points
of view (Iliopoulou et al. [18]). The most common approach is to construct a weighted
objective function trying to simultaneously minimize the user and operator costs. For ex-
ample, Mauttone and Urquhart [19] proposed a multi-objective model considering the
total travel time of users and the fleet size. A second type of multi-objective model contains
bilevel formulations, as in the works by Gao et al. [20], Szeto and Jiang [21], Kim et al. [22]
and Goerigk and Schmidt [23], where, usually, the upper-level problem is used to determine
the lines and the frequencies, and the lower level is responsible for modeling the passenger
route choice behavior for a given set of transit lines proposed by the upper level.

In general, the output of a transit network design problem is a line plan (also called a
line concept) that should offer good connectivity (the possibility of traveling among major
trip generator locations) and spatial coverage (geographic accessibility). The designed
network has a direct influence on users and operators. On the one hand, users will expect
a transit network with as many lines as possible to facilitate direct trips between selected
points, minimizing then the need to transfer between lines, as well as high frequencies,
minimizing the waiting times at stops (or platforms in the case of railways) and the transfer
times between lines. If these goals are not achieved, the perceived quality of the service will
be low. In this case, if possible, potential passengers will opt for alternative transportation
modes, thus diminishing the revenue obtained by the operator company. On the other
hand, more lines and higher frequencies imply higher operating costs. These opposite goals
require service operators to achieve a trade-off between the quality of the service offered
and the operating cost of the network.

The remainder of this work is organized as follows. Section 2 presents a detailed
review of line planning problems, classifying the contributions into three groups according
to the use or not of a pool of candidate lines and the type of algorithm considered to
solve the problem. The section ends by positioning this research within the above scope.
Section 3 contains the description of the problem addressed and explains the construction
of the bimodal multilayer network that we will use to model the LPP. Section 4 presents
the mechanism used to build the pool of candidate lines. Section 5 presents the motivation
and the process adopted to construct the strategy subgraph for each OD pair. Using
the multilayer network structure, Section 6 presents the proposed arc- and path-based
formulations for the LPP. Section 7 contains the computational experiments, starting from a
comparison with other approaches by using the Mandl network as a benchmark scenario.
Later, the largest network is used with the aim of measuring the performance of exact
procedures over our multilayer structure. Finally, Section 8 contains the main conclusions.

2. Literature on the Line Planning Problem

The literature on the LPP is rich. The line planning problem has attracted the attention
of many researchers since the end of the 1960s. At an early stage in the research of the line
planning problem, researchers proposed practical heuristic procedures to generate routes
and determine line frequencies (see Lampkin and Saalmans [24], Bel et al. [25], Mandl [26],
Furth and Wilson [27], Ceder [28], Ceder and Wilson [29], Van Nes et al. [30], Shih and
Mahmassani [31]). For instance, Lampkin and Saalmans [24] proposed a sequential
approach, consisting of a first phase where a heuristic algorithm iteratively added routes
with the objective of maximizing the number of direct passenger trips. Then, in a second
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phase, a random greedy-based search procedure was used to obtain line frequencies for
a given fleet without capacity limitations. Bel et al. [25] proposed a sequential approach
composed of a heuristic procedure to select good candidate streets. Later, in a second
stage, starting from the subset of streets, a maximal set of lines was generated. Finally,
the frequencies were obtained using a gradient-based search heuristic with the objective
of minimizing the passenger waiting time. Van Nes et al. [30] presented a heuristic
method that started from a set of lines (the set of lines that allowed the highest number
of direct trips) and later increased the frequency of each line while satisfying given
budget and fleet size limits.

Since then, various approaches have followed in the literature to address the LPP and
can be classified into three different groups. The first group is formed by works that model
the problem as a mathematical programming problem starting from an a priori defined
pool of candidate lines; see Bussieck et al. [32], Bussieck et al. [33], Goossens et al. [1] and
Guan et al. [2]. The second group focuses its attention on the formulation of models that de-
sign the network from scratch. Starting from an underlying network, the models construct
lines by combining edges. To this end, binary variables are used to determine whether edges
belong to lines. Moreover, several constraints are needed to guarantee that the edges that are
selected to define a line maintain the appropriate structure, i.e., connectivity between con-
secutive edges, no loops and total length bounds. This approach gives rise to very complex
formulations that are difficult to solve using exact procedures; see, for instance, the works
by Szeto and Wu [34], Szeto and Jiang [21] and Canca et al. [17,35]. At the beginning of the
1990s, the first applications of metaheuristic techniques to the LPP appeared—for instance,
the works by Baaj and Mahmassani [36], Chakroborty et al. [37], Chakroborty et al. [38]
and Chakroborty and Wivedi [39]. The contributions of this group usually address the line
planning problem by starting from a small set of initial candidate lines and take advantage
of the capability of metaheuristics to generate new candidate lines from the lines initially
defined and to handle more complex objectives, which are difficult to explicitly formulate.

2.1. Formulations Based on a Pool of Candidate Lines

Concerning the mathematical formulations of the LPP, as mentioned before, two
different approaches have been followed: models that consider an a priori defined candidate
line pool and formulations that compose lines by using links from an underlying network.
Among the works of the first group, Wan and Lo [40] proposed a mixed integer model to
design a transit network with multiple routes while minimizing the sum of the operational
costs of all the transit lines. The model does not consider passengers’ preferences, which
affect the determination of line frequencies. The authors illustrate the proposed formulation
on a small network with 10 nodes, 19 edges and 9 origin–destination (OD) pairs, which
is solved using CPLEX. Borndörfer et al. [41] presented a multicommodity path-based
network flow formulation for the line planning and frequency setting problem. The model
aims to minimize a weighted combination of the total travel time of passengers and
operating costs. In this formulation, passengers can be freely routed through a set of paths
connecting the origin and destination of each OD pair, but no transfers between lines are
considered. Using a quite similar formulation, Guan et al. [2] considered a line planning
problem to simultaneously determine the line configuration (from a given predefined line
pool that connects all stations) and the passengers’ assignment, while minimizing the
total length of all lines and the total number of passengers transferring. Goossens et al. [1]
proposed several operator-oriented models to deal with line planning problems where the
lines can have different halting designs. The formulations were solved for small scenarios
using CPLEX.

Cancela et al. [42] studied the bus transport network design problem incorporating a pas-
senger assignment process based on the use of a trajectory graph (see Spiess and Florian [43]).
The problem addressed consisted of determining a set of lines and their corresponding
frequencies while minimizing the total travel time of all passengers subject to, among oth-
ers, an upper limit on the total fleet size. Three sets of experiments were presented using
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different test instances (a small artificial instance, benchmark instances (Wan and Lo [40],
Bagloee and Ceder [44]) and the Rivera network, Uruguay (Mauttone and Urquhart [19])),
determining the initial line pool in a different way for each one of these experiments.
Specifically, for the Rivera experiment, a network with 84 vertices, 143 edges and 378 OD
pairs, the pool of candidate routes was generated by the Pair Insertion Algorithm described
in Mauttone and Urquhart [19] and the model was solved using CPLEX. In this case,
the authors achieved a relative MIP gap of 12% after 4 h of computation. Lee and Nair [45]
proposed an optimization algorithm for the line planning problem based on bilevel pro-
gramming that takes advantage of the structure of the problem together with the estimation
of the demand range. The problem of conservativeness due to the estimation of the range
of demands is mitigated by adopting a robust optimization approach.

Several authors, such as Baaj and Mahmassani [36], Israeli and Ceder [46], Pattnaik
et al. [47], Bielli et al. [48], Ngamchai and Lovell [49], Chakroborty [50], Tom and Mohan [51],
Lee and Vuchic [52], Mauttone and Urquhart [19], Zhao and Zeng [53], Cipriani et al. [54]
and Gattermann et al. [55], have specifically addressed the construction of an initial pool
of candidate lines, proposing different types of heuristics. Considering that the structure
of lines is known, several authors have focused their efforts on solving the frequency
setting problem under different perspectives, usually adding new characteristics. Hadas
and Shnaiderman [56] presented a new approach to frequency setting that allows the use of
stochastic information of the data and its corresponding costs. Canca et al. [57] proposed a
mixed integer non-linear programming model (MINLP) to determine the optimal frequency
of lines and their capacities in a railway rapid transit (RRT) network in which different
lines could operate on common tracks. Gkiotsalitis and Cats [58] addressed the problem
of determining the optimal headways with the inclusion of operational deviations. Canca
et al. [59] dealt with the problem of determining the optimal set of frequencies in an RRT
network considering that the operating costs are convex and non-linear as a consequence
of the energy consumption of trains. In their approach, the operation cost at each track is a
function of the train model characteristics, the total passenger load and the average train
speed. Sun and Szeto [60] proposed a bilevel model to simultaneously determine fares and
frequencies while maximizing the profit of the transit operator. The authors extended the
stochastic user equilibrium assignment model to the elastic demand case. Gutiérrez-Jarpa
et al. [61] proposed a model for the design of a rapid transit system. The main idea of this
work consists of building segments within broad corridors to connect some vertex sets,
and, at a second stage, assembling the segments into lines. The objective of the model is to
maximize the captured demand while minimizing travel times. Herbon and Hadas [62]
proposed a new approach that combined the interests of passengers and operators into a
generalized newsvendor model. Waiting times and overcrowding costs were used to define
the passenger point of view, whereas the operator point of view was modeled considering
the vehicle size, lost sales and occupancy.

2.2. Constructive Approaches

The second group of modeling approaches contains formulations that do not use
an a priori pool of candidate lines. In these models, the set of lines is constructed from
scratch, starting from a base network that contains the set of links that can be part of the
lines. In general, these models are complex in comparison with models that incorporate an
initial set of possible lines, including more types of variables and constraints. Normally,
the structure of these models is composed of two related parts, the first one responsible for
modeling the structure of lines (topological constraints) and the second one dealing with
the passenger assignment and the frequency setting problems. Szeto and Wu [34] proposed
a non-linear integer formulation to minimize the weighted sum of the number of transfers
and the total travel time, considering in-vehicle and waiting times. The effort made by the
authors to model the waiting times in the change between lines deserves special attention.
The authors applied the methodology to design the trunk bus network of the Tin Shui Wai
area, Hong Kong, a network with 23 nodes and 41 edges.
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Szeto and Jiang [21] proposed a bilevel transit network design problem to simulta-
neously determine the transit routes and their frequencies. The upper-level problem was
formulated as a MINLP with the goal of minimizing the number transfers, while the lower-
level problem tackled the assignment problem considering capacity constraints. The au-
thors proposed a hybrid artificial bee colony (ABC) to solve the problem. Canca et al. [63]
proposed a mathematical programming model integrating the design of the infrastructure
network, the line planning problem, the determination of train capacities for each line
and the fleet investment and personnel planning. The demand was considered elastic,
and, therefore, a modal split model was used to determine the mode choice between the
transit network and a competing mode. The objective consisted of maximizing the total
profit, achieving a balance between the captured demand and the cost associated with the
network construction and operation.

