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Count Mixed-Effects Regression Models in Parasite Ecology

by Simão CORREIA

Count data, such as species abundance, are frequently used to analyse ecological phe-

nomena, because the response variable only takes nonnegative integer values. The Pois-

son distribution is the most common and widely used for modelling count data. Nonethe-

less, ecological data distribution is often skewed with many zeros, along with repeated

assessments that promotes an inefficient or incorrect statistical inference, unless serious

attention is given to the excess of zeros, correlation structure, and how to model them ef-

fectively. In this situation, other distributions, such as Negative Binomial or Generalised

Poisson, must be used. Moreover, there is increasing interest in statistical approaches

for dealing with excess zeros in ecological research with Zero-Inflated and Hurdle Mod-

els. This project fulfils two main objectives: the study of regression models for count

data and their application to the ecology of parasites infecting the European cockle, Ceras-

toderma edule, from the Ria de Aveiro. The data was obtained from the COACH project

“CoOperative ApproACH applied to conservation and management of cockles”, a project

developed by researchers from Centre of Environmental and Marine Studies and Univer-

sity of Aveiro. In particular, this project aimed to identify which environmental variables

have a determining impact on the abundance of parasite infecting cockles. The Poisson,

Negative Binomial, Generalised Poisson and Binomial distributions, both with linear and

non-linear additive predictors, were applied. Despite the amount of zero counts observed

for metacercariae, the Poisson model did not greatly violate the equidispersion assump-

tion, showing the importance of conducting regression analysis step by step, rather than

making decisions solely based on the appearance of the data. Nevertheless, the Negative

Binomial model seemed to be the one that best fitted the data. Cockle’s shell length and

mailto:up202008717@edu.fc.up.pt


water salinity and pH seemed to be the most relevant explanatory variables. Addition-

ally, dissolved oxygen also showed to be an important variable. However, the accuracy of

the models’ predictions was not very satisfactory.
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Modelos de Regressão Mistos para Dados de Contagem no Estudo Ecológico da

Parasitologia

por Simão CORREIA

Os dados de contagem, como a abundância de espécies, são frequentemente utiliza-

dos para analisar fenómenos ecológicos, uma vez que a variável de resposta apenas as-

sume valores inteiros não negativos. A distribuição de Poisson é a mais comum e ampla-

mente utilizada para modelar dados de contagem. No entanto, a distribuição de dados

ecológicos é frequentemente enviesada com muitos zeros, juntamente com avaliações re-

petidas que promovem uma inferência estatı́stica ineficiente ou incorreta, a menos que

seja dada uma atenção séria ao excesso de zeros, à estrutura de correlação e à forma de

os modelar eficazmente. Nesta situação, devem ser utilizadas outras distribuições, como

a Binomial Negativa ou a Poisson Generalizada. Para além disso, existe um crescente in-

teresse em abordagens estatı́sticas para lidar com o excesso de zeros no ramo da Ecologia

com modelos zeros-inflacionados (Zero-Inflated) ou modelos de barreira (Hurdle). Este

projeto cumpre dois objetivos principais: o estudo de modelos de regressão para dados

de contagem e a sua aplicação à ecologia de parasitas que infetam o berbigão europeu, Ce-

rastoderma edule, da Ria de Aveiro. Os dados foram obtidos no âmbito do projeto COACH

”Uma abordagem cooperativa à conservação e gestão de berbigão”, um projeto desenvol-

vido por investigadores do Centro de Estudos do Ambiente e do Mar e da Universidade

de Aveiro. Em particular, este projeto teve como objetivo identificar quais as variáveis

ambientais que têm um impacto determinante na abundância de parasitas que infetam o

berbigão. Foram aplicadas as distribuições de Poisson, Binomial Negativa, Poisson Ge-

neralizada e Binomial, ambas com preditores aditivos lineares e não lineares. Apesar da

quantidade de contagens nulas observadas para metacercariae, o modelo de Poisson não

mailto:up202008717@edu.fc.up.pt


violou severamente o pressuposto da equidispersão, mostrando a importância de efe-

tuar a análise de regressão passo a passo, em vez de tomar decisões apenas com base na

aparência dos dados. No entanto, o modelo Binomial Negativo pareceu ser o que melhor

se ajustava aos dados. O comprimento da concha do berbigão e a salinidade e o pH da

água pareceram ser as variáveis explicativas mais relevantes. Adicionalmente, o oxigénio

dissolvido também se revelou uma variável importante. No entanto, a exatidão das pre-

visões dos modelos não foi muito satisfatória.
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Glossary

Abiotic factors Non-living part of an ecosystem that shapes its environ-

ment.

Abundance Total number of individuals of a species in a given area.

Asexual multiplication Type of reproduction in which the offspring comes from

a single parent organism, and not from the union of ga-

metes as in sexual reproduction. Produced offspring is

usually clone of the parent.

Benthic macrofauna Organisms visible to the naked eye (> 0.5 mm) that in-

habit at the bottom of a body of water, buried at the sed-

iment or attached to a fixed substrate.

Biomass Total mass of an organism in a given area or volume.

Biotic factors Living part of an ecosystem that shapes its environment.

DO Dissolved Oxygen in the water column

Ecosystem engineers Species that modify, maintain, and/ or create habitat

to other species by directly or indirectly modulate the

availability of resources.

Eh Reduction-oxidation potential (redox potential).

Eukaryote Any single-celled or multicellular organism whose cells

contain a clearly defined nucleus. Animals and plants

are examples of eukaryotes.

Infaunal species Benthic species that live buried in the sediment.

Intertidal zone Area above the water level at low tide and underwater

at high tide.

xv
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Invertebrate An animal that lacks a vertebral column.

Keystone species Species that helps define an entire ecosystem due to the

critical role in maintaining the structure of an ecological

community.

Macroparasite Parasite that are visible to the naked eye (> 0.5 mm).

MGS Sediment median grain size.

Molluscs Phylum of invertebrate species that include class of an-

imals such as bivalves (e.g., cockles), gastropods (e.g.,

snails), or cephalopods (e.g., octopuses).

Parasite Organism that benefits at the expense of another organ-

ism

Population Density Number of individuals of a species in a population rela-

tive to a given area.

Prevalence Fraction of individuals with a specific characteristic in a

given population or area.

Prokaryote Organisms whose cells lack a nucleus and other or-

ganelles, such as bacteria.

SL Cockle’s shell length.

TOM Total organic matter content of the sediment.

Trematode A class of parasitic flatworms.

Trematode Cercariae Second free-living swimming larval stage of trematode

parasites that emerge from the first intermediate host

and infect the second intermediate host.

Trematode Metacercariae Second parasitic stage of trematode that encyst inside

the second intermediate host.

Trematode Miracidia First free-living ciliated larval stage of trematode para-

sites that hatch from an egg and infect the first interme-

diate host.
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Trematode Sporocyst A parasitic saclike larva of trematodes infecting the first

intermediate host that produces cercariae by asexual

multiplication.

Vertebrate An animal that possesses a vertebral column or a back-

bone.





Chapter 1

Introduction

1.1 Count data

Ecologists like to count. The importance of count data for ecological research is undeni-

able, allowing the analyses of several ecological descriptors, such as species abundance

and biodiversity, population size, or the occurrence of specific events. However, counting

can be a challenging process [1].

From an ecological perspective, biological systems can be very large, enduring the dif-

ficulty of count every individual or species. Additionally, certain species can be extremely

mobile, unnoticeable [2], or exhibit complex behaviours, making it challenging to detect

and count them accurately and precisely [3]. Therefore, counting every single individ-

ual without resorting to sampling populations of interest or methods that can potentially

introduce biases is both impracticable and unreasonable [4]. Besides, due to the natural

evolution of ecological systems over time, counting must take this natural variability into

consideration.

Similarly, modelling count data in statistics is not any easier. Count data follows a

discrete distribution and is constrained to non-negative integer values [5, 6]. This unique

characteristic of count data poses challenges when applying conventional statistical meth-

ods, such as ordinary linear regression models, which assume a continuous and normally

distributed response variable, conditional on the regressors. When ordinary linear re-

gression models are applied to count data, several issues may arise. Firstly, count data

violates the assumption of normality, as it is discrete and has a limited range [7]. Sec-

ondly, the assumption of constant variance is easily violated, as the variance is equal to

1
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the mean and therefore also varies with the regressors. Finally, count data are not compat-

ible with the direct modelling of the mean of the response, as counts cannot be negative.

To address these challenges, a common approach in the analysis of count data is to start

by fitting a Poisson (mixed-effects) model and then to evaluate its assumptions to check

whether it is necessary to change the distribution of the response variable (possibly, and

most commonly, to a Negative Binomial distribution) [8, 9]. In these models, the link func-

tion connects the linear predictor to the expected count, accommodating the constrains of

count data [8, 9].

The most widely used regression model for count data is the Poisson regression [8].

However, its assumption of equidispersion, that the distribution’s mean is equal to its

variance, in contrast to other count-based regression models, is one of its drawbacks.

If that assumption is not met, and under or overdispersion is observed, the Poisson re-

gression model may provide inaccurate standard errors for the model coefficients [5, 10].

Overdispersion happens when the variance of the conditional response exceeds the mean.

This is the case for many ecological data. To account for this excess variability, one may

use the negative binomial distribution instead. The negative binomial distribution is an

extension of the Poisson distribution that allows for overdispersion; the variance has a

quadratic relationship with the mean, through the addition of an additional parameter

ϕ [10]. Whenever ϕ converges to 1, the negative binomial distribution converges to the

Poisson distribution.

In addition to the Poisson and Negative Binomial distributions already mentioned,

other typical distributions for count data include the Generalised Poisson [11, 12] and the

Conway-Maxwell-Poisson [13]. While a Negative Binomial regression can only model

overdispersed phenomena, Generalised Poisson and Conway-Maxwell-Poisson introduce

a new parameter that enables modelling of both underdispersion and overdispersion,

making it applicable to a variety of count data scenarios. Chapter 2 presents further de-

tails on the distributions for count data. In this manner, the nature of the conditional

response variable will determine the selection of the distribution function.

Further challenges of analysing count data, particularly those associated with ecolog-

ical sampling, may include the skewness related to zero-inflation, and/or repeated or

longitudinal assessments [8, 10, 14]. If substantial consideration is not given to the excess

of zeros and/or to the correlation structure, and how to model them effectively, this pro-

motes an inefficient or incorrect statistical inference. On the other hand, longitudinal or
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repeated measurements data are handled by regression models with mixed effects or re-

gression models estimated by the Generalised Estimating Equations (GEE) [15, 16]. This

statistical method is tailored to accommodate the inherent complexities of data collected

over multiple time points or repeated measured from the same subjects.

There has been a considerable growing interest in statistical tools that deal with excess

zeros in ecology research, with zero-inflated (ZI) and hurdle (H) models being commonly

employed to fit such data [14]. These models differ in the way they deal with zeros. In

models of inflated zeros, null counts can be originated from a true absence of observations

in the counting process, being designated as true zeros, or introduced due to process

issues, designated as false zeros. From a practical point of view, true zeros correspond to

individuals that, in fact, are not present when the sampling process is carried out, while

false zeros refer to individuals that were not observed due to problems in the sampling

process. In the case of hurdle models, the counting process is truncated at zero and,

therefore, cannot produce null counts. Moreover, the model separates the counts into

zeros (absences) versus non-zeros (presences).

The ecological study of host-parasite interactions is one illustration of this intricacy.

1.2 Motivation

Bivalves are a dominating component of the coastal benthic macrofauna, both in terms of

abundance and biomass [17]. These organisms, which are regarded as keystone species

and perform significant roles in the ecosystem support the marine environment’s re-

silience [18]. The filter-feeding habit and bioturbation activity of marine bivalves enable

them to perform several crucial ecological functions, including carbon storage and en-

ergy cycling [19]. Additionally, they serve as a connection between primary producers

and higher trophic levels in the ecological food webs [20]. Bivalves are also considered

ecosystem engineers by altering the environment and promoting life conditions for other

infaunal species due to their burrowing activity. Additionally, bivalves provide the foun-

dation of significant commercial activity, playing a crucial socioeconomic role [21, 22].

The infaunal suspension-feeder bivalve Cerastoderma edule, the European edible cockle,

is a common and widely dispersed bivalve species along the northeast Atlantic coast from

Norway, in northern Europe [23, 24], to Mauritania, in northern Africa [25]. This bivalve

holds significant importance in Europe, and particularly in Portugal, due to its ecological,

economic, and cultural value. Cockle harvesting is an essential economic activity in many
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coastal regions of Europe [26, 27]. The species is commercially valuable and contributes

to the livelihoods of local fishermen and seafood processors. The sale of cockles, whether

for domestic consumption or export, helps generate income and employment opportu-

nities for coastal communities. In 2015, Portuguese cockle harvesting represented 20%

of total European captures, accounting for a 4.5 million euros revenue [28]. Cockles are,

therefore, integral part of Portugal’s and Europe’s culinary tradition with an important

cultural footprint [29].

Beyond its socioeconomic value, C. edule plays a crucial role in maintaining the health

of coastal ecosystems [30]. As filter feeders, cockles help improve water quality by fil-

tering and removing organic particles and pollutants from the water [31]. This helps

maintain the health of coastal ecosystems, supporting other marine life and recreational

activities [32]. To ensure its extended importance, sustainable management practices and

conservation efforts are essential to protect the species and its habitat for future genera-

tions.

In many European regions, cockle populations have been suffering from periodic mass

mortalities with increasing frequency and intensity in the last decades [33, 34]. The great

variability of effectives in the populations has serious consequences for natural stocks

[33]. Emergent diseases, overfishing, inefficient management and degradation of the en-

vironmental conditions have been pointed as the main drivers of cockles’ production de-

cline that leads to high economic and ecological impacts. This scenario has severe con-

sequences for the social structure of coastal communities, and for the wider ecosystem

services and societal benefits provided by cockles. In addition to anthropogenic influ-

ence, cockle population dynamics are naturally controlled by abiotic and biotic factors

such as temperature or parasitism, respectively.

In fact, from prokaryotic to eukaryotic species, it is recognized that cockles are hosts to

a wide variety of parasites and diseases [35, 36]. The infection of some of these parasites

leads to sub-lethal impacts in the host. However, high prevalence and abundance out-

breaks can occur and devastatingly impact the host wild populations, related fisheries,

and aquaculture industries [37]. There are several studies demonstrating the effect of

parasites on cockles individuals or population dynamics. Nevertheless, the factors that

trigger parasites abundance are still unclear. Some studies predict that in a climate change

scenario, marine diseases are likely to become more frequent and severe [38, 39]. Many

studies have been conducted on environmental abiotic variables and their use to predict
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parasite abundance and prevalence. Nonetheless, results are still unresolved with conclu-

sions being regionally dependent and/or variable according to the host/parasite model

used. For instance, while studying trematode parasites in their bivalve host, some au-

thors described higher parasite prevalence in the case of increased salinities [40], but the

reverse was reported as well [41]. Additionally, these studies occasionally include geo-

graphical and temporal data [42, 43]. Locations or years that are closest to one another

are anticipated to have less parasite variation than years that are further apart. The same

is anticipated for years or areas that exhibit comparable abiotic circumstances. However,

the sampling effort or the fact that there are issues with the counting procedures that have

previously been highlighted might make it difficult to understand the data.

