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Privacy-Preserving Face Detection: A Comprehensive Analysis of Face

Anonymization Techniques

by Ricardo ANDRADE

The advancing capability of facial recognition technology, alongside the pervasive col-

lection and exchange of facial data, raises substantial privacy concerns for individuals.

While prior research has extensively examined privacy-preserving solutions in the 2D

space, there is still a noticeable void in the development of such solutions for the 3D

space. This thesis addresses the gap in the field by analyzing and proposing novel 3D

face anonymization techniques for point clouds, which are collections of data points in

3D space representing the external surface of objects. It also conducts a comprehensive

assessment to measure the effectiveness of these techniques in providing privacy protec-

tion while preserving data utility.

The methodological framework encompasses three pivotal components. First, a

custom-made 3D facial dataset is curated, featuring a roster of 201 distinct identities.

This dataset represents an expansion compared to several existing datasets and serves as

the foundation for conducting experiments related to anonymization solutions. Second,

the research proposes and implements six anonymization techniques spanning a diverse

spectrum, encompassing paradigms that embrace sampling, noise injection, warping,

smoothing, morphing, and point-level operations. Ultimately, a comprehensive evalua-

tion of the anonymization techniques is conducted using a proposed evaluation method-

ology that measures their effectiveness by assessing the interplay between the level of

privacy protection offered and the preservation of data utility. The privacy assessment

involves rigorous testing against a robust attacker face recognition model, encompassing

both verification and closed-set recognition modes. Simultaneously, the utility evaluation

assesses its impact on face detection and a range of image quality assessment metrics.

mailto:up201805015@fc.up.pt


The results indicate that all the anonymization techniques effectively conceal the iden-

tity of individuals. However, the smoothing technique based on the nearest neighbors

algorithm and the face-morphing technique achieved the best compromise between data

utility and privacy. Also, the evaluation methodology has proven its reliability in select-

ing the parameter configurations for these techniques and has the potential for further

extension to assess the specific requirements of other use cases.

The findings of this study have implications for the potential integration of the pro-

posed anonymization techniques in the field of 3D imaging technology. Moreover, this

study expands the current knowledge base of 3D face anonymization, thereby laying the

foundation for the development of more sophisticated methods.

Keywords— Face anonymization, Face detection, Point cloud, Privacy, Utility, Trade-

off
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Deteção Facial com Garantias de Privacidade: Uma Análise Abrangente de Técnicas

de Anonimização Facial

por Ricardo ANDRADE

A crescente capacidade da tecnologia de reconhecimento facial, associada à coleta

e troca generalizada de dados faciais, levanta preocupações significativas de privaci-

dade para os indivı́duos. Embora estudos anteriores tenham examinado extensivamente

soluções de preservação de privacidade no espaço 2D, ainda existe uma lacuna percetı́vel

no desenvolvimento de tais soluções para o espaço 3D. A presente dissertação aborda esta

lacuna existente no campo, com a análise e desenvolvimento de técnicas inovadoras em

nuvens de pontos, que correspondem a coleções de pontos no espaço 3D que representam

a superfı́cie externa de objetos. Por outro lado, também realiza uma avaliação abrangente

dessas técnicas para determinar a sua capacidade de equilibrar a proteção da privacidade

com a manutenção da utilidade dos dados.

O quadro metodológico abrange três componentes principais. Em primeiro lugar, é

criado um conjunto de dados faciais 3D que contabiliza uma total de 201 identidades

distintas. Este conjunto de dados representa uma expansão em comparação com vários

conjuntos de dados existentes e serve como base para o desenvolvimento e avaliação

das soluções de anonimização. Em segundo lugar, a pesquisa incide na conceção e

implementação de seis técnicas de anonimização distintas que englobam um espec-

tro diversificado, incluindo paradigmas que abrangem amostragem, injeção de ruı́do,

distorção, suavização, “morphing”, e operações ao nı́vel dos pontos. Por fim, é reali-

zada uma avaliação extensiva das técnicas de anonimização utilizando uma metodologia

de avaliação proposta que mede a sua eficácia ao avaliar a interação entre o nı́vel de

proteção de privacidade oferecido e a preservação da utilidade dos dados. A avaliação de
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privacidade envolve testes rigorosos contra um modelo robusto de reconhecimento facial

enquanto atacante, abrangendo os modos de verificação e reconhecimento em conjunto

fechado. Simultaneamente, a avaliação de utilidade avalia o seu impacto na detecção

facial e incorpora uma variedade de métricas de avaliação da qualidade da imagem.

Os resultados indicam que todas as técnicas de anonimização possuem a capacidade

de ocultar a identidade do indivı́duo. No entanto, a técnica de suavização baseada no

algoritmo dos vizinhos mais próximos e a técnica de morfismo facial alcançaram o me-

lhor compromisso entre a utilidade dos dados e a vertente da privacidade. A meto-

dologia de avaliação também se mostrou competente na seleção das configurações de

parâmetros destas técnicas e poderá potencialmente ser estendida para avaliar os requisi-

tos especı́ficos de outros casos de uso.

As conclusões deste estudo evidenciam que as técnicas de anonimização propostas

oferecem garantias para a sua integração no domı́nio da tecnologia de imagens 3D. Além

disso, este estudo amplia o conhecimento sobre a anonimização facial em 3D e fortalece

as bases para o desenvolvimento de outros métodos mais sofisticados.

Palavras-chave— Anonimização facial, Deteção facial, Nuvem de pontos, Privaci-

dade, Utilidade, Compromisso
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Chapter 1

Introduction

The growing capabilities of facial recognition technology, coupled with the extensive col-

lection and dissemination of facial data, have emerged as considerable concerns regarding

individuals’ privacy. Beyond infringing upon the fundamental right to privacy, the unau-

thorized gathering of facial data also introduces the dangers of profiling, discrimination,

and unwarranted surveillance, thereby disregarding ethical principles.

In May 2018, the General Data Protection Regulation (GDPR) took effect as a European

Union regulation focused on safeguarding information privacy, encompassing provisions

and requirements that govern the collection, utilization, processing, and storage of fa-

cial data. In adherence to privacy policies and principles, while safeguarding individual

rights, extensive research efforts have been committed to the exploration of anonymiza-

tion and pseudonymization techniques applied to facial data within images and videos.

These techniques aim to strike a balance between preserving data utility and safeguarding

individuals’ privacy. Conversely, the domain of 3D data has garnered limited attention,

with minimal to no research focused on addressing similar privacy concerns. This limi-

tation stems from the current use of three-dimensional (3D) mapping technology, which

lags behind its two-dimensional (2D) counterpart. Factors such as sensor resolution, lim-

ited demand, and the increased complexity associated with working with 3D data con-

tribute to this disparity.

Nevertheless, with the escalating adoption of 3D imaging technologies, the imperative

for robust privacy-enhancing solutions becomes accentuated. For example, the realm of

autonomous driving has spurred the utilization of Light Detection and Ranging (LiDAR)

technology, a key component within a car’s perception system. LiDAR is a 3D mapping

technology that captures the physical geometric properties of a scene by emitting pulsed

1
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laser beams that are reflected from objects and recaptured. The light’s reflection time,

also called the time of flight, is stored, as well as its intensity, which enables the exact

computation of an object’s distance. These sensors generate 3D data in the form of point

clouds, as illustrated in Figure 1.1. Despite the current limitations in sensor resolution,

the ongoing advancements in these sensors over the years highlight the importance of

addressing this privacy issue, positioning it as a paramount challenge for the times ahead.

FIGURE 1.1: Point cloud captured by a LiDAR sensor in an autonomous driving setting.
Extracted from OUSTER1.

Research Context This master’s thesis is rooted in the innovative THEIA project, a col-

laborative effort between Bosch and the University of Porto. The core aim of THEIA is to

strengthen the sensory capabilities of autonomous vehicles through the implementation

and validation of perception algorithms. These algorithms leverage data from vehicle

sensors, with a particular emphasis on LiDAR sensors, with the overarching goal of es-

tablishing a highly precise, resilient, and secure vision and perception system. This thesis

aligns with SP5 (Subproject 5) within the project’s scope, which focuses on Infrastructure

and Security.

https://ouster.com/blog/using-ouster-lidar-data-to-advance-intersection-safety-research/
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1.1 Objectives

In this context, this master’s thesis delves into the constrained realm of 3D face

anonymization, intending to propel advancements in this field. Specifically, the inves-

tigation is guided by the following objectives:

• Formulate novel face anonymization techniques designed for point cloud data;

• Conduct a comprehensive assessment of their inherent effectiveness, through imple-

mentation and evaluation of the privacy-utility trade-off of various anonymization

techniques.

1.2 Contributions

This master’s thesis bridges the acknowledged gap in the existing literature by addressing

face anonymization for point cloud data. Consequently, the central contributions of this

thesis encompass the following:

• A systematic literature review covering face detection, face recognition, and face

anonymization across both 2D and 3D spaces;

• The development of a straightforward framework to curate a 3D facial dataset opti-

mized for both 3D face analysis and anonymization;

• The implementation of innovative face anonymization techniques in point cloud

data by integrating and combining pre-existing methods from other fields;

• A comprehensive and rigorous assessment of the effectiveness of the anonymiza-

tions, accompanied by a proposed methodology and metrics for effective privacy

and utility analysis;

• An Artificial Intelligence-based solution for de-anonymization to test the effective-

ness of the proposed anonymization solutions.

1.3 Document Structure

This thesis is organized into five additional chapters outlined as follows: Chapter 2 pro-

vides a comprehensive review of the existing literature related to face anonymization and



4
PRIVACY-PRESERVING FACE DETECTION: A COMPREHENSIVE ANALYSIS OF FACE

ANONYMIZATION TECHNIQUES

the related topics of face detection and recognition in both 2D and 3D spaces. The key con-

cepts, theories, and empirical findings are examined, providing the foundational context

for this research; Chapter 3 outlines the research methodology employed in this study.

The face anonymization techniques are proposed, and theoretical models that guide the

analysis are outlined; Chapter 4 details the experimental setup, denoting the dataset and

empirical configurations of the components under testing. The evaluation strategy is pre-

sented, providing a detailed explanation of how it was developed and executed, along

with initial insights gleaned from the conducted experiments; Chapter 5 reports the re-

sults obtained regarding the anonymization techniques and provides a comprehensive

analysis of them concerning the research questions; and at last, Chapter 6 draws con-

clusions about the work done, highlights the main findings, and discusses future work

prospects.



Chapter 2

Related Work

The related work forming the foundation of this master thesis revolves around three

pivotal components: face detection, face recognition, and face anonymization, with

paramount emphasis on anonymization. The models for each component are designed

to process facial information in various formats, including 2D data, such as still images,

video frames, live video feeds, and any other digital format containing visual informa-

tion or 3D data, encompassing depth images1, point clouds, and meshes2. The reviewed

literature covers both data types, 2D and 3D, particularly for digital images and point

clouds. A digital image is a 2D array organized in rows and columns, represented as a

matrix where individual elements correspond to pixels, which are the smallest units. A

point cloud is a set of data points in a 3D coordinate system that represents the external

surface of an object in the form of discrete points lying on the surface of the object. Each

data point contains information about the position of a specific location in space, typically

defined by its X, Y, and Z coordinates.

This chapter aims to present a comprehensive study of the interplay between face de-

tection, face recognition, and face anonymization and highlight the essential aspects that

characterize each field. The chapter starts by providing an overview of the relevant topics

for each of the three areas concerning the algorithms, as well as datasets and evaluation

1A depth image is a 2D representation of a scene where each pixel encodes the distance from the camera
to the corresponding point in the scene. Despite representing 3D information, they are also referred to as
2.5D due to their 2D nature.

2A 3D mesh is composed of vertices, edges, and faces, collectively defining a 3D object. Vertices represent
points in 3D space, edges connect adjacent vertices, and faces (or polygons) enclose these edges, defining the
object’s surface.

5
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metrics. Accordingly, the chapter analyzes face detection, recognition, and anonymiza-

tion, particularly addressing those topics, and presents the current state-of-the-art results

for reference.

2.1 Overview

Before delving into the specifics, an introduction of the interdisciplinary elements that will

be addressed regarding each field is provided. The division is aligned with the reviewed

literature, enabling a presentation of the most relevant information for characterization

and paving the way for a deeper exploration. The following elements will be discussed

in the remaining chapter:

Algorithms Given the rapid advances in face detection, recognition, and anonymiza-

tion, it is virtually impossible to cover all methods entirely. Therefore, this topic high-

lights pioneering works and milestone models in the history of these fields while explor-

ing recent trends. The milestones in the three areas can be categorized into two eras: the

Traditional Methods (pre-Deep Learning) and the Deep Learning-based Methods (post-Deep

Learning) [1]. While both eras are discussed, particular emphasis is placed on the latter

as these works have demonstrated substantially better performance and have dominated

the research field in recent years [2].

The Traditional Methods in computer vision rely on handcrafted feature extraction tech-

niques to design and extract feature representations that may involve edge detection, cor-

ner detection, or threshold segmentation [2]. These features are defined as descriptive

or informative patches in the data, providing fragments of information about its content.

Until around 2015, these methods were considered the standard approaches [3]. However,

a paradigm shift prompted the widespread adoption of Deep Learning solutions.

The Deep Learning-based Methods, on the other hand, leverage Deep Learning algo-

rithms to automatically learn and generalize complex discriminative facial features with-

out human supervision [4]. Deep Learning is a subset of a broader family of Machine

Learning methods grounded in Artificial Neural Networks [5]. Within the Deep Learning

community, Convolutional Neural Networks (CNNs) are some of the most successful and

widely used architectures [6], serving as essential building blocks for various facial analy-

sis approaches. While their widespread popularity began in 2014 due to the availability of
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large training datasets [7] and the accessibility of high-performance graphics processing

units (GPUs) [8], they have been employed in face detection since as early as 1994 [9].

Evaluation and Performance Metrics This topic addresses commonly employed perfor-

mance metrics in the research community within each field.

Datasets and Benchmarks The advent of Deep Learning-based Methods has emphasized

the importance of large-scale data for model training, significantly impacting model per-

formance. Wang and Deng [10], and Yi et al. [11] claim that developing large-scale face

databases has become a leading factor in face recognition research progress. Similar

trends can be observed in face detection and anonymization. Various datasets are publicly

available for training and benchmarking algorithms in face detection and recognition, cat-

egorized as constrained/controlled and unconstrained/uncontrolled, according to their

characteristics. Constrained datasets are created under controlled conditions, allowing for

the study of specific model parameters [12]. However, they lack the complexity and vari-

ability of real-world scenarios. In contrast, uncontrolled or “in-the-wild” datasets reflect

real-world complexities, containing more images and diverse factors, such as extreme

poses, lighting variations, occlusions, low resolution, and facial expression variations.

The unconstrained scenarios avoid metric saturation, enabling the exploration of model

strengths and real-world application utility.

Benchmarks provide standardized evaluation protocols and metrics on datasets to as-

sess the performance of these computer vision algorithms. They offer a common ground

for assessing progress, comparing methods, identifying limitations, and advancing re-

search boundaries.

This topic provides an overview of the primary datasets within each field, accompa-

nied by benchmark results.

2.2 Face Detection

Object detection is a computer vision technique that predicts the location and class of ob-

jects in the input data, empowering a computer with the knowledge of What objects are

where? [1]. Face detection is a specific subset of object detection focusing exclusively on

identifying and locating an unknown number of human faces. As a result, the algorithms

are designed to be more specialized in recognizing facial features and distinguishing them
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from other objects and backgrounds. Nevertheless, face detection algorithms mostly fol-

low the approaches of generic object detection [13]. Face detectors determine the pixel-

wise and point-wise coordinates of the faces with bounding boxes defined as the smallest

2D rectangle-shaped or 3D box-shaped structure surrounding the entire human face, ir-

respective of its shape and occlusion degree. The 2D boxes are axis-aligned, whereas the

3D boxes are oriented. Refer to Figure 2.1 for a visual representation of the face detection

output.

(A) 2D face detection (B) 3D object detection.

FIGURE 2.1: Output of a 2D face detector and 3D object detector. Extracted from Reti-
naFace and [14], respectively.

Face detection is the stepping stone to all facial analysis algorithms [15], including face

anonymization and recognition. The accurate identification and isolation of the facial re-

gions serve as the foundation for subsequent stages of the pipelines that focus specifically

on analyzing and processing facial features and attributes. Thus, accurate detection of

human faces significantly impacts the performance and overall effectiveness of the entire

face analysis process.

2.2.1 Algorithms

The academic community has extensively explored 2D face detection, with major surveys

analyzing the evolution and trends in this research area. Hjelmås and Low [16] outlined

the efforts within the face detection field dating back to the beginning of the 1970s until the

early 2000s in their acknowledged survey. Zhang and Zhang [17] reviewed the advances

in the field over the following ten years, covering essential feature extraction and learning

algorithms. Minaee et al. [3] covered the rapid progress in this field from the beginning of

the Deep Learning wave in 2015 until 2021, including more than fifty methods. Kumar et

https://github.com/serengil/retinaface
https://github.com/serengil/retinaface
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al. [18] presented a comprehensive survey of face detection techniques in digital images,

focusing on the traditional approaches and their evolution.

In contrast, the 3D domain has been relatively underexplored, resulting, to the best of

the research efforts, in no surveys on this topic.

2D Face Detection Regarding the Traditional Methods, the Viola-Jones face detector [19]

is a milestone algorithm proposed in 2001 that revolutionized real-time face detection

with comparable detection accuracy to contemporaneous algorithms. The detector uses a

sliding window to search for Haar-like features on the input image, which are efficiently

calculated with an integral image. The Adaboost algorithm finds the best features with an

attentional cascade structure. In 2005, the Histogram of Oriented Gradients (HOG) [20]

was proposed and led to considerable improvements compared to other algorithms of

the time. The detector divides the image into grids and computes the gradients of pixel

intensities and their orientations to generate feature representations. The HOG features

are fed into a linear Support Vector Machine (SVM) classifier for detection. According to

Zafeiriou et al. [21], this approach inspired the use of robust descriptors, such as Scale-

Invariant Feature Transform (SIFT) [22] and Speeded-Up Robust Features (SURF) [23],

with weak classifiers. The Deformable Part-based Model (DPM) [24] was initially pro-

posed in 2008 as a detector that incorporates flexible parts and models their spatial rela-

tionships within an object. The approach decomposes objects into parts and learns their

appearance and deformation properties. The model uses a hierarchical structure and com-

bines deformable part templates to capture local and global contexts. Other DPM-based

models proposed by Felzenszwalb et al. [25, 26], have achieved great results. Despite the

significant improvements of handcrafted algorithms, these methods rely on the robust-

ness of handcrafted features and have sub-optimal component optimization [27]. Fur-

thermore, their performance became saturated [1], and a paradigm shift occurred with

the rebirth of CNNs and advancements brought by Deep Learning [28].

Concerning Deep Learning-based Detectors, there are two groups of face detectors in-

spired by object detection: two-stage detectors and single-stage detectors [29]. The former

adopts a two-stage process that sequentially finds an arbitrary number of object propos-

als and then classifies and localizes them. In contrast, the latter classifies and localizes the

objects in a single shot - refer to Figure 2.2 for a visual representation of the architecture

of both groups. Generally, one-stage detectors prioritize fast inference time, whereas two-

stage detectors excel in accuracy [30]. Specifically, a comparison reveals the following
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advantages of two-stage detectors: 1) The region proposal in two-stage detection effec-

tively addresses class imbalance by filtering out most of the negative proposals [31]; 2)

the two-stage process focuses on a smaller number of proposals, allowing for larger de-

tection heads and the extraction of richer features; and 3) two-stage detection regresses

the object location twice, resulting in more precise box localization. For a more compre-

hensive comparison, refer to [32], while a detailed bibliometric analyses of both groups

can be found in [33].
Remote Sens. 2021, 13, 89 6 of 23

(a) Two-stage Faster R-CNN (b) One-stage RetinaNet
Figure 2. Deep learning object detection meta-architectures.

3.2.1. Faster R-CNN
Faster R-CNN is a widely used architecture that follows a multi-task learning proce-

dure, combining classification and bounding box regression to solve the detection problem.
This framework uses a convolutional backbone to extract high-level features from the
images and consists of two stages: a region proposal network (RPN) and a Fast R-CNN
header network [9].

In the first stage, the RPN uses a convolutional sliding window approach over the fea-
ture maps extracted by the backbone network to generate proposals. Multi-scale reference
boxes (known as anchors) are used at each location of the feature map to predict multiple
candidate object boxes. To detect objects at different scales and shapes, the anchors are
defined with multiple scales and aspect ratios. The generated proposals pass through a
fully connected network that computes the bounding box regression and the objectness
score (foreground object vs. background). Afterwards, the top-ranked object candidates
are cropped using a RoI (Region of Interest) pooling layer from the same intermediate layer
of the feature extractor. A final classification and box-refinement operation are performed
for each proposal in the second stage.

The design of multi-scale anchors of this network is a core element for sharing fea-
tures without extra cost for detecting objects at different scales. Compared to previous
approaches in the R-CNN family, the convolutional feature maps are shared between
both stages, which enables nearly cost-free region proposals and an end-to-end training
procedure. However, since the computation of the second-stage network is run once per
each proposal, the candidates provided by the RPN must be limited to a certain num-
ber. This is a parameter that must be carefully chosen, as it has a significant influence
on the performance of the network, in both accuracy and speed. A larger number of
candidates from the RPN may lead to more accurate detections but with a higher inference
time, which is undesirable in this context. The typical value used in the original paper
is 300 proposals. Furthermore, Faster R-CNN uses non-maximum suppression (NMS) to
reduce redundancy within proposals. The NMS procedure is done in both stages and uses
an intersection-over-union (IoU) threshold (typically fixed at 0.7) to remove redundant
overlapping boxes.

3.2.2. RetinaNet
The RetinaNet is an object detection architecture based on the Single Shot Detector

(SSD) that predicts classes and box offsets using a single feed-forward convolutional
network [10]. Unlike R-CNN detectors, SSD does not need the second stage of the region
proposal network. This fact can lead to faster inference speed since the SSD does not

FIGURE 2.2: Deep Learning architectures of one-stage and two-stage object detectors.
Extracted from [34].

Among the two-stage models, the Region-based Convolutional Neural Network (R-

CNN) [7] stands as a pioneering member of the R-CNN family, introduced in 2014.

The model generates region proposals called Regions of Interest (RoI) with Selective

Search [35], and a pre-trained CNN model extracts features from these regions. The de-

tection leverages a linear SVM to predict the presence and location of the objects within

each region. Despite the performance improvement at the time, it has drawbacks related

to slow inference time, unnecessary feature computations on numerous overlapping pro-

posals, and inefficient handling of objects of varying scales. In 2015, Fast R-CNN [36]

addressed the limitations of its predecessor and introduced a unified framework that com-

bines region proposal generation and feature extraction, significantly speeding up train-

ing and inference time. In the same year, Faster R-CNN [37] pushed closer to real-time

inference by introducing a Region Proposal Network (RPN), making the region proposal

generation more efficient. Although originally designed for object detection, the above

models, especially Faster R-CNN, considered the most classical anchor-based generic ob-

ject detection method [29], were inherited by face detection [27]. For instance, works like
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[9, 38–40] consist of slight variations of Faster R-CNN adapted to the face detection prob-

lem.

In the scope of one-stage models, the Single Shot Detector (SSD) [41] emerged in 2016

as a pioneer single-shot object detector demonstrating comparable performance to two-

stage detectors [42]. The main contribution was incorporating multiple feature maps with

different resolutions from different layers to detect objects of various scales and the dis-

cretization of the output space with a set of reference bounding boxes that are adjusted

during prediction time. However, it struggles with detecting small objects due to the

default anchor reference designs, a common problem of anchor-based detectors whose

performance significantly deteriorates as objects become smaller [43]. This model exerted

some influence on subsequent works within the field of face detection. In 2017, Single

Shot Scale-invariant Face Detector (S3FD) [27] introduced a framework that can handle

different scales of faces, improving the detection of small faces. The model has extra con-

volutional layers to generate more anchors for small faces and reduces the stride sizes to

increase potential matches with more small-scale faces. Other anchor strategies, such as

FaceBoxes[44] and ScaleFace [45], effectively address small objects and multi-scale face

detection. Single Stage Headless (SSH) [46] was introduced in 2017 as a headless single-

stage detector avoiding the computation of the parameters of the fully connected layers.

The model is scale-invariant by design and detects faces from the early convolutional

layers, making it fast and lightweight. More recently, in 2020, TinaNet [47] achieved state-

of-the-art results in face detection by only using models and techniques constructed on

pre-existing object detection modules. Zhu et al., the authors, claim that there is no gap

between face detection and generic object detection.

3D Face Detection While some papers have addressed the 3D face detection prob-

lem [48–50], they are limited to the facial data only comprising the region above the neck.

On the other hand, 3D object detection has been extensively reviewed, especially in au-

tonomous driving, and the models operate on data that captures various aspects of the

driving environment, including other vehicles, vegetation, cars, pedestrians, and more.

Given the considerable difference between current 3D object detection and 3D face detec-

tion regarding the complexities of the data they operate, they are not depicted here.
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2.2.2 Evaluation and Performance Metrics

Numerous datasets commonly employ rectangular bounding boxes as ground truth, en-

coded by the pixel coordinates of their upper-left corner, height, and width [51–53]. How-

ever, there is no consensus regarding the most suitable shape [54]. In most benchmark

evaluations, a correct detection is determined using the Intersection over Union (IoU)

metric. This metric calculates the overlapping area between the predicted bounding box

Bpred and the ground-truth bounding box Btruth, divided by the area of their union:

IoU =
area(Bpred \ Btruth)

area(Bpred [ Btruth)
(2.1)

Comparing the IoU value to a given threshold q 2 R allows for classifying detections as

correct if IoU � q, or incorrect if IoU < q. The commonly adopted threshold value is

q = 0.5 [51–54], although different values can be chosen based on the specific application

and requirements. The analysis of correct detections allows for the evaluation of a detec-

tor’s performance using various metrics, which are computed based on the fundamental

concepts defined below:

• True Positive (TP): The system correctly detects a face;

• False Positive (FP): The system incorrectly detects a non-existent face or inaccurately

detects an existing face;

• False Negative (FN): The system fails to detect a face, leaving it undetected.

