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Multimodal classification of molecular subtypes in pediatric
acute lymphoblastic leukemia
Olga Krali 1, Yanara Marincevic-Zuniga1, Gustav Arvidsson1, Anna Pia Enblad1,2, Anders Lundmark1, Shumaila Sayyab1,
Vasilios Zachariadis3, Merja Heinäniemi4, Janne Suhonen4, Laura Oksa 5,6, Kaisa Vepsäläinen7, Ingegerd Öfverholm3,8,9,
Gisela Barbany 8,9, Ann Nordgren8,9, Henrik Lilljebjörn10, Thoas Fioretos10, Hans O. Madsen11, Hanne Vibeke Marquart11,12,
Trond Flaegstad13,14, Erik Forestier14,15, Ólafur G. Jónsson14,16, Jukka Kanerva14,17, Olli Lohi5,6,14, Ulrika Norén-Nyström14,18,
Kjeld Schmiegelow14,19, Arja Harila2,14, Mats Heyman14,20, Gudmar Lönnerholm2,14, Ann-Christine Syvänen 1 and
Jessica Nordlund 1✉

Genomic analyses have redefined the molecular subgrouping of pediatric acute lymphoblastic leukemia (ALL). Molecular subgroups
guide risk-stratification and targeted therapies, but outcomes of recently identified subtypes are often unclear, owing to limited
cases with comprehensive profiling and cross-protocol studies. We developed a machine learning tool (ALLIUM) for the molecular
subclassification of ALL in retrospective cohorts as well as for up-front diagnostics. ALLIUM uses DNA methylation and gene
expression data from 1131 Nordic ALL patients to predict 17 ALL subtypes with high accuracy. ALLIUM was used to revise and verify
the molecular subtype of 281 B-cell precursor ALL (BCP-ALL) cases with previously undefined molecular phenotype, resulting in a
single revised subtype for 81.5% of these cases. Our study shows the power of combining DNA methylation and gene expression
data for resolving ALL subtypes and provides a comprehensive population-based retrospective cohort study of molecular subtype
frequencies in the Nordic countries.
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INTRODUCTION
Pediatric acute lymphoblastic leukemia (ALL) comprises a hetero-
geneous group of patients who can be stratified into subgroups
based on the presence of recurrent cytogenetic aberrations, which
are important predictors of clinical outcome1,2. Subtypes of pediatric
B-cell precursor ALL (BCP-ALL) are often characterized by large-scale
chromosomal aberrations, including abnormal chromosomal num-
bers, translocations that give rise to expressed fusion genes, or other
structural rearrangements. Before next-generation sequencing (NGS)-
based methods were introduced into clinical practice, as many as
30% of all BCP-ALL cases either lacked conclusive results from
standard cytogenetic analyses (denoted undefined) or were negative
for the subtype-defining aberrations (denoted B-other) and therefore
subtype information was not available for treatment stratification or
disease monitoring in this large group of patients3. Recent
application of high-resolution transcriptome sequencing (RNA-seq)
has enabled the discovery of new oncogenic subgroups character-
ized by fusion genes, such as DUX4 (DUX4-r), ZNF384 (ZNF384-r),
MEF2D (MEF2D-r) and NUTM1 (NUTM1-r) rearrangements4–15, as well
as subtype-like signatures, such as BCR::ABL1-like/“Ph-like”16,17 or
ETV6::RUNX1-like/”ER-like”7,18, and the PAX5-driven subtypes, PAX5

alteration (PAX5alt) and PAX5 P80R19–22. The clinical significance of
the recently identified subtypes is often unclear, owing to the limited
number of cases and differences between protocols and stu-
dies7,8,20,23,24. Therefore, retrospective ALL cohort analyses have been
particularly powerful for studying rare ALL subtypes due to the large
sample sizes available in biobanks and the prolonged period of
follow-up to collect sufficient data on rare events.
Most of the recurrent molecular alterations in ALL are strongly

associated with gene expression (GEX) profiles24,25. RNA-seq has
since emerged as a powerful tool for the identification of both
fusion genes and GEX subtype profiling in a single assay26,27,
which promises to replace cumbersome standard karyotyping (G-
banding), PCR-based and fluorescence in situ hybridization (FISH)-
based methods in a clinical diagnostic setting28. Compared to
DNA, RNA is prone to degradation, making it challenging to obtain
high-quality RNA for retrospective cohort analyses. However,
epigenetic profiling of DNA methylation (DNAm) using arrays or
next-generation sequencing (NGS) has demonstrated comparable
subtype-specific distributions in ALL cells29–32. DNAm is advanta-
geous as an analyte due to its ability to identify methylation
patterns associated with disease in degraded archival samples33.
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Leveraging biobank samples and retrospective cohort studies can
provide valuable insights into long-term disease outcomes that
may be challenging to obtain through prospective study designs,
particularly for rare ALL subtypes.
In the present investigation, we describe a multimodal machine

learning classification tool, ALL subtype Identification Using
Machine learning (ALLIUM) that uses DNAm and/or GEX signatures
(Fig. 1). We trained and applied ALLIUM to a large cohort of 1131
Nordic patient samples and determined the frequencies of recent
genetic subtypes, which led to the revision of molecular subtypes
in 81.5% of the unclassified BCP-ALL cases.