In order to forecast outbreaks of parasite prevalence and abundance, it is of uttermost

importance to investigate and analyse how environmental variables affect parasite preva-

lence and abundance. Nevertheless, as was already mentioned, the modelling of this

kind of data displays several challenges. In that regard, employing the edible cockle C.

edule and the parasite community infecting this bivalve as host-parasite model, the major

objectives of this research are the study of regression models for counting data, namely

for data with a large percentage of zeros, and their application to ecological parasitology

data, specifically, identifying the main drivers of parasite infection.

1.3 Thesis Structure

This project was divided into several chapters, with a brief introduction to the topic to

be addressed and a description of the chapter’s content at the beginning of each chap-

ter. Chapter 1 – Introduction presents an introductory contextualization regarding the

regression models for count data and their challenges, the importance of bivalves and the

objectives of this project. Chapter 2 – Count Data includes the theoretical basis for gener-

alized linear models and zero-inflated models, which supports the main methodologies

addressed in this thesis. The regression models used in modelling count data and the lo-

gistic regression are discussed in detail in this chapter. Chapter 3 – R displays the different

libraries available on R software to deal with Generalised Linear (Mixed) and Generalised

Additive (Mixed) Models and their functionalities. Chapter 4 – Application to Ecolog-

ical Parasitology Data encompasses the entire data pre-processing process, descriptive

analysis of the same and application of the portrayed methodology. Chapter 5 –Model

Formulation will present the results obtained from the application of the methodologies
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portrayed in the previous chapters Chapter 6 – Final Remarks will cover all the conclu-

sions drawn from this project, along with suggestions and/or problems to be addressed

in future works.



Chapter 2

Count Data

Count data, as the name suggests, comprise integer values that result from counting. They

can be accounted for by a random variable often taking values starting at zero. However,

theoretically, any positive integer could serve as the lower boundary.

Models are simplified representations of reality, and they can be deterministic or prob-

abilistic. In statistical modelling, the latter is prevalent, incorporating probabilistic com-

ponents [44]. In practical scenarios, researchers often aim to analyse how one or more

explanatory variables, measured in units like individuals or objects, influence a response

variable or outcome. This analysis is very often conducted using regression models [8].

The classical statistical model for regression is the linear model [45]. This model ad-

dresses the conditional mean of the response as a linear combination of explanatory vari-

ables and assumes a normal distribution for the errors. However, in certain cases, lin-

earity and normality may not be realistic, and no transformations can make them valid.

Modelling count data is such a situation. These models are a specific category of discrete

regression models. To address situations not fitting the linear model framework, general-

ized linear models were introduced [9]. These, assume the response follows a distribution

from the exponential family, and establish a potentially non-linear relationship between

the response’s average and a linear combination of explanatory variables, through an

adequate link function. Estimation in these models relies on the maximum likelihood

method, with iterative numerical techniques used to maximize the likelihood function.

In this chapter, we explore count data distributions, such as the Poisson, Negative

Binomial, Generalised Poisson and Binomial, and generalised linear models.

7
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2.1 Poisson distribution

The reference probabilistic model, and often the first choice for count data, is the Poisson

model. The Poisson distribution is a probability distribution that describes the number

of events that occur in a fixed interval of time or space when these events occur indepen-

dently at a constant rate [8]. A random variable Y follows a Poisson distribution with

parameter λ, P(λ), if its probability function is given by

P(Y = y) =
e−λλy

y!
, y = 0, 1, 2, . . . , (2.1)

It can be easily shown that E[Y] = λ.

The primary property of the Poisson model is equidispersion, i.e., the variance of the

counts is the same as their mean value. However, the property of equidespersion may be

violated by the data, meaning that over- or underdispersion is often encountered in real

events, requiring the use of different distributions that do not rely on this assumption.

Another key property of the Poisson distribution is its additivity, i.e, the sum of a finite

number of independent Poisson-distributed random variables, is also Poisson-distributed.

Mathematically, if you have random variables Y1, Y2, . . . , Yn, each of which follows a Pois-

son distribution with parameters λ1, λ2, . . . , λn, respectively, and these random variables

are independent from each other, then the sum Y = X1 + X2 + . . . + Xn follows a Poisson

distribution with a parameter equal to the sum of the individual parameters:

Y ∼ P(λ1 + λ2 + . . . + λn)

The Poisson distribution is characterised in several ways, but two in particular stand

out, namely the Poisson as the Law of Rare Events and the Poisson Counting Process [8].

The Law of Rare Events applies when the counts occur in a large number n of in-

dependent Bernoulli trials with the success probability π of each trial being small. The

Poisson probability distribution corresponds to the limiting case n → +∞ and π → 0,

with nπ = λ > 0 constant.

In turn, the Poisson Counting Process characterizes complete randomness, and ex-

tends the Poisson distribution to describe events occurring over continuous time inter-

vals, assuming events happen randomly and independently.

A counting process N(t) can be defined as a count of events up to time t, where N(t)

is a nonnegative, integer value that must meet the property that N(s) ≤ N(t) if s ≤ t,
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and N(t)− N(s) is the number of events in the interval (s, t). If λ is the constant rate of

occurrence λ of the event of interest and N(s, s + h) is the number of occurrences in the

time interval (s, s + h). Then, N(s, s + h), for nonlimit h, can be shown to follow a Poisson

distribution with mean λh:

P[N(s, s + h) = r] =
e−λh(λh)r

r!
r = 0, 1, 2, . . . (2.2)

Normalizing the length of the exposure time interval to be unity, h = 1, leads to the

Poisson density P(λ).

In Figure 2.1 it is possible to observe examples of various instances of the Poisson

distribution corresponding to different mean, (µ), values.

mean = 1 mean = 2.5 mean = 5

0 2 4 6 0 5 10 0 5 10 15 20

0.0

0.1

0.2

0.3

FIGURE 2.1: Poisson distribution for various mean (µ) values.

2.2 Negative Binomial

When dealing with count data that exhibits overdispersion, the most commonly used

probability distribution is the Negative Binomial distribution. The Negative Binomial
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distribution is a probability distribution that describes the number of Bernoulli trials re-

quired for a specified number of successes to occur. The Negative Binomial distribution

has two parameters: the mean (µ) and the dispersion parameter (k). The mean represents

the average count, and the dispersion parameter controls the level of overdispersion [10].

A random variable Y follows a Negative Binomial distribution with parameters k and p,

Y ∼ NB(k, p),

if Y represents the number of failures previous to k successes, in a set of independent

events with the same probability of success, p. The probability function of Y is given by

P(Y = y) =
(

y + k − 1
k − 1

)
· (1 − p)y · pk (2.3)

There are several descriptions of the Negative Binomial, mostly depending on the

variance definition, however in this work the focus will fall on two in particular: the

linear Negative Binomial (NB1) and the traditional Negative Binomial regression model,

the quadratic Negative Binomial (NB2).

The above definition is NB1(k, p). It can be shown that

E(Y) = k(1 − p)/p (2.4)

and,

Var(Y) =
1
p
· E(Y)

= (1 + α) · E(Y)

= E(Y) + αE(Y)

(2.5)

for α = 1
p − 1. In particular, the variance is linear on the mean.

The quadratic negative binomial distribution (NB2) is an example of a Poisson-gamma

mixture distribution. More precisely, Y ∼ NB2(µ, α) if Y ∼ P(µV) with V ∼ Γ( 1
α )

In this case, the probability mass function for the NB2(µ, α) distribution is given by:

P(Y = y|µ, α) =
Γ(y + 1

α )

Γ(y + 1) · Γ( 1
α )

·
(

1
1 + αµ

) 1
α

·
(

αµ

1 + αµ

)y

=

(
y + 1

α − 1
1
α − 1

)(
1

1 + αµ

) 1
α
(

αµ

1 + αµ

)y

α > 0, 1, 2, . . .

(2.6)

The Poisson distribution is obtained as a limit distribution of the Negative Binomial

distribution when α = 0.
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By transforming k = 1
α and p = 1

1+αµ we obtain

P(Y = y|k, µ) =

(
y + k − 1

k − 1

)
pk(1 − p)y (2.7)

Showing the equivalence between the NB2 and NB1 formulations. It can be shown that, if

Y ∼ NB2(µ, α), then E(Y) = µ and Var(Y) = µ + αµ2 (or Var(Y) = µ + µ2

k ). In particular,

the variance is quadratic on the mean.

The Figure 2.2 displays examples of Negative Binomial distributions for different val-

ues of mean, (µ) and k. As k increases in relation to µ2, the term µ2

k tends towards zero,

resulting in the convergence of the Negative Binomial distributions towards a Poisson

distribution (where Var(Y) = µ).

mean = 1 mean = 2.5 mean = 5

k = 0.1

k = 1

k = 100

0.0 2.5 5.0 7.5 10.0 0 5 10 15 20 0 10 20 30

0.0

0.2

0.4

0.6

0.8

0.0

0.1

0.2

0.3

0.4

0.5

0.0

0.1

0.2

0.3

FIGURE 2.2: Negative Binomial probability distribution for various mean (µ) and k val-
ues.
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Of note, we mention here that a Negative Binomial distribution can only model overdis-

persed phenomena, not underdispersion.

2.3 Generalised Poisson

Similar to the Negative Binomial distribution, there are other distributions that enable the

modelling of overdispersion of count data. The Generalised Poisson (GP) distribution is

one of those distributions. This distribution is a flexible extension of the Poisson distri-

bution and, in addition to accommodating data with overdispersion, it also permits the

modelling of underdispersed data [46].

Generalised Poisson is a two-parameter discrete distribution. One of the parameters

measures the location and the other measures the dispersion. The distribution is uni-

modal, and it can be skewed to the right or the left. It approaches the normal distribution

when the location parameter gets very large [11].

A discrete random variable Y is said to follow a Generalised Poisson distribution with

parameters θ and λ

Y ∼ GP(θ, λ)

if its probability distribution is given by

P(Y = y) =


θ(θ + λy)y−1e−θ−λy/y!, y = 0, 1, . . .

0, for y > m when λ < 0.
(2.8)

and zero otherwise, where θ > 0, max (−1,−θ/4) ≤ λ < 1 and m is the largest positive

integer for which θ + mλ > 0 when λ is negative. The probability function reduces to

the Poisson distribution when λ = 0. The parameters θ and λ are independent, but the

lower limits on λ and m ≥ 4 are imposed to ensure that there are at least five classes with

nonzero probability when λ is negative [11].

Contrarily to the distributions described so far, the Generalised Poisson distribution

belongs to the Lagrangian distributions L( f , g, x), where f (z) = eθ(z−1), θ > 0, and g(z) =

eλ(z−1), 0 < λ < 1.

The mean of the Generalized Poisson distribution is given by

E[Y] =
θ

1 − λ
(2.9)
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and the variance can be defined as

Var[Y] =
θ

(1 − λ)3 (2.10)

When λ = 0 the GP distribution reduces to the Poisson distribution. When λ > 0 it

indicates that the data have higher variability than what would be expected in a Poisson

distribution (overdispersion), while λ < 0 occurs when data is underdispersed, meaning

that the data have lower variability than in a Poisson distribution.

Examples of the Generalised Poisson distribution are discernible in Figure 2.3. As

previously stated, when values of λ are closer to 0, the Generalised Poisson distribution

tends to a Poisson distribution. For λ values greater than 0, the data exhibits overdisper-

sion and is more akin to a Negative Binomial distribution. Figure 2.3 was created in R

using the VGAM package, which unfortunately does not support nonnegative values of λ,

making it impossible to portray underdispersed data in the plot.

theta = 0.5 theta = 1.25 theta = 2.5

lambda = 0.1

lambda = 0.5

lambda = 0.8

0.0 2.5 5.0 7.5 10.0 0 10 20 30 40 0 5 10 15 20

0.0

0.2

0.4

0.6

0.0

0.2

0.4

0.6

0.0

0.2

0.4

0.6

FIGURE 2.3: Generalised Poisson distribution examples for different λ and θ values.
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2.4 Binomial

For situations that only two possible outcomes (success or failure) are possible, the Bi-

nomial distribution is a valuable and the go-to probability distribution [47, 48]. It is a

fundamental distribution in statistics and probability theory that models the number of

successes in a fixed number of independent experiments. More precisely, that a random

variable Y follows the Binomial distribution B(n, π), with parameters n and π, if Y counts

the number of successes in n Bernoulli trials whenever the probability of success is π.

The probability function of Y is given by:

P(Y = y) =
(

n
y

)
πy(1 − π)n−y (2.11)

In this case,

E(Y) = nπ (2.12)

and,

Var(Y) = nπ(1 − π) (2.13)

As in Poisson distribution, the Binomial distribution does not have a dispersion pa-

rameter.

In Figure 2.4 it is possible to observe different Binomial distributions for different prob-

abilities of success, π, and different number of successes in Bernoulli trials, n. For a small

π (¡ 0.5) the distribution is asymmetrical with a positive skewness, whereas, for large

probabilities of success (π ¿ 0.5) the Binomial distribution is positively skewed. When π

is equal to 0.5, the distribution is symmetrical.
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N = 5 N = 10 N = 20
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FIGURE 2.4: Binomial distributions for different number of successes, n, and probabilities
of success (µ).

2.5 Generalised Linear Models

Generalised Linear Models (GLMs) [49] are a class of regression models that extend the

ordinary linear model to a broader range of relationships between a response variable and

its predictors. Opposed to linear regression models, which directly model the conditional

mean of the response through a linear combination of the predictors, GLMs use the lin-

ear predictor to model a transformation of the conditional mean of the response [9, 50].

The distribution of the conditional response is also allowed to vary in a family of distri-

butions, which include the normal distribution as a special case. GLMs consist of three

components: the random component, the linear predictor (or systematic component), and

the link function.
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2.5.1 Random Component

The random component specified the probability distribution of the response variable, Yi,

conditioned by a set of predictors X1, . . . , Xp, i.e., Yi|X1, . . . , Xp, stating that it has to be a

member of the exponential family of distributions.

2.5.1.1 Exponential Family

A random variable Y follows a distribution belonging to the Exponential Dispersion Model

family (EDM) [51] if it has a probability (density) function that can be modelled into the

form of

P(Y = y|θ, ϕ) = exp

(
θy − b(θ)

a(ϕ)
+ c(y, ϕ)

)
where θ is the canonical parameter, ϕ is a dispersion parameter, and a(·), b(·), and c(·) are

functions that vary depending on the exponential family. Specifically, a(·) is a function

that depends only of the dispersion parameter ϕ, b(·) is a function that depends on the

vector of location parameters θ and c(·) depends on the random variable, Y, and the

dispersion parameter, ϕ.

For instance, the Poisson distribution belongs to the EDM family since it can be written

as
P(Y = y|θ) = θy

y! exp(−θ)

= 1
y! exp(y log(θ)− θ)

In this case, a(ϕ) = 1, b(θ) = expθ , and c(y, ϕ) = −loge(y!).

The Negative Binomial and Generalised Poisson distributions do not belong to the

EDM family. However, if the dispersion parameter producing the overdispersion (or un-

derdispersion) is treated as a known, fixed constant, it can be used as a member of the

EDM family [9, 52].

