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‭Investigating Signs of Orbital Decay in the TrES-1‬
‭Exoplanetary System‬

‭Amanda F. Wester‬

‭May 24, 2022‬

‭Abstract‬
‭Transit observations of exoplanetary systems can be used to investigate orbital decay. TrES-1b is‬
‭an exoplanet hypothesized to be experiencing orbital decay due to observed transit timing‬
‭variations (TTVs) [12]. Numerous transits must be observed to establish a long term pattern to‬
‭conclusively determine if the planet’s orbit is decaying. Measurements were made using the UNH‬
‭Observatory where 2 transits were observed of the TrES-1b transiting system on February 27, 2022‬
‭and March 5, 2022. A CCD camera was used to image the transit and capture calibration images.‬
‭The software AstroImageJ (AIJ) was used to calibrate the images and perform photometry to‬
‭generate a light curve (LC) for the target star through the duration of the transit observation. The‬
‭center of the transit can be calculated from the light curve given that AIJ is able to fit a light curve‬
‭trendline to the LC. The data from the observed transits yielded inconclusive results as AIJ was‬
‭unable to fit a light curve to the data and thus unable to find the transit center. The largest sources‬
‭of error were cloud cover in the region of observation and improper telescope tracking.‬
‭Understanding these sources of error allows for their effects to be mitigated in future data‬
‭collection‬

‭1   BACKGROUND‬
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‭1.1   Exoplanets‬

‭Exoplanets are planets that orbit a star other than our own. The first confirmed exoplanets were‬

‭found orbiting the pulsar PSR1257+12 by Aleksander Wolszczan and Dale Frail in 1992 [13]. These‬

‭exoplanets were discovered using the radial velocity method, which consists of measuring the‬

‭“wobble” of a star by looking for evidence of red or blue-shifting in the star’s spectrum over time.‬

‭As of May 2022, there are over 5000 confirmed exoplanets [3]. A large portion of these were‬

‭discovered by NASA’s Kepler mission that used the transit method, which involves observing a‬

‭star’s decrease in apparent brightness when a planet passes in front of it as viewed from Earth.‬

‭As exoplanet research progresses, more is being learned about the structure of solar‬

‭systems and the underlying physics behind their formation and evolution. Nearly 85% of‬

‭discovered exoplanets are in the tidal-locking zone [7], where tidal-locking refers to the same side‬

‭of the planet always facing the star. These are the easiest to detect because close-in planets exert‬

‭the largest effects on their host stars. Generally, their effects can also be observed over relatively‬

‭short time periods on the order of several days to less than an hour [3]. Studying these exoplanets‬

‭is an effective way to learn about planetary system formation and dynamics because a variety of‬

‭systems with diverse characteristics can be observed.‬

‭1.2   Orbital Decay‬

‭Orbital decay in a planet-star system refers to a decrease in separation between the star and planet‬

‭over time. Specifically, it is the decrease in the planet’s perigee, the closest point in the planet’s‬

‭orbit. Orbital decay occurs due to a friction-driven process where energy is transferred or‬

‭dissipated from the orbit of the planet into a different part of the solar system. One such‬

‭mechanism is tidal dissipation where energy from the planet’s orbital angular momentum is‬

‭dissipated into the star.‬

‭Tidal theory postulates that while two rigid bodies can maintain a stable orbit forever, stars‬

‭and planets are not rigid bodies and can be deformed, possibly resulting in an unstable orbit. Stars‬

‭behave like fluids, thus they can produce tides due to gravitational attraction, similar to how there‬
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‭are tides in Earth’s oceans due to the Moon and Sun’s gravity. Stars can have high and low tides in‬

‭different regions and they become ellipsoids. Planets in tidally locked orbits around their host star‬

‭can also be deformed into ellipsoids. As the planet pulls gravitationally on the star, some of the‬

‭star’s orbital angular momentum is transferred into spin angular momentum and the star will‬

‭rotate faster. The planet’s orbital angular momentum will decrease with the star’s as energy from‬

‭the orbit is dissipated through tidal heating of the planet [10].‬

‭Various processes can also cause the appearance of orbital decay where there may be none,‬

‭such as apsidal precession or the presence of another planet. Apsidal precession occurs as the‬

‭orbital path of the planet slowly rotates around the star with each successive orbit. These effects‬

‭create the necessity to observe an apparently decaying system over a sufficiently long period of‬

‭time to rule out the illusion of orbital decay caused by other processes.‬

‭1.3‬ ‭Transit Timing Variations‬

‭Transit timing variations (TTVs) are changes in the time spacing between successive transits.‬

