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Abstract
The dissolution of anthropogenic carbon dioxide (CO2) in seawater has altered its car-
bonate chemistry in the process of ocean acidification (OA). OA affects the viability 
of marine species. In particular, calcifying organisms and their early planktonic larval 
stages are considered vulnerable. These organisms often utilize energy reserves for 
metabolism rather than growth and calcification as supported by bulk RNA-sequencing 
(RNA-seq) experiments. Yet, transcriptomic profiling of a bulk sample reflects the aver-
age gene expression of the population, neglecting the variations between individuals, 
which forms the basis for natural selection. Here, we used single-embryo RNA-seq on 
larval sea urchin Heliocidaris crassispina, which is a commercially and ecologically valu-
able species in East Asia, to document gene expression changes to OA at an individual 
and family level. Three paternal half-sibs groups were fertilized and exposed to 3 pH 
conditions (ambient pH 8.0, 7.7 and 7.4) for 12 h prior to sequencing and oxygen con-
sumption assay. The resulting transcriptomic profile of all embryos can be distinguished 
into four clusters, with differences in gene expressions that govern biomineralization, 
cell differentiation and patterning, as well as metabolism. While these responses were 
influenced by pH conditions, the male identities also had an effect. Specifically, a regres-
sion model and goodness of fit tests indicated a significant interaction between sire and 
pH on the probability of embryo membership in different clusters of gene expression. 
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1  |  INTRODUC TION

Ocean acidification (OA), the change in seawater carbonate chemis-
try due to increased uptake of anthropogenic carbon dioxide (CO2), 
imposes significant stress on marine species (Doney et al.,  2020; 
Gattuso et al.,  2015; IPCC,  2014). This change alone has resulted 
in multiple interacting stressors, including acidosis, hypercapnia 
and reduced saturation of calcium carbonate (Albright et al., 2016; 
Gattuso et al., 2015; IPCC, 2014). Calcifying organisms, such as coc-
colithophores, corals and echinoderms, are deemed more sensitive 
and exhibit negative outcomes when exposed to OA conditions 
(Leung et al., 2022; Siegel et al., 2022). These detrimental impacts 
include the elevated metabolic cost to maintain physiological pro-
cesses (e.g. acid–base homeostasis) (Liu et al., 2020; Pan et al., 2015) 
and the subsequent reduction in growth and calcification (Byrne & 
Hernández, 2020; Melzner et al., 2020).

Various transcriptomic studies have been set to identify the changes 
in gene expression patterns that underline the phenotypic changes as-
sociated with OA conditions (Strader et al., 2020). With several fully 
sequenced and annotated sea urchin genomes reported (Sodergren, 
Shen, et al., 2006; Sodergren, Weinstock, et al., 2006; Tu et al., 2012) 
and their role as ecosystem engineers (Grande et al.,  2020; Jones 
et al., 1997; Rogers-Bennett & Catton, 2019), sea urchins have been the 
target of such sequencing studies (Strader et al., 2020). Broadly speak-
ing, the responses observed include elevated expression of metabolic 
genes related to ATP production and the tricarboxylic acid cycle (Evans 
et al., 2017; Stumpp et al., 2011; Todgham & Hofmann, 2009), stress 
proteins (Hsp70) and immune response (O'Donnell et al., 2009; Wong 
& Hofmann, 2021; Zhan et al., 2020); and, a downregulation in genes 
associated with skeletogenesis and calcification (Devens et al., 2020; 
Martin et al., 2011; Padilla-Gamiño et al., 2013; Runcie et al., 2016). 
These gene expression patterns are consistent with whole organism 
responses observed—reduced digestion rate (Lee et al., 2019; Stumpp 
et al., 2013), elevated oxygen consumption rate (Lo et al., 2021; Stumpp 
et al., 2011) and reduced growth and development (Byrne et al., 2013; 
Dorey et al., 2013; Foo et al., 2020).