RESULTS
Molecular characteristics and data generation
Diagnostic bone marrow aspirates or peripheral blood samples
from 1131 Nordic ALL patients (n= 1025 BCP-ALL and n= 106 T-
ALL) were obtained from a population based cohort diagnosed
between 1996 and 2013, and enrolled in the Nordic Society of
Pediatric Hematology and Oncology (NOPHO) −92, −2000,
−2008, EsPh-ALL, or Interfant treatment protocols34–37. Genome-
wide CpG methylation levels were analyzed in 1125 DNA samples
(1125 patients) using 450k arrays (DNAm dataset) and RNA-
sequencing was performed in 328 RNA samples (315 patients, GEX
dataset). Molecular subtypes were assigned based on standard
cytogenetic analysis at ALL diagnosis38, where a total of 850
patients (75%) had an established molecular subtype and 281
were denoted unclassified BPC-ALL (Supplementary Data 1). We
initially screened our cohort for the molecular ALL subtypes
outlined by the International Consensus Classification (ICC)2 using
a combination of genome-wide CNA detection, fusion gene
screening (Supplementary Fig. 1), and targeted mutational
assessment for PAX5 p.Pro80Arg, IKZF1 p.Asn159Tyr, and ZEB2
p.His1038Arg (Supplementary Data 2). This analysis, combined
with putative revised molecular subtype information from
previously published results7,9,30,39–41, identified 127 patients from
the unclassified BCP-ALL group (45.2%) who belonged to one of
the ICC subtypes. In total, this yielded 977 ICC subtype-defined
cases (Table 1). Of note, this included 27 patients with established

subtypes missed by routine diagnostics: HeH (n= 9), ETV6::RUNX1
(n= 9), KMT2A-r (n= 4), TCF3::PBX1 (n= 3), BCR::ABL1 (n= 1), and
iAMP21 (n= 1). One patient (ALL_913) was re-labelled from HeH
to DUX4-r, after confirmation of the presence of the IGH-DUX4
fusion gene and a modal number of 46 chromosomes. The 30
patients with dic(9;20) aberrations42 were re-labelled as PAX5alt.
The remaining 154 cases were denoted as B-other after the
application of the aforementioned genomic techniques failed to
resolve their subtype (Table 1).

ALLIUM is a highly sensitive method for molecular ALL
subtype classification
In order to design a DNAm and GEX-based classifiers for ALL, the
977 patients with known ICC molecular subtypes defined based
on updated molecular analysis were split into design and hold-out
datasets to create and validate the ALLIUM classifier (Table 2). An
internally produced replication set (n= 13, GEX) and three
external datasets (GEX: GSE16150143, GEX: GSE228632 and DNAm:
GSE5660031) were used for additional independent subtype
verification. ALLIUM is based on nearest shrunken centroid
(NSC)44 models consisting of DNAm and GEX data in a one vs.
rest approach. Subtypes with similar molecular profiles, i.e. those
characterized by aneuploidies (HeH, low HeH, iAMP21, hypodi-
ploidy), ETV6 gene rearrangements (ETV6::RUNX1, ETV6::RUNX1-
like), and the Philadelphia (ph) chromosome (BCR::ABL1, BCR::ABL1-
like) were handled in a different manner. For these subtypes, a
two-step procedure with initial classification on the group level,
followed by a one-vs-one or a multi-class classification within the
group was applied (Supplementary Materials and Methods and
Supplementary Fig. 2–3). Moreover, to identify misclassification
errors due to low blast count, control classifiers for DNAm and
RNA were built utilizing data available from ALL patients in
remission or healthy blood donors45. As the output contained
probability scores for each classifier, multiple subtype classifica-
tions could occur. Therefore, we proceeded with a multi- to single-
class transformation, assigning the subtype with the highest
probability score for each sample.
ALLIUM identified 379 CpGs and 356 genes as most informative

for subtype determination (Supplementary Data 3–4).

Fig. 1 Study overview. DNA methylation (DNAm, 450k arrays), gene expression (GEX, RNA-sequencing), and somatic mutation (WGS,
targeted sequencing) data were generated from 1131 patients treated on the Nordic Society for Pediatric Hematology and Oncology (NOPHO)
protocols diagnosed between 1996 and 2013. In total, the subtype of 281 of the BCP-ALL patients (24.8% of the entire ALL cohort) was
unclassified at diagnosis. Molecular screening was performed based on a combination of cytogenetics, fusion gene screening, mutational
analysis, and copy number analysis. Molecular screening resolved the subtype of 127 BCP-ALL patients. The remaining 154 patients were
denoted “B-other”. A supervised classification method (ALLIUM) was used to build subtype-specific models based on two modalities (DNAm
and GEX) for 17 of the known molecular subtypes of ALL. ALLIUM re-classified the subtype of 102 B-other patients. This study expanded the
scope of known subtypes across the entire cohort resulting in 1079 with known subtype (95.4% of the entire ALL cohort). The 52 patients
remaining unclassified at the end of the study are referred to as ALLIUM B-other.
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Unsupervised analysis of samples with known subtype revealed
clear subtype-driven clustering (Fig. 2a–c, Supplementary Fig. 4).
We evaluated the models using hold-out, replication and
independent external validation datasets (Table 2, Supplementary
Data 5–14). The classifiers were highly predictive overall, with
87.0% concordance between DNAm and true molecular subtype
and 94.5% overall concordance between GEX and true molecular
subtype (Fig. 2b–d). Both ALLIUM modalities achieved high

specificity (>0.99) across the datasets, but the DNAm classifer
displayed lower sensitivity (range 0.83 - 0.88) than the GEX
classifier (range 0.79–1.00) (Table 2). Both DNAm and GEX
classification was performed in samples from 242 patients in our
dataset, enabling us to directly compare the two models (Fig. 2e, f).
ALLIUM GEX resulted in 95.9% overall concordance with true
subtype, 0.96 sensitivity and 0.99 specificity, while ALLIUM DNAm
resulted in 93.8% overall concordance, 0.91 sensitivity and

Table 2. Classifier performance and concordance.