Canca et al. [35] presented an adaptive large neighborhood search (ALNS) algorithm to
jointly handle the network design and the line planning problem, but including rolling stock
and personnel planning issues. For a similar problem, Canca et al. [17] proposed an iterative
procedure governed by an ALNS that, at each iteration, runs a branch-and-cut algorithm
implemented in Gurobi, which solves the assignment and network operation problems. De-
Los-Santos et al. [64] addressed the problem of designing a bimodal pedestrian–bus transit
network, locating the bus stops and determining the set of bus lines. This work presented
two formulations, which were compared using the ε-constraint method. Recently, from a
theoretical point of view, Heinrich et al. [65] investigated the parameterized complexity of
line planning problems when all simple paths in the network can be used as potential lines,
focusing not only on the network size but also on additional parameters such as the tree
width combined with the maximum degree and maximum frequency.

2.3. Metaheuristic Approaches

As mentioned in the first section, the complexity of the LPP problem has caused
numerous researchers to try to solve it using metaheuristic techniques. Most of these
approaches do not propose an explicit mathematical formulation of the treated problem and
focus on explaining the objective function considered, the coding of the solutions and the
structure of the algorithm to be used. In the case of small networks, such as the Mandl
network (Mandl [26]), some of these implementations have obtained the best known results.
Moreover, the fitness function can manage more complex objectives than in the case of
exact methods, incorporating transfers in an easy way and allowing one to solve, in general,
large scenarios. For a detailed review of the use of metaheuristics to solve the problem of
transit route network design, we refer readers to the work of Iliopoulou et al. [18].

Chakroborty and Wivedi [39] used a genetic algorithm (GA) to find near-optimal
solutions to the line planning problem and illustrated the algorithm using the Mandl
network. Bielli et al. [48] also proposed a GA where each chromosome is evaluated by the
calculation of performance indicators, which are obtained after analyzing the results of a
transit assignment. Given information on passenger demand, fleet size and an underlying
network, Zhao [66] proposed a methodology aimed at minimizing transfers and total users
and maximizing service coverage. The authors used a stochastic global search procedure
based on the combination of a genetic algorithm and simulated annealing (SA). Zhao
and Zeng [67] applied a search scheme based on an integrated SA and GA method previ-
ously developed by the authors to find optimal transit network route layouts to minimize
passenger transfers; see also Zhao and Zeng [68]. Later, Zhao and Zeng [69] presented
a metaheuristic method for the design of the set of routes, determining the headway of
each line and the timetable. The solving procedure is based on an iteratively local search
procedure combined with SA, tabu search (TS) and greedy search. The authors illustrate
their algorithm using first the Mandl network and comparing the results against those
obtained by Mandl [26], Shih and Mahmassani [31] and Baaj and Mahmassani [36]. Fan
and Mumford [70] solved the transit network design problem using simple hill climbing
and simulated annealing algorithms. The authors obtained good results in comparison
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with previous methods for Mandl’s benchmark problems. Szeto and Wu [34] proposed
a GA with a new solution representation scheme and specific genetic operators to im-
prove the search capabilities. The algorithm incorporates a diversity control mechanism
based on a new definition of the Hamming distance to avoid premature convergence.
Bagloee and Ceder [44] proposed a heuristic methodology considering several of the major
concerns of transit authorities, such as budget constraints, level of service and the attrac-
tiveness of the transit lines. The first step was the construction of a set of potential stops
using a clustering approach. As a second step, the authors used a special shortest-path
procedure to build a set of candidate routes, categorized by hierarchy (mass, feeder, local
routes). Finally, a GA was launched over the set of candidate routes, incorporating bud-
getary constraints, until a good solution was found. Cipriani et al. [54] first proposed a
heuristic route generation algorithm and then a GA to find a suboptimal set of routes and
their frequencies. Nikolić and Teodorović [71] tried to maximize the number of passengers
attended while minimizing the total number of transfers and the total travel times of all
passengers served. The authors used a bee colony optimization (BCO) metaheuristic to
solve the problem. Chew et al. [72] described a bi-objective model for the LPP with limita-
tions on the number of lines, nodes per line and number of passengers transferring more
than once. The authors proposed a GA that was tested on benchmark data. Jiang et al. [14]
minimized the weighted sum of the number of transfers and the total travel times of pas-
sengers. The problem was solved by means of a hybrid improved artificial BCO algorithm.
Nayeem et al. [73] dealt with the maximization of the number of attended passengers, min-
imizing the total number of transfers and the total travel times of all passengers served.
The authors proposed a GA to solve the problem. Nikolić and Teodorović [74] considered a
transit network design and frequency setting problem where the set of routes is determined
by the selection and assembly of links selected from an underlying network. To solve
the problem, the authors designed a BCO metaheuristic. Zhao et al. [75] used a memetic
algorithm (MA) to determine the optimal route configuration and line frequencies for a
urban transit network. As the objective, they proposed the minimization of the passenger
cost and the reduction of the unsatisfied passenger demand. Ref. [76] applied a GA to the
line planning problem, achieving the best reported results for the Mandl network.

Kim et al. [22] proposed an SA algorithm to solve a bilevel model where the upper-level
problem controls the decisions corresponding to operators and the lower-level problem
simulates the users’ trip assignment. The addressed problem considers two transportation
modes, transit and private cars. The mode choice is selected in the lower level using a
logit modal split set of constraints. The methodology is applied to the Mandl network.
Feng et al. [15] proposed a GA to solve a transit route design problem with the objective of
minimizing the total travel time of passengers. In their paper, the authors pay attention
to the analysis of the time composition involved in transfers. Buba and Lee [77] proposed
a differential evolution approach to address the network design problem. The objective
consisted of minimizing passenger costs and unattended demand. Kim et al. [78] studied a
bilevel transit route network design considering mobility and accessibility measures. To
determine the frequency of each line, the authors used a GA in the upper level, whereas the
lower level addressed the modal split and the traffic assignment. Katsaragakis et al. [79]
proposed a cat swarm optimization (CSO) algorithm to design near-optimal routes for
public transportation networks. Vlachopanagiotis et al. [80] presented a new approach
based on an alternating-objective GA to achieve Pareto optimality between user and
operator interests. Durán-Micco et al. [81] presented a transit design and frequency setting
problem that incorporates additional aspects, such as discrete frequencies, the selection of
terminal nodes from a specific subset and the construction of circular lines. The authors
proposed a bi-objective MA that minimizes the average travel time of passengers and
the fleet size. Ahern et al. [82] developed a multi-objective simulated annealing (MOSA)
algorithm to solve the transit network design problem. The algorithm follows a three-phase
search procedure. The first two phases, using a GA, deal independently with the passenger
and operator objectives. The last phase is a multi-objective search that simultaneously
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works with the two objectives to improve the quality of the solutions. Iliopoulou et al. [83]
proposed a VNS-based algorithm to solve the LPP. The performance of the algorithm was
tested using the benchmark Mandl network and compared with several methods from the
literature. Sunhyung et al. [84] proposed an algorithm that uses reinforcement learning
(RL) for the simultaneous optimization of the number of bus routes, the route design
and service frequencies. The algorithm was tested on the benchmark Mandl Swiss network.
Table 1 considers several of the reviewed approaches in chronological order, describing
their main characteristics.

2.4. Discussion and Contributions

From all these contributions, regarding the ability to address large-sized instances,
we highlight the works by Zhao and Zeng [69], Bagloee and Ceder [44], Cipriani et al. [54]
and Durán-Micco et al. [81], where the authors illustrate the applicability of their algorithms
using real-life scenarios. In general, with the exception of the comparisons to benchmark
networks, such as the Mandl one, the results of the application of metaheuristics to the
line planning problem do not establish a measure of the quality of the obtained solutions,
mainly as a consequence of the lack of comparisons with the exact solutions of the ad-
dressed problems. Most of the contributions proposing a metaheuristic algorithm to solve
the problem do not incorporate an explicit mathematical formulation. Moreover, since
metaheuristics are nondeterministic approaches, several runs are needed to analyze the
average effectiveness of the approach, which results in different final solutions, and imply
a large increment in the computation time, which, in real networks, can be extended to
several hours; see, for instance, the four papers mentioned above.

In general, the majority of the referred works address the LPP considering a single-
layer network, which leads to complex models if an explicit formulation of transfer times
is pursued. The need to explicitly consider transfers in modeling LPPs was previously
discussed by Cancela et al. [42], who stated that if the passenger flow assignment is
performed ignoring the choice of individual routes, the solution can include a large number
of transfers for certain OD pairs. The difficulty in modeling waiting and transfer times lies
in the non-linear dependency with respect to the line frequencies. Although the passenger
assignment can be formulated as a linear problem (Spiess and Florian [43]), when this
problem is part of a transit network design model, non-linearities emerge because the
frequencies are then decision variables.

According to Camporeale et al. [85], there is still an important gap in modeling and
analyzing strategic and tactical transportation problems when more than one transportation
mode is considered. In this paper, we reformulate the classical LPP (Guan et al. [2], Szeto
and Wu [34]) considering an initial pool of candidate lines but using a multilayer network
structure, which allows us to work with more than one transportation mode and simplify
the formulation of transfer times. In fact, we are dealing with a bimodal LPP where the
pedestrian mode is considered together with the bus mode.
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Table 1. Chronological summary of scientific contributions for the LPP.