Rapid evolutionary responses to near-future acidification have 
been reported for multiple marine invertebrates, including sea urchins 
(Bitter et al.,  2019; Kang et al.,  2022; Pespeni et al.,  2013). Stand-
ing genetic variations both between populations and within a single 
population could enhance an organism's capacity to persist in future, 
rapid environmental change through such evolutionary responses 

(Bell,  2017; Sunday et al.,  2014). One way to assess evolutionary 
potential is to estimate the broad sense heritability (h2) of specific 
traits through parent–offspring comparison (Jury et al., 2019; Sunday 
et al., 2011). Alternatively, controlled breeding designs together with 
a mixed linear model can be used to estimate dam and sire contribu-
tion towards gene expression patterns (Devens et al.,  2020; Martin 
et al., 2011; Padilla-Gamiño et al., 2013; Runcie et al., 2016). Here, we 
present single-embryo level sequencing, as an alternative to bulk RNA-
seq methods that pool thousands of individuals, to quantify diversity 
in genetic response to environmental stress. Unlike typical single-cell 
RNA-seq in which the individual transcriptomes of captured cells are 
sequenced, single-embryo level sequencing enables gene expression 
profiling of each embryo's global response to OA and makes possible 
analysis on paternal-specific, maternal-specific, or individual varia-
tions, thus providing an alternative to estimate evolutionary potential.

The urchin Heliocidaris crassispina inhabits the low-intertidal and 
subtidal areas along the coastal waters of the western Pacific from 
southern Japan to southern China (Agatsuma, 2013; Freeman, 2003). 
The species is commercially cultured and harvested (Ding et al., 2007), 
and it is a key grazer (Wai & Williams, 2006). Urchins in our study site 
are exposed to variable coastal pH conditions (Maboloc & Chan, 2021; 
Pecquet et al., 2017). Consistent with the prediction of the climatic 
variability hypothesis that organisms exposed to environmental fluc-
tuations process larger plasticity, that is, ability to withstand stress 
(Gaitán-Espitia et al., 2017; Vargas et al., 2022). Dorey et al.  (2018) 
showed that larval H. crassispina survived 3-day exposure to low pH 
(pH 7.7) and copper addition (≤0.19 μM), but experienced a reduction 
in growth and elevated frequencies of abnormality. Given the phe-
notypic resilience, we hypothesize that there is a reservoir of genetic 
variation in the local H. crassispina that can respond to acidification 
during larval development and buffer some of the negative conse-
quences associated with pH changes.

To test the above-mentioned hypothesis, we reared embryos of 
H. crassispina under three pH conditions (ambient pH 8.0, 7.7 and 7.4). 
Twelve hours post-fertilization, the oxygen consumption rate was 
measured as a proxy of metabolic rate and single-embryo RNA-seq 
was performed. We revealed the transcriptional states of urchin em-
bryos shifted with acidification, but such changes were not mirrored 
by the physiological measurements taken at the same time. Under 
acidification, genes essential to embryogenesis were downregu-
lated, while expressions related to metabolism were upregulated. 
More importantly, paternal lineage likely plays a role in influencing 

The single-embryo RNA-seq approach is promising in climate stressor research because 
not only does it highlight potential impacts before phenotypic changes were observed, 
but it also highlights variations between individuals and lineages, thus enabling a better 
determination of evolutionary potential.

K E Y W O R D S
climate change, development, echinoderm, gene expression, pluteus, RNA-sequencing, sea 
urchin, single-embryo
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6798  |    FUNG et al.

offspring's resilience to acidification—when reared at pH 7.7, one of 
the three parental lineages had a significantly different proportion of 
descendants with the expression profile associated with enrichment 
of metabolic genes than the others did. These results provide novel 
insights into individual-level responses of urchins to future ocean 
conditions. They also illustrate single-embryo RNA-seq as a viable 
means to study standing genetic variations, and hence, the evolu-
tionary potential of marine organisms in the face of climate change.

2  |  MATERIAL S AND METHODS

2.1  |  Sample collection

Adult Heliocidaris crassispina were collected by snorkelling along 
the shoreline of HKUST, Clear Water Bay, Hong Kong SAR, China 
(22.39° N, 114.11° E, Figure  1b). After collection, the sea urchins 
were transported immediately to the adjacent coastal marine labo-
ratory for gamete extraction. Adult urchins were held in a sea table 
with running seawater (~33–35 psu, pH 8.01).