Dataset No of samples sensitivity specificity Concordance with true
ALL subtype n (%)

DNAm GSE49031 and
10.17044/scilifelab.22303531

Design 819 0.883 0.999 759 (92.7)

Hold-out 152 0.834 0.998 136 (89.5)

Discovery (B-other) 154 – – –

DNAm GSE56600 Validation 133 0.872 0.992 112 (84.2)

B-other/unknown 94 – – –

GEX GSE227832 Design 207 0.964 0.998 199 (96.1)

Hold-out 41 0.953 0.999 38 (92.7)

Replication 12 0.792 1.000 10 (83.3)

Replication (B-other) 1 – – –

Discovery (B-other) 67 – – –

GEX GSE228632 Validation 55 0.974 0.999 53 (96.4)

B-other/unknown 10 – – –

GEX GSE161501 Validation 19 1.000 1.000 19 (100)

Table 1. Overview of the 1131 ALL patients by ICC subtype prior to multimodal classification.

Molecular subtype* # Patients DNAm # Patients GEX # Patients Total Age (sd) # Male/Female

Total patients 1125 315 1131 6.35 ( ± 4.39) 615/516

B-other 154 67 154 8.48 ( ± 4.98) 83/71

ICC subtype-defined 971 248 977 6.01 ( ± 4.19) 532/445

HeH 309 46 310 5.11 ( ± 3.51) 166/144

low HeH 5 3 5 3.27 ( ± 1.33) 2/3

iAMP21 20 16 21 10.23 ( ± 3.95) 13/8

Hypodiploidy 10 0 10 9.52 ( ± 4.58) 6/4

ETV6::RUNX1 274 32 275 4.93 ( ± 2.55) 144/131

ETV6::RUNX1-like 12 10 12 4.13 ( ± 3.66) 5/7

KMT2A-r 61 14 62 2.76 ( ± 4.22) 26/36

NUTM1-r 3 3 3 9.46 ( ± 7.78) 1/2

PAX5alt 49 30 50 5.57 ( ± 4.94) 23/27

PAX5 P80R 5 4 5 12.35 ( ± 5.83) 4/1

TCF3::PBX1 37 10 37 8.07 ( ± 4.55) 17/20

MEF2D-r 9 8 9 11.3 ( ± 4.57) 3/6

BCR::ABL1 25 10 25 8.92 ( ± 3.82) 15/10

BCR::ABL1-like 10 7 10 8.82 ( ± 5.75) 8/2

DUX4-r 20 19 20 9.72 ( ± 3.11) 11/9

ZNF384-r 17 17 17 9.02 ( ± 3.78) 10/7

T-ALL 105 19 106 9.08 ( ± 4.61) 78/28

*Molecular subtypes were labelled according to the International Consensus Classification (ICC). Fluorescence in situ hybridization and/or reverse-transcriptase
polymerase chain reaction were applied at ALL diagnosis to identify established subtypes ETV6::RUNX1, TCF3::PBX1, KMT2A-r, dic(9;20), iAMP21. High
hyperdiploidy (HeH) was defined as a modal number ≥ 51 chromosomes or DNA Index (DI) 1.12–1.35. Hypodiploidy was defined as < 40 chromosomes and
included low-hypodiploidy with 30–39 chromosomes or DI 0.6-0.84 and near-haploidy (NH) with 24–29 chromosomes or DI < 0.6. Low HeH was defined as
47–50 chromosomes as determined by array-based copy number analysis and lack of other subtype-defining aberrations. All karyotypes were centrally
reviewed. The subtypes of previously unclassified BCP-ALL cases were revised using a combination of genome-wide CNA detection, fusion gene screening and
targeted mutational assessment (Supplementary Data 2).
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0.99 specificity across these 242 patients (Fig. 2f, Supplementary
Data 15). Only 19 cases showed discrepant result between the GEX
and/or DNAm classifiers and true subtype. The GEX classifier was
more often correct (n= 9), while the DNAm was correct in four
cases. A complete mismatch was observed for the remaining six

cases, including four cases with no class assignment (Supplemen-
tary Data 16). Of the nine patients that were correctly predicted by
GEX, the DNAm classifier was unable to return a prediction for five
cases (no-class), which supports our previous observation that
ALLIUM DNAm is less sensitive than the GEX classifier
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(Supplementary Data 16). To summarize, the performance of the
GEX and DNAm classifiers was largely consistent across the design,
hold-out, replication and external validation datasets across the
subtypes (Fig. 2g, Supplementary Fig. 4, Supplementary Data 14).

Functional annotation of genes and CpG sites identified
by ALLIUM
Next, we explored the relationship between the features (CpG
sites and genes) identified by ALLIUM. Initially, we assessed the
covariance between the datasets using cross-decomposition
analysis, focusing patients in the design cohort with overlapping
DNAm and GEX data (n= 201). We analyzed all the available
features, totaling 19,774 genes and 167,353 CpG sites, as well as
the 356 genes and 379 CpG sites selected by ALLIUM. Notably, the
features chosen by ALLIUM exhibited substantial correlation for
components 1 (88%) and 2 (96%), while the correlation among all
features was consistently below 10% (Fig. 3a, b). The strong
correlation highlights a potentially biologically relevant associa-
tion between the features selected by the two ALLIUM modalities.
To further explore this association, we considered the genomic

distribution, the extent and magnitude of gene expression and
DNA methylation changes, as well as their regulation across the
features specific for the different subtypes. The features were
distributed across all chromosomes, with no significant overall
enrichment in the genomic locations of CpG sites or genes (FDR q
value > 0.05, Supplementary Fig. 5 and Supplementary Data
17–18). However, the CpGs sites did show a significant enrichment
in intergenic “open sea” regions outside of CpG islands (FDR q
value < 0.0001, Supplementary Data 19).
We assessed the directionality of the subtype-defining features,