‭Transit duration variations (TDVs) are also investigated when searching for evidence of an‬

‭additional planet or an exomoon (a natural satellite around an exoplanet), however TTVs are‬

‭considered more heavily when investigating orbital decay in a system [9]. As the orbit of a planet‬

‭decays, there will be a measurable change in the time between successive transits. Figure 1 is an‬

‭O-C plot of the decaying exoplanet Wasp-12b that depicts the calculated mid-transit time‬

‭subtracted from the observed mid-transit time for a data set. The difference between the observed‬

‭and calculated transit centers is due to TTVs. The large deviations from 0.00 on the vertical axis‬

‭are indicative of orbital decay. Figure 2 is an O-C plot for TrES-1b where the plot visually looks flat‬

‭because more data is needed over a long period of time.‬
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‭Figure 1:‬‭An O-C plot of the decaying exoplanet Wasp-12b‬‭from the Exoplanet Transit Database‬
‭(‬‭Wasp-12b‬‭) [4]. Larger dots depict more reliable data.‬

‭Figure 2:‬‭An O-C plot for TrES-1b from the Exoplanet‬‭Transit Database (‬‭TrES-1b‬‭) [4]. Larger dots‬
‭represent more reliable data.‬
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‭1.4‬ ‭TrES-1b‬

‭Discovered in 2004, TrES-1b was the first exoplanet discovered as part of the‬

‭Trans-atlantic Exoplanet Survey (TrES) [6]. The coverage area is located in the‬

‭constellation Lyra and figure 3 shows the starfield for the TrES-1 system. The planet‬

‭TrES-1b is a Jupiter-like gas giant whose mass is 0.761 M‬‭J‬ ‭and whose radius is 1.099 R‬‭J‬ ‭[11].‬

‭TrES-1b is an ideal target for orbital decay research because it has a frequent orbital‬

‭period of 3.03 days [3] and a transit depth, or decrease in brightness during the transit, of‬

‭~2% [4].‬

‭Figure 3:‬‭The star field of TrES-1 with the location‬‭of the system indicated.‬

‭2‬ ‭DATA COLLECTION‬

‭2.1‬ ‭Exoplanet Detection Methods‬

‭2.1.1‬ ‭Transit Method‬

‭The transit method utilizes a star’s decrease in apparent brightness when a planet passes‬

‭in front of it in an observer’s line of sight. When a planet transits, its brightness decreases‬

‭during its passage across its host star. Once the planet moves off the star, the star’s‬
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‭brightness returns to its previous level. The size of the planet will dictate how much the‬

‭star’s brightness decreases. The star’s brightness during the transit can be shown on a plot‬

‭called a light curve (LC). The transit begins at the ingress and ends at the egress. Figure 4‬

‭shows what happens during different stages of a transit.‬

‭Figure 4:‬‭A depiction of an exoplanet at various points‬‭in its orbit around its host star.‬
‭The light curve is a plot of the star’s brightness over time, which is dependent on the‬
‭exoplanet’s position in its orbit [own work].‬

‭2.1.2‬ ‭Radial Velocity Method‬

‭The radial velocity method of detecting exoplanets consists of observing the target star’s‬

‭spectrum over time. Any planets or other stars in a solar system will orbit the center of‬

‭mass of the solar system and the star’s spectrum will shift depending on the speed of its‬

‭motion around the center of mass. As the star moves away from Earth, the wavelength‬

‭will appear red-shifted as the wavelength appears longer than the true value. When the‬

‭star is moving towards Earth, the wavelength will appear shorter as the light is‬

‭blue-shifted. The magnitude of the red- or blue-shifting can be used to calculate the star’s‬

‭radial velocity and then the mass of planets in the system. This method is simplest with a‬

‭two body system, but there exists observational techniques that are used when there is‬
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‭more than one planet orbiting a star. Figure 5 depicts how the star’s motion influences the‬

‭wavelength of light as it is seen on Earth.‬

‭Figure 5:‬‭A diagram illustrating how a star’s motion relative to earth can shift the‬
‭wavelength of light from the star that we observe. Moving closer shortens the wavelength‬
‭- blue shifting. Moving away stretches the wavelength - red shifting [own work].‬

‭2.2‬ ‭Imaging Transits‬

‭2.2.1‬ ‭Equipment and Software‬

‭The camera used to image the transits was an SBIG STXL-6303e CCD camera. A‬

‭charge-coupled device (CCD) camera converts photons into an electrical current‬

‭proportional to the amount of light incident on the camera’s sensor via the photoelectric‬

‭effect where a photon is absorbed and an electron is emitted. The CCD sensor utilizes a‬

