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ABSTRACT

PROBING SIGNAL-BASED DATA-DRIVEN MODELING OF POWER

ELECTRONICS SMART CONVERTER DYNAMICS USING POWER

HARDWARE-IN-THE-LOOP

NISCHAL GURUWACHARYA

2023

The main objective of this dissertation is to develop a generalized simulation and

modeling framework for extracting dynamics of power electronic converters (PECs) with

grid support functions (GSFs) and validate model accuracy through experimental

comparison with physical measurements. The dynamic models obtained from this

modeling framework aim to facilitate accurate dynamic analysis of a highly integrated

power system comprising inverter-based resources (IBRs), specifically for stability

assessment. These dynamic models helped in reducing simulation time and computational

complexity, thereby enhancing efficiency. Moreover, it provides valuable insights for

utilities and grid operators involved in effective system planning, operation, and dispatch.

The dynamics of the current power grid are poised to undergo substantial changes

due to the replacement of traditional generators and the integration of distributed energy

resources (DERs) based on PECs equipped with advanced GSFs. The utilization of these

smart PECs is expected to increase in the future, primarily because they conform to the

voltage and frequency support requirements outlined in the Institute of Electrical and

Electronics Engineers (IEEE) 1547-2018 standard. However, the dynamic behavior of

PECs, particularly when providing various ancillary services, is attributed to the adoption
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of modern control algorithms. Consequently, the system exhibits more stochastic and

nonlinear dynamics, posing significant challenges to power system stability and control.

Accurate modeling of these underlying nonlinear dynamics is required to ensure the

stability and reliability of converter-dominated power system (CDPS). However, the

proprietary nature and unknown parameters of the PECs control systems, coupled with the

increasing system size, using a traditional modeling approach to obtain full dynamics

becomes increasingly challenging and computationally expensive. Therefore, new

modeling techniques are needed to accurately extract the PECs dynamics.

This dissertation presents a data-driven modeling technique to obtain the dynamics

of PECs as it does not require detail knowledge of PECs physical topology, the complex

models of the various voltage/current control loops, the models of the phase-locked-loop

(PLL), the protection-scheme employed, etc. Data-driven modeling is an approach that

constructs models based on data rather than predefined equations or theoretical

assumptions. The underlying theory behind data-driven modeling is rooted in the idea that

the data itself contains valuable information about the system or process being modeled. It

involves data collection (time domain input-output data) and dataset is then divided into

training and testing datasets. The training dataset is passed into a system identification

(SysId) algorithm which uses Instrument Variable (IV) method to process the training

dataset such that least-square error is minimized for each data point and estimates the

parameters. From the estimated parameters, a transfer function (TF) is obtained. The

testing dataset is then used to validate the TF obtained. Finally, GoF based on normalized

root-mean-square error (NRMSE) is calculated to check the accuracy of the TF.

In data-driven modeling, it is essential to excite PECs with well-designed probing
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signals, as they serve as input data during SysId and allow a deeper understanding of

system behavior. However, it is imperative to adhere to design constraints set by both

power system requirements and SysId theory before using any signal as a probing signal,

ensuring its alignment with the desired frequency band. Considering potential variations

in system time constants, square and rectangle signals are highly suitable for accurate time

constant estimation and effective emphasis on specific frequency ranges based on signal

frequency. Square and rectangle signals are non-sinusoidal periodic waveforms

characterized by alternating amplitudes between defined minimum and maximum values

at a constant frequency. Based on this, four different probing signals (i.e., logarithmic

square-chirp, square, sine, and logarithmic sine-chirp) are used and the results show that

the logarithmic square-chirp probing signal adequately excites the PECs to fit a

data-driven dynamic model, achieving a goodness-of-fit (GoF) exceeding 90%.

Data-driven modeling techniques have also emerged as valuable tools for

capturing the dynamic behavior of advanced control strategies for grid-forming inverters

(GFM). This dissertation further investigates the application of a data-driven dynamic

modeling technique for a GFM inverter using Power Hardware-in-the-Loop (PHIL)

experiments to generate the data required. SysID is then used on collected data to obtain

the dynamic model of GFM inverter. The effectiveness of the data-driven models is

cross-validated with the model obtained from the analytical approach. GoF for analytical

approach and data-driven approach are calculated to be 87.45% and 86.35%. Hence, both

approaches are shown to accurately capture the dynamic response of GFM inverters under

different loading conditions.
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CHAPTER 1 Introduction

1.1 Background

The generation profile of power systems is undergoing a fundamental shift towards

converter-based resources and reductions in large synchronous generation. Since it has

become clear that intermittent renewable energy sources will be responsible for a large

amount of power generation, the existing methods for power systems reliability

assessments will need to be modernized to account for the dynamics of wind, solar,

storage, and other grid edge devices [1]. This shift introduces modeling challenges for

traditional transient planning and operation and reliability practices [2], [3]. These

modeling challenges include the need for electromagnetic transient (EMT) simulations

and accurate PEC models appropriate for the application of interest. Traditionally,

positive-sequence simulators and phasor-based models of devices were adequate for

assessing transient stability issues due to the dominance of synchronous generation. In

systems with increasing and/or dominating amounts of converter-based generation,

numerous stability issues arise that can only be accurately captured with EMT models and

simulation [4], [5]. Additionally, numerous types of EMT models exist, each appropriate

for specific stability issues. Examples of specific stability issues which become present in

CDPS, where converter-based generation exists at both distribution and transmission

levels, includes but is not limited to: a high rate of change of frequency due to low inertia

[2], [6], [7], limited fault current contribution impacting protection coordination [2],

[8]–[10], bi-directional power flow impacting damping of inter-area modes and transient

stability margins [11]–[13], harmonic instability due to converter inner control loops [13],
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Figure 1.1. The transition from a traditional power system dominated by synchronous
generators to a CDPS [19].

[14], interactions between multiple grid-connected converters [13], [15], [16], and lower

frequency oscillations introduced by the phase-locked-loop (PLL) , particularly in weak

grids with short circuit ratios less than 2 [13], [17]. An excellent review of these

converter-based generation stability issues is provided in [2], [13], [14], [18].

In response to the growing electric demand, a significant amount of inverter-based

generation, including PV , wind, and energy storage systems, is being integrated into the

bulk electric power grid. These distributed energy resources (DERs) equipped with

inverters play a vital role in supporting the voltage and frequency control of the power

system. As the integration of inverter-based generation increases in the modern grid, it

becomes crucial to accurately assess power system dynamics due to their distinct

characteristics compared to traditional generation. This is particularly important when

these resources also provide voltage and frequency support to the grid. The Institute of

Electrical and Electronics Engineers (IEEE) 1547-2018 standard, for instance,

recommends that DERs offer grid support functions (GSFs). These GSFs encompass

various services, such as volt-watt, volt-var, frequency-watt, voltage or frequency
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Figure 1.2. Transitioning PEC from Grid Interactive to Grid Supporting Control Strategies.

ride-through, communication capabilities, and ramp-rate control. To ensure the efficient

and reliable operation of the modern grid with the integration of inverter-based generation,

it is essential to employ accurate models that capture the dynamics and capabilities of

these resources. By doing so, we can maximize the benefits and potential of renewable

energy sources while maintaining grid stability.

In the past, a significant number of transmission system failures have caused

substantial losses of Photovoltaic (PV) resources, leading to stability and reliability

concerns for the PECs. One example of such an event was the “South Australia Blackout”

[20]. The South Australia blackout of 2016 was a major power outage that affected the

entire state of South Australia. Approximately 1.7 million people were affected by the

outage, including households, businesses, and critical infrastructure. The blackout was

triggered by a severe storm that hit South Australia. Severe storm damages the

transmission and distribution assets resulting voltage disturbances. Moreover, the blackout

was exacerbated by inadequate modeling and simulation of wind farms and their PECs.

These PECs were sensitive to variations in grid voltage, activating low voltage ride

through (LVRT) protection scheme which ultimately contributed to the disruption of
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power supply. The LVRT protection scheme was set to withstand a pre-set number of

voltage dips within a two-minute period.

Another event is Canyon 2 fire [21] which started on October 9, 2017. The Canyon

2 Fire caused two transmission system faults near Anaheim Hills, California resulting

voltage disturbances which resulted in a reduction of 900 MW of solar PV resources. The

Canyon 2 Fire incident also revealed issues with inverter-based resources (IBRs) improper

setting of LVRT. Many solar PV resources temporarily shut down when voltage levels fall

below 0.9 per unit, resulting in a chain reaction contributing to more disruption of power

supply. This loss of generation caused a frequency deviation in the Western

Interconnection, with the system frequency reaching a low point of 59.878 Hz

approximately 3.3 seconds after the fault occurred.

Grid operators and researchers depend on computational tools and simulations for

conducting stability analysis. The tools like MATLAB, PSCAD, PowerWorld Simulator,

etc. provide essential capabilities for assessing the stability of power systems, analyzing

the dynamic behavior of various components, and predicting the system’s response under

different operating conditions. By utilizing computational tools and simulations, grid

operators and researchers can gain valuable insights into the stability of the grid, identify

potential issues, and design effective control strategies to maintain a reliable and secure

power supply.

The recent rapid deployment and advances of converter-based generation have also

lead to the development of new models to represent these devices in various contexts.

Model development has been driven from two perspectives of opposite scales: the

device-centric power electronic perspective and the bulk power centric power systems
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perspective. From a device-centric perspective, highly detailed EMT converter models

have been developed, called switching models, that simulate the power electronic

components down to the level of detail of the pulse width modulation (PWM) signal in the

order of hundreds of kHz. Switching models accurately represent the physical behavior of

semiconductor switches used to build PECs and are extensively used to analyze switching

times, switching transients, switching losses, switching faults, and instantaneous voltage

and current dynamics. Due to the small (micro-second) time-step needed for simulations

with switching models, there is significant computational burden to scale these models to

larger systems. Switching model is typically simulated in systems with only one or a few

converters due to this reason.

Levels of simplifications and linearizations are made to create more

computationally efficient models, such as average models. Both small- and large-signal

average models have been developed to assess small and large disturbances respectively

[22], [23]. Applicability of the small-signal models are limited to specific scenarios where

large variations or disturbances are not present. Further, positive-sequence models (PSM)

used in positive-sequence simulators make additional simplifications based on the

assumptions of a balanced system, and that the system operates around the fundamental

frequency. PSMs have been the modeling approach from the bulk power perspective, due

to their application in commonly used positive-sequence simulators for transient analysis

[24]–[27]. However, the increase of in front and behind the meter converter-based

generation in bulk power systems has been shown to invalidate those assumptions [28].

Numerous studies have indicated the need to incorporate EMT models of converters in

large-scale power system studies either through co-simulation with positive-sequence
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simulators or directly in EMT simulations [14], [24], [25].

To bridge the gap between high-fidelity EMT converter models and simplified

phasor-based models, recent developments have been made with phasor models for

converters, such as dynamic phasor models (DPM) and data-driven models. DPM uses

simplified representations of power system components and assumes steady-state

sinusoidal behavior [29]. Therefore, DPMs make it possible to model both faster

dynamics than the traditional phasor models. This simplification may not capture the full

complexity and dynamics of the system, leading to inaccuracies in certain scenarios.

Moreover, DPM requires detailed knowledge of the system parameters, including

component characteristics and network topology. This makes it less flexible in handling

changes or uncertainties in the system.

Data-driven modeling involves creating models of an unknown system based on

input and its corresponding output data. It doesn’t necessitate in-depth understanding of

system physical topology or complex models of voltage/current control loops, PLL,

protection schemes, and related aspects. Data-driven models can adapt to changing system

conditions, such as varying load profiles or the integration of renewable energy sources.

They can be trained on updated data to capture evolving system dynamics without

requiring explicit knowledge of component parameters or network topology. So,

data-driven modeling exhibits flexibility and adaptability. Moreover, data-driven models

can capture the nonlinear behavior and transient response of the system, making them

suitable for analyzing complex system. Hence, data-driven models replace the structure of

previous models with mathematical equations derived from input and output signals [30].

However, data-driven modeling requires high-quality and representative data. Due to the
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advances in better hardware equipment to conduct experiments, high-quality data can be

obtained.

1.2 Objectives

The primary objective of this dissertation is to develop a generalized simulation

and modeling framework for extracting dynamics of PECs with GSFs and validate model

accuracy through experimental comparison with physical measurements.

1.3 Contributions

Following contributions from this work are aimed to improve the existing

state-of-art in power system research:

The key contributions of this dissertation are:

• Developed a methodology to experimentally collect data by exciting grid-following

(GFL) and grid-forming (GFM) inverter with designed probing signals and extract

their dynamics by implementing data-driven modeling approach,

• Investigated the modeling of inverters equipped with GSFs which supports grid

voltage and frequency and maintain the value within an acceptable range.

1.4 Dissertation Outline

Chapter 2 provides a comprehensive study of the current state-of-the-art dynamic

and transient modeling of PECs in CDPS. In Chapter 3, the development of a detailed

model for studying data-driven modeling of inverters with GSFs is presented. In

Chapter 4, a data-driven modeling framework for extracting PECs dynamics using a

designed probing signal is presented. Chapter 5 delves into the development of testing
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procedures for the application of system identification (SysId) algorithm to facilitate

data-driven modeling of GFL inverters. The validation of data-driven modeling for GFL

inverter with GSFs is presented. Furthermore, the experimental validation of the impact of

varying irradiance on the dynamic modeling of GFL inverters using a real-time digital

simulator is discussed. Chapter 6 outlines the data-driven modeling approach for GFM

inverter dynamics using power hardware-in-the-loop (PHIL) techniques. Finally,

Chapter 7 concludes by summarizing the development of a generalized simulation and

modeling framework for extracting the dynamics of PECs with GSFs, limitation of this

modeling approach, and the future work.
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CHAPTER 2 State-of-the-Art and Challenges in the CDPS Dynamic Modeling

When modeling IBRs, it is essential to choose the right PEC model type, select

component values, and to estimate the converter’s response under different scenarios. This

chapter provides a concise overview of the current state-of-the-art modeling technique

employed in CDPS and a review of PEC model types used to analyze CDPS dynamic

stability issues.

2.1 Switching Models

The switching model of a PEC includes power electronic switching devices, such

as insulated-gate bipolar transistors. PWM techniques are used to control the gates of

these switching devices to create sinusoidal current and voltage waveforms. The control

structures to create this modulation and generate these waveforms are also included in

switching models. The higher levels of control structures that maintain power sharing

balance and voltage and frequency restoration can also be included in these models, as

illustrated in the generic diagram of a switching model in Fig. 2.1. However, due to the

computational demand associated with this highly detailed model, such higher level

controls are rarely simulated with these types of models.

Switching models are also commonly presented in the literature as a benchmark to

compare the accuracy of average models [22], [26], [27], [35]–[40], many of which are

discussed in greater detail in the next section. In [41], a comparison of average models

This work was performed jointly with the full list of co-authors available in [31].This work is supported
by the U.S. Department of Energy Office of Science, Office of Basic Energy Sciences, EPSCoR Program;
Office of Electricity, Microgrid R&D Program; and Office of Energy Efficiency and Renewable Energy, Solar
Energy Technology Office under EPSCoR grant number DE-SC0020281.
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Figure 2.1. Generic switching PEC model representing major control groups [32]–[34].

and switching models determined that average models adequately simulate and capture

common dynamic stability issues, including fault response, except in the case of

prediction of harmonic distortion and electromagnetic interference. Contrarily, the

research presented in [42] indicated it was necessary that high frequency switching and

DC link dynamics are included in inverter models to accurately capture GFM and

supporting modes [42], fault conditions [43], significantly unbalanced load conditions

[42], and high frequency switching ripples [40], [44].

As seen by the recent discussion, there is not complete consensus of when a

switching level model is necessary, as often average models are adequately comparable

and much more computationally efficient. Regardless of the adequacy of switching

models in comparison to average models for capturing specific dynamics, the high
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computational burden involved in the simulation of switching models makes them

impractical for use in system-level studies or even studies with more than one or two

IBRs. However, the higher level of detail and accuracy are critical for examining

modulation strategies, switching losses, and potentially other fast time scale dynamics.

2.2 Average Models

Average PEC models focus on capturing the low-frequency behavior of the PEC

without accounting for high-frequency variations due to circuit switching. This modeling

method transforms the original discontinuous model into a continuous model that provides

the best representation of the system’s macroscopic behavior by averaging the converter

state variables (state-space averaging) or averaging the switch network terminal

waveforms (average switch modeling). A generic PEC averaged switch model is shown in

Fig. 2.2, which captures the general components that are included in average models.