2.2  |  Seawater chemistry manipulation

The experimental pH levels were chosen to represent the present-
day open ocean condition (pH 8.0), the predicted average open 
ocean pH at 2100 (pH 7.7) and an extremely low pH (pH 7.4), which 
encompass the pH values H. crassispina has experienced at the col-
lection location (Maboloc & Chan, 2021; Pecquet et al., 2017). Sea-
water pH was altered through CO2 addition through a mass flow 
controller. The temperature, voltage and pHNBS were measured with 
a Metrohm 913 pH meter and unitrode with Pt 1000 (Herisau). Sa-
linity was measured with a handheld refractometer. The measured 
pH was converted to total scale pH (pHT) with the use of Tris/HCl 
buffer solution (salinity = 33) provided by the Dickson Lab at the 
Scripps Institution of Oceanography (San Diego). Total alkalinity 
(TA) was measured through Gran titration (905 Titrando, Metrohm). 
Calibration was performed using the standard seawater provided by 
the Dickson Lab (Batch 151). The resulting total scale pHs are 7.37, 
7.71 and 8.02 respectively. The average TA between duplicates were 
2039.4, 2048.5 and 2036.2 μmol kg−1 respectively. Using the R pack-
age seacarb (Gattuso et al., 2021), the partial carbon dioxide pres-
sure in these treatments was computed as 2067, 901 and 399 μatm.

2.3  |  Fertilization and embryo respirometry

Gametes from one female and three males were extracted to gen-
erate three groups of paternal half-sibs. A single female was used 
to avoid the confounding effect of differences in egg quality and 
focus the investigation on the genetic effect (Lynch & Walsh, 1998). 
Adults were induced to spawn through the injection of 0.35 M KCl. 
Eggs were rinsed with filtered seawater (0.45 μm) (FSW) at the three 

experimental pHs and sperm were collected dry. Eggs were ferti-
lized with sperm at a concentration of approximately 104 sperm mL−1, 
in their respective pH treatments. Fertilization success (>95%) was 
confirmed by the presence of a fertilization envelope 5 min post-
fertilization. The fertilized embryos were incubated in sealed con-
tainers at the respective pHs in a growth chamber (Jeio Tech) held at 
23°C (Figure 1a). Three replicate containers were used for each male 
and pH combinations (N = 27).

To investigate how gene expression pattern aligns with organis-
mal performance, the oxygen consumption rate of the embryo was 
also quantified 12 h post-fertilization following the methods outlined 
in Lo et al.  (2021). Five individuals were randomly chosen and in-
troduced to a 200 μL well on a respiration plate and each well was 
considered a replicate. Four replicates were used for each paternal 
lineage at each pH. Procedural control that contains only FSW was 
included to account for bacterial respiration. Fluorescence micro-
plate readers (SDR SensorDish, Loligo PreSens) were used to detect 
the oxygen concentration in each well for 18 h.

2.4  |  Single-embryo RNA sequencing and data 
preprocessing

Twelve hours post-fertilization, embryos, independent from those 
used in the oxygen consumption measurement, were individually pi-
petted into a 96-well plate with lysis mix containing 1 U RNase inhibi-
tor (RNaseOUT Recombinant Ribonuclease Inhibitor; Invitrogen), 0.1% 
(vol/vol) Triton X-100 solution (Sigma-Aldrich), 2.5 mM each dNTP mix 
(Thermo Scientific) and 2.5 μM oligo-dT30VN (Integrated DNA Tech-
nologies). Samples were then prepared for sequencing library con-
struction using the Smart-seq2 protocol (Picelli et al., 2014). In brief, 
reverse transcription (RT), followed by PCR was performed on lysate 
to synthesize cDNA. Qualities and quantities of cDNA libraries were 
inspected using Qubit 3.0 and Fragment Analyzer (Agilent). Libraries 
were then tagmented with Nextera XT DNA sample preparation kit 
(Illumina). After tagmentation, library PCR amplification was done to 
amplify sequencing libraries with Illumina index primers. Finally, sam-
ples were purified using AMPure XP beads and pooled together for 
sequencing in Illumina NextSeq 500 platform. The result FASTQ files 
were preprocessed for trimming and ribosomal RNA removal. Trim-
ming was done using fastp (Chen et al., 2018). The order of sequence 
in read1 and read2 was remapped using Bbmap (Bushnell,  2022). 
RNAmmer (Lagesen et al., 2007) was employed to predict ribosomal 
RNA, followed by removal using BBDuk (Bushnell, 2022).

2.5  |  RNA-seq analysis

The preprocessed FASTQ data were aligned to the H. crassispina 
genome assembled in-house using STAR (Dobin et al., 2013). Transcript 
quantification was performed using RSEM (Li & Dewey,  2011). 
Sequencing data were analysed in R (R Core Team,  2022). Data 
processing was done with the Seurat package (Butler et al., 2018; 
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    |  6799FUNG et al.