and observed they were more frequently hypomethylated at the
CpG level (Supplementary Fig. 6) and displayed greater expression
levels and variability at the gene expression level (Supplementary
Fig. 7). Further investigation of the genomic overlap between CpG
sites and genes revealed 21 CpG sites that overlapped with the
genomic location of 18 ALLIUM GEX genes (Supplementary Data
20–21). Among these, eight CpG sites located in seven genes were
selected for the same subtype. For example, PAX5alt shared four
CpG sites in the RAPGEF4, CALN1 and NAV2 genes, the aneuploidy
group had one CpG site located within each of the LCN6 and
CELSR1 genes, the ETV6 group had one CpG site in FARP1, and
TCF3::PBX1 had one CpG site in KANK1. For these genes we
observed an inverse relationship between methylation level and
gene expression (Pearson’s correlation coefficient=−0.58, Sup-
plementary Fig. 8).
Importantly, ALLIUM consistently selected well-known ALL

genes such as NUTM1 for NUTM1-r, PBX1 for TCF3::PBX1, MEF2C
for MEF2D-r, CEBPA for ZNF384-r, CpG sites in CBFA2T3 for the
ETV6-group, the expression of CDKN2A and CpG sites in AUTS2 for
the PAX5alt group, along with CpG sites in ETV6, RUNX2, and IKZF1

for PAX5 P80R (Fig. 3c, d). These findings cumulatively underscore
that ALLIUM classifiers consistently selected biologically relevant
features for characterizing the subtypes.

Comparisons of model performance
Several GEX-based methods for ALL subtyping have been
developed independently. We evaluated the ALLIUM GEX classifier
against ALLSorts26 and ALLCatchR27. As both classifiers are trained
specifically for BCP-ALL, we removed T-ALL from the comparison.
ALLIUM GEX, ALLSorts, and ALLCatchR were evaluated for the 309
BCP-ALL samples of known subtype across all the five GEX
datasets included herein. Overall, the three classifiers performed
similarly (Fig. 4a–c), although notable differences between ALLIUM
GEX, ALLSorts, and ALLCatchR, respectively, were observed for
classification of PAX5alt (100%, 71%, 71%), HeH (86%, 71%, 86%),
and iAMP21 (100%, 33%, 67%) using our hold-out dataset
(Supplementary Figs. 4 and 9–12). Specifically, we noted that
ALLSorts and ALLCatchR predicted three (including a multi-class
case) and eight out of 14 PAX5alt patients with dic(9;20) as
BCR::ABL1-like, respectively. ALLIUM was not trained on BCL2/MYC,
IKZF1 N159Y, HLF, CEB and CDX2::UBTF subtypes and ALLSorts and
ALLCatchR did not predict any of these rare subtypes in our data
sets.
Overall, ALLIUM DNAm performed similarly to the GEX models

(Fig. 4d). No other model is currently available for subtyping in ALL
by DNA methylation, with the exception of a model built by us
previously for eight ALL subtypes30. We compared the 379 CpG
sites selected by ALLIUM to our previous classifier (n= 232 CpG
sites), which resulted in 28.9% (67/232) overlapping sites with
ALLIUM (Supplementary Data 22).

Resolved molecular subtypes of unclassified BCP-ALL
Next, we applied ALLIUM to the 154 remaining B-other cases in our
cohort (Supplementary Data 23–24). For 67 cases where both DNAm
and GEX data were available, 51 (76.1%) received concordant subtype
predictions (Fig. 5a). The highest concordance was observed for the
prediction of subtypes with fusion genes, i.e. ZNF384 (4/4, 100%),
KMT2A (1/1, 100%), DUX4-r (11/12, 91.7%), ETV6::RUNX1-like (6/7,
85.7%), and PAX5alt (20/24, 83.3%). To establish consensus molecular
subtypes for the B-other group, we constructed a 4-tier system to
improve the confidence of subtype re-annotation (Fig. 5b). Tier 1
included 28 patients with a high score from the DNAm or GEX
classification combined with molecular evidence to support the
subtype: expressed fusion gene, CNA, karyotype, or mutation. Tier 2
comprised 34 patients with concordant GEX and DNAm classification,
but lacked conclusive molecular evidence. Tier 3 included 40 patients
with only DNAm predictions or a discordant prediction with one non-
class and one high-score subtype prediction. Lastly, tier 4 included 52
patients where ALLIUM generated low confidence predictions or two

Fig. 2 Evaluation of model performance. a Unsupervised hierarchical clustering based on the DNA methylation (DNAm) β-values of 379 CpG
sites across molecularly defined patients (n= 971) and control samples (n= 139). The heatmap shows the DNA methylation β-value for each
CpG (y-axis) and sample (x-axis). The color key is indicated to the right of the panel. b Confusion matrix showing the concordance between
ALLIUM DNAm subtype predictions (x-axis) and true molecular subtypes (y-axis) for 971 patients. The numbers indicate the number of
patients by subtype. c Unsupervised hierarchical clustering based on gene expression (GEX) levels of 356 genes across molecularly defined
patients (n= 248) and control samples (n= 12). The heatmap shows the min-max scaled log2 gene expression levels of the 356 genes (y-axis)
by sample (x-axis). The color key for the heatmap is indicated in the right side of the panel. d Concordance between ALLIUM GEX subtype
predictions (x-axis) and true molecular subtypes (y-axis) for 248 patients analyzed with ALLIUM GEX. e Barplots showing the degree of
concordance between ALLIUM DNAm and GEX predictions for 242 samples with data from both modalities. The subtype is indicated along
the y-axis and the number of patients along the x-axis. The light bars represent the overall number of predictions per subtype and the darker
bars indicate the number predictions concordant between DNAm and GEX. Patients with “no class” predictions (n= 9) are not shown. f Line
plots demonstrating the sensitivity (top) and specificity (bottom) of ALLIUM DNAm (circle) and GEX (square) models overall and by subtype for
the 242 patients analyzed with both data modalities. g Bi-directional barplots showing the sensitivity and specificity by subtype for the design,
hold-out, replication, DNAm GSE56600, GEX GSE161501 and GEX GSE228632 datasets. The sensitivity is indicated by the left-sided bar, while
the specificity is indicated by the right-sided bar for each dataset and subtype. The overall performance is shown on the top of each barplot.
The number of patients in each dataset by subtype is indicated to the right of each barplot.
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conflicting predictions. Figure 5c illustrates the distribution of
molecular subtypes within the group of 281 initially unclassified
BCP-ALL patients following molecular screening and ALLIUM
classification (tier 1-3).
The reclassified samples clustered with samples of known