Average models are also divided into small-signal and large-signal models used to study

small-signal and large-signal dynamics respectively. The following subsections discuss

small-signal and large-signal average models.

2.2.1 Small-Signal Models

Small-signal analysis is the study of deviations from the operating point for a

system subject to small disturbances. One of the main advantages of small-signal models

is that they can be used to perform classical stability and performance analysis methods

such as Bode/Singular-value plots, Nyquist plots, eigenvalue analysis, superposition-based

analysis, and transient response analysis. However, these methods lose accuracy when the

system is highly non-linear or in the presence of large disturbances [46]. The modeling of
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Figure 2.2. Generalized power electronic model with average equivalent circuit of inverter
[32]–[34], [45].

CDPS is comprised of multiple dynamics and interactions that may or may not be linear.

For example, voltage and current dynamics inside the converter are typically considered to

be linear under nominal reference values. However, some variables such as active/reactive

power, frequency, or DC-bus voltage can generate products between two or more state

variables, discontinuities, or exponential/trigonometric calculations that can affect the

accuracy of the small-signal model. Small-signal models can have inaccuracies when

operating far from the linearization point. They struggle with describing switching

dynamics due to their continuous assumptions. Additionally, implementing harmonics
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within a linear framework proves complex. These limitations highlight the need for more

sophisticated modeling approaches in dynamic systems with nonlinearity, switching, and

harmonics.

2.2.2 Large-Signal Models

Large-signal models employ non-linear mathematical functions to describe

non-linear components without linearization [47]. The large-signal model is important for

analysis when PEC non-linearity is significant and when the response to large

perturbations causes deviations that are substantially different from the response predicted

by the small-signal model. Large-signal models have been used to perform numerous

types of stability studies, including capturing shorter timescale output voltage dynamics

and active power sharing dynamics. These models are beneficial for these short time scale

stability analyses in comparison to switching models due to their increased computational

efficiency gained through intelligent and validated averaging methodologies. However,

compared to small-signal models, these models are computationally more burdensome.

They remain unable to effectively describe switching dynamics due to their continuous

nature. The trade-off between computational complexity and capturing system dynamics

must be carefully considered when choosing the appropriate modeling approach.

2.3 Positive-Sequence Models

Efforts have been made to obtain models for IBRs so that power system

simulations for transmission planning and operation could be implemented. Bulk power

system dynamic analysis has historically focused on electro-mechanical dynamics with

dynamic stability issues that typically range on the order of milliseconds to seconds.
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Examples of such dynamic stability issues include inter-area oscillations, transient

voltage, frequency stability, and protection relay settings. PSMs are representative of the

dynamics of bulk power system devices in the range of 0.1 to 3 Hz, and up to 15 Hz for

control systems [48]. These models assume the bulk power grid is operated under

three-phase balanced conditions and that system frequency deviations from nominal are

very small. On this time scale, PSMs are widely utilized in time-domain simulations

applied for assessment of many power systems stability problems, including transient and

small-signal stability [49] due to their accuracy at those time steps and computation

efficiency for large transmission systems.

Sequence component analysis of power systems allows the representation of one

three-phase unbalanced power system as three balanced systems. Under balanced

conditions, the negative and zero-sequence phasors are negligible. Therefore, those two

components are usually not of interest in transmission stability studies, which can often be

represented by their positive-sequence network alone [50]. As a result, a simpler

single-phase positive-sequence network can be used to represent the three-phase circuit,

which is very useful for the simulation of large-scale three-phase systems.

In time-domain simulations for transmission stability assessment, it is considered

that transients within the transmission network decay very fast and their dynamics can be

ignored. Therefore, the transmission network and static loads can be represented by a

positive-sequence network. In the same context, it is considered that the the dynamics of

devices such as generators and their governor and excitation systems dominate transient

(rotor angle) and small-signal stability problems. Therefore, those devices are represented

by differential equations [50].
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Modern positive-sequence analysis tools include generic open-source models of

IBRs, such as those developed by the Western Electricity Coordinating Council (WECC)

[51], and wind turbine models developed by the International Electrotechnical

Commission (IEC) [52]. Models of converter interfaces were developed for Type 1

through 4 wind turbine generators with building blocks generic enough to also be applied

to model inverters for solar PV power and even battery systems [53]–[55]. In North

America, the development of these models was driven by the North American Electric

Reliability Corporation (NERC), who recognized the need and called for standardized,

non-confidential, and generic IBR models for positive-sequence based power flow and

stability analysis to assist power system planning studies [56]. These models should be

generic enough so that with adequate parameterization they could be capable of

representing any converter-based resource in commercial software for power flow and

stability analysis of bulk power systems [48].

Positive-sequence representations, however, prove overly simplistic in many cases.

It is found that the assumptions regarding PSMs are violated in simulations that either

contain power electronic devices such as flexible alternating current (AC) transmission

systems and HVDC links or model fast transients, responses to faults, harmonics, or phase

imbalance [57]–[59]. Good representation of the response to faults of unbalanced loads

such as single-phase induction motors usually require more detailed models than PSMs

[60], [61].
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2.4 Dynamic Phasor Models

Variables of interest, such as voltages and currents, in power systems and PECs are

typically periodic in steady-state. Phasor-based models utilize complex values to provide

a convenient mathematical representation of those variables and circuit parameters such as

the electrical network circuits’ impedances and elements. In the literature, the phasor

model can encompass both static and dynamic phasors [29]. Static phasor modeling

assumes that the changes in fundamental frequency can be neglected; thus, it results in a

simpler model that is well-suited for steady-state analysis and modeling transmission lines

and loads in large power systems to which slow dynamics are attributed. From the point of

view of dynamic analysis, it is important to model how those deviate from the steady-state

[23]. DPMs are capable of modeling harmonics, and they provide a more accurate model

for representing variations of phasors over time. However, DPM shows difficulties in

performing classical small-signal stability assessment methods [62].

2.5 Data-driven Models

Data-driven modeling, in contrast to physics-based modeling, uses data to derive a

model or parameters of a specific system. Physics-based modeling is performed through

laws of physics that govern the components of the system. Physics-based modeling

requires detailed knowledge of the system that makes it difficult for complex systems.

However, data-driven modeling requires no or partial information about the system. The

relationship between input and output is inferred from data. The models developed from

this approach are called data-driven models. These models rely upon computational

intelligence, classical statistics (ordinary least square or maximum likelihood estimation),
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machine learning, etc., assuming the data contains sufficient information to describe the

modeled system’s physics [63]. Examples of data-driven algorithms include artificial

neural network (ANN), support vector machines, random forest, etc. These models

capture the dynamics with no or incomplete prior knowledge of the system’s physical

behavior.

Data-driven modeling can determine the structure, parameters, and temporal

behaviors of a system or component of the system such as a PEC. Generally, the modeling

of a dynamic system is classified into two approaches: first principle modeling and

data-driven modeling [64]. First principle modeling utilizes the system’s physics to derive

the mathematical representation using established equations of the system or component.

When the system is complex, model derivation using first principle modeling can be

complicated due to the many components that may need to be modeled and parameters

obtained. Additionally, preliminary information about the system or component may be

unknown. Data-driven modeling is used to extract the model and/or parameters from the

collected data without any prior knowledge or partial knowledge of the system. There are

three types of data-driven models, which are classified in terms of known parameters and

structured as a black-box, grey-box, or white-box model as shown in Fig. 2.3 ranging

from the unknown structure/parameter to known structure/parameter of the underlying

system respectively [65].

To effectively train data-driven model, substantial datasets are essential,

emphasizing the significance of data availability. Their applicability is confined to systems

possessing operational field data, restricting data-driven modeling use in scenarios lacking

such information. Furthermore, the precision of data-driven models is intricately tied to
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Figure 2.3. Comparison of different types of data-driven models. Adapted from [64].

the time-step granularity of the collected data. Ensuring a suitable time-step becomes

crucial, as it directly influences the model’s ability to deliver accurate and reliable

predictions.

2.6 Challenges in Modeling of CDPS

Conventional transient planning, operation, and reliability techniques are

encountering modeling challenges, potentially falling short in comprehending the intricate

dynamics of the CDPS. These complexities entail the necessity for precise PECs models

tailored to the intended application to capture intricate nonlinear dynamics. Earlier

methods, such as positive-sequence and phasor-based models, sufficed for understanding

power system dynamics within balanced and near-fundamental frequency conditions,

primarily applicable to generator-dominated systems [3], [66]. In contrast, in CDPS,

frequency deviations may arise due to rapid switching and induced harmonics from high

PECs penetration, necessitating comprehensive models and simulations capable of
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encompassing diverse power system phenomena for an accurate portrayal of CDPS

dynamics.

As per the IEEE 1547-2018 standard for DERs, along with the advancement in

grid codes, PECs equipped with several GSFs are responsible for providing several

voltage and frequency ancillary services, which can be implemented in a variety of ways

depending on the manufacturer and even under identical operating conditions [67].

Although, smart PECs with such functions are intended to aid in the integration of more

converter-based DERs to regulate grid voltage and frequency, maintain grid stability, and

increase grid dependability, their specific design and controls actions are proprietary and

unknown and hence, adds another layer of complexity in modeling these PECs. This can

lead to errors in power system modeling and simulation, as well as PECs dynamics,

resulting in inaccurate results and analysis. In addition, depending on the activation of

states, there is variation of power system dynamics as well. State in the context of the

research means the operation of the converter when it is providing one of the ancillary

services. So, these reveals dynamics of PECs depends on various factors like

manufacturer’s– physical topology, complex model of voltage/current control loops,

models of PLL as well as different GSFs features. Due to the inclusion of the

aforementioned factors, non-linearity exists in the manufacturers’ most accurate PECs

models, leading to complex mathematical models that are computationally intractable for

real-time control. Thus, there’s a growing necessity to investigate and accurately depict

PECs incorporating GSFs within CDPS.
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CHAPTER 3 Modeling Inverters with Grid Support Functions for Power System

Dynamics Studies

With the increase in inverter-based generation integration in the electric grid and

their different dynamics compared to traditional generation, power system dynamics

needs to be assessed using accurate models. This becomes of particular importance when

they also provide voltage and frequency support to the grid. For instance, the IEEE

1547-2018 standard recommends DERs provide GSFs [67]. These GSFs are capable of

providing a number of grid services such as volt-watt, volt-var, frequency-watt, and/or

voltage/frequency ride through. These functions aim to help increase the penetration

capacity for renewable energy sources in electric power systems (EPS) [68], [69].

3.1 Chapter Objective

The main objective of this chapter is to present the development of a

MATLAB/Simulink-based model to study EPS dynamics with GSF DERs. The

simulation model of an inverter with GSFs is validated by comparing the simulation

results obtained from the developed simulation model with the reference characteristic

curve obtained from the IEEE 1547-2018 standard. Then, a study comparing DERs with

only normal function and the GSFs is presented to study power systems dynamics as a

sample of how the model can be used. The results demonstrated that upon implementing

GSFs feature into inverters, they support grid voltage and frequency, ensuring the value

remained within an acceptable range.

The chapter is organized as follows: an overview of different features of GSFs

defined by the IEEE 1547-2018 standard is presented in Section 3.2. In Section 3.3, the
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theoretical background on the dynamic modeling of power systems is provided. Validation

of the GSFs implemented in the simulation model of inverter is illustrated in Section 3.4.

The results are presented in Section 3.5 followed by the conclusion in Section 3.6.

3.2 Overview of GSFs from IEEE 1547-2018 Standard

The IEEE 1547-2018 standard [67] specifies that DER systems shall have the

capability to regulate voltage and frequency of the grid and ride-through voltage/frequency

during abnormal conditions. Voltage regulation is achieved by controlling either the active

or reactive power output of the DER. Reactive power is controlled by any one of the

following mutually exclusive modes: i) constant power factor mode, ii) voltage-reactive

power mode (volt-var), iii) active power-reactive power mode (watt-var), and iv) constant

reactive power mode. Among these modes to control reactive power, the default mode that

shall be enabled is constant power factor mode and the value of power factor is set to unity

(but can be operated at any power factor). Additionally, voltage-active power mode

(volt-watt) is also used to regulate the voltage and by default this mode is disabled. To

regulate grid frequency, frequency-droop mode (frequency-watt) is enabled. If both

volt-watt and frequency-watt modes are enabled, minimum power obtained from any of

these two modes will take precedence. If the grid voltage and frequency is outside normal

operating range, DER activates the voltage/frequency ride-through for the minimum time

as specified in the IEEE 1547-2018 standard beyond which DER ceases to supply power

to EPS. An overview of some of the GSFs modeled in this chapter is presented below.
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3.2.1 Voltage Ride-through Function

When the system voltage (V ) is outside normal operating range (VL = 0.88 p.u. —

VH = 1.10 p.u.) then this mode is activated. If the system voltage is less than the

under-voltage threshold limit (Vu = 0.30 p.u.) or greater than the over-voltage threshold

limit (Vo = 1.20 p.u.), then the DER ceases to energize the Area EPS and trips within a

specified clearing time. Under and over-voltage tripping thresholds and clearing times are

adjustable over the ranges of allowable settings specified in the updated IEEE 1547-2018

standard. Within that clearing time, DER shall inject power to the grid.

3.2.2 Frequency Ride-through Function

This mode is activated only when the system frequency ( f ) is out of normal

operating range ( fL = 58.80 Hz — fH = 61.20 Hz). If the system frequency is less than

low-frequency tripping threshold ( fu = 57 Hz) or greater than high-frequency threshold

( fo = 62 Hz), then DER ceases to energize the Area EPS and trips within the respective

clearing time. High and low-frequency tripping limits and clearing times are adjustable

over the ranges of allowable settings specified in the updated IEEE 1547-2018 standard.

Within that clearing time, DER shall inject power to the grid.

3.2.3 Voltage-reactive Power Function or Volt-var Mode

If the volt-var function is enabled, DER shall actively control its reactive power

(Q) output to support the voltage of the grid. When the reference voltage (Vre f ) falls

further from the adjustable deadband (region beyond which GSFs activate), the inverter

begins to inject reactive power (+var) and as the voltage rises above the deadband, reactive

power is consumed. The voltage-reactive piecewise linear characteristics are shown in
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Figure 3.1. Example voltage-reactive power characteristic.

Figure 3.2. Example voltage-active power characteristic.

Fig. 3.1, where V1, V2, V3, and V4 are voltage parameters and Q1, Q2, Q3, and Q4 are

reactive power parameters that are configured in accordance with the default parameter

values specified in the updated IEEE 1547-2018 standard if not specified by area EPS

operator.

3.2.4 Voltage-active Power Function or Volt-watt Mode

The updated IEEE 1547-2018 standard states that when the volt-watt function is

enabled, DER shall actively limit the DER maximum active power (P) as a function of the

voltage following a voltage-active power piecewise linear characteristic. Reduction in

power for volt-watt mode occurs in the grid voltage ranging from V1 to V2 where V1 varies
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Figure 3.3. Example frequency-droop characteristic.

from 1.05 p.u. to 1.09 p.u. and V2 varies from V1 + 0.01 p.u. to 1.10 p.u. Fig. 3.2 shows a

characteristic of a renewable DER system which can inject and absorb active power,

where P1 is the maximum active power that is injected by the DER, i.e., Prated , and P
′
2 is

the maximum amount of active power that can be absorbed by the DER and can vary from

0 to −Prated .

3.2.5 Frequency-droop Function or Frequency-watt Mode

DERs shall have the capability of mandatory operation with frequency-droop

during low and high-frequency ride-through. When frequency deviates from the

adjustable deadband due to temporary frequency disturbances, but is still between the trip

settings, this function is activated and the DER adjusts the active power output based on

the system frequency following piecewise linear characteristic as shown in Fig. 3.3. The

adjustable frequency deadband is between 17 mHz to 1 Hz; by default it is set to 36 mHz.

Also, the frequency droop shall be between 3% and 5%, with a default value of 5%.

3.3 Basic Concepts of Dynamic Modeling

In this subsection, the dynamic modeling of a grid-connected inverter operating in

current control mode is introduced. Among several PECs, grid-connected inverters are
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widely used for the interconnection of batteries and PV; this chapter focuses discussion on

this particular converter. This is followed by a simulation setup used to validate the GSFs.

3.3.1 Dynamic Modeling of GFL Inverter

A schematic diagram of a grid-connected inverter system operating in current

control mode is shown in Fig. 3.4(a). The inverter is connected to the electric grid through

a low-pass filter with inductance L f ; the inductance and resistance of the grid are

represented by Lg and Rg, respectively. A phase locked loop (PLL) is used to track the

phase-angle (θPLL) and frequency ( f ) of the grid. The voltage at point of common

coupling (PCC) is denoted by Vc. I f and Ig are the inverter current and current supplied to

the grid respectively.