Hao et al., 2021; Satija et al., 2015; Stuart et al., 2019). To eliminate 
batch effects, FIRM integration was performed by stratifying 
datasets by Embryos with raw counts higher than 400,000 and a 
total number of genes lower than 200 or higher than 3000 were 
discarded. Genes expressed in fewer than three embryos were also 
removed. The final expression matrix contains 302 embryos and 
20,076 genes (90 embryos for pH 8.0, 115 embryos for pH 7.7 and 97 
embryos for pH 7.4). After log normalization, FIRM integration (Ming 
et al., 2022) with male stratification was applied to obtain the scaling 
matrix and eliminate the batch effect in later visualization.

Our goals are similar to single-cell transcriptomic profiling ex-
periments, which are to identify groups of individuals that form 

subpopulations of interest, while also highlighting the heteroge-
neities and trends within and between subpopulations. Hence, we 
deployed an analysis pipeline similar to previous single-cell RNA-
sequencing atlas and publications (Almanzar et al.,  2020; Jones 
et al., 2022; Travaglini et al., 2020; Yu et al., 2023). To visualize our 
dataset, we applied Uniform Manifold Approximation and Projec-
tion (UMAP), a non-linear, non-deterministic dimensionality reduc-
tion method that captures the global data structure and proximity 
of data points to each other, presenting the best 2D approximation 
of that connectivity between data points (McInnes et al., 2018). 
Separately, we use a shared nearest neighbour-based cluster-
ing algorithm to group individuals with similar gene expression 

F I G U R E  1  (a) Experimental schematic 
of single-embryo RNA-seq. (b) Collection 
site of Heliocidaris crassispina in Clear 
Water Bay, Hong Kong S.A.R. (c) Oxygen 
consumption rate of the urchin embryos. 
(d–e) Visualization of H. crassispina 
embryos transcriptome with UMAP after 
dataset integration using FIRM. Each 
dot represents an individual embryo. (d) 
Labelled by cluster from unsupervised 
clustering; (e) Labelled by pH of seawater 
in which the embryos were exposed. (f, 
g) Contribution of embryos in different 
clusters. (d) From males; (e) From different 
pH environments.
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patterns into clusters. Specifically, we used the R package Seurat, 
functions FindNeighbors() and FindClusters(), which uses the Lou-
vain method of clustering (Butler et al.,  2018; Hao et al.,  2021; 
Satija et al., 2015; Stuart et al., 2019). Differential gene expression 
analysis was performed using MAST (Finak et al., 2015). Gene or-
thologues between S. purpuratus and H. crassispina were mapped 
using reciprocal blast best hit of protein sequence by BLASTp (Alt-
schul et al., 1990).

2.6  |  Gene ontology enrichment analysis

Gene ontology terms were enriched with gene list overrepresenta-
tion enrichment analysis in PANTHER (Mi et al., 2017). After differ-
ential gene expression analysis, genes with adjusted p-value <.01 
and average log fold-change >0 were used to enrich GO terms in 
GO-Slim biological process annotation set using S. purpuratus whole 
genome as the reference. GO terms with FDR < 0.05 were reported 
in this paper. Only terms with fold enrichment >10 (i.e. log10(fold 
enrichment) > 1) in at least one cluster were shown in the heatmap 
visualization.

2.7  |  Statistical analysis

The respiration rates of embryos were computed by applying a lin-
ear regression model of measured oxygen concentrations against 
time after Lo et al. (2021). The relationship between embryo cluster 
classification and the interactive effect of male and pH was inter-
preted using multinomial logistic regression in R with the package 
nnet (Venables & Ripley, 2002). A follow-up likelihood ratio test was 
performed between the two regression models: a full model with 
the main and interaction effect of male and pH, and a reduced model 
with only the main effect, under the null hypothesis that the cluster 
data fits equally well in both, meaning the interactive effect is not 
significant in the gene expression diversity (cluster classification) of 
the embryos.

