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Abstract This study is the natural continuation of a 

previous paper of the authors [1], where the 

possibility of finding Hopf bifurcations in vibrating 

systems excited by a nonideal power source was 

addressed. Herein, some analytical tools are used to 

characterize these Hopf bifurcations, deriving a 

simple rule to classify them as supercritical or 

subcritical. Moreover, we find conditions under 

which the averaged system can be proved to be 

always attracted by a limit cycle, irrespective of the 

initial conditions. These limit cycle oscillations in 

the averaged system correspond to quasiperiodic 

motions of the original system. To the authors’ 

knowledge, limit cycle oscillations have not been 

addressed before in the literature about nonideal 

excitations. Through supporting numerical 

simulations, we also investigate the global 

bifurcations destroying the limit cycles. The 

analytical results are verified numerically.  
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1 Introduction 

 

Vibrations caused by unbalanced rotating machinery 

are very frequently encountered in mechanical 

engineering [2, 3]. This might be an undesired 

consequence of manufacturing errors and tolerances 

[4], which can endanger the performance of turbines, 

blowers, pumps, etc. On the other hand, there are 

also applications where rotors are purposely 

unbalanced to generate a useful vibration, as is the 

case of the feeding, conveying and screening of bulk 

materials or the vibrocompaction of quartz 

conglomerates. 

In the analysis of these unbalance–induced 

oscillations, it is often necessary to take into account 

how the motion of the energy source is affected by 

vibration [5–8]. In these situations, where there is a 

significant two–way interaction between exciter and 

vibrating structure, the excitation is said to be 

nonideal.  

The study of nonideal excitations begun with the 

experimental work of Sommerfeld [9]. He used a 

setup consisting in an unbalanced electric motor 

mounted on an elastically supported table, 

monitoring the input power and the amplitude and 

frequency of the response. Some anomalous 

phenomena were found, like jumps in the oscillation 

amplitude and ranges of frequency where no 

stationary motion could be obtained. These 

unexpected issues, known as ‘the Sommerfeld 

effect’, could not be explained by an ideal model, 

i.e. assuming that rotation was not affected by 

vibration. 

Some years later, Kononenko [10] proposed an 

interpretation for the Sommerfeld effect, by 

considering a model which included the nonideal 

coupling between motor and structure, and applying 

averaging techniques to the equations of motion. 

According to Kononenko, the Sommerfeld effect is 

due to the torque on the rotor produced by vibration 

of the unbalanced mass.  

Rand et al. [11] reported the detrimental effect of a 

nonideal power source in dual-spin spacecrafts, 

which could endanger one of the manoeuvres of the 

spacecraft when placed in orbit. 

Although the most usual analytical approach to the 

problem is based on averaging procedures, 

Blekhman proposed an alternative approximation to 

the stationary solutions by using the method of 

‘Direct Separation of Motions’ [12]. 

El-Badawi [13] analysed a model where the 

vibrating structure had an intrinsic nonlinearity, in 



addition to the nonlinearity due to the nonideal 

coupling with the energy source. 

For a more detailed exposition of the state of the 

art concerning nonideal systems, see [5]. 

A simple nonlinear mechanical system, excited by 

a nonideal unbalanced motor, was analytically and 

numerically studied in [1]. In that reference, thanks 

to a novel combination of two different perturbation 

techniques, the authors found conditions under 

which the system exhibited a Hopf bifurcation which 

had not been addressed before in the literature. This 

paper intends to be a direct continuation of [1], 

analysing in detail the appearance of Hopf 

bifurcations and their consequences. 

It is well–known that Hopf bifurcations lead to the 

appearance of Limit Cycle Oscillations (LCOs). 

Noticeably, the existence of LCOs as a consequence 

of nonidealness of the energy source has not been 

addressed before in the literature, to the best of the 

authors’ knowledge. 

The analytical study of bifurcations and limit 

cycles conducted in this paper, which is manageable 

for a 2D system, would be virtually unfeasible for a 

higher–dimensional system. As a matter of fact, the 

Poincaré–Bendixon (P-B) theorem, which is used 

herein to prove the existence of stable limit cycles, is 

only valid for 2D systems. These considerations 

suggest that the perturbation approach conducted in 

[1], which reduces the system dimension from 4 to 

2, is particularly appropriate. 

Finally, it is convenient to position the present 

paper within the literature, showing its similarities 

and differences with respect to other published 

works.  

First, it should be noted that the Hopf bifurcation 

investigated in this paper is conceptually different to 

that reported in [14]. The reason is that, while we 

study here the fixed points of an averaged system, 

representing stationary motions of the motor, Dantas 

et al. analyzed in [14] the fixed points of the original 

system, corresponding to the motor at rest. 

It should be stressed that the present paper is 

mainly based on analytical results, which are also 

validated by means of numerical simulations. This 

makes it significantly different to many other works, 

where conclusions are directly drawn from 

numerical experiments [15–17]. 

This paper studies a mechanical system which is 

very similar to that analyzed by Fidlin in [18]. 

However, he considered a motor characteristic with 

small slope, while our assumption is the opposite. 

Actually, the slope of the motor characteristic curve 

is a chief parameter of the problem. The system 

exhibits different behaviours, and requires different 

mathematical approaches, depending on the order of 

magnitude of this slope. 

The mechanical system that we investigate is also 

akin to that studied by Rand et al. in [11, 19]. 

However, they considered no damping and a motor 

driven by a constant torque. Due to these 

differences, both the perturbation approach and the 

conclusions about the motion of the system 

presented in this work are substantially different to 

those reported in [11, 19]. 

There are also published works where chaotic 

behaviour is found in systems excited by nonideal 

power sources [17, 20]. Nevertheless, this kind of 

motion is not possible for the particular case under 

study, as long as the assumptions specified in 

Section 2.1 hold. The reason is that at least 3 

dimensions are needed to have chaos, while, as will 

be seen in Section 2.2, our reduced system is of 

dimension 2. 

The organization of the paper is as follows. 

Section 2 briefly recalls the main results of [1], 

which constitute the base of this study. Section 3 

analytically investigates conditions for the 

subcriticality or supercriticality of the Hopf 

bifurcations. Section 4 uses the Poincaré–Bendixon 

Theorem to prove that, under appropriate conditions, 

every system trajectory is attracted by a limit cycle. 

The global bifurcations by means of which the limit 

cycles disappear are numerically investigated in 

Section 5. Section 6 compares numerical solutions 

of the reduced and the original system in order to 

validate the analytical developments and discusses 

the time scale in which the asymptotic 

approximation is valid. Finally, the conclusions of 

the present study are summarized in Section 7.  