subtype (Fig. 5d, e, Supplementary Fig. 13). Sub-clusters were
observed for KMT2A-r, DUX4-r, and T-ALL. In concordance with
previous reports46,47, these included two putative KMT2A-r and
DUX4-r subclusters based on GEX data and two T-ALL clusters in
the DNAm data. Notably, the KMT2A-r and DUX4-r clusters were
not visible in the DNAm visualization, while the T-ALL cluster was
not visible in the GEX data, but this may be due to few (n= 19)
patients with RNA-seq data. We examined fusion gene usage and
found that the KMT2A-r cluster 1 (C1, n= 5) was characterized by
USP2 (n= 3) and USP8 (n= 1) fusions, while C2 (n= 7) primarily
contained patients with KMT2A::AFF1 fusions (n= 4), indicating
sub-clustering associated with the fusion partner. The patients in
DUX4-r cluster 1 (C1, n= 15) expressed DUX4::IGH (n= 10),
alongside a diverse array of other fusions, including CRLF2::IRF1,
PAX5::FLI1, ELL::KLF2, ATAD2::NPM1 and PAX5::FOXP1. In DUX4-r
cluster 2 (C2, n= 16), DUX4::IGH (n= 9) was the most prevalent

fusion. Seven of the 19 T-ALL patients with RNA-seq data carried
fusion genes, but no apparent clustering by fusion partner was
observed. Additional information about the fusion genes detected
by group can be found in the Supplementary Fig. 14. In summary,
by employing molecular screening and the ALLIUM classification
method, we successfully elucidated the molecular subtype for 229
out of 281 BCP-ALL patients who had not been previously
characterized (Fig. 5f). Consequently, our study expanded the
scope of known subtypes across the entire cohort, encompassing
a total of 973 out of 1025 BCP-ALL patients (94.9%) (Fig. 5g, h).

Clinical characteristics of molecular subtypes
We obtained complete clinical data from 1124 out of the 1131
patients in our study cohort. The median follow-up period for
surviving patients was 16.0 years (interquartile range, IQR,
13.0–19.0). As anticipated, the basic clinical variables exhibited
significant variation across different subgroups and these closely
aligned with well-established patterns observed in other well-
described ALL cohorts (Supplementary Data 25). The distribution
of ALL subtypes based on patient age at the time of diagnosis is
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Fig. 3 Subtype-specific signatures determined by ALLIUM. Cross-decomposition analysis with Partial Least Squares (PLS) Canonical analysis.
The UMAP plots indicate components 1 and 2 for a the DNAm (n= 167,353) vs the GEX (n= 19,774) unselected signatures, and b the ALLIUM
DNAm (n= 379) and GEX (n= 356) signatures (right). The points indicate the training (67%, blue) and test sets (33%, red). The Pearson’s
correlation coefficient for the comparing modalities per component is denoted in the title of each plot. Boxplots demonstrating the c GEX
levels for four selected genes across 315 patients grouped by revised molecular subtype. d DNAm levels for four selected CpG sites across
1125 patients by revised molecular subtype. The boxes are color-coded by respective subtype according to the key at the bottom of the panel.
The Benjamini-Hochberg (BH) corrected Kruskal-Wallis H-test p value indicates the statistical significance between subtypes (bottom right).
Asterisks indicate the subtype(s) for which ALLIUM chose each specific CpG or GEX signature. The lines (whiskers) on the boxplots represent
the distribution of residual data points beyond the lower and upper quartiles.
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similar to other cohorts (Fig. 6a)1. The white blood cell (WBC)
count also demonstrated significant variability among subtypes.
High-risk subtypes, including T-ALL, KMT2A-r, BCR::ABL1, and
BCR::ABL1-like ALL, were associated with elevated WBC counts,
whereas patients with established low-risk subtypes, such as HeH
and ETV6::RUNX1, exhibited the lowest WBC levels. Notably, the
DUX4 group consistently displayed the lowest WBC counts across
all subgroups (Fig. 6b).
Minimal residual disease (MRD) status at the end of the

induction phase (day 29) exhibited notable variation among the
subtypes (Kruskal-Wallis p-value= 1.36e-08, Fig. 6c). For instance,
the majority of patients with MEF2D-r (n= 5/5, 100%), TCF3::PBX1
(n= 13/13, 100%), and PAX5alt (n= 30/32, 93.8%) were MRD-
negative at day 29. In contrast, all eight ZNF384-r cases were MRD-
positive. Intriguingly, despite the high MRD levels observed in the
ZNF384-r analyzed by MRD, only six relapses and one death were
recorded in this subgroup. Patients belonging to the ETV6::RUNX1-

like and PAX5-alt groups also demonstrated favorable overall
outcomes, with >75% achieving complete remission without
events. In line with expectations, emerging high-risk subtypes,
such as BCR::ABL1-like, presented poor outcomes.