3  |  RESULTS

3.1  |  Single-embryo RNA-sequencing, but not 
respiratory, reveals OA impact

The average individual oxygen consumption rate of Heliocidaris 
crassispina embryos was affected neither by pH, male identities 
nor their interactions (Figure  1c, F ≤ 1.38, p ≥ .27). In contrast, 
single-embryo sequencing and analysis utilizing the transcriptome 
assembly of H. crassispina showed both pH and male-dependent 
patterns. Gene expression data were filtered to remove poor-quality 
embryos which resulted in 302 embryos for analysis. Based on the 
transcriptional profile of each embryo, unsupervised clustering after 

dimension reduction categorized embryos at similar transcriptional 
states into four clusters (Figure 1d).

As expected, embryos exposed to different pHs had different 
transcriptomic profiles (Figure 1e). The distribution of embryos from 
the males in each cluster was similar between male two (M2) and 
male three (M3). Male one (M1) had a higher percentage of embryos 
in cluster 3, up to 32.6% more than the other males (Figure 1f, see 
section on parental effect). Meanwhile, 96.3% of embryos in cluster 
0 were from ambient pH 8.0. As pH decreased, more embryos were 
clustered into clusters 1 (pH 7.7: 36.4%, pH 7.4: 49.1%), 2 (pH 7.7: 
44.7%, pH 7.4: 53.7%), and 3 with embryos reared at pH 7.7 con-
tributed more significantly to cluster 3 (pH 7.7: 86.0%, pH 7.4: 9.3%) 
(Figure 1g).

Gene ontology (GO) enrichment analysis of the differentially 
expressed genes pointed to specific biological processes for each 
cluster (Figure  2; Tables  S1 and S2). Notably of GO terms with 
fold enrichment higher than 10 [i.e. log(fold enrichment) > 1], em-
bryos from cluster 0 expressed genes enriching terms related to 
cilia movement (Figure 2; Table S1), and the genes corresponding 
to this term included Tekt1/2/3 and Cfap20 (Figure S1a–d). While 
these genes were upregulated in the pH 8.0 embryos which ex-
clusively belong to cluster 0, moderate expression levels could 
still be observed in other clusters of embryos from pH 7.7 and 7.4 
(Figure S1a–d).

Gene expression of embryos from pH 7.7 and 7.4 constituting 
cluster 1 had enriched terms related to both endoplasmic reticulum 
tubular network organization and MAP kinase activity (Figure  2; 
Table S1). Meanwhile, cluster 2 which had an equal mix of embryos 
from the pH 7.7 and 7.4 treatment had a lower level of expression of 
MAP kinase-related genes (Figure S1e–k).

While the differentially expressed genes from clusters 2 and 3 
both resulted in GO terms related to respiration and ATP synthesis 
(Figure  2; Table  S1), further focused differential expression analy-
sis segregated the two clusters (Table S3). Differentially expressed 
genes from cluster 2 were enriched for cell cycle-related terms 
(Table S3), specifically G1/S phase transition and cellular response 
to TGF-β stimulus. In contrast, cluster 3 continued to show enriched 
terms related to ATP synthesis and mitochondrial electron transport 
(Figure 3a,c; Table S3). Further investigation on the expression level 
of corresponding genes revealed that the SMAD family genes, in-
cluding Smad1/2/4/6, were upregulated in cluster 2, with an average 
log2 fold-change (log2FC) in gene expression of 0.52, 0.46, 0.36 and 
0.63 respectively (Figures 3b and S2a–d; Table S3). As the members 
of TGF-β superfamily, these genes play a pivotal role in cell prolifera-
tion, differentiation and migration (Lapraz et al., 2006). Additionally, 
G1/S phase regulatory genes CycD, Psme3 and Rbl1 were also up-
regulated, with average log2FC of 0.75, 0.79 and 0.25 respectively 
(Figures 3b and S2e–g; Table S3). On the other hand, expressions of 
metabolic genes Cox2, Cox5a and Cox6a1 were the highest in clus-
ter 3 among all other clusters, with respective average log2FC of 
0.94, 0.80 and 1.26 with respect to cluster 2 (Figures 3b and S2h–j; 
Table S3).
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3.2  |  Differential gene expression between 
pH treatments