The concept of a True Negative (TN) is impractical in face detection, as it would require

correctly identifying all non-face regions within an image, a task practically infeasible

due to their vast number. Hence, evaluation metrics that rely on TN, such as the FPR and

the standard Receiver Operating Characteristic (ROC) curve of binary classifier systems,

cannot be used.

However, benchmarks in face detection propose an adaptation of the ROC curve that

does not rely on the TN computation. A standard ROC curve is created by plotting the

True Positive Rate (TPR) on the y-axis against the False Positive Rate (FPR) on the x-axis.

Therefore, benchmarks like [54] replace the x-axis with the total number of FP, and [55]

use the number of FPs per image. The measurement of the Area Under Curve (AUC),

obtained through the integral of the ROC curve, is also used to quantify and summarize

the entirety of the ROC curve.



2. RELATED WORK 13

Also, to avoid the computation of the TN value, the benchmark’s assessment is pri-

marily grounded on Precision and Recall, which are mathematically defined as:

Precision =
TP

TP + FP
(2.2)

Recall =
TP

TP + FN
(2.3)

Precision measures the quality of the identified faces (positive predictions) made by the

model, whereas Recall measures the model’s ability to detect faces (relevant instances).

These two metrics are inversely related, and evaluating a precision-recall curve provides

valuable insights into this trade-off. A well-performing detector will consistently exhibit

high Precision and Recall, regardless of variations in the confidence threshold. Thus,

the AUC effectively summarizes and evaluates this relationship. However, computing

the AUC requires additional processing due to the irregular shape of the precision-recall

curve. The Average Precision (AP) metric is used as an alternative way to calculate the

AUC [56], addressing the issue. The AP is the mean Precision calculated across multiple

Recall values ranging from 0 to 1. One common approach, as discussed in [57], involves

using an 11-point interpolation, where the precision-recall curve is summarized by aver-

aging the maximum precision values at 11 equally spaced recall levels {0, 0.1, ..., 0.9, 1}.

Mathematically, it can be defined as follows:

AP =
1
11 Â

r2{0,0.1,...,0.9,1}
pinterp(r) (2.4)

where the Precision at each recall value is interpolated given by:

pinterp(r) = maxr̃�r p(r̃) (2.5)

Another performance indicator is the Frames Per Second (FPS), which quantifies the

runtime efficiency of detectors by measuring the number of frames processed per second.

This metric holds significant importance in determining the suitability of detectors for

real-time applications.



14
PRIVACY-PRESERVING FACE DETECTION: A COMPREHENSIVE ANALYSIS OF FACE

ANONYMIZATION TECHNIQUES

2.2.3 Datasets

2D Face Detection Over the past few years, numerous datasets have emerged as valu-

able resources for face detection research. These datasets have been instrumental in train-

ing and evaluating face detection algorithms, serving as benchmarks for performance as-

sessment. Table 2.1 presents the specifications of some of the most prominent and widely

used face detection datasets, including significant details such as the number of images,

the count of annotated faces, the image sources, and the bounding box shapes. Additional

information is provided below for each dataset. While these datasets have primarily been

designed for face detection tasks, other facial analysis datasets may also be employed for

the intent of face detection.

TABLE 2.1: Datasets used for training and testing 2D deep face detection.

Name Year Images Faces Source Bounding box

FDDB [54] 2010 2 845 5 171 Yahoo’s news articles Elliptical
AFW [51] 2012 205 468 Flickr Rectangular

PASCAL FACE [52] 2014 851 1 335 PASCAL VOC Rectangular
WIDER FACE [53] 2016 32 303 393 703 WIDER Rectangular

All the presented datasets are used for testing, except for the WIDER FACE [53], which

serves both training and testing purposes.

AFW The Annotated Faces in the Wild (AFW) [51] dataset was introduced in 2012

to simultaneously address face detection, pose estimation, and landmark localization. It

contains 205 images from Flickr, with 468 annotated faces. Each face is labelled with a

rectangular bounding box and up to six landmarks, including the centre of the eyes, the

tip of the nose, and the two corners and centre of the mouth. The dataset showcases di-

verse backgrounds and exhibits substantial facial viewpoints and appearance variations.

The benchmark used in the AFW dataset follows the same approach as the PASCAL

Visual Object Classes Challenge (PASCAL VOC) dataset [57], a widely used dataset in

computer vision research.

FDDB The Face Detection Dataset and Benchmark (FDDB) [54] dataset was intro-

duced in 2010, offering a larger number of faces with more accurate face region anno-

tations. It also proposes a standardized protocol for evaluating the performance of face

detection algorithms. The dataset consists of 2 845 grayscale and colour images collected
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from news articles on the Yahoo website, featuring various resolutions and containing

5 171 annotated faces. Instead of using typical bounding boxes, the faces are manually an-

notated using elliptical regions, as the author claims that ellipses provide a more accurate

specification of the face region without increasing the number of parameters. The dataset

covers a range of challenging scenarios, including difficult pose angles, out-of-focus faces,

and low resolution.

The benchmark employed in the FDDB dataset considers the correspondence between

the set of detections and annotations as a maximum weighted matching in a bipartite

graph, computing two distinct metrics accumulated in an ROC curve.

PASCAL FACE The PASCAL FACE [52] dataset was introduced in 2014 along with a

face detection method, with limited information regarding its specifications. The dataset

focuses on face detection and recognition and comprises 851 images with 1 341 annotated

faces, which exhibit limited variations in appearance. These images were collected from

the Pascal Person Layout test set, a subset of the larger-sized PASCAL VOC dataset [57]

created in 2010. Similar to FDDB [54], PASCAL FACE is commonly used as a test set only.

The evaluation metric used is the AP with an IoU threshold of 0.5.

The benchmark employed in the PASCAL FACE dataset follows the same approach as

the PASCAL VOC dataset [57].

WIDER FACE The Web Image Dataset for Event Recognition (WIDER FACE) [53]

was introduced in 2016 to bridge the gap between real-world requirements by introduc-

ing a high degree of variability in scale, pose, and occlusion. It contains 32 203 images

with 393 703 labelled faces, which Yang et al., the authors, claim was ten times larger

than existing datasets. The images were selected from the publicly available Web Image

Dataset for Event Recognition (WIDER) [58], created in 2015. It comprises three subsets:

40% allocated for training, 10% for validation, and the remaining 50% for testing. The im-

ages in the dataset are divided into three splits based on detection difficulty levels: Easy,

Medium, and Hard, which are determined based on the detection rate achieved by the

EdgeBox [59] method for object proposals. Detection difficulty is associated with varying

degrees of face scale, occlusion, and pose.

The benchmark employed in the WIDER FACE dataset follows a similar approach to

the PASCAL VOC dataset [57].
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3D Face Detection While various 3D object detection datasets exist, such as KITTI (Karl-

sruhe Institute of Technology and Toyota Technological Institute) [60], nuScenes [61], and

Waymo Open Dataset [62], they are not suitable for face detection due to their limited

resolution, which hinders the capture of fine facial features. As a result, the development

of sensors with sufficient resolution remains a significant challenge for advancing the 3D

face detection field. Furthermore, there is a need for affordable 3D acquisition systems

capable of generating large volumes of data required to handle the inherent complexity

of representing and processing 3D data [63].

2.2.4 Benchmarks

Table 2.2 presents the performance of some of the leading models on the WIDER FACE

benchmark, the most commonly used benchmark for evaluating face detection algo-

rithms [64]. When the dataset was introduced, state-of-the-art face detectors achieved val-

ues lower than 32% on the hard difficulty split [53], a difference higher than 60% from cur-

rent models, illustrating the significant development in this field over time. Currently, the

model performances on the FDDB [54] and PASCAL FACE [52] datasets exceeds 99% [3],

indicating that these datasets have reached their saturation point and are no longer able

to effectively evaluate the quality of new models.

TABLE 2.2: State-of-the-art models for 2D face detection, on the WIDER FACE bench-
mark.

Method Easy Medium Hard
FACE R-FCN [65] 94.3 93.1 87.6
SRN [66] 95.9 94.8 89.6
FDNet [67] 95.0 93.9 89.6
DSFD [68] 96.0 95.3 90.0
PyramidBox [69] 95.6 94.6 90.0
AInnoFace [70] 96.5 95.7 91.2
RetinaFace [29] - - 91.4
TinaFace [47] - - 92.4
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2.3 Face Recognition

Biometrics encompasses biological measurements and distinctive physical attributes for

individual identification [71]. Face recognition is a specific biometric technology that re-

lies exclusively on analyzing facial characteristics for identity verification or identifica-

tion purposes. Face recognition technology finds extensive applications across numerous

fields, including security and surveillance, healthcare, banking, and retail.

Face recognition can be categorized into two modes according to its application. On

one side, face verification (or 1:1 matching) consists of verifying an identity claim through

a face image and comparing its facial attributes with the stored facial data associated with

the claimed identity. The system performs a one-to-one comparison, either accepting or

rejecting the claim. Conversely, face identification (or 1:N matching) involves determin-

ing an individual’s identity by comparing their face image with a database of known

identities. The system performs a one-to-many comparison, assigning the identity label

associated with the closest match. Thus, recognition is a generic term that encompasses

both verification and identification. The basic workflow of an end-to-end face recognition

system involves three key components [8]:

1. Face detection: This component detects all faces in the input image and provides the

corresponding coordinates of the bounding boxes.

2. Face alignment: After detecting the faces, this step normalizes them to a canonical

view, accounting for pose, scale, and expression variations to facilitate subsequent

tasks.

3. Feature representation: In this stage, various discriminative facial features are ex-

tracted from the aligned faces. These features are designed to map the aligned face

images into a feature space where features of the same identity are closer together

while those of different identities are far apart.

In the literature, the final step of face recognition is often known as Feature Matching [72],

generating the ultimate predictions for verification and identification. Refer to Figure 2.3

for a visual representation of the general pipeline of a face recognition model.
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2

(a) (b)

Fig. 1. (a) The publication trend of the elements of end-to-end deep face recognition from 2013 to 2020. (b)
The standard pipeline of end-to-end deep face recognition system. First, the face detection stage aims to
localize the face region on the input image. Then, the face alignment is proceeded to normalize the detected
face to the canonical view. Finally, the face representation devotes to extracting features for recognition.

Face detection is the �rst step of end-to-end face recognition. It aims to locate the face regions in
the still images or video frames. Before the deep learning era, one of the pioneering works for face
detection is Viola-Jones [230] face detector, which utilizes AdaBoost classi�ers with Haar features
to build a cascaded structure. Later on, the subsequent approaches explore the e�ective hand-craft
features [8, 162, 169] and various classi�ers [17, 123, 150] to improve the detection performance.
One can refer to [286, 299] for a thorough survey of traditional face detection methods.
Next, face alignment refers to calibrate the detected face to the canonical view and crop it to a

normalized pixel size, in order to facilitate the subsequent task of face representation computing. It
is an essential intermediate procedure for face recognition system. Generally, the facial landmark
localization is necessary for face alignment, while some approaches can directly generate aligned
face from the input one. Most traditional works of facial landmark localization focus on either
generative methods [36, 37] or discriminative methods [153, 345], and there are several exhaustive
surveys about them [99, 247, 358].
In the face representation stage, the discriminative features are extracted from the aligned

face images for recognition. This is the �nal and core step of face recognition. In early studies,
many approaches calculate the face representation by projecting face images into low-dimensional
subspace, such as Eigenfaces [227] and Fisherfaces [13]. Later on, handcrafted local descriptors
based methods [3, 131] prevail in this area. For a detailed review of these traditional methods, one
can refer to [7, 231, 307]. In the last few years, the face representation bene�ts from the development
of DCNNs and witnesses great improvements for high performance face recognition.
This survey focuses on reviewing and analyzing the recent advances in each element. An

important fact is that, the performance of face recognition depends on the contribution of all the
elements (i.e., face detection, alignment and representation). In other words, inferiority in any one
of the elements will become the bottleneck and harm the �nal performance. In order to establish
high-performance end-to-end face recognition system, it is necessary to understand every element
of the holistic framework and their intrinsic connection. A number of face recognition surveys
have been published in the past twenty years. The main di�erences between our survey and the
existing ones are summarized as follows.

• The relationship between the elements and whole.We provide the thorough discussion
about the e�ect of each element on its subsequent one and the holistic system, which are
overlooked in the existing surveys. From the existing experiments and detailed analysis, we
can conclude the performance of the holistic system depends on the three elements. Therefore,

FIGURE 2.3: The standard pipeline of an end-to-end deep face recognition system. Ex-
tracted from [73].

2.3.1 Algorithms

Similar to 2D face detection, extensive research has been conducted by the academic com-

munity on 2D face recognition. Jafri et al. [74] and Zhao et al. [75] provide comprehensive

surveys on the Traditional Methods employed in face recognition. Recent advancements

in Deep Learning-based Methods have attracted significant attention, leading to studies fo-

cusing on specific pipeline elements. For instance, Wang et al. [76] and Jin et al. [77] present

exhaustive surveys on face alignment techniques, while Masi et al. [15] focus on the rep-

resentation of facial features. The preceding chapter has already outlined existing studies

on face detection, which serves as the initial stage of the pipeline. Additionally, Du et

al. [73] offer a comprehensive review of the end-to-end face recognition problem, high-

lighting recent advances across the entire pipeline. Adjabi et al. [78] present the evolu-

tion of face recognition technology, reviewing 180 publications from 1990 to 2020, with a

particular focus on the current 2D face recognition state-of-the-art, namely Deep Learning-

based Methods, although also reviewing 3D models.

In the 3D domain of facial recognition, research has developed, although the num-

ber of surveys remains somewhat limited when compared to their 2D counterparts. Con-

ducted by Li et al. [79], the survey offers an extensive overview that spans both traditional

and contemporary methods. It delves into the associated limitations and advantages of

these techniques, specifically focusing on aspects like face processing, feature extraction,

and the classification of recognition methods. The survey also delves into the challenges

encountered in 3D facial recognition. Addressing some of these challenges, Zhou and

Zhang [80] and Zhang et al. [81] have contributed to the survey landscape, placing partic-

ular emphasis on the complexities introduced by facial expressions, occlusions, and pose

variations. For a broader perspective encompassing multi-modal approaches, Bowyer
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et al. [82] have provided a survey that covers the approaches and challenges in 3D face

recognition and integrates the fusion of 3D and 2D information.

2D Face Recognition The Traditional face recognition methods can be classified into

three distinct approaches: Holistic Methods, Feature-based Methods, and Hybrid Methods, as

outlined in [83] and [10], with initial efforts in the field dating back to 1966 [84].

Holistic Methods utilize the entire face as input and consider global facial information

for face recognition. These methods encode the global information by extracting a small

set of features from the pixels, capturing the variations among different faces, and en-

abling the unique identification of individuals [85]. EigenFaces [86] was introduced in

1991 as a groundbreaking method using statistical Principal Component Analysis (PCA).

This method aims to identify the principal components of the face image distribution

by calculating the eigenvectors of the covariance matrix. These eigenvectors, known as

eigenfaces, collectively describe the variations between face images, allowing for a pre-

cise representation of each face within a lower-dimensional feature space than the orig-

inal data. In 1997, Fisherface [87] followed a similar principle of similarity as Eigen-

Faces. However, instead of using PCA to reduce the high dimensionality of the image

space, Fisherface employs Linear Discriminative Analysis (LDA). A version of Indepen-

dent Component Analysis (ICA) was used in a study by Bartlett et al. [88] in 2002, which

is a generalization of PCA. These methods extract a low-dimensional face representation

based on certain distribution assumptions and employ linear techniques to represent the

subspace. However, nonlinear techniques such as Kernel Principal Component Analysis

(KPCA) [89], Locality Preserving Projections (LPP) [90], and Class-specific Kernel Dis-

criminant Analysis (CS-KDA) [91] are also employed. Nonlinear methods often lever-

age kernel techniques, which involve mapping the data into a higher-dimensional space

where linear algorithms are well-suited for efficiently modelling complex relationships.

In contrast to the previous approaches, Feature-based/Local Methods involve extracting

and analyzing specific facial features (e.g., eyes, mouth, nose) at different locations in a

face image to identify individuals [92]. These methods aim to discover distinctive fea-

tures within facial regions and match them across the entire image. They demonstrate

higher robustness than Holistic Methods when dealing with variations in facial expres-

sions, illuminations, and occlusions [92]. One feature-based method is Local Binary Pat-

tern (LBP) [93], which was introduced in 1996, significantly influencing the development



20
PRIVACY-PRESERVING FACE DETECTION: A COMPREHENSIVE ANALYSIS OF FACE

ANONYMIZATION TECHNIQUES

of other methods in the field [94, 95]. LBP leverages the extraction of local texture pat-

terns from facial images and represents them using histograms. The image is divided into

small local regions, and binary codes are generated based on pixel intensity comparisons

with the center pixel of each region. These codes are then used to construct concatenated

local histograms, which characterize the distribution of local patterns within the face. The

development of local feature descriptions in computer vision has also found applications

in the recognition problem [96–98].

Hybrid Methods combine the strengths of both Holistic Methods and Feature-based Meth-

ods, either in a serial or parallel manner, to overcome the limitations of individual ap-

proaches [99]. These methods involve extracting local features such as LBP or SIFT and

then projecting them onto a lower-dimensional and discriminative subspace using tech-

niques like PCA or LDA [92].

Deep learning Methods for face recognition rely on two essential factors, apart from the

training data: the backbone CNN architecture and the loss function [92]. They deter-

mine how well the network can extract discriminative features from facial images and

encourage the network to learn meaningful feature representations for recognition by

defining the objective that the network is trained to minimize. These two factors have en-

abled these methods to become state-of-the-art [100], surpassing the distinctiveness and

compactness limitations of handcrafted methods [10]. The main deep face recognition

methods benefit from the advancement of general architectures used in visual recognition

tasks, which serve as the foundation for more specialized architectures for face recogni-

tion. Some of these architectures include:

• AlexNet [28]: Winner of the 2012 ImageNet image classification competition [101],

it consists of five convolutional layers, some followed by a max-pooling layer, and

three fully connected layers with a 1000-way softmax;

• VGGNet [102]: Introduces smaller convolutional kernels of size 3x3, increasing the

depth of the network with configurations ranging from VGG-16 and VGG-19, with

16 and 19 layers;

• GoogleNet1 [103]: Winner of the 2014 ImageNet, it is a deep and wide architecture

with 22 layers that uses inception modules to aggregate information from different

spatial scales efficiently;

1Also known as Inception-V1.
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• ResNet (Residual Network) [104]: Winner of the 2015 ImageNet, it introduces a

residual learning framework with “shortcut connections”, enabling the training of

deeper networks with hundreds of layers, addressing the vanishing gradient prob-

lem2.

These architectures have been optimized and adapted for face recognition since 2014

when DeepFace [105], developed by Facebook researchers, achieved an approaching

human-level performance. Inspired by Alexnet, the model was trained on four million

facial images using 3D shape modelling to align the faces and a nine-layer deep neural

network for face representation. Recent models tend to use ResNet backbones to achieve

even higher performance levels.

The loss function is crucial in enhancing feature discrimination, intending to promote

intra-class compactness and inter-class separability [106]. Here, the classes refer to the

subjects’ identities, such that faces belonging to the same identity have the same label and

belong to the same class, whereas distinct identities do not. Researchers have focused on

re-designing classical classification loss functions like Softmax to achieve this goal. Some

well-known loss functions include Center Loss [107], Contrastive Loss [108], and Triplet

Loss [109] that embed the images into the Euclidean space, or Large Margin Loss [110],

A-Softmax [111], ArcFace [112], and ElasticFace [113] that leverages angular separability

between different classes.

3D Face Recognition The 3D face recognition methods follow a similar categorization

to the 2D approaches. They can also be divided into Holistic Methods and Feature-based

Methods following the same principles.

In the realm of Holistic Methods, the Iterative Closest Point (ICP), initially introduced

by Besl and McKay [114], stands as a foundational iterative algorithm employed for the

alignment of point clouds. This alignment process allows the computation of matching er-

rors between two point cloud sets, which can be subsequently leveraged for recognition

purposes. Nevertheless, it exhibits limitations when confronted with facial expressions

characterized by non-rigid deformations. The ICP algorithm has served as a spur for

the development of subsequent methodologies in the field. For instance, Li et al. [115]

incorporated the Hausdorff distance in a central profile alignment step preceding the ap-

plication of ICP, developing an efficient rejection classifier. Similarly, Mohammadzade

2Phenomenon that occurs during DNN training in gradient-based optimization algorithms.
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and Hatzinakos [116] introduced the Iterative Closest Normal Point (ICNP), leveraging

the higher discriminative information encoded within surface normal vectors compared

to the point coordinates.

In the domain of Feature-based/Local Methods, these approaches are primarily applied

to 3D depth images or meshes. However, a number of approaches center on the iden-

tification and characterization of 3D keypoints, as exemplified by Emambakhsh and

Evans [117], who focused on the nasal region and identified seven distinct keypoints.

From these keypoints, they extract nasal surface normals using Gabor-wavelet filtered

depth maps. These surface normals serve as the foundation for generating a set of curves

and spherical patches, which, in turn, are employed as descriptors for the facial represen-

tation. Beyond keypoints, other methods within this category introduce surface curves as

a means of representing the facial structure. Drira et al. [118] employ radial curves as a

feature representation, while Lei et al. [119] leverage Angular Radial Signatures (ARS).

The Deep Learning methods have seen advancements, driven by innovative architec-

tures capable of directly processing point clouds. One example is PointNet [120] which

was initially designed for object classification and part segmentation. The model learns

point-wise features independently using Multilayer Perceptron (MLP) layers and extract-

ing global shape features through max-pooling operations, functioning as symmetric

functions. What sets PointNet apart is its ability to learn the original geometry of un-

ordered point clouds, achieved through permutation-invariant operators. However, it

does not account for local spatial relationships within the data. In response to this limi-

tation, PointNet++ [121] emerged as a successor. PointNet++ enhances feature quality by

enabling the network to learn local structures in point clouds at various scales. These ar-

chitectural innovations have not only influenced 3D face recognition but have also made

significant contributions to 3D object detection, for example. Bhople et al. [122] intro-

duced PointNet-CNN, a deep CNN based on PointNet that employs a PointNet-based

module for feature extraction and incorporates a Siamese network to compare extracted

features and perform classification. Another work is FR3DNet [123], a deep CNN model

inspired by VGG-Face [124] that embeds facial data into feature vectors of length 1 024.

Unlike traditional 2D face recognition kernels with small filter sizes, FR3DNet introduces

filters with larger kernel sizes. To train this model, the authors proposed novel data aug-

mentation techniques involving the generation of synthetic identities through non-linear

transformations in facial expressions and interpolations between identities.
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2.3.2 Evaluation and Performance Metrics

Before delving into the evaluation, it is important to introduce some basic terminology

and notation:

• Gallery set: The gallery consists of a collection of enrolled reference faces with a

known identity in the system;

• Probe set: The probe set denotes a set of faces used to perform the recognition tasks.

The two face recognition applications, verification and identification, influence the

choice of performance evaluation methodologies, performance statistics, and visualiza-

tion charts.

Verification A face recognition system determines whether to accept or reject a probe

face by comparing its feature representation with the feature representation of a gallery

face using a distance or similarity measurement, given a predefined threshold. The deci-

sion of the system allows the computation of the following values:

• True Acceptance (TA): The system identifies a genuine match between a gallery face

and a probe face, leading to the correct acceptance;

• False Rejection (FR): The system fails to identify a genuine match between a gallery

face and a probe face, leading to an incorrect rejection;

• True Rejection (TR): The system accurately identifies no genuine match between a

gallery face and a probe face, leading to a correct rejection decision;

• False Acceptance (FA): The system identifies a match between a gallery face and a

non-matching probe face, leading to erroneous acceptance.

These concepts share similarities with those introduced in the evaluation of face detection

but are specifically applied in the context of face recognition using the appropriate termi-

nology. Refer to [125] for more details and in-depth concepts. Consequently, confirming a

user’s claimed identity involves two types of errors: false acceptance and false rejection.

As such, the False Acceptance Rate (FAR) or False Match Rate (FMR) denotes the proba-

bility of mistakenly accepting as a match a non-matching face, i.e., an imposter. On the

other hand, the False Rejection Rate (FRR) or False Non-Match Rate (FNMR) represents



24
PRIVACY-PRESERVING FACE DETECTION: A COMPREHENSIVE ANALYSIS OF FACE

ANONYMIZATION TECHNIQUES

the likelihood of the system inaccurately rejecting a genuine identity match. Mathemati-

cally, these two metrics are defined as follows:

FAR =
FA

FA + TR
(2.6)

FRR =
FR

FR + TA
(2.7)

Another common metric is the True Acceptance Rate (TAR), which represents the proba-

bility of correctly accepting a genuine match. Mathematically is defined as:

TAR =
TA

TA + FR
= 1� FRR (2.8)

In the biometrics context, the ROC is a graphical representation that plots the FRR on

the y-axis against the False Acceptance Rate (FAR) on the x-axis achieved by varying

the threshold used for verification. Alternatively, the ROC curve can also depict the TAR

against the FAR. The AUC of the ROC curve is a widely used metric to evaluate the overall

performance of face verification tasks.

Identification Identification can be categorized into two evaluation protocols: closed-set

and open-set. In the closed-set protocol, the system assumes that all identities in the probe

set are included in the gallery set. On the other hand, the open-set protocol is designed

to handle probe identities not present in the gallery set, representing a more realistic and

complex scenario. This protocol must address the challenge of rejecting unknown identi-

ties [126]. As a result, the closed-set protocol is a more straightforward and less realistic

protocol when compared to the open-set.