The inverter is operated either in the grid-feeding mode (normal inverter) or in

grid-supporting mode. In grid-feeding mode, the inverter injects/absorbs constant active

and reactive power (P∗
nor and Q∗

nor) to/from the grid, whereas in grid-supporting mode, the

active and reactive power (P∗
gs f and Q∗

gs f ) injected/absorbed by the inverter is changed so

as to minimize the voltage and frequency variations in the system. The reference active

and reactive power (P∗ and Q∗) are obtained either from the normal function or from the

GSFs as shown in Fig. 3.4(b). P∗ and Q∗ are fed to the current reference generator.

Reference current (I∗) thus obtained is fed to current control loop.

The dynamics of this inverter system depend on the operation power level, DC

voltage, and the parameters of the current controller and PLL. The dynamic response of

the grid current depends largely on the control system employed. The current controller

can be implemented using different control approaches such as a hysteresis band
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Figure 3.4. Schematic diagram of the various components and control loops in a grid-
connected inverter system with both normal and GSFs.

controller or a PI or a PR controller among various other possibilities [70] which will also

affect the dynamic behavior of the current response. In this chapter, hysteresis band

controller is employed to control the current injected into the grid.

3.3.2 Simulation Setup

MATLAB/Simulink was used to develop models of grid-connected inverter with

both normal and GSFs. The simulation setup is shown in Fig. 3.4. The simulation

parameters are summarized in Table 3.1. The system considered is a 6 kVA inverter

capacity and 20 kVA, 208 V microgrid system. To test volt-var and frequency-watt mode,

the reference active power set during normal operation is 0.7 p.u. Changes in the resistive

load connected at the PCC can be utilized to cause voltage and frequency deviations.

Initially, a 10 kW load is connected at PCC. A 5 kW load is then added at the simulation

time of 20 s, followed by a 5 kW load decrease at 35 s. During testing of frequency-watt

mode, the volt-watt mode is disabled.

Similarly, to test volt-watt mode, there should be a condition of over-voltage in the

system (V ≥ 1.05 p.u.). To meet this condition, the generator reference voltage is set to
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1.02 p.u. Up to 25 s, battery injects 0.7 p.u. active power. To study the volt-watt mode

operation, the DER active power is ramped up at the rate of 0.05 p.u./s from a simulation

time of 25 s to 30 s, where it reaches a final value of 0.95 p.u. This leads to over-voltage in

the system and the volt-watt mode in the DER is activated. Next, to study the dynamic

operation of the volt-watt mode, initially a 15 kW load is connected at PCC. A 10 kW is

then disconnected at the simulation time of 20 s. During testing of volt-watt mode,

frequency-watt mode is disabled.

Table 3.1. Simulation parameters

Parameters Values Parameters Values
Rg 0.106 Ω L f 7.40 mH
Lg 56.18 µH Vg 208.00 V line
kVA rating of inverter 6.00 kVA Kp of PLL 180.00
kVA rating of generator 20.00 kVA Ki of PLL 3200.00
Band of HBCC 1.00 % Kd of PLL 1.00

To study the dynamic model of the grid connected inverter, three cases were

simulated and evaluated:

• Case I: Switch S1 is opened, i.e., inverter power is not injected into grid

• Case II: Switch S1 is closed and S2 is opened, i.e., the inverter is connected to the

grid with only the normal functions activated

• Case III: Switches S1 and S2 are closed, i.e., normal function along with GSFs of the

inverter are enabled

3.4 Validation of the Inverter GSFs

To validate the simulated model of the inverter with GSFs, we compare the

simulation results obtained from the developed simulation model with the characteristic
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Figure 3.5. Validation of a) volt-var characteristic, b) volt-watt characteristic, and c)
frequency-watt characteristic.

curve of the IEEE 1547-2018 standard, which is configured in accordance with the default

parameter values for different GSFs. Based on the simulation data and that from the IEEE

1547-2018 standard characteristic curve, the fit of the model is calculated using the

NRMSE [71] defined in 3.1:

NRMSE =
∥y(t)− ŷ(t)∥

∥y(t)−mean y(t)∥
(3.1)

where y(t) is the data obtained from the developed simulation model with the

characteristic curve of IEEE 1547-2018 standard, and ŷ(t) is the data obtained from the

simulated model of the inverter with GSFs.

For the verification of GSFs, the generator in Fig. 3.4(a) was replaced by a

controllable voltage source (CVS). For volt-watt and volt-var modes, the voltage input to

the CVS was changed in steps of 0.01 p.u. at every 0.05 s interval for normal operating

range by keeping the frequency constant at 60 Hz. Similarly, the frequency of the CVS

was changed for frequency-watt mode by keeping the voltage constant at 1 p.u. During

this process, all other parameters are kept constant and the simulation output of the

inverter model is recorded.
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Figure 3.6. Comparison of grid frequency and active power injected to grid for Case I, II,
and III. In Case III, frequency-watt mode is activated.

The reactive power injected/absorbed by DER to support the grid voltage is plotted

in Fig. 3.5(a). The simulation results of developed model and characteristic curve from the

IEEE 1547-2018 standard are consistent and the NRMSE obtained in this case was 1.25%.

As seen in Fig. 3.5(b), the active power injected/absorbed by DER was reduced based on

the system voltage. Simulation results match the characteristic curve from the IEEE

1547-2018 standard with a NRMSE 1.09%. Fig. 3.5(c) depicts the behavior when

frequency-watt regulation was activated. Simulations were performed for three power

outputs (50%, 75%, and 90%) of the nominal inverter power. Validation of the model was

performed from 57 Hz, because below that frequency level, the protection setting of the

frequency ride-through mode will be activated. The NRMSE obtained in those cases were

0.79%, 0.85%, and 0.93% for the 50%, 75%, and 90% of the nominal inverter power,

respectively, and indicates that the developed model has acceptable levels of accuracy.

3.5 Results and Analysis

The simulation model of the inverter with GSFs were validated in subsection 3.4.

The developed model is then used to study power systems dynamics under various
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Figure 3.7. Comparison of grid voltage and reactive power injected to grid for Case I, II,
and III. In Case III, volt-var mode is activated.

operating conditions. A comparison of DERs with normal function and GSFs features

implemented in inverters are performed, and the results obtained by modeling inverters in

MATLAB/Simulink with normal and GSFs to study power systems dynamics are

presented and analyzed in this section.

3.5.1 Frequency-watt Mode

Figure 3.8. Comparison of grid voltage, active power, and reactive power injected to grid
for Case I, II, and III. In Case III, both volt-watt mode and volt-var mode are activated
simultaneously.

Fig. 3.6 shows the comparison of grid frequency and active power injected to grid

for Cases I, II, and III. The simulation setup described in Section 3.3.2 was used to study
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the frequency-watt mode of operation. After 20 s, a 5 kW load was added in the system

which caused the grid frequency to drop as shown in Fig. 3.6(a). The frequency nadir in

Cases I and II was 58.8 Hz, because in these cases no function for frequency support was

active. However, for Case III, when the GSF was enabled the frequency nadir was reduced

to 59.2 Hz because additional active power is injected to the grid due to the

frequency-watt function. Fig. 3.6(b) shows that as the system frequency decreases, the

active power injected by DER to the grid increases. Similarly, when a 5 kW load was

disconnected at 35 s the system frequency increases in all three cases. However, the

frequency increase for Case III was lower compared to the other two cases due to the

frequency-watt function being active.

3.5.2 Volt-var Mode

Fig. 3.7 shows the comparison of grid voltage and reactive power injected to grid

for Cases I, II, and III. The simulation setup described in Section 3.3.2 was used to study

the volt-var mode of operation. When a 5 kW load was added after 20 s to the system, the

voltage dropped below 0.98 p.u. as shown in Fig. 3.7(a). The lower set point to activate

the volt-var mode was set to 0.98 p.u. while the upper set point was 1.02 p.u. [67]. From

20 s to 35 s, the voltage dropped below 0.98 p.u. for Cases I and II. For Case III, when the

volt-var function is active, the DER injected reactive power to support the voltage as

shown in Fig. 3.7(b). After 35 s, a 5 kW load was disconnected which caused the voltage

to rise but the voltage did not cross the upper voltage set point for volt-var function. In this

case, the volt-var mode was not active and no reactive power was injected by DER to the

grid.
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3.5.3 Volt-watt Mode

Fig. 3.8 shows the comparison of grid voltage, active, and reactive power injected

to the grid for Cases I, II, and III. The simulation setup described in Section 3.3.2 was

used to study the volt-watt mode of operation. After 20 s, a 10 kW load was disconnected

which causes a rise in the grid voltage as shown in Fig. 3.8(a). When only the normal

function was enabled, the voltage reaches 1.08 p.u., but when the GSFs are enabled the

voltage rise was limited to 1.05 p.u. This is due to the activation of the volt-watt mode and

volt-var mode simultaneously. Voltage support from the volt-watt mode leads to 0.02 p.u.

reduction in active power output from DER as shown in Fig. 3.8(b) and that from volt-var

mode requires 0.7 p.u. absorption of reactive power Fig. 3.8(c) by the DER. This is

because of droop parameters.

After 25 s, the power output from the DER was increased with constant ramp-rate

of 0.05 p.u./s. In this condition, when only normal function was activated, the DER

injected the reference active power and ultimately, the grid voltage was further increased.

When GSFs were activated the active power did not increase in the same way, as the

voltage tends to increase, volt-watt mode function was activated and reduced the output

active power. Curtailment in active power helped to maintain the grid voltage around 1.05

p.u. Moreover, volt-var mode also supports the voltage to maintain the grid voltage around

1.05 p.u.

3.6 Chapter Conclusions

This chapter presents a MATLAB/Simulink model for a PECs with the GSFs

introduced in the IEEE 1547-2018 Standard. The models were developed to investigate
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whether data-driven models could exhibit a behavior consistent with the expected model.

GSFs implemented in the simulation model of inverter were validated by comparing

developed simulation model characteristic curve with the IEEE 1547-2018 standard

characteristic curve. The NRMSEs obtained for volt-var, volt-watt, and frequency-watt

mode were less than 2%. Furthermore, the sample dynamic study of a power system

activating the different GSFs modes was simulated and analyzed. Under various operating

conditions, results show the improvement on grids’ frequency and voltage profile using

frequency-watt mode, and, volt-var and volt-watt modes respectively. This confirms that

the GSFs model have dynamic behavior, establishing that data-driven models can capture

the dynamic behavior of PECs.
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CHAPTER 4 Modeling Framework for Extracting Power Electronic Converter

Dynamics Using Designed Probing Signals

System identification has gained significant importance within the realm of power

grids due to the growing complexity of the system. The evolving landscape of power

system infrastructure, driven by the integration of renewable energy resources,

controllable loads, and innovative power electronics technologies, presents new

operational and control challenges. Traditional modeling approaches for power systems

are insufficient given the intricate nature of IBRs and the lack of physics-based models.

This necessitates a shift towards SysId techniques. SysId encompasses techniques utilized

to describe a system through a suitable mathematical model, utilizing the system’s input

and/or output data. In SysId, deliberately designed input signals are used to probe the

system under study. The resulting input-output data sets are then utilized to construct an

appropriate model of the systems. Perturbing the systems with correctly designed probing

signals plays a vital role. The probing signals used have a significant impact on the data

that is measured and allow for accurate estimation of system parameters and identification

of linear model to capture the system dynamics [72].

4.1 Chapter Objective

The main objective of this chapter is to develop a data-driven modeling framework

for extracting PECs dynamics using a designed probing signals.
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4.1.1 System Identification of PECs

System identification is a process to derive a mathematical model of an unknown

system through observations of the input and corresponding output data. Using system

identification tools, a mathematical model of a power electronic system that represents the

dynamics of interest can be designed without knowledge of the underlying control

structure and/or the control parameters. The dynamics of the converter will change based

on different operating conditions. Several linear models for each operating condition can

be developed and combined through a suitable mechanism [73]. Fig. 4.1 illustrates the

basic concepts of a system identification process. The input signal u(t) and the output

signal y(t) are first measured from the unknown dynamic process to be identified and

dataset is then divided into training and testing datasets. 70% of the dataset is allocated for

training purposes, while the remaining 30% is designated for testing. This split is chosen

to ensure a substantial sample size, enabling accurate estimation and validation of the

parameters.

The dataset is then fed into a system identification algorithm. SysId algorithm uses

Instrument Variable (IV) method to process the training dataset such that least-square error

is minimized for each data points and estimates the parameters of the system model ˆG(s).

The relationship between the input and output that can be defined as:

y(t) + a1y(t − 1) + · · · + any(t − n) = b1u(t − 1) + · · · + bmu(t − m) (4.1)

where n and m represent the number of poles and zeros of the system respectively.
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Figure 4.1. The fundamental concept of SysId. To identify the unknown dynamic process,
the SysId method utilizes input and output measurements. The GoF is then calculated by
comparing the actual outputs and estimated outputs.

Similarly, an and bm represents the parameters of the difference equation of (4.1) or the

coefficients of the equivalent transfer function (TF). Then in general, a dynamic system

can be represented as:

ŷ(t | θ) = [φ(t)]T θ . (4.2)

In (4.2), θ represents the set of the unknown parameters/coefficients of the system, and

φ(t) represents the set of inputs u(t) and outputs y(t) of the dynamic system defined as

follows:

θ = [a1, . . . ,an,b1, . . . ,bm]
T (4.3)

φ (t) = [−y(t −1) · · ·− y(t −n) u(t −1) . . .u(t −m)]T (4.4)

Now, if we define ZN as the set of known measurements and N is overall input-output data

in the time interval 1 ≤ t ≤ N:

ZN = {u(1),y(1), . . . ,u(N),y(N)} (4.5)
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then the unknown parameters of the system, θ , can be estimated by employing a

least-squares method utilizing the following cost-function [74]:

minimize
θ

VN
(
θ ,ZN) . (4.6)

where

VN
(
θ ,ZN)= 1

N

N

∑
t=1

∥y(t)− ŷ(t | θ)∥2 (4.7)

Based on the collected input-output data, a set of models with different numbers of

poles and zeros can be fitted to the data. The goodness of fit (GoF) of the model can be

calculated using a metric such as the normalized root-mean-square error fitness value

defined as [75]:

GoF = 100×
(

1− ∥y(t)− ŷ(t)∥2
∥y(t)−mean y(t)∥2

)
(4.8)

where, ∥.∥2 indicates 2-norm vector.

Furthermore, to compare different models based on the GoF and complexity of the model

the Akaike’s Final Prediction Error (FPE) can be used, defined as [76]:

FPE = det

(
1
N

N

∑
t=1

(
e(t, θ̂N)

)(
e(t, θ̂N)

)T
)(

1+ d
N

1− d
N

)
(4.9)

where e(t) represents the prediction errors and d is the number of estimated parameters. A

lower FPE represents a more accurate model of the system.
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4.1.2 Design of Probing Signals for the data-driven Modeling

In data-driven modeling, perturbing the PECs with properly designed probing

signals - which act as input data during SysId - plays an important role as it is the only

method to influence the process and learn more about system behavior [77]. But before

employing any signal as a probing signal the design constraints imposed by the power

system and the SysId theory (the concept is to position the content of the probing signal in

the frequency band of interest by the application) need to be strictly followed [72]. In

addition, the system could have different time constants. So, for accurately estimating

time constant and for emphasizing a frequency range based on signal frequency,

rectangular/square are ideally suited for identification [77] square and rectangle signals

are non-sinusoidal periodic waveforms in which the amplitude alternates between defined

minimum and maximum values at a constant frequency. Relying on the aforementioned

theory, four different probing signals (i.e., logarithmic square chirp, square, sine, and

logarithmic sine chirp) are compared in [78], which concludes that logarithmic square

chirp outperformed other signals in model accuracy based on GoF to extract dynamics of

inverters. Logarithmic square chirp-where logarithmic sweeping of frequency of a square

wave signal occurs-will, therefore, be used as a probing signal for perturbing the system.

The signal that is used in the research has the following fundamental explanation:

x(t) = A square(wt) (4.10)

Here, x(t) is the square wave signal, A is the peak amplitude of the square wave and wt is

the phase which is updated according to the trapezoidal method indicated in the following
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Eqn. 4.11.

(wt)k = (wt)k−1 +
tk − tk−1

2
×2×π × ( f(tk)+ f(tk−1)) (4.11)

where, at discrete time instant k (and k−1 represents the previous time instant), (wt)k−1

and (wt)k represent previous and current time instant phase angle, tk−1 and tk are the time

at discrete instant k−1 and k, f(tk) and f(tk−1) are the frequency at tk−1 and tk respectively.