To investigate population-level gene expression changes when 
exposed to acidification conditions, differential gene expression 
analysis between pH groups was performed by pooling across all 
paternal lineages (see Table S4 for average log2FC). Of note among 
the downregulated genes in embryos exposed to reduced pH were 
the TGF-β superfamily genes dvr1, Univin, Nodal and Lefty (average 
log2FC: 0.91, 0.45, 0.89, 0.56, see Table S4) with reduced expression 
level (Figure 4a–d) that are linked to cilia motility and subsequent 
developmental patterning (Duboc et al., 2004, 2005; Luo & Su, 2012; 
Molina et al., 2013). Similarly, Ets1 controls the expression of Alx1 
which determines the skeletogenic fate of the primary mesenchymal 
cells (PMCs) (Ettensohn et al.,  2003; Sharma & Ettensohn,  2010) 

were also downregulated (average log2FC: 2.84, see Table S4). While 
acidified embryos contributed towards clusters 1, 2 and 3, those in 
cluster 1 had a significantly higher Ets1 expression (average log2FC: 
2.79, see Table S4) than the clusters 2 and 3 (Figure 4e), highlighting 
individual variations in skeletogenesis response when exposed to 
the same pH condition.

Other noteworthy metabolism-related genes were upregulated 
among acidified embryos. (Figure  4f–h). Gfpt1 (GFAT) expression 
level was elevated (Figure  4f) by an average log2FC of 1.09 (see 
Table S4). This gene encodes the first and rate-limiting enzyme in the 
hexosamine biosynthetic pathway, a glucose metabolism pathway 
that results in the synthesis of a nucleotide sugar UDP-GlcNAc. This 
sugar is subsequently used for the post-translational modification 
of intracellular proteins that regulate nutrient sensing and stress re-
sponse (Yamazaki, 2014; Yi et al., 2019). Ribosomal genes were also 

F I G U R E  2  Logarithmic fold 
enrichment of GO terms after gene list 
overrepresentation enrichment analysis 
with genes differentially expressed in 
the four clusters (Table S2, FDR < 0.05). 
Higher fold enrichment of a term indicates 
the embryos in that cluster were more 
involved in the process. Only showing 
terms with fold enrichment higher than 
10 [i.e. log(fold enrichment) > 1] in at least 
one cluster.
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expressed at a higher level (Figure 4g,h) compared to those exposed 
to ambient pH, including the genes Rps8 and Rps4x (average log2FC 
in order: 2.03, 2.00, see Table S4).

Other cell cycling-related genes also showed pH-dependent ex-
pression patterns, including the E2F family genes (E2f3 and E2f8, 
Figure S3a,b; Table S4), Cycb3, Cdk2/6/9 (Figure S3c–f) and Cdc20 
(Figure S3g, Table S4). While E2f8 together with Cycb3, Cdk2/6 and 
Cdc20 were downregulated (average log2FC: 3.63, 0.26, 0.48 and 
1.76, see Table S4) in the pH 7.4 and 7.7 treatments, E2f3 and Cdk9 
were downregulated (average log2FC: 0.53, 0.43, see Table  S4) in 
the pH 8.0 embryos. These genes were linked to progression be-
tween different phases of cell division, for example, E2f8 is associ-
ated with G1/S transition (Christensen et al., 2005), Cdk2/6 is linked 
to G1 progression and G1/S transition (Johnson,  1998; Meyerson 
& Harlow, 1994), Cycb3 and Cdc20 are involved in G2/M transition 
and other cell cycle checkpoints (Gallant & Nigg, 1994; Irniger, 2002; 
Yu, 2002).

3.3  |  Paternal difference in cluster distribution

We applied a multinomial logistic regression on the cluster outcome 
to examine the effect of male identity and pH treatments on gene 
expression profiles. The likelihood ratio test suggested the interactive 
effect of male and pH significantly improved the goodness of fit 
(χ2 = 12, p = 1.39 × 10−4) that is, the interaction between sire and pH 
treatment affect cluster classification. The most notable difference 

between males was that for male 1 (M1) a higher proportion of its 
embryos were assigned to cluster 3 compared to the other males 
(M2 and M3, Figure  5a) when reared at pH 7.7. This observation 
is recapitulated in the predicted probability of embryos being 
classified into each cluster generated from the full regression model 
(Figure 5b). Such that cluster classification was similar between all 
three males at pH 8.0 and 7.4; and embryos of M1 were distinct 
from the others at pH 7.7, and the proportion of embryos assigned to 
cluster 3 from M1 was larger than that in M2 and M3.