In a closed-set, the performance evaluation involves computing the rank-k perfor-

mance. This evaluation involves calculating the distance or similarity scores between a

specific probe and the gallery elements. The scores are then sorted in descending order1,

and the rank of the true match in the sorted list is determined. The identification rate for

a given rank-k, denoted as IR(k), represents the proportion of probes at rank-k or lower.

Mathematically, it can be expressed as follows:

IR(k) =
|{b | rank(b)  k, 8b 2 P}|

|UP |
(2.9)

1or increasing order depending on the use of distance or similarity measures.
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where e U represents the set of unique identities, and P is the probe set. The Cumulative

Match Characteristic (CMC) curve plots the Identification Rate (IR) at rank-k on the y-axis

against the value of k. Rank-1 performance is commonly used to summarize the closed-set

identification performance [127].

In an open-set scenario, the commonly used metrics are the True Positive Identification

Rate (TPIR), and False Positive Identification Rate (FPIR) [73]. For more in-depth infor-

mation, refer to [128], which provides a comprehensive survey of the open-recognition

problem, focusing as well on the facial standpoint.

2.3.3 Datasets

2D Face Recognition The advancement of deep face recognition heavily depends on

the existence of large-scale training datasets, which are essential for learning deep facial

features and representations. Additionally, high-complexity testing datasets are essential

to avoid performance saturation. Table 2.3 provides specifications for some of the most

prominent and widely used face recognition datasets, offering important details such as

the number of subject images, total image count, and the number of images per subject.

TABLE 2.3: Datasets used for training and testing 2D deep face recognition.

Name Year # Subjects # Images # Images per subject Annotations

CASIAWebFace [11] 2014 10 575 494 414 47 �
MS-Celeb-1M [129] 2016 20K 100K 5 BB

VGGFace2 [130] 2017 9 131 3.31M 363 pose, age
LFW [12] 2008 5 749 13 233 2.3 �

IJB-B [131] 2017 1 845 11 754 11.4 BB

These datasets can be utilized jointly to achieve optimal models, as demonstrated in a sys-

tematic study conducted by Cao et al. [130]. In their study, the authors trained a ResNet-50

model on VGGFace2, on MS- Celeb-1M, and their union, achieving an improved recogni-

tion performance on the latter.

CASIAWebFace The CASIAWebFace [11] dataset, introduced in 2014, was the first

publicly available large-scale training face dataset. This dataset comprises 494 414 images
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of 10 575 subjects, which were collected semi-automatically from the Internet without an-

notations. The subjects featured in the dataset are celebrities, resulting in a long-tail dis-

tribution of images per subject [132]. CASIAWebFace has gained significant popularity as

a training dataset owing to its moderate size and user-friendly nature.

MS-Celeb-1M The MS-Celeb-1M [129] dataset was introduced in 2016 and praised

as the largest publicly available training dataset at its release. The dataset was created

using Bing Search and contains approximately 10M images of 10 000 celebrities, with an

average of 100 images per subject. Each subject in the dataset is annotated with a bound-

ing box. Although the dataset has some limitations, such as the need for more quality

annotations and the presence of duplicate and non-face images, it remains one of the pri-

mary and most extensive training datasets used by the community.

VGGFace2 The VGGFace2 [130] dataset was introduced in 2018 as a large-scale

training dataset. It consists of 3.31M images of 9 131 subjects, including celebrities with

significant pose, age, illumination, and ethnicity variations. Each identity in the dataset

is represented by an average of 363 images, which is considered a substantial number for

training purposes. The images were collected from Google Image Search and annotated

through a manual and automated procedure.

LFW The LFW (Labeled Faces in the Wild) [12] is a classic benchmark dataset intro-

duced in 2008 to address the problem of unconstrained face recognition. Over the years,

it has become the most widely used benchmark for evaluating face recognition systems.

The dataset comprises 13 233 images featuring 5 749 different identities collected from the

web. For evaluation purposes, the standard LFW protocol employs 6 000 face pairs, con-

sisting of 3 000 genuine pairs and 3 000 impostor pairs, to evaluate the mean verification

accuracy. Each image in the dataset is 250⇥ 250 pixels in size. However, despite its sig-

nificance, the state-of-the-art performance on LFW has reached a saturation point [15].

IJB-B The IARPA Janus Benchmark-B (IJB-B) [131] dataset was created in 2017 as an

extension of the 2015 IJB-A dataset [133]. Its purpose was to address the limitations of

the previous dataset, which included limitations of unconstrained traits, a relatively low

number of impostors, and a more uniform geographic distribution. The images in IJB-

B, totalling 11 754, were collected from the Internet and feature 1 845 different subjects,
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including video frames from various sources. IJB-B serves as a testing dataset for face

verification and identification protocols, applicable to both images and videos. Subse-

quently, the 2018 IJB-C dataset [134] was introduced, representing the latest addition to

this series, further improving dataset size and variability.

3D Face Recognition Within the realm of 3D data, the emphasis is placed on point

clouds and meshes rather than range images. Table 2.4 presents the specifications of some

of the most prominent and widely used 3D face recognition datasets, including essential

details such as the number of subjects, the number of faces, and the data format type. Ad-

ditional information is provided below for each dataset. The iPhonePLYv3 dataset and its

data collection process will be discussed in detail in Section 4.1, and it is presented here for

the purpose of comparison within that section. It is important to note that this dataset was

not specifically designed for 3D face recognition; rather, its creation is primarily related to

3D face anonymization.

TABLE 2.4: Datasets used for 3D face recognition.

Name Year #Subjects #3D Models Data Type

GavabDB [135] 2004 61 427 Mesh
BU-3DFE [136] 2006 100 2 500 Mesh

Bosphorus [137] 2008 105 4 666 Point Cloud
BJUT-3D [138] 2009 500 500 Mesh
FRAV3D [139] 2013 106 1 696 Mesh

FaceScape [140] 2020 938 18 760 Mesh
iPhonePLYv3 2023 201 201 Point Cloud

Compared to 2D face datasets, 3D face datasets are less common and smaller in scale [80].

A significant challenge in this domain lies in developing affordable 3D acquisition sys-

tems capable of providing the vast amount of data required by these techniques to handle

the inherent complexity of 3D data representation and processing [63].

GavabDB The GavabDB [135] is a 3D face analysis dataset established in 2004. It

comprises 427 meshes of facial surfaces without texture from 61 subjects, including 45

males and 16 females, with seven images per subject. All subjects in the dataset belong

to the white ethnicity and are aged between 18 and 40 years old. The database offers sys-

tematic variations in pose and facial expressions, making it suitable for diverse research

purposes. The 3D facial data was captured using a Minolta Vi-700 laser range scanner.
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BU-3DFE The Binghamton University 3D Facial Expression (BU-3DFE) [136] dataset

was released in 2006 to develop expression-invariant face recognition. This dataset com-

prises 100 subjects, with 56% female and 44% male, totalling 2 500 facial models. It in-

cludes six expressions: anger, happiness, sadness, surprise, disgust, and fear. The sub-

jects’ ages range from 18 to 70, with diverse ethnic ancestries represented.

Bosphorus The Bosphorus [137] dataset, released in 2008, is a comprehensive 2D

and 3D human face dataset designed to simulate adverse conditions for facial analysis.

It incorporates diverse expressions, including the six basic emotions, variations in head

pose (13 yaw and pitch rotations), and different types of occlusions (beard, mustache,

hair, hand, and eyeglasses). The dataset includes 105 subjects and 4 666 faces, with some

subjects being actors, contributing to a more realistic representation of emotions. The 3D

facial data was acquired using an Inspeck Mega Capturor II 3D scanner.

BJUT-3D The BJUT-3D [138] dataset, released in 2009, is a 3D database designed for

face analysis tasks. The dataset comprises 500 Chinese individuals, including 250 males

and 250 females, all depicted with neutral expressions and without accessories. The 3D

facial data was captured using a CyberWare 3030 RGB/PS laser scanner.

FRAV3D The FRAV3D [139] dataset, introduced in 2013, is a multimodal dataset

customized for 2D, 2.5D, and 3D controlled facial analysis. The dataset consists of 106

subjects, roughly one-third being women, all captured under controlled lighting condi-

tions and without accessories. Each subject in the dataset has 16 captures, each featuring

different poses or lighting conditions, although not simultaneous. The data was acquired

using a Minolta VIVID 700 scanner, which provides texture information in the form of a

2D image and a Virtual Reality Modeling Language (VRML) file for the 3D image repre-

sentation.

FaceScape The FaceScape [140] dataset was released in 2020, presenting a large-scale

high-quality 3D face dataset. It comprises 18 760 textured 3D faces from 938 subjects,

each captured with 20 specific controlled expressions. The age range of the subjects is

between 16 and 70 years old, and most of the subjects are of Asian ethnicity. The facial

data was acquired using a dense multi-view system comprising 68 Digital Single Lens
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Reflex (DSLR) cameras to create accurate 3D face models with detailed textures for each

subject.

2.3.4 Benchmarks

Table 2.5 presents the performance of some of the leading models on the LFW bench-

mark, which is the most commonly used benchmark for evaluating face detection algo-

rithms [64]. The best algorithms exhibit only marginal differences, with higher than 99.5%

accuracy. This level of performance indicates that, despite using more powerful models,

capturing a significant quantitative gain over the previous models and accurately mea-

suring its true strength becomes impossible [3]. Consequently, the performance on the

LFW dataset is now saturated, and it may no longer be sufficient to accurately evaluate

the quality of the latest models.

TABLE 2.5: State-of-the-art models on 2D face verification, on the LFW benchmark.

Method Accuracy (%)
FaceNet [109] 99.63
CosFace [141] 99.73
PRN [142] 99.76
Deep Embedding [143] 99.77
L2-Softmax [144] 99.78
ArcFace [145] 99.83

Regarding the 3D, Table 2.6 reports the results on the Bosphorus dataset, which is one

of the main 3D facial point cloud datasets. The benchmarks exhibit that the deep-learning

techniques tend to have a higher performance compared to the traditional methods. Al-

though the recognition rate is high, it closely relates to the size of the testing set, which is

considerably lower than the 2D counterpart.

TABLE 2.6: State-of-the-art models on 3D face verification, on the Bosphorus dataset.

Method Recognition Rate (%)
Li et al. [146] 95.40
Berretti et al. [147] 95.70
WESC [148] 97.75
FR3DNet [123] 98.60
PointNet-CNN [122] 98.91
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2.4 Face Anonymization

The ISO/IEC 29100:2011, published in 2011 and reviewed and confirmed in 2017, defines

anonymization as:

Process by which personally identifiable information (PII) is irreversibly altered in

such a way that a PII principal1 can no longer be identified directly or indirectly,

either by the PII controller2 alone or in collaboration with any other party.

Within the domain of face anonymization, the focus is solely on protecting the privacy

of an individual’s identity captured in facial data, achieved through the irreversible al-

teration of PII associated with the face. Face anonymization is a crucial tool employed

in various applications to address ethical concerns by mitigating the privacy risks of bio-

metric recognition systems. It plays an essential role in balancing the benefits of biometric

systems and the need to uphold ethical principles, fostering trust and accountability in

using facial data.

An effective face anonymization system should possess several key properties to en-

sure the privacy and protection of individuals. These properties may include [149]:

• Preservation of Anonymity: The result must conceal the original identity;

• Realistic: The result must look authentic and preserve the performance of state-of-

the-art detection and recognition systems;

• Controllable: The anonymization process should be controllable through a control

parameter that determines the fake identity of the anonymized image;

• New Identities: The anonymized identity must not belong to the training set.

2.4.1 Algorithms

Much research has been conducted regarding 2D face anonymization, although not to

the same extent as face detection and anonymization. Meden et al. [150] present a com-

prehensive introduction to privacy-related research, reviewing existing works on Biomet-

ric Privacy-Enhancing Techniques (B-PETs) applied to face biometrics. Rakhmawati et

al. [151] provide a comparison of several existing Traditional methods, underlying the ad-

vantages and disadvantages of each method. Ribaric et al. [152] offer a broader overview
1The natural person to whom the PII relates.
2The privacy stakeholder that determines the purposes for processing PII.
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of de-identification approaches for both biometric and non-biometric identifiers, includ-

ing behavioural and soft biometric data. In the context of privacy and security, Cai et

al. [153] comprehensively survey recent trending approaches that leverage Generative

Adversarial Networks (GANs), which are still in an early stage of development, depicting

both their advantages and drawbacks.

However, the 3D domain has been relatively underexplored, resulting, to the best of

the research efforts, in no surveys on this topic.

2D Face Anonymization In their work, Meden et al. [150] present a comprehensive tax-

onomy of face anonymization techniques. The following outline provides a simplified

version by presenting a selection of illustrative global methods. As such, the Traditional

Methods are divided into two groups: Obfuscating Techniques and Synthesis Techniques.

Obfuscating Techniques consist of simple techniques1 that degrade the image quality

at the expense of reduced biometric data utility. This group encompasses the following

approaches:

• Masking: Conceals the entire facial region or parts using masks or shapes, including

rectangles, ellipses, or circles with solid colours, typically black [154, 155]. These

works relate to video surveillance, which demands a module to first detect and track

the faces in the video frames and then create the obscuring masks using the detected

face locations and scales;

• Blurring: Reduces the detail level of images with a smoothing technique such as

Gaussian filters [156]. A Gaussian filter, commonly used in image processing, serves

as a low-pass filter. This filter is implemented as a symmetric kernel that is con-

volved with either the input image or a selected region of interest. For instance,

when considering a standard deviation s of 1, the Gaussian kernel approximations

for both the 3⇥ 3 and 5⇥ 5 cases take the following form:

1
16
⇥

1 2 1

2 4 2

1 2 1

1
273
⇥

1 4 7 4 1

4 16 26 16 4

7 26 41 26 7

4 16 26 16 4

1 4 7 4 1

(2.10)

1Also known as naı̈ve or ad hoc methods.
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These values are a discrete representation of the Gaussian Function defined as:

G(x, y) =
1

2ps2 e�
x2+y2

2s2 (2.11)

A Gaussian filter assigns a higher weight to pixels near the center of the kernel and

gradually reduces the weight as it moves away from the center. Another smoothing

technique is the average filter, which averages the pixel values of all neighboring

pixels instead of weighting the pixels like the previous;

• Pixelization: Reduces the resolution of an image by aggregating the pixels into

groups of uniform squares or rectangles, stretching them to a point beyond their

original size [157];

• Warping: A geometrical transformation that destroys neighbouring pixel relation-

ships by shifting their positions and interpolating their intensities [158]. Korshunov

and Ebrahimi, the authors, select a set of key points in the image and shifts their

coordinates based on random values and warping strength. A transformation ma-

trix is computed according to the destination coordinates and applied to each pixel

using cubic interpolation.

Other studies introduce artifacts in the image, such as noise [159], or apply other simple

digital image processing transformations. However, these approaches have proven to

highly distort the integrity of the original face and be vulnerable to comparatively simple

attacks [160].

The Synthesis Techniques generate synthetic facial data with predefined attributes and

are more sophisticated than the previous group. One of the most famous is the K-

Same family, which implements the k-anonymity [161] strategy on facial images. The k-

anonymity property ensures that the information of each person cannot be distinguished

from at least k � 1 individuals, with a possible success rate of recognition of 1/k. For

example, Newton et al. [162] presented the k-Same-Pixel and k-Same-Eigen. While both

approaches consider the k-closest faces to the de-identification input image, the former is

based on the pixel-wise average of the original face images, whereas the latter leverages

PCA to average the projected images. Despite attaining adequate levels of privacy, they

can lead to undesirable artifacts, the so-called “ghosting” artifacts, caused by alignment
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errors [160]. Other research efforts aimed at improving results utility, such as k-Same-

Select [163] and k-Same-M [164], utilize Active Appearance Models (AAMs) to statisti-

cally represent and model facial appearance. Unlike traditional methods like PCA, AAMs

combine facial shape and texture, generating more visually convincing faces with fewer

artifacts.

The Deep learning Methods follow the Synthetic Technique approach of generating new

facial data with higher complexity. These methods utilize generative modelling, a Ma-

chine Learning approach that aims to approximate complex and high-dimensional prob-

ability distributions of sample data using Neural Networks (NN) to generate new statisti-

cally similar data [165]. Within the context of face anonymization, GANs and Variational

Autoencoders (VAE) are the most popular generative approaches. Refer to Figure 2.4 for

a visual representation of the architecture of both deep learning models.1728 C. Yinka-Banjo, O. Ugot

Fig. 3 The basic Generative Adversarial Network architecture

We then apply the generator function to the vector z. The generator outputs a sample that
is then applied to the discriminator. The discriminator outputs a value which is essentially a
binary classification of real or fake. The error loss on the discriminator’s output is calculated
using a cross entropy cost function. This error is then backpropagated to both the generator and
the discriminator networks. Training stops when the discriminator can no longer discriminate
between a generated data and training data. This point is known as the saddle point of the
discriminator loss, and in principle should be the global minimum.

The nature of the cost function for both the discriminator and generator is discussed in
more detail in Sect. 2.8.We use a StochasticGradientDecent (SGD) algorithm likeADAMon
the two minibatches simultaneously and the gradient decent is carried out for both networks
cost simultaneously.

2.6 Cost function for the GAN

One of the reasons GANs are quite straightforward to train is that we never actually try to
infer the probability distribution p(z/x), instead we sample values of z from the prior and
then we sample values of x from p(x/z) (Goodfellow et al. 2016). The other factor that
appears to be crucial in the success of the training algorithm is the minimax game and the
cost functions defined for the two neural networks. Each network has its own cost function
as shown below in Eqs. 2.7 and 2.8;

J (D) ! −1
2
Ex∼pdata logD(x) − 1

2
Ex∼pdata log(1 − D(G(x))) (2.7)

J (G) ! −J (D) (2.8)

In Eq. 2.7, J (D) is the cost function for the discriminator and it is the cross entropy
between the discriminator’s prediction and the correct labels in the binary classification task
discriminating between real and fake data. Another way to view J (D) is that it provides the
cross entropy for predictions for both the real data from the training set and the generated
samples from the generator. The generator cost J (G) in Eq. 2.8 simply minimizes the log
probability of the discriminator cost function represented as the negated value of J (D).
One can think of this as having a single value the generator is trying to minimize and the
discriminator is trying to maximize (Goodfellow et al. 2016).

123

(A) GAN.

(B) VAE.

FIGURE 2.4: General Deep Learning architectures. Extracted from [166] and
LearnOpenCV, respectively

GANs employ an adversarial process between a generator and a discriminator. The

generator network learns to generate new data samples that resemble the original data,

while the discriminator network learns to distinguish between real and generated data.

Through an iterative training process, the generator and discriminator networks compete

against each other, improving the quality of the generated samples over time. The process

of replacing sensitive facial data with synthetic data ensures data privacy preservation

https://learnopencv.com/variational-autoencoder-in-tensorflow/
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while retaining the statistical properties that contribute to the photorealism of the gener-

ated faces. For instance, DeepPrivacy [167] employs a U-Net architecture for its genera-

tor, incorporating background and pose information to enhance the realism of generated

faces. The discriminator, mirroring the generator’s filter count, includes the background

information as a conditional input and concatenates the pose information at each resolu-

tion. In the case of CIAGAN [149], it introduces a module for controlling the generator’s

characteristics, allowing target identity injection. The input representation includes fa-

cial landmarks (silhouette, mouth, nose bridge) to ensure pose preservation. A masked

background image encompassing the forehead region is fed as input to the generator, im-

proving overall visual quality. FPGAN [168] introduces a pixel loss function to guide the

privacy de-identification process. Its generator employs an enhanced U-Net architecture,

while the discriminator module comprises two custom-designed discriminators.

On the other hand, VAEs combine the capabilities of autoencoders with the generative

power of probabilistic modelling. VAEs consist of an encoder network that maps the input

data to a latent space representation and a decoder network that reconstructs the input

data from the latent space. By learning the underlying distribution of the input data in

the latent space, VAEs can generate new data samples by sampling from this distribution.

Similar to GANs, the resulting faces appear realistic and exhibit the desired properties in

terms of facial characteristics. For instance, studies such as [169, 170] have investigated

the use of VAEs in face anonymization. These studies train the VAE’s encoder to shift

faces toward other faces with desirable attributes. They explore methods for acquiring

new encoding targets in both supervised and unsupervised settings or even incorporate

multiple privacy protection modes with VAEs to achieve privacy-preserving faces.

3D Face Anonymization Despite extensive research efforts, the existing literature ad-

dressing 3D face anonymization on point clouds was quite limited. In its bachelor thesis,

Rustici [171] proposes an approach that involves globally registering the source point

cloud to an oriented template and refining the alignment using the ICP technique. Sub-

sequently, a point cloud template is utilized to eliminate unnecessary facial features by

computing their nearest neighbours on the source face model, resulting in a face model

that retains only essential facial traits. Figure 2.5 depicts the anonymization outcomes for

two subjects following the procedure above.
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FIGURE 2.5: Anonymization results of two subjects following Rustici procedure. Ex-
tracted from [171].

Singh and Ramachandra [172] present a 3D face morphing technique that combines

the 3D face point clouds of two individuals. The process begins by transforming the ini-

tial 3D facial point clouds into depth-maps and 2D color images in a canonical view. Mor-

phing operations are then performed on the color images using facial landmarks to detect

key points and perform Delaunay Triangulation to estimate the affine warping. These

operations are extended to the depth-maps. Subsequently, they project the 2D morphed

color-map and the depth-map back to the point cloud and refine the results by filling in

any gaps, resulting in a 3D face morphing model. In their work, they target the vulner-

ability of a morphing model to face recognition systems by morphing two individuals in

a way that both subjects can be identified as having the same identity in the morphed

result. This contrasts with the anonymization goal, where the identity being anonymized

should not be associated with its anonymized result. However, their work does provide

insights into the potential application of morphing techniques in anonymization, albeit

with a different objective.

Other studies in this domain primarily focus on medical image input data, particu-

larly high-resolution Magnetic Resonance Imaging (MRI). These MRIs enable the gener-

ation of 3D images using volume rendering software that may inadvertently expose the

identity of the subjects, necessitating anonymization [173]. For instance, [174] identifies

five landmarks on the MR image corresponding to the ear, eyes, and nose and proceeds

to either distort or remove these features for anonymization purposes within the 3D MRI

representation.

2.4.2 Evaluation and Performance Metrics

Evaluating privacy protection techniques involves two key aspects: privacy and util-

ity. Privacy metrics are used to assess the level of privacy protection provided by an

anonymization technique. On the other hand, utility metrics focus on evaluating how
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well the visual appearance of the data is preserved and whether relevant information

necessary for downstream tasks is retained, closely relating to the intended data usage.

The main objective of face anonymization algorithms is to strike a balance between max-

imizing data utility and ensuring adequate privacy protection. However, achieving this

balance proves to be challenging as privacy and utility often have an inverse relationship,

referred to as the privacy-utility trade-off. Balancing these competing goals is crucial, as

illustrated in Figure 2.6. The acceptable trade-off is closely intertwined with the intended

purpose for the subsequent use of the data.

Inventions 2021, 6, 45 3 of 30

role-based access control, and encryption, are used to hide data. According to [4], data
undergo different phases during its lifecycle: Data storage, transition, transfer, and process-
ing. Existing privacy-preserving techniques remain in the developing stages, and strong
privacy protection is still an open study topic.

With the advent of the technologies mentioned above presenting the problems of
maintaining data privacy, central questions that remain unaddressed in the healthcare
industry field are as follows [10]:
1. Can one pursue high data utility while maintaining acceptable privacy?
2. Because privacy concerns are different for different healthcare organizations, how is

the trade-off between privacy protection and data utility balanced for computing?
Figure 2 illustrates the trade-off between data utility and privacy. In the past years, the

focus was on maintaining patient privacy and maximizing utility by considering patient
privacy [11–13].

Figure 2. Trade-off between privacy and utility.

With the advent of technology, the number of healthcare markets and assets in India
has been increasing every year. India will have a potential healthcare market shortly. Many
medical institutes are emerging because of a change in government policies. The Indian
government is motivating and encouraging medical colleges to be equipped. Because the
Indian healthcare structure is complex and interdependent, technology implementation and
addressing privacy problems has always been a big question. Therefore, the contributions
of this paper are as follows:
• Provide insights into Indian healthcare systems with applications, trends, and advantages.
• Describe policies that drive Indian healthcare systems
• Specify technological inventions used in Indian healthcare systems.
• List the various privacy issues concerning the Indian healthcare system that needs to

be addressed first.

Structure of Paper
The paper mainly presents the utility and privacy of the healthcare data and discusses

the utility aspect and privacy problems of Indian healthcare systems (Figure 3). To un-
derstand these factors and gain insights, understanding Indian healthcare systems first is

FIGURE 2.6: The trade-off between data privacy and utility. Extracted from [175].

The privacy-utility trade-off analysis involves two distinct evaluation approaches: sub-

jective and objective. The subjective evaluation is a qualitative approach that relies on

human evaluators and their subjective judgments, which may be influenced by biases.

It includes user feedback collection through surveys or interviews, aiming to assess the

visual quality of the results [176, 177], as well as privacy preservation. In contrast, the

objective evaluation is a quantitative approach that employs measurable and quantifiable

metrics, drawing from related domains like face recognition and digital image processing.

Privacy Metrics Anonymization algorithms are commonly evaluated by assessing their

ability to protect the identity of anonymized faces. This evaluation is often conducted by

subjecting them to state-of-the-art facial recognition models acting as attackers and using

standard face recognition evaluation metrics. These metrics include ROC curves, AUC,

or CMCs, as discussed in Section 2.3.2. The evaluation involves measuring these metrics

both with and without applying the anonymization techniques, resulting in two sets of

results. These results are then compared to measure the privacy enhancement provided

by the anonymization method. This comparison does not quantify the anonymization
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strength in the form of a scalar measure, although some efforts have been made towards

that goal by Pavel Korshunov et al. [178], and Terhörst Philipp et al. [179].