Similarly, the frequency f(tk) is defined as in :

f (tk) = f0 ×
f0

f1

( 1
T )

tk

(4.12)

where f0, f1, and T represent the starting frequency, final frequency, and time length of

the chirp signal respectively.

4.1.3 Design Criteria of Chirp Signal

Based on the fundamental explanation of the signal, the design criteria of the chirp

signal presented in this chapter are f0, f1, T , and A.

4.1.3.1 Final Frequency ( f1)

f1 is the final frequency of a chirp signal. In other words, it is the frequency at

which the designed signal will have minimum hold time Th (i.e., the shortest period of

time for which the signal stays constant). However, Th of the signal should neither be

chosen too small nor too large. It means, if it is selected too small, the process will have

no time to settle and the model identified from such data will not be able to describe the

static behavior well. Similarly, if it is selected too large, it would overemphasize low

frequencies, but, much worse, it would leave large areas of the input space (scatter plot of
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input data and output data) uncovered with data, and thus the model might not properly

capture the process behavior in these regions as the data simply contains no information

on them. Hence, it is reasonable to choose the minimum Th approximately equal to the

time constant (τsystem) of the system [77]. Hence, the final frequency of the signal can be

obtained as :

f1 ≈
1

2×Th
≈ 1

2× τsystem

Here, the multiplication of 2 in the above equation is carried out for considering the total

ON and OFF time of the signal. Furthermore, for knowing τsystem, step input is given to

the system and the settling time (ts) of the system is calculated. Depending on tolerance

band considered, τsystem can be calculated as [79]:

τsystem =
ts
3

(for 5% tolerance band)

τsystem =
ts
4

(for 2% tolerance band)

4.1.3.2 Starting Frequency ( f0)

f0 is the minimum frequency of a chirp signal. It is selected in an iterative manner

and needs to get updated in each iteration until the time constant of the predicted model

(τmodel) matches τsystem as indicated in Algorithm 1.

4.1.3.3 Time Length of Signal (T )

T of the signal is the time length of the chirp signal and is expressed as the time

between two particular instantaneous frequencies f0 and f1 and is expressed as [80]:
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T =
1

D%× f0 × log( f1
f0
)

where D is the percentage rate of exponential change in the frequency of the signal.

Figure 4.2. Flowchart to design probing signal for SysId.

4.1.3.4 Peak Amplitude of Signal (A)

A is the peak amplitude of the square chirp signal and should be chosen

considering the signal-to-noise ratio (SNR) [81]; it varies depending on the system. It

should be carefully chosen so that, after perturbing the system with designed signals, the

output signal incorporates the least amount of noise possible. Poor selection may

necessitate the use of other filters to remove noise, which will be covered in more detail in

the results and analysis section. The flowchart for designing the probing signal for

data-driven model parameterization is given in Fig. 4.2.
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4.2 Methodology to Collect Data for Grid-following and Grid-forming Converter

In this section, the methodology to obtain the the experimental data for both GFL

and GFM inverter is presented. Firstly, GFL inverter is excited by designed probing signal

to identify the TF of GFL inverter. The amplitude of probing signal must fall within the

range of 0.88 p.u. to 1.1 p.u. so as to operate GFL inverter in a normal condition and to

represent under- and over- voltage conditions. Then, voltage amplitude (measured inputs)

at the PCC and current injected by the GFL inverter to the grid (measured outputs) are

logged through the Opal-RT system, and thus, collected data are split into different

regions. Then, the data is filtered using the mean filter to smooth the array of sampled

data. Furthermore, the mean of both voltage and current measurements are eliminated to

obtain a more accurate model. This allows SysId to focus on the real variations caused by

the probing signals rather than undesirable data trends. The dataset is separated into two

parts for cross-validation: a training set for computing unknown poles and zeros, and a

validation set for validating the resulting model. Then, the poles and zeroes are swept to

generate distinct linearized models that are accurate and computationally efficient, using a

SysId technique. Moreover, models with respective poles and zeroes are compared using

the Akaike’s FPE and the most accurate model with the lowest Akaike’s FPE is chosen as

the final TF model for each range [82].

Secondly, the flowchart to identify the TF of a GFM inverter from the SysId

algorithm is shown in Fig. 4.4. In order to determine the TF of GFM inverter, the

measured inputs, including the active and reactive power supplied by the GFM inverter,

along with the output frequency and voltage at the terminal of the GFM are logged using
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Figure 4.3. Flowchart to identify TF of GFL inverter using SysId algorithm.

the Opal-RT system. The collected data is subsequently divided into distinct ranges for

analysis. Then, the data is filtered using the mean filter to smooth the array of sampled

data. Furthermore, the mean of both active power and reactive power, and frequency and

voltage of GFM measurements are eliminated to obtain a more accurate model. This

allows SysId to focus on the real variations caused by the probing signals rather than

undesirable data trends. The dataset is separated into two parts for cross-validation: a

training set for computing poles and zeros, and a validation set for validating the resulting

model. The number of poles and zeroes are chosen based on the finding from analytical

approach and generate distinct linearized models that are accurate and computationally
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Figure 4.4. Flowchart to identify TF of GFM inverter using SysId algorithm.

efficient using a SysId technique.

4.3 Validation of TF Model Obtained from SysId

Fig. 4.5 depicts a schematic diagram to validate the TF obtained from SysId when

inverter is operating in GSFs mode. To validate the accuracy of the TFs, the inverter was

excited through the Puissance Plus Power Amplifier with the same probing signal in

parallel with its TFs. Vabc re f is the reference voltage amplitude at PCC. The output

current injected to the power amplifier by the inverter was passed to abc−dq0 block to

only obtain quadrature axis current, iinvq. Here, Vabc re f was converted to dq0 component,

and only the d-component (Vd) was used as it is associated with the voltage amplitude.

The mean value of Vd was removed before feeding to the TF of different regions. The
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Figure 4.5. Schematic diagram to validate the TF obtained from SysId when inverter is
operating in GSFs mode.

output of the TF was the estimated current which was inputted to the selector block. The

selector block chose the correct estimated current based on the per-unit value of voltage

Vd pu. Mean value of sensed current (iinvq) was then added in the estimated current (iq est)

to get actual estimated current (iq t f ) from the TF block. The GoF based on NRMSE was

then calculated to compare the fit percent.

4.4 Implementation of TF Model in EMT Simulation

After validating the model, the TF model of an inverter can be integrated into an

EMT simulation for dynamic study, as illustrated in Fig. 4.6. In this process, the terminal

voltage (vabc) is sensed and subsequently processed by the abc−dq0 block to obtain the

direct axis voltage (Vd) and quadrature axis voltage (Vq). These Vd and Vq values are then

input to the TF model, which has been previously identified using SysId techniques, to
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compute the corresponding direct and quadrature axis currents (id and iq). The computed

id and iq are then passed through the dq0−abc block to obtain the reference current,

(iabc). This current is then applied to controllable current source to generate the PCC

voltage (VPCC).

Figure 4.6. Implementation of TF model in EMT simulation for dynamics study.

4.5 Chapter Conclusions

In conclusion, this chapter has highlighted pivotal aspects necessary for

data-driven modeling of PECs with a designed probing signals. Firstly, it emphasized in

SysId algorithm for obtaining the TFs of PECs. Secondly, it emphasized how to design a

probing signals for dynamic modeling of PECs. Thirdly, the methodology to collect data

for both GFL and GFM inverter are developed. Lastly, it detailed the essential steps to

integrate the derived TFs model into EMT simulations.
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CHAPTER 5 Data-driven Modeling of Grid-following Inverter Dynamics Using Power

Hardware-in-the-Loop

With the advancement in power electronics technology and grid standards,

traditional converters are being supplemented with the new IEEE 1547-2018 standard

based GSFs to support power system voltage and frequency. Inverter dynamics in power

systems vary with different modes of operation, thus to capture the converter dynamics

partitioned-based data-driven modeling of PECs with GSFs is proposed. Partitioned is

done based on the operating states of GSFs of PECs. The partitioned operating ranges are

represented via simpler linear models utilizing system identification algorithm.

5.1 Chapter Objective

The main objective of this chapter is to derive a dynamic model for the GFL

inverter utilizing a data-driven partitioned modeling approach. This involves recording the

current output response of the GFL inverter to variations in the PCC voltage, achieved by

probing the inverter with various probing signals as designed in Section 4.1.2. The SysId

algorithm as explained in Section 4.1.1 is employed to generate the dynamic model of the

GFL inverter, and its accuracy is confirmed through validation under the Volt-VAr GSF.

The methodology used identifies reduced-order dynamics of the GFL inverter interfaced

with the grid. Furthermore, the study analyzes the GoF when the GFL inverter is

perturbed with probing signals and indicates which one would estimate an accurate GFL

inverter model.

The rest of the chapter is organized as follows. Section 5.2 presents a dynamic

modeling of GFL inverter. Section 5.3 provides an explanation of the partitioned modeling
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approach applied to Volt-VAr, followed by a detailed description of the probing signal

parameters. Section 5.5 presents the experimental setup for identifying the TF of the GFL

inverter using different probing signals and the results are presented in Section 5.6.

Finally, Section 5.7 concludes the study.

5.2 Dynamic Modeling of GFL Inverters

A schematic of a GFL inverter system operating in current control mode is shown

in Fig 5.1. The inverter is connected to the electric grid through a low-pass filter with

inductance L f and capacitance C f ; the inductance of the grid is represented by Lg. The

inverter is being operated in the GFL mode injecting the reference active and reactive

power commands P∗ and Q∗ respectively. A PLL is used to track the phase-angle of the

grid, θPLL. Then a current controller (e.g., proportional-integral (PI)/

proportional-resonant (PR) controller) is employed to control the current being injected

into the grid.

The dynamics of this inverter system depends on various factors such as operation

power level, DC voltage, parameters of the current controller, and the parameters of the

PLL. The dynamic response of the grid current, for instance, depends largely on the

control system being employed — the design and controller gains will be different among

various manufacturers.

5.3 Partitioned Modeling of GSFs From IEEE 1547-2018 Standard

Several GSFs for IBRs are being added for supplementary voltage and frequency

services [78]. Volt-Var, Volt-Watt, and Freq-Watt modes of operation of the inverter are

explained in this section. However, the methods presented can be extended to other GSFs
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Figure 5.1. Schematic diagram illustrating the various components and control loops in a
typical GFL inverter system.

as well.

Due to the presence of nonlinearities in PECs, modeling of PECs with GSFs over

diverse operating regions results in intricate dynamic models, and the complex dynamics

of the whole operating region are not effectively captured by a single linearized

model [83]. Therefore, the inverter operating regions are further divided into multiple

linear regions. Each region (represented by R) is separated into several small ranges

(represented by r) based on the magnitude of voltage/frequency. A linear TF for each

range is determined using the SysId algorithm as explained in Section 4.2. Several regions

and ranges of the Volt-VAr, Volt-Watt, and Freq-Watt modes are shown in Fig. 5.2,

Fig. 5.3, and Fig. 5.4, respectively.where r11,r12, ..,r21,r22, ..,r5k are ranges; the first

index represents the region and second index represents voltage/frequency amplitude

change depending upon different GSFs mode.
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Figure 5.2. The Volt-VAr characteristics curve depicts several regions and ranges.

Figure 5.3. The Volt-Watt characteristics curve depicts several regions and ranges.

5.4 Probing Signals

The flowchart to identify the TF of a GFL inverter operating in Volt-VAr mode

from the SysId algorithm is shown in Fig. 4.3. Different probing signals (square wave

(Sq), sine wave (Sine), logarithmic square chirp (Sq-Chirp), and logarithmic sine chirp

(Sine-Chirp) signals) of varying voltage amplitude were used to perturb the GFL inverter.

These probing signals are used as they have all the variation in frequency and magnitude
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Figure 5.4. The Freq-Watt characteristics curve depicts several regions and ranges.

as described in the Section 4.1.2 and are designed from the standpoint of SysId theory, as

well as design restrictions imposed by the power system [72]. The parameters for the

probing signals used are shown in Table 5.1. For all probing signals, voltage amplitude is

varied from 0.895 p.u. to 0.905 p.u. for 15 sec and then the amplitude is increased by

0.005 p.u. for the next range until amplitude reached 1.095 p.u. Here, 0.01 p.u.

step-change is done based on the region 5 voltage range availability on Volt-VAr mode.

The frequency for Sine and Sq wave is 1 Hz and that for Sine-Chirp and Sq-Chirp is

varied from 1 Hz to 32 Hz. The values of frequency are chosen based on the settling time

response parameters of the GFL inverter.

Table 5.1. Parameters of probing signals.

Input
Signal

Voltage Amplitude
Variation (p.u.)

Step
Change (p.u.)

Frequency
(Hz)

Sine 0.895-1.095 0.01 1
Sq 0.895-1.095 0.01 1
Sine-Chirp 0.895-1.095 0.01 1-32
Sq-Chirp 0.895-1.095 0.01 1-32
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5.5 Experimental Setup

Data-driven modeling for three GFL inverters are conducted: i) 700 W GFL

inverter from SMA (Sunny Boy SB 700U) and ii) 10 kW Fronius Symo Inverter (FSI), iii)

Two-phase 5 kW SMA inverter.

5.5.1 Experimental Setup for 700W SMA Inverter

The experimental setup used for identifying the dynamics of a GFL inverter is

shown in Fig. 5.5. The device under test is a 700 W GFL inverter from SMA (Sunny Boy

SB 700U) whose TF is to be determined. A solar array simulator (SAS) was used to

emulate the DC output of a PV system and the test device is connected to an Opal-RT

which consists of a OP5707 real-time simulator (RTS) combined with a power amplifier

from Puissance-Plus. In conjunction with the console PC, the RTS and the

power-amplifier unit can emulate grid voltage of varying output magnitude, phase, and

frequency. A resistive dump-load is also connected to consume excess power that cannot

be consumed by the power amplifier. The nameplate rating of the GFL inverter from SMA

is given in Table 5.2.

Table 5.2. SMA GFL Inverter’s Nameplate Ratings (Sunny Boy SB 700U).

Nominal voltage 120 V
Voltage Range 106-132 V

Frequency Range 59.3-60.5 Hz
Nominal frequency 60 Hz

MPPT range 75-200 Vdc

To determine the TF of the GFL inverter, the dynamic response of the inverter

current is observed when there are perturbations in the grid voltage. This situation may be

more common now as the grid becomes susceptible to overvoltage issues and as per IEEE
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Figure 5.5. Experimental setup for system identification. The GFL inverter is probed
through a power amplifier unit controlled through an Opal-RT RTS.

1547 standard the inverters can have voltage ride-through capabilities. To emulate this

scenario, the amplitude of the power amplifier’s output voltage is varied through the

Opal-RT RTS. This emulates over/under-voltage conditions in the grid. The

corresponding output voltage at the PCC and the current supplied by the inverter are

logged through the Opal-RT system. The voltage and current measurements are fed into

the console personal computer (PC), where the dynamics model of the inverter will be

identified using SysId algorithm as described in Section 4.2.

5.5.2 Experimental Setup for 10 kW FSI Inverter

A PHIL arrangement can be used to test GFL inverters in a varying voltage

conditions. Here, the equipment under test is a commercial three-phase 10 kW FSI which

has GSFs, and TF model is to be determined when it is operating in Volt-VAr mode. The

experimental setup to identify the dynamics of an FSI with GSFs is shown in Fig. 5.6.

The OP5707 RTS from Opal-RT technology was employed in PHIL. The RTS and

power amplifier, in combination with the console PC, were used to emulate grid voltage of
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Figure 5.6. Experimental setup to determine TF of FSI operated in Volt-VAr mode. The
FSI is probed through a power amplifier unit controlled through an Opal-RT RTS.

varied output magnitude. The voltage amplitude at PCC was perturbed by the power

amplifier and the current injected by FSI to the grid was recorded for the complete normal

operating range (0.88 p.u. – 1.1 p.u.) to capture the dynamics of Volt-VAr mode. The

MATLAB/Simulink model to generate varying voltage amplitude at power amplifier

output terminals was designed in the console PC interfaced with OP5707 and was built,

compiled, and loaded into OP5707 RTS. Transmission Control Protocol (TCP) and the

Internet Protocol (IP) were used to communicate between the console PC and OP5707

RTS. RTS sent the small analog probing signal to the power amplifier input terminals and

the amplified probing signal was generated at the output terminals of power amplifier. The

DC side of the FSI was powered by a PV system available on the microgrid research lab

building at South Dakota State University. A Cannon resistive dump-load was connected

at PCC to consume power generated by the PV system and to protect reverse power flow

to the power amplifier. The settings of FSI and load are given in Table 5.3.
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Table 5.3. Load and FSI Parameters.