‭2-dimensional array of coupled capacitors in an integrated circuit that allows charge to‬

‭pass between the capacitors. Charge is stored in the sensor’s capacitors throughout the‬

‭camera’s exposure time. After the exposure is complete, the charge is transferred through‬

‭each capacitor into a series of individual voltages that are used to produce the image [5].‬

‭Regardless of any photon stimulation, there is an inherent dark current that flows‬

‭through the CCD sensor’s capacitors. Thermal noise is generated during longer sensor‬

‭exposures. It’s important to keep the CCD at a cool temperature to minimize this thermal‬

‭noise. The CCD camera used to collect the data presented in this paper was kept at -30°C‬
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‭during operation and has a dark current of 0.5 e‬‭-‬‭/p/s. The pixel array is 3072x2048 pixels‬

‭and each pixel is 9 μm x 9 μm [2].‬

‭The UNH Observatory’s Celestron C14 telescope was used to collect data. The C14‬

‭is a 14-inch Schmidt-Cassegrain telescope that combines mirrors and a Schmidt corrector‬

‭plate used to improve the focus of the telescope. Spherical aberrations occur in imperfect‬

‭spherical lenses and mirrors and the Schmidt corrector plate is an aspherical lens‬

‭engineered to produce equal and opposite spherical aberrations to correct the focus of‬

‭incident light rays. Figure 6 demonstrates how light should focus in a theoretically‬

‭perfect lens and how it actually focuses in a real spherical lens. Figure 7 depicts how the‬

‭Schmidt corrector plate is used to adjust the paths of light rays so they pass through the‬

‭focal point of the reflector.‬

‭Figure 6:‬‭The left image depicts a perfect spherical‬‭lens where all light rays converge at‬
‭the focal point. The right image shows a real spherical lens where the light rays do not‬
‭converge due to imperfections in the lens (‬‭Wikipedia‬‭).‬
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‭Figure 7:‬‭The left image shows the Cassegrain curved‬‭reflector plate without the Schmidt‬
‭corrector plate and the rays do not converge on the focal point due to spherical‬
‭aberrations in the reflector. The point marked C is the center of curvature and F is the‬
‭focal point. The right image depicts how the corrector plate adjusts the ray paths so they‬
‭converge on the focal point (‬‭Wikipedia‬‭, Schmidt Corrector‬‭Plate by Jean-Jacques Milan).‬

‭The software used to guide the telescope is the Sky X Professional. This software‬

‭contains a catalog of stars that it can direct the telescope to point to. The Sky X‬

‭Professional software is useful for imaging transits because it can control both the‬

‭telescope and the CCD camera.‬

‭The software used to analyze the transit images is AstroImageJ (AIJ) which is an‬

‭image analysis software used to perform photometry [1]. Photometry is the process of‬

‭converting an object’s light into numerical values based on the intensity of that light. AIJ‬

‭is able to perform photometry on a set of transit images by using other stars in the field‬

‭of view as reference stars to determine when the target star’s brightness is decreasing.‬

‭Reference stars must be chosen carefully as they must not be variable stars, stars whose‬

‭luminosity varies over small enough timescales to affect the photometry. AIJ is a powerful‬

‭software tool that is able to account for factors such as orbital eccentricity, period, target‬

‭star spectral class, etc, in the photometry calculations. The software also has a built-in‬
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‭calibration function that takes in sets of calibration images to remove noise from the‬

‭transit images. AIJ is the same software used by NASA’s Transiting Exoplanet Survey‬

‭Satellite (TESS) to analyze transit data.‬

‭2.2.2 Calibration Images‬

‭There are three types of calibration images used for the data in this paper. The first is‬

‭dark frames, which are images taken with the shutter closed and for the same exposure‬

‭time and ambient temperature as the science images. Dark frames are used to help‬

‭account for the dark current that accumulates during the exposure. Their main function‬

‭is to remove thermal noise that is generated throughout the exposure. Bias images‬

‭essentially do not have an exposure time as they are taken at the fastest shutter speed the‬

‭camera can handle. They are meant to calibrate the inherent readout noise of the sensor‬

‭and camera. Bias images also help with dark current. Bias and dark images must both be‬

‭taken at the same operating temperature as the transit images. Flat field images help to‬

‭account for any dust or blemishes on the optics as well as vignetting. Vignetting occurs‬

‭when there is less light around the edges of the images. Flat fields are taken by exposing‬

‭the camera to a light source for an exposure time just long enough for the blemishes to‬

‭appear; they do not have to be the same exposure as the transit images [8]. Figure 8 shows‬

‭the three types of calibration images.‬
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‭a) Dark                                         b) Bias                                         c) Flat‬