To obtain the two sets of results, various attacker paradigms exist in the literature, such

as the naı̈ve recognition that compares the recognition models’ performance on the original

images (the gallery) to their performance on the altered images (the probes). Given this

setting, the attacker takes no action to account for the de-identification effect. In addition

to naı̈ve recognition, there are two other types of attackers related to the arrangement of the

gallery and probe sets, as denoted in [162]. The second type is reverse recognition, where

the altered images (the gallery) are matched to the original images (the probes). The third

type is parrot recognition, where the altered images are matched to altered images, func-

tioning as the gallery and probe sets. Furthermore, another attacker methodology [180]

aims to revert the anonymization data before applying naı̈ve recognition. The assumption

is that the de-anonymized data is closer to the original data than the anonymized data.

This reversibility is achieved with an Autoencoder model, demonstrating a high versatil-

ity due to its ability to generalize the reversibility to adapt to multiple anonymizations.

Despite the authors not explicitly labelling the approach, henceforth, it shall be referred to

as “reversibility recognition” in this work. Refer to Figure 2.7 for a visual representation

of the four attacker configurations.

Model naive parrot special. revers. crypto
Knowledge of ...
... manipulation 7 3 3 3 3
... manipulation method 7 7 3 7 3
... manipul. parameters 7 7 3 7 (3)
Access to data pairs 7 7 7 3 3

TABLE 1. COMPARISON OF ATTACKER MODELS

Figure 1. Data access of the attacker model

To keep the de-anonymization general we keep it agnostic to
the anonymization under test by using machine learning to
learn a model that transforms the anonymized data back into
its corresponding clear data and therefore de-anonymizes
the data. This way the attacker can be easily adapted to a
multitude of anonymizations, simply by the training data of
the de-anonymization being anonymized using the specific
anonymization method that is being evaluated.

naive recognition
clear data

anonymized data

enrollment
testing reversibility

enrollment
testing

clear data

de-anonymized data

anonymized data
parrot recognition
enrollment
testing

clear data

anonymized data

Figure 2. Recognition attacker models

After the training of the model, we use it to de-
anonymize the test data which results in the de-anonymized
test data. To now perform the identification we use a bio-
metric recognition system in which we enroll clear data
samples of the individuals we wish to identify and test
against the de-anonymized test data (for a comparison to
previous methodologies, see Figure 2). We select clear data
as the enrollment data because due to the de-anonymization
the data is closer to clear than anonymized data. This
assumption was confirmed in an experiment, in which the
average accuracy (Facenet, VGG-Face2 & ArcFace) for
all fifteen anonymizations was 49.2% with clear data and
27.1% with anonymized data for enrollment with data de-
anonymized using our approach (see Section 5) as test data.
The identification accuracy of the recognition system of
the de-anonymized data is a metric of the anonymization’s
ability to protect the privacy of individuals in the biometric
recordings. If the recognition system is able to identify
individuals, then either anonymized data is sufficient to
identify individuals (the case caught by previous evaluation

methodology) or the anonymization was reversible.

5. Design

For our investigation into the phenomenon of face anon-
ymization reversibility, we want to better understand what
makes reversal possible. To do this, we design a new ma-
chine learning model that is specifically designed for general
de-anonymization.

For the design, we are guided by two underlying pro-
cesses: reconstruction and inversion. Reconstruction exploits
the correlations and dependencies in the biometric data to
recover removed information. Take for example face images
in which due to the structure of the face it is clear where
the position of the eyes is, or how the color of one eye
most of the time also gives you the color of the other eye.
Inversion on the other hand is the direct undoing of the
operation that the anonymization performed on the data.
While reconstruction will always result in small differences
to the original (lossy), inversion can also perfectly reverse
(lossless). A model trained to de-anonymize anonymized
data will use a combination of both.

Considering that both our input and output are images,
we decide to select an under-complete auto-encoder as
the base model. Auto-encoders compress the input into a
small latent code that represents the input before decoding
it back into the same domain as the input making them
popular choices as a method to remove noise from images
called denoising auto-encoders [35], [36]. The benefit of
auto-encoders is that the encoder and decoder learn the
intrinsic dependencies in the data which can help with the
reconstruction of data that was obfuscated by anonymiza-
tion. A specialized version of auto-encoders that use this
ability are auto-encoders which are used as generators for
deepfakes [37], [38].

For denoising, we find both auto-encoders with linear
and convolutional layers being used. Many common face
anonymizations perform localized changes in the image and
therefore convolutional layers with their locality and trans-
lation invariance properties seem like the obvious choice. In
these cases, the dominant process is reconstruction. Convo-
lutional layers are also the more common option whenever
dealing with images, since there is the concept of neighbor-
hoods and relative positions of pixels as opposed to linear
layers that rather work with vectors and interpret them as
simple lists of values. In situations in which convolutional
layers can solve a problem, they should also generally be
preferred over linear layers as they have fewer trainable
parameters which will speed up the training process.

Our attacker’s machine-learning model is supposed to
be general. In other words, it should be able to reverse any
anonymization. While many anonymizations perform only
local modifications, some, as for instance permutations, ap-
ply global changes to the image. It hence is not sufficient to
use convolutional layers, with local effects, but functionality
to invert global changes has to be implemented.

FIGURE 2.7: Types of attackers to reidentify anonymized data. Extracted from [180].

Utility Metrics Most research studies utilize image quality evaluation strategies to mea-

sure the data utility. Among the well-known metrics are the Structural Similarity In-

dex Measure (SSIM), Peak Signal-to-Noise Ratio (PSNR), and Fréchet Inception Distance

(FID).

The Structural Similarity Index Measure (SSIM) is a widely used similarity metric for

comparing two images. It was proposed by Wang et al. [181] as a more robust solution to
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the problem of image quality assessment. The SSIM metric comprises three terms that es-

timate the impact of image luminance, contrast, and structural changes. Mathematically,

the SSIM between images x and y is defined as:

SSIM(x, y) = [l(x, y)]a[c(x, y)]b[s(x, y)]g (2.12)

where a > 0, b > 0, and g > 0 control the relative significance of the correspondent three

terms of the index. The luminance, contrast, and structural components of the index can

be defined individually as:

l(x, y) =
2µxµy + C1

µ2
x + µ2

y + C1
(2.13)

c(x, y) =
2sxsy + C2

s2
x + s2

y + C2
(2.14)

s(x, y) =
sxy + C3

sxsy + C3
(2.15)

where µx and µy, s2
x and s2

y represent the means and variance of the pixels in the original

and anonymized images, respectively, while sxy denotes their covariance. Additionally,

Ci, i = 1, 2, 3 are stabilization constants. The metric is bounded by the interval [�1, 1] but

is often presented on the interval [0, 1]. A higher SSIM value indicates a stronger similarity

in terms of perceptual quality between the two images compared.

The PSNR is commonly used in image compression to quantify the reconstruction

quality. It is a modified version of the Mean Squared Error (MSE). The PSNR is mathe-

matically defined as:

PSNR = 10 log10

 
MAX2

I
MSE

!
(2.16)

where MAX represents the maximal variation in the original image I. For an 8-bit image

RGB image, MAX = 255. The MSE is defined as:

MSE =
1

MN

M

Â
i=1

N

Â
j=1

(Iij � Kij)
2 (2.17)

where M and N represent the number of rows and columns of the image pixels, while I

and K denote the original and anonymized images, respectively. The PSNR is typically
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expressed as a logarithmic quantity using the decibel scale (dB), where a higher value

implies a more substantial similarity in perceptual quality.

The FID was proposed by Heusel et al. [182] as a means of calculating the similarity of

generated images to real images, originally created to evaluate the performance of GANs.

The metric uses the model Inception-v3 [183] up to the last layer before the output clas-

sification to compute the features of input images from a collection of real and generated

images. The collection is summarized with a multivariate Gaussian by computing their

mean and covariance, and the distance between the two distributions is calculated using

the Fréchet distance [184]. The FID is mathematically defined as:

FID(P, Q) = kµP � µQk2 + Tr(CP + CQ � 2(CPCQ)
1/2) (2.18)

where Tr refers to the linear algebra trace function, and, P and Q, represent two multidi-

mensional Gaussian distributions with mean and covariance matrices denoted as µP, CP,

and µQ, CQ, respectively.

Additionally, several other studies investigate the effects of anonymization on face

detectors and employ conventional evaluation metrics, such as AP, to quantify the im-

pact [167].

2.4.3 Datasets

In the 2D domain, experiments often rely on standard face datasets commonly used in face

recognition and related tasks, including those mentioned in Sections 2.2.3 and 2.3.3. Ad-

ditionally, custom-made datasets, not publicly available, are occasionally utilized [150].

In the 3D domain, due to the literature absence and to the best of the research ef-

forts, no dataset trend selection can be observed. Nevertheless, the only identified work

regarding the 3D point cloud anonymization [171] employs a custom-made dataset cap-

tured using an Artec Leo scanner, each scan containing between 20 000 and 30 000 points.

However, specific details regarding the dataset’s size, identity numbers, and additional

information are not provided.

2.4.4 Benchmarks

The absence of a standardized benchmark for evaluating face anonymization techniques,

coupled with variations in summarizing state-of-the-art results, poses challenges when

comparing models. Different authors employ a range of evaluation strategies, taking into
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account diverse privacy and utility metrics and utilizing various face recognition attacker

models across multiple datasets.

Nevertheless, in Figure 2.8, a visual representation of the privacy-utility trade-off of

various approaches is presented. These encompass three basic techniques: 8 ⇥ 8 pix-

elization, 9⇥ 9 Gaussian blur, and black-box masking. Additionally, two state-of-the-art

deep generative face de-identification methods are included, DeepPrivacy [167] and CIA-

GAN [149], along with variations of the method proposed by Zhai et al. [185], A3GAN.

Three variants of two facial attribute editing methods, STGAN, and L2M-GAN, are also

considered. The results highlighted in the figure underscore the superior performance of

deep learning-based methods.
A3GAN: A�ribute-Aware Anonymization Networks for Face De-identification MM ’22, October 10–14, 2022, Lisboa, Portugal.

100 80 60 40 20

1.0

0.8

0.6

0.4

0.2

0.0

 STGAN-1
 STGAN-3
 STGAN-5
 L2M-GAN-1
 L2M-GAN-3
 L2M-GAN-5
 Pixelation
 Blurring
 Black-out

 DeepPrivacy
 CIAGAN
 A3GAN-0
 A3GAN-1
 A3GAN-3
 A3GAN-5
 A3GAN-10

Fa
ce

 V
er

ifc
at

io
n 

(F
ac

eN
et

) ↓

FID ↓

(b)

50 45 40 35 30

1.0

0.8

0.6

0.4

0.2

0.0

 STGAN-1
 STGAN-3
 STGAN-5
 L2M-GAN-1
 L2M-GAN-3
 L2M-GAN-5
 Pixelation
 Blurring
 Black-out

 DeepPrivacy
 CIAGAN
 A3GAN-0
 A3GAN-1
 A3GAN-3
 A3GAN-5
 A3GAN-10

Fa
ce

 V
er

ifc
at

io
n 

(C
ur

rF
ac

e)
 ↓

BRISQUE ↓

(c)

Figure 4: Face De-ID comparison via Face Veri�cation vs. Image Quality. Top-right corner is the best.

Figure 5: Face De-ID comparison via Face Veri�cation vs. Face Detection. Top-right corner is the best.

Figure 6: Face De-ID comparison via Face Veri�cation vs. Facial Expression Recognition and Face Veri�cation vs. Fatigue Detection. Top-right corner is the best.

region, but the head region is remaining detectable to face detectors.
For the DeepPrivacy and CIAGAN, their AP values are all increased
compared to the naïve face De-ID methods, but still inferior to
A3GAN due to the visual distortions caused by total face generation.

Our A3GAN obtains higher AP than all face De-ID methods. Note
that, the AP of A3GANdoes not decrease quickly with the increasing
of changed attribute numbers (the A3GAN-10 even modi�es all the
facial attributes), and this can be attributed to the special design of
anonymization loss (see the explanation of Eq. (11)).
Face Veri�cation vs. Facial Expression Recognition and Face
Veri�cation vs. Fatigue Detection. To evaluate the controllability
of face De-ID methods, we investigate whether or not the face De-
ID can precisely control the facial expression, and we utilize an
expression recognition network SCN [40] considering seven basic
facial expressions for this experiment, in which a larger recognition
accuracy denotes a better preservation of facial expressions. The
performance comparison of SOTA facial attribute editing methods,
face De-ID methods and our A3GAN in terms of face veri�cation
and facial expression recognition is shown in Fig. 6 (a) and (b).

Fatigue detection is another task to evaluate the controllability of
face De-ID, which should not a�ect some constraint facial regions,
such as eyes and mouth. We build a fatigue detection model based
on a VGG network in [1], and adopt the detection accuracy as a
metric. The performance comparison in terms of face veri�cation
and fatigue detection is shown in Fig. 6 (c) and (d). Since pixelation,

blurring and black-out heavily disturb the facial details and also
should be correctly detected by face detection �rst, we do not report
their results for these two tasks.

The STGAN and L2M-GAN with little changed attributes have
higher accuracy for facial expression recognition and fatigue detec-
tion than face De-ID methods, since we avoid changing eyes/mouth-
related attributes. (see Appendix D for changed attributes).

DeepPrivacy and CIAGAN do not consider the facial details
during the anonymization process, so they obtain low accuracy
values, implying that they cannot be applied to facial expression
recognition and fatigue detection tasks.

Our A3GAN achieves better trade-o� between anonymity and
controllability, since it can control the facial attributes �exibly and
circumvent the problem of DeepPrivacy and CIAGAN. The recogni-
tion accuracy and detection accuracy of A3GAN-0 are comparable
to those of STGAN and L2M-GAN, but drop apparently for A3GAN-
10, because all facial attributes including eyes and mouth-related
attributes are modi�ed.

5.3 Qualitative Evaluation
We display various types of anonymized faces in Fig. 7 for visual-
ization comparison. We can observe that our A3GAN provides a
higher visual quality for face De-ID than state-of-the-art methods.
In contrast, there are noticeable artifacts on the anonymized faces
of DeepPrivacy and CIAGAN (see the yellow arrows in Fig. 7). For

(A) Face Verification vs. Image
Quality.

A3GAN: A�ribute-Aware Anonymization Networks for Face De-identification MM ’22, October 10–14, 2022, Lisboa, Portugal.

Figure 4: Face De-ID comparison via Face Veri�cation vs. Image Quality. Top-right corner is the best.
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Figure 5: Face De-ID comparison via Face Veri�cation vs. Face Detection. Top-right corner is the best.

Figure 6: Face De-ID comparison via Face Veri�cation vs. Facial Expression Recognition and Face Veri�cation vs. Fatigue Detection. Top-right corner is the best.

region, but the head region is remaining detectable to face detectors.
For the DeepPrivacy and CIAGAN, their AP values are all increased
compared to the naïve face De-ID methods, but still inferior to
A3GAN due to the visual distortions caused by total face generation.

Our A3GAN obtains higher AP than all face De-ID methods. Note
that, the AP of A3GANdoes not decrease quickly with the increasing
of changed attribute numbers (the A3GAN-10 even modi�es all the
facial attributes), and this can be attributed to the special design of
anonymization loss (see the explanation of Eq. (11)).
Face Veri�cation vs. Facial Expression Recognition and Face
Veri�cation vs. Fatigue Detection. To evaluate the controllability
of face De-ID methods, we investigate whether or not the face De-
ID can precisely control the facial expression, and we utilize an
expression recognition network SCN [40] considering seven basic
facial expressions for this experiment, in which a larger recognition
accuracy denotes a better preservation of facial expressions. The
performance comparison of SOTA facial attribute editing methods,
face De-ID methods and our A3GAN in terms of face veri�cation
and facial expression recognition is shown in Fig. 6 (a) and (b).

Fatigue detection is another task to evaluate the controllability of
face De-ID, which should not a�ect some constraint facial regions,
such as eyes and mouth. We build a fatigue detection model based
on a VGG network in [1], and adopt the detection accuracy as a
metric. The performance comparison in terms of face veri�cation
and fatigue detection is shown in Fig. 6 (c) and (d). Since pixelation,

blurring and black-out heavily disturb the facial details and also
should be correctly detected by face detection �rst, we do not report
their results for these two tasks.

The STGAN and L2M-GAN with little changed attributes have
higher accuracy for facial expression recognition and fatigue detec-
tion than face De-ID methods, since we avoid changing eyes/mouth-
related attributes. (see Appendix D for changed attributes).

DeepPrivacy and CIAGAN do not consider the facial details
during the anonymization process, so they obtain low accuracy
values, implying that they cannot be applied to facial expression
recognition and fatigue detection tasks.

Our A3GAN achieves better trade-o� between anonymity and
controllability, since it can control the facial attributes �exibly and
circumvent the problem of DeepPrivacy and CIAGAN. The recogni-
tion accuracy and detection accuracy of A3GAN-0 are comparable
to those of STGAN and L2M-GAN, but drop apparently for A3GAN-
10, because all facial attributes including eyes and mouth-related
attributes are modi�ed.

5.3 Qualitative Evaluation
We display various types of anonymized faces in Fig. 7 for visual-
ization comparison. We can observe that our A3GAN provides a
higher visual quality for face De-ID than state-of-the-art methods.
In contrast, there are noticeable artifacts on the anonymized faces
of DeepPrivacy and CIAGAN (see the yellow arrows in Fig. 7). For

(B) Face Verification vs. Face De-
tection.

FIGURE 2.8: Privacy-utility trade-off (top-right corner is the best). Extracted from [185].

In the context of the 3D domain, the sole identified study evaluated anonymization

effectiveness with an online questionnaire, gathering responses from 100 participants as

detailed in [171]. The findings revealed that less than 2% of respondents correctly iden-

tified the identity of the anonymized 3D face model among six images, with only one

image being the actual match. The evaluation did not include any additional metrics or

quantifiable measures.
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2.5 Discussion

2.5.1 Challenges

While face detection and recognition have achieved notable success, specific difficulties

persist that hinder their performance in real-world scenarios. Kumar et al. [18] enumer-

ates nine challenges in the field of face detection, which are shared across face recog-

nition [186]. These challenges hinder the model performance and demand robust algo-

rithms to handle them. Some of those challenges include:

• Background complexity: Denotes the presence of many background objects that func-

tion as distractor elements, making it challenging to distinguish them from the face;

• Illumination: Refers to changes in lighting conditions, such as varying brightness,

shadows, or uneven illumination, which can affect the visibility and appearance of

faces;

• Image resolution: The number of pixels determines image resolution in an image,

which in turn affects the level of detail and clarity of faces. Lower-resolution images

may make it impossible to capture well-defined facial features adequately, resulting

in a loss of essential details and reducing the amount of information available for

face analysis;

• Occlusion: Refers to the partial or complete obstruction of facial features caused

by the subject, objects, or other individuals. This obstruction can alter the natural

structure and appearance of the face;

• Odd expressions: Can introduce significant variations in the appearance of faces and

cause changes in the position and shape of facial features;

• Orientation variations: Reflect variations in one or more of the head’s degrees of free-

dom, i.e., pitch, roll, and yaw of the subject, which introduce changes in the overall

geometry of the facial features.

These challenges mainly concern the facial attributes and variations depicted in the in-

put images, promoting ongoing research efforts to mitigate them and develop problem-

oriented methods designed to address them. Additionally, Du et al. [73] highlight other

challenges concerning data and label distribution, computational efficiency, and the ex-

plainability of the overall process, which is currently a major topic in the community [187].
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As an alternative solution to the challenges mentioned above, researchers have re-

sorted to 3D approaches. While 3D data can be sensitive to facial expressions, its advan-

tage lies in its invariance to pose and lighting conditions, leading to improved efficiency

in recognition systems [78]. According to Kusuma et al. [188], 2D+3D algorithms can be

considered complementary, as the additional dimension compensates for the absence of

depth information and addresses issues related to pose and illumination variations. Re-

garding point clouds, which is the type of data being approached, other challenges arise

due to their inherent nature:

• Sparsity: Point clouds may exhibit a spread distribution of points over an object’s

surface. In some regions, the density of points collected by the sensor might be

reduced.

• Unstructured data: The cloud points have no structure or organization, making it

impossible to index them in a way that their neighbours are related. This lack of

structure poses challenges in analysis and processing.

2.5.2 Critical Reflection

Considerable research has been dedicated to face detection, face recognition, and face

anonymization in the 2D space. This research has yielded impressive results, driven

by advancements in Deep Learning algorithms and the availability of large-scale face

datasets. Simultaneously, 2D+3D detection and recognition research has emerged as

a parallel field to overcome the challenges faced in 2D, unlike anonymization, which

presents minimal studies within this paradigm frame.

However, in the 3D domain, face detection and anonymization remain significantly

underdeveloped, with the reviewed literature revealing a near-absence of scientific papers

on these subjects. One possible explanation for this scarcity is the limited availability of

large-scale 3D facial datasets, the increased complexity of working with 3D data, and the

low resolution of sensors used in current applications that would demand this research,

such as autonomous driving. Nevertheless, investigating these fields is paramount, given

the increasing resolution of sensors and the widespread use of LiDAR technology.
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Consequently, there undoubtedly exists a clear gap in academic research regarding 3D

face anonymization on point clouds. This gap motivates this thesis to contribute advance-

ments and insights into this unexplored field. This work serves as an initial stepping stone

toward more complex research endeavours.





Chapter 3

Methodology

This chapter is devoted to the methodology involved in this research, outlining the tech-

niques employed regarding face detection, recognition, and anonymization to achieve the

study’s objectives. It commences with a succinct high-level description, offering a broad

understanding of the methodology by outlining the main components addressed in sub-

sequent sections. Then, the chapter thoroughly explores the methods of face anonymiza-

tion, recognition, and detection, substantiating their selection and presenting their oper-

ational settings. Additionally, insights are presented regarding the evaluation process,

which includes a description of an attacker model used for assessing the anonymization.

At last, acknowledging the importance of transparency, it openly addresses the study’s

limitations, offering an assessment of encountered constraints during the research.

3.1 High-Level Description

The primary aim of this research is to develop novel 3D face anonymization techniques

designed for point clouds and to conduct a thorough evaluation of their effectiveness in

balancing privacy protection and data utility preservation.

In an initial step, a range of 3D face anonymization solutions is proposed, drawing

from various domains, as there is limited prior research in this field. While these tech-

niques are built upon pre-existing algorithms from diverse domains, they have never

been adapted for anonymization purposes. Hence, this thesis represents an innovative

step in extending these techniques to the anonymization context.

45
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The subsequent step involves evaluating these proposed solutions, following the es-

tablished procedures in existing literature that assess the interplay between privacy and

utility from both qualitative and quantitative perspectives.

In the privacy evaluation, a critical aspect involves the utilization of a face recogni-

tion model as an attacker1 regardless of the attacker paradigm considered from the ones

presented in Section 2.4.2. In this work, both the naı̈ve recognition and reversibility recog-

nition paradigms are explored under the verification and identification (with closed-set

protocol) modes of face recognition, discussed in Section 2.3. For reversibility recognition,

an autoencoder is designed as the de-anonymization model with the goal of reversing the

anonymization process. On the utility front, a comprehensive evaluation was conducted

without immediate plans for specific applications, aiming to uncover the potential bene-

fits and limitations of these techniques across various use cases. This evaluation includes

the utilization of a face detection model for computing specific metrics. Ultimately, a pro-

posed evaluation methodology proceeds with the analysis of the relationship between

privacy and utility, highlighting their trade-off and emphasizing the overall effectiveness

of the anonymization techniques. This comprehensive methodology assures the achieve-

ment of the thesis objectives by proposing and subjecting multiple 3D face anonymization

solutions to a well-rounded evaluation process.

However, despite the proposed facial anonymization techniques operating in point

clouds within the 3D space, the evaluations related to privacy, utility, and their trade-off

were conducted within the 2D space. This decision was influenced by constraints related

to the availability of 3D evaluation resources, particularly open-source 3D face recognition

models. More details about the evaluation strategy will be presented in the next chapter.

As outlined in the high-level description of the framework pipeline above, the do-

mains of face detection, face recognition, and face anonymization, discussed in the pre-

vious Chapter 2, are pivotal components of this research. To visualize their integration

within the operational pipeline and gain insights into the sequence of procedures men-

tioned above, refer to Figure 3.1.

The blue arrows represent the dataset used for conducting experiments, which in-

cludes facial data in the form of point clouds (Dataset 3D) and images (Dataset 2D). Ini-

tially, face anonymization techniques are applied to the 3D data of the dataset, result-

ing in a collection of anonymized point clouds (Anon 3D). Since their evaluation takes

1This also implies the use of a face detection model, which forms the initial stage of the recognition
pipeline.
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FIGURE 3.1: The overarching pipeline of the conducted experiments.

place within the 2D space, both the anonymized and non-anonymized point clouds are

projected into the lower-dimensional space, producing a set of anonymized and non-

anonymized images (Baseline, and Anon 2D, respectively). The non-anonymized images

serve as a baseline for assessing privacy1. Their results are compared to the results ob-

tained with a face recognition model, using the original dataset images as the gallery

set and the anonymized images as the probe set. To further test privacy protection, the

anonymized images are then subjected to de-anonymization using an autoencoder model

(De-Anon 2D). The non-anonymized images are also used to calculate specific utility met-

rics within the employed utility evaluation.

In the remainder of the chapter, the rationale behind the selection of the methods used

in face anonymization, face recognition, face detection, and de-anonymization steps will

be expounded, along with detailed explanations for each.

3.2 Face Anonymization Techniques

In Section 2.4, attention was drawn to the near-absence of scientific papers dedicated to

point cloud face anonymization. To the best of the research efforts, the existing literature

addressing 3D face anonymization on point clouds is quite limited. Consequently, one of

1They are also enrolled as the probe set in the face recognition step, separately.
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the primary contributions of this thesis involves proposing multiple techniques to tackle

the challenge of face anonymization in point clouds.