2.5.2 Linear Predictor (Systematic Component)

The linear predictor (or systematic component) represents the linear structure η produced

by the predictors (exploratory variables):

η = β0 +
p

∑
j=1

Xjβ j

where, β = (β0, β1, . . . , β j) is the unknown vector of regression parameters.
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2.5.3 Link Function

The link function is the bridge between the linear predictor and the conditional expected

value of the response variable. It transforms the unbounded and linear scale of the linear

predictor, η, into a suitable range for the response variable. The link function is denoted

by g(·) and we have

g(E(Y|X1, X2, . . . , Xp)) = η

The choice of the link function ensures that the predicted values from the linear pre-

dictor are on the appropriate scale for the chosen distributions. Thus, different GLMs use

different link functions depending on the probability distribution applied. For example

Gaussian distributionidentity link : g(µ) = µ

Poisson distributionlog link : g(µ) = log(µ)

Binomial distributionlogit link : g(µ) = log( µ
1−µ )

where, for brevity, we use µ = E(Y|X1, X2, . . . , Xp).





Chapter 3

R Functionalities

R [53] is a versatile and powerful open-source programming language that it is primarily

used for statistical computing and data analysis. Due to a strong focus on extensibility, en-

abling the development and incorporation of a vast variety of packages and extensions, R

software is constantly evolving. As such, this flexibility has led to R becoming an increas-

ingly popular tool for the analysis of different data-related tasks.

In this project, we will be dealing with longitudinal count data in a regression frame-

work, which will require the inclusion of random effects for the modelling of the time-

dependencies across different observations from the same experimental unit. In R, the

fitting of such mixed-effects regression models is not an easy task. The inexistence of

closed-form solution led to the development of several numerical approximations, which,

in turn, were included in different R-packages. In this chapter we summarize the most

well-known such packages and the different functionalities of each will be compared and

contrasted. Additionally, a more thorough exploration of the recently developed R pack-

age DHARMa will be carried out due to its value in interpreting and validating the models

that have been fitted to the data.

3.1 R packages

Several R packages are available for fitting Generalised Linear Mixed Models (GLMMs)

and Generalised Additive Mixed Models (GAMMs). These packages offer a distinct range

of capabilities and features, enabling researchers to tailor their modelling approaches to

the specific requirements of their data. The R packages nlme [54, 55], lme4 [56], GLMMadaptive

[57], glmmML [58], glmmADMB [59], glmmTMB [60], mgcv [61], gamm4 [62], VGAM [63], gamlss [64],

19
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MCMCglmm [65], brms [66], R-INLA [67], R2jags [68], and pscl [69] are particularly notewor-

thy for their contribution to count data analysis in a regression framework.

Starting with nlme and lme4, these two versatile R packages are the most widely used

for fitting GLMMs. Both packages employ the Restricted Maximum Likelihood (REML)

criterion with Laplace approximation as their default method for GLMM fitting, while

also allowing for the specification of Maximum Likelihood (ML) estimates. The main

differences observed between them pertain to the available link functions. For instance,

nlme cannot be employed to fit outcomes with non-Gaussian distributions. In contrast,

lme4 can be used to fit mixed-effects regressions with a (conditional) response following

a Binomial, Poisson or Negative Binomial distribution. Additionally, nlme offers the ca-

pability to specify the variance-covariance matrix for the random effects, a feature not

supported by lme4. Nevertheless, both packages lack the ability to handle zero-inflated

and hurdle models.

For data that requires the use of zero-inflated models, more suitable options include

packages like GLMMadaptive, glmmML, glmmADMB, or glmmTMB. GLMMadaptive is a package

concerned with fitting GLMMs using an adaptive Gauss-Hermite quadrature approxima-

tion, facilitating flexible modelling of non-Gaussian response distributions. It supports a

broad range of variance and covariance structures for random effects, making it appro-

priate for a wide range of data types. glmmML, on the other hand, estimates GLMMs using

maximum likelihood and is particularly proficient at fitting models with binomial and

Poisson distributions. While it is user-friendly and efficient, it may not accommodate as

many distributional assumptions as other packages. glmmADMB is an R package that esti-

mates GLMMs using the ADMB (Automatic Differentiation Model Builder) software. It is

ideal for models with complex random effect structures and non-linear predictor terms.

For likelihood estimation, ADMB employs a Laplace approximation, which can yield ac-

curate results but may be computationally intensive for big datasets. However, it is not-

ing that glmmADMB is not suitable for models where the degree of zero-inflation varies

across observational units, making it most appropriate for scenarios where all observa-

tional units share an equal probability of producing structural zeros. glmmTMB offers an

alternative to the glmmADMB package, using a Template Model Builder (TMB) that is more

flexible and efficient in computing GLMMs, thereby reducing computational demands. It

approximates the probability with a Laplace approximation, which can be highly accu-

rate for diverse response distributions, and uses the ML estimator. Nevertheless, glmmTMB
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lacks an alternative option for REML or Gauss-Hermite quadrature estimations to inte-

grate over random effects, which could lead to suboptimal performance when limited

information is available for each random effect level.

In a Bayesian framework, the most suitable R packages for fitting GLMMs include

pscl, MCMCglmm, brms, R-INLA, or R2jags. The widely used pscl package excels in fitting

zero-inflated and hurdle Generalised Linear Models by employing Maximum Likelihood

estimation to incorporate predictor variables in the zero-inflation component. However,

one limitation of the pscl package is its inability to account for correlation within sam-

pling units arising from repeated samples (mixed effects). Neglecting random effects in

the modelling process can lead to overly optimistic statistical inferences, making them less

conservative. MCMCglmm and brms packages are capable of fitting zero-inflated GLMMs

with predictors of zero-inflation, albeit they employ different criterion methods for the

Markov chain Monte Carlo (MCMC) sampling. MCMCglmm utilises the Metropolis-Hastings

updates or the slice sampling method as the deviance information criterion, while brms

is built on the Stan programming language, implementing Hamiltonian Monte Carlo and

the No-U-Turn Sampler (NUTS). One of the primary issues with Metropolis-Hastings al-

gorithms is their relatively slow convergence for high-dimensional models, compared to

the faster convergence of Hamiltonian Monte Carlo algorithms for the same type of data.

R-INLA shares a similar limitation with glmmADMB in terms of variable degrees of zero-

inflation across observational units. The R2jags package implements Bayesian analysis

of GLMMs in JAGS, including monitoring convergence of MCMC models using Rubin

and Gelman Rhat statistics and implementing parallel processing of MCMC models for

multiple chains.

Finally, for GAMMs, the most commonly used packages include mgcv, gamlss, VGAM,

and gamm4. The gamlss package offers flexibility by fitting Generalised Additive Models

with predictors on all parameters of a distribution, covering a wide range of zero-inflated

and hurdle distributions. On the other hand, mgcv can fit zero-inflated GAMMs, but only

when using a Poisson distribution for the predictors of zero-inflation.

The R packages utilising these methods, as previously described, are presented in Ta-

ble 3.1, with a description and comparison of the main functions that each package pro-

vide.

R packages and main functions available in R for GLMM and GAMM
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TABLE 3.1: R packages and main function available for Generalised Linear and Gener-
alised Additive Mixed Models (GLMMs & GAMMs) computing in R.

Packages Functions Description Approach RefFrequentist Bayesian

nlme

lme() Fits a linear mixed-effects model, allowing for nested random effects. The within-
group errors are allowed to be correlated and/or have unequal variances.

✓ [54, 55]
nlme() Fits a non-linear mixed-effects model, allowing for nested random effects. The within-

group errors are allowed to be correlated and/or have unequal variances.
gls() Fits a linear model using generalised least squares.
gnls() Fits a non-linear model using generalised least squares.
summary.’function’() Summarises the fitted object information for the function of interest. For example,

summary.lme provides information about the coefficients of the fitted model.
corGaus() Constructs a Gaussian spatial correlation structure that needs to be initialised.
corLin() Constructs a Linear spatial correlation structure that needs to be initialised.

lme4

lmer() Fits Linear Mixed Models

✓ [56]

nlmer() Fits Non-linear Mixed Models
glmer() Fits a Generalised Linear Mixed Model
glmer.nb() Fits a Generalised Linear Mixed Model with Negative Binomial distribution
fixef() Extracts fixed effects estimates
getME() Extract components from a fitted mixed effects model

GLMMadaptive
mixed model() Model-fitting function with four required arguments (fixed: formula for fixed effects;

random: formula for random effects; family; and data) ✓ [57]

effectPlotData() Predictions with confidence interval for constructing effects plots

glmmADMB

glmmadmb() Fits Generalised Linear Mixed Models and extensions.

✓ [59]coefplot2() coefplot2() belongs to the coefplot2 package. However, this function can read glm-
mADMB objects to plot coefficients.

coef() Extract fixed effect coefficients.
ranef() Extract random effect coefficients.

glmmTMB

glmmTMB() Fits a generalised linear mixed model (GLMM) using Template Model Builder (TMB).

✓ [60]

fixef() Extract fixed-effects estimates
ranef.glmmTMB() Extract random-effects estimates
confit.glmmTMB() Calculate confidence intervals
getME.glmmTMB() Extract Generalise Components from a Fitted Mixed Effects Model
dtruncated poisson Probability function for k-truncated Poisson distribution.
dtruncated nbinom2 Probability function for k-truncated Negative Binomial distribution.

pscl

hurdle() Fits an hurdle regression models for count data via maximum likelihood

✓ [69]hurdletest() Wald test of the null hypothesis that no zero hurdle is required in hurdle regression
models for count data.

zeroinfl() Fits a zero-inflated regression models for count data via maximum likelihood.
predprob() Compute predicted probabilities from fitted models

MCMCglmm

MCMCglmm() Markov chain Monte Carlo Sampler for Multivariate Generalised Linear Mixed Models
with special emphasis on correlated random effects arising from pedigrees and phylo-
genies ✓ [65]

summary.MCMCglmm() Summarises GLMM fits from MCMCglmm
predict.MCMCglmm() Predicted values for GLMMs fitted with MCMCglmm
residuals.MCMCglmm() Return the residuals for a GLMMs fitted with MCMCglmm
simulate.MCMCglmm() Simulated response vectors for GLMMs fitted with MCMCglmm

brms

brm() Fits a Bayesian generalized (non-)linear multivariate multilevel models using Stan for
full Bayesian inference. ✓ [66]

arma() Set up an autoregressive moving average (ARMA) term of order (p, q) in brms. it exists
purely to help set up a model with ARMA terms.

conditional effects() Display conditional effects of one or more numeric and/or categorical predictors in-
cluding two-way interaction effects.

R-INLA

inla() Provides a method of fitting GLM and GLMMs models through a bayesian approach
✓ [67]summary.fixed Display the fitted model summary for the fixed effects

summary.random Display the fitted model summary for the random effects

mgcv

gam() Fits a Generalised Additive Model to data.

✓ [61]gamm() Fits a Generalised Additive Mixed Model to data.
bam() Fits a Generalised Additive Model to a very large data set.
vis.gam() Produces plot views of the gam model predictions.

gamlss

gamlss() Returns an object of class ”gamlss”, which is a generalized additive model for location
scale and shape

✓ [64]gamlss.MX() Fits a K fold non parametric mixture of gamlss family distributions
gamlss.MX() Fits a K fold non parametric mixture of gamlss family distributions
gamlssNP() This function fits a finite (or normal) mixture distribution where the kernel distribution

can belong to any gamlss family

VGAM

vglm() Fits a generalized linear model (RR-VGLM)

✓ [63]vgam() Fits a vector Generalised Additive Model
rrvglm() Fits a reduced-rank vector generalized linear model (RR-VGLM)
residualsvglm Displays the residuals for a vector generalized linear model (VGLM) object.

gamm4

gamm4() Fits the specified generalized additive mixed model (GAMM) to data
✓ [62]object$gam Summarises the fitted gamm results.

object$mer Summarises the mixed model part.

During this project, data modelling was performed using functions available mainly

from the glmmTMB and gamm4 packages. These packages were chosen to fit the data to

generalised linear mixed models and generalised additive mixed models, respectively,

due to the number of distributions available, allowing for a simple comparison between

the models.
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3.2 DHARMa

DHARMa (Diagnostics for HierArchichal Regression Models) [70] is a recent R-package, in-

troduced in 2016, designed to assess the goodness-of-fit, and diagnose potential problems

in hierarchical (or multilevel) regression models.

Residuals analysis is a crucial step in regression modelling to assess model assump-

tions, identify potential issues, improve model performance, and validate the model’s

reliability. It provides valuable insights about the quality and appropriateness of a regres-

sion model for the data at hand. For the linear model, for instance, in the display of the

residuals vs. fitted-values, the points should fluctuate arbitrarily around the horizontal

0-line without exhibiting any pattern, as that structure is coherent with homocesdastic-

ity. For instance, the fitted vs. residual plot of two separate linear regressions is shown

in Figure 3.1. In the first plot, as would be expected in a homoscedastic linear model,

the residuals and fitted values are uncorrelated and the points are randomly dispersed

around the horizontal line at y = 0. Even though the conditional mean of the residuals

is still close to 0, the second plot displays heteroskedasticity (heterogenous variance of

errors), as the spread of the residuals grows along the x-axis.
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FIGURE 3.1: Example of Residuals vs. fitted plots for linear model.
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The interpretation of the residual plots, however, is one of the challenges when using

generalised linear (mixed) models. Due to the discrete nonnegative nature of count data,

for example, the residual plots from Poisson regressions are much more intricate than

those from linear models. Quite often, the interpretation of the residuals plot of GLMMs

is almost impossible and thus, unreliable.

A good example is provided by the developer of the DHARMa package, comparing the

interpretations from residual plots corresponding to two Poisson Mixed Model, one lack-

ing a quadratic effect and one that fits the data perfectly (respectively top and bottom

plots in Figure 3.2). Looking closely, it is possible to identify a slight overdispersion on

the range of the top plots’ residuals. However, there is no way to distinguish between the

need to accommodate for an overdispersion correction, or to add a quadratic effect.

FIGURE 3.2: Comparison of the residuals between a poor fitting Poisson Mixed Model
(top) and a good fitting Poisson Mixed Model (bot).

The DHARMa package was developed with the intention to solve the readability is-

sues with residuals plots for generalised linear (mixed) models, as well as producing

diagnostic tools for verifying model assumptions and validation. The package uses a

simulation-based approach to create a readily interpretable scaled (quantile) residuals for
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fitted (generalised) linear mixed models, which can be interpreted as intuitively as residu-

als from a linear regression. Equivalently, the package computes the order of the empirical

quantile of the observation within the simulated data. This will be defined as the residual

for that precise observation. It will clearly be within the range 0 to 1 (Figure 3.3).

FIGURE 3.3: Visual representation of the residuals standardization steps. Adapted from
the DHARMa vignette.

In order to evaluate the accuracy of a fitted statistical model, a specific process is

employed. First, a new simulated response data is generated from the fitted model for

each observation. Then, for each individual observation, the empirical cumulative den-

sity function is computed, using the simulated data. Notably, a residual of 0 for a given re-

sponse observation indicates that all simulated values surpass the observed value, whereas

a residual of 0.5 suggests that half of the simulated values are larger than the observed

value.

This simulation has the particular benefit of ensuring that these residuals consistently

follow a uniform distribution, irrespective of the type of distribution used for the fitted

model (whether it is Poisson, Negative Binomial, Binomial, or even if it involves random

effects (mixed model)), provided that the model is correctly specified. This is grounded in

the principle that if the observed data originates from the same data-generating process as

the simulated data, all cumulative distribution values should have an equal probability
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occurring. Consequently, the distribution of residuals should remain flat, regardless of

the underlying model structure.