DISCUSSION
Recent developments in integrated large-scale genomic ana-
lyses have greatly improved our knowledge of the genetic basis
of ALL, identification of new subtypes and disrupted pathways
that can be targeted therapeutically20,24,46,48. Accurate detection
of the subtype-defining alterations in the clinical setting is
crucial to guide risk and treatment stratification, monitor
treatment response, and is very important for future implemen-
tation of tailored or precision therapy2. Given the low
frequencies of rare subtypes in ALL and the long follow-up
data needed to evaluate their clinical relevance, it is imperative
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Fig. 4 Performance of ALLIUM, ALLSorts and ALLCatchR. a Concordance between ALLIUM GEX subtype predictions (x-axis) and true
molecular subtypes (y-axis) for 309 BCP-ALL samples of known subtype (95.5%, 295/309). b Concordance between ALLSorts subtype
predictions (x-axis) and true molecular subtype (y-axis) (83.5%, 258/309). c Concordance between ALLCatchR subtype predictions (x-axis) and
true molecular subtype (y-axis) (87.4%, 270/309). ALLCatchR was not trained on low HeH. d Boxplots demonstrating classification
performance, including precision, sensitivity, specificity, F1 score and accuracy (balanced) for the three GEX models (n= 309 samples) and
ALLIUM DNAm (n= 1104 samples with known subtype). The lines (whiskers) on the boxplots represent the distribution of residual data points
beyond the lower and upper quartiles.
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to have methods that allow for retrospective analysis of biobank
material, in addition to robust diagnostics in prospective cases.
Herein, we designed and implemented a multimodal classifica-
tion approach for ALL (ALLIUM) that captures epigenomic and
transcriptomic alterations left as a detectable footprint in ALL

cells. We demonstrate the utility of ALLIUM by retrospectively
evaluating the frequency and clinical impact of emerging
molecular cytogenetic subtypes in a large cohort of patients
treated uniformly on NOPHO protocols between 1996 and 2013
and in external datasets.
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Machine learning (ML) has the potential to improve clinical
diagnostics by enabling automated and accurate diagnostics,
with reduced cost49. A unique feature of ALLIUM, over other ML-
based subtype algorithms26,27 is that it can use multiple
modalities (DNA methylation and/or gene expression) for
subtype determination. We demonstrate that a DNAm-based
classifier can achieve a comparable performance to GEX-based
methods. A specific strength of DNAm as an analyte is its ability
to identify disease-related methylation patterns and potential
biomarkers in archived samples33. By using biobank samples
and retrospective cohort studies, insight into long-term disease
outcome can be gained, which would be difficult to obtain
through prospective study designs, especially for rare subtypes.
One limitation of the DNAm classifier was its reduced sensitivity,
which can be ascribed to the inherent constraint of DNAm data,
which ranges from 0% to 100% methylation per CpG site. This
limited range renders DNAm data more susceptible to
confounding effects stemming from lower blast percentages.
In contrast, the dynamic range inherent in gene expression
(GEX) may offer greater flexibility, enabling compensation or
correction in scenarios involving low blast percentages27. The
ability of RNA-seq to detect fusion genes and coding mutations
that can provide clear molecular evidence for subtype decision
making, gives additional value to the GEX approach26,27 for
prospective clinical diagnostics. However, RNA is not as readily
available from historical material in biobanks, limiting the
usefulness of GEX classifiers for retrospective interrogations. On
the other hand, immerging studies demonstrate how DNA
methylation holds significant potential for prognostication
across a spectrum of hematological malignancies47,50–53, which
will be an interesting avenue to pursue in future studies. Array-
based DNAm assays also have the added advantage of
concurrently generating comprehensive CNA profiles54. These
CNA profiles help distinguishing subtypes characterized by
large-scale copy number changes, such as HeH, low HeH,
hypodiploidy and iAMP21. In centers where DNAm subtyping
for brain cancer is already established55,56, the incorporation of
ALLIUM DNAm subtyping could serve as a complementary
diagnostic modality.
Using ALLIUM as a tool, we were able to accurately detect

molecular ALL subtypes for up to 81.5% of previously unclassified
BCP-ALL cases in our population-based Nordic cohort spanning
three NOPHO protocols (1992, 2000, 2008). We found that the
molecular composition of BCP-ALL cases in the Nordics is
comparable to studies from Europe57,58, USA20,46,59, and Asia60,
and others61. In order of prevalence, these include PAX5alt (with a
frequency of 8% compared to a range of 4–10% in the
aforementioned studies), BCR::ABL1-like (3% vs 3–13%), DUX4-r (4%
vs 4–7%), ETV6::RUNX1-like (2% vs 1–3%), MEFD2-r (<1% vs 1–2%),
NUTM1-r (<1%, vs < 1–1%), PAX5 P80R (<1% vs 1–2%). ALLIUM
performed comparably to two other GEX subtyping models26,27,
with two differences. Due to lack of training samples from rare
subtypes, including t(5;14)(q31.1;q32.3)/IL3::IGH, IKZF1 N159Y, and
CDX2::UBTF62 in the Nordic training set, ALLIUM cannot differentiate
these subtypes. A second notable difference between ALLIUM and
the other models is their performance distinguishing PAX5alt from
BCR::ABL1-like. This may be due to differences in how these subtypes
were defined in the training sets. PAX5 alterations have been

carefully curated in the Nordics, based on a combination of PCR and
high-resolution genome-wide analyses21,42,63,64. For example, the
PAX5-driven aberration dic(9;20) was included as an obligatory risk-
stratifying subgroup in the NOPHO-2008 protocol, and thus this
aberration has been studied in detail38,65. The low-risk clinical
indicators (low WBC, MRD-, 76% EFS) in the PAX5alt group in
combination with high-risk indicators (high WBC, MRD+ , 37% EFS)
in the BCR::ABL1-like group would indicate that the groups defined
by ALLIUM distinguish potentially clinically relevant groups. Further
clarification will be needed in future efforts to refine subtype-
decision models and highlights the need for large international
collaborations to achieve this.
An additional strength of our study is our ability to assess the

added value of MRD risk stratification in light of new molecular
subtypes37. Although MRD remains as one of the best prognostic
markers for treatment outcome in ALL, our results further under-
scores that MRD stratification in the new subtypes may not be
uniformly applicable59,60,66. Furthermore, early monocytic lineage
switching, which includes loss of the B-cell immunophenotype, has
been described in DUX4-r, ZNF394-r and PAX5 P80R subtypes66,
potentially leading to an underestimation of MRD levels in these
groups. However, questions still remain if MRD is a clinically relevant
measure for treatment decisions in these new groups. Although we
do not know what the MRD levels were of the patients included
herein treated prior to 2008, our confirmatory observations further
support that slow clearance of MRD specifically in the ZNF384-r may
not accurately measure future outcome.
Our study primarily focused on molecular subtype classification.