 

 

2 Brief Review of previous developments 

 

2.1 Equations of Motion and Assumptions 

 

Consider the system depicted in Fig. 1, consisting of 

an unbalanced motor attached to the fixed frame by 

means of a nonlinear spring –with linear and cubic 

components – and a linear damper. 

Variable 𝑥 represents the linear motion, 𝜙 is the 

angle of the rotor, 𝑚1 is the unbalanced mass with 

eccentricity 𝑟, 𝑚0 is the rest of the vibrating mass, 𝐼0 

is the rotor inertia (without including the unbalance), 

𝑏 is the damping coefficient and 𝑘 and 𝜆 are, 

respectively, the linear and cubic coefficients of the 

spring. The equations of motion for the coupled 2-

DOF system are 

 

Fig. 1 Model of the mechanical system 
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𝑚𝑥̈ + 𝑏𝑥̇ + 𝑘𝑥 + 𝜆𝑥3 = 𝑚1𝑟(𝜙̇
2 cos𝜙 + 𝜙̈ sin𝜙)

𝐼𝜙̈ = 𝐿(𝜙̇) + 𝑚1𝑟𝑥̈ sin 𝜙 ,
 (1) 

 

where 𝑚 = 𝑚0 +𝑚1, 𝐼 = 𝐼0 +𝑚1𝑟
2. A dot 

represents differentiation with respect to time, 𝑡. 
Function 𝐿(𝜙̇), is the driving torque produced by the 

motor –given by its static characteristic– minus the 

losses torque due to friction at the bearings, 

windage, etc. We assume this net torque to be a 

linear function of the rotor speed 

 

𝐿(𝜙̇) = 𝐶 + 𝐷(𝜙̇ − 𝜔𝑛), (2) 

 

where 𝜔𝑛 is the linear natural frequency of the 

oscillator, given by 𝜔𝑛 = √𝑘 𝑚⁄ . Although 𝐿(𝜙̇) 
includes the damping of rotational motion, we will 

usually refer to it shortly as ‘the motor 

characteristic’. We further assume 𝐷 < 0 –the 

driving torque decreases with the rotor speed–, as is 

usual for most kinds of motor. 

By defining 

 

𝑅𝑚 = 𝑚1 𝑚⁄ ,   𝑅𝐼 = 𝑚1𝑟
2 𝐼⁄

𝜉 =
𝑏

2√𝑘𝑚
,   𝛼 =

𝑅𝐼𝑅𝑚
2𝜉

 

𝑐 =
𝐶

𝐼𝜔𝑛
2
,   𝑑 =

𝐷

𝐼𝜔𝑛
,   𝜏 = 𝜔𝑛𝑡

𝑢 =
𝑥

𝑟

2𝜉

𝑅𝑚
,   𝜌 =

𝜆𝑟2

𝑘
(
𝑅𝑚
2𝜉
)
2

,

  

 (3) 

 

the equations of motion can be written in a more 

convenient dimensionless form 

 

𝑢̈ + 𝑢 = −2𝜉𝑢̇ − 𝜌𝑢3 + 2𝜉(𝜙̇2 cos𝜙 + 𝜙̈ sin𝜙)

𝜙̈ = 𝑐 + 𝑑(𝜙̇ − 1) + 𝛼𝑢̈ sin𝜙 ,
 (4) 

 

where a dot now represents differentiation with 

respect to dimensionless time, 𝜏. 
In order to apply perturbation techniques to system 

(4), some assumptions on the order of magnitude of 

the system parameters have to be made. Thus, we 

assume the damping, the unbalance and the 

nonlinearity to be small. We express this by making 

the corresponding coefficients proportional to a 

sufficiently small, positive and dimensionless 

parameter 𝜖: 

 

𝜉 = 𝜖𝜉0, 𝛼 = 𝜖𝛼0, 𝜌 = 𝜖𝜌0. (5) 

 

We also assume that the torque generated by the 

motor at resonance (𝜙̇ = 1) is sufficiently small:  

 

𝑐 = 𝜖𝑐0. (6) 

 

Finally, we assume the slope of the motor 

characteristic to be of the order of unity, i.e. 

independent of 𝜖: 

 

𝑑 = 𝑑0. (7) 

 

This assumption corresponds to what we have called 

‘large slope characteristic’. The case of small slope, 

with 𝑑 proportional to 𝜖, is treated in [18]. 

Taking the proposed scaling (5)-(7) into account 

and dropping the subscript ‘0’ for convenience, we 

can write (4) as 

 
𝑢̈ + 𝑢 = 𝜖{−2𝜉𝑢̇ − 𝜌𝑢3 + 2𝜉(𝜙̇2 cos𝜙 + 𝜙̈ sin𝜙)}

𝜙̈ = 𝑑(𝜙̇ − 1) + 𝜖{𝑐 + 𝛼𝑢̈ sin𝜙}.
 (8) 

 

In the next two subsections, we sketch some results 

obtained in [1] concerning the behaviour of (8), 

namely those which are necessary for the present 

paper. 

 

2.2 Reduced System 

 

Equations (8) constitute an autonomous dynamical 

system of dimension 4, with state variables 

{𝑢, 𝑢̇, 𝜙, 𝜙̇}. In reference [1], some perturbation 

techniques were applied to (8), in order render it 

easier to analyze. Here we mention the main results 

of this procedure: 

- System (8) exhibits three qualitatively different 

behaviors, at three consecutive stages of time. 

- The first two stages take place at a time scale 

𝜏 = 𝑂(1). They can be considered as a fast 

transient regime. 

- The third stage occurs at a time scale 𝜏 =
𝑂(1 𝜖⁄ ). During this stage, we have 

 

Ω ≡ 𝜙̇ = 1 + 𝜖𝜎, (9) 

 

which means that the system is near resonance. 

- The system dynamics at the third stage is 

governed, with 𝑂(𝜖) precision, by the 

following 2-D reduced model: 

 

{

𝑎̇ = −𝜖𝜉(𝑎 + sin 𝛽)

𝛽̇ = 𝜖 (
𝑐

𝑑
+
𝛼

2𝑑
𝑎 sin 𝛽 − 𝜉

cos 𝛽

𝑎
+
3

8
𝜌𝑎2)

}, (10) 

 

where the new variables are related to the 

original ones by  

 

{
𝑢 = 𝑎 cos(𝜙 + 𝛽)

𝑢̇ = −𝑎 sin(𝜙 + 𝛽)
}. (11) 

 

 

2.3 Equilibrium Points and Stability 

 

Equilibrium points of system (10), which represent 

stationary solutions of the original system (8), can be 

obtained with the following graphical construction. 