Additionally, DHARMa also provides several diagnostic functions and tools that can be

calculated directly on the fitted model object. A number of these functions that are partic-

ularly relevant for model validation are listed and described below:

• simulateResiduals(): This function generates simulated residuals from fitted mod-

els to assess the goodness of fit. These simulated residuals can be used to compare

them with the residuals from the actual fitted model.

• plot: DHARMa provides several plotting functions to visualise the goodness of fit,

including plot(), plotResiduals(), plotQQunif(), plotSimulatedResiduals(),

plotConventionalResiduals(), and plot.DHARMa(). These plots help to evaluate

the assumptions of your model.

• testDispersion(): This function tests the dispersion of the residuals, determin-

ing if the variance structure of the model is appropriate. As default, this function

applies the non-parametric test developed in AER package. This test compares the

variance of the simulated residuals to the observed residuals. Alternatively, DHARMa

can implement a Perason’s chi-squared test (χ2) if specified so.

• testZeroInflation(): This function compares the observed number of zeros with

the anticipated number of zeros from simulations to see whether the fitted gener-

alised linear model can cope with the quantity of zeros on the dataset using the

Kolmogorov-Smirnov test.

• testOutliers(): It conducts an outlier test to identify influential observations in

the data. It offers two options (binomial and bootstrap) to test for the outliers. The

binomial test assumes that the model is accurate and do not reject the null hypoth-

esis when the probability of an observation being greater than all simulations is

1/(nSim + 1), following a Binomial distribution. This test, however, is more suit-

able for continuous distributions. The bootstrap method implements an alternative

method for integer-valued distributions.
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• testQuantiles(): Using a quantile test (a non-parametric t-test), the function fits

quantile regression on the residuals and compares the quantile location to the ex-

pected location (of the uniform distribution). This function returns a p-value, for the

quantile in the plot, adjusted for multiple comparisons using Bejamini and Hochberg.

• testTemporalAutocorrelation(): If the data is a time series or has temporal struc-

ture, this function runs a Durbin-Watson test on the uniformly scaled residuals, to

checks for temporal autocorrelation, and plots the residuals against time.

• createData(): This function generates example data for simulating residuals.

• getResiduals(): Retrieves the residuals from the model for further analysis.

• getSimulations(): Retrieves the generated simulations residuals from a model in

a standardized way

• getFixedEffects(): Extract and returns the fixed effects of a supported model.

Although DHARMa is intended to provide support for a wide variety of R packages

that are compatible with Generalised Linear Mixed Models (GLMMs), namely MASS, lme4,

mgcv, gamm4, glmmTMB, spaMM, GLMMadaptive, phyr, and brms, it is important to note that

not all models within these packages are fully compatible with DHARMa. In response to

that, DHARMa offers the checkModel() function, which serves the purpose of verifying

whether the fitted model is indeed supported.

However, in situations where the applied models, derived from the data, and/or pack-

ages are not compatible with DHARMa, it is still feasible to conduct a thorough residual anal-

ysis using DHARMa. To accomplish this, the user must first generate a new set of simulated

response data and subsequently create a DHARMa object by utilizing the createDHARMa

function. This approach ensures that even when the R package being applied is not sup-

port, DHARMa can still facilitate the essential analysis of residuals.

Finally, it is essential to grasp and interpret the plots generated by DHARMa. Figure 3.4

illustrates the discernible patterns associated with models suffering from overdispersion

issues. As depicted, the quantile-quantile plot for the uniform distribution reveals a de-

parture from uniformity (low expected values fall below the reference line, whereas high

expected values are above it) and an excess of residual values at the extremes (around 0

and 1) in the residual vs. expected plot.
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FIGURE 3.4: DHARMa plots for overdispersed data. Plots adapted from DHARMa package
vignette

Conversely, Figure 3.5 presents the anticipated patterns observed in underdispersed

models. The underdispersion problem shows up as a deviation from uniformity (opposite

pattern as overdispersion) in the quantile-quantile plot and an excessive concentration of

residual values around 0.5 in the residual vs. expected plot.

FIGURE 3.5: DHARMa plots for underdispersed data. Plots adapted from DHARMa package
vignette.

Nonetheless, it should be highlighted that the absence of a discernible residual pattern

does not conclusively establish that the model is correctly specified. Instead, it should be
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regarded as a working hypothesis, recognizing that DHARMa may not identify all structural

problems within the model. On the other hand, the presence of a significant residual

pattern does not necessarily render the model unfit for use. Furthermore, it is important

to assess the magnitude of the residual pattern when the uniform distribution is statisti-

cally rejected. In this context, significance reflects the signal-to-noise ratio rather than the

strength of the pattern itself. For models with substantial sample sizes, it is not uncom-

mon for residual diagnostics to demonstrate significance, even in the absence of severe

issues. Therefore, it is imperative for users to exercise their judgment in determining

whether deviations from the uniform distribution hold relevance for their analysis. Ulti-

mately, DHARMa’s purpose is to highlight disparities between observed and expected data,

leaving the responsibility of discerning whether these disparities pose issues for the anal-

ysis in the hands of the user.





Chapter 4

Application to Ecological

Parasitology Data

The data under study in this project was obtained as part of the COACH project – Cooper-

ative approach applied to conservation and management of cockles (http://coach.web.ua.pt).

The COACH project was funded by Fundação Oceano Azul and Oceanário de Lisboa through

the FUNDO para a Conservação dos Oceanos and developed by researchers from CESAM –

Centre for Environmental and Marine studies – at the University of Aveiro.

4.1 COACH project

The edible cockle Cerastoderma edule (Bivalvia: Cardiidae) is an indigenous, infaunal,

suspension-feeder bivalve living in semi-sheltered marine systems along the north-eastern

coast of the Atlantic Ocean [23, 25]. Due to their critical function in ecosystems, cockles

are an important ecological species [18, 20]. Moreover, cockles are the primary source of

income for many fishermen, particularly in Portugal [22]. In Aveiro, a Portuguese fish-

ing village bathed by the Ria de Aveiro coastal lagoon, cockles represent one of the most

important marine resources. The capture of this bivalve in the Ria de Aveiro can ex-

ceed 1000 tons per year. However, the global changes and the high harvesting pressure

are compromising the conservation of cockles’ population of Ria de Aveiro, contributing

to the observed declining of fishing stocks in recent years. In this sense, the COACH

project aims to promote the conservation of this important natural resource along with

the ecosystem services it provides while assuring its sustainable exploitation and the eco-

nomic and social development of the local community. This was achieved by gathering
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multifactorial information on the biology, habitat, and fishing of cockles in the Ria de

Aveiro, namely studying the effects and identifying the main abiotic factors influencing

the abundance and prevalence of parasites in cockles. For this purpose, 18 cockle’s beds

in the Ria de Aveiro were selected, covering the entire distributional range of this species

in this coastal system (Figure 4.1).

FIGURE 4.1: Study area. Geographical location of the 18 sampling sites along the Ria de
Aveiro coastal lagoon (Portugal). Figure created using ArcGIS software.

The Ria de Aveiro (40° 38’N, 8° 44’W) is a large coastal lagoon located on the North-

west coast of mainland Portugal. This highly intricate coastal system comprises an area



4. APPLICATION TO ECOLOGICAL PARASITOLOGY DATA 33

of approximately 83 km2, 45 km length and a width of 8.5 km [71]. It is divided into four

main channels (S. Jacinto / Ovar, Espinheiro, Ílhavo and Mira) that radiate from the ocean

mouth into several branches and ecosystems (mudflats, saltmarshes, freshwater marshes,

and alluvial forests). The Ria de Aveiro is connected to numerous rivers (Antuã, Boco,

Cáster, and Vouga), resulting in a strong horizontal gradient of salinity and water temper-

ature across the lagoon, experiencing semi-diurnal tidal cycles with amplitudes ranging

from 0.6 m to 3.2 m [72, 73]. Thus, Ria de Aveiro is one of the most significant biodiver-

sity hotspots of south-western Europe, being a Special Protected Area, protected by the

EU Birds Directive (79/409/CEE), and is a component of the Natura 2000 network (EU

Habitats Directive).

4.2 Sampling and Data collection

Sampling occurred monthly between June 2020 and May 2021 at 18 locations in the Ria de

Aveiro (Figure 4.1). At each location in each month, cockles were harvested at low tide,

from the intertidal zone, by collecting the top 5 cm layer of sediment of six quadrats of

0.25 m2 and sieving through a mesh sieve with 1 mm openings. The density (d) of cockles

per square meter was then calculated.

d =
total number of cockles

6 quadrats × 0.25 m2 (4.1)

Each cockle’s shell length (SL) was measured with a calliper to the lowest mm. When-

ever possible, fifteen cockles representing the SL of each sampling site were dissected.

Dissected cockles were squeezed between two glass slides and observed under a stere-

omicroscope. Following the available identification keys [35, 74, 75], all macroparasites

were identified up to the species level. Parasite species identified in each of the observed

cockles were counted to assess parasite abundance (number of parasites per cockle) and

prevalence (percentage of infected cockles) [76]. For some parasitic species, namely trema-

todes parasites using cockles as first intermediate host (sporocysts), only prevalence was

registered.

At the same time of cockle sampling, abiotic data was collected to characterize the

habitat. Two sediment samples from the sediment surface were taken from each sampling

site to perform grain-size analysis (MGS) and to determine total organic matter (TOM)

content. Sediment grain-size analysis (MGS) was conducted by wet sieving the silt and
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clay fraction (fin particles, diameter < 0.063 mm) and dry sieving the remaining sediment

fractions (sand and gravel). The median grain size was defined in ϕ. This value was

obtained through the mean value (P50) of the cumulative frequency of each fraction (ϕ =

− log2(P50)) [77]. Regarding TOM analysis, sediment was dried at 60 °C for 48 hours

before being pulverized to powder with a mortar and pestle. The difference between the

dried samples (about 1 g) and the combusted samples was used to calculate TOM content

[78]. Water temperature (°C), pH, salinity, dissolved oxygen (%, DO) and redox potential

(mV, Eh) were measured in the nearest water column using a handheld multiparameter

probe.

4.3 Dataset

The dataset obtained contained 18 cockle’s beds, 12 sampling months, 13 species of macropar-

asites (3 species of trematode sporocysts (Bucephalus minimus, Monorchis parvus and Gymnophal-

lus choledochus), 7 species of trematode metacercariae ((Himasthla elongata, H. interrupta,

H. quissetensis, Himasthla sp., Renicola roscovitus, Diphterostomum brusinae, Gymnophallus

minutus), two copepods ((Mytilicola orientalis and Hermannella rostrata) and one rhabdo-

coela (Paravortex cardii)), cockle’s shell length and condition index, and 8 abiotic variables

(salinity, dissolved oxygen, reduction-oxidation potential, pH and temperature of the wa-

ter and organic matter content and median grain size of the sediment) measured for each

of the cockle’s beds.

The dataset contained 2849 rows, each representing a cockle analysed in a particular

site and month, and 391 missing values. The missing values were caused by low cockle

density at the time of sampling, which prevented from collecting 15 cockles for analysis,

or due to sampling impossibilities, specifically at site 7 in the months of October and

December of 2020, and February and April of 2021 (Table 4.1).

For the analysis, parasites were divided into four groups based on the stages of their

life cycle (for trematode parasites) and the types of behaviours they exhibited. In this man-

ner, Gymnophallus minutus was separately grouped from remaining trematode parasites at

metacercariae stage. This separation is related to the fact that Gymnophallus minutus may

display some aggregation behaviour patterns in highly contrasted environments, as long

as first intermediate host (Scrobicularia plana) is present in the ecosystem [79]. Species

of trematode sporocysts represented another group, and the remaining parasites were
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TABLE 4.1: Number of analysed cockles per month (columns) and sampling site (rows)

1 2 3 4 5 6 7 8 9 10 11 12
1 15 15 15 15 15 14 15 15 15 6 15 15
2 15 15 15 15 15 15 15 15 15 15 15 15
3 15 15 15 15 15 15 15 15 15 15 15 15
4 15 15 15 15 15 15 15 15 15 15 15 15
5 15 15 15 15 15 15 15 15 15 15 15 15
6 15 15 15 15 15 15 15 15 15 15 15 15
7 15 15 15 15 0 15 0 15 0 15 0 15
8 15 15 15 15 15 15 15 15 15 15 15 15
9 15 1 4 1 1 1 0 0 0 0 0 15
10 15 15 15 15 15 15 15 15 15 15 15 15
11 15 15 15 15 15 15 15 15 15 15 15 15
12 15 15 15 15 15 15 15 15 15 15 15 15
13 15 15 15 14 15 15 15 15 15 15 15 15
14 15 15 15 15 15 15 15 15 15 15 15 15
15 15 15 15 15 15 15 15 15 15 15 15 15
16 15 15 15 15 15 15 15 15 15 15 15 15
17 15 15 15 15 15 15 15 15 3 2 15 15
18 10 0 1 5 0 3 1 0 0 0 1 6

grouped as “Other”. Thus, the final database consisted of 4 dependent variables and 9

explanatory variables (Table 4.2).

TABLE 4.2: Desciption of dataset variables

Variable Description Type of variable
Month Sampling Month Explanatory

Site Cockle bed sampling site Explanatory
Metacercariae Number of trematode parasites individuals at metacercaria

life stage per cockle
Dependent

Gymnophallus Number of emph{Gymnophallus minutus} individuals per
cockle

Dependent

Sporocysts Number of trematodes sporocyst species infecting cockles Dependent
Other Number of copepod and rhabdocoela species individuals per

cockle
Dependent

SL Shell length of the cockle (mm) Explanatory
Sal Salinity of the water at the sampling time Explanatory
DO Dissolved oxygen in the water column at the time of sample

(mg.l−1)
Explanatory

Eh Water column redox potential at the time of sample Explanatory
pH Water column pH at the time of sample Explanatory

Temp Water column temperature at the time of sample (◦C) Explanatory
TOM Sediment organic matter content (ϕ) Explanatory

In this project report, analyses will only be performed for the dependent variable

Metacercariae since this study is strictly academic and aims to learn the intricacies of the

modelling of count data with excess of zeros. All the following analyses were carried out

using R, version 4.3.1.



36 COUNT MIXED-EFFECTS REGRESSION MODELS IN PARASITE ECOLOGY

4.4 Descriptive Analysis

As previously described, this project aimed to analyse the effect of abiotic variables on the

abundance of parasites, in this case trematode parasites infecting cockles as second inter-

mediate host (metacercariae stage). Trematodes are common macroparasites in coastal

systems [80]. Their life cycle typically involves complex alternations between parasitic

and free-living stages, and multiple hosts. Free-swimming larvae, miracidia, hatches from

the egg and actively search for the first intermediate host, often molluscs. Inside the first

intermediate host, miracidia transform into sporocyst (or redia) and undergo asexual mul-

tiplication to form cercariae, free-living stage which are released into the water column.

Cercariae will look for the second intermediate host, that can vary from invertebrates

(e.g., molluscs) to vertebrates (e.g., fishes), and penetrates their tissue, transforming into

metacercariae. When the final host, a vertebrate, predates the second intermediate host,

metacercariae will mature into adult stage. In the final stage, adult trematodes sexually

lay eggs that are excreted through the definitive host’s faeces, restarting the cycle [81].

Understanding the behaviour of the data is important before fitting a model. There-

fore, the number of outliers, the relationship between variables and dependency, and the

quantity of zeros were all investigated as part of the data exploratory process. Figure 4.2

shows the Cleveland dot plot for all the relevant variables.