Parameter Value
Resistive load 1 kW
FSI Rating 10 kW
Q1, Q2, Q3, and Q4 3.3, 0, 0, and -3.3 kVA resp.
VL, V1, V2, V3, V4, and VH 0.88, 0.92, 0.98, 1.02, 1.07,

and 1.1 p.u. resp.[67]

5.5.3 Experimental Setup for Two-phase 5 kW SMA Inverter

To test inverters under IEEE 1547-2018 standard voltage and frequency settings, a

PHIL setup can be used. The test equipment used in this experiment is a commercial

two-phase 5 kW SMA inverter, whose dynamic model is to be determined when it is

operating in Volt-Watt and Freq-Watt modes. The experimental setup to determine the

dynamics of an SMA with GSFs is depicted in Fig. 5.7.

Figure 5.7. Experimental setup to determine TF of SMA operated in Volt-Watt and Freq-
Watt mode. The SMA is probed through a power amplifier unit controlled through an
Opal-RT RTS.

The experimental setup utilizes a PV system (located on the roof-top of the South

Dakota State University (SDSU) microgrid research lab building to supply power to the
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inverter DC side), two-phase 5 kW SMA inverter, Puissance Plus Power Amplifier,

OP5707 RTS from Opal-RT technology, Cannon Resistive Load Bank and Console PC for

testing PHIL experiment. The RTS and power amplifier, in combination with the console

PC, is used to perturb the voltage and frequency at the PCC. In addition, at PCC, a

Cannon Resistive Load Bank is connected to utilize the PV power while protecting against

reverse power flow to the power amplifier.

The console PC is used to design the probing signal for perturbing the voltage and

frequency amplitudes at the PCC. The probing signal design is carried out by carefully

considering probing signal design criteria. The MATLAB/Simulink model of the probing

signal is then built, compiled, and loaded into the OP5707 RTS from the console PC

interfaced with the OP5707 for generating variable voltage and frequency amplitude at

power amplifier input terminals. The power amplifier, which receives a small analog

probing signal from RTS at its input terminals, produces an amplified probing signal at its

output terminals. The perturbed voltage and frequency amplitude at PCC by the power

amplifier and the current injected by SMA to the grid are recorded for the complete

operating range for capturing the dynamics of the inverter. For capturing the dynamics of

an inverter operating in either Volt-Watt or Freq-Watt mode, the corresponding mode of an

inverter is activated by selecting Volt-Watt or Freq-Watt settings in the inverter. The

logged corresponding output voltage/frequency at the PCC and the current injected from

the inverter are passed through the Opal-RT system. The SysId algorithm as described in

Section 4.2 is used to find the dynamic model of the inverter.
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5.6 Results and Analysis

5.6.1 Result and Analysis of 700 W SMA Inverter

Figure 5.8. Response of inverter output current with step change in grid voltage.

Figure 5.8 shows the response of the SMA inverter to the changes in the grid

voltage. The root-mean-square value of both the voltage and current signal is shown. A

median filter was applied which works as a non-linear digital filter and smooths the array

of sampled data, preserves edges while eliminating unwanted noise signals. Furthermore,

to get a more accurate model, mean of both current and voltage measurements are

removed. This allows the focus of the identification to be on the actual fluctuations due to

the perturbations rather than unwanted trends in the data. For cross-validation purposes,

the dataset is split into a training set to compute the unknown poles and zeros and testing
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set to validate the derived model. The training dataset obtained after proper pre-processing

is illustrated in Fig. 5.9.

Figure 5.9. Training dataset obtained after pre-processing the measured current and voltage
signals.

The possibility of getting a better fit through higher-order models was also

explored. For this, a system with 3-poles and 1-zero; and 3-poles and 2-zeros were

analyzed. Table 5.4 lists the various models that were fitted along with a metric that

demonstrate the GoF for training and testing data. A TF with 2-poles and 1-zero seems to

provide the best fit. The GoF was highest for this case with both the testing and training

dataset. Furthermore, the Akaike’s FPE metric is also the least from this case compared to

the other two cases. Increasing the number of poles from 2 to 3 in the second case slightly

reduced the GoF. Similarly, increasing both poles and zeros as in the third case slightly

increases the GoF against the testing dataset. Based on this analysis the following
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second-order TF was identified to be suitable:

ˆG(s) =
∆iinv(s)
∆vg(s)

=
−0.02113s−9.334×10−4

s2 +2.104s+0.1133
(5.1)

Figure 5.10 illustrates a schematic diagram for implementing the TF model of a

700W SMA inverter in EMT simulation using Opal-RT. The purpose is to validate the TF

model obtained through the SysId Toolbox. To assess the accuracy of the TFs, the inverter

was probed using a square probing signal in conjunction with the Puissance Plus Power

Amplifier. This probing signal was applied in parallel with the inverter’s TF. The

reference voltage amplitude at the PCC is denoted as Vabc re f . The output current

generated by the 700W SMA inverter and injected into the power amplifier was processed

through the abc−dq0 block to get the quadrature axis current, iinvq. Here, Vabc re f was

converted into the dq0 coordinate system, with only the d-component (Vd) being utilized,

as it corresponds to the voltage amplitude. Prior to inputting it into the TF, the mean value

of Vd was removed. The output of the TF provided an estimate of the current. The mean

value of the sensed current (iinvq) was added to the estimated current (iq est) to obtain the

actual estimated current (iq t f ) from the TF block. The fit percent was then calculated,

aiming to assess the accuracy of the TF model.

The performance of this model is also illustrated in Fig. 5.11 by comparing the

simulated model against the measured data. The simulated model is the response that is

computed based on the fitted model, using the test data as the input. Ideally, the simulated

model should be very close to the measured data for a good model fit. The fit obtained in

this case was 76.77% which is slightly on the lower side. The dotted lines illustrate the
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Figure 5.10. Schematic diagram to validate the TF obtained from SysId Toolbox for 700W
SMA inverter.

Figure 5.11. Measured versus simulated output of the fitted TF along with the 95% confi-
dence interval of the estimate.

95% confidence interval of the estimates. The confidence interval represents the range of

output values having 95% probability of being the true response of the system.

5.6.2 Result and Analysis of 10 kW FSI Inverter

The TF of the FSI which operates in Volt-VAr mode is obtained from the SysId

toolbox and the results of the GoF obtained by comparing the actual response of an FSI
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Table 5.4. Summary of TF models identified through the SysId Toolbox.

Model
Order

Model
Coefficients

Fit to
Training

Data

Fit to
Test
Data

FPE

n = 2
m = 1

b1 = -0.02113
b0 = -9.334×10−4

a2 = 1.000
a1 = 2.104

a0 = 0.1133

76.77% 74.24% 3.118×10−4

n = 3
m = 1

b1 = -0.06635
b0 = 1.6×10−4

a3 = 1.000
a2 = 4.344
a1 = 6.701

a0 = 0.012222

74.2% 72.45% 3.85×10−4

n = 3
m = 2

b2 = -0.02651
b1 = -9.392×10−3

b0 = -0.1478
a3 = 1.000
a2 = 3.024
a1 = 6.661
a0 = 14.69

76.17% 73.92% 3.28×10−4

and that from the TF are analyzed in this section.

In PHIL test condition, regions R1, R2, R3, R4, and R5 were divided into 3, 7, 3, 5,

and 2 ranges based on the voltage parameters (listed in Table 5.3) defined for Volt-VAr

mode in the updated IEEE 1547-2018 standard. Middle range data (r12,r24,r32,r43) were

used to obtain the TF for R1 up to R4 regions and range 1 data (r51) was used in region R5

for all four probing signals. Here, the overall dynamics of the FSI were represented using

the second-order TF because the GoF for second-order TF was found to fulfill both

accuracy and computational complexity requirements.

In contrast to other regions, the Volt-VAr mode is deactivated in the R3 region,

which implies the FSI will not inject/absorb any reactive power to/from the grid, resulting
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in no significant GFL inverter dynamics. Hence, region R3 is not considered in the

analysis.

Different probing signals were used in Fig. 5.6 to determine the TFs of FSI

operating in Volt-VAr mode. Fig. 5.12 shows the logarithmic Sq-Chirp signal as a

reference input probing signal to change the PCC voltage. TF(Sq), TF(Sine),

TF(Sq-Chirp), and TF(Sine-Chirp) were the different TFs obtained from the respective

probing signals which include TF for each region (except for R3) resulting in sixteen TFs

which is listed in Table 5.5.

Figure 5.12. Logarithmic Sq-Chirp signal used to perturb the voltage at PCC.

Table 5.5. Summary of TF models for different regions with four different probing signals.

Regions
Transfer Function (

iq
Vd
)

TF(Sq) TF(Sine) TF(Sq-Chirp) TF(Sine-Chirp)

R1
−5.8924s+811.87
s2+154.6s+9770.2

−316.36s+12320
s2+12.61s+14420

−4.84s+729.37
s2+151.5s+8060.5

60.10s+1025.70
s2+735s+12500

R2
−8.96s+593.44

s2+32.13s+466.3
−894.63s+44688

s2+2262.2s+32700
−8.57s+559.64

s2+29.98s+461.03
5.96s+278.09

s2+21.169+210.99

R4
−12.95s+639.09

s2+32.66s+490.65
−71.29s+5102.6

s2+280.76s+3573.6
−10.77s+615.1

s2+32.18s+466.91
−25.8s+1023.6

s2+48.24s+792.67

R5
5.88s−787.65

s2+239s+13127
20.87s−2211.5

s2+721.48s+36696
3.07s−648.12

s2+163s+10851
36.4s−5807

s2+2440+98199

Fig. 5.13 depicts a schematic diagram to implement the TF model of a 10 kW FSI
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in EMT simulation inside Opal-RT and validate the TF model acquired via SysId. To

validate the accuracy of the TFs, the inverter was excited through the Puissance Plus

Power Amplifier with the same probing signal in parallel with its TFs. Vabc re f is the

reference voltage amplitude at PCC. The output current injected to the power amplifier by

the inverter was passed to abc−dq0 block to only obtain quadrature axis current, iinvq.

Here, Vabc re f was converted to dq0 component, and only the d-component (Vd) was used

as it is associated with the voltage amplitude. The mean value of Vd was removed before

feeding to the TF of different regions. The output of the TF was the estimated current

which was inputted to the selector block. The selector block chose the correct estimated

current based on the per-unit value of voltage Vd pu. Mean value of sensed current (iinvq)

was then added in the estimated current (iq est) to get actual estimated current (iq t f ) from

the TF block. The GoF based on NRMSE was then calculated to compare the fit percent.

Figure 5.13. Schematic diagram to validate the TF obtained from SysId Toolbox for 10 kW
FSI.
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The GoF of TF identified from SysId toolbox available in MATLAB for four

probing signals at different regions (except R3) are shown in Fig. 5.14. It shows that for all

regions, TF obtained from the Sq-Chirp probing signal performs the best. The reason for

the high fit percentage with the Sq-Chirp signal is due to the availability of higher

frequency components that can capture the dynamics of FSI.

Figure 5.14. GoF of two poles and one zero TF model identified from the SysId toolbox.
R3 is not shown as the GSF is not active in that region.

To cross-validate the performance of the probing signal, we excite the derived TFs

by all probing signals. Fig. 5.15 shows the response of an FSI when all the TFs obtained

from all probing signal is perturbed by the Sq-Chirp signal. Here, iinvq is actual response

of an FSI and iinvq T F(sq), iinvq T F(sine), iinvq T F(sq−chirp), and iinvq T F(sine−chirp) are the

output response of the respective TFs. We performed a similar test for all other probing

signals but the response is not shown in the chapter, overall fit percent is presented.

Fig. 5.16 shows the performance comparison of all the probing signals when fed to all the

TFs. It shows that for the regions TF obtained from Sq-Chirp signal has the highest fit

percentage. For R2 and R4 fit percentage is greater than 95% and R1 and R5 has fit percent

greater than 75% and 50% respectively. Lower fit in R1 and R5 is due to the activation of

Volt-VAr mode saturation i.e PV can only inject/absorb constant reactive power regardless

of decrease/increase in voltage (below V1 or above V4).
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Figure 5.15. Response of an FSI when all the TFs from each signal is perturbed by Sq-
Chirp.

Figure 5.16. Performance comparison of all the probing signals when used to perturb all
the TFs.
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5.6.3 Result and Analysis of Two-phase 5 kW SMA Inverter

The effect of varying irradiance in the data-driven modeling of inverter dynamics

during activation of Volt-Watt and Freq-Watt modes will be analyzed in this section. GoF

will be calculated for each case using the NRMSE techniques to validate the analysis

outcome. In addition, the second-order TF will be utilized to represent the overall

dynamics of the SMA inverter as it can satisfy both accuracy and computing complexity

requirements [78].

Case-1: Volt-Watt Mode

Table 5.6. Load and SMA Inverter Parameters.

Parameter Value
Resistive load 1 kW
SMA Rating 5 kW

Volt-Watt Setting
P1 and P2 3, 0, and 0 kW resp.

V1, V2, and VH 1.045, 1.085, and 1.095 p.u. resp.
Freq-Watt Setting

P1 and P2 3, 0, and 0 kW resp.
F1, F2, and FH 1.0083, 1.033, and 1.037 p.u. resp.

The Volt-Watt mode of the SMA inverter is activated according to the Volt-Watt

setting specified in Table 5.6. Following the activation, the voltage amplitude at PCC is

perturbed by using the logarithmic square chirp signal (Fig. 5.18), which varies the

voltage amplitude of PCC from 1 - 1.095 p.u., respectively. The actual response of the

inverter (iinvd) after perturbation is noted and depicted in Fig. 5.17 (a-c). From the initial

time to 230 s, there is a linear decrement of id with a slight slope. It is because the inverter

is set to operate in constant active power mode, and at the same time, the PCC voltage

amplitude is increasing, which leads to a situation of constant power and increasing
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Figure 5.17. iinvd from (a)-(c) is the actual response of the inverter when perturbed by a
logarithmic signal while activating Volt-Watt mode during three time periods of the day
and iinvd −T F from (a)-(c) is the response of an SMA inverter when adjusted Morning TF

(adjusted Morning TF= dc-gain of Morning TF
dc-gain of Mid-day TF ×Mid-day TF), Mid-day TFs and, adjusted

Evening TF (adjusted Evening TF= dc-gain of Evening TF
dc-gain of Mid-day TF ×Mid-day TF), is perturbed by

Sq-chirp signal respectively.

voltage and, accordingly, a decrease in current. At 230 s, the Volt-Watt mode of the

inverter gets activated (PCC voltage amplitude exceeds 1.045 p.u.), and the inverter starts

reducing the active power injection as per the defined gradient of Volt-Watt mode until

365 s (where PCC voltage amplitude reaches 1.085 p.u.). After 365 s, PCC voltage
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Figure 5.18. Logarithmic Sq-Chirp signal used to perturb the voltage at PCC.

amplitude surpasses 1.085 p.u. and exceeds the specified nominal voltage threshold,

leading to zero active power injection from the inverter (P2 = 0).

Figure 5.19. Bode response of TF model of R2 obtained during three different periods
of the day while activating Volt-Watt mode before adjusting the DC-gain in TF model of
morning and evening.

For modeling inverter dynamics, at first mid-day dataset is used and the concept of

partitioned modeling of Volt-Watt as explained in Section 5.3 is employed where based on

the voltage settings (listed in the Table 5.6), regions R1, R2, and R3 are divided into 8, 9,

and 3 smaller ranges, respectively. The mid-range data, i.e., (r13, r24, and r31) are used to
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obtain the TF of the respective regions. The analysis of region R3 is disregarded in this

case as the Volt-Watt mode of the SMA inverter gets turned off in that region, preventing

SMA from absorbing/injecting any active power. At first, the SysId algorithm is

developed and is employed, which utilizes 70% of (Vabc re f and its corresponding mid-day

response id) as input and output data, respectively. These data are then utilized to obtain

the TF model of the inverter dynamics. Here, mid-day data are utilized to obtain the TF

with the presumption that midday irradiance will remain constant and the model obtained

will be more accurate- unlike morning and evening, where irradiance gets fluctuated.

DC-gain of the system is defined as the gain of the system when the frequency is

zero. The DC-gain of the TF can be determined by comparing the given TF with the

standard time constant form which is represented below:

G(s) =
K × (1+ sτ1)(1+ sτ2)(1+ sτ3)......(1+ sτn)

sn(1+ sτ
′
1)(1+ sτ

′
2)(1+ sτ

′
3)......(1+ sτ

′
n)

Here, K is the of the system. τ and τ
′
are the time constants of the system and n is the

order of the system.