Consider the plane spanned by axis {𝜎, 𝑇}, where 𝜎 

is a measure of the rotor speed –see (9)– and 𝑇 



represents torque on the rotor. Graph 𝑇𝑚 versus 𝜎, 

with  

 

𝑇𝑚(𝜎) ≡ 𝑐 + 𝑑𝜎. (12) 

 

Then, graph on the same plot the parametric curve 

given by {𝜎𝑣(𝑧, 𝑎), 𝑇𝑣(𝑎)}, with 𝑧 = ±1, 𝑎 ∈ (0,1] 
and 

 

{

𝑇𝑣(𝑎) ≡
𝛼

2
𝑎2

𝜎𝑣(𝑧, 𝑎) ≡
3

8
𝜌𝑎2 + 𝑧𝜉

√1 − 𝑎2

𝑎

}. (13) 

 

The above procedure gives rise to a plot like that 

shown in Fig. 2, where the equilibrium points of (10) 

correspond to the intersections between the two 

curves. In the particular case displayed in Fig. 2, 

there are three equilibrium points, marked with 

circles. Note that curve 𝑇𝑣 is composed of two 

branches, which collide at the maximum of the 

curve. They correspond to the two possible values of 

parameter 𝑧, as specified in Fig. 2. 

 

 
Fig. 2 Equilibrium points of (10) 

 

The physical interpretation of Fig. 2 is as follows: 

𝑇𝑚 is the net torque produced by the motor, while 𝑇𝑣 

represents the torque on the rotor due to vibration. 

For a particular intersection between the curves 

{𝜎𝑒𝑞, 𝑇𝑒𝑞}, the equilibrium values of {𝑎, 𝛽} are given 

by 

 

𝑎𝑒𝑞 = √
2𝑇𝑒𝑞
𝛼

, 𝛽𝑒𝑞 = tan
−1 (

−𝑎𝑒𝑞
−𝑧𝑅𝑒𝑞

), (14) 

 

where 𝑅𝑒𝑞 stands for √1 − 𝑎𝑒𝑞
2  

Once the equilibrium points of the reduced system 

have been obtained, we turn to the analysis of their 

stability. For a 2D system, this reduces to calculating 

the trace and determinant of the jacobian matrix, 

evaluated at the equilibrium point of interest: 

 

𝐽𝑒𝑞 = 𝜖 [

−𝜉 𝑧𝜉𝑅𝑒𝑞

(−
𝛼

2𝑑
+
3𝜌

4
)𝑎𝑒𝑞 −

𝑧𝜉𝑅𝑒𝑞

𝑎𝑒𝑞
2

−
𝑧𝛼𝑎𝑒𝑞𝑅𝑒𝑞

2𝑑
− 𝜉

], (15) 

 

The conditions for an equilibrium point to be 

asymptotically stable are 

 

𝐂𝟏.    𝑡𝑟(𝐽𝑒𝑞) < 0 (16) 

𝐂𝟐.    𝑑𝑒𝑡(𝐽𝑒𝑞) > 0. (17) 

 

After some algebra, these conditions can be 

expressed as 

 

𝐂𝟏.    
𝑧𝛼𝑎𝑒𝑞𝑅𝑒𝑞

4𝑑
+ 𝜉 > 0 (18) 

 

𝐂𝟐.    

{
 

 
1

𝜂
−
1

𝑑
< 0, 𝑖𝑓 𝑧 = 1

1

𝜂
−
1

𝑑
> 0, 𝑖𝑓 𝑧 = −1

}
 

 

, (19) 

 

where 𝜂 denotes the slope of the 𝑇𝑣 curve at the 

considered equilibrium point, and has expression 

 
1

𝜂
= −

𝑧𝜉

𝛼𝑎𝑒𝑞
3 𝑅𝑒𝑞

+
3𝜌

4𝛼
, (20) 

 

as can be deduced from (13). 

 
Fig. 3 Stability regions for an equilibrium point 

exhibiting a Hopf bifurcation. S and U label the 

stable and unstable regions, respectively.   
 

We now apply conditions (18) and (19) to evaluate 

stability regions in different scenarios. The 

procedure is as follows. Consider parameters 𝛼, 𝜉, 𝜌 

fixed, so that the 𝑇𝑣 curve –see (13)– is fixed too. 

Consider a pair of values (𝑐, 𝑑) which gives a 

particular curve  𝑇𝑚(𝜎). The intersections between 

the two curves represent the equilibrium points of 

the system. Select one of them –if there are more 

than one– and let parameters (𝑐, 𝑑) vary in such a 

way that the selected equilibrium point remains an 

equilibrium point. In other words, let parameters 
(𝑐, 𝑑) vary so as to make the curve 𝑇𝑚(𝜎) rotate 

around the selected equilibrium point, satisfying 

restriction 𝑑 < 0. Finally, use conditions (18) and 
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(19) to analyze how the stability of the equilibrium 

point is affected by the slope 𝑑 of the motor 

characteristic. 

The procedure described above was followed in 

[1] for all possible scenarios (𝑧 = ±1, 𝜂 ≷ 0). 
Nonetheless, here we restrict attention to the only 

case of interest for the present paper, namely that 

exhibiting a Hopf bifurcation. Then, consider an 

equilibrium point satisfying 

 

𝑧 = 1, 𝑑𝐻 < 𝜂 < 0. (21) 

 

where critical slope 𝑑𝐻 is defined as  

 

𝑑𝐻(𝛼, 𝜉, 𝑎𝑒𝑞) = −
𝛼𝑎𝑒𝑞𝑅𝑒𝑞
4𝜉

. (22) 

 

The stability diagram for this scenario is displayed 

in Fig. 3.The critical condition –i.e. the one which 

produces the stability change– is C1. In this case, the 

equilibrium point loses stability at 𝑑 = 𝑑𝐻 through a 

Hopf bifurcation, after which we named parameter 

𝑑𝐻.  

 

 

3 Classification of the Hopf Bifurcations 

 

Clearly, it would be of great interest to characterize 

the Hopf bifurcation under study as subcritical or 

supercritical. In the former case, an unstable limit 

cycle coexists with the stable equilibrium point, 

while in the latter case there is a stable limit cycle 

coexisting with the unstable equilibrium point, as 

represented in Fig. 4. Subcritical bifurcations are 

generally more dangerous in real applications, since 

they can give rise to abrupt jumps in the system 

behavior [21]. 