We begin the descriptive analysis using Metacercariae, the dependent variable. The

counts observed for the number of metacercariae infecting a cockle varied between 0 and

12. In total, 2472 non-infected cockles (with zero metacercariae) were observed, which

corresponded to approximately 86.7 % of the observations. One could think of starting

immediately by fitting a zero-inflated or hurdle model. However, we shall start from the

usual Poisson model, investigate the validity of its assumptions, and improve the model

whenever there are conditions that fail. This procedure of starting from the Poisson model

has been described in the literature [82]. Of the remaining cockles, most of the observa-

tions showed a single metacercariae (238 cockles, 86.7 %), 80 (8.4 %) were infected with

2 metacercariae and 31 (2.8 %) cockles displayed 3 metacercariae. Observations above 3

metacercariae per cockle represented each less than 1 % of total observations. None of

these larger counts looks too large or too extreme for the usual values found in the liter-

ature, however observations exceeding 3 metacercariae in this study are uncommon and

are thus potential outliers if issues arise. The bar plot with the number of counts and

respective percentages per number of metacercariae are represented in Figure 4.3.
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FIGURE 4.2: Cleveland dotplot for the variables used variables during the analysis. The
horizontal axes represented the value of the variable, while the vertical axes shows the
order of the observation in the dataset. Figure created with the help of the ggplot2 pack-

age from R software.

Spatially, with a total of 55 infected cockles over the course of a year, sampling site 6

was the one that contributed the most for the counts (higher prevalence). However, the

largest abundance was found at sampling site 15, with 123 metacercariae detected in total.

Additionally, site 15 also had the highly infected cockle with 12 metacercariae discovered

infecting a single cockle. The lowest prevalence and abundance of metacercariae were

found at sampling sites 9, 17, and 18, where no metacercariae were found infecting cockles

(Figure 4.4).
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FIGURE 4.3: Bar plot for the number of observed metacercariae counts with total number
of counts and respective percentage. Figure created with the help of the ggplot2 package

from R software.

The month with the highest prevalence and abundance of metacercariae was month 9

(February 2021) with 60 infected cockles counting for a total of 113 metacercariae. Nonethe-

less, the single highest infection was observed in month 2 (July 2020). Months 3 (August

2020) and 4 (September 2020) were the months with the lowest prevalence of parasites

with only 13 and 15 infected cockles, respectively. Figure 4.5 displays the number of

metacercariae for each month.

In contrast, and predicting a possible future need for a dichotomization of the count-

ing variable, Figure 4.6 displays a barplot showing the absence (0) and prevalence (1) of

cockles with metacercariae infections in each of the months.

The combination of metacercariae counts per sampling site and month is shown in

Figure 4.7. In this image, the x-axis denotes the sampling month, while the y-axis the

quantity of metacercariae per cockle, and each plot represents a sampling site. It should

be highlighted that certain cockles under analysis had repeated counts (namely zeros),

hence we do not always observe 15 points (counts) per month.

Figure 4.8 depicts the time evolution of the mean of parasites across time (total number

of parasites counted from a site and month divided by the number of cockles analysed),

separated by site. The range of metacercariae varied from 0 to 3 metacercariae.cockle−1.

The greatest average number of metacercariae was displayed in site 14 at month 8. An
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FIGURE 4.4: Bar plot for the number of observed metacercariae counts per site. Figure
created with the help of the ggplot2 package from R software.

average trend of parasite distribution across all locations is shown in this figure, as a

superimposed smooth line, and it shows a peak at month 8.

Still related with the metacercariae abundance per month and sampling site, Figure 4.9

displays a 3D visualisation of an adjusted surface with the sample sites in the x-axes, the

month in the y-axes, and the counts on the z-axes. As it is possible to observe, the surface

lift is very low, reaching maximum values of 0.8. It should be noted however, for all these

exploratory graphics, the method of adjusting a line or surface to the counts makes the

incorrect assumption that the dots are independent of one another.

We now move to the description of the associations between the explanatory variables

and the response.

Regarding the abiotic and biotic variables, none of the 7 variables (pH, organic matter

content, temperature, salinity, dissolved oxygen, redox potential, or shell length) appear

to have any evident outlier. These variables are dependent on the season and time when

the data collection was conducted, hence it is possible to observe some variation. For

instance, it is noticeable that temperature has an interval where the readings are lower,

which must be correlated to the winter months where temperatures are naturally lower.

A similar case is presented for salinity. In this case, this variable is not only dependent

on the season of the year, but also on tidal stage and their currents (flood or ebb current),
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FIGURE 4.5: Bar chart for number of observed metacercariae counts per month. Figure
created with the help of the ggplot2 package from R software.

and the site localization on the coastal system. In this instance, the sample strategy was to

cover the Ria de Aveiro’s whole cockle distribution range, from downstream to upstream.

Thus, it is anticipated that places upstream (close to the river) will be more influenced by

fresh water and thus see a drop in salinity. Only the pH variable deviated from initial

expectations (values were expected to be around pH 8.0). However, this may be a result

of a modification to the used reading equipment that took place during the most recent

sampling months. Therefore, it was decided to not exclude any of the values for the

analysis.

Figure 4.10 shows a pairwise scatterplot and Spearman correlation matrix for all the

relevant variables of the study. The variables names are shown on the top and left side

of the Figure, and their density plots are represented along the diagonal of the matrix,

with the scatterplots for each variable-variable relationship shown below the diagonal,

and linear correlation coefficients corresponding to those scatterplots above the diagonal

(the density plots should not be taken into account for categorical variables (e.g., Site)).

The top row and the left-most column show the relationship between the dependent

variable, Metacercariae, and the covariates. Some weak patterns are observed, none with

particular relevance to draw attention to. All the other panels were used for detecting

collinearity. There were some moderate correlations observed between variables, around
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FIGURE 4.6: Bar plot for the presence and absence of metacercariae counts per site. Figure
created with the help of the ggplot2 package from R software.

0.5. The correlations observed with Longitude and Latitude should not be taken into con-

sideration as these variables will not be used in the model (we only have 18 sites, which

is not enough to carry out spatial models, along with the longitudinal structure). Most of

the moderate correlations involved the variable month. This is expected because, as al-

ready mentioned, these abiotic variables are season dependent (for example, higher tem-

peratures in summer compared to winter). Salinity and Dissolved Oxygen in the water

column also showed to be a moderately collinear with a significant negative correlation

(ρ = −0.561). It is well known that the solubility of oxygen is dependent on salinity, as

the amount of oxygen dissolved in water decreases as salinity levels rise. Thus, having

covariates that derived from the same source can set off an alarm. Nevertheless, since cor-

relations were only moderate, there were no covariates removed from the dataset prior to

modelling.

Regarding the relationship between the dependent variable and the covariates, the

abiotic variables observations used for this study were punctual collections that occurred

at the moment of sampling (see section 4.2; page 33). As previously mentioned, trema-

todes have a complex life cycle. Metacercariae, more specifically, are the outcome of cer-

cariae infection, which are trematode free-living larval stages that emerge from the first

intermediate host under optimum circumstances, namely at ideal temperatures. Cercariae
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FIGURE 4.7: Dotplot with metacercariae counts per month and sampling site. Figure
created with the help of the ggplot2 package from R software.

exhibit a lifespan of approximately 48-hour during which they must find and infect the

second intermediate host, here cockles, in order to survive. Consequently, given that data

collection includes 1-month intervals, the metacercariae counts infecting cockles seen in a

given month may be a result of the abiotic circumstances observed in the previous month.

Table 4.3 presents the correlation between the response variable, Metacercariae, and

the abiotic variables with 0 (no lag) or 1 (a month lag) lags. The highest Spearman corre-

lation absolute values for each of these variables are shown in bold. Only 1 lag was used

for this analysis, as infections would be detectable in the following sampling.

TABLE 4.3: Correlation between the environmental variables, with and without a one-
month lag, and the dependent variable Metacercariae. The highest absolute Spearman

correlation coefficient, in absolute value, are shown in bold.

Lag 0 1
Salinity -0.067 -0.440

DO 0.087 0.040
Eh -0.095 -0.111
pH 0.030 -0.003

TOM 0.097 0.055
Temp -0.167 -0.171

The lags with highest absolute value varied from variable to variable. That way, the

analysis was maintained without the use of lags since this would result in the loss of
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FIGURE 4.8: Evolution of the mean number of metacercariae over the 12 months of sam-
pling per site. Figure created with the help of the ggplot2 package from R software.

information. Moreover, it would not be sensible from a biological standpoint to set dis-

tinct lags for the environmental variables because they affect the parasites (and the whole

community) concurrently.

Figure 4.11 illustrates how the variables under study and the dependent variable are

related, similar to the previously boxplot analysis. These plots display the counts on the

y-axis in relation to the variables’ values on the x-axis, with a smooth to demonstrate

how the relationship. There seems to be an approximately linear association between

the counts and the variables dissolved oxygen, redox potential, temperature, and organic

matter content. However, the variables Month, Site, Salinity and Shell Length, did not ex-

hibit the same behaviour. This way, it will be important to exercise caution when deciding

whether to model this data without the use of GAMs.

The associations between the variable month and some explanatory variables, namely

salinity, dissolved oxygen, and pH, were examined using boxplots (Figure 4.12).

In the first six months of the sample, the median of salinity ranged between 35 to 40,

decreasing between 20 to 25 in months 7 to 9 (December 2020 to February 2021), and then

increased once again in the last three months of sampling. Salinity in coastal systems rises

during the warmer months (summer) as a result of a decrease in freshwater inputs and
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FIGURE 4.9: 3D visualisation of a surface fitted to metacercariae counts by month and
site. Figure created with the help of the plotly package from R software.

an increase in evaporation caused by the higher temperatures. This is also noticed by the

relationship between temperature and month on Figure 4.12 b).

In the initial sampling months, the temperature median was higher and gradually

dropped until it reached the lowest records in month eight. The subsequent months saw

a further increase in the temperatures. Salinity, as previously stated, also has an impact

on the chemistry of coastal systems, mostly by lowering the oxygen solubility and, con-

sequently, the concentrations in the water. Thus, Figure 4.12 c) shows the opposite be-

haviour between dissolved oxygen and month compared to the previously mentioned

relation between salinity and month, with an increase in dissolved oxygen observed in

the last sample months and a peak in month 9.

The redox potential exhibited stable median values throughout the year of sampling,

except for months 2 to 4 where the values were considerably higher (Figure 4.12 d)). How-

ever, in all months, the values remained positive. The redox potential is an important

water parameter as it indicated the anaerobic condition of the system. Higher redox po-

tential values suggest aerobic conditions, while lower redox values indicate anaerobic and

reduced conditions. Since redox potential and oxygen availability are connected, it was

anticipated that oxygen and redox potential would follow a similar trend across months.

In this study, the correlation was not found as other variables, such as organic matter
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FIGURE 4.10: Density plot (diagonal), scatterplot (below the diagonal) and pairwise
Spearman correlation matrix (above the diagonal) for all variables of interest to the study.
Asterisks represent statistically significant correlations. Figure created with the help of

the GGally package from R software.

content, can also influence the redox potential status.

The pH (Figure 4.12 e)) and organic matter content (Figure 4.12 f)), of all variables,

showed the least fluctuating behaviour over the month, practically displaying no varia-

tion throughout the sampling months. The pH of coastal water systems usually hovers

around 8.0 / 8.1, and the lower values found in the last three months analyzed might be

due to a change in reading equipment.

On the other hand, Total Organic Matter (TOM) showed similar median values through-

out all months with slight variations.

Figure 4.12 g), depicts shell length across the studied months. Overall, the shell length

increase up to a maximum in month 10 and then suddenly decreases. Cockles display an

annual reproduction cycle, occurring in the warmer months, followed by a larval stage

that last up to three months until new a recruitment settles. Thus, this development and

increase in the shell length over the course of sampling might be an indicator of the de-

velopment of a cohort and the appearance of a new one.

Finally, we investigated whether the infection status (infected versus non-infected)

of cockles corresponded to different median values of the explanatory variables (Fig-

ure 4.13). For most of the variables, no relevant differences between infected or non-

infected cockles were identified.
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FIGURE 4.11: Number of metacercariae counts plotted against each of the variables to
analyse relationship between the dependent variables (Metacercariae) and the explana-
tory variables. Smoother was added to aid visual interpretation of the relationship. Fig-

ure created with the help of the ggplot2 package from R software.

For salinity, the medians of infected cockles were greater in several months than it was

for non-infected ones, such as months 1, 3, 5, 6, and 9. In the opposite direction, months 4

and 11 showed lower medians for infected cockles, while the remaining months showed

very similar values between infected and non-infected cockles (Figure 4.13 a)).

The Dissolved Oxygen boxplots for each infection state are shown in turn in Fig-

ure 4.13 b). Again, the highest values differ from month to month, with the highest values

occurring in months 2, 3, 5 and 12 for infected cockles, in comparison to non-infected cock-

les. It should also be noted that, with the exception of months 4 and 8, where both the

median and third quartile show values higher levels of dissolved oxygen for non-infected

cockles, the third quartile is almost always higher for infected cockles, even in situations

where the median is similar between infected and non-infected cockles.

The same pattern can be seen for the redox potential, where the third quartile is fre-

quently greater for infected cockles even if many months exhibit identical medians re-

gardless of infection status (Figure 4.13 c)).

Since the pH of coastal systems should not vary greatly, the pH values for every given
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month or infection state turned out to be relatively comparable (Figure 4.13 d)). The same

thing occurred with temperature, as can be shown in plot e) of Figure 4.13, where, with

very few exceptions, the medians and boxplots across states of infection in each month

are relatively comparable.

Figure 4.13 f) shows the boxplots for the organic matter content (TOM) and, once

more, the behaviour was consistent with that observed for the other variables.

Finally, the shell length boxplot (textbfg)) was the only one to exhibit unusual be-

haviour, with the median and quartile values for infected cockles being significantly larger

in almost every month for infected cockles. However, in months that shell length as gen-

erally higher (months 7 to 10), the median was more evenly distributed between infected

and non-infected cockles.
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FIGURE 4.12: Boxplots of the explanatory variables versus Month. Figure created with
the help of the ggplot2 package from R software.
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FIGURE 4.13: Boxplots of the explanatory variables versus Month for non-infected (in
blue) and infected (in red) cockles. Figure created with the help of the ggplot2 package

from R software.





Chapter 5

Model Formulation

This chapter will present the modelling of the data under study, through the application of

Generalised Linear Mixed Models (GLMMs) and/ or Generalised Additive Mixed Mod-

els (GAMMs). To avoid numerical estimation problems and due to the different scales

observed for the covariates, prior to starting, a standardisation procedure was performed

to all continuous independent variables, in this case Shell Length (SL), Salinity (Sal), Dis-

solved Oxygen (DO), Redox Potential (Eh), pH, Organic Matter Content (TOM) and Tem-

perature (Temp). Standardization was made by subtracting the sample mean and divid-

ing by the sample standard deviation. For any give random sample x = (x1, . . . , xn), the

standardization of x considers (x − mean(x))/sd(x).

It should be recalled that the goal of this project was to determine how environmen-

tal factors affect the abundance of metacercariae parasites infecting cockles in the Ria de

Aveiro, Portugal. Given the purpose of the study and given that we are dealing with

count data, an initial model encompassing every variable and following the Poisson dis-

tribution, served as the foundation for all subsequent models.