Title Context From Scratch Line
Pool

Single/
Multilayer

Routes Frequencies Mathematical
Formulation

User Costs Operation/
Fleet Costs

Construction
Costs

Solving
Procedure

Side
Constraints Application

Chakroborty and Wivedi [39], (2002) Bus
X

(starting from
a line pool and
recombining)

Single X X No

Average in-vehicle travel time
Percentage of users who can go directly
from their origin to their destination
Percentage of users making a single transfer
Percentage of users transferring twice
Percentage of users who cannot use the
transit network to go from their origin to
their destination

_ _ Genetic algorithm _ Mandl’s network
(15 nodes, 21 arcs)

Guan et al. [2], (2006) Bus X Single X X Yes
Minimizing the total length of
all transit lines,
total passenger in-vehicle travel time
and total number of passenger transfers

_ _ Standard branch
and bound

_
Simplified version of
Hong Kong mass transit
Railway (36 OD pairs,
9 nodes, 10 arcs)

Goossens et al. [1], (2006) Railways X Single X X Yes Operation costs _ CPLEX 7.5 Different
halting patterns

NSRandstad
network
(122 nodes,
138 arcs)

Zhao and Zeng [69], (2008) Bus
X

(starting from
a line pool

and improving)

Single X X No Total user cost _ Budget
constraints

Integrated simulated
annealing,
tabu and greedy
search algorithm

_ Mandl and Miami
Dade transit-based
networks (replanning)

Fan and Mumford [70], (2010) Bus X Single X No No
Weighted sum of the total travel
distance accumulated over all
passengers and the total number
of transfers

_ _ Hill climbing and
simulated annealing

_ Mandl’s network
(15 nodes, 21 arcs)

Bagloee and Ceder [44], (2011) Several
transit modes

X Single X X No Total saved generalized time
with respect to no-transit-plan
scenario

_ _ Three phase heuristic:
location of stops +
route generation + GA

_ Winnipeg
and Chicago
scenarios

Szeto and Wu [34], (2011) Bus
X

(starting from
a line pool and
recombining)

Single X X Yes Weighted sum of the number of transfers
and total passengers’ travel time

_ _
Genetic algorithm +
frequency setting heuristic
based on neighborhood
search

_
Trunk bus network of
Tin Shui Wai residential
area, Hong Kong
(23 nodes, 41 arcs)

Hadas and Shnaiderman [56], (2012) Bus Single X Yes
(Analytical
solution)

Overload and un-served demand Empty seats _ Analytical Stochastic
demand
capacity

A line with 5 stops

Nikolić and Teodorović [71], (2013) Bus
X

(starting from
a line pool and
recombining)

Single X No Number of satisfied passengers
Total number of transfers
Total travel time of all served passengers

_ _ Bee colony _ (110 nodes,
275 arcs)

Nayeem et al. [73], (2014) Bus
X

(starting from
a line pool

and recombining)

Single X No In-vehicle time of all served passengers
Total number of transfers
Total number of unsatisfied passengers

_ _ Genetic algorithm
with elitism

_
Mandl’s network
(15 nodes, 21 arcs)
Yubei (70 nodes, 210 arcs)
Brighton (110 nodes, 385 arcs)
Cardiff (127 nodes, 425 arcs)

Nikolić and Teodorović [74], (2014) Bus
X

(starting from
a line pool

and recombining)

Single X X No In-vehicle time of all served passengers
Total number of transfers
Waiting time of passengers

_ _ Bee colony _ Mandl’s network
(15 nodes, 21 arcs)
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Table 1. Cont.

Title Context From Scratch Line
Pool

Single/
Multilayer

Routes Frequencies Mathematical
Formulation

User Costs Operation/
Fleet Costs

Construction
Costs

Solving
Procedure

Side
Constraints Application

Zhao et al. [75], (2015) Bus
X

(starting from
a line pool and

applying several
operators)

Single X X Yes, but not in
a closed

formulation

Minimizing the passenger cost
Reducing the unsatisfied passenger
demand

_ _ Memetic algorithm _ Mandl’s network
(15 nodes, 21 arcs)

Canca et al. [57], (2016) Railway
Rapid
Transit

Fixed Single X Yes
Travel time per transit user
Waiting time
Transfer time
Fare

Energy consumption
and maintenance
Fixed operation cost
Variable operation cost
Fleet acquisition cost

_ Extended cutting
plane (ECP) method

Specific shared
segment constraints
Capacity

Madrid metropolitan railway
(33 stations, 76 arcs,
800 OD pairs)

Canca et al. [63], (2016) Railway
Rapid
Transit

X Single X X Yes Total user travel time
(indirectly through
profit maximization)

Fixed operation cost
Variable operation cost
Fleet acquisition cost
Revenue

Network
construction
cost

Branch and bound Competing
transportation
mode

Small
artificial
instance

Kim et al. [22], (2016)
New line

(different mode
alternatives)

into an existing
bus network

X Single One X
(only for
one line)

Yes Travel time cost of
auto and transit users

Operating costs of auto
and transit users

Cost of
constructing a
new transit line

Simulated annealing _ Mandl’s network
(15 nodes, 21 arcs)

Goerigk and Schmidt [23], (2017) Railways X Single X X Yes
(Two

formulations)

Total travel time _ _
Exact for artificial
scenarios (CPLEX) +
Genetic algorithm for
the real case

_ Long-distance railway
network of Germany
(250 stations, 652 arcs)

Canca et al. [35], (2017) Railway
Rapid
Transit

X Single X X Yes Travel time per transit user
Waiting time
Transfer time

Fixed operation cost
Variable operation cost
Fleet acquisition cost
Revenue

Network
construction
cost

ALNS Alternative
mode

Seville metropolitan area
(49 nodes, 135 arcs,
2352 OD pairs)

Canca et al. [59], (2018) Railway
Rapid
Transit

Fixed Single X Yes Travel time per transit user
Waiting time
Transfer time

Total variable cost due to
energy consumption
Fleet operation costs

Sequential
optimization

Vehicle
selection

Metro network of Lisbon
(50 stations,
54 arcs, 2450 OD pairs)

Buba and Lee [77], (2018) Bus
X

(Generating the
line pool as

in Mundford 2013)

Single X X Yes Total travel time
Unsatisfied demands

Bounding fleet size _ Differential
evolution

Assuming
maximum
two transfers

Mandl’s network
(15 nodes, 21 arcs)

Canca et al. [59], (2018) Railway
Rapid
Transit

X Single X X Yes
Travel time per transit user
Waiting time
Transfer time
Fare

Fixed operation cost
Variable operation cost
Fleet acquisition cost
Revenue

Network
construction
cost

ALNS Alternative
mode

Artificial network
(100 nodes,
275 arcs,
9900 OD pairs)

Kim et al. [78], (2019) Mixed
(one fixed rail line,
variable bus lines)

X Single Only
bus

X Yes User cost
(Total trip time)

Operator costs _ Genetic algorithm Network
re-adaptation
with equity aspects

Adapted Mandl
network

Canca et al. [17], (2019) Railway
Rapid
Transit

X Single X X Yes
Travel time per transit user
Waiting time
Transfer time
Fare

Fixed operation cost
Variable operation cost
Fleet acquisition cost
Revenue

Network
construction
cost

ALNS
Metaheuristic

Alternative
mode

Seville metropolitan
area
(49 nodes, 135 edges,
2352 OD pairs)
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Table 1. Cont.

Title Context From Scratch Line
Pool

Single/
Multilayer

Routes Frequencies Mathematical
Formulation

User Costs Operation/
Fleet Costs

Construction
Costs

Solving
Procedure

Side
Constraints Application

Katsaragakis et al. [79], (2020) Bus X
(up to 8
routes)

X X
Average travel time per transit user
Percentage of satisfied demand
without any transfers
Percentage of unsatisfied demand

_ _ Cat swarm
optimization
based algorithm

_ Mandl’s network
(15 nodes, 21 arcs)

De-Los-Santos et al. [64], (2021) Bus X Two modes into
a single graph

X X Yes
In-bus travel time
Waiting time
Walking time
Transfer time

Constraints on the length
of lines and number of
stops per line

_ GAMS,
using CPLEX 12.5

Circular lines
Lazy constraints
(sub-tour elimination
constraints)

Interurban
eastern bus network
of Seville
(43 nodes, 44 arcs,
1806 OD pairs)

Lee and Nair [45], (2021) Bus X Two modes into
a single graph

X Yes Total system travel time
Total travel time and penalty for
over-capacity on the link

_ _ Column generation
using CPLEX

Robustness Abidjan,
Côte d’Ivoire
(15,000 OD pairs)

Vlachopanagiotis et al. [80], (2021) Bus X Single X X Schematic
Average travel time per transit user
Percentage of demand satisfied without
any transfers
Percentage of unsatisfied demand

Fleet size _ Alternating-objective
genetic algorithm

Capacity Mandl’s network
(15 nodes, 21 arcs)

Durán-Micco et al. [81], (2022) Bus
X

(starting from
a line pool and
recombining)

Single X X No Average travel time Fleet size _ Bi-objective
Memetic algorithm

Circular lines 271 nodes, 470 arcs,
16,823 OD-pairs

This paper Bus X
Many layers

(Pedestrian and
bus superlayer

with as many layers
as candidate lines)

X X Yes
In-bus travel time
Waiting time
Walking time
Transfer time

Constraints on the
length of lines
Number of lines

_ Branch and cut Strategy subgraph
for each OD pair
Specific connections

Seville urban network
(140 nodes, 454 links,
19,440 OD pairs)
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Our network construction process allows for the inclusion of mode-dependent links,
as, for instance, rail tracks cannot be used by buses or pedestrians. The inclusion of a
pedestrian layer ensures feasibility even if the capacity (both in terms of the number of
vehicles and the maximum frequency allowed) is not sufficient, and makes the network
slightly different from the Change and Go network representation proposed by Goerigk
and Schmidt [23]. Moreover, differently from the previous reference, we consider that not
all the links in the network must be covered by lines (which is the usual situation when
the number of lines to be constructed is limited by a given budget), thus incorporating the
possibility of not attending to the whole demand and including also the usual condition
that bounds the line frequencies with maximum acceptable values (Guan et al. [2]), which
is of particular relevance in the case of designing railway lines. In our approach, transfers
are not modeled as simple penalties but ultimately depend on the frequencies of lines.