‭Figure 8:‬‭An example of each of the types of calibration‬‭images.‬

‭2.2.3‬ ‭Method‬

‭Proper observing conditions are necessary in order to record a transit. The observing‬

‭region of the sky must be clear of clouds. Ideally the entire sky would be free of clouds as‬

‭they can move throughout the night with the wind and possibly drift over the target star.‬

‭Clouds can also appear spontaneously during the transit, especially thin clouds at high‬

‭altitudes. Cool air causes less distortions or “twinkling” of the incoming starlight. Dry air‬

‭will minimize any moisture buildup on the telescope optics. The most important‬

‭condition is that the observing location must be dark as too much sunlight or light‬

‭pollution can impact the quality of the images. Bright moonlight can also decrease the‬

‭quality of the images if the target star is in the same region of sky as the moon. The local‬

‭observing conditions that cause light pollution will affect AIJ’s ability to accurately‬

‭determine the brightness of the star throughout the transit.‬

‭There are many stars that are too dim to see with the unaided eye and telescopes‬

‭help to gather more light with their large apertures. However, even with large apertures,‬

‭some stars are still too dim. Cameras are useful because they can take long exposures to‬

‭detect even the dimmest stars. TrES-1b is an 11.79 magnitude star [4] so a long exposure‬

‭time on the camera was needed. The ideal exposure time for TrES-1b was 17 seconds.‬
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‭To produce the best possible light curve, it is necessary to take images of the‬

‭transiting system before and after the expected transit for ideally 30-60 minutes. This‬

‭allows for a baseline measurement of the star’s brightness out of transit so that AIJ can‬

‭determine how much of a decrease in brightness occurred due to the planet. Following‬

‭the post-egress baseline, a series of 10 dark, bias, and flat field images were captured to be‬

‭used in calibration.‬

‭3‬ ‭DATA ANALYSIS‬

‭TrES-1b transits every 3.03 days which results in the transit occurring about 43 minutes‬

‭later every three days. As the transits occur later and later, they will begin to happen‬

‭during the day and therefore cannot be observed. There was a period of time from Feb‬

‭24‬‭th‬‭, 2022 to Mar 8‬‭th‬‭, 2022 with 5 visible transits of TrES-1b. Of these, only Feb 27‬‭th‬ ‭and‬

‭Mar 5‬‭th‬ ‭were observable transits due to local weather conditions during the other three‬

‭transits.‬

‭3.1‬ ‭Feb 27 Transit‬

‭Figure 9 depicts the light curve for the Feb 27 transit. At the beginning of the transit, the‬

‭data is rather dispersed due to the transit beginning with the target star at only 17° in‬

‭altitude. This caused the star’s light to travel through a thick layer of atmosphere. There is‬

‭less dispersion at the end of the data set due to the star having risen to 42° at the egress.‬

‭Additionally, the observatory is generally unable to observe targets below ~10°, so the‬

‭pre-ingress baseline was not as long as the ideal time of 30-60 minutes. This brightness‬

‭plot does not take the normal shape of a light curve. A proper light curve levels out once‬

‭the planet is fully in front of the host star, but the light curve for this transit does not level‬

‭out until the middle of the transit. This is likely due to a thin, sporadic cloud cover‬
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‭through the transit, causing the star to appear brighter than it was after the ingress. There‬

‭was a thicker cloud cover that temporarily passed over the field of view close to the‬

‭egress. The effects of these clouds can be seen around the egress where there is an‬

‭increase in data dispersion. It is apparent that these clouds did not have a drastic effect on‬

‭the data because the predicted egress corresponds to the flattening data points at the end‬

‭of the transit.‬

‭Figure 10 shows a plot of two reference stars and their brightnesses during the‬

‭transit. Their relatively flat distribution shows that they are not variable stars, so they are‬

‭likely not responsible for the trends seen in figure 9. A simple method to confirm this‬

‭assumption is to perform photometry on this data set again with different non-variable‬

‭stars chosen. This was done with a second set of reference stars and the brightness plot‬

‭was nearly identical to figure 9. The flat blue line seen at 1.00 on the vertical axis is a‬

‭failed trend line because AIJ was unable to fit a proper light curve to the plot due to the‬

‭data not following a typical light curve pattern. Due to the lack of a fit curve for the data,‬

‭it is difficult to determine with certainty whether the apparent ingress and egress of the‬