Characterizing the bifurcations require several 

transformations of system (10), that are detailed 

below 

 

 

 

 

 

 

 

 
 

Fig. 4 Classification of Hopf bifurcations 

(a) Supercritical (b) Subcritical 

Thick (thin) lines represent stable (unstable) 

solutions 

 

3.1 Transformation to Cartesian Coordinates. 

 

We assume the system parameters are such that 

there exists an equilibrium point satisfying condition 

(31) and, thereby, undergoing a Hopf bifurcation. By 

defining change of variables 

 

{
𝑥̃ = 𝑎 cos𝛽
𝑦̃ = 𝑎 sin𝛽

}, (23) 

system (10) can be rewritten, at the bifurcation point 
(𝑑 = 𝑑𝐻), as 

 

{
 

 𝑥̇̃ = −𝜖 [𝜉𝑥̃ +
𝑐

𝑑𝐻
𝑦̃ +

𝛼

2𝑑𝐻
𝑦̃2 +

3

8
𝜌𝑦̃(𝑥̃2 + 𝑦̃2)]

𝑦̇̃ = 𝜖 [−𝜉 − 𝜉𝑦̃ +
𝑐

𝑑𝐻
𝑥̃ +

𝛼

2𝑑𝐻
𝑥̃𝑦̃ +

3

8
𝜌𝑥̃(𝑥̃2 + 𝑦̃2)]

}
 

 

. (24) 

 

 

3.2 Displacement of the origin 

 

In order to characterize the bifurcation, it is 

convenient to locate the origin of the coordinate 

system at the equilibrium point under investigation. 

Then, we define change of variables 

 

 

{
𝑥 = 𝑥̃ − 𝑎𝑒𝑞 cos𝛽𝑒𝑞
𝑦 = 𝑦̃ − 𝑎𝑒𝑞 sin𝛽𝑒𝑞

}. (25) 

 

Using the new coordinates, system (24) takes the 

form

 

{
𝑥̇ = 𝜖 {− [𝜉 +

3

4
𝜌𝑎3𝑅] 𝑥 − [

3

4
𝜌𝑎4 + 𝜉 (

2𝑎

𝑅
−
𝑅

𝑎
)] 𝑦 +

3

8
𝜌𝑎2𝑥2 + [

2𝜉

𝑎𝑅
+
9

8
𝜌𝑎2] 𝑦2 +

3

4
𝜌𝑎𝑅𝑥𝑦 −

3

8
𝜌𝑦[𝑥2 + 𝑦2]}

𝑦̇ = 𝜖 {[
3

4
𝜌𝑎2𝑅2 − 𝜉

𝑅

𝑎
] 𝑥 + [𝜉 +

3

4
𝜌𝑎3𝑅] 𝑦 −

9

8
𝜌𝑎𝑅𝑥2 −

3

4
𝜌𝑎𝑅𝑦2 − [

2𝜉

𝑎𝑅
+
3

4
𝜌𝑎2] 𝑥𝑦 +

3

8
𝜌𝑥[𝑥2 + 𝑦2]}

}. 
(26) 

 

 

where 𝑎𝑒𝑞 and 𝑅𝑒𝑞 are shortly written as 𝑎 and 𝑅, 

respectively, in order to make the expression more 

manageable. This abbreviated notation will also be 

used in equation (28) and in the Appendix. Note that 

system (26) is of the form 

 

{
𝑥̇
𝑦̇
} = 𝜖 {𝑨 {

𝑥
𝑦} + 𝒉(𝑥, 𝑦)} (27) 

 

where matrix 𝑨 is given by 

 

(a) (b) 

dd

a
a

eq
a

eq
a

H
d

LCOLCO

H
d



𝑨 = [
−(𝜉 +

3

4
𝜌𝑎3𝑅) − {

3

4
𝜌𝑎4 + 𝜉 (

2𝑎

𝑅
−
𝑅

𝑎
)}

3

4
𝜌𝑎2𝑅2 − 𝜉

𝑅

𝑎
𝜉 +

3

4
𝜌𝑎3𝑅

] (28) 

 

and vector 𝒉(𝑥, 𝑦) contains the nonlinear terms of 

the system. 

 

 

3.3 Transformation to the real eigenbasis of matrix 𝑨  

 

We define a new change of variables using the real 

eigenbasis of matrix 𝑨: 

 

{
𝑥
𝑦} = 𝑻 {

𝑧1
𝑧2
}, (29) 

 

where the columns of matrix 𝑻 are the real and 

imaginary parts of the complex conjugate 

eigenvectors of 𝑨, denoted by 𝒗1,2: 

 

𝒗1,2 = {
𝑐1
𝑐2
} ± 𝑖 {

𝜔0
0
} →  𝑻 = [

𝑐1 𝜔0
𝑐2 0 ], (30) 

 

with 

 

𝑐1 = 𝜉 +
3

4
𝜌𝑎𝑒𝑞

3 𝑅𝑒𝑞

𝑐2 = 𝜉
𝑅𝑒𝑞
𝑎𝑒𝑞

−
3

4
𝜌𝑎𝑒𝑞

2 𝑅𝑒𝑞
2

𝜔0 = √(
1 − 4𝑎𝑒𝑞

2

𝑎𝑒𝑞
2

) 𝜉2 −
3

4
𝜌𝜉𝑎𝑒𝑞𝑅𝑒𝑞 .

 (31) 

 

System (26), written in terms of the new variables, 

takes the form 

 

{
𝑧1̇
𝑧2̇
} = 𝜖 {[

0 −𝜔0
𝜔0 0

] {
𝑧1
𝑧2
} + {

𝑓(𝑧1, 𝑧2)

𝑔(𝑧1, 𝑧2)
}}, (32) 

 

where functions 𝑓 and 𝑔, containing the nonlinear 

terms of the system, can be written as: 

 

𝑓(𝑧1, 𝑧2) = ∑
1

𝑖! 𝑗!
𝑓𝑖𝑗𝑧1

𝑖𝑧2
𝑗

3

𝑖+𝑗=2

𝑔(𝑧1, 𝑧2) = ∑
1

𝑖! 𝑗!
𝑔𝑖𝑗𝑧1

𝑖𝑧2
𝑗

3

𝑖+𝑗=2

 (33) 

 

Coefficients 𝑓𝑖𝑗 and 𝑔𝑖𝑗 are specified in the 

Appendix. 