As a summary, the proposed methodology consists of formulating a line planning
problem over a multilayer bimodal network where the pedestrian network is supported by
one layer and the set of candidate lines is stored in a superlayer—each candidate line in
a different layer—which is appropriately connected to represent feasible transfers in the
network, so that the passenger demand can move freely, according to the travel, waiting and
transfer times, between the origin and the destination of each OD pair. In these movements,
the use of arcs is possible only if they belong to lines that are activated. Moreover, unlike
other formulations, the inclusion of the pedestrian layer ensures feasibility even if the
number of allowed lines or their frequencies and capacities are not sufficient to meet the
entire demand of passengers. Regarding application to large scenarios, to reduce the size
of the mathematical models, for each OD pair, the movement of passengers is reduced to a
set of reasonable paths. We propose two sparse formulations, using the strictly necessary
variables. The resultant models are formulated using a Python object-oriented multilayer
network library specifically developed to this end, and the application program interface
of the branch and cut algorithm included in the Gurobi solver.

3. Problem Description and Bimodal Multilayer Network Construction

Given an OD demand matrix and a graph G = {N, A} representing the set of inter-
sections and streets of an urban scenario, where N is the set of nodes and A is the set of
directed arcs connecting the nodes in N, we want to determine the set of loopless lines that
allow the highest possible number of passengers to move through the network with the
minimum possible travel time. We assume that all the streets of the scenario can be traveled
by pedestrians and that only a subset of them (which could coincide with the totality) can
be used for the movement of buses; then, in the next stage, we use the pedestrian network
as the base network to construct the bimodal multilayer network structure. We are also
interested in simultaneously determining the necessary frequencies of lines and incorporate
several service operator constraints. Let GP = {NP, AP} be a directed graph defining the
pedestrian network of an urban scenario, where NP is the set of nodes, and AP is the set of
directed pedestrian links connecting nodes. Note that the elements in NP could represent
intersections among city streets or even simply demand points connected to the real street
network by means of connectors. The pedestrian graph defines the first layer in a multilayer
network that contains the complete bimodal transportation network. Let NB be a subset
of elements in NP that define possible bus stops and AB a set of directed links connecting
nodes in AP. Then, GB = {NB, AB} is the graph defining the set of streets that can support
the movements of buses. In most cases, arcs in AB are also included in AP since, in general,
the streets allowing the allocation of a bus line also allow pedestrian movements.

Let L = {1, 2, 3, . . . , `, . . . , L} be a set of potential lines defined in GB. The construction
process of L will be detailed in the next Section. A generic line ` ∈ L is defined by two sets
N` = {i : i ∈ `} and A` = {(i, j) : (i, j) ∈ `} that contain, respectively, the nodes and arcs
belonging to the line. Specifically, the set A` contains arcs in both directions connecting
each pair of nodes in N`.
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Each of the candidate lines will be stored in a different layer. The union of all the bus
layers will result in a superlayer that will store the complete line pool of candidate lines.
Note that this structure could be extended with new superlayers for new transportation
modes, such as, for instance, a metro or a tram system.

To access the elements, nodes and arcs of each of the lines in the bus superlayer,
consider a code function φ` that, applied to each node i ∈ `, returns a unique node code
that univocally represents a copy of i in the corresponding line, i.e., φ`(i) is the copy of node
i ∈ ` in the layer of line ` in the bus superlayer. LetN` be the set of nodes of line ` in the layer
number ` of the bus superlayer, N` = {φ`(i) : i ∈ `}, and let A` be the set of arcs in line
` corresponding to the `− th layer in the bus superlayer, A` = {(φ`(i), φ`(j)) : (i, j) ∈ `}.
In this way, N` and A` contain a coded copy of the nodes and arcs belonging to the sets N`

and A`, respectively. To easily manage the correspondence among nodes and arcs in the
bus superlayer and the graph GB, it is convenient to consider an operator φ−1 that, applied
to a node φ`(i) ∈ N`, returns the original node in GB, φ−1(φ`(i)) = i. In a similar manner,
φ−1(φ`(i), φ`(j)) = (i, j) returns the projection of a link in A` to the corresponding arc in
AP or AB, as appropriate.

Each node i in NB and each arc in AB have a set of coded copies in the bus superlayer,
as many as the number of lines to which it belongs. We can then define the sets ψ(i) =
{φ`(i) : ` ∈ L} and ψ(i, j) = {(φ`(i), φ`(j)) : (i, j) ∈ `} containing all the coded replications
of node i and arc (i, j), respectively, in the bus superlayer. Figure 1 summarizes the notation
in a simple case with only two candidate lines. The pedestrian layer contains nodes in NP
and NB; bus stops are represented with a filled circle. The set ψ(10) is represented in more
detail in the right-hand part of the figure.

Figure 1. Illustration of the bimodal multilayer network.

To model transfers between lines, two additional sets are built for each node i ∈ NB.
The set Tb(i) = {(i, φ`(i)) : ` ∈ L} contains boarding links, whereas Ta(i) = {(φ`(i), i) :
` ∈ L} is composed of alighting links. These two sets are represented in the right-hand
part of Figure 1 for the node 10 using solid and dashed lines, respectively. Note that,
alternatively, the sets Tb and Ta can also be defined starting at nodes j belonging to N`,
concretely, Tb(i) = {(φ−1(φ`(j)), j) : ` ∈ L} and Ta(i) = {(j, φ−1(φ`(i))) : ` ∈ L}.
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The union of sets Tb(i) and Tb(i) for all nodes i in NB, Tb = ∪i∈NBTb(i) and Ta = ∪i∈NBTb(i),
contains, respectively, all the transfer arcs for boarding and alighting in the bimodal
multilayer network.

To complete the construction of the bimodal multilayer network, it is convenient to
store the set of lines that traverse a specific node in NB. Since the counterpart nodes of
node i ∈ NB in the superlayer bus network are given by ψ(i), and each line is stored in an
individual layer inside the bus superlayer, the number of lines traversing a bus node can be
defined by the set L(i) = {` ∈ L : φ`(i) ∈ ψ(i)}. To easily recover the line traversing a link
or a node in the bus superlayer, we also define an operator L−1 that, applied to a specific
arc (φ`(i), φ`(j)) ∈ A`, returns the line that is traversing the link, i.e., L−1(φ`(i), φ`(j)) = `
and, applied to a node (φ`(i), returns the appropriate line, L−1(φ`(i)) = `).

We can now finally define the full bimodal multilayer network as a directed graph
GML = {NML, AML}, composed of the set of nodes NML = {NP ∪ (∪`∈LN`)} and the set
of arcs AML = {AP ∪ (∪`∈LA`) ∪ Tb ∪ Ta}.

4. Line Pool Construction

In the previous section, we considered the existence of a pool of candidate lines
L, which was used to build the bimodal multilayer network. This section details the
procedure to obtain the line pool. To start the construction of L, we will use the graph
GB = {NB, AB}. First, for every pair of nodes i, j ∈ NB : i 6= j, we will compute the kL
shortest paths, kL being a design parameter. Every shortest path with a length between
two parameters Lmin and Lmax is stored in an intermediate line pool L̂. By default, Lmin
is set to half the diameter of the graph GB, allowing relatively short lines, whereas Lmax
is set to two times the diameter, thus generating lines that can completely traverse the
scenario. Note that these thresholds may be set to different values depending on the
knowledge and preferences of the service operator company. This process generates a
large number of candidate lines. For instance, taking as a reference the Mandl network
(which is formed of 15 nodes and 21 edges) and fixing kL to a value of 10, the intermediate
pool contains 876 lines. This number can increase significantly for larger scenarios, such
as in the real-sized illustration used in the final part of this paper. At the same time that
a candidate line is stored in the intermediate line pool L̂, we accumulate the demand
between each pair of nodes belonging to the line considering both directions. Lines with
a high accumulated demand are interesting candidate lines, since they can move directly
a high number of passengers without the need of transferring. Simultaneously, we count
and store the number of lines traversing each node in the network. The intermediate
pool of lines L̂ is then ordered decreasingly, according to the accumulated demand.
To complete the construction of the pool of candidate lines L, we remove the worst
lines from the intermediate pool of candidate lines (those whose accumulated demand
is below ϑ% of the maximum accumulated demand). In this procedure, we take care
not to remove a line if the lowest value of the counter of lines traversing the nodes of
the line falls below a certain predefined value. In this way, the candidate lines of the
final pool will cross all nodes of the network. The final number of lines in the pool
will be NB × (NB − 1) × kL × (1− ϑ), being ϑ the parts per unit of candidate lines to
be removed from L̂, as mentioned above. Following, for example, the illustration of
the Mandl network, considering ϑ = 0.5, the line pool will contain 351 candidate lines.
Once the line pool is defined, the construction of the Mandl bimodal multilayer network
produces a graph with NML = 2516 nodes and AML = 9344 arcs.

5. The Strategy Subgraph for Each OD Pair

Before proceeding to the model formulation for the bimodal pedestrian–bus line
planning problem and following the goals of guaranteeing full feasibility and problem
solvability, it is convenient to first introduce the concept of the strategy subgraph for each
origin–destination (OD) network pair.



Mathematics 2023, 11, 4185 14 of 36

Assume (as usual in the formulation of the line planning problem) the existence of an
origin–destination demand matrixD, which normally corresponds to the peak hour interval
of a design day. Each element dij in the matrix represents the number of passengers willing
to travel between nodes i and j in GP. Recall that NP contains all the nodes acting as origins
and destinations of trips (regardless of whether all of them are origins and destinations).
Passengers will start their trips at a certain node i in NP and will follow a sequence of
movements over pedestrian or bus arcs using GML, probably using intermediate transfer
arcs to finish their journey at a different node j in NP. For each OD pair, the sequence
of traversed arcs will depend on the passenger’s choice, which is influenced by the final
selected lines from the candidate line pool, as well as by their frequencies.

LetW be the set of OD pairs in the network, indexed by w, so that wo and wd represent
the origin and destination of pair w ∈ W , respectively. However, in real circumstances, it
is unlikely that a passenger corresponding to a certain OD pair uses arcs located outside
a set of “reasonable” paths connecting the origin and the destination of the OD pair,
as in Canca et al. [57]. In order to construct a model that is as sparse as possible, for each
OD pair w, we will define a directed subgraph Gw containing the possible subset of nodes
and arcs used by passengers to perform their trips. To this end, for each OD pair w, we
first compute the kP shortest path between wo and wd using the graph GML that defines
the bimodal multilayer network. The higher the value of kP, the higher the possibility of
moving from wo to wd and the higher the number of variables and constraints in the line
planning formulation. To compute the kP shortest paths, arcs in AP are weighted by their
corresponding travel times, considering a pedestrian speed vP; arcs in A` are weighted by
their travel times assuming a certain bus speed vB; travel times in arcs belonging to Ta are
set to 0; and travel times in boarding arcs belonging to Ta are set to half of the headway
corresponding to the lowest allowed frequency value.