In another way, DC-gain can be obtained as [84]:

K = lim
s→0

snG(s). (5.2)

The mid-day model coefficient of R1 and R2 is tabulated in Table 5.7. The

obtained TF is then cross-validated by employing the remaining 30% data. The

corresponding response (iinvd −T F) after cross-validation of TF is stacked with the actual
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Table 5.7. Summary of TF models of three time periods of the day while activating Volt-
Watt mode of inverter

Parts of Day
Model Coefficient of

Region-1
Model Coefficient of

Region-2
b1 = -300.1 b1 = -26.42
b0 = -706.2 b0 = 11.47

Morning a2 = 1 a2 = 1
a1 = 39.4 a1 = 0.2852
a0 = 392.6 a0 = 0.4805
b1 = -347.6 b1 = -37.69
b0 = -866.1 b0 = 16.96

Mid-day a2 = 1 a2 = 1
a1 = 42.4 a1 = 0.3027
a0 = 383.9 a0 = 0.4382
b1 = -295.9 b1 = -20.35
b0 = -690.2 b0 = 10.11

Evening a2 = 1 a2 = 1
a1 = 38.60 a1 = 0.2822
a0 = 397.1 a0 = 0.4897

response of the inverter as shown in Fig. 5.17 (b), which shows similarity to a great extent.

The GoF of the estimated TF is then calculated, which is 87.16% for R1 and 96.35% for

R2, respectively. The morning and evening datasets are fed into the estimated mid-day TF

for analyzing the impact of varying irradiance in inverter dynamics. However, in each case

of morning and evening, the output response shows that it requires a certain DC-gain

adjustment in the mid-day TF model. For further validation of the DC-gain requirement,

the TF model from the morning and the evening dataset is derived following the same

procedure as in mid-day for obtaining the DC-gain adjustment value. The model

coefficient for each scenario is tabulated in Table 5.7. The bode response of the obtained

TF of R2 for each scenario of the morning, mid-day, and evening are shown in Fig. 5.19.

Due to the space constraints and primary emphasis on the slope area of Fig. 5.17, the bode

response of R1 is discarded. Bode’s response shows that the model obtained during
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Figure 5.20. Bode response of TF model of R2 obtained during three different periods of the
day while activating Volt-Watt mode after adjusting the DC-gain in TF model of morning
and evening.

morning and evening requires certain DC-gain adjustments. The DC-gain of each model

is obtained following Equation 5.2 (i.e., b0
a0

) and found to be -1.79, -2.2 and -1.73 for the

morning, mid-day, and evening respectively for R1. Similarly, the DC-gain of R2 is found

to be -23.87, -38.71, and -20.65 for the morning, mid-day, and evening respectively.

Taking reference of the mid-day model, the model obtained during the morning is

multiplied with ( −2.2
−1.79 = 1.23), and the model obtained during the evening is multiplied

with ( −2.2
−1.73 = 1.27) during DC-gain adjustment of a model of R1. Similarly, taking

reference of the mid-day model, the model obtained during the morning is multiplied with

(−38.71
−23.87 = 1.62), and the model obtained during the evening is multiplied with

(−38.71
−20.65 = 1.87) during DC-gain adjustment of the model of R2. The bode plot of R2 of

each model obtained during the morning, mid-day, and evening after DC-gain adjustment

is shown in Fig. 5.20, which coincides with each other. The mid-day model of R1
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multiplied with 1
1.23 and the mid-day model of R2 multiplied with 1

1.62 is employed for

feeding the morning data, and the output response is shown in Fig. 5.17 (a) and similarly

the mid-day model of R1 multiplied with 1
1.27 and mid-day model of R2 multiplied with

1
1.87 is employed for feeding the evening data and the output response is shown in Fig.

5.17 (c) respectively. The GoF is then calculated, which is 82.37% and 93.71% for R1 and

R2, respectively, in the morning scenario and 81.76% and 93.71% for R1 and R2

respectively in the scenario of the evening. Here, from this analysis, it can be concluded

that the dynamic model of the inverter remains the same throughout the day; however, the

dynamic model has to undergo DC-gain adjustment during the morning, mid-day, and

evening, and the DC-gain depends on the irradiance (as DC-gain varies over time so do

irradiance) and is a function of the irradiance.

Case-2: Freq-Watt Mode

Similar to Case-1, the setting of the Freq-Watt mode of the inverter is made

accordingly to the Freq-Watt setting indicated in Table 5.6, and then the frequency at PCC

is perturbed by using the logarithmic square chirp signal as a probing signal (Fig. 5.22) at

three periods of the day. The actual response of the inverter which is indicated by iinvd

after perturbation is noted and is depicted in Fig. 5.21 (a-c). It can be revealed that noise is

incorporated into the actual response. Due to the range limitation of frequency (60 Hz–62

Hz), the amplitude of the perturbation signal is taken as 0.001 p.u. (i.e., 0.6 Hz), which

does not fulfill SNR criteria (as opposed to Volt-Watt mode, where the amplitude of the

perturbation signal is 0.01 (1.697 V) and SNR is fulfilled) and results in noise. Hence, the

noise frequency, which varies from 119 Hz to 123 Hz, is noted, and a band stop filter that

stops the noise in these frequency ranges is designed and implemented. The filtered output
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Figure 5.21. iinvd from (a)-(c) is the actual response of the inverter when perturbed by a
logarithmic signal while activating Freq-Watt mode during three time periods of the day,
iinvd−Filt from (a)-(c) is the filtered response after incorporating band-stop filter and iinvd−
T F from (a)-(c) is the response of an SMA inverter when adjusted Morning TF, Mid-day
TFs and, adjusted Evening TF, is perturbed by Sq-chirp signal respectively.

Figure 5.22. Logarithmic Sq-Chirp signal used to perturb the frequency at PCC.
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response of the inverter, which is represented as iinvd −Filt is depicted in Fig. 5.21 (a-c)

respectively. It can be seen that after a time period of 200 s, the Freq-Watt mode of the

inverter gets activated (perturbed frequency exceeds 1.008 p.u. (60.5 Hz)). The inverter

decreases the active power injection accordingly to the defined gradient of Freq-Watt

mode until 455 s (perturbed frequency reaches 1.033 p.u. (62 Hz)). Moreover, after

exceeding 455 s, active power injection from the inverter becomes zero (P2 = 0) as the

perturbed frequency exceeds 1.033 p.u. (62 Hz) and exceeds the specified nominal

frequency threshold [Freq-Watt setting]. There is a sharp transition between 440-455 s,

mainly because, as indicated in Fig. 5.22 frequency fluctuates between 1.0325 p.u. (61.95

Hz) and 1.0335 p.u. (62.01 Hz). It means the inverter tries to inject certain active power at

61.95 Hz and zero active power after exceeding 62 Hz, giving rise to that transition where

the proposed method of the partitioned modeling approach is applied for the SysId of that

region. For modeling of inverter dynamics, based on the frequency settings (listed in the

Table 5.6), regions R1, R2, and R3 are divided into 7, 10, and 2 smaller ranges respectively

during PHIL test condition. In the case of Freq-Watt mode, the analysis of the regions R1

and R3 will be discarded, as the SMA inverter will prevent absorbing/injecting any active

power in those regions. To obtain the TF and cross-validate the estimated TF, Freq-Watt

mode also incorporates the SysId toolbox, similar to Volt-Watt mode, and utilizes

partitioning data into training and validation data. Training data is used to obtain the

mid-day model, whose coefficient is tabulated in Table 5.8. The response during

cross-validation of mid-day TF, which is indicated by (iinvd −T F(sq−chirp)) in Fig. 5.21

(b) is stacked with the actual response of the inverter during activation of Freq-Watt mode,

which shows similarity to a great extent. The GoF of the estimated TF is then calculated,
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which is 95.34%. The morning and evening data are fed into the estimated mid-day TF for

analyzing the effect of varying irradiance on inverter dynamics. However, for each case of

morning and evening, the output response shows that it requires a certain DC-gain

adjustment in the mid-day TF The TF model during morning and evening is derived to

obtain the dc-gain value, whose model coefficient is tabulated in Table 5.8. The bode

response of the obtained TF of R2 is shown in Fig. 5.23, which reveals the requirement of

DC-gain adjustment.

Figure 5.23. Bode response of TF model of R2 obtained during three different periods
of the day while activating Freq-Watt mode before adjusting the DC-gain in TF model of
morning and evening.

The DC-gain of each model is calculated using Equation 5.2 (i.e., b0
a0

) and is found

to be -60, -90.98, and -51.77 for R2 in the morning, mid-day, and evening, respectively.

Using the mid-day model as a reference, the model obtained in the morning is multiplied

by (−90.98
−60 = 1.51), and the model obtained in the evening is multiplied by

(−90.98
−51.77 = 1.757) during the DC-gain adjustment of the R2 model. The bode plot of R2 of
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Figure 5.24. Bode response of TF model of R2 obtained during three different periods of the
day while activating Freq-Watt mode after adjusting the DC-gain in TF model of morning
and evening.

Table 5.8. Summary of TF models of three time periods of the day while activating Freq-
Watt mode of inverter

Parts of Day Model Coefficient of Region-2
b1 = 519.9, b0 = -21970,

Morning a2 = 1, a1 = 28.71, a0 = 365.6
b1 = 1148, b0 = -41690,

Mid-day a2 = 1, a1 = 32.54, a0 = 458.2
b1 = 452.4, b0 = -18190,

Evening a2 = 1, a1 = 28.51, a0 = 351.3

each model obtained after DC-gain adjustment in the morning, midday, and evening is

shown in Fig. 5.24, which coincides with each other. The mid-day model of R2 multiplied

with 1
1.51 is employed for feeding the morning data, and the output response is shown in

Fig. 5.21 (a) and similarly, the mid-day model of R2 multiplied with 1
1.757 is employed for

feeding the evening data, and the output response is shown in Fig. 5.21 (c), respectively.

The GoF is then calculated, which is 93.14% for R2 in the morning scenario and 91.32%

for R2 in the evening scenario. From this analysis, it can be concluded that the dynamic
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model of the inverter remains the same throughout the day; however, the dynamic model

undergoes DC-gain adjustment for the morning, mid-day, and evening. The DC gain

depends on the irradiance and is a function of the irradiance.

Overall, Case-1 shows that the magnitude of response from the inverter (i.e., id)

changes with varying irradiance (i.e., morning, mid-day, and evening have dynamics with

different magnitudes), but the inverter dynamics remain the same each time period which

appears to exhibit the same phenomenon in Case-2 as well. However, Case-1 and Case-2

also reveal that the inverter dynamics changes accordingly with the activation of various

operating modes of the COTS inverter (i.e., Volt-Watt and Freq-Watt mode have different

nature dynamics). From the above two cases, it can be concluded that the magnitude of

the response from the inverter changes with a change in irradiance (active power

dependency on irradiance); however, dynamics remain the same throughout the day.

Nevertheless, if different modes of the inverter get activated, then the dynamics of the

inverter vary accordingly. In addition, the dynamic model obtained has to adjust its DC

gain accordingly during different periods and is dependent on irradiance.

Linear dependency of DC-gain of the model with irradiance

Figure 5.25. Variation of DC-gain of TF of R2 with irradiance while activating Volt-Watt
mode.
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Figure 5.26. Variation of DC-gain of TF of R2 with irradiance while activating Freq-Watt
mode.

The input, output, and irradiance data at three periods of the day (these days

considered are different from the previous days considered of result and analysis section)

are logged on, and a box plot of irradiance is prepared as depicted in Fig. 5.25 and Fig.

5.26 respectively, and the mean value of irradiance is noted. The model is obtained by the

data-driven model parameterization in new input and output datasets. The new DC-gain of

each of the models is evaluated in each period of a day and is shown in Fig. 5.25 and Fig.

5.26, respectively. From the irradiance mean, it can be concluded that the DC gain

increases with an increase in irradiance and decreases with a decrease in irradiance but

with a negative gradient. i.e.,

DC-gain =− 1
B
× Irradiance

Here, B is a constant value and varies with the varying modes of activation. In this case,

for Volt-Watt mode, the value of B is found to be 25, and for Freq-Watt mode, the value of

B is found to be 5. Based on this analysis, it is possible to conclude that each model’s

DC-gain depends on irradiance and has a negative gradient linear relationship with it. So,
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if the TF was obtained based on the mid-day data, then

adjusted Morning TF = Morning Irradiance
Mid-day Irradiance×Mid-day TF and

adjusted Evening TF = Evening Irradiance
Mid-day Irradiance×Mid-day TF

Cross Validation of obtained TF

Figure 5.27. Cross-Validation of Obtained TF.

The obtained TF model is cross-validated by comparing the τ of the obtained

model with the τ of the actual system. The obtained TF of Volt-Watt mode is taken into

consideration for cross-validation. The obtained TF of R1 is given step input ranging from

1 p.u. to 1.04 p.u., and the corresponding response is shown in Fig. 5.27 (a) and (b)

respectively. When the voltage is changed from 1 p.u. to 1.04 p.u., the corresponding

id (A) response from the inverter takes (100.4 s−100 s = 0.4 s) to settle to its steady state

condition, as shown in Fig. 5.27 (b). This time is taken as the settling time, and by

considering the 2% tolerance band, (τ = 0.1 s of R1 is calculated, which matches the τ of

R1 of the actual system). Similarly, when the voltage changes from 1.1 p.u. to 1.05 p.u.,
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the corresponding id (A) response from the inverter takes (107 s−100 s = 7 s) time to get

settled to its steady state condition. This time is taken as the settling time, and by

considering the 2% tolerance band, the τ ≈ 1.75 s of R2 is calculated, which matches the

actual τ of R1.

5.7 Chapter Conclusions

A data-driven modeling approach to extract GFL inverter dynamics with GSFs

using designed probing signals was developed. The SysId algorithm was used to create a

dynamic model of a GFL inverter, which was then validated using PHIL under the

Volt-VAr GSF modes. To accurately capture the dynamics of the GFL inverter, partitioned

modeling technique is used in GSFs mode from IEEE 1547-2018 standard. The GoF

percentage was used to measure the performance of GFL inverter dynamics when the grid

voltage was perturbed with probing signal and described which one would obtain a better

model of a GFL inverter. The results show that the logarithmic Sq-chirp signal

outperformed in model accuracy based on GoF compared to other probing signals to

extract dynamics of GFL inverters. Logarithmic Sq-chirp signal was then used to study

the effect of varying irradiance in the data-driven modeling of PV inverter dynamics. The

proposed analysis is carried out in two modes of operation of inverter i.e., Volt-Watt and

Freq-Watt modes following the IEEE 1547-2018 standard. The results show that

magnitude of dynamics varies with varying irradiance in both modes of irradiance;

however, the nature of the inverter’s dynamics differs depending on the mode of activation.

In addition, the dynamic model obtained has to adjust its DC-gain accordingly during

different periods and DC-gain has a negative gradient linear relationship with irradiance.
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CHAPTER 6 Data-Driven Modeling of Grid-Forming Inverter Dynamics Using Power

Hardware-in-the-Loop Experimentation

The increasing interest in renewable energy and batteries has made PECs a critical

component of power distribution networks [85]. As converter-based generation meets the

future energy demand, it is crucial to have accurate models that represent the interaction

between the grid and the converters. The response of converter-based generation involves

faster and more stochastic dynamics compared to traditional power systems due to their

fast-switching mechanisms [86]. In the past, these dynamics were largely neglected

because the percentage of converter-based generation was low, and the converters had a

passive role without actively contributing to voltage and frequency control in power

systems. This neglect was possible because power system dynamics were primarily

governed by large synchronous generators with well-defined models [50].

However, the electrical grid is undergoing a seamless transition where rotating

synchronous machines are being replaced by IBRs. This transition introduces a

low-inertia system with a novel type of dynamic behavior [87]. IBR control can be

categorized into two types: GFL and GFM. GFL inverters, commonly used in

grid-connected applications with GFL control, regulate the ac-side current by seamlessly

following the phase angle of the existing grid voltage using a PLL mechanism [88], [89].