3.2.1 Algorithms Selection

In the literature review conducted in Section 2.4.1 regarding face anonymization tech-

niques in point clouds, only a singular work addressing this problem has been identified.

This highlights the necessity for the development of new solutions and the exploration

of alternative techniques. However, the lack of existing research poses challenges in for-

mulating solutions, as the restricted knowledge within the field hinders insights into po-

tential approaches that could serve as foundational principles for other variants. As a

result, the rationale behind proposing these solutions was based on extending the prin-

ciples from the well-established 2D face anonymization field into the 3D domain. This

process also entailed the utilization of pre-existing methods from other domains, which

may require some degree of adaptation to meet the specific data requirements.

In accordance with this conceptual shift, the categorization of the diverse 2D tech-

niques has been reconfigured for the 3D context. The solutions are then classified

based on their inherent methodologies into six categories: Sampling-based, Noise-based,

Warping-based, Smoothing-based, Morphing-based, and Point Operations-based tech-

niques. While each category has the potential to include a variety of methods, only one

per category will be outlined, as others could be derived from the same underlying prin-

ciples. Here, the emphasis was placed on testing a wide range of different methodolo-

gies rather than limiting the scope to various techniques from just a few categories. This

approach was adopted to develop a broader understanding of how various distinctive

strategies can be integrated into the framework of 3D anonymization. It is significant to

note that these techniques have not been previously applied in this context by any prior

work. This research marks their pioneering implementation and evaluation within the 3D

face anonymization realm. Hence, their name was deliberately coined for this research,

even though the anonymization techniques integrate pre-existing methods from other do-

mains.

3.2.1.1 Sampling-Based
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Point cloud sampling is a process used to reduce the number of points in a point cloud

while striving to preserve its original shape and characteristics. This process is commonly

employed as an essential pre-processing strategy before implementing 3D deep learning

models to enhance memory and computational efficiency [189]. However, enlarging the

sample size results in severe information loss, boosting the potential for anonymization.

The various sampling techniques have adjustable parameters that regulate the process

and control the information loss magnitude. These attributes exhibit promising potential

when it comes to anonymization. This category is similar to pixelization in 2D images,

as it reduces the amount of information in the point cloud data through removal or ag-

gregation. In this category, a voxel-based sampling approach was selected, referred to

as CentroidVoxel. This selection was made because it has the capability to generate a 3D

uniform grid-like result similar to pixelization in the lower space. Other sampling ap-

proaches that could have also been considered include Poisson Disk Sampling or Farthest

Point Sampling (FPS).

3.2.1.2 Noise-Based

Point cloud noise addition entails the introduction of random or structured variations to

the position, or color of the data points. Noise, a naturally occurring phenomenon during

data management, can undermine data quality. This intrinsic nature has driven the ex-

ploration of innovative solutions to mitigate its impact to the forefront of research [190].

Despite the research efforts, noise can disrupt data to such an extent that it erodes its

inherent structure, rendering it a promising avenue for anonymization techniques. This

approach inherently bears a resemblance to the addition of noise in 2D images. In this

category, uniform noise was arbitrarily selected, and the approach is designated as Uni-

formNoise. Alternatively, other noise types, such as Gaussian noise and Poisson noise,

could have been taken into consideration.

3.2.1.3 Warping-Based

Point cloud warping involves altering a point cloud’s structure using geometric trans-

formations. These transformations can be selectively applied to specific points or uni-

formly across the entire cloud. In this process, individual points within the point cloud

are adjusted, leading to changes in both the overall shape and visual characteristics. Fur-

thermore, the possibility exists to amalgamate multiple transformations, allowing more
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complex and customized modifications. This approach inherently bears a resemblance to

the warping techniques in 2D images. In this category, the selection was made for the

tapering transformation as the method for shape deformation. It will be denoted as Ta-

pering. There are also other options for transformations, including bending and twisting,

that could have been considered.

3.2.1.4 Morphing-Based

Point cloud face morphing refers to the process of smoothly transforming one facial point

cloud into another while achieving a gradual and realistic change in facial appearance.

This transformation involves adjusting the spatial coordinates of the points within the

point clouds to blend facial features between the two states, ensuring a seamless transi-

tion. This method highlights the potential for anonymization and privacy protection, par-

ticularly when changing facial states entirely. Furthermore, the analysis of the work [172],

as outlined in the preceding section, appears to support its potential. Although face mor-

phing may include warping to transform one face into another, warping alone does not

inherently produce a morphing effect, as these are separate and distinct concepts. This

approach shares similarities with face morphing techniques used in 2D space. In this

category, a new pipeline was designed to operate in point clouds and named Merge2Faces.

3.2.1.5 Smoothing-Based

Point cloud smoothing is a computational technique commonly employed to reduce noise

and irregularities, resulting in a more regular and visually pleasing point cloud repre-

sentation. However, increasing the intensity of the smoothing effect may lead to signif-

icant information loss, potentially causing facial features to vanish, thus enhancing the

anonymization potential. This approach shares similarities with smoothing techniques

used in images, such as blurring and smoothing filters. In this category, a method called

SmoothkNN was proposed, which is based on the k-nearest neighbor framework. Another

potential smoothing-based approach that could have been considered involves using an

average voxel filter as a means of recreating the operation of a standard smoothing filter

in the 2D space.
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3.2.1.6 Point Operations-Based

This category was established to encompass techniques that defy classification within any

specific class. These methods involve manipulations of points that alter the structure and

shape of the point cloud in various ways. The implemented technique within this group

is referred to as Point-Mesh-Point (PMP).

3.2.2 Algorithms Description

According to the selected anonymization techniques outlined earlier, this section will pro-

vide an explanation of their functioning. To facilitate their understanding, some prelimi-

nary concepts and mathematical notation are introduced to provide additional context.

Let P 2 R3 represent a finite point set of a subject, and let p 2 P denote an arbitrary

point. Each point p is defined by two key components: its 3D coordinates, pcoord, and its

color, pcolor. While specific techniques may alter both components, others may target only

one, leaving the other unaffected. The RGB color model characterizes the color compo-

nent pcolor, utilizing an 8-bit representation per channel. Actions performed on the pcolor

component, such as computing the mean color of a point set, are equivalent to calculating

each RGB component’s mean value.

3.2.2.1 Sampling-Based

CentroidVoxel The sampling technique CentroidVoxel groups the facial points in a voxel

grid1. A voxel grid is a 3D depiction of space that partitions it into a systematic arrange-

ment of compact volumetric entities known as voxels. Then, each voxel is represented

by its centroid point2, and its color is determined by calculating the average colors of all

the points contained within the voxel. The pseudo-code outlining this technique can be

found in Algorithm 1.

The parameter governing the sampling intensity is ratio, representing the size of each

voxel and ranging from ]0, •]. As this value increases, more data is compressed onto the

centroid point of each voxel. In an extreme scenario where the entirety of the subject’s

head is confined within a single voxel, the resultant point cloud would consist of an iso-

lated point positioned at the centroid of the voxel, displaying the average color derived

from the complete set of facial points.
1The process is known as voxelization, consisting of converting the continuous geometric representation

of a point cloud into a discrete representation using voxels.
2The centroid corresponds to the geometric center of the voxel, irrespective of the points it contains.
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Algorithm 1 CentroidVoxel
Input: P: target point cloud, ratio: voxel size
Output Panon: sampled point cloud with CentroidVoxel

1: voxel grid generate a voxel grid from point cloud P with voxel size equal to ratio
2: for voxel v 2 voxel grid do
3: centroid compute the centroid of voxel v
4: mean RGB compute the average color value of the points inside voxel v
5: p0  create point with coordinates centroid and color mean RGB
6: Panon  Panon [ p0
7: end for
8: return Panon

3.2.2.2 Noise-Based

UniformNoise The UniformNoise technique involves adding random values drawn

from a uniform distribution to the coordinates of each point. As a result, the 3D noise’s in-

dividual coordinates adhere to a uniform distribution, denoted as U (a, b), a, b 2 R^ a < b.

To align the point cloud with its original position, an essential step is taken: the coordi-

nates of each point are translated by subtracting the mean of the uniform distribution,

calculated as (a + b)/2. This adjustment prevents any horizontal or vertical shifts in the

point cloud’s placement, especially when utilizing parameter values a and b that generate

a non-centered uniform distribution interval around the origin 0, given by |a| 6= |b|.

Algorithm 2 GaussianNoise
Input: P: target point cloud, a: uniform distribution parameter, b: uniform distribu-

tion parameter
Output Panon: noisy point cloud with UniformNoise

1: for point p 2 point cloud P do
2: uni f noise  generate a random 3D vector with each coordinate following a uni-

form distribution, U (a, b)
3: p add the noise uni f noise to the point p coordinates
4: Panon  Panon [ p0
5: end for
6: Panon  subtract (a + b)/2 from all the point coordinates of Panon
7: return Panon

The regulatory parameters responsible for controlling the noise intensity are denoted

as a and b, representing the lower and upper bounds of the uniform distribution, respec-

tively. Both parameters extend across the interval ]•, •[, with the condition a < b duly

observed.
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3.2.2.3 Warping-Based

Tapering In mathematics, tapering represents a form of shape deformation character-

ized by a nonconstant scaling according to a specified tapering function. This transforma-

tion differentially changes the length of two global components while keeping the length

of the third unchanged [191]. It constitutes a higher-order deformation, capable of yield-

ing nonlinear deformations. The introduction of nonlinearity stems from the utilization of

a nonconstant transformation matrix denoted as T. The subsequent equation represents

its application to a point p 2 P, yielding a new point p0.
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where r = f (z) symbolizes the scaling factor with f representing the tapering function.

If f (z) = 1, the deformed affected portion of the object remains unaltered; for f 0(z) > 0,

the object experiences enlargement, while f 0(z) < 0 leads to a reduction in size. The

algorithmic representation of this technique is outlined in Algorithm 3, incorporating a

minor modification by calculating the scaling factor within a specific interval rather than

solely based on the z-coordinates. This refinement enhances control over the process.

Algorithm 3 Tapering
Input: P: target point cloud, f : tapering function, valm, valM: minimum and maximum

interval extremes
Output Panon: warped point cloud with Tapering

1: x values generate kPk equally spaced points over the interval[�valm, valM]
2: for point p 2 z-axis sorted point cloud P do
3: M compute the transformation matrix with f (x values[index of p])
4: p0  M · p, matrix multiplication
5: Panon  Panon [ p0
6: end for
7: return Panon

The regulating parameters consist of the tapering function f and the function’s re-

stricted domain, [�valm, valM], signifying a subset of the original domain of definition

within which the values of f are computed. These two parameters jointly govern the

transformation, with the function closely linked to the appearance of deformation. This

connection is also influenced by the interval values that regulate the function’s outputs.

The tapering function f (x) = 1 results in no alteration of the data.
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However, the inverse transformation is described by the subsequent equation, im-

plying the potential to reverse the tapering effect. In the context of anonymization, this

attribute could expose a vulnerability to malicious attackers.

r(Z) = f (Z),

x = X/r,

y = Y/r,

z = Z

(3.2)

3.2.2.4 Morphing-Based

Merge2Faces The Merge2Faces technique combines the attributes of two facial point

clouds by averaging their points’ coordinates and colors. Within this framework, the

point cloud designated for anonymization is called the source face, while the other is de-

fined as the target face. The Merge2Faces algorithm is composed of two distinct stages.

The initial stage is dedicated to registering the source and target faces. The alignment

process commences with a coarse global registration executed using the Random Sample

Consensus (RANSAC) algorithm [192]. During each iteration of RANSAC, a subset of

randomly chosen points from the source face is selected. By employing the nearest neigh-

bor query in the Fast Point Feature Histograms (FPFH) feature space, points exhibiting

similar local geometric structures are identified within the source face. FPFH features,

as described by Ruse et al. [193], encompass robust multi-dimensional descriptors that

encapsulate the local geometry surrounding a point. After a pruning step, the derived

matches contribute to the computation of a uniformly applied transformation across all

points. This transformation is systematically applied to the source face in successive itera-

tions, attempting to attain its alignment with the source face. Subsequently, the outcome of

global registration is further refined through local registration. This refinement employs

a variant of the ICP algorithm termed Point-to-Plane ICP [194], which Rusinkiewicz and

Levoy [195] demonstrated to possess a faster convergence rate when contrasted with other

ICP variants [114, 194].

The Point-to-Plane ICP algorithm iterates through the following steps until a prede-

termined stoppage criterion is satisfied:
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1. Select K = {(p, q)|p 2 source, q 2 target}, comprising the closest matched points

between the source and target point clouds.

2. Apply the current transformation matrix T to the target point cloud.

3. Update the transformation matrix T by minimizing an objective function E(T), as

defined in Equation 3.3, over the selected points.

E(T) = Â
(p,q)2K

⇣
(p� Tq) · np

⌘2
(3.3)

where np represents the normal vector of point p. Figure 3.2 illustrates the initial stage

of the Merge2Faces technique using a toy example featuring two identities of the iPhone-

PLYv3 dataset, introduced in a later chapter.

(A) Initial state of the
point clouds.

(B) Global registration
using RANSAC.

(C) Local refinement us-
ing ICP.

FIGURE 3.2: First stage of the Merge2Faces algorithm for front and profile views - the blue
and yellow point clouds represent the source and target faces, respectively.

The second stage assumes the alignment of both faces and executes a weighted aver-

age for the coordinates and color of each point on the source face, along with the corre-

sponding closest point on the target face.

The pseudo-code outlining this technique is provided in Algorithm 4.
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Algorithm 4 Merge2Faces
Input: P: source point cloud, w: weighted average weight, target: facial point cloud
Output Panon: morphed point cloud with Merge2Faces

1: target global  global registration using RANSAC between P and target
2: target local  local registration using Point-to-Plane ICP between P and target global
3: for point p 2 point cloud P do
4: ps  select the nearest neighbor of p from target local
5: mean coord weighted mean between the coordinates of p and ps, with weight w
6: mean RGB weighted mean between the RGB colors of p and ps, with weight w
7: p0  update point with coordinates mean coord and mean RGB color
8: Panon  Panon [ p0
9: end for

10: return Panon

The regulatory parameters responsible for controlling the attributes change of the

source face encompass target, referring to the point cloud of the target face to be merged,

and the weight w assigned to the target face when calculating the weighted average with

the source face. The weight w lies within the range of [0, 1]. As w augments, the distinctive

facial characteristics of the target face gradually integrate into the source face, altering its

appearance towards a more distant version. A w = 0 value yields an identity transforma-

tion to the point cloud, while w = 1 results in a complete substitution of the source face

with the target face, commonly referred to as face swapping.

3.2.2.5 Smoothing-Based

SmoothKNN The SmoothKNN algorithm embodies a smoothing approach akin to an av-

erage filter. This technique involves substituting each point within the facial point cloud

with the mean coordinate and color attributes of its k-nearest neighbors (the point is con-

tained within the set of k points). The pseudo-code delineating this technique can be

located in Algorithm 5.

Algorithm 5 SmoothKNN
Input: P: target point cloud, k: number of neighbours
Output Panon: smoothed point cloud with SmoothKNN

1: for point p 2 point cloud P do
2: Sk  select the k nearest neighbors of p from P (including point p)
3: mean coord compute the average point’s coordinates of set Sk
4: mean RGB compute the average RGB color value of the points of set Sk
5: p0  update point with coordinates mean coord and mean RGB color
6: Panon  Panon [ p0
7: end for
8: return Panon
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The regulating parameter that manages the degree of smoothing is designated as k,

signifying the count of neighbors taken into account for the averaging computations. The

parameter k spans from 1 to |P|, where k = 1 represents the identity transformation1, and

k = |P| yields a singular point with coordinates and color equivalent to the mean value

among all the facial points. A larger k corresponds to a heightened number of adjacent

points, resulting in a more pronounced smoothing effect. Conversely, a smaller value

retains more intricacies and offers less pronounced smoothing.

3.2.2.6 Point Operations-Based

PMP The PMP algorithm undergoes a sequential transformation of the facial point

cloud. It begins by converting the point cloud into an a-shape mesh and subsequently

reverting this a-shape mesh back into a point cloud.

The a-shape of a finite set of points is a polytope, a geometric object characterized by

its flat sides, which is uniquely determined by the point set and the parameter a [196].

Consider a finite point set S 2 R3 and an a 2 R satisfying the constraint 0  a  •.

When a = •, the a-shape coincides with the convex hull of S, diminishing in size as a

decreases, thus giving rise to cavities. Edelsbrunner and Mücke [197] provide an intuitive

definition of a-shapes as a broader conception of the convex hull for a point set, wherein

elements vanish as a decreases sufficiently for a sphere with radius a to encompass its

space without encapsulating any of the points in S.

To gain visual insight into the a-shape of a point set for varying a values, refer to

Figure 3.3. The erasing sphere is shown to the right of the shape. The transformation

of the original point cloud into an a-shape induces a loss of information regarding the

geometric contours of the face when converting back to a point cloud, thereby facilitating

the anonymization of the subject.

The pseudo-code outlining this technique is found in Algorithm 6.

Algorithm 6 PMP
Input: P: target point cloud, alpha: trade-off parameter, n: final number of points
Output Panon: altered point cloud with PMP

1: A convert the point cloud into an alpha shape with alpha
2: Panon  convert the alpha-shape A back to a point cloud with n points
3: return Panon

1The closest point to a point is the point itself.
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FIGURE 3.3: The effect of the a on the a-shape of a set of points. Extracted from [197].

The regulatory parameters governing the information loss are denoted as a, a real

positive number that dictates the trade-off level of fineness for the a-shape, and an integer

n, signifying the number of points resulting from the conversion of the a-shape back into

a point cloud.

3.3 Face Recognition Model

As highlighted in Section 2, the privacy assessment of face anonymization techniques re-

quires using a face recognition model, which assumes the role of an attacker, regardless

of the specific approach paradigm employed. Whether it involves naı̈ve recognition, re-

verse recognition, parrot recognition, or the reversibility recognition, a face recognition model

is integral to the evaluation process. As such, the cornerstone of a robust privacy evalu-

ation hinges on selecting a strong face recognition attacker model, striving to re-identify

individuals from anonymized facial data. For instance, using a weaker attacker model

may undermine the simulation of real-world threats, potentially resulting in misleading

conclusions about the security provided by the anonymization technique.

3.3.1 Algorithm Selection

The selection process of the face recognition model was guided by a predefined set of

criteria, established a priori. These criteria have been organized in descending order of
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significance. Each criterion is elaborated upon below, accompanied by an explanation for

its inclusion

1. State-of-the-art model: These models serve as robust potential adversaries, being at

the forefront of performance and advancement within the field. Their utilization

mirrors real-world scenarios where sophisticated recognition systems are deployed,

unveiling potential vulnerabilities and limitations that may not surface when em-

ploying outdated or less accurate models.

2. Open-source code model: Adopting open-source code provides an existing framework

that can be readily utilized, streamlining the evaluation process. This approach fos-

ters a focused evaluation of the face anonymization technique, relieving the burden

of creating the model from scratch. Moreover, open-source code promotes research

transparency, providing a transparent implementation of the recognition model and

enabling reproducibility by fellow researchers.

3. Pre-trained model: Pre-trained models come equipped with learned parameters and

weights, making them readily applicable without requiring extensive training. This

characteristic conserves valuable time and computational resources. Pre-trained

models are typically trained on extensive datasets, and their rigorous training, eval-

uation, and validation processes also inspire confidence in their reliability.

Since the evaluated anonymization techniques operate on 3D point clouds, opting for

a 3D face recognition model seems most logical. However, while adhering to the above-

mentioned criteria, an obstacle emerged involving criterion 2. It was impossible to locate

any open-source implementations of 3D face recognition models, let alone state-of-the-art

ones. In light of this challenge, the proposed solution is to convert the 3D point clouds

into 2D images using a 3D to 2D projection and proceed with the evaluation within the

lower-dimensional space. The prime performance of 2D face recognition (even in the most

demanding scenarios) is attributed to the creation of large-scale training datasets contain-

ing millions of images, which empower these models and render them suitable for the

task. The extensive body of research in this realm, as expounded upon in Section 2.3, cor-

roborates the effectiveness of 2D methods. The proposed solution leverages the strengths

of state-of-the-art face recognition models designed for the 2D space, allowing the appli-

cation of advanced face recognition methods to evaluate the proposed 3D anonymization

techniques.
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The selection of the state-of-the-art 2D face recognition model was founded upon the

outcomes of the previously described 2D face recognition benchmarks detailed in Sec-

tion 2.3.3. The LFW dataset is a classic and extensively used benchmark, presenting the

most exhaustive and up-to-date list of algorithms. Consequently, it was chosen as the

benchmark for this study. In Section 2.3.4, the state-of-the-art results for the selected

benchmark have already been presented, rendering them the prime candidates for se-

lection. A compilation of potential algorithms was gathered and summarized concisely

in Table 3.1, taking into account their performance on LFW, the availability of open-source

code (official or unofficial), and the existence of pre-trained versions.

TABLE 3.1: Candidate of 2D face recognition attacker models.

Method Code
FaceNet [109] Unofficial
DeepID [100] Unofficial
DeepFace [105] Unofficial
ArcFace [145] Official

From the candidate models, Additive Angular Margin Loss (ArcFace) [145] was chosen

due to its widespread usage in anonymization-related studies [112, 198, 199] and excellent

performance. It is reasonable to assume that selecting alternative models would likely

yield comparable outcomes. Nevertheless, exploring alternative options for the attacker

model presents an intriguing avenue for future research.

3.3.2 Algorithm Description

Deng et al. [145] introduced ArcFace in 2019, an advanced face recognition model that

achieved state-of-the-art results. The model’s superior performance has been demon-

strated through extensive experiments on different benchmarks, such as LFW and

MegaFace. The researchers’ primary contributions to the field of face recognition cen-

ter around the introduction of a novel loss function known as Additive Angular Margin

Loss (ArcFace). This loss function plays a crucial role in acquiring highly discriminative

features for improved face recognition. The framework for ArcFace is visually depicted

in Figure 3.4.

The ArcFace loss further improves the face recognition model’s discriminative power

by enforcing intra-class compactness and inter-class difference of embeddings on the hy-

persphere surface and stabilizes the training process. The function is categorized as a type
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Figure 2. Training a DCNN for face recognition supervised by the ArcFace loss. Based on the feature xi and weight W normalisation, we
get the cos ✓j (logit) for each class as WT

j xi. We calculate the arccos✓yi and get the angle between the feature xi and the ground truth
weight Wyi . In fact, Wj provides a kind of centre for each class. Then, we add an angular margin penalty m on the target (ground truth)
angle ✓yi . After that, we calculate cos(✓yi + m) and multiply all logits by the feature scale s. The logits then go through the softmax
function and contribute to the cross entropy loss.

Algorithm 1 The Pseudo-code of ArcFace on MxNet
Input: Feature Scale s, Margin Parameter m in Eq. 3, Class Number n, Ground-Truth ID gt.

1. x = mx.symbol.L2Normalization (x, mode = ’instance’)
2. W = mx.symbol.L2Normalization (W, mode = ’instance’)
3. fc7 = mx.sym.FullyConnected (data = x, weight = W, no bias = True, num hidden = n)
4. original target logit = mx.sym.pick (fc7, gt, axis = 1)
5. theta = mx.sym.arccos (original target logit)
6. marginal target logit = mx.sym.cos (theta + m)
7. one hot = mx.sym.one hot (gt, depth = n, on value = 1.0, off value = 0.0)
8. fc7 = fc7 + mx.sym.broadcast mul (one hot, mx.sym.expand dims (marginal target logit - original target logit, 1))
9. fc7 = fc7 * s

Output: Class-wise affinity score fc7.

weights makes the predictions only depend on the angle be-
tween the feature and the weight. The learned embedding
features are thus distributed on a hypersphere with a radius
of s.
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As the embedding features are distributed around each
feature centre on the hypersphere, we add an additive angu-
lar margin penalty m between xi and Wyi to simultaneously
enhance the intra-class compactness and inter-class discrep-
ancy. Since the proposed additive angular margin penalty is
equal to the geodesic distance margin penalty in the nor-
malised hypersphere, we name our method as ArcFace.
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(3)
We select face images from 8 different identities contain-

ing enough samples (around 1,500 images/class) to train 2-
D feature embedding networks with the softmax and Ar-
cFace loss, respectively. As illustrated in Figure 3, the
softmax loss provides roughly separable feature embedding
but produces noticeable ambiguity in decision boundaries,

while the proposed ArcFace loss can obviously enforce a
more evident gap between the nearest classes.

(a) Softmax (b) ArcFace

Figure 3. Toy examples under the softmax and ArcFace loss on
8 identities with 2D features. Dots indicate samples and lines re-
fer to the centre direction of each identity. Based on the feature
normalisation, all face features are pushed to the arc space with
a fixed radius. The geodesic distance gap between closest classes
becomes evident as the additive angular margin penalty is incor-
porated.

2.2. Comparison with SphereFace and CosFace

Numerical Similarity. In SphereFace [18, 19], ArcFace,
and CosFace [37, 35], three different kinds of margin
penalty are proposed, e.g. multiplicative angular margin
m1, additive angular margin m2, and additive cosine mar-
gin m3, respectively. From the view of numerical analysis,
different margin penalties, no matter add on the angle [18]
or cosine space [37], all enforce the intra-class compactness

FIGURE 3.4: Framework of the ArcFace loss function. Extracted from [145].

of angular separability loss from the ones presented in Section 2.3.1, revolving around the

use of an angular margin penalty based on the cosine similarity measure. Arcface is a

modification of the most widely used classification loss, the Cross-entropy loss function,

which is mathematically defined as:

s(zyi) = �
1
N

N

Â
i=1

log
ezyi

Ân
j=1 ezj

(3.4)

where the zyi is the logit1 of the yi-th class that is divided by the sum over all the logits in

the final layer. In an effort to enhance both intraclass similarity and inter-class diversity

within the previously mentioned underoptimized loss, the authors have introduced sev-

eral modifications to the function. Accordingly, the loss undergoes a normalization step

on features and weights. A logit can be described with the embeddings, weights, and

biases of the laster neural network layer as:

zj = WT
j xi + bj (3.5)

where xi 2 Rd denotes the embeddings of the i-th sample, Wj 2 Rd denotes the j-th

column of the weight W 2 Rd⇥n and bj 2 Rn the bias term, both responsible for the j-th

logit. Fixing the bias to bj = 0, the dot product of the Wj and xi is geometrically given by:

WT
j xi = kWjkkxikcosqj (3.6)

After performing L2-normalization on both kWjk and kxik, followed by re-scaling to s, the

predictions are now solely dependent on the angle q between the feature and the weight,

causing the learned embedding to be distributed on a hypersphere with a radius of s.