We will denote by Nw and Aw the set of nodes and arcs in Gw, respectively. Further-
more, to facilitate the formulation, the arcs in Aw are subdivided into four groups, pedes-
trian arcs AP

w, boarding arcs Ab
w, alighting arcs Aa

w and bus arcs AB
w, so that

Aw = {AP
w ∪ Ab

w ∪ Aa
w ∪ AB

w}. A given arc (i, j) in Gw could belong to the strategy subgraph
of a different OD pair w′ 6= w; then, when constructing the set of strategy subgraphs, we
also define the sets Ω(i, j) = {w ∈ W : (i, j) ∈ Aw}. Figure 2 represents a simplified
strategy subgraph for a generic OD pair w. Note that (a) a transfer between lines at certain
nodes implies a movement from the first line to the corresponding pedestrian node in
the pedestrian layer using an alighting arc with no cost, plus a second movement from
the pedestrian node to the destination line whose real cost will depend on the final line
frequency value. (b) On the trip from wo to wd, a passenger may use a succession of pedes-
trian arcs, regardless of their position along the trip path, or even more than one disjoint
pedestrian sub-path if required. (c) In the trip from wo to wd, the passenger may use a
succession of bus arcs using different lines combined with transfer alighting and boarding
arcs and pedestrian arcs if required. (d) The union of subgraphs Gw, ∀w ∈ W determines
a graph GW included in GML that will be used to formulate the bimodal multilayer line
planning problem.
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Figure 2. Generic representation of the strategy subgraph for an OD pair.

6. The Line Planning Formulations

In this section, we propose two formulations for the bimodal line planning problem.
The first one is an arc-based formulation intended to minimize the total travel time while
determining the best line configuration and the frequency of lines subject to operation con-
straints in terms of minimizing the frequency of lines for cost saving purposes. The second
one is a path-based formulation that takes advantage of the specific path sequence in each
strategy subgraph, which additionally aims at explicitly restricting the number of transfers
allowed for each OD pair in the network. In both cases, the models will determine the best
line configuration, the lines’ frequency, as well as the passenger assignment to the network.
To facilitate the understanding of the formulations, Table 2 summarizes the notation used
so far.

6.1. The Arc-Based Formulation

To construct the arc-based formulation, we consider the following set of variables.

• xw
ij Positive real variables representing the flow on arc (i, j) ∈ Aw corresponding to

the OD pair w.
• y` Binary variable taking value 1 if the candidate line ` ∈ L is activated in the line

concept, or 0 otherwise.
• f` Integer variable representing the frequency of the candidate line ` ∈ L measured in

number of buses/hour.
• h` Integer variable representing the headway of the candidate line ` ∈ L measured

in minutes.
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Table 2. Notation used for the construction of the bimodal multilayer network.

Symbol Description Symbol Description

GP The graph defining the pedestrian network, GP = {NP, AP} AML Set of arcs in the bimodal multilayer directed graph
NP The set of nodes in GP kL

Number of shortest paths used to compute the pool
of candidate lines

AP The set of directed arcs in GP L̂ The intermediate line pool before pruning candidate lines
GB The graph defining the bus network, GB = {NB, AB} Lmin Minimum length of lines in the pool of candidate lines
NB The set of nodes in GB Lmax Maximum length of lines in the pool of candidate lines
AB The set of directed arcs in GB D The OD demand matrix
i, j Generic nodes in the multilayer network dij The demand between nodes i and j in NP
L Line pool of candidate lines W The set of OD pairs between nodes of NP
` Generic line in L w A generic OD pair
N` Nodes belonging to line ` in L wo The origin node of OD pair w
A` Directed arcs belonging to line ` in L wd The destination node of OD pair w
φ`(i) Function that returns the code of node i in NB

corresponding to line `
Gw The strategy subgraph corresponding to the OD pair w

φ−1 Operator that returns the original code in NB of a
node in line `

kP
The number of shortest paths used to compute the
strategy subgraph of OD pair w

N` The set of coded nodes belonging to the layer of line ` vP The pedestrian speed
A` The set of coded arcs belonging to the layer of line ` vB The bus speed
ψ(i) The set of counterpart nodes in the bus superlayer

for the node i ∈ NB
Nw The set of nodes in the strategy subgraph of OD pair w

ψ(i, j) The set of counterpart arcs in the bus superlayer bus for
the arc (i, j) ∈ AB

Aw The set of directed arcs in the strategy subgraph
of OD pair w

Tb(i) The set of boarding arcs connecting node i ∈ NB with its
counterpart nodes in the bus superlayer

AP
w The subset of pedestrian arcs in Aw

Ta(i) The set of alighting arcs connecting nodes in the bus
superlayer with its corresponding node i ∈ NB

Ab
w The subset of boarding arcs in Aw

Tb
All the boarding arcs between nodes in NB
and its counterpart nodes in the bus superlayer

Aa
w The subset of alighting arcs in Aw

Ta All the alighting arcs connecting nodes in the bus
superlayer with the corresponding nodes i ∈ NB

AB
w The subset of bus arcs in Aw

L(i) The set of lines traversing the counterpart nodes of
node i ∈ NB in the bus superlayer

GW The union of the strategy subgraph for all
the OD pairs inW

L−1 Operator that returns the line traversing a coded bus
node belonging to N`

Ω(i, j) Set of OD pairs w inW traversing arc
(i, j) ∈ ∪w∈WAw

GML Bimodal multilayer directed graph δ+(i) Set of successor nodes of node i in Gw
NML Set of arcs in the bimodal multilayer directed graph δ−(i) Set of predecessor nodes of node i in Gw
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6.1.1. Objective Function

Different objective functions may be formulated according to the review of the litera-
ture presented in Section 2. The most common is the minimization of the total passenger
travel time. Usually, service operators are also interested in operating as few lines as
possible to reduce the fleet and operation costs, or even operating the lines with the lowest
possible frequency, since the operation costs are proportional to the lines’ frequencies. Low
frequencies also mean lower fleet sizes, reducing the necessary investment in vehicles. We
propose here a combined weighted objective function with the goal of minimizing the total
passenger travel time, the number of lines and the frequency of lines.

Min ∑
w∈W

∑
(i,j)∈Aw

tijxw
ij + α ∑

`∈L
y` + β ∑

`∈L
f`, (1)

being tij the travel time over the arc (i, j) for the different types of arcs in Gw, and α and β
are parameters to weight the importance of the subsidiary terms in the objective function.

Since the speed on pedestrian arcs is low compared to the speed of the bus, passengers
will take as many bus lines as possible to reach their destinations. A good line configuration
should increase the number of direct trips and minimize the use of pedestrian arcs. As pre-
viously reported, if, for instance, the number of lines is severely restricted, passengers
always have the possibility of carrying out their trips by using the shortest pedestrian path
connecting their origin and destination. The minimization of passenger flows over arcs
in the pedestrian path of every OD pair w together with a relaxation in the constraints
limiting the number of lines will guarantee the maximum demand coverage result.

6.1.2. Constraints

The first sets of constraints ensures that the demand of each OD pair is fulfilled;
then, for each OD pair w, the number of passengers starting their trips at wo must be
precisely dwowd , which must also be the number of passengers arriving at the destination
wd. To facilitate the formulation process, we define the sets δ+(i) and δ−(i) to, respectively,
denote the set of successor and predecessor nodes of node i in each strategy subgraph Gw.

∑
j∈δ+(wo)

xw
wo j = dwowd w ∈ W (2)

∑
j∈δ−(wd)

xw
jwd

= dwowd w ∈ W (3)

The following set of constraints enforces a balance for all nodes i belonging to Gw.

∑
j∈δ+(i)

xw
ij − ∑

j∈δ−(i)
xw

ji = 0 i ∈ Nw\{wo, wd}, w ∈ W (4)

For each candidate line, its frequency and headway are related by the following
equation (note that the frequency is measured in buses/hour and the headway in min).
Furthermore, the frequency must be 0 if the candidate line is not activated and should also
be bounded by two reasonable values fmin and fmax. The first is related to the quality of
service perceived by users, who probably will expect a service at least every 20 or 30 min.
The second one is usually set by the operator depending on the available fleet and the
observed demand. Reasonable values could vary between 20 and 30 buses/hour.

f` · h` = 60 · y` ` ∈ L (5)

fmin · y` ≤ f` ≤ fmax · y` ` ∈ L (6)

Note that if y` = 0, the variable f` is also 0 and the constraints (5) hold, even if the
value of h` is not determined. This is irrelevant, since line ` will not be selected in the final
line plan. The set of constraints (5) could be linearized by including new binary variables
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λσ
` taking the value 1 if the frequency of the line ` takes a value σ from a subset of feasible

values—for instance, Λ = {2, 3, 4, 5, 6, 10, 12, 15, 20}, the set of integer divisors of 60. Then,

f` = ∑
σ∈Λ

σλσ
` ` ∈ L

h` = ∑
σ∈Λ

60
σ

λσ
` ` ∈ L

∑
σ∈Λ

λσ
` = 1 ` ∈ L

The linearization process is completed by removing the constraint set (5).
The service operator could be interested in fixing a maximum number of lines for

the network; for instance, the line planning could be simply an update of the existing line
planning, and the service operator could fix the maximum number of lines to maintain
approximately the same operating cost. In this case, the following set of constraints should
be included:

∑
`∈L

y` ≤ M, (7)

being M the maximum allowed number of lines. Otherwise, M can be set to a large value
or simply the constraint set (7) can be removed.

If the flow on a bus arc is positive, the corresponding line traversing this arc must be
active. In this case, the frequency of this line must be sufficient to accommodate the total
flow on the link. Recall that each line in the candidate line pool is stored in a unique layer
and, as a consequence, each arc in this layer corresponds to only one line, which can be
accessed using the operator L−1. To formulate this constraint, it is necessary to incorporate
a parameter that defines the bus capacity, which will be denoted as Cap.