While our study provides valuable insights into molecular subtypes,
we did not comprehensively analyze correlations with clinical data,
treatment regimens, or long-term follow-up information. This lack of
comprehensive clinical investigation limits our ability to draw
conclusions about the impact of specific subtypes on treatment
responses and long-term outcomes, which will be important to
address in future studies. Finally, our study is based on the current
state of knowledge and the 17 of the 22 know ICC subtypes that
were present in our Nordic training cohort. The field is rapidly
evolving, with new subtypes, biomarkers, and machine learning
models adapted for this purpose26,27,67,68. The development of
multiple ALL classification methods ensures that solutions are well-
tested, adaptable, and capable of addressing a wide array of samples
and cohorts from diverse genetic backgrounds. Although ALLIUM
was not trained on all ICC subtypes, it remains the only model
available for predicting ALL subtypes from DNA methylation data.
In summary, by implementing ALLIUM for retrospective analysis

of a large retrospective ALL cohort, we were able to accurately
assess molecular subtype in previously undefined Nordic BCP-ALL
cases. ALLIUM is freely available on GitHub and can be applied to
determine molecular subtype membership of patients with either
DNA methylation array data or RNA-seq data for research, or to
support future precision diagnostics in pediatric ALL.

METHODS
Patients
Bone marrow aspirates or peripheral blood samples collected at
diagnosis from 1131 unique population.-based pediatric ALL
patients were obtained from children diagnosed in the Nordic

Fig. 6 Clinical variables by molecular subtype of 1124 patients with clinical data available. a Histogram of subtype distribution by age. The
age distribution color coded by subtype determined at ALL diagnosis is indicated in the top panel. The distribution of the originally
unclassified patients color coded by revised molecular subtype is indicated in the lower panel. b Boxplots of the white blood cell count (WBC)
at ALL diagnosis by revised molecular subtype. c Boxplot of minimal residual disease (MRD) levels at day 29 of treatment, for 368 patients with
MRD information available. d Stacked barplots showing sex, treatment protocol, risk groups, primary event, and cause of death per subtype by
reclassified subtype. CR1: complete remission, DCR1: death in complete remission, smn: secondary malignant neoplasm. The plots are color-
coded based on their respective subtypes. The lines (whiskers) on the boxplots represent the distribution of residual data points beyond the
lower and upper quartiles.
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countries during 1996–2013 and enrolled on the Nordic Society of
Pediatric Hematology and Oncology (NOPHO) NOPHO-92
(n= 201), NOPHO-2000 (n= 493), NOPHO-2008 (n= 380), EsPh-
ALL (n= 17), or Interfant (n= 40) treatment protocols34–37.
Molecular diagnosis of ALL was established by analysis of
leukemic cells at the time of diagnosis with respect to
morphology, immunophenotype and cytogenetics. The guardians
and/or the patients provided written consent. The study was
conducted according to the guidelines of the Declaration of
Helsinki and approved by the Regional Ethical Review Authority in
Uppsala, Sweden and by the NOPHO Scientific Committee
(Study #56).

DNA and RNA extraction
DNA and RNA were extracted from primary ALL cells after Ficoll
gradient separation using reagents from the AllPrep DNA/RNA/
miRNA Universal Kit (Qiagen) or the AllPrep DNA/RNA Kit (Qiagen),
including a DNase treatment step (Qiagen). DNA and RNA were
quantified using the reagents from the double-stranded DNA
Broad Range Kit or the RNA Broad Range kit on a Qubit instrument
(Life Technologies). RNA quality was determined using the RNA
Integrity Number (RIN) assessed by the Bioanalyzer or TapeStation
system (Agilent).

DNA methylation arrays
Genome-wide DNA methylation levels were determined using the
Infinium HumMeth450K BeadChip assay (450k array, Illumina).
DNAm data were generated using 250 ng input DNA from 384
newly collected BCP-ALL samples on the 450k array. Data from
741 patients were retrieved from Gene Expression Omnibus (GEO)
entry GSE4903145. Batch correction was not applied to the DNAm
data (Supplementary Fig. 15). The complete DNAm dataset (1125
patients) was firstly filtered according to a previous study45

resulting in 435,941 CpG sites and then to include probes present
on the MethylationEPIC v.1.0. B5 manifest file (https://
emea.support.illumina.com/downloads/infinium-methylationepic-
v1-0-product-files.html), resulting in 406,542 CpG sites. After
variance-based filtering (variance < 0.01), 167,353 CpGs remained
for downstream analysis. CNAs were detected using intensity
levels from the 450k arrays using the R package “CopyNum-
ber450kCancer”69. Data from 50 normal blood cell samples (CD3 +
and CD19+ , GSE49031) was used as control data for normal-
ization and transformation of probe intensities (log2 ratio, LogR).