Thus, obtaining:

1In a neural network, the logits (or raw scores) are computed for each class as the output of the final layer,
representing the model’s unnormalized confidence levels for each class based on a given input sample.



62
PRIVACY-PRESERVING FACE DETECTION: A COMPREHENSIVE ANALYSIS OF FACE

ANONYMIZATION TECHNIQUES

WT
j xi = scosqj (3.7)

Finally, introducing an additive angular margin penalty m between xi and Wyi to improve

the intra-class compactness and inter-class discrepancy, the mathematical formulation of

ArcFace is defined as:

L = � 1
N

N

Â
i=1

log
es(cos(qyi+m))

es(cos(qyi+m)) + Ân
j=1,j 6=yi

es cos qj
(3.8)

3.4 Face Detection Model

As outlined in Section 2.3, the initial phase of a conventional end-to-end face recognition

system encompasses the detection of all faces within the input image. These identified

faces delineate a set of sub-regions in the image, demarcated by bounding box coordi-

nates supplied by a facial detection module. These are the only regions undertaken by

the subsequent pipeline stages of the face recognition system. Hence, the model plays a

crucial role in the evaluation strategy, serving as an integral component of the recognition

model pipeline. In addition, the face detection model integrates the utility evaluation as

two of the metrics rely on its output.

3.4.1 Algorithm Selection

After methodically selecting the face recognition model and evaluating its impact on the

methodology design, the next step involves the utilization of a 2D-based face detection

framework. Similar to the criteria employed for the face recognition algorithm, the se-

lection of the face detection model follows a comparable principle, prioritizing state-of-

the-art models with available open-source code and, ideally, pre-trained weights. In Sec-

tion 2.2.4, a selection of state-of-the-art models from the widely recognized WIDER FACE

benchmark was introduced to narrow down potential candidate models. Subsequently,

after cross-referencing these models with those included in the same project as the Arc-

Face model implementation detailed in the following chapter, the RetinaFace [29] model

was chosen. In particular, the selection of RetinaFace was based on its benchmark, out-

performing the seven other models within the implementation project and establishing

itself as the most promising candidate.
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3.4.2 Algorithm Description

In 2019, Deng et al. [29] introduced RetinaFace, a single-shot detector designed to address

multiple face-related tasks within a unified framework. The model encompasses bound-

ing box prediction, 2D facial landmark localization, and 3D vertices regression, offering a

solution to these interconnected tasks by taking advantage of joint extra-supervised and

self-supervised multi-task learning. For example, the semantic points inclusion in the fa-

cial landmark localization process significantly enhances the accuracy of box prediction

during face detection. For training purposes, Deng et al. leveraged the WIDER FACE

dataset, which required additional processing steps involving the manual annotation of

five 2D facial landmarks on each image due to their absence. The approach resulted in

superior performance compared to the prevailing state-of-the-art models on the WIDER

FACE benchmark. The model’s architecture, illustrated in Figure 3.5, comprises three piv-

otal components: the feature pyramid network, the context head model, and the cascade

multi-task loss.

Figure 2. An overview of the proposed single-stage dense face localisation approach. RetinaFace is designed based on the feature pyramids
with independent context modules. Following the context modules, we calculate a multi-task loss for each anchor.

(a) 2D Convolution (b) Graph Convolution

Figure 3. (a) 2D Convolution is kernel-weighted neighbour sum
within the Euclidean grid receptive field. Each convolutional layer
has KernelH ⇥ KernelW ⇥ Channelin ⇥ Channelout pa-
rameters. (b) Graph convolution is also in the form of kernel-
weighted neighbour sum, but the neighbour distance is calculated
on the graph by counting the minimum number of edges connect-
ing two vertices. Each convolutional layer has K⇥Channelin⇥
Channelout parameters and the Chebyshev coefficients ✓i,j 2
RK are truncated at order K.

difficult it is to annotate landmarks on the face) and annotate
five facial landmarks (i.e. eye centres, nose tip and mouth
corners) on faces that can be annotated from the WIDER
FACE training and validation subsets. In total, we have an-
notated 84.6k faces on the training set and 18.5k faces on
the validation set.

Figure 4. We add extra annotations of five facial landmarks on
faces that can be annotated (we call them “annotatable”) from the
WIDER FACE training and validation sets.

Level Face Number Criterion
1 4,127 indisputable 68 landmarks [44]
2 12,636 annotatable 68 landmarks [44]
3 38,140 indisputable 5 landmarks
4 50,024 annotatable 5 landmarks
5 94,095 distinguish by context

Table 1. Five levels of face image quality. In the indisputable cate-
gory a human can, without a lot of effort, locale the landmarks. In
the annotatable category finding an approximate location requires
some effort.

4.2. Implementation details

Feature Pyramid. RetinaFace employs feature pyramid
levels from P2 to P6, where P2 to P5 are computed from
the output of the corresponding ResNet residual stage (C2

through C5) using top-down and lateral connections as
in [28, 29]. P6 is calculated through a 3⇥3 convolution with
stride=2 on C5. C1 to C5 is a pre-trained ResNet-152 [21]
classification network on the ImageNet-11k dataset while
P6 are randomly initialised with the “Xavier” method [17].
Context Module. Inspired by SSH [36] and Pyramid-
Box [49], we also apply independent context modules on
five feature pyramid levels to increase the receptive field
and enhance the rigid context modelling power. Drawing
lessons from the champion of the WIDER Face Challenge
2018 [33], we also replace all 3 ⇥ 3 convolution layers
within the lateral connections and context modules by the
deformable convolution network (DCN) [9, 74], which fur-
ther strengthens the non-rigid context modelling capacity.
Loss Head. For negative anchors, only classification loss
is applied. For positive anchors, the proposed multi-task
loss is calculated. We employ a shared loss head (1 ⇥ 1
conv) across different feature maps Hn ⇥ Wn ⇥ 256, n 2
{2, . . . , 6}. For the mesh decoder, we apply the pre-trained
model [70], which is a small computational overhead that
allows for efficient inference.
Anchor Settings. As illustrated in Tab. 2, we employ scale-
specific anchors on the feature pyramid levels from P2 to P6

like [56]. Here, P2 is designed to capture tiny faces by tiling
small anchors at the cost of more computational time and at
the risk of more false positives. We set the scale step at

FIGURE 3.5: RetinaFace face localization framework. Extracted from [29].

The pyramid network takes the image as its input and employs top-down and lateral

connections derived from a ResNet backbone to generate feature maps at five different

scales. The bottom-up pathway in the ResNet backbone follows the standard network

forward pass, extracting features from the input image and producing feature maps with

decreasing spatial resolution but escalating semantic information. Conversely, the top-

down pathway complements this process. It begins from the highest layer of the back-

bone, possessing the greatest spatial resolution and highest semantically rich features,

whose feature maps are aligned with the resolution of corresponding lower-level feature

maps obtained from the bottom-up pathway. This iterative procedure establishes lateral

connections, merging the upsampled feature maps with their lower-level counterparts.

This fusion integrates high-level semantic content with precise spatial details, generating

a feature pyramid with multi-scale feature maps.
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Within the lateral connection and context modules, a Deformable Convolution Net-

work (DCN) is employed. Unlike conventional fixed-grid convolutions, DCN introduces

learnable offsets to convolutional filters, enabling them to adaptively modify their recep-

tive fields in response to input data variations. The deformable convolution operation

empowers the network to adjust its receptive field flexibly, facilitating more flexible and

precise feature learning and, consequently, leading to more accurate face detection.

3.5 De-Anonymization Model

As previously noted, reversibility recognition is a paradigmatic framework for evaluating

anonymization methods, as introduced by Todt et al. [180]. In contrast to the conven-

tional naı̈ve recognition approach, the reversibility recognition paradigm shifts its focus to-

wards evaluating the extent to which the anonymizations are reversible by performing

the de-anonymization of the images using a powerful de-anonymization model. These

de-anonymized images resemble the original images more closely and serve as the probe

set for assessment, contrasting from the direct comparison between anonymized images

and the gallery set of original images of the other paradigm.

The reversibility recognition ensures a more accurate assessment of anonymization tech-

niques, providing a deeper insight into their privacy protection effectiveness and poten-

tial vulnerabilities when confronted with sophisticated de-anonymization attempts. In

their study, Todt et al. [180] adopted an autoencoder as the de-anonymization model

due to its inherent versatility and robust generalization capabilities. The researchers

chose a unified autoencoder model over creating individualized de-anonymization mod-

els in scenarios involving multiple sets of diverse image groups originating from distinct

anonymization techniques. This approach ensures temporal efficiency and delivers com-

mendable results, showcasing the autoencoder’s effectiveness in seamlessly managing

diverse de-anonymization tasks, as observed within this work.

Regarding Autoencoders, the problem is formally defined by Bank et al. [200] as learn-

ing the functions A : Rn ! Rp, and B : Rp ! Rn, representing the encoder and decoder,

respectively, such that they satisfy:

argminA,BE
⇥
4(x, B � A(x))

⇤
(3.9)



3. METHODOLOGY 65

where E denotes the expectation taken over the distribution of x, while 4 represents

the reconstruction loss function, quantifying the dissimilarity between the input to the

encoder and the output from the decoder.

Todt et al. employed an under-complete autoencoder as the de-anonymization func-

tion. Under-complete autoencoder is a type of autoencoder architecture where the di-

mensionality of the latent space, also known as the bottleneck layer, is smaller than the

dimensionality of the input data. The main characteristic of an under-complete autoen-

coder is that it learns to represent the input data in a compressed form, as the number of

neurons in the bottleneck layer is less than the number of neurons in the input and output

layers. This compression representation fosters the capture of only the most essential fea-

tures that benefit the learning of the dependencies in the data and aid data reconstruction.

There are several other Autoencoder variants, as denoted in [200], one of them being VAEs

which have already been addressed in this work with the opposite intent of anonymizing

images.

3.5.1 Algorithm Description

The encoder component contains two convolutional layers followed by an activation func-

tion and a max pooling layer that halves the spatial dimensions of the input image. On

the other hand, the decoder is designed symmetrically, containing two transposed convo-

lutions that quadruple the spatial dimensions of the input data followed by an activation

function, matching the pixel-wise input resolution. Refer to Figure 3.6 for a visual repre-

sentation of the architecture of the de-anonymization Autoencoder model.

Such a scenario is not considered by the convolutional-
only architecture of Pix2Pix [18], the model used for rever-
sal by Hao et al. [11].

In linear layers, the locality principle does not exist and
outputs can depend on any (or all) inputs including those that
would not be considered close enough by a convolutional
layer. Therefore, a machine learning model that is actually
general, would use linear and not convolutional layers.
However, linear layers require memory proportional to input
size times output size. Considering that we are working with
high-resolution RGB images we choose to use a model with
a single linear layer between the encoder and decoder to
keep the model size feasible. A visual representation of the
described model is shown in Figure 3.

convolution

max pooling

transposed
convolution

activation
function

linear layer

Figure 3. Design of our machine learning model

In the encoder part, the model uses two convolutional
layers with following activation functions and max pooling
layers. The max pooling layers reduce the dimension of the
input, each of them halving the width and height of the im-
age. The decoder is designed symmetrically: two transposed
convolutional layers followed by activation functions. Each
of them quadruples the number of pixels, resulting in an
output resolution that matches the input.

As we are using RGB images, our input data has three
channels. The first convolutional layer of the encoder in-
creases this to a specified number of features. We consider
this number of features a hyperparameter for which we
conduct experiments to find a suitable value. However since
the number of features influences the size of the linear
layer, it is limited by the available GPU memory. To reduce
the number of channels back to three in the output, the
decoder part also includes a convolutional layer after the two
transposed convolutional layers. For the activation function
we considered Sigmoid, Tanh, and ReLU (rectified linear
unit), but empirically found LeakyReLU to perform best.

Similarly, we also test multiple options for loss functions
to be used during model training. This includes standard
regression loss functions such as mean squared error (MSE)
and mean absolute error (MAE) as well as computer vision-
specific ones like structural similarity (SSIM) [39]. We
acknowledge that more advanced loss functions such as an
identity loss function that reduces the difference in recog-
nized identity rather than the difference in pixel values might
also be very suitable in this use-case, but choose to keep
this general de-anonymization purposely simple to be able
to understand the results better.

6. Techniques

In this section, we introduce all the anonymization and
de-anonymization techniques that we use in our experi-
ments. For each, we consider both commonly used basic
methods as well as state-of-the-art approaches. We make
sure that our selection of methods covers all categories.

6.1. Anonymizations

For all introduced anonymizations, an example image
can be found in Figure 4.

6.1.1. Basics. Basic anonymizations are the most commonly
used methods as they are easy to implement and often
provide straightforward parameters to control the privacy-
utility trade-off. Their main utility goal is to keep the image
similar to the original one.

Eye Mask. The pixels in the eye area of the face are
removed and replaced by a black bar.

Block Permutation. The face image is split into equally-
sized blocks which are then permuted. The same permu-
tation is used for all images. Note that we add Block
Permutation as a trivial example of reversible anonymization
in order to test our de-anonymization methodology.

Pixel Relocation [40]. Cichowski and Czyzewski intro-
duce an anonymization designed for videos that is based on
relocating individual pixels using a fixed permutation. It is
designed to be reversible when a secret key is known.

Gaussian Noise. For every pixel of every channel in the
image, random noise is drawn from a Gaussian distribution
and added to the pixel’s value.

Gaussian Blur. The face area of the image is blurred us-
ing Gaussian blur. This is done by performing a convolution
on the image with a Gaussian kernel matrix.

Pixelation. The resolution of the image is reduced. The
parameter is the number of remaining pixels on either axis.

6.1.2. Adversarial Machine Learning. Anonymizations in
this category achieve their privacy protection by attacking
the face recognition machine learning models that are used
to identify individuals. These data poising attacks have been
criticized as they target specific face recognition models
and therefore do not offer any protection anymore when
new models get implemented in the future [41]. One exam-
ple is Fawkes [42] which adds ”imperceptible pixel-level
changes” to face images. Fawkes’ use-case assumes that
the anonymized images are used to train the recognition
system and can therefore ”poison” the information base so
that later recognition attempts on non-anonymized data fail.
Its utility goal is to allow human observers to still recognize
the person in the image. The idea is to compute minimal
perturbations for an image that cause significant changes in
the output of the face recognition model. We use the open-
source implementation by Fawkes’ authors Shan et al.

FIGURE 3.6: Architecture of the de-anonymization model employed in [180]. Extracted
from [180].
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Although not explicitly mentioning which activation functions and loss functions were

incorporated into the model, the authors refer they tested the Sigmoid, Tanh, ReLu, and

LeakyReLu for the former, and MSE, Mean Average Error (MAE), and SSIM for the latter.

3.6 Limitations

This study has made strides in exploring and implementing 3D face anonymization tech-

niques. However, it is imperative to acknowledge and address the limitations encoun-

tered throughout the research journey.

Regarding the proposed 3D face anonymization methods, the initial aim was to extend

state-of-the-art 2D anonymization approaches into the higher-dimensional space. Conse-

quently, attention was directed towards generative deep learning-based models, given

their superior performance and widespread usage. Nevertheless, challenges emerged

due to time constraints and limited data availability, as generative models often require

extensive datasets for effective training. Therefore, emphasis was placed on the pursuit of

simpler 3D face anonymization solutions akin to traditional 2D methods. Also, given the

field’s early stage, commencing with elementary procedures, assessing their effectiveness,

and subsequently advancing to more intricate methods is a mindful approach.

In addition to the previously mentioned limitation, another constraint that arose dur-

ing the course of the study pertains to the search for suitable 3D face recognition models

for the evaluation phase. The scarcity of models compelled a shift towards a 3D to 2D

approach, where evaluations were conducted on projected anonymization images. This

decision bears significant implications, as evaluation outcomes are deeply tied to projec-

tion quality, potentially introducing errors and bias. Nonetheless, precautions were un-

dertaken to mitigate these effects and enhance the accuracy of the result. Recent research

has predominantly favored 2D face recognition over its 3D counterpart. With increased

attention and performance that surpasses human capabilities, 2D face recognition serves

as a robust evaluator for attackers, ensuring the integrity of the results.

Moreover, this methodology is unsuitable for point clouds that lack a color component

in their data points. Specifically, employing this methodology to assess an anonymization

technique that exclusively introduces drastic color changes to the points (such as convert-

ing all points to a uniform color) without altering the geometric attributes of the point

cloud would compromise the integrity of the recognition model when applied to the pro-

jected images. Nonetheless, a facial recognition model operating exclusively within the
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3D space would remain unrestrained by the anonymization process, countering the mis-

leading outcomes arising from the overly optimistic anonymization requirement in the

projected evaluation. This anticipated scenario underscores the importance of exercis-

ing prudence in color manipulations and emphasizes the significance of minimizing their

potential contribution to misleading results.





Chapter 4

Experimental Development and

Implementation

This chapter examines the critical components of implementing and testing the 3D point

cloud anonymization techniques conducted during the experiments. It begins with a com-

plete characterization of the custom-made dataset used in this investigation. The dataset’s

data sources, preprocessing steps, rationale for selection, and encountered limitations are

discussed. Then, the evaluation framework is detailed, outlining the metrics and proce-

dures used for assessing the anonymization techniques. The technical aspects related to

the parameters and configurations of the anonymization techniques and the models de-

scribed in the last chapter are also presented. Lastly, some limitations of the experiments

are addressed, acknowledging constraints and potential challenges encountered during

the research and discussing their impact on the findings.

4.1 Dataset

This master thesis introduces a new 3D facial dataset named iPhonePLYv31. Curated

explicitly for this research purpose, the iPhonePLYv3 dataset comprises diverse subjects

captured under favorable conditions, rendering it an ideal resource for comprehensive

evaluations of anonymization algorithms and potentially suitable for other 3D face anal-

ysis tasks

1The iPhonePLYv3 dataset, the third iteration of its kind, was collected using an iPhone and comprises
PLY-format point cloud data, in line with its name iPhone + PLY + v3.

69
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4.1.1 Motivation

Due to the lack of datasets designed explicitly for anonymizing 3D point cloud facial

data, the candidate datasets primarily focus on 3D face recognition model development.

In Section 2.3.3, several 3D face recognition datasets have been discussed along with their

specifications. Specifically, Table 2.4 reveals that although these datasets include mul-

tiple scans per subject capturing various facial expressions, poses, or occlusions to cre-

ate robust face recognition models, the majority feature around 100 or fewer identities,

which is a relatively small number. However, using unconstrained datasets to evaluate

face anonymization techniques introduces complexities in privacy evaluation that restrict

the performance of the face recognition attacker model, making it challenging to assess

the actual effectiveness of the anonymization techniques accurately. Hence, evaluating

anonymization techniques on controlled datasets is more suitable to address these chal-

lenges.

While the created dataset exhibits limited variability in facial expressions, poses, and

occlusions, it serves as an evaluation tool for assessing anonymization methods under

controlled conditions. These limitations enhance the effectiveness of an attacker’s face

recognition model, making the anonymization process more challenging. This implies

that the attacker operates in optimal conditions, and if the anonymizations prove to be

reliable in this scenario, their effectiveness can be extrapolated to real-world conditions

with higher variability in facial expressions, poses, and occlusions. In addition, during the

initial stages of this emerging field, focus on a controlled scenario to gain better insights

into the implications of model parameters is preferable. Certain constraints related to

dataset accessibility, cost, and unresponsiveness to requests further support the need for

a new dataset for this research.

The new dataset, iPhonePLYv3, addresses identified issues providing favorable con-

ditions for evaluating face anonymization techniques with an increased number of iden-

tities. The dataset includes color information in the point clouds, which is not universal

in traditional 3D facial databases. However, the number of identities in the iPhonePLYv3

dataset remains relatively low, suggesting room for future advancements. The acquisition

methodology of the iPhonePLYv3 is denoted by its simplicity which serves as another con-

tribution to the broader research community. Refer to Figure 4.1 for an illustration of some

existing 3D face datasets.
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FIGURE 4.1: Comparison of several 3D face datasets. Extracted from [80].

4.1.2 Dataset Content

The iPhonePLYv3 consists of 201 subjects captured in a consistent pose, featuring a neutral

facial expression free from occlusion. The dataset contains two distinct data types: 2D

and 3D data, in the format of point clouds and high-resolution digital images with a pixel

resolution of 3024⇥ 4032, both containing the facial information of the subjects. The point

clouds depict a 180-degree region of the frontal part of the face, extending from one ear

to the other1. The images, on the other hand, provide a frontal view of each face. Each

subject has a corresponding point cloud and image pair collected consecutively.

The dataset’s gender distribution is unbalanced, with 119 men and 82 women pre-

dominantly of Caucasian ethnicity. The subjects’ ages range from 12 to 83 years, with a

prominent concentration (172 subjects) in the 18 to 25 age group. The selection process

of individuals was random, resulting in a high representativeness of facial characteristics

in the dataset. This diversity is evident in subjects with beards, no facial hairs, dark skin

color, light skin, baldness, and other unique features. For a visual representation, refer to

Figure 4.2, which showcases a dataset sample featuring three subjects. The top row repre-

sents the high-resolution images, while the bottom is a screenshot of the point clouds, on

the MeshLab [201] processing tool. For a more detailed description of the dataset structure

and detailed specifications, refer to Appendix A.1.

1The back of the head was excluded due to its low compromise of a subject’s identity.



72
PRIVACY-PRESERVING FACE DETECTION: A COMPREHENSIVE ANALYSIS OF FACE

ANONYMIZATION TECHNIQUES

FIGURE 4.2: Illustration of three point cloud and image pairs for three subjects from the
iPhonePLYv3 dataset.

4.1.3 Data Acquisition

The data acquisition process for the iPhonePLYv3 dataset introduces a straightforward

methodology for collecting 3D facial data without the need for expensive equipment or

extensive expertise. The 3D facial data was acquired using the Scaniverse - 3D Scanner

mobile application on an iPhone 13 Pro device, while the 2D data was captured using the

primary camera. In particular, from the Scaniverse - 3D Scanner, three files are obtained

containing the information of the 3D facial model of each subject in a mesh format. The

mesh undergoes multiple processing stages executed manually using the MeshLab [201]

processing tool until it is converted into a point cloud, the final data format. The point

cloud is registered onto a specific position and presents a uniform pitch, roll, and yaw

for all the subjects. For a more detailed description of the conducted process, refer to

Appendix A.2, and for the dataset evolution stages, refer to Appendix A.3.

The dataset was gathered with the explicit consent of all 201 subjects. Prior to collect-

ing their facial data, a concise explanation of how it would be used within the scope of this

thesis was provided, and each subject willingly accepted these terms. Upon collection,

subjects were scanned in indoor and outdoor environments under favorable lighting con-

ditions. Although occlusions were not explicitly accounted for, some subjects’ hair may

partially cover the forehead and a significant portion of the face profile, particularly for
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female subjects. Each scan took approximately 20 to 30 seconds, with subjects instructed

to remain stationary and refrain from any movement about 30 centimeters away from the

3D scanner device. Other preventive measures forming the standardized protocol obeyed

during the data acquisition process included:

• Standardizing the pose of all subjects;

• Instructing all subjects to exhibit a neutral facial expression1;

• Restricting the use of any props that could obstruct facial features, such as glasses,

masks, or other facial garments.

Despite the effort to maximize data quality, some records may still present defects

related to movement, hair obstruction, or the 3D model generation by the application.

Nevertheless, by adhering to these guidelines, the resulting data is of satisfactory quality.

4.1.4 Data Preprocessing

To ensure the suitability of the data for the experiments, both the point cloud and image

data underwent a data preprocessing process to facilitate the experimental design and

enhance the dataset’s usability for research endeavours.

4.1.4.1 2D Images

Regarding the 2D data corresponding to high-resolution frontal images of the subjects, the

primary concern revolves around handling background information. While the capture of

the 3D facial model is robust to background information, effectively capturing the relevant

details only up to a certain distance from the capturing device, the same does not hold for

the 2D images. Despite the efforts to optimize the data-capturing process, some subjects

were acquired in crowded environments, resulting in unwanted facial information from

other individuals in the image’s background. To address this issue, these undesirable

background elements were covered with black patches, as illustrated in Figure 4.3 for two

subjects. This approach ensures that the evaluation process is facilitated by guaranteeing

the presence of only one face per image.

1Some subjects may show a slight smile, but nothing exaggerated.
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(A) id 058. (B) id 082.

FIGURE 4.3: Preprocessing results of 2D data from two subjects in the iPhonePLYv3
dataset.

4.1.4.2 3D Point Clouds

The iPhonePLYv3 3D information comprises a collection of faces displayed in a 3D co-

ordinate system as a set of points, such that their nose tips are located at the origin with

coordinates (0, 0, 0). These faces are oriented towards the x-axis orientation, and the y-axis

serves as the reflection axis, dividing the facial region into two identical vertical halves.