• Metacercariaeijt represents the number of metacercariae in the jth cockle from the

sampling site i at month t;

• Metacercariaeijt ∼ P(µijt)

log(µijt) = β0 + b0i + β1Saljt + β2DOjt + β3Ehjt + β4 pHjt+

+β5TOMjt + β6Tempjt + β7SLjt + β8Monthjt

where b0i represents a random intercept for the Sampling Site (which was sampled longi-

tudinally) and b0i ∼ N(0, σ2
Site)i = 1, . . . , 18.

51
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In the subsequent models, we successively eliminated the least significant variable in

the above model until all of the variables in the model were statistically significant and

then interactions terms were considered.

5.1 Poisson model

The model chosen for the Poisson distribution was as follows:

log(µijt) = β0 + b0i + β1Saljt + β2DOjt + β3 pHjt + β4SLjt (5.1)

with an AIC of 2765.8. In Table 5.1 it is possible to observe the output results for the model.

For a typical cockle, the abundance of metacercariae appeared to be positively correlated

with cockles’ shell length, dissolved oxygen and pH of the water and negatively corre-

lated with salinity.

TABLE 5.1: Output of the Poisson mixed model.

Random effects
Variance Std. Deviation

Intercept (Site) 1.695 1.302
Fixed effects

Coef. Std. Error p-value
Intercept -2.7603 0.3368 <0.001
SL 1.0543 0.0616 <0.001
Sal -0.1771 0.0534 <0.001
DO 0.1103 0.0521 0.034
pH 0.0999 0.0378 0.008

AIC: 2765.8

5.1.1 Model Validation

The first thing to do after fitting a Poisson Mixed Model is to verify whether the equidis-

persion assumption is valid, for instance by estimating the dispersion parameter. This

should surround 1, in order to validate the assumption.

There are two formulas for the calculation of an estimate of the dispersion parameter,

the Mean Deviance estimator and the Pearson estimator [51, 83].

The Mean Deviance estimator (ϕ̂D) can be obtained as

ϕ̂D =
D(y, µ̂)

N − p′
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where D(y, µ̂) is the deviance of the model, N is the total number of observations and p′

is the number of parameters estimated by the model.

Considering the particular case of the Poisson model, the expression can be given as

ϕ̂D = 2 ∑
i

yi log(yi/µ̂i)− (yi/µ̂i)

N − p′

which has no known distribution. It can be shown that this Mean Deviance estimator is

asymptotically unbiased and consistent.

For the definition of the Pearson estimator (ϕ̂P), we first consider the Pearson χ2 statis-

tic

X2 = ∑
i

(yi − µ̂i)
2

V(µ̂i)
.

If a correction is made to the number of degrees of freedom, then the estimator is

obtained as

ϕ̂P =
X2

N − p′

where, once again, N is the total number of observations and p′ is the number of param-

eters estimated by the model.

Considering the particular case of the Poisson model, with equal weights among all

observations, the previous estimate is

ϕ̂p = ∑
i

(yi − µ̂i)
2

µ̂i(N − p′)

Knowing that the Pearson residuals for a Poisson model can be defined as residualsP =

yi−µ̂i
2√

µ̂i
, then we obtain that

ϕ̂p = ∑(residuals2
P)/(N − p′) (5.2)

The distribution of the Pearson estimator is not known, however the Pearson’s statis-

tics (χ2) follows asymptotically a distribution X2(N − p′). Likewise the Mean Deviance

estimator, the Pearson estimator is asymptotically unbiased and consistent.

In this project, we used the Pearson estimator (ϕ̂P), as it has been recently shown to be

unbiased even for small sample sizes.

If ϕ̂P is close to 1, then the assumption of equidispersion might hold. If it is substantially

larger than 1, then we have overdispersion (the variance is larger than the mean). And if

it is much smaller than 1, then we have underdispersion (the variance is smaller than the

mean).
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For model 5.1, we obtained ϕ̂P = 1.10, which is not very far away from 1. However, to

understand if the model was able to cope with this dispersion, we conducted a simulation

study.

We used the simulate() function in R, to simulate a large number of truly Poisson re-

sponses (we considered 1000) from the model. For each simulated response, we ran the

model and computed the dispersion statistic for each model. Finally, we considered a his-

togram of those values. Then, we superimposed the dispersion statistic for the observed

data in the histogram; if our value is close to the center of the histogram, then we can

conclude that the observed data complies with a Poisson regression, at least with respect

to the mean-variance relationship.

In Figure 5.1, it is possible to observe the histogram with the results of the simulated

study and, in a red dot, the dispersion statistic calculated for the Poisson model 5.1. These

results do not make sense, however, since the estimates obtained from the simulations

should all be around 1, as the simulations come from a Poisson regression. What happens

is that the simulate() function is doing two levels of simulations: one at the random effect

level and another one at the conditional regression model. The effect is to simulate data

from a log-normal response, with greater variability that a Poisson variable – see Rui

Miranda’s master thesis at the Faculty of Sciences of the University of Porto for further

details.

The outcomes of a different simulation study for the dispersion statistics are shown in

Figure 5.2. Instead of utilising the simulate() function in this instance, a matrix containing

1000 Poisson distributions was formed with λ equal to the Poisson distribution of the first

selected model. The dispersion statistic for each distribution was then computed, and a

histogram was made. The dispersion statistic values in this histogram ranged from 0.6 to

approximately 1.7 with the median at 0.995. Since the dispersion statistic of the obtained

model (depicted as a red dot) was about in the middle of the histogram, it appears that

there were no dispersion concerns.

Another possibility in studying dispersion statistics is the use of the DHARMa package

in R and its testDispersion function. This function in DHARMa simulates datasets, calculates

the variance of all simulated data and compares the variance of the observed residuals

against the variance of the simulated residuals via their ratio. More information on this is

given in section 3.2 of chapter 3.
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FIGURE 5.1: Histogram of the dispersion statistic frequency for the simulated datasets,
using the simulate() function, with the dispersion statistic obtained by the model super-

imposed as a red dot.

Figure 5.3 shows the testDispersion plot and its results. The obtained p-value of 0.736

shows no evidences to reject the null hypothesis, in which the variance of the observed

residuals are equal to the variance of the simulated residuals, so there are no over- or

underdispersion problems in this model.

The dispersion statistics will now only be analysed using DHARMa, in the validation of

the remaining models.
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FIGURE 5.2: Histogram of the dispersion statistic of the second simulation study, with
the dispersion statistic obtained by the model superimposed as a red dot.

Following the examination of the equidispersion condition, we then evaluated the

model’s capacity to handle zeros (in this case 86.7 %, in the response). Similarly to the

study of the dispersion statistic, this analysis can be done through a simulation study or

using the DHARMa package and its testZeroInflation() function.

For the simulation, as before, a large number of truly Poisson responses with mean

equal to the fitted values of the initially obtained model is simulated, and a Poisson model

is fitted. But, instead of computing the dispersion statistic for each model, the number of

expected zeros is calculated. Then, a histogram with the number of expected zeros is
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DHARMa nonparametric dispersion test via sd of
residuals fitted vs. simulated

Simulated values, red line = fitted model. p−value (two.sided) = 0.736
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FIGURE 5.3: DHARMa plot for the testDispersion() of the Poisson Mixed model.

created and the number of zeros of our initial dataset is superimposed as a red dot. If

the number of zeros in our dataset is relatively in the middle of the distribution of zeros

found in the histogram, it is likely that the model can cope this observed amount of zeros.

This analysis is relevant in assessing whether the Poisson model should be changed to a

zero-inflated or hurdle model.

Figure 5.4 displays the histogram for the percentage of zeros of 1000 simulated datasets.

The number of zeros that the simulated datasets presented varied from approximately 67

% to 96.5 % of zeros, with the median being at 85 %. Therefore, our model seems to be

able to cope with the percentage of zeros of our dataset.
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FIGURE 5.4: Histogram of the percentage of observed zeros frequency for the simulated
datasets, using the simulate() function, with the percentage of zeros obtained by the model

superimposed as a red dot.

In order to see if the same finding still holds, the DHARMa package was also used to

study the capacity of our model to cope with zeros. The findings and corresponding

statistical test are shown in Figure 5.5, demonstrating once more that our model can ac-

commodate the number of zeros observed.

As for the dispersion statistic, for the remaining models and consequent model val-

idation, only the DHARMa package will be used since the returned results seem to those
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DHARMa zero−inflation test via comparison to
expected zeros with simulation under H0 = fitted

model

Simulated values, red line = fitted model. p−value (two.sided) = 0.68
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FIGURE 5.5: DHARMa plot for the testZeroInflation() function for the Poisson Mixed model.

obtained by the different methods.

In the DHARMa residual vs. predictor plot of Figure 5.6, it is expected that the points will

bounce randomly around the horizontal line y = 0.5. The superimposed dashed red line

obtained by quantile regression, raises the possibility of non-linear relationship between

predictors and log-response, which would be modelled by an Additive Poisson Model.

In fact, this scenario was already taken into account in the exploratory data analysis. A

similar trend can be observed in the plot displayed in Figure 5.7, which shows a slight

dependence of the Pearson residuals on the month.

The plot in Figure 5.8 is difficult to interpret but resembles similar plots for Poisson
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FIGURE 5.6: DHARMa residual vs. predictor plot for the Poisson Mixed model. Line in red
means that statistically significant problems were detected.

regressions in the literature. It is possible to observe clear bands of points due to the

number of zeros and the discrete nature of the data. Also, there is a group of outliers, that

should be approached carefully.

In the 3D scatter plot in Figure 5.9, the month is depicted on the x-axis, while the

metacercariae counts are shown on the y-axis. The contour of the area in red represents

the fitted values of the Poisson Mixed Model. Similar to what is observed in Figure 4.9 of

the section 4.4 of the chapter 4, the fitted values are close to zero due to the vast number

of observations equal to zero recorded throughout the months. The Poisson probability
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FIGURE 5.7: Plot of Pearson residuals per sampled month with smoother added for vi-
sual interpretation of the relationship.

function for each of the months is overlayed in purple. Despite some observations reach-

ing 12 metacercariae, the model essentially predicts counts between 0 and 2 metacercariae,

with cases that exceed 2 metacercariae being rare (the exception is month 9, which can

model up to 4 metacercariae). It should be emphasized that random effects are not taken

into consideration to make this graph, and they do interfere with the conditional Poisson

probability functions.

Although this first model 5.1 has no severe issues, its prediction ability is not very

satisfactory (Table 5.2). Either one would discard counts less than or equal to 3 or 4, in
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FIGURE 5.8: Residuals vs. fitted plot for the Poisson Mixed model.

the response, or else one would have to accept that the right predictors are only going up

to 2. We then decided to approach the problem with different models, both in the hope

of improving the model’s predictions and for didactic reasons, as the study of ecological

modelling is of great interest to the author. Hence, alternative distributions and zero-

inflated models were also considered and contrasted with the Poisson model.
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FIGURE 5.9: 3D scatter plot of the fitted Poisson Mixed model. The red line represents
the fitted values, the Poisson probability function curves for each month are represented

in purple, and the black dots represent the observed values.

TABLE 5.2: Confusion matrix of the obtained model with the Predicted values in the
columns and the Observed values in the rows.

Predicted
0 1 2 3

O
bs

er
ve

d

0 2249 198 24 1
1 153 77 8 0
2 29 45 6 0
3 9 17 5 0
4 1 8 1 0
5 1 7 3 0
6 0 1 0 0
7 1 3 0 0
8 0 1 0 0
11 0 0 0 1
12 0 1 0 0

5.2 Negative Binomial model

The Negative Binomial distribution was the subject of the second model to be used. After

model selection, done essentially by the backwards elimination procedure, the final model
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was

log(µijt) = β0 + b0i + β1Saljt + β2 pHjt + β3SLjt (5.3)

The output results of the fitted model are represented in Table 5.3. The AIC of the

model was 2547.1, which was lower than the Poisson Mixed Model (Table 5.1), with a

Negative Binomial parameter k of 0.626. For a typical cockle, the abundance of metac-

ercariae was shown to be positively correlated with cockle’s shell length and pH and

negatively correlated with salinity.

TABLE 5.3: Output of the Negative Binomial mixed model.

Random effects
Variance Std. Deviation

Intercept (Site) 1.744 1.321
Fixed effects

Coef. Std. Error p-value
Intercept -2.8463 0.3450 <0.001
SL 1.2196 0.0864 <0.001
Sal -0.3094 0.0631 <0.001
pH 0.0842 0.0499 0.092

AIC: 2547.1
Dispersion parameter k: 0.626

5.2.1 Model Validation

The capacity of the obtained model 5.3 to handle the quantity of zeros was also tested

through the testZeroInflation function of DHARMa. The obtained p-value of 0.76 shows that

our model can account for the observed number of zeros. The histogram and test results

are displayed in Figure 5.10.

As for the previous Poisson mixed model, in the residual vs. predictor plot of Fig-

ure 5.11, the superimposed dashed and solid red lines are similar, therefore, the adjust-

ment of a linear predictor seems reasonable. However, there is a small deviation of the

dashed red line, that might increase our suspicion of a non-linear pattern, which would

consequently require the use of an additive model. A similar pattern of non-linearity was

described in the descriptive analysis regarding some of the variables.

In the residuals vs. fitted values plot, represented in Figure 5.12, it is possible to ob-

serve some outlier values that should be approached carefully.

The 3D scatter plot represented in Figure 5.13 is similar to that of Figure 5.9 (the month

is depicted on the x-axis, while the metacercariae counts are shown on the y-axis), but for
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DHARMa zero−inflation test via comparison to
expected zeros with simulation under H0 = fitted

model

Simulated values, red line = fitted model. p−value (two.sided) = 0.76
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FIGURE 5.10: DHARMa plot for the testZeroInflation() function for the Negative Binomial
Mixed model.

the Negative Binomial Mixed Model. The contour of the area in red represents the fitted

values and overlayed in purple are the probability function values for each of the months.

We see that the model is able to predicted higher counts than the Poisson model, namely

on months 8 to 10, reaching up to 8 metacercariae.cockle−1. This is not surprising, as the

model can handle a large variance. Nonetheless, it is important to emphasize, once again,

that random effects were not taken into consideration for this graph, and the predictions

obtained in the confusion matrix (described next) are way lower.

The Negative Binomial mixed model actually presented a lower AIC than the Poisson
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FIGURE 5.11: DHARMa residual vs. predictor plot for the Negative Binomial Mixed model.
Line in red means that statistically significant problems were detected.

mixed model (5.1) and managed to predict slightly higher counts (up to 4 – compare NB

confusion matrix (Table 5.4) with P confusion matrix (Table 5.2)). The latter, however, was

not particularly relevant, since the model only predicted (wrongly) a single count of 4 and

had similar correct counts for counts of 1 (33.2 %) and 2 (8.8 %) .

TABLE 5.4: Confusion matrix of the obtained Negative Binomial mixed model with the
Predicted values in the columns and the Observed values in the rows.

Predicted
0 1 2 3 4

O
bs

er
ve

d

0 2235 201 31 4 1
1 148 79 11 0 0
2 28 44 7 1 0
3 9 19 3 0 0
4 2 7 1 0 0
5 1 9 1 0 0
6 0 1 0 0 0
7 0 4 0 0 0
8 0 1 0 0 0

11 0 0 0 1 0
12 0 1 0 0 0
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FIGURE 5.12: Residuals vs. fitted plot for the Negative Binomial Mixed model.