4  |  DISCUSSION

Through profiling single-embryo transcriptomes of the urchin 
H. crassispina, a commercially and economically important species 
found in the subtropics, this study highlights the transcriptional 
plasticity of coastal species to cope with acidification stress. While 
there were changes in gene expression profiles and up/down regula-
tions of genes associated with development, skeletogenesis and me-
tabolism, changes in oxygen consumption were not detected. Our 
analysis also highlights a subtle, yet significant difference, between 
parental lineages in gene expression profile—there were shared gene 
expression profiles across males that shifted with acidification, how-
ever, the relative proportion of offspring having a particular profile 
differed between males. This ability to quantify individual variations 
and standing genetic variation is crucial for understanding the adap-
tive potential of organisms in the face of global climate change.

F I G U R E  3  (a) Fold enrichment of GO 
terms with genes differentially expressed 
in cluster 2 compared to 3 (Table S3, 
FDR < 0.05). (b) Volcano plot showing 
differentially expressed genes in clusters 
2 and 3. Genes represented in terms 
are labelled. (c) Fold enrichment of GO 
terms with genes differentially expressed 
in cluster 3 compared to 2. Note that 
enriched GO terms are identified based 
on genes that are differentially expressed 
between clusters; the GO enrichment 
level does not directly reflect the gene 
expression level of underlying genes.
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4.1  |  Assessing individual responses with a 
single-embryo transcriptomic approach

At a single-embryo level, the effect of OA can be profiled at a much 
higher resolution compared to the conventional bulk sample approach, 
enabling us to both interrogate individual response and population-
level trend. For instance, the expression level of the E2F family genes 

associated with cell-cycle control differed between individuals, as the 
embryos did not have a synchronous development (see violin plot in 
Figure  S3). However, the downregulation of these genes averaged 
across pH treatments support the notion that acidification stress led 
to developmental delay (Byrne & Hernández, 2020).

Another advantage of this single-embryo transcriptomic ap-
proach is that there was no a-priori assumption of differences 

F I G U R E  4  Violin plot of gene 
expressions in the effect of OA grouped 
by cluster (top) and pH (bottom). (a–d) 
Expression level of TGFβ superfamily 
genes dvr1, Univin, Nodal and Lefty. (e) 
Expression of skeletogenic gene Ets1. 
(f) Expression level of hexosamine 
biosynthesis pathway gene Gfpt1. (g, h) 
Expression level of ribosomal protein gene 
Rps8 and Rps4x.

F I G U R E  5  (a) Percentage of embryos in each cluster from males and pH conditions. (b) Predicted probability of embryos classified into 
each cluster.
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in expressions between pH treatments or males. Instead, an un-
supervised clustering approach was applied followed by a com-
parison of a portion of individuals within a cluster in a particular 
treatment group. In this particular case, it is likely that a bulk ap-
proach could make a distinction between expression profiles of 
embryos reared under control pH (pH 8.0, cluster 0) and those in 
acidified condition (pH 7.7 and 7.4, cluster 1–3, Figure 1e), but not 
between the two lower pHs. Our approach was able to identify at 
least three different possible transcriptomic states when exposed 
to reduced pH. Cluster 1 was enriched in endoplasmic reticulum 
tubular network organization genes that are linked to protein syn-
thesis (Terasaki,  2000) and MAP kinase activity regulation that 
is related to cell division (Kumano & Foltz,  2003); cluster 2 was 
enriched in genes linked to G1/S phase transition and cellular re-
sponse to TGF-β stimulus which regulate skeletal morphogenesis 
and cluster 3 was enriched in genes associated with ATP synthesis 
and mitochondrial electron transport (Figures 2 and 3; Table S3). 
These three different transcriptomic states (clusters) could reflect 
the difference in developmental schedule as pipetting individual 
embryos into lysis buffer was time consuming such that lysis did 
not occur simultaneously for all embryos. More importantly, the 
probability of embryo membership in each cluster was in turn 
shaped by both pH treatments and sire identity.

4.2  |  Acidification led to differential 
gene expression

Our single-embryo RNA-seq approach reveals the transcriptional 
changes in the sea urchin embryo development in response to OA 
when there was no significant difference in oxygen consumption 
rate, an organismal metabolism proxy, was detected (Figure 1). It is 
likely that the observed difference in gene expression pattern would 
lead to phenotypic changes with increased rearing duration as Dorey 
et al. (2018) and Lo et al. (2021) both showed acidification reduces 
the larval size of H. crassispina.