On the other hand, GFM inverters manage the ac-side voltage and play a crucial role in

forming a voltage source grid, allowing them to set the grid’s voltage and frequency. They

achieve synchronization with the rest of the grid using frequency droop control (typically

P−ω droop), similar to traditional synchronous generators [90]–[92]. Various GFM
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control methods have been proposed in the literature, including droop control, virtual

synchronous machine, and virtual oscillator controllers [93]–[99]. In the electrical grid,

GFL inverters primarily function as current sources and can provide auxiliary services

such as droop-based reactive power support [100]. They are commonly used for

integrating renewable energy sources like wind and solar energy into power systems due

to their straightforward control scheme, established PLL technology, and ability to operate

at a specific current. However, the PLL can cause instability issues in the grid, especially

when the grid impedance is high [101], [102]. With the increasing replacement of

synchronous generators by IBRs, this problem is becoming more prevalent and

challenging. Consequently, there is a growing focus on GFM inverters, which exhibit

synchronous generator-like characteristics and can operate in weak grids without relying

on rigid voltage sources or forming independent grids [90], [92], [103]. Furthermore,

GFM inverters can address grid instability issues, including significant frequency

fluctuations caused by low inertia and uncertainty in DERs. Hence, the shift towards

converter-based generation necessitates accurate PEC models for assessing system

dynamics that were previously ignored in conventional power systems. Therefore,

modeling GFM inverters plays a vital role in studying system-level dynamics.

For precise modeling of PECs, a comprehensive understanding of multiple aspects

of the converter is necessary. This includes knowledge of its physical topology, intricate

models of voltage/current control loops, PLL models, employed protection schemes, and

more. Despite the known control architecture, these factors and control parameters exhibit

significant variations across different manufacturers. This variability can lead to

inaccurate modeling and simulation of power systems, resulting in flawed analysis and
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erroneous outcomes. The availability of accurate converter models is crucial for predicting

system instability, ensuring component compatibility [104], and facilitating proper design

of controllers and protection systems.

Modeling converter-based generation is further complicated by the need to comply

with grid interconnection requirements and changes in grid codes. Manufacturers can

address these requirements by modifying the control structure through software or

firmware updates. For example, according to the IEEE 1547 standard, converters can

actively contribute to voltage and frequency support through advanced control

functions [67], [105]. This introduces an additional layer of complexity in modeling these

converter systems. Data-driven models can be employed to address the aforementioned

challenges. Recent advancements in data-driven modeling for GFL inverters have been

described in the literature for system analysis purposes [104], [106]–[109]. However,

there is limited research available on data-driven dynamic modeling of GFM inverters

operating in droop control.

6.1 Chapter Objective

The main objective of this chapter is to develop a data-driven modeling approach

that utilizes designed probing signals to extract the mathematical model representing the

dynamics of a GFM inverter. The SysId algorithm is employed to obtain a dynamic model

of the GFM inverter operating in the droop mode. Additionally, an analytical approach is

also utilized to derive the dynamic model of the GFM inverter. The obtained dynamic

models from both the analytical approach and the data-driven approach are then

cross-validated to ensure their power sharing capability.
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The main contributions of this paper are as follows:

1. Derived an analytical approach to obtain a mathematical model of GFM inverter

dynamics;

2. Developed an experimental power-hardware-in-the-loop (PHIL) methodology to

collect data by exciting load connected to GFM inverter with designed probing

signals. A DDM approach is designed to extract mathematical models of GFM

inverter dynamics. The mathematical model is obtained by collecting output

frequency and voltage data from the GFM inverter in response to changes in the

active and reactive power of the load at the point of common coupling (PCC).

The rest of the chapter is organized as follows: The theoretical background on the

dynamics modeling of GFM inverter is provided in Section 6.2. The analytical approach

for modeling a system with two GFM inverter are presented in Section 6.3 and the

data-driven approach to access the GFM inverter dynamics in Section 4.2. In Section 6.4,

the experimental setup to evaluate the performance of GFM inverter is discussed. The

results are presented in Section 6.5 followed by the main conclusions in Section 6.6.

6.2 Dynamic Modeling of GFM Inverter

The dynamic modeling of a GFM inverter with their control mechanism is

introduced in this section which is followed by basic concept of system identification to

obtain the accurate PECs dynamics.
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Figure 6.1. Diagram of the power circuit of ith GFM inverters connected to a grid.

6.2.1 Power Circuit of GFM Inverters

The power circuit of ith, 3-φ H-bridge GFM inverter consist of six switches

distributed among three legs as shown in Fig. 6.1. It is connected to a grid at PCC with

voltage, vabc
PCC, via an LCL filter (Lf,i, Cf,i, Lg,i) and associated equivalent series resistances

(Rf,i and Rg,i of inductors) and a coupling line with line parameters, Lline,i, Rline,i. A

dq-frame multi-loop controller is employed that generates modulated voltage vector

signal, mabc
i , to PWM controller to generate switching signals resulting in terminal

voltages, va
t,i, vb

t,i and vc
t,i.

6.2.2 Control of GFM Inverter

The control layers of the GFM inverter are illustrated in Fig. 6.2, depicting the

various control mechanisms employed. The following sections provide a description of

each control aspect of the GFM inverter.
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Figure 6.2. Diagram of various control loops of ith GFM inverters connected to a grid.

6.2.3 Power Controller

vdq
c,i, and idq

o,i are used to determine pi, and qi. pi and qi are passed through low-pass

filters with the time constant, τS,i ∈ R>0, to obtain Pi and Qi as described by

Pi = [1/(τS,is+1)]pi, Qi = [1/(τS,is+1)]qi, (6.1)

where pi := 1.5[vd
c,ii

d
o,i + vq

c,ii
q
o,i], qi := 1.5[vq

c,ii
d
o,i − vd

c,ii
q
o,i].

6.2.4 Droop Controller

A droop controller in GFM inverter is used to regulate the output frequency and

voltage of the inverter to match the grid conditions. The droop controller operates by

continuously monitoring the grid voltage and frequency and adjusting the inverter’s output

accordingly. It provides a decentralized control mechanism, allowing multiple inverters to

work together and share the load in a coordinated manner. The droop controller employs a

droop characteristic, which is a linear relationship between the inverter output frequency
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Figure 6.3. Droop control strategies. (a) P-ω droop (b) Q-V droop. P-ω droop control ad-
justs the active power output of a GFM inverter based on changes in frequency, maintaining
a stable grid. Q-V droop control modifies the reactive power output according to variations
in voltage, ensuring voltage stability in the grid.

(ω) and the active power output (P) as shown in Fig. 6.3(a), and inverter output voltage

(V ) and the reactive power output (Q) as shown in Fig. 6.3(b). Typically, the droop

characteristic is represented as a slope which determines the rate at which the

frequency/voltage changes with respect to active/reactive power variations respectively.

When the grid frequency deviates from its nominal value, the droop controller

adjusts the inverter’s output frequency by changing the power output. If the grid frequency

decreases, the droop controller increases the inverter’s power output, causing the

frequency to rise back towards its nominal value. Conversely, if the grid frequency

increases, the droop controller decreases the power output, bringing the frequency back to

the desired level.

The droop controller also regulates the output voltage of the inverter. It monitors

the grid voltage and adjusts the inverter’s voltage magnitude to maintain synchronization

with the grid. By maintaining a stable output voltage and frequency, the droop controller

ensures that the GFM inverter operates in harmony with the grid and provides reliable
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power supply.

Basically, droop control is a proportional controller with active and reactive power

as control variables where the control gains (also the droop gains) dictate the steady–state

power sharing of the inverters. The active power, frequency, P- f , droop control is

considered here as a proportional controller (with proportional coefficient as ni) with error

signal eP,i :=−Pi where Pi is the control variable. Whereas, the reactive power, voltage

magnitude, Q-V , droop control is considered here as a proportional controller (with

proportional coefficients as mi) with error signal eQ,i :=−Qi where Qi is the control

variable. The values of ni and mi are typically chosen such that ωr,i and Vr,i are within the

allowed specification, defined by IEEE 1547 Standard [67].

6.2.5 Inner-current-outer-voltage Controller

The conventional inner-current-outer-voltage controller architecture is employed

for the inverters [110]. For the inner-current controller, idq
L,i,ref is provided as the reference

signal to be tracked by the output signal, idq
L,i. A proportional-integral (PI) compensator is

used for tracking the reference of the dq-axis inductor current. For a desired time constant,

τc,i, the parameters of the current controller are selected as kpc,i = Lf,i/τc,i and

kic,i = Rf,i/τc,i. Depending on the switching frequency, τc,i is typically selected to be in

the range of 0.5-2 ms [110]. Additional feed-forward signals, vdq
c,i and ∓ωLf,ii

qd
L,i facilitate

the disturbance rejection capability. For outer-voltage controller,
[
Vr,i 0

]⊤
is the

reference signal to be tracked by the voltage signal, vdq
c,i. A PI compensator is used to

enable reference tracking. For a desired phase margin and gain cross-over frequency, the

parameters of the voltage controller (kpv,i and kiv,i) can be designed based on symmetrical
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optimum method [110]. Similarly, additional feed-forward signals, vdq
c,i and ∓ωCf,iv

qd
c,i

facilitate the disturbance rejection capability for the outer voltage control loop.

6.3 Analytical Modeling of a System with Two GFM Inverter

The system, as shown in Fig. 6.4 is considered in this section for modeling and

analyzing. For analysis purpose, the following remarks are made:

Remark 1 The inner-current-outer-voltage control loop for GFM inverter is stable and

has faster (> 10 times) dynamics when compared to the power and droop controller and

tracks its voltage reference with minimal (assumed zero) tracking error as suggested in

[110].

Remark 2 All abc-dq conversions are adopted w.r.t. GFM 1.

Using Remark 1 and Remark 2, following non-linear state-space equations can be

obtained for the entire system of Fig. 6.4:
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θ̇2 = ωr,2 −ωr,1, where θ2 := θr,2 −θr,1, (6.2)

τS,1ω̇r,1 = ωnom −ωr,1 −ni[p1], (6.3)

τS,2ω̇r,2 = ωnom −ωr,2 −n2[p2], (6.4)

τS,1V̇r,1 =Vnom −Vr,1 −m1[q1], (6.5)

τS,2V̇r,2 =Vnom −Vr,2 −m2[q2], (6.6)

Ll,1i̇do,1 =Vr,1 −Rl,1ido,1 − vd
PCC +ωr,1Ll,1iqo,1, (6.7)

Ll,1i̇qo,1 =−Rl,1iqo,1 − vq
PCC −ωr,1Ll,1ido,1, (6.8)

idL = ido,1 + ido,2, i
q
L = iqo,1 + iqo,2 (6.9)

vd
PCC = 0.5×[(Vr,1 +Vr,2 cosθ2)− (Rl,1ido,1 +Rl,2ido,2)

+(ωr,1Ll,1iqo,1 +ωr,2Ll,2iqo,2)] (6.10)

vq
PCC = 0.5×[(Vr,2 sinθ2)− (Rl,1iqo,1 +Rl,2iqo,2)

− (ωr,1Ll,1ido,1 +ωr,2Ll,2ido,2)] (6.11)

where, θr,i is the GFM inverter internal phase angle,

pi := 1.5[Vr,iido,i cosθi +Vr,ii
q
o,i sinθi], and qi := 1.5[−Vr,ii

q
o,i cosθi +Vr,iido,i sinθi]. ωnom and

Vnom are nominal frequency and voltage respectively. This results in a 7th-order non-linear

electromagnetic model. It allows to model a GFM inverter as a voltage source with

controllable phase, θr,i, frequency, ωr,i, and amplitude, Vr,i [111], as shown in Fig. 6.5.

While two GFM inverters are connected to in parallel supplying a load, the system

can be modeled by a non-linear system, ẋGFM = GGFM(xGFM), where, GGFM(.) consists of
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Figure 6.4. For the purpose of modeling and analysis, a system consisting of two GFM
inverters is being considered. The inverter’s output is directed through an LCL filter, and a
load is connected to the PCC via a coupling line.

Figure 6.5. The GFM inverter is represented in the model as a voltage source that can
control its phase, θr,i, frequency, ωr,i, and amplitude. Additionally, a controlled load is
connected to the PCC.

(2)-(11). Considering the system linearized around an equilibrium point, xeq
GFM, such that

∆ẋGFM = AGFM∆xGFM +BGFM∆uGFM (6.12)

∆ẏGFM =CGFM∆xGFM (6.13)
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where

AGFM = FGFM(xeq
GFM) (6.14)

BGFM =

 Rl,1 ωr,1Ll,1

−ωr,1Ll,1 Rl,1

 (6.15)

CGFM =

0 1 0 0 0 0 0

0 0 0 1 0 0 0

 (6.16)

where, FGFM(.) is the vector field of GGFM(xGFM). Here,

∆xGFM = [∆θ2 ∆ωr,1 ∆ωr,2 ∆Vr,1 ∆Vr,2 ∆ido,1 ∆iqo,1]
⊤ (6.17)

∆yGFM = [∆ωr,1 ∆Vr,1]
⊤ (6.18)

∆uGFM = [∆idL ∆iqL]
⊤ (6.19)

Therefore, the multiple input multiple output linearized system can be written as:

∆ωr,1

∆Vr,1

=

T1 T2

T3 T4


︸ ︷︷ ︸

T

∆idL

∆iqL

 (6.20)

where, T =CGFM[sI −AGFM]−1BGFM.

6.3.1 Partitioned Modeling of Droop Controller

Due to the presence of nonlinearities in GFM inverters, modeling of GFM inverter

with droop controller over the operating regions results in intricate dynamic models, and
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Figure 6.6. Demonstration of linear partitioning of the GFM inverter. The P-ω and Q-V
droop curve are divided into several ranges.

the complex dynamics of the whole operating region are effectively captured by dividing

the operating regions further into small linear ranges [83] as shown in Fig. 6.6(a) and

Fig. 6.6(b), where Pp1,Pp2, ...,Ppk represent ranges corresponding to load active power

changes, and Qq1,Qq2, ...,Qqk represent ranges associated with load reactive power

changes.

With the selected operating limits, the desired active power signal is generated

according to Algorithm 1 to extract reduced-order linear dynamic models of the GFM

inverter for frequency variations. Additionally, the reactive power signal is generated

based on Algorithm 2 to obtain reduced-order linear dynamic models of the GFM inverter

for voltage variations.

6.3.2 Flowchart to Assess GFM Inverter Dynamics

The flowchart to identify the TF of a GFM inverter from the SysId algorithm is

shown in Fig. 4.4. Logarithm square-chirp probing signal is used to perturb the load as it

outperformed other probing signals in model accuracy based on GoF to extract dynamics

of PECs [109]. Fig. 6.7 shows the load active power variation which is varied from 0 to 20

kW for 15 seconds, after which it is increased by 10 kW in subsequent ranges until
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reaching a total of 200 kW. This power variation follows the droop curve characteristics of

the GFM inverter. The frequency of the Square-chirp signal ranges from 1 Hz to 32 Hz,

with values selected based on the settling time response parameters of the GFM inverter.
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Figure 6.7. Sq-chirp probing signal, generated using Algorithm 1, was employed to excite
load active power ranging from 0 to 200 kW.

Figure 6.8. Sq-chirp probing signal, generated using Algorithm 2, was employed to excite
load reactive power ranging from 0 to 200 kVAr.

Similarly, Fig. 6.8 illustrates the load reactive power variation which is varied from 0 to 20

kVAr for 15 seconds, and then increased by 10 kVAr in subsequent ranges until reaching a

total of 200 kVAr. This reactive power adjustment aligns with the droop curve

characteristics of the GFM inverter.

In order to determine the TF of physical dynapower GFM inverter (represented as

GFM 1 on-wards), the measured inputs, including the active and reactive power supplied

by the GFM 1, along with the output frequency and voltage at the terminal of the GFM 1,

are logged using the Opal-RT. The collected data is divided into small ranges for analysis.
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Figure 6.9. Experimental setup to assess the TF of GFM Dynapower inverter (GFM 1) as
analyzed in Fig. 6.4. Load P and Q are excited by the Sq-chirp probing signal.

Then, the data is filtered using the mean filter to smooth logged data. Furthermore, the

mean of both active power and reactive power, and frequency and voltage of GFM 1

measurements are eliminated to obtain more accurate TF model. This allows SysId to

focus on the real variations caused by the probing signals. The dataset is divided into two

parts for cross-validation: a training set for computing TF model, and a validation set for

validating the resulting TF model. The number of poles and zeroes of TF model for

data-driven approach are chosen based on the TF finding from analytical approach.

6.4 Experimental Setup

The hardware experimental setup is developed as shown in Fig. 6.9 to assess the

TF of a commercially available three-phase 125 kVA Dynapower GFM inverter (GFM 1).

A PHIL setup is employed which comprises an OP5707 RTS, an Ametek grid simulator,

and GFM 1. The grid simulator utilized in this experiment was a controlled AC source

amplifier with a capacity of 270 kVA. The RTS, grid simulator, and console PC were used

collectively to which GFM 1 was connected. Additionally, the AV900 bidirectional DC

supply, which was available in the power system integration lab at the National Renewable

Energy Laboratory, was connected to the DC terminal of GFM 1. The console PC and
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OP5707 RTS communicated with each other using the User Datagram Protocol (UDP).