∑
w′∈Ω(i,j)

xw′
ij ≤ Cap · fL−1(i,j) (i, j) ∈ AB

w, w ∈ W (8)

The following set of constraints specifies the travel time tij in the boarding arcs as a
function of the headway of the destination lines.

tij =
hL−1(j)

2
(i, j) ∈ T b

w , w ∈ W (9)

Note that the travel times for the rest of the arcs in GW are constant:

• tij = 0 ∀(i, j) ∈ Aa
w,

• tij = lij/vB ∀(i, j) ∈ AB
w,

• tij = lij/vP ∀(i, j) ∈ AP
w,

being lij the length of link (i, j).
Although, in the case of a transit system, the total number of buses of different lines

traversing a certain arc could be quite sufficient, at some specific locations (for instance,
a street with only a lane per direction or in general links that for any reason can suffer from
congestion), it could be necessary to bound the total number of vehicles traversing the link
during the planning horizon. If such a case is necessary, for specific arcs (i, j) in a certain
subset Â ∈ AB, the following constraints could be used:

∑
(i′ ,j′)∈ψ(i,j)

fL−1(i′ ,j′) ≤ F (i, j) ∈ Â, (10)

being F a global limit to the sum of the affected frequencies, measured in buses/hour.
Sometimes, the service operator may be also interested in guaranteeing that a subset of

nodes in NB act as interchange stations in the network, e.g., a node near a faculty, a hospital
or a commercial or leisure center. Suppose that there is a subset of nodes N̂B ⊂ NB with
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given minimum requirements regarding the number of lines that must allow direct access.
Let πi be the minimum number of lines required at node i ∈ N̂B. Then, the following set of
constraints must be added to the model.

∑
`∈L(i)

y` ≥ πi i ∈ N̂B (11)

Additionally, the service operator could be also interested in limiting the maximum
number of vehicles required to operate the final line concept. In this case, the following
constraint should be imposed.

∑
`∈L

2
vB

∑
(i,j)∈A`

l(i,j)
f`
60
≤ FS, (12)

where l(i,j) represents the length of link (i, j) ∈ A` and FS is the maximum allowed number
of vehicles. The left-hand side of (12) is the summation of the number of vehicles needed to
operate each line. For a specific line `, the required fleet size is obtained by dividing the cycle

time (the amount of time needed to complete a round trip along the line), ∑(i,j)∈A`

2 l(i,j)
vB

,
by the headway of the line, in this case represented in terms of the frequency as 60

f`
.

In summary, the arc-based formulation consists of minimizing (1) subject to (2)–(9),
and optionally to (10)–(12), and fulfilling

xw
i,j ≥ 0, w ∈ W , (i, j) ∈ ∪w∈WAw

y` ∈ {0, 1}, ` ∈ L

f`, h` ≥ 0 integers, ` ∈ L

tij ≥ 0, (i, j) ∈ Ab
w

6.1.3. Comments Regarding the Use of a Multilayer-Type Structure

The multilayer structure used to formulate the problem drastically simplifies the
formulations of constraint sets (8) and (9) (as well as the optional sets (10) and (12)) when
compared to a classical single-layer graph. For instance, in a single-layer model, the travel
time of an incoming arc at a transfer node must be formulated while considering the
frequencies of all the possible lines traversing this node, which results in a non-linear
constraint of type

tij =
1
2

60
∑`∈∆(j) f`

,

where, for simplicity, the set of lines traversing node j is supposed to belong to a certain set
∆(j). Even when using headway variables instead of frequencies, the constraint remains
non-linear.

In the classical formulation of constraints (9), since each arc supports many possible
lines, the use of arc–line binary variables y`i,j is required. This implies the inclusion of an
important number of binary variables, at least L× (∪w∈WAw), and a similar number of
constraints relating y`i,j and y`.

At the cost of building a huge multilayer graph structure, which would require more
memory and the more complex preparation of auxiliary sets, the resultant line planning
models are simpler than those obtained using a simple graph and, in most cases, can be
solved in relatively short computation times, as reported later in the computational section.

6.2. The Path-Based Formulation

Starting from the definition of the strategy subgraphs Gw, w ∈ W , it is possible to work
with specific path variables instead of using variables xw

ij , reducing, in general, even further
the number of variables in the line planning formulation. In this way, for each subgraph
Gw, we can compute all the paths ρ connecting wo and wd. Let Γw be the set of paths
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between the origin and the destination of the OD pair w. Thus, xρ
w measures the number of

passengers following path ρ between wo and wd for each w ∈ W . Note that Γw ≥ kW + 1,
the number of paths used to calculate Gw in Section 5, since, as explained, several other trip
combinations emerge when using subpath combinations of the kW + 1 paths.

Let GΓw = {NΓw , AΓw} be the resulting graph that includes all nodes and arcs in
paths ρ ∈ Γw. As in the arc-based formulation, it is convenient to divide the arc set into
four subsets, AΓw = {AP

Γw
∪ AB

Γw
∪ Ab

Γw
∪ Aa

Γw
}, containing, respectively, pedestrian, bus,

boarding and alighting arcs belonging to GΓw . Let Nρ
w and Aρ

w be the set of nodes and
arcs defining a path ρ in Γw, respectively. As in the arc-based formulation, a specific arc
(i, j) ∈ AΓw can also be included in the arc sets AΓ′w of other pairs w′ 6= w; thus, it is
convenient to define the set of paths belonging to all the pairs traversing a given arc,
Θw(i, j) = {ρ ∈ Γw : (i, j) ∈ AΓw}.

6.2.1. Basic Constraints

Note that the constraints (5)–(7) and optional constraints (10) and (12) of the arc-based
formulation are not affected when changing the arc flow variables to path-based flow
variables, and they consequently remain unchanged. The demand constraints (2)–(4) of the
arc-based formulation are now replaced by

∑
ρ∈Γw

xρ
w = dwowd w ∈ W , (13)

and the coupling constraints (8) of the arc-based formulation are now written as

∑
w′∈W

∑
ρ′∈Θw′ (i,j)

xρ′

w′ ≤ Cap · fL−1(i,j) (i, j) ∈ Aρ
w ∩ AB

Γw
, ρ ∈ Γw, w ∈ W , (14)

where, as usual, L−1(i, j) returns the unique line traversing arc (i, j) in the bus superlayer.
Finally, the set of constraints (9) that define the travel times at boarding arcs in the arc-based
formulation are replaced by

tij =
hL−1(j)

2
(i, j) ∈ Aρ

w ∩ Ab
Γw

, ρ ∈ Γw, w ∈ W , (15)

while the travel times for the rest of the arcs in ∪w∈W GΓw are constant:

• tij = 0, ∀(i, j) ∈ Aρ
w ∩ Aa

Γw
, ρ ∈ Γw, w ∈ W ,

• tij = lij/vB, ∀(i, j) ∈ Aρ
w ∩ AB

Γw
, ρ ∈ Γw, w ∈ W ,

• tij = lij/vP, ∀(i, j) ∈ Aρ
w ∩ AP

Γw
, ρ ∈ Γw, w ∈ W ,

being lij the length of link (i, j).

6.2.2. Objective Function and Basic Model

Now, the arc-based objective function (1) can be rewritten as

Min ∑
w∈W

∑
ρ∈Γw

xρ
w ∑
(i,j)∈AΓw

tij + α ∑
`∈L

y` + β ∑
`∈L

f` (16)

and the full path-based formulation consists of minimizing (16) subject to (5)–(7),
(13)–(15) and, optionally, (10)–(12), and satisfying the following domain constraints:

xρ
w ≥ 0, ρ ∈ Γw, w ∈ W

y` ∈ {0, 1}, ` ∈ L

f`, h` ≥ 0 integers, ` ∈ L

tij ≥ 0, (i, j) ∈ Aρ
w ∩ Ab

Γw
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6.2.3. Path-Based Formulation: Additional Features

Taking advantage of the path structure of this formulation, the paths ρ in Γw can be
classified according to the number of transfers, denoted as nρ, that passengers experiment
with when traversing them. In this way, let ξ1

w = {ρ ∈ Γw : nρ = 1} be the subset of paths
with 1 transfer in Γw, and ξ2

w = {ρ ∈ Γw : nρ = 2}, ξ3
w = {ρ ∈ Γw : nρ ≥ 2} the subsets

of paths with 2 and more than 2 transfers. Now, it is possible to define new terms in the
model objective function to specifically minimize the flow traversing paths in ξ1

w, ξ2
w and

ξ3
w, weighted with its corresponding importance:

Min ∑
w∈W

∑
ρ∈Γw

xρ
w ∑
(i,j)∈AΓw

tij + α ∑
`∈L

y` + β ∑
`∈L

f`+

(17)
γ1 ∑

w∈W
∑

ρ∈ξ1
w

xρ
w + γ2 ∑

w∈W
∑

ρ∈ξ2
w

xρ
w + γ3 ∑

w∈W
∑

ρ∈ξ3
w

xρ
w

The path-based formulation also allows us to work with average travel times instead
of using the total travel time considered in the arc-based formulation. In several cases,
the total waiting time could hide some poor results for some OD pairs for the benefit of
others. Moreover, the average travel time may be included as a constraint, instead of being
incorporated into the objective function, although, in this situation, it is possible to reach
infeasible situations, which can be avoided by penalizing any excess over the specified
target value. Denoting as tw

ρ the time needed to traverse the path ρ in Γw, given by,

tw
ρ = ∑

(i,j)∈AP
Γw

lij
vP

+ ∑
(i,j)∈AB

Γw

lij
vB

+ ∑
(i,j)∈Ab

Γw

1
2

hL−1(i,j), (18)

the average travel time experienced by users traveling from wo to wd is

tw =
1

dwowd
∑

ρ∈Γw

tw
ρ xw

ρ , w ∈ W , (19)

and we can write an alternative objective function as

Min ∑
w∈W

1
dwowd

∑
ρ∈Γw

tw
ρ xw

ρ + α ∑
`∈L

y` + β ∑
`∈L

f`+

(20)
γ1 ∑

w∈W
∑

ρ∈ξ1
w

xρ
w + γ2 ∑

w∈W
∑

ρ∈ξ2
w

xρ
w + γ3 ∑

w∈W
∑

ρ∈ξ3
w

xρ
w,

incorporating linear constraints (18) into the formulation.
Additionally, the designer could be interested in guaranteeing that, for each OD pair

w in the line concept solution, the average travel time be as close as possible to a design
value τw, which can be established as the travel between wo and wd without waiting. Then,
new constraints imposing the proximity to this value could be added to the model:

tw ≤ τw + χw, w ∈ W ,

where χw represents deviations with respect to the target values, which can be added to
the objective function with positive weights.