 

 

3.4 Transformation to Normal Form 

 

The final step to characterize the bifurcation 

includes transformation in complex form, near-

identity transformation and transformation in polar 

coordinates [22]. This is a standard procedure whose 

details can be found in [21, 23]. After these last 

transformations, system (32) can be written in its 

Normal Form 

 

𝑟̇ = 𝜖𝛿𝑟3, (34) 

 

which governs the radial dynamics at the 

bifurcation. As shown in [23], coefficient 𝛿 can be 

computed as 

 

16𝛿 =

{
 
 

 
 

𝑓30 + 𝑓12 + 𝑔21 + 𝑔03

+
1

𝜔0
[𝑓11(𝑓20 + 𝑓02) − 𝑔11(𝑔20 + 𝑔02)]

+
1

𝜔0
[𝑓02𝑔02 − 𝑓20𝑔20] }

 
 

 
 

. (35) 

 

In summary, we can say that, after a large number of 

variable transformations, system (10) can be written 

as (34), from which we deduce that the bifurcation is 

supercritical (subcritical) if 𝛿 < 0 (𝛿 > 0).    
Despite the fact that coefficients 𝑓𝑖𝑗 and 𝑔𝑖𝑗 are of 

rather complicated form, we find –with the aid of 

software for symbolic computation– that the 

condition for supercriticality or subcriticality can be 

expressed in a surprisingly simple manner: 

 

𝑆𝑢𝑝𝑒𝑟𝑐𝑟𝑖𝑡.⇒ 𝛿 < 0 ⇒ 𝜌 < −
8𝜉

3𝑎𝑒𝑞𝑅𝑒𝑞

𝑆𝑢𝑏𝑐𝑟𝑖𝑡.⇒ 𝛿 > 0 ⇒ 𝜌 > −
8𝜉

3𝑎𝑒𝑞𝑅𝑒𝑞

 (36) 

 

It is worth noting that conditions (36) admit a very 

clear graphical interpretation. Consider a curve 𝑇𝑚 

which intersects 𝑇𝑣 at the equilibrium point under 

consideration and also at the highest peak of curve 

𝑇𝑣. Let 𝑑𝑃 denote the slope of this particular motor 

characteristic, as depicted in Fig. 5. 

 
Fig. 5 Definition of slope 𝑑𝑃 

 

In order to obtain 𝑑𝑃, let us write the coordinates of 

the two points defining the straight line. First, the 

highest peak of curve 𝑇𝑣 can be shown to correspond 

to 𝑎 = 1. Substituting this condition in (13), we 

obtain 
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v
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m P
T d d



𝜎 =
3

8
𝜌, 𝑇 =

𝛼

2
 (37) 

 

On the other hand, the (𝜎, 𝑇) coordinates of the 

equilibrium point under study are directly given in 

(13): 

 

𝜎 =
3

8
𝜌𝑎𝑒𝑞

2 + 𝜉
𝑅𝑒𝑞
𝑎𝑒𝑞

, 𝑇 =
𝛼

2
𝑎𝑒𝑞
2  (38) 

 

Then, from (37) and (38), the expression of 𝑑𝑃 can 

be readily obtained: 

 
1

𝑑𝑃
=
3𝜌

4𝛼
−

2𝜉

𝛼𝑎𝑒𝑞𝑅𝑒𝑞
, (39) 

 

By comparing (39) and (22), conditions (36) can be 

expressed as 

 
𝑆𝑢𝑝𝑒𝑟𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 ⇒ 𝑑𝐻 < 𝑑𝑃
𝑆𝑢𝑏𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 ⇒ 𝑑𝐻 > 𝑑𝑃.

 (40) 

 

 
Fig. 6 Examples of (a) subcritical and (b) 

supercritical bifurcations. 

(a) 𝜉 = 1, 𝛼 = 1, 𝜌 = −2, 𝑎𝑒𝑞 = 0.3 

(b) 𝜉 = 1, 𝛼 = 1, 𝜌 = −15, 𝑎𝑒𝑞 = 0.4 

 

This last manner of characterizing the bifurcation is 

certainly appealing from a graphical point of view, 

since the basic information about the bifurcation can 

be directly observed from the torque–speed curves, 

as shown in Fig. 6 for two particular examples. 

 

 

4 Conditions under which all system trajectories 

are attracted towards a Limit Cycle. 

 

In Section 3, a simple condition has been obtained to 

ascertain whether the Hopf bifurcation under study 

is subcritical or supercritical, which in turn allows 

predicting the kind of limit cycle generated by the 

bifurcation (see Fig. 4). Although this distinction is 

relevant, it is based on a local analysis and, 

consequently, it only gives local information about 

the system behaviour. This is so in two senses: the 

analysis of Section 3 provides insight into the 

system dynamics  

- for values of 𝑑 close enough to 𝑑𝐻 (results 

are local in the parameter space) and 

- for trajectories close enough to the 

investigated equilibrium point (results are 

local in the phase plane). 

In view of the aforementioned limitations, this 

section addresses a new global result that 

complements those of Section 3. 

First, let us briefly recall the Poincaré-Bendixon 

theorem, which is an essential result from the global 

theory of nonlinear systems [24]. The theorem can 

be stated, in short terms, as follows.  

Consider a 2D dynamical system and a closed, 

bounded region 𝑅 of the phase plane which does not 

contains any equilibrium points. Then, every 

trajectory which is confined in 𝑅 –it starts in 𝑅 and 

remains in 𝑅 for all future time– is a closed orbit or 

spirals towards a closed orbit as 𝑡 → ∞. For a more 

rigorous and detailed exposition of the theorem, see 

[24]. 

Let us show that, under certain circumstances, the 

P-B theorem can be used to prove that all trajectories 

of the system under study are attracted towards a 

limit cycle. 

 First, it can be easily deduced from (10) that 

 

𝑎 > 1 ⇒ 𝑎̇ < 0. (41) 

 

Let us use variables 𝑎 and 𝛽 as polar coordinates on 

the phase plane, according to (23), and let 𝐷 denote 

a circle centred at the origin of the phase plane with 

a radius slightly greater than 1, say 1.01. From (41), 

we can say that every trajectory starting outside 

region 𝐷 will enter 𝐷 and remain inside for all 

subsequent time. Obviously, trajectories starting 

inside 𝐷 will also remain inside forever. This kind of 

behavior would present 𝐷 as a suitable candidate for 

the role of region 𝑅 in the P-B theorem, if it were 

not for the presence of equilibrium points inside 𝐷. 

Let us now consider the following particular 

situation:  

 

{
The system has only one equilibrium point

𝑧 = 1, 𝑑𝐻 < 𝑑 < 𝜂 < 0
}, (42) 

 

whose torque curves are depicted in Fig. 7. We 

suppose that the only equilibrium point of the 

system is on the right branch of curve 𝑇𝑣 and 

undergoes a Hopf bifurcation. It is also assumed that 

the actual slope of the motor characteristic is 𝑑 > 𝑑𝐻 

and, therefore, the equilibrium is unstable. 

First, let us prove that the equilibrium point is a 

repeller. Since we already know that the equilibrium 

is unstable, we only need to prove that it is not a 

saddle. Let 𝐽𝑒𝑞 be the jacobian matrix of system 

(10), evaluated at the equilibrium point. Taking into 

account that a saddle point has two real eigenvalues 

𝜆1, 𝜆2 with different signs, we can state 

 

If 𝑑𝑒𝑡(𝐽𝑒𝑞) = 𝜆1 𝜆2 > 0,

then the equilibrium is not a saddle
 (43) 

 

With some simple algebra, it can be shown that, for 

𝑧 = 1, condition 𝑑𝑒𝑡(𝐽𝑒𝑞) > 0 can be written as 𝑑 <

𝜂. Then, it is clear that, for an equilibrium point 
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satisfying (42), we have 𝑑𝑒𝑡(𝐽𝑒𝑞) > 0. Thus, the 

equilibrium is a repeller. 