RNA sequencing
A total of 328 samples from 315 patients were subjected to RNA
sequencing (Supplementary Data 2). RNA sequencing libraries
were prepared from 132 samples with RIN > 7 using the Illumina
TruSeq stranded Total RNA (RiboZero human/mouse/rat) kit with
300 ng of total input RNA. The libraries were paired-end (PE)
sequenced (150 bp) on an Illumina HiSeq2500 or NovaSeq 6000
instrument to an average of 49.8 M (range 30.2-113.2 M) PE 150 bp
reads per sample. Samples with RIN < 7 or with less than 300 ng
input RNA available were prepared with the Illumina TruSeq RNA
Access library preparation kit (n= 28 samples) and sequenced on
an Illumina HiSeq 2500 instrument PE 150 bp to an average 34.0 M
(range 12.6-55.1 M). RNA-seq data from 162 samples, generated
with 1000 ng input RNA using the Script-Seq kit (EpiCentre)9,39,70

and 6 samples prepared with Illumina RNA access protocol39,41

were collected from previous studies. The raw sequencing data for
each of the 328 libraries included in the study were processed
together using the nextflow-based (21.02.0.edge) nf-core/rnaseq
(3.0) pipeline, which includes trimming of the paired-end reads by
trimgalore (0.6.6), alignment to GRCh38.103 with STAR (2.6.1d).
The aligned reads were quantified at the transcript level using
Salmon (1.4.0) and the transcript level expression values were

subsequently summarized to the gene level using the biocon-
ductor package tximeta (1.8.0). The gene count matrix was
corrected for batch effects with ComBat-Seq. The genes were
subsequently filtered to remove Y chromosome, scaffold, mito-
chondrial (MT), and ribosomal (RPS and RPL) genes, as well as non-
protein coding genes resulting in 19,774 protein-coding genes for
downstream analysis. Data were normalized using Gene Length
corrected trimmed mean of M-values (GeTMM), adjusting the data
for both gene length and library size and finally log2 transformed.
Technical (n= 5, repeated RNA-seq library construction from same
RNA sample) and biological replicates (n= 8, sample taken at
relapse) from 11 patients were used to validate merging the
different library types (Supplementary Fig. 15).
Fusion genes were detected using a combination of Fusion-

Catcher 0.99.7d71 and targeted screening of 22 genes known ALL
fusions (Supplementary Data 2). Fusion gene status for 61 patients
in the study were described previously7. Candidate fusion genes
were validated by supporting karyotype data, copy number
analysis and/or by experimental validation using Sanger sequen-
cing as previously described9.

Mutational analysis
Somatic single nucleotide variants (SNVs) were retrieved from a
872-cancer gene Haloplex panel for 144 patients in our study
cohort72,73 and from whole genome sequencing performed on 41
patients40,41,72. Variant alleles PAX5 p.Pro80Arg, IKZF1 p.Asn159Tyr,
and ZEB2 p.His1038Arg were screened for in the 328 samples with
RNA-seq data using alleleCount/3.2.2 (https://github.com/cancerit/
alleleCount) on bam files.

ALL subtype classification
ALLIUM was built using the scikit-learn package, based on the
Nearest Shrunken Centroid (NSC) method44,74. Classifiers were
built for each of 17 established molecular ALL subtypes present in
our cohort and for healthy controls in a supervised manner.
Models for DNAm and GEX datasets were designed separately.
First, the data were split into design (known subtypes), hold-out
(known subtypes) and discovery (B-other) sets. The models were
trained, optimized and features were selected on the design set
and then their performance was evaluated on hold-out and
internal replication datasets. The models were further validated in
independent external validation datasets: RNA-seq data from 65
Finnish patients from GSE228632 for which detailed information
can be found in the Supplementary Materials and Methods, and
published datasets from RNA-seq of 19 BCP-ALL patients from
GSE16150143 and 450k DNAm from 227 BCP-ALL patients
GSE5660031. Additional details can be found in the Supplementary
Materials and Methods. ALLSorts and ALLCatchR were run on the
corrected count matrix (n genes = 60,666) according to the
instructions (https://github.com/Oshlack/ALLSorts/wiki/1.-
Installation, https://github.com/ThomasBeder/ALLCatchR)26,27.

Cross-decomposition and enrichment analysis
Cross decomposition was performed with the Partial Least Squares
(PLS) Canonical analysis using the scikit-learn package (sklearn.-
cross_decomposition) in Python to quantify the covariance
between the DNA methylation and GEX datasets. PLS analysis
used data from 201 patients with known molecular subtype with
both data modalities (DNAm and RNA) available. The analysis was
performed on the unselected set of CpG sites (n= 167,353) and
genes (19,774), as well as the CpG sites (n= 379) and genes
(n= 356) selected by ALLIUM. The patients were randomly split
into a train (n= 134) and test data set (n= 67). Two components
for the PLS Canonical transformer were chosen. Pearson’s
correlation coefficient was used to measure the correlation
between the two modalities for each component. One proportion
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z-tests followed by Benjamini-Hochberg correction were per-
formed to measure the enrichment of the genomic locations of
CpG sites and genes selected by ALLIUM in comparison to the
unselected set of CpG sites and genes.

Clinical data
Outcome data for the 1131 patients in the study was retrieved
from the NOPHO leukemia database in February 2022. In total,
1124 patients had complete follow-up data available and the
average time since diagnosis was 16.5 years (range 9-26). OS was
calculated as the time from the date of diagnosis to the date of
last follow-up or death of any cause. Kruskal-Wallis H-test from the
Python library scipy.stats assessed the significance of subtype-
stratified MRD distributions. A p value < 0.05 (2-tailed) was
considered statistically significant.

DATA AVAILABILITY
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450k DNA methylation data are available under controlled access via https://doi.org/
10.17044/scilifelab.22303531 (https://figshare.scilifelab.se/). Requests for data sharing
may be submitted to Jessica Nordlund (jessica.nordlund@medsci.uu.se).
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