7. Computational Experiments
7.1. The Mandl Network

In this section, we apply both the arc-based and the path-based formulations to the
network analyzed by Mandl and present the results by varying the maximum number of
allowed lines, as in other research included in the revised literature. Before starting this
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comparison, several aspects of the Mandl scenario must be commented on in relation to
our bimodal approach.

(a) The available information of the Mandl network is limited to the code of nodes and
edges, the OD matrix and the travel time on edges. There is no information about the
coordinates of the nodes or the real distances between the nodes.

(b) No information is known about the real scale of the network. In fact, if we suppose
that buses run at a constant speed, the lengths of edges in the classical representation
of this network (the graph reported in many research papers) are not real. Then, it is
very difficult to determine real walking times over pedestrian links to be considered
as part of a bimodal approach.

(c) Consequently, to produce a scenario that is as similar as possible to the one analyzed
in the literature, we will use the information on bus travel times on links in the bus
superlayer and impose large costs on pedestrian links in the pedestrian layer, trying
to ensure that they are never chosen by passengers.

(d) Since the original scenario is a unimodal network, passengers who do not use the bus
(passengers who start their trips at nodes that do not belong to any line) are considered
as unattended demand in the previous works. To fairly compare with them, we will
consider that passengers using pedestrian links (even if their costs are high) in our
bimodal network are part of the unattended demand. The pedestrian layer is set
identical to the bus layer, i.e., every link in the network can be used as a pedestrian or
as a bus link.

Although many researchers have based their algorithms on the Mandl network, it
must be noted that the results have been presented in different formats and with different
amplitudes. Therefore, only the following commonly reported indicators will be considered
here for comparison purposes.

(1) d0, Percentage of demand that is served directly.
(2) d1, Percentage of demand that is served with one transfer.
(3) d2, Percentage of demand that is served with two transfers.
(4) du, Percentage of unattended demand.
(5) FS, Fleet size—usually the most significant measure from an operator’s point of view.

Surprisingly, in most of the previous metaheuristic applications, there is no informa-
tion on the computational effort required to achieve good solutions or on the number of
replications used to compute average results, perhaps due to the strategic nature of this
problem. In addition, there are important differences in the assumptions considered by
different researchers to illustrate the results of their work. For instance, some papers con-
sider unlimited frequencies while, at the same time, fixing a constant value for the boarding
and transfer times. There is also a discrepancy in several indicators concerning travel,
waiting and transfer times among different works; see, for instance, the works of Bagloee
and Ceder [44] or Buba and Lee [77], reporting times consistent with the structure and
length of the lines in the final achieved line concepts, and those of Fan and Mumford [70]
or Vlachopanagiotis et al. [80], where the authors report average in-vehicle waiting times.

Figure 3 shows the OD matrix and a representation of the desired movements on the
network. As shown, the matrix is symmetric and contains a total number of 15,570 trips.
As in several previous works, we consider buses with a capacity of 40 pax. and maximum
headway values of 20 min.

Since we can expect a direct relationship between the quality of the solutions obtained
and the number and quality of the routes in the line pool, we choose a large number kL = 12
of alternative paths when computing the initial pool of candidate lines, as described in
Section 4. We initially select candidate routes whose length (measured in minutes) is
greater than half the diameter of the network and less than 2 times the diameter. Since,
as previously mentioned, there is no information about the network scale, we measure the
diameter of the network by considering the total travel time corresponding to the shortest
path between nodes 1 and 13. We fix ϑ = 0.5, removing from the intermediate line pool
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L̂ the candidate lines whose accumulated demand is below 50% of the best accumulated
demand. From the 876 initial candidate routes (holding length conditions), the cleaning
method reduces the line pool size to 351 candidate lines.

We also consider kP = 12 when computing the number of alternative paths followed
by passengers to travel between the origin and destination of each OD pair, i.e., when
computing the strategy subgraph for each OD pair as described in Section 5. The higher
the number of alternative paths, the greater the freedom to move over the network, and the
greater the size of the resulting optimization model.

Figure 3. Origin–destination matrix of he Mandl network.

The preparation, including data reading, line pool generation (intermediate line pool
construction and line pool cleaning), multilayer network construction (including the bus
superlayer composed of as many layers as candidate lines) and the construction of the OD
pair strategy subgraphs, consumes approximately 3 min of time on a personal computer
with an Intel I7-1165G7 processor running at 2.80 GH with 16 GB of RAM. All these
methods have been programmed in the Python programming language by developing
a specialized object-oriented library to deal with multimodal transportation problems.
The full multimodal network contains 2516 nodes and 9344 directed links. The number of
nodes and links used to formulate the models (obtained as the union of nodes and links of
the OD subgraphs) is 1322 nodes and 4064 directed links, which contributes to reducing
the number of necessary variables and constraints. Note that the model preparation is
performed once since the same pool of candidate lines is used to solve the arc-based and
the path-based formulations, independently of the maximum allowed number of lines in
the final line concept.

We solve the two basic models by using a standard branch and cut algorithm, imposing
a maximum number of 4, 6 and 8 lines. To give an idea of the size and difficulty of
both formulations, the arc-based formulation contains 13,377 variables (12,324 continuous,
702 integer, 351 binary) and 14,997 constraints, while the path-based formulation contains
9724 variables (8671 continuous, 702 integer, 351 binary) and 9661 constraints. We use
weights α = 1 and β = 50 in the objective function to penalize high frequencies and impose
the maximum number of lines (4, 6, 8) by including the appropriate constraint in the model.
The arc-based formulation is solved in 28 s, and the path-based one in 34 s.

Our results in terms of comparison indicators are shown in Table 3. We also highlight in
red the best previous results for different maximum numbers of lines. AIVTT and ATT rep-
resent the average in-vehicle travel time and the average travel time, respectively. As shown,
the values of the demand indicators are competitive in comparison with those obtained in
previous works using metaheuristic approaches. As shown, in the experiment with four
lines, our approach generates a solution with a value of the attended demand that is 3%
worse than the best reported solution in the literature, Arbex and da Cunha [76], and ranges
from 5 to 18 of the reported approaches. The score obtained for the case of six lanes is
slightly better, only 1% worse than the best reported solution—see Zhao and Zeng [69]—
achieving third place among the works analyzed. In the case of eight lines, our model
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achieves again fifth position according to the percentage of directly served demand. In this
case, the best reported solution corresponds to the work of Nayeem et al. [73]. As expected,
from a user perspective, the general results improve as the number of lines increases. Recall
that, unlike the metaheuristic approaches, in the mathematical formulations, the number
of lines is not fixed but bounded with a maximum value. In each of the performed exper-
iments, the best solution in terms of the percentage of demand that is served directly is
attained for a number of lines equal to the maximum allowed value. This result seems to be
logical, since a higher number of lines covers more nodes in the network, thus increasing
the possibilities of taking a bus. However, this behavior is not general, as can be seen,
for instance, in the case of four and six lines for the works of Chakroborty and Wivedi [39],
Zhao and Zeng [68] and Fan and Mumford [70], among others, where more lines give
rise to a lower value of d0. The reason is clear: the quality of the solution depends on
the number of lines but also on the shape of the lines and the nodes that each line visits.
A line traversing nodes with low demand and few connections contributes poorly to the
movement of passengers, and the addition of a new line sharing all its stops with nodes
belonging to the existing lines does not improve the total captured demand but, contrarily,
increases the operating costs.

On the one hand, the results in Table 3 confirm the effectiveness of several previously
used metaheuristics, such as, for instance, the ones proposed by Nayeem et al. [73] and Buba
and Lee [77], which were not compared with the exact solution procedures. On the other
hand, our approach has generated good-quality solutions even when working with a fixed
pool of candidate lines, which possibly could be improved by using a more sophisticated
line pool generation method, such as the one proposed by Mauttone and Urquhart [19]
or Gattermann et al. [55]. In any case, as the latter authors noted, the results are highly sen-
sitive to the size of the pool and the quality of the lines contained therein, which, in our case,
required the realization of several tests on the parameters kL (the number of shortest paths
used in the generation of lines for each pair of nodes), kP (the number of shortest paths
used in the generation of the strategy subgraph for each OD pair) and ϑ (the percentage of
lines to be removed from the intermediate line pool). In this process, we also corroborated
the experiences of Kechagiopoulos and Beligiannis [86] and Buba and Lee [77] regarding
the effect of the length of the candidate routes on the quality of the solutions obtained. It is
worth mentioning that our interest with this experiment is only in validating its applicabil-
ity using a benchmark instance to assess the methodology’s ability to address, in the future,
more complicated problems where several modes are simultaneously operating on the
same network. In these complicated scenarios, we will likely need to consider a hybridized
approach by combining the mathematical models with metaheuristics algorithms or ap-
plying the metaheuristics in a second phase starting from one or a set of good achieved
solutions, depending on the nature of the algorithm.
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Table 3. Comparison of results with respect to previous works.