The above characteristics were crafted during the dataset creation and initial processing,

acknowledging their significance in the subsequent stages of implementing and evaluat-

ing face anonymization techniques. However, this data may be affected by outliers and

may also encompass irrelevant regions beyond the face, such as the neck and torso. Con-

sequently, there is a variation in the number of points within these scans. Preprocessing

is undertaken to address these issues with the aim of obtaining a point cloud exclusively

containing the facial region. This facial region is the sole area requiring anonymization, as

opposed to the other irrelevant regions such as the neck and hair. Additionally, it ensures

that the final data is free from outliers that could potentially harm the anonymization tech-

niques and promotes uniformity in the number of points across all point clouds, fostering

consistent results. The preprocessing involves four sequential stages: Face segmentation

> Standardization > Outlier removal > Standardization, which are described as follows:

1. Face segmentation

(a) Bounding box cropping: A bounding box with predefined coordinates is placed

over the face point cloud, and all points outside the box are removed (first sub-

stage);
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(b) Sphere cropping: A fixed-radius sphere centered at (0, 0, 0) (nose tip location)

is placed over the face point cloud, filtering the points outside the sphere - the

filtering process results in two point sets, the inner facial set and the outer facial

set (second sub-stage).

2. Standardization

• Sampling: The Farthest Point Sampling (FPS) technique is used to reduce and

standardize the number of points in the cloud.

3. Outlier removal

• Outlier removal: Points that exhibit a greater distance from their neighbors than

the average distance for the point cloud are removed.

4. Standardization

• Sampling: The Farthest Point Sampling (FPS) technique is used to reduce and

standardize the number of points in the cloud.

The anonymization process could be extended to cover the entire facial region, elimi-

nating the need for the Sphere cropping step during the Face Segmentation stage. However,

for superior results, the point cloud region was exclusively cropped to include the facial

area requiring anonymization (the inner facial set), leaving other non-sensitive informa-

tion untouched. The Outlier removal was executed subtly to avoid excessively reducing the

scan density, only removing the most extreme cases. Similarly, both Standardization stages

aimed to introduce minimal changes in the scan density by employing the FPS technique.

After completing the four sequential preprocessing steps, point clouds are obtained,

containing only the segmented face region, free of outliers, and with a standardized num-

ber of points. For an illustration of the preprocessing stages employed for a subject in

the dataset, refer to Figure 4.4. The point cloud of subject id 008 initially contained 44 726

points and underwent a reduction to 10 352 points after the three stages of preprocess-

ing. At each stage, Face segmentation, standardization (the first), and outlier removal, the

point cloud had 36 063, 23 756, and 10 500 points, respectively.

To gain further insights into the point cloud transformation results, Figure 4.5 illus-

trates the evolution of the number of points in the clouds at the following three stages:

raw point clouds, Face Segmentation, Outlier Removal. While direct comparisons between
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FIGURE 4.4: Point Cloud data preprocessing stages for subject id 008.

the plots are hindered by non-standardized axis limits, it is relevant to observe the overall

variations in the number of points at each stage. The two Standardization stages are not

depicted because all the clouds have a standardized number of points, corresponding to

10 500 and 10 352. The number of points of the raw point clouds does not directly repre-

sent the quality of the facial information in a scan. Scans with higher point counts may be

attributed to the presence of additional hair or regions extending below the face, possibly

encompassing the upper part of the torso, rather than necessarily indicating the higher

facial resolution of the subjects.

(A) Raw point clouds. (B) Face Segmentation. (C) Outlier Removal.

FIGURE 4.5: Evolution of the number of points of the clouds through various stages of
the preprocessing pipeline.

The subsequent information provides a detailed explanation of each stage, delving

into their specific processes and the implications they have on the workflow.

Face Segmentation The face segmentation process consists of two steps, whose objec-

tive is segmenting the facial area that requires anonymization from non-sensitive regions

and undesirable artifacts1.

1Artifacts are undesirable and erroneous point clusters located at a distance from the subject’s face.
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The first step, called Bounding box cropping, involves retaining only a subset of the

point cloud that closely relates to the subject’s face while removing some of the rough

artifacts. The dimensions of the bounding box employed to enclose the region of interest

are of 30 centimeters in height, 24 centimeters in width, and 16 centimeters in depth.

These values remain constant for all subjects. Despite variations in head sizes, they offer

a simplified approximation of the overall dimensions, effectively narrowing the 3D space

to focus more closely on the region of interest, which is the face. Mathematically, it is

represented as follows:

B = {(x, y, z) | � 0.16  x  0.00,�0.13  y  �0.17,�0.12  z  0.12} (4.1)

The second step, termed as Sphere cropping, is a simplified version of the face segmen-

tation technique employed by Nair et al. [50]. While the original procedure considers a

sphere centered on the nose tip with a radius determined by the nose length, the chosen

approach simplifies this by adopting a fixed radius of 0.14 (14 centimeters), centered on

the nose tip (0, 0, 0). This simplification allows for more straightforward implementation

while still achieving reasonable results in capturing the facial region of interest.

Outlier Removal The outlier removal process enhances the overall quality of the facial

data by eliminating points that do not align with the facial structure due to sparseness

reasons. Before its implementation, the point clouds are sampled using the FPS technique

to 10 500 points, corresponding to the minimum number of points from all the segmented

faces.

In essence, the employed Outlier Removal procedure is referred to as the Statistical Out-

lier Removal, eliminating points that exhibit a greater distance from their neighbors com-

pared to the average distance within the entire point cloud, as depicted in Algorithm 7.

The implementation requires two passes over the whole set of points in the cloud, and

is regulated by two parameters that control the selectiveness of the points. The first pa-

rameter, nb neighbors, determines the number of neighboring points considered when

calculating the average distance for each point in the point cloud. The second parameter,

std ratio, sets the threshold level based on the standard deviation of the average distances

across the entire point cloud. A lower value of std ratio makes the point removal filter

more aggressive, while a higher value makes it more lenient.
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Algorithm 7 Statistical Outlier Removal
Input: P: point cloud, K: number of neighbors, ratio: standard deviation multiplier
Output: P: processed point cloud without outliers

1: for point p 2 P do
2: Knn  Find the K nearest neighbors to point p
3: d compute the average distance from point p to the points in Knn
4: D  D [ {d}, the set with all average distances d for every point p
5: end for
6: µD  compute the mean distance of the set D
7: sD  compute the standard deviation of the set D
8: T  µD + ratio⇥ sD, the threshold computation
9: for point p 2 P do

10: Knn  Find the K nearest neighbors to point p
11: d compute the average distance from point p to the points in Knn
12: if d > T then
13: Remove point p from P
14: else
15: Keep the point p
16: end if
17: end for

return P

In this research, both parameters were empirically set to nb neighbors = 50 and

std ratio = 4. This configuration sets the threshold value T = µ + 4s, where µ repre-

sents the mean of the mean distances of every point to its 50 nearest neighbors, and s

stands for the standard deviation. Thus, for each point with a mean distance to its 50

nearest neighbors of d, if d > T, the point is removed. Otherwise, it is kept.

Standardization The standardization stages ensure uniformity in the number of points

across all point clouds, promoting algorithmic efficiency without compromising facial

details. They leverage FPS, which is a greedy algorithm that iteratively selects points

without repetition from point cloud data. This algorithm’s objective is to maximize the

distance between selected points, thus ensuring a maximum and well-distributed spatial

coverage across the entirety of the original point set. It was selected as the sampling

strategy due to its widespread use and ability to describe structural characteristics [202].

As previously mentioned, the first standardization reduces the number of points to

10 500, while the latter reduces it to 10, 352. These values were chosen to ensure that the

reduction in the number of points is minimized, setting the number of points equal to the

point cloud with the lowest number after the previous implemented stages. Furthermore,

this indicates that the outlier removal stage resulted in the removal of a maximum of 140
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outliers. While further point reduction is feasible, preserving as much detail as possible

is essential, especially for the 2D projections.

4.1.5 Data Limitations

Despite implementing various precautions to ensure high-quality data, certain errors

persisted in the dataset, primarily attributed to the 3D digitizing system and setup condi-

tions. The following are some examples of these errors:

• Low-density: Regions with a low density of points are mainly found in the chin area,

but they may also appear on the forehead and cheeks;

• Deformations: Imperfections in the scans may be introduced by the presence of hair

due to the inherent nature of their texture. Additionally, the eye region may present

a concave shape instead of a convex one;

• Movements: Some scans within the dataset may exhibit perturbations caused by the

movements of the subjects. Although the scans have a short duration, it is unreal-

istic to expect the subjects to remain completely motionless throughout the entire

process.

Refer to Figure 4.6 for a visual representation of some of the mentioned occurring prob-

lems during the acquisition process. The images depict the point cloud uniformly colored

or display the corresponding mesh from which the point cloud was derived. This visual-

ization approach aims to enhance the perception of the issues at hand. These constraints

are present in only 15% of the subjects, which does not compromise the data quality re-

quirements for this research, as will be demonstrated later.
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(A) Low-density region. (B) Hair imperfections. (C) Eyes deformation.

FIGURE 4.6: Limitations of the iPhonePLYv3 dataset.

4.2 Evaluation Strategy

The evaluation procedure of the anonymization techniques is conducted on the 2D

space leveraging the 3D to 2D projections of the anonymized results provided by the

anonymization techniques. As mentioned earlier, its design addresses the limitations of

3D face recognition, specifically addressing the lack of state-of-the-art open-source im-

plementations and taking advantage of the more mature stage of development in the 2D

space.

4.2.1 Preliminary Considerations

The experimental results will pertain to the six distinct anonymization techniques pre-

sented in the last chapter, each encompassing 35 configurations that correspond to the

use of different regulating parameter values. These specific values were chosen based on

the AUC metric to standardize results across all anonymization methods, enabling mean-

ingful comparisons, as explained later. Altogether, these arrangements contribute to a

total of 210 unique configurations devoted to testing.

Within each configuration, the gallery set is composed of high-resolution frontal

images, while the probe set encompasses point cloud projections with and without

anonymization applied. According to this aspect, the probe set is further divided into

two subsets: the baseline subset and the anonymization subset. A visual representation of

these different sets and their interrelationships can be seen in Figure 4.7. The smaller

sets within the anonymization subset symbolize the diverse configurations, each involving

multiple parameters linked to a specific technique.
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FIGURE 4.7: Data structure used for the anonymization techniques evaluation.

All sets contain facial data from 200 subjects, identified as id 000 to id 200. How-

ever, id 001 is an exception as it is excluded due to its integral role in the Merge2Faces

anonymization, rendering it unsuitable for other experiments. Both the gallery and the

baseline subset remain consistent across all configurations. The baseline subset serves a dual

purpose: it acts as a benchmark for evaluating both privacy and utility metrics, measuring

how the anonymization affects the data. Furthermore, it validates the overall experimen-

tal design.

In essence, every anonymization configuration is tested under specific metrics pre-

sented in the following section, generating a comprehensive overview of the technique’s

performance.

4.2.2 Description

The characterization of the effectiveness of an anonymization technique revolves around

the balance between the privacy and utility it provides, involving the evaluation of the

privacy-utility trade-off. Consequently, it is mandatory to design the assessment strategy

for the privacy and utility components separately and then combine the two to obtain the

trade-off.

Privacy Assessment Throughout the testing process, both face recognition modes,

namely identification and verification, will be considered. This approach offers a more

comprehensive and exhaustive understanding of the protective capacity of each tech-

nique.
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The identification mode will be restricted to the closed-set protocol, simplifying its

implementation and performance evaluation. Although it may not represent real-world

scenarios, it avoids introducing additional complexity to the face recognition attacker

model that may hinder the effectiveness of the primary objective of assessing the pri-

vacy strength of the anonymization technique. In Section 2.4.2, four distinct evalua-

tion methodologies were presented for privacy assessment, each representing different

paradigm attacker models. Gross et al. [160] demonstrated the effectiveness of parrot

recognition in defeating naı̈ve anonymization techniques, thereby reducing the privacy pro-

tection offered by such methods. In this research, most anonymization techniques are

classified as naı̈ve anonymizations due to their simplicity, making parrot recognition an ap-

pealing testing alternative. However, due to the methodology adopted in this research,

the requirement of this attacker paradigm of applying the same distortion of the probe

set in the gallery set is infeasible - the probe set results from a 3D distortion followed

by a 3D to 2D projection, and the gallery set is inherently composed of 2D images. This

contrast makes it impossible to recreate the same distortion effect in both sets, potentially

compromising the effectiveness of the parrot recognition and, consequently, the quality of

the evaluation results. As an alternative, the reversibility recognition has shown promising

results in attacking face anonymization techniques [180], comparable to or even better

than other approaches. Hence, it is considered a suitable choice for evaluation and it was

selected for anonymization assessment. In addition, the naı̈ve anonymization will also be

considered as it is the widely used paradigm in the reviewed literature. By employing the

two attacker paradigm frameworks, namely naı̈ve recognition and reversibility recognition,

a comprehensive evaluation of the privacy potential of the techniques is achieved.

Utility Assessment The utility assessment is closely related to the subsequent applica-

tion of the data. Since there is no specific intent, the evaluation is expected to consider a

broader aspect that enables the characterization of the overall utility of the data. It serves

a general purpose without narrowing the focus to a particular application. Accordingly,

the utility assessment revolves around four distinct metrics that complement each other.

These four metrics pertain to the ability of anonymization to maintain a human-like fa-

cial appearance, preserve the facial structure of the subject, and ensure image quality and

visual perception.

Within the scope of this work, as an integral part of the Bosch innovation project for au-

tonomous driving, assessing the impact of anonymization on other perception algorithms
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relevant to self-driving cars, such as pedestrian detection, lane estimation, tracking, and

motion estimation, is of utmost importance. However, this evaluation is infeasible due to

the current low resolution of LiDAR sensors, which results in the unavailability of suit-

able data. This limitation prompted the use of datasets outside the scope of autonomous

driving in the first place. Nevertheless, it is worth noting this consideration for future

research.

Privacy-Utility Trade-off The privacy-utility trade-off represents the ultimate objective

that algorithms aspire to achieve by striking a positive balance between privacy and util-

ity. However, the reviewed literature does not present a unanimous methodology for

evaluating this trade-off. For instance, Abbasi et al. [203] formally define a privacy-utility

trade-off optimization criterion as:

T = [AccDet + AccAgg + PG]/3 (4.2)

where AccDet is the face detection accuracy, AccAgg is the average between the matched

and mismatched face verification accuracies, and PG is a privacy gain component, piv-

oting the maximum trade-off T score as a linear optimization problem. Inspired by this

formulation, a practical solution is proposed to visualize the privacy-utility trade-off by

attempting to condense the overall privacy and utility of each anonymization into a single

value, despite its potential difficulty in quantification.

4.2.3 Evaluation Metrics

In Section 2.4.2, various standard metrics used in the literature for evaluating privacy

and utility were presented. For this work, a subset of those metrics has been selected and

is summarized in Table 4.1, along with a brief description of their aim. In addition to

the quantitative metrics mentioned earlier, a qualitative assessment will be conducted to

evaluate the anonymization results from both privacy and utility perspectives.

Privacy Metrics The verification mode entails analyzing ROC curves and their corre-

sponding AUC values. Figure 4.8 visually represents the ROC curve computation frame-

work for the selected dataset, which encompasses two primary stages. In the initial step,

each anonymized image is subjected to comparison with every identity in the gallery set,



84
PRIVACY-PRESERVING FACE DETECTION: A COMPREHENSIVE ANALYSIS OF FACE

ANONYMIZATION TECHNIQUES

TABLE 4.1: Summarization of the evaluation metrics employed for assessing the face
anonymization techniques.

Name Description

Privacy Metrics
CMC and Rank-1 Identification Rate Face identification under the closed-set protocol

ROC curve and AUC Face verification

Utility Metrics
Delta Detection The impact on the perception of faces by face detectors

Landmark Distance Measures the impact on the facial structure
SSIM Image quality metric related to the human visual perception
FID Visual perception by distribution distances

Inference Time Measures the feasibility of real-world applications

resulting in a distance value calculated through the cosine similarity metric1. This pro-

cess yields a total of 40, 000 computed distances: 200 representing valid matches and the

remaining 39, 800 denoting non-matching instances. Such an arrangement introduces a

substantial class imbalance. Gu et al. [204] highlight that the ROC curve might exhibit

limitations when assessing precision within these imbalanced contexts. Hence, embrac-

ing precision-recall curves could unveil disparities between algorithms that might remain

concealed in the ROC space. In forthcoming investigations, this evaluation metric holds

promise for providing deeper insights into the efficacy of the anonymizations. In the

second phase, the distance threshold is systematically adjusted, and for each setting, the

False Acceptance Rate (FAR) and the True Acceptance Rate (TAR) are calculated. In the

second step, the ROC curve is generated by adjusting the classification threshold value for

all the computed distances. In Figure 4.8, various thresholds are depicted as black lines

overlaid on the distributions of the distances computed between genuine and impostor

matches. Different thresholds result in different outcomes.

The closed-set recognition mode capitalizes on the insights the Cumulative Matching

Characteristic (CMC) plot reveals. The computational framework of the CMC curve for

the selected dataset is visually depicted in Figure 4.9, encompassing three distinct phases.

In the initial phase, a distance-based similarity metric is calculated for an anonymized

image in relation to every identity within the gallery set, generating 200 distance values.

Subsequently, the second step entails arranging the identities of the subjects in descending

order based on their similarity, effectively sorting them from the most closely aligned

1Contrary to the cosine metric, this can yield values exceeding 1.
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FIGURE 4.8: Face verification framework.

identity to the least similar counterpart according to the distance-based metric. Finally,

the rank of the anonymized identity is established, yielding a value denoted as k, which

spans the range of 1 to 200. This value signifies that the genuine match is positioned

among the top k candidates. This procedure is iterated for all the anonymized images. In

the example illustrated in Figure 4.9, the anonymized subject id 003 is ranked at position

2. Finally, the CMC corresponds to the percentage of subjects with a given rank valued

between 1 and 200.

FIGURE 4.9: Face identification under closed-set framework.



86
PRIVACY-PRESERVING FACE DETECTION: A COMPREHENSIVE ANALYSIS OF FACE

ANONYMIZATION TECHNIQUES

Utility Metrics The Delta Detection, a term coined for this research as it lacks a clear

name in the literature, quantifies the impact of the anonymization on the performance

of a face detector. RetinaFace is chosen as the detector due to its use as the initial stage

in the pipeline of the face recognition attacker model. Figure 4.10 illustrates the face de-

tector results, encompassing both a bounding box and five landmarks, across various

anonymization levels.

FIGURE 4.10: Data extracted by a face detector for Delta Detection and Landmark Distance
computation.

The impact is measured by comparing the face detector’s accuracy with and without the

anonymization techniques for a model’s prediction confidence of 0.9 and considering an

Intersection over Union (IoU) of 0.5 as a correct detection.

Among the three presented image quality and visual perception assessment metrics,

only two will be considered: the SSIM and the FID. The reason for this selection is that

SSIM has been shown to outperform PSNR in measuring the quality of natural images

across a wide variety of distortions [205]. However, this metric is computed on a sub-

set region rather than considering the entire image. This subset region is delineated by

the bounding box of the detected face on the baseline image, which matches the position

in the anonymized image, as the facial location in the anonymized image remains un-

changed. Refer to Figure 4.11, where each image corresponds to the bounding box region

depicted in Figure 4.10 for each anonymization level used for computing the SSIM.

FIGURE 4.11: Subset region for the SSIM computation.

The reason for this approach is that a substantial amount of white space is present in the

images, and by considering only the facial region, it is possible to observe the variations
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introduced by the anonymization more clearly. This way, the metric is not restricted to a

small interval between 0.9 and 1, but it varies across a broader range of values, enhancing

the interpretability of the anonymization effect. On the other hand, the FID does not suffer

from this problem. Furthermore, FID provides additional insights into visual perception

by measuring the difference between distributions of feature vectors for the two image

sets corresponding to the anonymized and non-anonymized data.

The Landmark Distance is an additional metric not commonly encountered in the lit-

erature, offering further insights into the effects of the anonymization techniques on the

subject’s facial structure. This metric calculates the Euclidean distance between a set of

keypoints denoted by five facial landmarks - the center of the right and left eye, nose

tip, and right and left corner of the mouth - computed by the RetinaFace model on the

anonymized result (Figure 4.10). If no detection is produced, the metric is penalized by

considering a high distance value. The metric ranges between 0, indicating an unaltered

facial structure, and the predefined penalty (a high value), indicating a face that is no

longer identifiable as such due to excessive anonymization.

Although not directly a utility metric for evaluating anonymization results, the exe-

cution time is crucial for specific applications that demand real-time inference or have

limited computational resources. The execution time can be considered a utility metric

for the anonymization algorithm (not its results) and is presented as well.

Privacy-Utility Trade-off Metrics The privacy-utility trade-off is hard to fully capture

by a single metric, as it would oversimplify its complexity and nuanced nature. Instead,

three visual representations will illustrate the relationship, using a pair plot, a correlation

matrix, and a mean aggregation of the privacy and utility metrics. Although the latter

may suffer from oversimplification, it may still uphold valuable information. Further

information is provided in the next Chapter.

The pair plot is a powerful visualization for exploring interactions among multiple

anonymization and utility variable pairs, revealing connections between privacy and util-

ity metrics. It uses scatter plots for metric relationships and diagonal plots for metric

distributions. The correlation matrix is essential for quantifying variable relationships

through numeric coefficients. It condenses privacy metric interactions, with coefficients

near 1 indicating strong positive correlations and those near -1 indicating strong negative

correlations. It helps identify prominent associations between metric pairs. On the other

hand, the mean aggregation will summarize the overall strength of the metrics in terms of
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privacy and utility, enabling a straightforward comparison of the effectiveness of different

anonymization techniques.

4.3 Implementation Details

The implementation details of the conducted experiments offer readers a comprehension

of the experimental setup and procedures. The devoted time dedicated to exploring the

tools, frameworks, and configurations utilized in the models of the three major research

fields has been instrumental in ensuring reliable results for this study.

4.3.1 Software and Tools

This master’s thesis was developed entirely using the high-level programming language

Python. The decision to use Python as the primary programming language was driven by

its extensive collection of libraries and frameworks ideally suited for machine learning,

computer vision, and image processing tasks. Python 3.8.12 was chosen for this project

without any specific reason for the version selection. The research primarily focused on

face detection, face recognition, and face anonymization in 2D and 3D spaces, necessitat-

ing the adaptation of Python libraries and frameworks.

In addition to conventional Python libraries for data analysis, scientific and mathe-

matical computation, machine learning, image processing, and data visualization, such

as pandas, NumPy, scikit-learn, scikit-image, and Matplotlib, specific libraries crucial for

this research and not typically utilized in standard projects are highlighted as follows.

Open3D [206] is an open-source library that supports the development of software

dealing with 3D data. It provides diverse modules, including the Geometry module, which

supports fundamental 3D processing algorithms and offers three geometrical representa-

tions: point clouds, triangle meshes, and images. The I/O module functionalities enable

the reading and writing of 3D data files for each representation. Moreover, Open3D’s

Visualization module provides functionalities for 3D visualization, while the Registration

module implements multiple methods for surface registration, including local and global

registrations. Despite Open3D having other modules, the ones mentioned above were

pivotal in achieving the research objectives.

DeepFace [207] is a lightweight Python framework for face recognition and facial at-

tribute analysis. Developed using popular deep learning frameworks such as Keras and
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TensorFlow, it ensures efficiency and accessibility for researchers. The library provides

over five state-of-the-art deep learning models, including ArcFace for face recognition

tasks, supporting verification and recognition.

The RetinaFace [207] library is a TensorFlow-based re-implementation of the state-of-

the-art face detector RetinaFace, drawing inspiration from the InsightFace project. This

library offers face detection and landmark localization functionalities, providing coordi-

nates of the facial area (bounding box corners) and landmark coordinates (eyes, nose, and

mouth extremities) along with a confidence score.

PyTorch [208] is a widely-used open-source deep learning framework developed by

Facebook’s AI Research Lab. Renowned for its effectiveness in building and training deep

neural networks, PyTorch has gained popularity in the fields of machine learning and

artificial intelligence. PyTorch provides extensive support for GPU acceleration, enabling

faster training and inference on compatible hardware.

Below is an overview of the hardware setup employed for this research:

• Machine 1: MacBook Air 14” Apple M2 chip 8-Core 8GB;

• Machine 2: MacBook Pro 13” 2.3 GHz Dual-Core Intel Core i5 8GB;

• Machine 3: One Tesla V100-SXM2 32GB GPU with Dual-Core 8GB CPU.

The first two machines were utilized for most experiments. The need for two machines

arose due to incompatibilities between TensorFlow and the M2 chip, which could not be

resolved, limiting the use of the Deepface and RetinaFace libraries. As a result, all Ten-

sorFlow computations were conducted on Machine 2, while the remaining computations

were performed on Machine 1. Adopting Machine 3 with GPUs was crucial for training

the de-anonymization autoencoder model. GPUs play a vital role in deep learning algo-

rithms, significantly accelerating model training and inference and enhancing efficiency

and cost-effectiveness for deep learning tasks.

4.3.2 3D to 2D Projection

The term 3D projection, also known as graphical projection, refers to converting 3D ob-

jects or scenes into a 2D representation on a surface. In the context of 3D point cloud

projection, the points of the object within the 3D space are mapped onto a 2D plane while

preserving specific spatial relationships, some of which may create the illusion of depth
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and perspective. Numerous techniques are available for performing 3D projection, each

possessing unique characteristics and applications. Refer to Figure 4.12 for an illustrative

categorization of some 3D projections.

FIGURE 4.12: Classification of some 3D projections. Extracted from 3D Projection.

As face detection and face recognition algorithms will be applied to the 2D data, the

obtained projection results should emulate the appearance of faces in standard digital im-

ages, which serve as the training input for these pre-trained models. Among the existing

projections, the Multiview Orthographic projection primarily captures the facial structure

and closely resembles digital images. This projection was also employed by Jovančević

et al. [209] to detect and characterize defects on an airplane’s exterior surface from 3D

point could data. Despite not simulating perspective or depth perception, resulting in

a flat and uniformly scaled representation unlike real-world human perception, the pro-

jection offers an accurate depiction of object sizes and shapes, and its implementation is

straightforward.