Similar to other sea urchins, acidification appeared to cause 
downregulation of genes associated with ciliogenesis and devel-
opment as well as skeletogenesis but upregulation in genes as-
sociated with metabolism and DNA replication/repair (Figure  4, 
Chang et al., 2021; Devens et al., 2020; Evans et al., 2013; Strader 
et al., 2020). Furthermore, the embryos from the two acidified treat-
ments had different expression profiles. The majority of individu-
als in cluster 3 that is enriched with metabolic genes were reared 
under pH 7.7, while most individuals reared at pH 7.4 were grouped 
under clusters 1 and 2, which were enriched in genes associated 
with cell division, body patterning and skeletogenesis. This trend of 
first experiencing metabolic stress and then stunned development 
with decreasing pH supports the notion that the elevated metabolic 
cost associated with acidification stress and the resulting realloca-
tion of energy caused a developmental delay in larval urchins (Pan 
et al., 2015).

4.3  |  Paternal influence on the diversity of 
transcriptional responses

Assuming the trait of interest is heritable, paternal variation is crucial 
in determining the adaptive potential of organisms to future climate 
(Kelly & Hofmann,  2013; Sunday et al.,  2014). From the sequenc-
ing data, we observed that instead of a universal gene expression 
in response to OA within a paternal line, male identity influenced 
the diversity of the offspring responses. In this case, we observed 
the number of offspring that expressed genes associated with ATP 
synthesis and mitochondrial electron transport at pH 7.7 (cluster 3) 
from one paternal lineage (M1) was significantly different from the 
others (Figure 5). The likelihood ratio test and predicted probability 
confirmed the interactive effect between sire and pH constituted 
the observed difference. The offspring of this male appeared to el-
evate metabolic rate without depression of cell division or growth. 
Interestingly, pooled embryos from this male did not express a par-
ticularly large variance in oxygen consumption compared to the oth-
ers (Figure 1e). This difference could be a result of limited biological 
samples used in the respirometry measurement (4 replicates with 5 
individuals in each). Alternatively, the all embryos examined shared 
the same dam, and hence, the mitochondrial OXPHOS capacities 
were similar between the half-sibs group. At least, for fish exposed 
to elevated temperatures, the metabolic response was modulated by 
the maternal effect (Shama et al., 2014).

Bulk transcriptomic analysis of the conspecific H. erythogramma 
that has lecithotrophic larvae suggested that male identities ac-
counted for ~6% of the variance of the expression profiles observed 
among the three paternal half-sibs group; the genotype by pH in-
teraction explained an even smaller share (0.3%) of the variation in 
the gene expression (Devens et al., 2020). This diminished interac-
tive effect is consistent with our observation that the interaction 
of genotype (sire) and acidification had little effect on the types of 
expression profiles (the 4 clusters in Figure 1) but the relative abun-
dance in each cluster, highlighting the benefit of surveying individual 
responses. Indeed, working with a larger set of parents (7 males × 3 
females to create 21 families), Runcie et al. (2016) suggested that of 
all the differentially expressed genes across pH about 20% varied 
between sires.

The observed differences in gene expressions between males 
at low pH imply differences in organismal functions. Earlier sperm 
function analysis suggested that male urchins with sperm that un-
derperform at present-day pH (pH 8.0) had improved fertilization 
success under acidified conditions (Smith et al.,  2019). Sire iden-
tity has been shown to affect the developmental success (cleav-
age) of other echinoderms exposed to acidification conditions (Foo 
et al., 2012; Sparks et al., 2017). For purple urchins, offspring sired 
by males from sites experiencing more intense upwelling conditions 
had larger offspring under low pH (Kelly et al., 2013). Future exper-
iments that include the transcriptome of sperm and later develop-
mental stages with additional biological samples would help better 
link the genotypic changes to phenotype.
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The interactive effect of sire and pH on gene expression profiles 
highlights that this population of sea urchins that experience periodic 
low pH has standing genetic variations to cope with acidification stress. 
While such variation implies there is potential to cope with future ocean 
acidification through evolutionary responses, a sufficiently large pop-
ulation is needed to sustain this response and such selective pressure 
could lead to a reduction in genetic diversity (Pespeni et al., 2013). Nev-
ertheless, our work illustrates the promise of single-embryo sequenc-
ing in identifying and quantifying subtle yet important variations, e.g., 
sire × pH interactive effect, which help inform both molecular, organis-
mal and evolutionary responses to anthropogenic stress.
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