 

 
Fig. 7 Schematic view of the torque curves 

corresponding to conditions (42) 

 

Now, let us construct a new region 𝑄, defined as 𝐷 

minus a circle of infinitesimal radius around the 

equilibrium point. From the above considerations –

all trajectories enter 𝐷 and the equilibrium point is a 

repeller–, it is clear that the flow on the boundary of 

𝑄 is directed inwards, as depicted in Fig. 8. 

In summary, we have obtained a closed, bounded 

region 𝑄 of the phase plane which contains no 

equilibrium points and such that all trajectories of 

the system enter 𝑄 and remain inside forever. Then, 

all conditions of the P-B theorem are fulfilled, and 

we can assure that any trajectory of the system is 

attracted towards a closed orbit as 𝑡 → ∞, if it is not 

a closed orbit itself. 

Finally, let us note that, although the P-B theorem 

does not guarantee that all trajectories tend to the 

same closed orbit, all of our numerical simulations 

show the presence of only one stable limit cycle, 

namely that created by the Hopf bifurcation. This 

suggests that, for a system verifying (42), all the 

system dynamics is attracted towards a unique limit 

cycle. 

 

 

 
Fig. 8 Flow on the boundary of region 𝑄 (dashed), 

under conditions (42) 

 

 

5 Global Bifurcations of the Limit Cycles 

 

In Section 3, the creation of LCOs through Hopf 

bifurcations has been investigated. Now, we turn to 

the opposite question: once a limit cycle is born, 

does it exist for every 𝑑 > 𝑑𝐻 in the supercritical 

case –for every 𝑑 < 𝑑𝐻 in the subcritical case–, or is 

it destroyed at any point? In the latter case, it would 

also be interesting to know the dynamical 

mechanism which makes the limit cycle disappear. 

The aim of this Section is to analyse the global 

dynamics of the system, tracking the evolution of the 

limit cycles in order to find out how they are 

destroyed –if they are destroyed at all–. Since this 

task is in general too complex to be carried out 

analytically, we resort to numerical computation. 

 

 

5.1 The Subcritical Case 

 

Consider the following set of parameter values 

 

𝜉 = 1, 𝛼 = 1, 𝜌 = 0, 𝑎𝑒𝑞 = 0.3, 𝑧 = 1. (44) 

 

By using equations (22) and (39), we can obtain 

slopes 𝑑𝐻 and 𝑑𝑃, depicted in Fig. 9.  

 

𝑑𝐻 = −0.0715, 𝑑𝑃 = −0.1431 (45) 

 

According to criterion (40), the Hopf bifurcation is 

found to be subcritical. Thus, as represented in Fig. 

4, an unstable limit cycle is known to exist for 𝑑 <
𝑑𝐻, within a certain neighborhood of 𝑑𝐻. We are 

interested in tracking the evolution of this limit cycle 

as slope 𝑑 decreases.  By numerically integrating 

system (10), through a Runge-Kutta algorithm, for 

different values of 𝑑, the limit cycle is found to 

disappear at 𝑑 = 𝑑𝐶 –see Fig. 9–, with 

 

𝑑𝐶 = −0.0795. (46) 

 

 

 
Fig. 9 Torque curves corresponding to parameters 

(44) 
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Fig. 10 Phase Portraits corresponding to parameters 

(44). The equilibrium points are marked with stars. 

The dashed loop represents the unstable limit cycle 

(a) 𝑑 = −0.070, (b) 𝑑 = −0.073 

(c) 𝑑 = −0.078, (d) 𝑑 = −0.081 

The dynamical mechanism whereby the limit cycle 

is destroyed, which turns out to be a homoclinic 

bifurcation [21],  is shown in Fig. 10. Let us follow 

the evolution of the phase portrait. From Fig. 10 (a) 

to Fig. 10 (b), the Hopf bifurcation takes place: the 

focus becomes stable, while an unstable limit cycle 

is born around it. In Fig. 10 (c), the cycle has 

swelled considerably and passes close to saddle 

point 𝑆. The homoclinic bifurcation occurs when the 

cycle touches the saddle point (𝑑 = 𝑑𝐶), becoming a 

homoclinic orbit. In Fig. 10 (d), we have 𝑑 < 𝑑𝐶 and 

the loop has been destroyed. 

It is worth noting that, when the unstable limit 

cycle exists –namely, for 𝑑𝐶 < 𝑑 < 𝑑𝐻–, it acts as a 

frontier between the domains of attraction of the two 

stable equilibrium points of the system –see Fig. 10 

(b), (c))–. 

Many other cases exhibiting a subcritical 

bifurcation, which are not shown here, have also 

been numerically solved. In all of them, the unstable 

limit cycle has been found to disappear through a 

homoclinic bifurcation. 

 

 

5.1 The Supercritical Case 

 

Consider the following set of parameters: 

 

𝜉 = 1, 𝛼 = 2, 𝜌 = −10, 𝑎𝑒𝑞 = 0.5, 𝑧 = 1. (47) 

 

Equations (22) and (39) yield the values of slopes 

𝑑𝐻 and 𝑑𝑃, depicted in Fig. 11. 

 

𝑑𝐻 = −0.2165, 𝑑𝑃 = −0.1650 (48) 

 

Criterion (40) allows characterizing the bifurcation 

as supercritical. Then, as represented in Fig. 4, we 

can assure that a stable limit cycle encircles the 

unstable equilibrium for 𝑑 > 𝑑𝐻, within a certain 

neighborhood of 𝑑𝐻. As a matter of fact, the results 

of Section 4 can be used here to investigate the 

range of slopes 𝑑 for which the limit cycle exists. 

 

 
Fig. 11 Torque Curves corresponding to parameters 

(47)  

 

-0.5 0 0.5

-0.8

-0.6

-0.4

-0.2

0

0.2

-0.5 0 0.5

-0.8

-0.6

-0.4

-0.2

0

0.2

-0.5 0 0.5

-0.8

-0.6

-0.4

-0.2

0

0.2

-0.5 0 0.5

-0.8

-0.6

-0.4

-0.2

0

0.2

-4 -2 0 2

0.2

0.4

0.6

0.8

1



T

%x

%y

%x

%y

%x

%y

%x

%y

H
d

P
d

T
d

v
T

(a) 

(d) 

(c) 

(b) 

S



Consider the curve 𝑇𝑚 which intersects 𝑇𝑣 at the 

equilibrium point under study and is tangent to 

curve 𝑇𝑣 at another point. Let 𝑑𝑇 stand for the slope 

of that particular torque curve, as displayed in Fig. 