FIGURE 5.13: 3D scatter plot of the fitted Negative Binomial Mixed model. The red line
represents the fitted values, the Negative Binomial probability function curves for each

month are represented in purple, and the black dots represent the observed values.
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5.3 Generalised Poisson model

The third applied model was the Generalised Poisson Mixed Model. As previously dis-

cussed in chapter 2, the Generalised Poisson distribution allows modelling for over- and

underdispersed data. Additionally, this distribution has a more flexible parameter (ϕ)

than the Negative Binomial, which provides a better fit for overly dispersed data, for

example [84].

After model selection, the obtained Generalised Poisson Mixed Model was

log(µijt) = β0 + b0i + β1Saljt + β2 pHjt + β3Ehjt + β4SLjt (5.4)

The model showed a AIC of 2581.7, and a dispersion parameter (ϕ) equal to 1.87. The

dispersion parameter shapes the Generalised Poisson variance by scaling it proportionally

to the mean (Var(Metacercariaeijt) = ϕ × µijt). The output of the Generalised Poisson

Mixed Model is represented in Table 5.5. The abundance of metacercariae showed to be

positively correlated with cockle’s shell length and water pH, whereas the water salinity

and redox potential (Eh) were negatively correlated. For a typical cockle, a one-standard-

deviation increase in the cockle’s shell length is associated with an average increase in

the expected number of parasites infecting cockles by 2.7 (RR = exp(0.9941) = 2.7) For

a typical cockle, the abundance of metacercariae showed to be positively correlated with

cockle’s shell length and water pH, whereas the water salinity and redox potential (Eh)

were negatively correlated.

TABLE 5.5: Output of the Generalised Poisson mixed model.

Random effects
Variance Std. Deviation

Intercept (Site) 1.357 1.165
Fixed effects

Coef. Std. Error p-value
Intercept -2.5786 0.3086 <0.001
SL 0.9941 0.0719 <0.001
Sal -0.2251 0.0518 <0.001
pH 0.0985 0.0537 0.066
Eh -0.1021 0.0584 0.080

AIC: 2581.7
Dispersion parameter ϕ: 1.87
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5.3.1 Model Validation

We first checked how the model handled with the percentage of zeros. In Figure 5.14 it

is represented the histogram and the statistical result of the testZeroInflation function. The

p-value obtained was of 0.83, not showing evidence to reject the null hypothesis.

DHARMa zero−inflation test via comparison to
expected zeros with simulation under H0 = fitted

model

Simulated values, red line = fitted model. p−value (two.sided) = 0.832
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FIGURE 5.14: DHARMa plot for the testZeroInflation() function for the Generalised Poisson
Mixed model.

In Figure 5.15 it is represented a QQ plot to check whether the scaled quantile residuals

are uniformly distributed. The obtained p-value for the Kolmogorov-Smirnov test (p −

value = 0.363) does not give evidence to reject the null hypothesis that the scaled quantile

residuals follow a uniform distribution.

In this model, the deviation between the dashed and solid red lines in the residuals

vs. predictor plot *Figure 5.16 is exacerbated in comparison to the patterns seen in the

previous Poisson and Negative Binomial model. This increases suspicion that our data
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FIGURE 5.15: textttDHARMa residuals quantile-quantile plot for the Generalised Poisson
Mixed model.

may require an additive model and presents non-linear behaviour. Although in the previ-

ous models presented, a linear model seems reasonable, in the Generalised Poisson model

the deviation appears significant enough that it should not be ignored. Furthermore, the

DHARMa package assesses the deviation from uniformity and presents results deemed sus-

pect in red, rather than in the usual black.

In the non-transformed fitted vs. residuals values plot, represented in Figure 5.17, it is

possible to observe some outliers values that should be approached carefully.

The 3D scatter plot for the Generalised Poisson Mixed Model and the estimated prob-

ability functions for each month are represented in Figure 5.18. As in the case of the Neg-

ative Binomial regression, the Generalised Poisson model predicted higher counts com-

pared to the Poisson mixed model. In this case, counts reached up to 11 metacercariae.cockle−1,
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FIGURE 5.16: DHARMa residual vs. predictor plot for the Generalised Poisson Mixed
model. Line in red means that statistically significant problems were detected.

however, most of the predictions did not go further than 3.

The Generalised Poisson mixed model had a similar AIC compared to the Negative

Binomial model and lower than the Poisson model and did not exhibited any serious

issues despite the possibility of once more having to fit generalised additive mixed mod-

els instead of generalised linear mixed models. The Generalised Poisson Mixed Model

displayed better predictions for counts of 1 (34.5 % of correct predictions), however, dis-

played worse predictions than the earlier models for the remaining counts, with the high-

est predicted count being 2 and only correctly predicted 6.3 % of the times (Table 5.6).
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FIGURE 5.17: Residuals vs. fitted plot for the Generalised Poisson Mixed model.

TABLE 5.6: Confusion matrix of the obtained Generalised Poisson mixed model with the
Predicted values in the columns and the Observed values in the rows.

Predicted
0 1 2

O
bs

er
ve

d

0 2250 205 17
1 152 82 4
2 28 47 5
3 10 19 2
4 1 9 0
5 1 10 0
6 0 1 0
7 0 4 0
8 0 1 0
11 0 0 1
12 0 1 0
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FIGURE 5.18: 3D scatter plot of the fitted Generalised Poisson Mixed model. The red line
represents the fitted values, the Generalised Poisson probability function curves for each

month are represented in purple, and the black dots represent the observed values.
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5.4 Zero-Inflated Poisson model

The next two models to be applied are models that account for the inflation of zeros. As

we have mentioned in chapter 4,given the high percentage of zeros observed in this study

(about 86.7 %), one could instantly think of fitting a zero-inflated or hurdle model. That

would be true in the majority of situations. However, in the last three models described

(Poisson 5.1; Negative Binomial 5.3, and Generalised Poisson 5.4), no major concerns were

raised regarding the number of zeros. Anyway, these models were applied to the dataset

because of their didactic significance.

The Zero-Inflated Poisson mixed model was the first model to be applied. The zero-

inflated Poisson model employs two components, each corresponding to different gen-

erating processes [8, 82, 85, 86]. A binary (logit) distribution governs the first process,

while the Poisson distribution governs the second, in a way that if a random variable

Y ∼ ZIP(µ, π)

P(Y = y|µ, π) =


π + (1 + π)e−µ, if y = 0

(1 − π) µye−µ

y! , if y ≥ 1

and,

E(Y) = (1 − π)× µ

Var(Y) = (1 − π)× (µ + π × µ2)

The adopted formula for this model was

log(µijt) = β0 + b0i + β1Saljt + β2DOjt + β3SLjt

logit(πijt) = γ0 + γ1SLjt

(5.5)

with an AIC of 2585.6. As it can be seen in the output results table depicted in Table 5.7, the

variable SL is not statistically significant on the conditional model. However, this model

was selected due to display the best AIC of all the tested zero-inflated Poisson mixed mod-

els. The probability of a cockle to be infected by metacercariae showed to be negatively

correlated with cockle’s shell length (Binomial (zero-inflation) model). On the other hand,

for the conditional model, the abundance of metacercariae in the typical cockle showed

to be positively correlated with cockle’s shell length (despite not statistically significant)

and dissolved oxygen in the water, and negatively correlated with salinity.
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TABLE 5.7: Output of the Zero-Inflated Poisson mixed model.

Conditional model:
Random effects

Variance Std. Deviation
Intercept (Site) 1.527 1.236
Fixed effects

Coef. Std. Error p-value
Intercept -1.4867 0.3507 <0.001
SL 0.2802 0.1743 0.108
Sal -0.1317 0.0696 0.059
DO 0.1550 0.0608 0.011
Zero-inflation model:
Fixed effects

Coef. Std. Error p-value
Intercept 0.7025 0.1374 <0.001
SL -1.4512 0.2872 <0.001

AIC: 2585.6

5.4.1 Model Validation

As for the Poisson mixed model validation (subsection 5.1.1), the first step that we need

to check is if the model is able to cope with dispersion and the amount of zeros. For that,

the testDispersion() and testZeroInflation() functions of the DHARMa package were applied

(Figure 5.19)

Since both p-values (p − value = 0.864 and p − value = 0.8 for dispersion and zero-

inflation, respectively) did not provide evidence to reject the null hypothesis, the model

appeared to be able to handle the dispersion and the number of zeros.

The overlaid dashed red line from quantile regression in Figure 5.20 residual vs. pre-

dictor plot raises the idea of a non-linear connection between the predictors and the

model, and displays several outliers (red stars in the plot).

The overlaid dashed red line from quantile regression in Figure 5.20 residual vs. pre-

dictor plot shows a resemblance to the solid red line (similar to the Poisson and to the

Negative Binomial mixed models), suggesting a linear predictor might adjust well to our

data. However, once again, the deviation observed should be approached carefully for

the need of using additive models.

The same pattern of outliers is visible in the non-transformed fitted vs. residuals plot

Figure 4, represented in Figure 5.21.

Once again, we display the 3D scatter plot (Figure 5.22), but this time, the probability

functions from the four analysed models (Poisson (in blue), Negative Binomial (in green),
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DHARMa nonparametric dispersion test via sd of
residuals fitted vs. simulated

Simulated values, red line = fitted model. p−value (two.sided) = 0.864
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a) DHARMa plot for testDispersion() function

DHARMa zero−inflation test via comparison to
expected zeros with simulation under H0 = fitted

model

Simulated values, red line = fitted model. p−value (two.sided) = 0.8
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FIGURE 5.19: DHARMa plots for Zero-Inflated Poisson mixed model.

Generalised Poisson (in red), and Zero-Inflated Poisson (in black)) have been merged. The

Negative Binomial and the Generalised Poisson mixed models seem to be the ones that

can predict higher counts, while the Poisson and the Zero-Inflated Poisson mixed models

seem to only cope to a maximum of 3 counts.

With predicted counts of up to 2 metacercariae.cockle−1, the prediction performance

of this model shown to be not very satisfactory (Table 5.8. Additionally, this model AIC

proved to be poorer (AIC(ZIP) = 2585) but similar compared to earlier models (AIC(NB)

= 2547 or AIC(GP) = 2581). Nonetheless, in terms of AIC, the Zero-Inflated Poisson mixed

model seemed to improve concerning to the Poisson mixed model (AIC(P) =) 2765).
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FIGURE 5.20: DHARMa residual vs. predictor plot for the Zero-Inflated Poisson Mixed
model. Line in red means that statistically significant problems were detected.
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FIGURE 5.21: Residuals vs. fitted plot for the Zero-Inflated Poisson Mixed model.
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FIGURE 5.22: 3D scatter plot of the fitted models. The red line represents the fitted values,
the black dots represent the observed values, and the different probability functions of
the fitted models for each month are represented in black (Zero-Inflated Poisson mode),
blue (Poisson model), green (Negative Binomial model), and red (Generalised Poisson).

TABLE 5.8: Confusion matrix of the obtained Zero-Inflated Poisson mixed model with
the Predicted values in the columns and the Observed values in the rows.

Predicted
0 1 2

O
bs

er
ve

d

0 2238 209 25
1 144 91 3
2 25 52 3
3 8 21 2
4 1 9 1
5 1 10 0
6 0 1 0
7 0 4 0
8 0 1 0
11 0 0 1
12 0 1 0
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5.5 Hurdle Poisson model

The second model applied to deal with zero inflation was the Hurdle Poisson model.

Equivalent to zero-inflated models, the Hurdle Poisson model also consists of two parts [8,

87]. One of the part processes zero counts, while the other component processes positive

counts. A binary (logit) method is applied for the zero counts. In contrast to zero-inflated

models, truncated Poisson distribution is used for processing the positive counts.

When truncated at 0, for Y = y, the zero-truncated Poisson distribution has probability

function
P(Y = y|µ) = µy×e−mu

y! × 1
1−P(Y=0|µ

= µy×e−µ

(1−e−µ)×y!

and is denoted as Y ∼ ZTP(µ).

Thus, for a random variable Y ∼ HP(µ, π), the probability function is

P(Y = y|µ, π) =


(1 − π), if y = 0

π × ftruncatedPoisson, if y ≥ 1

=


(1 − π), if y = 0

π × µy×e−µ

(1−e−µ)×y! if y ≥ 1

and the Expected values (E) and variance (Var) are given as

E(Y) = π
µ

1−e−mu

Var(Y) = π
1−e−µ × (µ + µ2)−

(
π×µ

1−e−µ

)2

The obtained model was

log(µijt) = β0 + b0i + β1DOjt + β2SLjt

logit(πijt) = γ0 + a0i + γ1SLjt + γ2Saljt + γ3 pHjt

(5.6)

In Table 5.9, it is possible to see the output results for the Hurdle Poisson mixed model.

The probability of a cockle to be infected by metacercariae is positively correlated with

cockle’s shell length and water pH, while salinity showed to influence this probability

negatively. On the other hand, the typical cockle was positively correlated with cockle’s

shell length and dissolved oxygen.

The computed AIC for this model was 2608.9, which was lower than the Poisson

mixed model but higher than the Generalised Poisson mixed model and the Zero-Inflated
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TABLE 5.9: Output of the Hurdle Poisson mixed model.

Conditional model:
Random effects

Variance Std. Deviation
Intercept (Site) 0.7144 0.8452
Fixed effects

Coef. Std. Error p-value
Intercept -0.98402 0.3020 0.001
SL 0.5261 0.1369 <0.001
DO 0.2960 0.0661 <0.001

Conditional model AIC: 874.6
Zero-inflation model:
Random effects

Variance Std. Deviation
Intercept (Site) 1.6290 1.2760
Fixed effects

Coef. Std. Error p-value
Intercept -2.8855 0.3353 <0.001
SL 1.1755 0.0890 <0.001
Sal -0.2911 0.0687 <0.001
pH 0.1339 0.0635 0.035

Binomial model AIC: 1734.3
AIC: 2608.9

Poisson mixed model. For that reason (i.e., model did not improve in comparison to ear-

lier models), it was decided not to continue with this model, hence model validation was

not performed.

5.6 Binomial model

The preceding models’ simulations and confusion matrices, in particular, shown that most

of the models were not capable to model counts higher than 4 metacercariae.cockle−1. In

the particular case of the Poisson mixed model, the mean (µ) obtained for our model

ranged from µ = 0.003 and µ = 2.77 (Figure 5.23).

For a Poisson distributions with mean 0.003 (P(0.003)), 99.7 % are distributed on 0,

while the remaining 0.3 % are 1’s. On the other hand, for a P(2.8), only 23 % are counts

of 0 or 1, while 77 % are counts higher than 1. Nonetheless, the fitted values median was

around µ = 0.3. For a P(0.3), around 74 % of the values are 0s, 22 % are 1s, and roughly 4

% are values higher than 1. Not that 4 % (or higher for other fitted values) is a negligible

percentage. However, this distinction is not entirely relevant to the effect of the parasite

on the individual from a biological standpoint. Therefore, we decided to transform the
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FIGURE 5.23: Histogram of the fitted values for the Poisson Mixed model 5.1.

variable into a dichotomous variable (infected cockles - 1 and non-infected cockles - 0)

and apply a binomial model.