Table 6.1. GFM Inverter, LCL Filter, and Load Parameters 1

Parameter Value
Rated power capacity of GFM inverter 125 kVA
Frequency droop gain for GFM inverter 0.5 Hz/125 kW

Voltage droop gain for GFM inverter 24 V/125 kVAr
Nominal frequency 60 Hz
Line-line voltage 480 V

L f 150e-6 H
R f 50e-3 Ω

C f 110e-6 F
Lg 15e-6 H
Rg 50e-3 Ω

Load active power change 0 - 200 kW
Load reactive power change 0 - 200 kVAr

1 The parameters of the GFM inverters (i.e. GFM 1 and GFM 2) are same.

Fig. 6.9 is used to assess the TF of GFM 1 which includes an Opal-RT with a

virtual GFM (GFM 2) and virtual load. GFM 1 is linked to the model through PHIL. The

active and reactive power of the load were perturbed using a square-chirp probing signal

as shown in Fig. 6.7 and Fig. 6.8 respectively, and is used in Fig. 6.9 to excite the GFM

inverters which consequently affect the frequency and voltage produced by the GFM

inverters. This probing signal was generated using the algorithms described in Algorithm

1 and Algorithm 2. The settings for the Ametek grid simulator, GFM 1, GFM 2, inverter

filter parameter, and load are shown in Table 6.1.

6.5 Results and Analysis

The TF of GFM 1 inverter which operates in droop mode is obtained from the

SysId algorithm and the response (frequency/voltage) of GFM 1 inverter with the change

in load active/reactive power are analyzed in this section.
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Figure 6.10. Active power supplied by GFM 1 due to perturbation of load active power.

Figure 6.11. Frequency response of GFM 1 due to perturbation of load active power.

Active power supplied by the GFM 1 inverter due to change in active power of

load is depicted in Fig. 6.10, while GFM 1 frequency response is illustrated in Fig. 6.11.

It can be observed that as the active power of the load increases, active power supplied by

the GFM 1 inverter also increases but the frequency decreases, aligning with the droop

curve characteristic of the GFM inverter. Similarly, Fig. 6.12 represents the reactive

power supplied by the GFM 1 inverter due to the variation in the reactive power of the

load, and Fig. 6.13 showcases the response of GFM 1 voltage. It is evident that as the

reactive power of the load increases, GFM 1 inverter supplied more reactive power which

results in drop in the GFM 1 terminal voltage, aligning with the droop curve behavior of
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the GFM inverter.

Figure 6.12. Reactive power supplied by GFM 1 due to perturbation of load reactive power.

Figure 6.13. Voltage response of GFM 1 due to perturbation of load reactive power.

Figure 6.14. Experimental setup to validate the TFs obtained from analytical and data-
driven approach of GFM 1.

Table 6.2 shows the TFs corresponding to the GFM 1 inverter. These TFs were

derived from analytical and data-driven modeling approach. The TF of the GFM 1
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Table 6.2. Transfer functions of GFM 1 inverter obtained from both analytical and data-
driven approach.

Transfer Functions From Analytical Approach

T1 Analytical = TF( ω

iLd
) −0.00352s5−12.21s4−1189s3−3.887e04s2−4.247e05s−4.977e04

s7+6789s6+1.207e07s5+1.494e09s4+7.191e10s3+1.986e12s2+3.887e13s+3.986e14

T2 Analytical = TF( ω

iLq
) 0.0003977s5+0.03122s4−809.7s3−4.942e04s2−7.558e05s−8.884e04

s7+6789s6+1.207e07s5+1.494e09s4+7.191e10s3+1.986e12s2+3.887e13s+3.986e14

T3 Analytical = TF( v
iLd
) 0.01909s5+1.742s4+54.92s3−2.927e05s2−1.783e07s−2.711e08

s7+6789s6+1.207e07s5+1.494e09s4+7.191e10s3+1.986e12s2+3.887e13s+3.986e14

T4 Analytical = TF( v
iLq
) 0.1689s5+585.8s4+5.253e04s3+1.622e06s2+1.854e07s+4.477e07

s7+6789s6+1.207e07s5+1.494e09s4+7.191e10s3+1.986e12s2+3.887e13s+3.986e14

Transfer Functions From Data-driven Approach

T1 DDM = TF( ω

iLd
) −104.5s5−2869s4−1.257e05s3−1.773e05s2−2.56e04s−4562

s7+138.7s6+1.947e04s5+6.389e05s4+1.721e07s3+2.392e07s2+3.336e06s+6.194e05

T2 DDM = TF( ω

iLq
) 2.539e07s5−2.101e09s4−2.356e10s3−4.357e12s2−1.233e13s−3.314e12

s7+421.3s6+9.008e04s5+8.876e06s4+3.553e08s3+1.165e10s2+3.219e10s+7.277e09

T3 DDM = TF( v
iLd
) 5.506e08s5+2.015e10s4+2.068e11s3+5.602e11s2−2.938e10s+9.118e10

s7+1825s6+1.866e05s5+1.076e07s4+9.824e07s3+3.272e08s2+7.241e07s+3.568e07

T4 DDM = TF( v
iLq
) 1175s5+1.309e05s4+4.178e06s3+3.367e07s2+2.84e07s+2.934e06

s7+281.7s6+5.059e04s5+3.255e06s4+1.174e08s3+8.502e08s2+8.494e08s+1.935e07

Figure 6.15. Implementation of TF obtained in the EMT simulation using Opal-RT.

inverter, as obtained, is subsequently incorporated into an EMT simulation using Opal-RT,

illustrated in Fig. 6.14. This simulation is employed to verify the power distribution

among the TF-based GFM, GFM 1, and GFM 2 under different load scenarios. In Fig.

6.15, TF-based model is implemented in the EMT simulation using opal-RT. Here, the

load current is passed to the abc−dq0 block, where the direct and quadrature axis

currents (iLd , iLq) are calculated. This currents is fed to TF-based model and the output of

the TF-based model provides estimates for voltage and frequency (vi, ω). Subsequently, vi
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is conveyed to the dq0−abc block to generate the reference voltage. This reference

voltage is then supplied to a controllable voltage source, and its output passes through an

LCL filter to produce the PCC voltage (VPCC).

Figure 6.16. Implementation of load in the EMT simulation using Opal-RT.

Similarly, in Fig. 6.16, the load current (iLd , iLq) is calculated from active and

reactive power (P and Q) of load, which is then passed to abc−dq0 block to generate the

reference current (iabc re f ). iabc re f is then passed to a controllable current source to

generate the PCC voltage (VPCC).

Figure 6.17. Active power shared by GFM 1, GFM 2, and TFs-based GFM obtained from
the analytical and DDM approach.

To validate the TFs-based GFM, initially, the TF obtained through the analytical

approach is implemented in Fig. 6.14 and then TF obtained from DDM approach is
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Figure 6.18. Reactive power response comparison for TFs-based GFM obtained from ana-
lytical and DDM approach.

implemented. The comparison of active power shared by GFM 1, GFM 2, and TFs-based

GFM obtained from analytical and DDM approaches is depicted in Fig. 6.17. Here, the

active power of the load is changed from 200 kW to 300 kW at 378.8 sec and then

reverted back to 200 kW from 300 kW at 389.7 sec. The results indicate equal power

sharing across all three GFMs. Initially, 66.67 kW of active power is shared, followed by

100 kW, and then again 66.67 kW of power distribution, corresponding to the load

changes. Fig. 6.17 also demonstrates that the active power shared by the TFs-based GFM

obtained from DDM exhibits similar dynamics compared to the analytical TFs-based

GFM approach. However, the dynamics is slightly different compared to GFM 1

dynamics. This difference might be due to the challenge of capturing some of the

non-linearities of the GFM 1 inverter dynamics that are not being fully captured in this

large signal event, which is a limitation for the current implementation of this method that

should be addressed as future work. However, both models converged in steady state with

the GFM 1 and GFM 2 implementations. To compare the performance of TFs-based GFM
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obtained from the analytical and DDM approaches, GoF based on NRMSE as given in Eq.

3.1 is calculated. For this, active power supplied from both the TF-based GFM models is

compared with the GFM 1 active power. The GoF for the analytical approach and

data-driven approach is calculated to be 89.09% and 87.97% respectively. This

demonstrates that both approaches can accurately capture the dynamic response of GFM

inverters under different loading conditions.

Similarly, in Fig. 6.18, we compare the reactive power responses of the TFs-based

GFM obtained from the analytical and DDM approaches. The reactive power of the load

is changed from 50 kVAr to 150 kVAr at 378.8 sec and then reverted back to 50 kVAr

from 150 kVAr at 389.7 sec. The DDM TFs-based GFM approach exhibits similar

dynamics compared to analytical TFs-based GFM approach.

6.6 Chapter Conclusions

This paper presents an analytical approach and DDM approach to obtain

mathematical model of GFM inverter dynamics. A DDM modeling approach uses PHIL

experiments to capture dynamic GFM data in the application of DDM techniques. A

square-chirp probing signal was employed to perturb the active and reactive power of the

load inside the Opal-RT model. The dynamic response of the GFM inverter, including

changes in frequency and voltage, was recorded. This data was then used in system

identification algorithm to identify the dynamic models of the GFM inverter. Furthermore,

the mathematical model of GFM inverter dynamics obtained from analytical approach and

DDM approach are then compared based on GoF. GoF for the analytical approach and

DDM approach was calculated to be 89.09% and 87.97% respectively. Hence, both
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approach demonstrated accuracy in capturing the dynamic response of GFM inverters

under varying loading conditions.
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CHAPTER 7 Conclusions and Future Work

7.1 Conclusions

A significant amount of converter-based generation is being integrated into the

bulk electric power grid to fulfill the future electric demand through renewable energy

sources, such as wind and PV. The dynamics of converter systems in the overall stability

of the power system can no longer be neglected as in the past. Numerous efforts have been

made in the literature to derive detailed dynamic models, but using detailed models

becomes complicated and computationally prohibitive in large system level studies.

Moreover, with the increasing replacement of synchronous generators by IBRs, instability

issues in the grid is becoming more prevalent and challenging. Consequently, there is a

growing focus on GFM inverters, which exhibit synchronous generator-like characteristics

and can operate in weak grids without relying on rigid voltage sources or forming

independent grids. Furthermore, GFM inverters can address grid instability issues,

including significant frequency fluctuations caused by low inertia and uncertainty in

DERs. Therefore, modeling PECs plays a vital role in studying system-level dynamics.

In Chapter 2, a concise overview of the current state-of-the-art modeling technique

employed in CDPS is presented. A review of PEC model types used to analyze CDPS

dynamic stability issues is also presented. A comprehensive overview of various PEC

model types employed for addressing dynamic stability concerns in CDPS are presented.

Challenges and benefits of using the appropriate PEC model type for studying each type

of stability issue are also presented.

In Chapter 3, a MATLAB/Simulink model of a PEC featuring GSFs according to
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the IEEE 1547-2018 Standard is presented. This model proves valuable for assessing

power system dynamics in scenarios with high DERs penetration. The validation process

confirms the accuracy of the GSFs integrated into the inverter simulation model, with

NRMSE values below 2%, demonstrating close alignment with the IEEE standard

characteristic curve. Through dynamic simulations, the model’s effectiveness in various

operating conditions was evident. The results show the improvement on grids’ frequency

and voltage profile using frequency-watt mode, and, volt-var and volt-watt modes

respectively.

Chapter 4 focuses on developing a data-driven modeling framework for extracting

PECs dynamics using a designed probing signals. It emphasizes on design parameters for

the system identification algorithm to obtain precise TFs. The methodology details

systematic data collection and dataset organization. By learning from actual operational

data, data-driven models accurately represent the complexities of power electronics

systems, contributing to accurate finding of TFs. Lastly, it guides the implementation of

the TFs model into EMT simulations, ensuring practical applicability.

In Chapter 5, to accurately capture the dynamics of the GFL inverter, predefined

regions in piecewise characteristics curve based on the set-point from IEEE 1547-2018 for

Volt-VAr, Volt-Watt, and Freq-Watt modes were used, with each region further partitioned

into small ranges. The GoF percentage was used to measure the performance of GFL

inverter dynamics when the grid voltage/frequency was perturbed with probing signal and

described which one would obtain a better model of a GFL inverter. The results show that

the logarithmic Sq-chirp signal outperformed in model accuracy based on GoF compared

to other probing signals to extract dynamics of GFL inverters. Logarithmic Sq-chirp
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signal was then used to study the effect of varying irradiance in the data-driven modeling

of PV inverter dynamics. The proposed analysis is carried out in two modes of operation

of the inverter, i.e., Volt-Watt and Freq-Watt modes. The results show that magnitude of

dynamics varies with varying irradiance in both modes of activation; however, the nature

of the inverter’s dynamics differs depending on the mode of activation. In addition, in

order to make one model a generic dynamic model, it has to adjust its DC-gain

accordingly during different periods, and DC-gain has a negative gradient linear

relationship with irradiance.

Finally, in Chapter 6, a data-driven modeling of GFM inverter dynamics using

PHIL techniques was developed. The proposed approach involved the real-time coupling

of hardware and software components, where the physical inverter hardware was

interfaced with a MATLAB simulation environment. Through this integration, data on the

inverter’s dynamic response was collected and analyzed. This data was then utilized to

develop accurate and efficient data-driven models for GFM inverters. The paper discussed

the implementation of SysId algorithm method to capture the GFM inverter

characteristics. Furthermore, the analytical approach to obtain the mathematical model of

GFM inverter dynamics was also studied. The effectiveness of the data-driven models was

cross-validated with analytical approach through simulation studies and experiment. GoF

values for the analytical and data-driven approaches are determined to be 87.45% and

86.35%, respectively. Both approaches exhibit accuracy in capturing the dynamic

response of GFM inverters across various load conditions.
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7.2 Limitations

The scope of this dissertation was primarily focused on establishing the

fundamental framework for a data-driven modeling technique applied to both GFL and

GFM inverters, achieved through the system identification algorithm. There exists

potential for broader exploration by integrating concepts from machine learning

methodologies like clustering, deep learning, and ANN into the system identification

algorithm. These techniques could unlock concealed patterns and intricate structures

inherent in the data, offering a more comprehensive understanding of inverter behaviors.

Furthermore, it’s important to note that the dynamic model derived from the

system identification technique has not yet been practically implemented within a large

CDPS. Implementing the model in a CDPS setting presents an avenue for future research,

allowing for the assessment of its performance and effectiveness within the complex

interactions and dynamics inherent in such systems. This highlights a potential future

direction for expanding the applicability of the developed data-driven modeling approach.

Moreover, Data-driven models heavily rely on the quality and representativeness of the

training dataset. Insufficient or biased data may result in model limitations. While

proficient in capturing observed patterns, data-driven models might face challenges in

generalizing to extreme scenarios not well-represented in the training data.

The utilization of probing signals to extract system dynamics presents certain

limitations that warrant consideration. Firstly, generating probing signals tailored to each

mode of operation can be a demanding task, particularly in systems featuring numerous

operational modes. This requirement can lead to increased resource allocation and time
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investment, potentially complicating the experimental setup and modeling process.

Additionally, the minimum and maximum resolution of the probing signal is contingent

upon the specific region under investigation within the system. This resolution

dependency introduces complexities when dealing with dynamic behaviors across

different system regions. Moreover, the potential for model switching errors arises when

rapid transitions occur between distinct dynamic events within a brief time-frame. This

underscores the importance of meticulously timing the probing signal to align with the

system’s dynamics and account for abrupt shifts. Addressing these limitations entails

careful planning and potential adjustments in experimental methodologies to ensure an

accurate depiction of the system’s intricate dynamics.

7.3 Future Work

In terms of future directions, there are several compelling avenues to explore in

enhancing the current research. Firstly, the development of an adaptive approach for

model switching could greatly enhance the versatility and accuracy of the proposed

technique. Exploring methodologies like functional data analysis might enable the system

to dynamically adapt its model selection based on real-time data, accommodating

dynamic changes in system behavior and ensuring a seamless transition between different

operational modes.

Furthermore, extending this approach to larger systems with a mix of inverters

utilizing different control strategies holds significant potential. This expansion would

require a more comprehensive understanding of how various control schemes interact

within a complex system. Incorporating legacy inverters, which might employ different
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control mechanisms, introduces additional complexity. This could potentially necessitate

the consideration of multi-input multi-output systems to effectively capture the

interdependencies between different components and their control strategies.

By venturing into these future avenues, the research could achieve a broader

applicability and provide insights into the challenges and opportunities of implementing

the proposed data-driven modeling approach within more intricate and diverse power

system environments.
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