11. Then, it is straightforward to show that, for 𝑑𝐻 <
𝑑 < 𝑑𝑇, conditions (42) are fulfilled and, 

consequently, we can assure that all system 

trajectories tend to a periodic orbit. In the case under 

analysis, we have 

 

𝑑𝑇 = −0.1697. (49) 

 

Note that the Poincaré-Bendixon Theorem gives 

sufficient, but not necessary, conditions for the 

existence of a stable periodic orbit. Thus, we cannot 

deduce from the Theorem whether the limit cycle 

survives or not when 𝑑 > 𝑑𝑇. To the end of 

answering this question, we resort again to a 

numerical resolution of system (10), for increasing 

values of 𝑑. The results are displayed in Fig. 12. 

Let us track the evolution of the phase portrait. In 

Fig. 12(a) we have 𝑑 < 𝑑𝐻 and all system 

trajectories are attracted towards the only 

equilibrium point of the system. Fig. 12(b) 

corresponds to 𝑑𝐻 < 𝑑 < 𝑑𝑇. The Hopf bifurcation 

has occurred and, therefore, the focus has lost its 

stability at the same time that a stable limit cycle has 

appeared around it. Note that, in Fig. 12(b), 

conditions (42) hold. Consequently, all system 

trajectories are attracted towards a periodic orbit. 

This scenario belongs to the general picture shown 

in Fig. 8.  

The numerical results mentioned above are only 

useful to confirm the analytical developments of 

previous sections. By contrast, Fig. 12(c) does 

provide new information about the global dynamics 

of the system. It shows that the stable limit cycle is 

destroyed through a saddle-node homoclinic 

bifurcation [21], which occurs at 𝑑 = 𝑑𝑇. This 

means that the cycle disappears exactly when 

conditions (42) are not fulfilled anymore. The 

mechanism is as follows. At 𝑑 = 𝑑𝑇 a new 

equilibrium point, which immediately splits into a 

saddle and a node, is created through a saddle-node 

bifurcation. This new equilibrium appears precisely 

on the limit cycle, transforming it into a homoclinic 

orbit. What we find at 𝑑 > 𝑑𝑇, as observed in Fig. 

12(c), is that the limit cycle has been replaced by a 

couple of heteroclinic orbits connecting the saddle 

and the node. 

We have found that, for the particular set of 

parameters (47), conditions (42) are necessary and 

sufficient for the existence of a stable limit cycle. 

Thus, the periodic orbit never coexists with any 

other attractor of the system. Nevertheless, it should 

be stressed that this is not always the case. In fact, 

we have also found cases where the stable limit 

cycle is destroyed through a homoclinic bifurcation, 

just like in the subcritical case. In these situations, 

the global bifurcation occurs at certain slope 𝑑𝐶 >

𝑑𝑇 and, therefore, the limit cycle coexists with a 

stable equilibrium for 𝑑𝑇 < 𝑑 < 𝑑𝐶. 

 

 
 

 

 
 

Fig. 12 Phase Portraits corresponding to parameters 

(47). The equilibrium points are marked with stars. 

The solid loop represents the stable limit cycle 

(𝑎) 𝑑 = −0.22, (b) 𝑑 = −0.19, (𝑐) 𝑑 = −0.169 

 

 

As an example, consider a case with 𝑑𝐻 satisfying 

𝑑𝑇 < 𝑑𝐻 < 𝑑𝑃. Clearly, according to (40), the Hopf 

bifurcation is supercritical. However, it is not 

possible for the limit cycle to be destroyed through a 

saddle-node homoclinic bifurcation, because the 

saddle and the node are created before the limit 
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cycle. In fact, in these cases, we have found the 

closed orbit to die in the same way as the unstable 

limit cycle shown in Fig. 10, i.e. through a 

homoclinic bifurcation due to the presence of a 

saddle point. 

In summary, the simulations carried out suggest 

that, while unstable limit cycles are destroyed by 

homoclinic bifurcations, the stable ones can 

disappear either through homoclinic bifurcations or 

saddle-node homoclinic bifurcations. 

 

 

6 Numerical validation and discussion 

 

All the analytical and numerical analysis carried out 

thus far has dealt with the behaviour of system (10). 

Nonetheless, it should be recalled that (10) 

represents the reduced system, i.e. an asymptotic 

approximation to the original system (8). Thus, it 

would be convenient to verify whether the obtained 

results hold also for the original system. The aim of 

this Section is to compare numerical solutions of the 

original and reduced systems in order to validate the 

proposed approach. 

Consider again the set of parameters given at (47) 

and a motor characteristic with slope 𝑑 = −0.19, 

which corresponds to the phase portrait exhibited in 

Fig. 12(b). With these parameters, the original 

system of equations (8) is numerically solved for 

𝜖 = 0.001 and initial conditions 

 

{
 

 
𝑢0 = 0.1 
 𝑢̇0 = 0
𝜙0 = 0

𝜙̇0 = 0 }
 

 
. (50) 

 

The reduced system (10) is numerically integrated as 

well for comparison. As explained in [1], the initial 

conditions for the original system {𝑢0,  𝑢̇0, 𝜙0, 𝜙̇0} 

and those for the reduced systems {𝑎0, 𝛽0
∗} are 

related by 

 

𝑎0 = √𝑢0
2 + 𝑢̇0

2

𝛽0
∗ = tan−1 (

−𝑢̇0
𝑢0

) − 𝜙0 +
𝜙̇0 − 1

𝑑
.

 (51) 

 

Introducing (50) in (51) yields 

 
{𝑎0 = 0.1, 𝛽0

∗ = 5.263}. (52) 

 

With these sets of initial conditions, the obtained 

results for both systems are represented in Fig. 13, 

exhibiting very good agreement.  

It is worth stressing that, as depicted in Fig. 13, a 

new kind of behaviour has been found for the 

mechanical system under study, which consists in a 

vibratory motion of the structure with slowly 

oscillating amplitude, due to the nonideal interaction 

between exciter and vibrating system. The periodic 

solutions of the averaged system correspond to 

quasiperiodic solutions of the original one. 

 

 

 

 
Fig. 13 Comparison of numerical solutions of the 

original and reduced systems for parameters (47) 

and 𝑑 = −0.19 

(a) Displacement 

(b) Rotor Speed (Full View) 

(c) Rotor Speed (Close-up around Resonance) 

 

 

This type of motion had not been addressed before, 

to the authors’ knowledge, in the literature about 

nonideal excitations. Note that the LCOs give rise, 

in this case, to very large variations of the amplitude. 