‭data truly match the predicted values or if it is merely a coincidence.‬
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‭Figure 9:‬‭A light curve for the TrES-1b transit on‬‭Feb 27, 2022. The vertical axis‬
‭represents the observed brightness of the star throughout the transit. The horizontal axis‬
‭depicts the time of the transit in Julian days.‬
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‭Figure 10:‬‭A light curvefor the two reference stars used. The dispersion in the data before‬
‭the ingress reinforces the error introduced by the star’s light having to pass through more‬
‭of the atmosphere at low altitudes in the sky. The data points for the reference stars‬
‭appear mirrored around a horizontal line in the center of the data set because AIJ takes‬
‭the average of the brightness of the reference stars to determine the brightness of the‬
‭target star.‬

‭3.2‬ ‭Mar 5 Transit‬

‭The light curvefor the Mar 5 transit can be seen in figure 11 and the brightness plot for the‬

‭reference stars can be seen in figure 12. While there is an obvious period of decreased‬

‭brightness, it is visible that this plot is inconsistent with what is to be expected for a light‬
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‭curve. There are two main instances between the ingress and egress where the data‬

‭flattens where it is not supposed to. The target star gained altitude throughout the transit‬

‭and it began at 35°, so there is less general dispersion than the Feb 27 transit. The irregular‬

‭pattern of the data around the egress can be attributed to the Sun rising and brightening‬

‭the sky. The reference star plot in figure 12 shows a significant amount of variability in the‬

‭stars’ brightness, however the reference stars were confirmed to be non-variable. This‬

‭trend is indicative that the data for this transit was adversely affected by the local sky‬

‭conditions. AIJ was unable to fit a light curve to this data set as well due to the‬

‭irregularities present in the transit images.‬

‭Figure 11:‬‭A light curvefor the Mar 5 transit of TrES-1b.‬
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‭Figure 12:‬‭A brightness plot of the reference stars‬‭for the Mar 5 TrES-1b transit.‬

‭4‬ ‭DISCUSSION‬

‭4.1‬ ‭Conclusion‬

‭An accurate and reliable light curve is crucial to studying possible orbital decay in an‬

‭exoplanetary system because they allow for the transit center, or mid-transit, to be‬

‭determined. A transit center can be identified even from a partial transit where either the‬

‭ingress or egress is missing, though having both will yield a more accurate value of the‬

‭transit center. Transit center values for Feb 27 and Mar 5 were unable to be calculated.‬

‭The largest factor affecting AIJ’s ability to fit a light curve to the brightness plots for each‬

‭transit was the local weather and sky conditions. Cloud cover has a large effect on the data‬

‭quality because it can nonuniformly reflect light into the telescope’s aperture.‬

‭Nonoptimal telescope tracking was another source of error in the data sets. As the transit‬

‭progressed, the telescope was unable to perfectly track the target star. This resulted in the‬

‭star slowly moving across the CCD image through the transit. A depiction of this can be‬
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‭seen in figure 13. This introduces error as the star moves to a different pixel on the sensor‬

‭because the pixels aren’t identical so they will all process the star’s light differently.‬

‭Figure 13:‬‭The left image shows the star field at‬‭the beginning of the transit. The right‬
‭image shows how the star field shifted over ~2.5 hours after the left image was taken.‬

‭Sources of error in data taken by ground-based observatories are to be expected‬

‭due to atmospheric interference and local weather, so data is best taken from space-based‬

‭observatories. It’s important to have reliable light curves and thus transit centers because‬

‭they are used to create orbital decay plots like the ones seen in figures 1 and 2. The‬

‭observed transit center is compared to the calculated (theoretical) transit center, which‬

‭can be found in places like the Exoplanet Transit Database (ETD). These orbital decay‬

‭plots can help to better understand what mechanisms are at play in exoplanetary systems‬

‭to cause orbital decay. Studying other planetary systems in different phases of their‬

‭evolution can aid in improving the current understanding of solar system formation,‬

‭dynamics, and evolution over time.‬

‭4.2‬ ‭Future Work‬
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‭The TrES-1b system will be further analyzed using data that other astronomers have‬

‭submitted to the ETD in the last several years. Additional transits of TrES-1b will be‬

‭observed and combined with the ETD data to create orbital decay plots. Several fit lines‬

‭including a fit for orbital decay, apsidal precession, and constant period will be applied to‬

‭the decay plot and statistically analyzed with the Bayesian Information Criterion (BIC) to‬

‭determine which model best describes the TrES-1 system. The methods discussed in this‬

‭paper will be applied to the Wasp-10 system after a deeper analysis of TrES-1b is‬

‭performed. A tracking method called auto-guiding will be applied to the telescope’s‬

‭mount and control system to improve the quality of the transit images to reduce the‬

‭source of error associated with the star field drifting across the image during the transit.‬
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