The obtained Binomial model was

logit(µijt) = β0 + b0i + β1Saljt + β2 pHjt + β3SLjt (5.7)

The calculated AIC for this model was of 1734.3. The probability of a cockle being

infected showed to be positively correlated with the pH of the water and with cockle’s

shell length. On the other hand, salinity appears to negatively influence the probability of

cockles to be infected. The model results output are represented in Table 5.10.

5.6.1 Model Validation

The plot in Figure 5.24 demonstrates that the Binomial model do not raises dispersion

issues (p − value = 0.528; there is no evidence to reject the null hypothesis). In the same
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TABLE 5.10: Output of the Binomial mixed model.

Random effects
Variance Std. Deviation

Intercept (Site) 1.6290 1.2760
Fixed effects

Coef. Std. Error p-value
Intercept -2.8855 0.3353 <0.001
SL 1.1755 0.0890 <0.001
Sal -0.2911 0.0687 <0.001
pH 0.1339 0.0635 0.035

AIC: 1734.3

Figure 5.24, it is also visible the quantile-quantile plot with the results for the Kolmogorov-

Smirnov (p − value = 0.131) and dispersion tests, used to ensure that the transformed

residuals follow a uniform distribution.
DHARMa nonparametric dispersion test via sd of

residuals fitted vs. simulated

Simulated values, red line = fitted model. p−value (two.sided) = 0.528

F
re

qu
en

cy

0.6 0.8 1.0 1.2

0
5

10
15

a) DHARMa plot for testZeroInflation() function.

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

QQ plot residuals

Expected

O
bs

er
ve

d

KS test: p= 0.13106

Deviation  n.s.

Outlier test: p= 0.83283

Deviation  n.s.

Dispersion test: p= 0.528

Deviation  n.s.

b) DHARMa residuals quantile-quantile plot func-
tion.

FIGURE 5.24: DHARMa plots for the Binomial Mixed model

The Figure 5.25 (Pearson residuals vs. fitted probabilities)seem to show the existence

of some outliers.

Nonetheless, the Binomial model again demonstrates the primary issue that has been

raised in all models, a non-linear relationship with the logit predictor, in this case. This
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FIGURE 5.25: Residuals vs. fitted plot for the Binomial Mixed model.

may indicate need to fit splines into the model using additive generalised models. This

plot of the non-scaled residuals vs. predicted values is shown in Figure 5.26

Finally, the model’s performance was assessed using the ROC curve (Figure 5.27). The

AUC for the model was 0.8142, indicating that the model accurately predicts values 81.4

% of the time. Given this high-performance value obtained for the model, this should give

us a high level of confidence on how the model is predicting infection. However, since

the majority of the values in our dataset are zeros, this AUC value is rather deceptive, as

the model is practically only modelling zeros (only 15.6 % of 1′s were correctly modelled).

This information can be seen in the confusion matrix in Table 5.11.

As the 1′s are being poorly modelled, one possibility would be to use logistic regres-

sion for imbalanced data, which is not the target of this project’s study.

In general, compared to discrete outcomes, binary outcomes analysis is easier, and the

results are more straightforward to understand. However, information about the abun-

dance frequency is lost when data are categorised into binomial outcomes, and, addition-

ally, reduces also the ability to identify small peaks of abundance that can be important.
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FIGURE 5.26: DHARMa residual vs. predictor plot for the Binomial Mixed model. Line in
red means that statistically significant problems were detected.
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FIGURE 5.27: ROC curve for prediction of Binomial Mixed model false-positive rate
against its true-positive rate.

TABLE 5.11: Confusion matrix of the obtained Binomial mixed model with the Predicted
values in the columns and the Observed values in the rows.

Predicted
0 1

O
bs

er
ve

d 0 2409 63

1 319 59
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5.7 Generalised Additive Mixed Models

In the following section, we will apply Generalised Additive Mixed Models (GAMMs) on

our dataset. The main concern that all the Generalised Linear Mixed Models (GLMMs)

applied to our dataset revealed was the possibility of a non-linear relationship between

the predictors and the response variable. Generalised Additive (Mixed) Models are a

model family that allows the extension of GLMMs by enabling the addition of a smooth-

ing function (or spline) to the explanatory variables [88, 89].

As a result, if a random variable Y with parameters µ, mean, and ϕ, dispersion param-

eter, that follows one of the distributions allowed by GLMMs, GAMMs display a general

form of

g(Y = y|µ, ϕ) = β0 + b0 + β1Y1 + . . . + βqXq + f (Xq+1) + . . . + f (Xp)

where, X1, . . . , Xp are the explanatory variables, and f (·) is the smoothing function.

Therefore, the non-linear relationship between an explanatory variable and the re-

sponse variable is represented by splines. A spline uses basis functions (a set of complex

polynomial functions) that are used to approximate complex curves. More specifically,

a spline is a sum of basis functions (pieces) weighted by coefficients and connected by

jointing points (knots), where each component is selected to have the least mean square

curvature possible. A simple basis can be represented by a polynomial of order 4. f (·) is

said to be a polynomial of 4th order if f contains

f (x) = β1 + xβ2 + x2β3 + x3β4 + x4β5 + ϵ

where β1(x) = 1, β2(x) = x, β3(x) = x2, β4(x) = x3, and β5(x) = x4.

There are several types of splines, including B-splines, cubic splines, and thin-plate

splines. One of the most commonly used is the cubic spline.

Cubic splines are piecewise polynomial functions that are used to smooth and contin-

uous approximation and interpolation of data points. These splines are defined by a set

of cubic polynomials, each of which is applied to a different interval between data points.

Suppose that for a set of points (x0, y0), . . . , (xn, yn). Within each interval [xi, xi+1], the

cubic spline can be represented as S(x) = ai + bi(x − xi) + ci(x − xi)
2 + di(x − xi)

3 where

xi and xi+1 are the boundary points of the defining spline interval, and ai, bi, ci, and di are

the coefficients specific to the interval [xi, xi+1].
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Finally, to prevent overfitting, a penalty term is frequently introduced to the likelihood

function in GAMMs. This penalty prevents the spline from fitting the noise in the data,

resulting in smoother curves. A smoothing parameter or penalty parameter controls the

degree of penalization.

5.7.1 Poisson model

Once again, we started the analysis by fitting the data to a Poisson distribution. The

adopted model for this distribution was

log µijt = β0 + b0i + β1Saljt + β2DOjt + f (SLjt) + f (pHjt) + f (TOMjt) + f (Monthjt)

(5.8)

with and AIC of 2901.4, and an explained deviance of 32.7 %. The output results for the

model are represented in Table 5.12. For a typical cockle, metacercaria abundance per

cockle was positively correlated with salinity and dissolved oxygen in the water column.

TABLE 5.12: Output of the Poisson additive mixed model.

Smooth terms
EDF p-value <0.001

SL 7.455 <0.001
pH 2.784 <0.001
TOM 6.424 <0.001
Month 7.210 <0.001
Site (re) 0.959 <0.001
Parametric terms

Coef. Std. Error p-value
Intercept -3.3755 0.1974 <0.001
SL 0.1807 0.6519 0.006
DO 0.4465 0.1047 <0.001

AIC: 2901.4 Deviance explained: 32.7 %

Note that for smooths the coefficients are not printed, since each smooth has several

coefficients. Instead, it has represented the effective degrees of freedom (EDF). The EDF

represents the complexity of the smooth, with a EDF of 1 representing a straight line, 2 a

quadratic curve, until higher EDF that represent more complex smooths (wigglier curves).

The EDF values ranged from 0.959 to 7.455. The splines behaviour for each variable are

visible in Figure 5.28.
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FIGURE 5.28: Line plot for the variables that a spline was applied to observe the trend.
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5.7.1.1 Model Validation

We begin the validation of the model by checking its dispersion and capacity to cope with

the quantity of zeros. These analysis were made using the testDispersion and testZeroIn-

flation functions from the DHARMa package. The obtained plots with the respective test

p-values are visible in Figure 5.29.

The obtained p-value for the dispersion statistic (p-value < 0.001), showed evidence

to reject the null hypothesis, that the variance of the observed residuals are equal to the

variance of the simulated residuals. Therefore, this model shows problems of overdisper-

sion.

Similarly, the p-value < 0.001 obtained for the zero inflation also shows that the model

is not able to cope with the amount of observed zeros.

DHARMa nonparametric dispersion test via sd of
residuals fitted vs. simulated

Simulated values, red line = fitted model. p−value (two.sided) = 0
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b) DHARMa plot for testZeroInflation() function.

FIGURE 5.29: DHARMa plots for Poisson Additive Mixed model.

We were able to determine that this was not an appropriate model to apply to the data

in this manner.
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5.7.2 Negative Binomial model

Although we observed zero inflation difficulties in the prior model 5.8, these may be

connected to the previously discovered overdispersion problems. As a result, we will

start by applying a Negative Binomial additive model. If the issue persists, then we will

use a zero-inflated model.

The obtained model for the Negative Binomial distribution was

log µijt = β0 + b0i ++ f (SLjt)+ f (DOjt)+ f (pHjt)+ f (Monthjt)+ f (TOMjt)+ f (Monthjt)

(5.9)

The output results for the model are represented in Table 5.13. The AIC of the model

was 2650.5 (Table 5.13), which was a significant improvement in comparison to the Pois-

son additive mixed model. The Negative Binomial parameter k was of 0.422, and the

model had 36 % of deviance explained. No parametric terms showed significance for the

model, while cockle’s shell length, the organic matter content of the sediment, water dis-

solved oxygen and pH and month were significant smooth terms. There EDM ranged

from 2.22 to 7.27 (Table 5.13), and the spline trends are represented in Figure 5.30.

TABLE 5.13: Output of the Negative Binomial additive mixed model.

Smooth terms
EDF p-value <0.001

SL 7.267 <0.001
DO 2.403 0.008
pH 2.6570 <0.001
TOM 2.909 <0.001
Month 2.223 <0.020
Site (re) 0.842 <0.011
Parametric terms

Coef. Std. Error p-value
Intercept -3.3755 0.1974 <0.001

AIC: 2901.4 Deviance explained: 32.7 %
Dispersion parameter k: 0.422

5.7.2.1 Model Validation

The model’s ability to handle a large number of zeros was further evaluated using DHARMa’s

ZeroInflation() function. The p-value of 1 found indicates that the model can explain for

the observed number of zeros. Figure 5.31 depicts the histogram and test results.
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DHARMa zero−inflation test via comparison to
expected zeros with simulation under H0 = fitted

model

Simulated values, red line = fitted model. p−value (two.sided) = 1
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FIGURE 5.31: DHARMa plot for the testZeroInflation() function for the Negative Binomial
Additive Mixed model.

Despite that fact that the model did not raise any problems related with the amount

of zeros or dispersion, the model’s prediction remains rather inadequate (91.1 % of zeros

were successfully modelled, while only 22.8 % of 1 counts and 1.3 % of 2 counts were

adequately modelled; counts greater than 2 were not precisely modelled), as shown by

the confusion matrix in Table 5.14.

TABLE 5.14: Confusion matrix of the obtained Negative Binomial mixed model with the
Predicted values in the columns and the Observed values in the rows.

Predicted Values
0 1 2

O
bs

er
ve

d

0 2253 219 0
1 184 53 1
2 49 30 1
3 10 21 0
4 4 6 0
5 2 9 0
6 0 1 0
7 1 1 2
8 1 0 0
11 1 0 0
12 1 0 0
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FIGURE 5.30: Line plot for the variables that a spline was applied to observe the trend.





Chapter 6

Final Remarks and Future

Perspectives

The purpose of this work was meticulously centred on the examination of regression mod-

els for count data, particularly data exhibiting an excessive number of zeros, and its ap-

plication to real scenarios data, with a specific focus on the ecological study of parasites

infecting the European cockle, Cerastoderma edule. More specifically, this project encom-

passed a theoretical component aimed at scrutinising and comparing the various R pack-

ages available for count data regression analysis (comprising both Generalised Linear

Mixed Models and Generalised Additive Mixed Models). Additionally, it involved also

a more practical component, which revolved around data collected during the COACH

project. In addition to the application of these models, this project also aimed to identify

which environmental variables have a determining impact on the abundance of parasite

infecting cockles across different cockle beds in the Ria de Aveiro, Portugal.

To accomplish this, cockles were collected monthly from 18 sampling sites in the Ria

de Aveiro over the course of a year. For each analysed cockle, the species of parasites

infecting each individual and their abundance were recorded. Simultaneously, the vari-

ables collected to explain infection were cockle’s shell length, organic matter content of

the cockles’ bed sediment, and the temperature, pH, dissolved oxygen, salinity and redox

potential of the water at the time of sampling.

A substantial number of cockles were found to not be infected by any metacercariae.

Consequently, it was expected that models capable of handling zero inflation, such as

zero-inflated or hurdle models, would be necessary to apply. Nevertheless, the initial ap-

proach involved the application of a Poisson mixed model. The obtained model identified

93
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salinity, dissolved oxygen, pH, and cockle’s shell length as significant explanatory vari-

ables. When tested for the Poisson regression assumptions, specifically the assumption of

equidispersion, the model did not any significant violations. This outcome underscores

the importance of conducting regression analysis step by step, rather than making deci-

sions solely based on the appearance of the data.

Although the Poisson mixed model did not present major issues overall, this project,

given its strong didactic component focused on learning to apply several different models,

proceeded to apply five other Generalised Linear Mixed Models, including the Negative

Binomial, Generalised Poisson, Zero-Inflated Poisson, Hurdle Poisson, and Binomial.

In general, the models displayed similar results. All models identified cockle shell

length, salinity, and pH as significant effects, with the Poisson model and the two mod-

els for zero-inflation (Zero-Inflated Poisson and Hurdle Poisson) also selecting dissolved

oxygen as a significant explanatory variable. Furthermore, none of the models exhibited

substantial violations except for a slight non-linear relationship between the explanatory

variables and the response mean. Nonetheless, the Negative Binomial regression model

displayed the best goodness of fit (lowest AIC). This highlights the need to test the re-

maining models (especially if not totally satisfied with the obtained model) to determine

if they can somehow enhance the fit, even if no problems were detected during previous

model fitting. In any case, the models generated were unable to predict counts close to

those obtained (maximum 4 - Negative Binomial model - against 12 observed). These

results should therefore be analysed with caution.

Regarding the Binomial model, it exhibited commendable performance, primarily due

to the high number of zeros encountered during cockle analyses, as the model predom-

inantly modelled zeros. Nevertheless, it would be intriguing to apply specific logistic

regression models for imbalanced classes to observe how they would respond.

Finally, in an effort to address the issue of the non-linear relationship between ex-

planatory variables and the response mean, Generalised Additive mixed models were

also applied. The employed Poisson model exhibited violations of the equidispersion

assumption and of its ability to handle zero inflation. When the Negative Binomial re-

gression was applied, these issues appeared to be resolved, but the model’s predictions

remained relatively poor, offering no improvement over the previous models.

In conclusion, one of the primary limitations of this study pertained to the sampling

process, specifically the representativeness of the collection in terms of cockle size at the
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site. This led to the analysis of relatively small (young) cockles that had not yet been ex-

posed to parasites. As future work, it would be intriguing to further explore this dataset.

This could involve the application of untested distributions to potentially improve data

fit, as well as the examination of other groups of parasites available in the database. No-

tably, a keen interest lies in the analysis of the dependent variable Gymnophallus, which,

apart from its high number of zeros, exhibits parasite counts reaching into the hundreds

per cockle. Applying a Tweedie distribution could be a potential solution in this case.
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