Thus, the effect of the studied instability may be of 

great importance in real applications. 
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We also perform numerical validation of the 

results concerning subcritical Hopf bifurcations. To 

this end, consider again parameters (44) and a slope 

of the motor characteristic 𝑑 = −0.078, which 

corresponds to the phase portrait displayed in Fig. 

10(c). In this scenario, as pointed out in Section 5.1, 

the unstable limit cycle is the boundary which 

separates the basins of attraction of the two 

attracting equilibrium points present in the system. 

Two sets of initial conditions, I.C. (1) and I.C. (2), 

are selected, outside and inside the limit cycle, 

respectively: 

 

I. C. (1) {
𝑎0 = 0.1

𝛽0
∗ = −2.8

} , I. C. (2) {
𝑎0 = 0.2

𝛽0
∗ = −2.8

}. (53) 

 

Then, by using relations (51), we can compute 

corresponding initial conditions for the original 

system: 

 

I. C. (1)

{
 

 
𝑢0 = 0.1 
 𝑢̇0 = 0
𝜙0 = 2.8

𝜙̇0 = 1 }
 

 
, I. C. (2)

{
 

 
𝑢0 = 0.2 
 𝑢̇0 = 0
𝜙0 = 2.8

𝜙̇0 = 1 }
 

 
. (54) 

 

Note that this step has not a unique solution, because 

different sets of original initial conditions can 

produce the same reduced initial conditions. 

The obtained numerical solutions are shown in 

Fig. 14, for 𝜖 = 0.001. A good agreement between 

solutions of both systems is observed. Clearly, the 

two considered sets of initial conditions lead the 

system to different attractors. 

Finally, it is convenient to consider the time scale 

in which the considered solutions of the reduced 

system are valid, which is a critical point in any 

perturbation analysis. It was shown in [1] that this 

time validity is, at least, 𝜏 = 𝑂(1 𝜖⁄ ). In fact, for the 

stable LCOs considered in this paper, we have an 

even stronger result. From the Averaging Theory, it 

is known that a solution of the averaged system 

which tends to an asymptotically stable periodic 

orbit is valid on 𝜏 ∈ [0,∞) for all variables except 

the angular one, i.e. the variable which measures the 

flow on the closed orbit [25]. This is equivalent to 

saying that we can uniformly approximate the 

closeness to the limit cycle, but not the position on 

it. The reason is that any small deviation on the 

frequency is accumulated over the cycles, giving rise 

to large errors after a sufficient number of periods 

(see Fig. 13). 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 14 Comparison of numerical solutions of the 

original (solid line) and reduced (dashed line) 

systems for parameters (44) and 𝑑 = −0.078.  

(a) Displacements 

(b) Rotor Speed 

 

 

7 Conclusions 
 

This paper is concerned with the analytical and 

numerical analysis of a nonlinear mechanical 

system, excited by an unbalanced motor. The main 

contributions of the present study are summarized as 

follows. 

- The Hopf bifurcations found in [1] have 

been analytically investigated, in order to 

characterize them as subcritical or 

supercritical. A very simple criterion, with 

clear graphical interpretation, has been 

obtained to distinguish both types of 

bifurcations. 

- The Poincaré-Bendixon Theorem has been 

used to find conditions under which all 

trajectories in the averaged system are 

attracted towards a periodic orbit, 

corresponding to a quasiperiodic solution of 

the original system. 

- The global bifurcations destroying the 

stable and unstable limit cycles have been  

numerically investigated. These simulations 

suggest that unstable LCOs are destroyed 

through homoclinic bifurcations, while 
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stable LCOs can be destroyed either 

through homoclinic bifurcations or through 

saddle-node homoclinic bifurcations. 

- When there exists an unstable limit cycle, 

the system exhibits two stable equilibrium 

points, whose domains of attraction are 

clearly delimited by the periodic orbit. 

- The presence of LCOs in the problem under 

study has been confirmed by numerically 

solving the original system of equations. 

An excellent agreement between the 

solutions of the original and reduced 

systems has been found. In addition, 

numerical results show that LCOs can 

produce very significant variations in the 

vibration amplitude, which suggests that 

the addressed instability might be of great 

relevance in real applications. 
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Appendix: Coefficients 𝒇𝒊𝒋 and 𝒈𝒊𝒋 

 

The coefficients of functions 𝑓(𝑧1, 𝑧2) and 𝑔(𝑧1, 𝑧2) 
in (33) have the following expressions. 

 

𝑓20 = −
3𝜌𝑎𝑅

4𝑐2
(3𝑐1

2 + 𝑐2
2) − 2𝑐1 (

2𝜉

𝑎𝑅
+
3

4
𝜌𝑎2) (A1) 

 

𝑓02 = −
9𝜌𝑎𝑅𝜔0

2

4𝑐2
 (A2) 

 

𝑓11 = −
3

4
𝜌𝜔0𝑎 (𝑎 + 3𝑅

𝑐1
𝑐2
) −

2𝜉𝜔0
𝑎𝑅

 (A3) 

 

𝑓30 =
9𝜌𝑐1
4𝑐2

(𝑐1
2 + 𝑐2

2) (A4) 

 

𝑓03 =
9𝜌𝜔0

3

4𝑐2
 (A5) 

 

𝑓21 =
3𝜌𝜔0
4𝑐2

(3𝑐1
2 + 𝑐2

2) (A6) 

 

𝑓12 =
9𝑐1𝜌𝜔0

2

4𝑐2
 (A7) 

  

𝑔20 =
(𝑐1
2 + 𝑐2

2)

𝜔0
{
9𝜌𝑎

4
(𝑅
𝑐1
𝑐2
+ 𝑎) +

4𝜉

𝑎𝑅
} (A8) 

 

𝑔02 =
3𝜌𝜔0𝑎

4
(𝑎 + 3𝑅

𝑐1
𝑐2
) (A9) 

 

𝑔11 =
3

2
𝜌𝑎2𝑐1 +

3𝜌𝑎𝑅

4𝑐2
(3𝑐1

2 + 𝑐2
2) +

2𝜉𝑐1
𝑎𝑅

 (A10) 

 

𝑔30 = −
9𝜌

4𝜔0𝑐2
(𝑐1
2 + 𝑐2

2)2 (A11) 

 

𝑔03 = −
9𝑐1𝜌𝜔0

2

4𝑐2
 (A12) 

 

𝑔21 = −
9𝑐1𝜌

4𝑐2
(𝑐1
2 + 𝑐2

2) (A13) 

 

𝑔12 = −
3𝜌𝜔0
4𝑐2

(3𝑐1
2 + 𝑐2

2), (A14) 

 

where 𝑎𝑒𝑞 and 𝑅𝑒𝑞 have been shortly written as 𝑎 

and 𝑅, respectively. 
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