4 Lines 6 Lines 8 Lines

do d1 d2 du AIVTT
(ATT) FS do d1 d2 du AIVTT

(ATT) FS do d1 d2 du AIVTT
(ATT) FS

Mandl (1980) [26] 69.94 29.03 0.13 0 12.9
Baaj and Mah. (1991) [36] 78.61 21.39 0 0 11.86 89 79.96 20.04 0 0 11.86 77
Kidwai (1998) [87] 72.95 26.91 0.13 0 12.72 77.92 19.62 2.4 0 11.87 84.73 15.27 0 0 11.22
Chakroborty and
Dwivedi (2002) [39] 86.86 12 1.14 0 11.9 86.04 13.96 0 0 10.3 90.38 9.68 0 0 10.46

Zhao et al. (2006) [68] 95.31 4.69 0 0 (11.89) 99 95.18 4.82 0 0 (12.26) 89 95.44 4.56 0 0 (12.55) 77
Zhao et al. (2008) [69] 96.66 3.34 0 0 (11.68) 99 98.39 1.61 0 0 (11.7) 89 95.83 4.17 0 0 (12.07) 77
Fan and Machemehl
(2008) [88] 93.26 6.74 0 0 11.37 91.52 8.48 0 0 10.48 94.54 5.46 0 0 10.36

Fan and Mundford
(2010) HC Avg. [70] 91.83 8.17 0 0 11.69 90.23 9.26 0.51 0 10.78 93.23 6.18 0.59 0 10.69

Fan and Mundford
(2010) SA Avg. [70] 92.48 7.52 0.51 0 11.55 90.87 8.74 0.39 0 10.65 93.65 5.88 0.47 0 10.58

Nikolic and
Teodorovic (2013) [71] 92.1 7.19 0.71 0 10.51 95.63 4.37 0 0 10.23 98.97 1.03 0 0 10.09

Nayeem et al.
(GAWIP) (2014) Avg. [73] 93.76 5.34 0.9 0 10.45 98.08 1.92 0 0 10.14 99.54 0.46 0 0 10.05

Nayeem et al.
(GAWE) (2014) Avg. [73] 93.39 5.55 1.06 0 10.5 97.5 2.49 0.01 0 10.17 99.28 0.72 0 0 10.07

Nikolic and
Teodorovic (User) (2014) [74] 95.05 4.95 0 0 10.36

(11.96) 94 94.34 5.65 0 0 10.21
(11.86) 99 96.4 3.6 0 0 10.15

(11.91) 99

Kechagiopoulos
and Beligiannis (2014) [86] 90.52 8.75 0.73 0 10.71 95.62 4.28 0.1 0 10.28 97.47 2.53 0 0 10.17

Arbex and da
Cunha (2015) [76] 98.27 1.73 0 0 11.13

(14.35) 79 98.2 1.8 0 0 11.55
(13.86) 77 98.95 1.35 0 0 11.24

(13.72) 74

Zhao et al. (2015) [75] 92.95 7.05 0 0 (13.39)
Buba and Lee
(2018) Avg. [77] 90.43 9.57 0 0 11.39

(13.63) 98 95.65 4.35 0 0 10.79
(12.49) 95 95.74 4.24 0 0 10.70

(12.94) 98

Katsaragakis
et al. (2020) Avg. [79] 89.60 9.985 0.414 0 10.67 95.25 4.012 0.038 0 10.26 98.47 1.523 0 0 10.125

Vlachopanagiotis
et al. (2021) [80] 95.5 4.5 0 0 10.9

(14.54) 78 96.5 3.5 0 0 10.5
(13.62) 77 99.1 0.9 0 0 10.3

(12.95) 77

This research 95.12 4.88 0 0 10.5
(12.96) 97.39 2.61 0 0 10.15

(12.5) 98.65 1.35 0 0 10.1
(12.48)
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7.2. A Larger Case Illustration

In this section, with the aim of examining the behavior of the multilayer formulation
in a larger scenario, we will use the main network of Seville. Figure 4 shows the bus layer,
containing 141 nodes, 454 directed links and 19,440 OD pairs. To test the formulation
in adverse conditions, we consider a populated OD matrix with 107,780 trips, a number
slightly higher than the real peak-hour bus demand in the city, which have been inten-
tionally assigned in a random fashion to the OD pairs, thus giving rise to an unfavorable
“non-structured” set of movements, which clearly complicates the determination of the
line plan and which is depicted, according to the origin of the demand, in four graphs in
Figure 5. For simplicity, as in the Mandl network case, we will consider a pedestrian layer
identical to the graph supporting the bus mode.

Figure 4. The bus network of Seville.

To generate the lines, we consider minimum and maximum feasible length values of
4 and 10 km, respectively. These values are similar to those used by the transportation
company currently operating the bus service. Moreover, we impose a maximum number
of 45 lines, as in the real case. In this illustration, we reduce both kL and kP to a value of 8
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and maintain ϑ = 0.5 of the maximum accumulated demand. The intermediate line pool
contains 9867 candidate lines. After removing the less promising ones, the final pool of can-
didate lines is composed of 1638 lines. The multilayer network contains 31,342 nodes and
121,986 links. The arc-based model contains 1638 binary variables, 3276 integer variables,
1,309,781 variables measuring the passenger flow over links, 1,182,238 balance constraints
and 46,794 constraints corresponding to transfer links. We first solve the model to opti-
mality in the same processor as in the Mandl experiment, reaching a computation time
of 3400 s. We have repeated the experiment using an Intel I9-12900 processor running at
3.5 GHz with 64 GB of RAM; in this case, the computation time decreases substantially to
813 s. The general results obtained for the Seville network are as follows (Figure 6 shows
the optimal line plan).

• The set of lines practically covers the totality of nodes. This is a good indicator of the
accessibility of the bus network, since practically all destinations are reachable by bus.

• The few uncovered nodes are very close (less than 400 m) to the nodes included in
the line plan. This implies that all the passengers are near a bus stop in the obtained
solution, which is an important condition in providing a public service.

• The directed demand (percentage of passengers that can execute their trips without
transferring) reaches 42.6%. Note that this percentage is very high given the non-
structured demand mobility pattern considered.

• The undirected demand (percentage of passengers that need to perform at least one
transfer) is 56% of the total demand. Although this percentage may seem relatively
high, it is worth mentioning that, according to the 2021 statistical report of the public
bus operator, the number of single-trip cards (10 trips without transfer) sold during
the studied year was about 23.44% and the number of single-trip tickets was 10.6%.
Taking into account the rest of the ticket types, the total number of trips with transfers
in the network reaches annually 50%, which is quite similar to the result obtained with
our unfavorable demand matrix for a peak-hour scenario.

• The total covered demand (percentage of passengers that can take a bus to complete
their trip from their origin to their destination) reaches 98.67%, i.e., the model produces
a set of lines that traverse the nodes with higher demand, and the design of lines
(including the frequencies assigned to each line) is sufficient to cover the trips in less
time than using the pedestrian mode.

• The rest of the passengers’ trips corresponding to the uncovered nodes are 1.33% but
all of them have a bus stop within 400 m. In this sense, the transit network covers
100% of the passenger demand.

• The average travel time (including waiting and transfer times) is 32.7 min, approxi-
mately 2 min less than the current average travel time in the city, which indicates the
quality of the solution obtained after applying the proposed methodology.

Figures 7 and 8 show the final assignment of passengers on the transit network.
The width of the lines used to represent the flows is proportional to their values. Al-
though the OD demand matrix does not reflect the real behavior of passengers (the current
trends of movement in the city), as previously mentioned, the global results exceed the
values of several transport indicators for the city.
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Figure 5. The OD matrix for the Seville experiment.



Mathematics 2023, 11, 4185 29 of 36

Figure 6. The line plan for the Seville experiment.
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Figure 7. Passenger flow assignment, main direction.
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Figure 8. Passenger flow assignment, reverse direction.
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8. Conclusions

In this paper, the use of a multilayer network structure to model and solve the line
planning problem has been examined. The main objective consists of reformulating the
line planning problem using a bimodal network composed of a pedestrian layer and a bus
superlayer that contains as many layers as lines in the set of candidate lines. The inclusion
of the pedestrian layer, which allows users to move from their origins to their destinations,
ensures feasibility even when the capacity of the transport system is not sufficient.

An extensive review of previous works in the literature has been presented, classifying
the contributions into different groups according to the means of approaching the problem.

A relatively simple mechanism is proposed to compute the pool of candidate lines.
For each OD pair, the method first computes a predefined number of the best shortest paths
that must fulfill certain length conditions. Then, the list of paths is ordered according to the
direct demand that they can move and finally pruned to remove the worst paths.

The pedestrian network and the candidate lines are used to construct the multilayer
network that later will be used to formulate the line planning problem. The use of the
multilayer structure drastically simplifies the process of modeling waiting and transfer
times, avoiding the need to consider the strong non-linearities that appear in classical
formulations, thus reducing the complexity of the model.

Since, for each OD pair, the number of trip alternatives over the network is usually
quite large, in order to obtain a sparse model and with the objective of working with
medium-sized scenarios, only a subset of efficient paths, the strategy subgraph, is consid-
ered before performing the transit assignment.

Two mathematical formulations, arc-based and path-based, are presented. In both
formulations, a first objective function that minimizes the total travel time is considered.
In the second formulation, the use of path flow variables allows us to define alternative
objective functions in terms of the average travel times, as well as to introduce explicit
expressions to measure the number of passengers transferring one, two or more times.

For validation purposes, a first set of experiments was performed using the Mandl
network as a benchmark scenario. Although our formulations do not impose a specific
number of lines but an upper bound, in order to make a fair comparison, the problem
was solved for 4, 6 and 8 lines, and the results were compared to those reported by
19 works extracted from the scientific literature, most of them using metaheuristics. For this
comparison, several common performance indicators were considered: the percentage
of demand that is served directly, the percentage of demand that is served with one
transfer, the percentage of demand that is served with two transfers and the percentage of
unattended demand. In the four-line experiment, our approach generated a solution with
a value of the attended demand that was 3% worse than the best reported solution and
outperformed 15 of the 19 approaches analyzed. In the six-line experiment, our solution
was 1% worse than the best reported one, outperforming 17 of the previous approaches.
For the 8-line experiment, the results were similar to the 4-line case.

To test the applicability of our formulations in larger scenarios, we performed a new
experiment based on the Seville transit network, a network with 141 nodes, 454 links and
19, 440 OD pairs. For this experiment, we considered an OD matrix with a total number of
trips slightly larger than that corresponding to the rush hour period, but using a random
distribution of trips, thus considering an unfavorable situation where no clear mobility
patterns were represented. Despite the size of the problem, we obtained optimal solutions
in a reasonable computation time, about 800 s. Our results exceed the values of several
mobility indicators of the city, even considering an unfavorable demand scenario.

We believe that the use of a multilayer network representation can help to model and solve
several problems in the field of transportation where different transport modes are involved.
For instance, it is possible to analyze the expansion of a specific mode supposing that the rest of
the transport modes remain invariable, but considering the interactions between the different
modes. Other problems, such as the location of interchanges and the design of bicycle networks,
seem to also be approachable using the methodology presented in this paper.
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