Let p = (px, py, pz) denote an arbitrary 3D point in a point cloud. The resulting point

p0 from an orthographic projection onto the plane z = 0 of the point p is defined by:

p0 =

2
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0 0 0

3
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0

3
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(4.3)

In this research, as explained in the previous Section 4.1, the design of the iPhone-

PLYv3 dataset involved registering all point clouds to a precise location. This registration

ensures that the nose tip is at the origin, the front view of the face is oriented towards the

https://en.wikipedia.org/wiki/3D_projection
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x-axis, and the yaw, pitch, and roll angles are standardized. For a visual representation of

the point clouds’ orientation compared to the 3D axis, refer to Figure 4.13. The images are

taken from the MeshLab processing tool. The x, y, and z axis are represented by the colors

red, green, and blue, respectively.

(A) Predefined view-
point.

(B) x-axis is perpendicu-
lar to the screen.

(C) Predefined view-
point.

FIGURE 4.13: Visual comparison of subject id 004’s face with the reference axis.

Given these settings and the insight obtained from Figure 4.13, the orthographic projec-

tion onto a plane x = k, where k is a constant, captures the front view of the subject’s face.

In the implementation, a scatter plot was generated in Python using the 3D coordinates

of the point clouds. The X coordinates were excluded, and the Y values (x-axis of the scat-

ter) were plotted against the Z values (y-axis of the scatter) of the point clouds. The color

component of each point remained unchanged. However, this approach involves two pa-

rameters that require special attention: the size of the scatter points and the ordering of

the points based on their coordinates1.

The first parameter (Figure 4.14a), scatter point size, is crucial in controlling the ap-

pearance of white patches induced by low-density regions on the 3D face models. Setting

a low size value prevents overlapping points, causing the white patches to be more promi-

nent in the projection. On the other hand, using a size value that is too high introduces

some priors, particularly in the surrounding region of the face, or deforms the facial fea-

tures according to the scatter points order.

For the second parameter (4.14b), scatter points order, the intuitive choice would be

to display the points in an increasing order of the X-coordinate to avoid superimposition

of further away points on closer ones (recap Figure 4.13 for the axis orientation). How-

ever, the empirical analysis highlighted issues with this approach. The eye region, for
1The organization of the scatter points based on the X, Y, or Z coordinates in ascending or descending

order.
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instance, exhibits concavity instead of convexity, as already mentioned, which leads to

severe deformations when points in the eye’s vicinity superimpose the points of the eyes.

Similar deformations are also observed in other regions, such as the nose and mouth. As

an alternative, a tested solution was to select the index order based on the Y-coordinate

in increasing order, which yielded satisfactory results and was chosen for the final imple-

mentation.

Another constraint involved the axis limits of the scatter plot (Figure 4.14c), which

were initially set on the same scale for both X and Y coordinates. However, this led to an

undesirable effect of overly wide faces. Consequently, the X scatter coordinate limits were

reduced to flatten the faces, resulting in a more accurate representation.

(A) Sorting index by the X coordinate.

(B) Sorting index by the Y coordinate.

(C) Y axis scale variation.

FIGURE 4.14: Impact of parameter adjustments on 3D to 2D projection results.

After conducting experiments, it was evident that choosing a point size that avoids

both deformation and white holes while sorting the index by the X coordinate is impos-

sible. Consequently, the points were sorted according to the Y-coordinate in increasing

order with a size of 25, preventing major deformations and white holes on the faces. As
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for the scatter axis limits, the x-axis ranges in the interval [�0.25, 0.25], whereas the y-axis

ranges between [�0.18, 0.18].

The resulting images are 389⇥ 515 pixels in size, each depicting a single identity with

their face centered on a white background. Regarding the anonymization techniques, they

are exclusively applied to the inner part of the face, as detailed in Chapter 3. After apply-

ing them, the anonymized 3D information is merged with the 3D non-anonymized outer

region of the head, which was excluded through the sphere cropping in the preprocess-

ing pipeline. This merging provides additional contextual information, and the resulting

combined points are then projected using the 3D to 2D projection procedure explained

earlier. Figure 4.15 illustrates the further contextual information that is provided by this

procedure. The top row represents the outer face projection, the middle row depicts the

inner face projection, and the bottom row shows the stitching result. A black border has

been added to enhance the perception of the true dimensions of the images.

(A) id 005. (B) id 006. (C) id 007.

FIGURE 4.15: Final 3D to 2D projections of point clouds for three subjects.
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4.3.3 Anonymization Techniques

The proposed anonymization techniques include a set of regulator parameters that con-

trol the degree of magnitude of the data modification, providing varying levels of control

over the point cloud anonymization process. Some techniques may have single or multi-

ple regulator parameters. However, for those with multiple, the regularization was em-

ployed to one parameter keeping the remaining fixed at a specific value. As a result, the

evaluation procedure is simplified, avoiding the need to test an extensive number of con-

figurations, which would be impractical. Besides, this approach enables a more explicit

assessment of the effect of each anonymization technique parameter and its impact on

the evaluative metrics. However, future research can focus on exploring the full potential

of the proposed techniques by considering a more comprehensive range of tests, delving

into the effects of different parameter combinations.

For each anonymization technique, the process of choosing the regularization param-

eter led to the creation of 35 distinct configurations, known as anonymization degrees.

These degrees span from 1 to 35, with 1 indicating the least impact and 35 producing the

most significant effect. The regularization parameters were empirically tested, consist-

ing of equally spaced values ranging from no modification to a level of modification that

entirely hinders face recognition, measured by an AUC1 value from approximately 1 to

0.5. This approach enables the illustration of the evolution of privacy and utility metrics

and the trade-off for various standardized degrees of anonymization. It effectively de-

picts the strengths and weaknesses of the anonymization techniques, allowing for their

comparison on a common basis. Table 4.2 presents the parameters used for all tested

anonymization algorithms.

For each regulator parameter, specific adjustments had to be made to the size and index

order parameters of the 3D to 2D projection procedure to cope with the effects of the

modifications. Thus, thorough testing was conducted to achieve visually satisfactory pro-

jections results, minimizing biased errors that could hinder the recognition performance.

4.3.3.1 Sampling-Based

CentroidVoxel The CentroidVoxel anonymization technique is a straightforward ap-

proach centered around a single regulating parameter, dictating the resolution of the voxel

1The AUC is an evaluation metric for face identification that also captures the attributes of the
anonymization technique in the verification scenario.
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TABLE 4.2: Regulatory parameters for all anonymization algorithms in the conducted
experiments, originating the anonymization degrees.

Anonymization Parameter Values

CentroidVoxel size size = {xi | xi = 0.00025 · i, i = 1, 2, . . . , 35}
Merge2Faces weight weight = {xi | xi = 0.0285 · i, i = 1, 2, . . . , 35}

PMP alpha alpha = {xi | xi = 0.00215 · i, i = 1, 2, . . . , 35}
SmoothKNN k-NN k = {xi | xi = 8 · i, i = 1, 2, . . . , 35}

Tapering [rm, rM] |rm| = |rM| = {xi | xi = 0.087 · i, i = 1, 2, . . . , 35}
UniformNoise ⇠ U (a, b) a = 0, b = {xi | xi = 0.00064 · i, i = 1, 2, . . . , 35}

grid. For the voxel grid creation, the Open3D’s Geometry module was leveraged, which

features a method for generating a voxel grid directly from a point cloud. This process

designates a voxel as occupied if it encompasses at least one point from the point cloud,

while the color of a voxel is computed as the average color of all the points within it.

The voxel grid resolution, highlighted by the voxel size, is depicted in Figure 4.16 for the

subject id 001. With an increase in voxel size, more points are condensed into the voxels,

resulting in higher information loss. Consequently, the number of voxels decreases until

it ultimately converges into a single voxel that aggregates the information of the entire

point cloud.

FIGURE 4.16: Voxel grid generation with voxel sizes ranging from 0.0025 to 0.150 with
0.0025 increments, spanning from 7812 voxels down to 49 voxels.

As depicted, the increments in voxel size lead to voxels occupying larger portions of

space. Consequently, the points originating from each voxel – where the coordinates and

color correspond to the centroid coordinate and average color of all points within the

voxel – become more distant from each other.

As the voxel resolution decreases, the positions of the points shift, ultimately moving

beyond the confines of the initial input facial region. Furthermore, these points accumu-

late more information from other points in the point cloud, all aggregated within the same
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voxel. This aggregation results in information loss and confers an inherent sampling na-

ture to this technique. The result of the anonymized point clouds is a notable decrease

in point density, which becomes especially pronounced in scenarios involving large voxel

sizes, leading to significant reductions through extreme sampling.

Consequently, these characteristics introduce uniform patterns into the projected

anonymization if no action is taken to adjust the point size on the scatter plot. These

white patches were addressed by methodically selecting the appropriate point size for

each anonymization parameter, ranging from 25 in moderate cases to 55 in the most

extreme scenarios. For a visual representation of the impact of point size on resulting

anonymized images across various modification scenarios, refer to Figure 4.17.

FIGURE 4.17: Centroid Voxel technique with uniform point size equal to 25 of the inner
face of subject id 197. From left to right, the parameter size starts with 0.006 with an

increment of 0.002 until 0.014, containing between 1 850 and 395 points.

4.3.3.2 Noise-Based

UniformNoise The UniformNoise technique involves two regulator parameters related

to the noise distribution, which follows a uniform distribution. The lower limit of the

uniform distribution is fixed at the origin by setting a = 0, while the upper limit b is set

to vary. Consequently, only positive perturbations are introduced to the coordinates of

the points, shifting their location toward the positive direction of the X, Y, and Z axes.

However, this shift is compensated by subtracting a constant corresponding to the mean

of the uniform distribution from the coordinates, as already explained. Figure 4.18 depicts

a visual representation of a uniform distribution with a sample size of 10 352, the same as

the number of facial points of each point cloud, generated in Python.

If a noise value has coordinates x = 0.020, y = 0, z = 0, the facial point shifts its position

2 centimeters in the positive direction of the x-axis (the units are in meters).
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FIGURE 4.18: A uniform noise distribution U (a, b), with a = 0.

4.3.3.3 Warping-Based

Tapering The Tapering technique is governed by two regulator parameters, one of which

is the tapering function that guides the deformation result, shaping the final appearance.

To observe the impact of the tapering function on the anonymization result, refer to Fig-

ure 4.19. In this toy example, three distinct tapering functions are applied to a sphere

centered at the origin with a radius of 0.1, containing 50 000 points.

(A) F(x) = sin(x)/6. (B) F(x) = x2/100. (C) F(x) = x3/1000.

FIGURE 4.19: Transformation of a 3D sphere using three distinct tapering functions vary-
ing across the interval [�10, 10].

The anonymization shape closely resembles the tapering functions’ shapes. Therefore,

the tapering function is designed to be computationally efficient, avoiding complex com-

putations while achieving a desired unique shape. The tapering function was selected

arbitrarily from a set of functions with desirable characteristics, which were determined

through empirical observation. The definition of the selected tapering function is as fol-

lows:
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Fanon(x) = sin(x)2 + cos(x) (4.4)

The other parameter to consider is the restricted domain of the tapering function. Even

with the same tapering function, this parameter can significantly impact the final shape

of the anonymization. Figure 4.20 visually represents three different restricted domains

of the function Fanon. This graph illustrates that the same function can produce highly

distinct results, considering that the shape shown in the graph will resemble the final

shape of the anonymization.

(A) r = 1. (B) r = 5. (C) r = 10.

FIGURE 4.20: Different restricted domains of the function defined in Equation 4.4.

The impact of the Tapering technique is assessed by altering the function Fanon re-

stricted domain, defined in the form [�r, r] for simplicity, where different real values of r

are taken into account.

4.3.3.4 Morphing-Based

Merge2Faces The Merge2Faces anonymization technique stands out as one of the most

complex methods proposed. The anonymization consists of incorporating the facial traits

of a target face, one of the regulator parameters, into a source with varying degrees of

influence. In this study, an invariant target face from subject id 001 was employed to

anonymize all identities.

This algorithm unfolds in two distinct stages. The initial stage concerns the alignment

of a source face and the face of the subject id 001. However, due to the preliminary man-

ual alignment performed on the point clouds during the dataset’s acquisition and pre-

processing phases, the need for an initial application of the global registration RANSAC

algorithm was obviated. The initial alignment of all the faces served as an adequate start-

ing point for the subsequent local registration. For this purpose, the Point-to-Plane ICP

algorithm variant was executed using Open3D’s Registration module. The convergence
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criterion corresponding to the Root Mean Square Error (RMSE) difference of the two-

point clouds between algorithm iterations was left at its default value. The second stage

was executed with direct simplicity leveraging the Open3D’s Geometry module for a fast

nearest-neighbor search across the two point clouds, following the completion of the ini-

tial alignment process.

The quality of the outcomes produced by this implementation is closely intercon-

nected with the effectiveness of the initial registration phase in achieving a robust align-

ment between the source and target point clouds. The assessment of alignment quality

between these two point clouds can be estimated through the utilization of two defined

metrics:

• Fitness: quantifies the overlapping area by evaluating the ratio of inliers1 to the total

number of points in the target point cloud. A higher value indicates better align-

ment;

• Inlier RMSE: computes the RMSE of all inlier correspondences. A lower value signi-

fies more accurate alignment.

These metrics were calculated using Open3D’s Pipelines module, with a distance thresh-

old of 0.005, equivalent to 5 millimeters, for identifying inlier points. The calculations

were performed before and after applying the ICP algorithm for local registration, con-

trasting the initial rough alignment with the refined alignment utilized in the subsequent

algorithmic steps. Figure 4.21 visually presents the outcomes for both metrics. The x-axis

displaying subject identities has been arranged in increasing order of the Fitness metric

after ICP registration for both plots, promoting better visualization and standardization.

The results indicate a significant enhancement in the Fitness metric across all subjects,

with improvements spanning from 9.7⇥ 10�5 to 0.525. Figure 4.22a illustrates the align-

ment that achieved the most substantial Fitness improvement, reaching 0.525, for subject

id 129. A Fitness value of over 0.5 suggests that the number of inliers more than doubled

compared to the initial alignment, with over half of the points in the target point cloud

located within 5 millimeters of a point in the source point cloud. However, the RMSE of

seven out of 199 point clouds increased. The most significant rise in RMSE before and after

alignment was equivalent to 10�4, with absolute improvements diminishing to 8.9⇥ 10�4.

1Inliers refer to source points whose distance to a target point falls below a correspondence distance
threshold.



100
PRIVACY-PRESERVING FACE DETECTION: A COMPREHENSIVE ANALYSIS OF FACE

ANONYMIZATION TECHNIQUES

(A) Fitness. (B) Inlier RMSE.

FIGURE 4.21: Evaluation metrics for point cloud registration.

(A) Best fitness im-
provement.

(B) Underestimation
fitness illusion.

(C) Overestimation
fitness illusion.

FIGURE 4.22: Visual results of local registration.

Nonetheless, the fitness measure may underestimate results in cases where the facial

point cloud segmentation is suboptimal and includes a portion of the hair. For instance,

Figure 4.22b showcases the ICP alignment outcome for subject id 197. While visually sat-

isfactory, the Fitness metric scores a low value of 0.44, marking the poorest result among

all subjects. This discrepancy is attributed to the hair of the subject negatively affecting

the metric, even though the facial alignment is well-executed. Conversely, Figure 4.22c1

illustrates the ICP alignment output for subject id 002. Despite a Fitness score of 0.78,

the visual results are unsatisfactory as the eye regions remain significantly apart in both

faces. This instance underscores that specific Fitness values might overestimate alignment

success. Hence, it’s advisable to exercise caution when considering both metrics.

In addition, Figure 4.22c highlights that the registration process can prove highly chal-

lenging for certain subjects, owing to substantial variability in facial structure and char-

acteristics between the two individuals. In these samples with suboptimal alignment,

1The variance in points dispersion across the three images is due to differing zoom factors.
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the 2D projection is denoted by the appearance of white patches. The reason for this oc-

currence is that when the neighbors taken into account for the weighted average are not

well-aligned, the corresponding mean point will be pushed farther away.

4.3.3.5 Smoothing-Based

SmoothKNN The SmoothKNN technique is governed by a single parameter that controls

the extent of facial smoothing and color blurring in the anonymized point cloud. The ini-

tial step of this approach involves computing the neighboring points for each point within

the point cloud. Similar to the Merge2Faces method, neighboring points were determined

using Open3D’s Geometry module, enabling rapid nearest-neighbor searches. Refer to

Figure 4.23, which illustrates the facial region of interest used to calculate the average

coordinates and colors. This region is defined by the (k-1) nearest neighbors in a light

tonality relative to a predefined point marked in red.

FIGURE 4.23: Number of neighbors to consider when computing the average color and
coordinates for the SmoothKNN for subject id 001. From left to right, the parameter k-NN

starts with 50 with an increment of 50 until 300.

As the number of nearest neighbors considered for computing averages progressively

rises, approaching the total count of facial points at its maximum, the point cloud grad-

ually condenses, eventually converging into a singular point. This phenomenon is illus-

trated in Figure 4.24a, where the generated point clouds result from diverse anonymiza-

tion parameters, spanning from 2 000 to 10 000 with increments of 2 000. These point

clouds are presented in different colors to improve visual clarity and offer two viewing

perspectives. For reference, the original point cloud is also showcased.

Furthermore, Figure 4.24 highlights two issues associated with the number of neigh-

bors, considering 200 neighbors. In instances where the segmentation of the facial point

clouds is suboptimal, encompassing a portion of the hair, the hair’s influence leads to

the displacement of points toward it, resulting in certain regions being left blank on the

forehead 4.24c (id 090). Additionally, Figure 4.24b (id 068) illustrates a potential concern
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arising from sparsity in specific areas, which can become more pronounced for a rela-

tively low number of neighbors as surrounding points exert influence on these regions,

propelling the points in their direction. As the number of neighbors increases, this issue

gradually diminishes. This leads to the surface of white patches in the projections of the

anonymized data, which is addressed by augmenting the size of the points in the scatter

plot to 60.

(A) Shrinkage. (B) Sparsity. (C) Poor segmenting.

FIGURE 4.24: Challenges associated with SmoothKNN.

4.3.3.6 Point Operations-Based

PMP The PMP anonymization technique is a straightforward method governed by two

regulatory parameters. These parameters oversee the detail of the a-shape obtained from

the initial point cloud transformation and the count of points following the a-shape trans-

formation back into a point cloud. For this specific technique, the count was fixed at 10 352

points, mirroring the number of points in the original point clouds.

As the detail of the a-shape diminishes due to the anonymization parameter, the shape

progressively approximates the convex hull of the face. This evolution is depicted in Fig-

ure 4.25, which illustrates the gradual transformation of the a-shape into its convex hull.

Owing to their unique characteristics, prominent facial attributes like the nose, eyes, and

mouth undergo substantial alterations while the overall facial structure is still preserved.

This trait proves advantageous for effective anonymization. As the a-shape approaches

the convex hull, the concave regions surrounding the eyes are progressively concealed

(akin to an eye patch), and the nose region is transformed into a pyramid-like structure.

This transformation unfolds as facial regions gradually connect to the elevated sections of

the nose, ultimately culminating at its tip. A comparable pattern of alteration is evident

in the mouth region.

Subsequently, the a-shape is transformed into a point cloud, accompanied by color alter-

ations that are influenced by the surrounding regions. Although not explicitly depicted,
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FIGURE 4.25: PMP initial point cloud to mesh conversion for subject id 001. From left
to right, the parameter alpha starts with 0.02 with an increment of 0.01 until 0.07. The

furthest image to the right is the convex hull.

the rear section of the face undergoes the transformation, becoming fully interconnected,

resulting in an unusual effect.

During the 3D to 2D projection, it was discovered that for an alpha value greater than

0.030, the projection outcome appears more consistent with the point cloud’s anonymiza-

tion result when the scatter plot indexing is based on the x-axis order as opposed to the

y-axis order. This indexing adjustment deviates from other anonymization techniques,

which tend to use the y-axis order. Furthermore, this alteration necessitated resizing the

point clouds to mitigate the swelling effect, as elucidated in Section 4.3.2.

4.3.4 Face Detection and Recognition Models

On the Deepface framework, the face recognition model considered was ArcFace, which

comes with a pre-trained model. This pre-trained model is stored in a file containing the

learned parameters (weights and biases) after extensive training on a large dataset.

The face detector backend was set to the RetinaFace model, and its default settings re-

mained unchanged. This backend detector is responsible for locating facial regions within

the image, leaving Deepface to exclusively manage the alignment and normalization steps

for these identified regions. As outlined in Section 2.3, this process aligns with the conven-

tional face recognition pipeline, where subsequent stages are centered on representing the

pre-processed facial regions as feature vectors and proceeding with the feature matching.

However, in cases where the backend detector fails to identify any facial region within

the image, the library treats the entire input image as a face and proceeds to compute its

embedding. This behavior is enforced by setting the enforce detection command to True.

The similarity metric used in the feature matching stage is the cosine similarity. It

calculates the cosine similarity between the vector representations from the feature rep-

resentation stage of the two identity images given as input. The similarity score and a
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threshold value q are then used to determine whether the two identities are regarded as

matching or non-matching.

As part of this research, a slight code adjustment was made to a Deepface function,

allowing users to consider a custom threshold for the ArcFace model instead of being

restricted to the default value q = 0.68. This modification aimed to enhance downstream

tasks by improving the speed and practicality of computing evaluation metrics.

On the retinaface library, all the default configurations were used. The five landmarks

outputted by the model and the facial region bounding box are used as integral parts of

the utility metrics.

4.3.5 De-Anonymization Model

The de-anonymization model is specifically designed to reverse the 3D to 2D projections,

following the reversibility recognition attack configuration. In order to achieve optimal

results, certain adjustments were made to the dataset to accommodate the training and

testing of the model. The model’s design was determined through empirical testing, and

the best configuration was chosen.

4.3.5.1 Dataset

Regarding the model implementation, the dataset was divided into three sets, each con-

taining disjoint identities: the training, validation, and testing sets. The division follows

standard practices, with the data splits consisting of 80%, 10%, and 10% of the total 200

identities, respectively. Consequently, the training set comprises 160 identities not present

in the other two sets, while the validation set includes 20 identities out of the 40, leaving

the remaining 20 for the testing set. The three sets were randomly chosen. This data

partitioning strategy ensures that the model is trained, validated, and tested on different

identity samples, enhancing the reliability and generalizability of the results. Nonethe-

less, the results may exhibit bias as a result of the single random instance employed in

this strategy.

To improve the model training, the training set contains the subject images corre-

sponding to different view angles from the 160 subjects, ranging from -10 degrees until

10 degrees with increments of 2 degrees for the six anonymization techniques. In total, it

comprises 52 800. The model may improve learning by getting exposure to more data by
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considering different viewing angles instead of only the frontal image of the subjects. Re-

fer to Figure 4.26 for a visual representation of different viewpoints, considering various

degree angles.

FIGURE 4.26: Autoencoder training sample images of id 016, ranging from -10 degrees
to 10.

The testing set contains 20 identities, each originating a de-anonymized frontal image

that further contributes to the privacy evaluation.

4.3.5.2 Architecture

The architecture of the Autoencoder comprises an encoder and a decoder such that:

1. Encoder

• Receives as input an RGB image with three channels;

• The encoder part consists of three convolutional layers with ReLU activation

functions and max-pooling layers;

• Outputs a compressed representation with 8 channels.

2. Decoder

• Receives as input the compressed representation from the encoder;

• The decoder part consists of three transposed convolutional layers, also known

as deconvolution or upsampling layers, with ReLU activation functions;

• The final layer uses the sigmoid activation function to scale the output values

between 0 and 1, which is appropriate for reconstructing and outputting the

reconstructed RGB images.

The decoder aims to reconstruct the original input from the compressed representation

possessing a symmetrical design compared to the encoder.
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4.3.5.3 Training Procedure

The training loop implements the Autoencoder using MSE as the loss function to measure

the difference between reconstructed and clean images, and the Adam optimizer, with a

learning rate of 1⇥ 10�3, updates the model’s parameters during training. Due to mem-

ory limitations, a batch size of 8 is used. The model is trained for 250 epochs, and early

stopping is applied if the validation loss does not improve for 20 consecutive epochs.

The training loop records the training and validation losses, computed by averaging the

losses over their respective datasets. The model is saved whenever an improvement in

the validation loss occurs, preventing overfitting and identifying the best model configu-

ration. As a result, the training reconstructs anonymous images by minimizing the MSE

loss between the reconstructed and clean images.

The training losses of the model are illustrated in Figure 4.27. While the model demon-

strates the ability to learn how to de-anonymize the anonymizations, the limited reduction

in validation loss in comparison to the training loss suggests that the model may struggle

to generalize effectively beyond the training dataset.

FIGURE 4.27: Train and validation losses of the autoencoder.

4.4 Limitations

One limitation of this study is the size of the relatively small dataset. Although the dataset

included 200 identities, larger than many existing datasets in the literature, it may still be

insufficient for robust generalization. Strengthening the validity and generalizability of

the findings requires considering a larger dataset with a substantially greater number of
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identities in future research. Within the academic community of Faculdade de Ciências

da Universidade do Porto (FCUP) and even at the University of Porto, dedicated efforts

could be undertaken to collect and integrate a more extensive dataset complementing the

current one. This endeavor would enable a more comprehensive evaluation of the face

anonymization approach, producing more meaningful insights and results.

Another limitation was the evaluation procedure for privacy and utility, which was

a time-consuming process that required over two days of code running time to compute

all the metrics for all the anonymizations, only considering 200 identities. This duration

becomes prohibitive when aiming for a higher number of identities, such as in large-

scale datasets. Therefore, a more efficient and optimized evaluative framework design

becomes essential. Nevertheless, a total of 8 400 000 identity comparisons between two

images were performed within this work, and over 40 000 images were subjected to face

detection. These numbers are not insignificant and reflect the extensive analysis carried

out in this work. In addition, many parameters required fine-tuning and adjustments

during the experiments, which was time-consuming and may introduce challenges in

achieving optimal results. In particular, regarding the 3D to 2D projections, there is room

for improvement in streamlining the approach.

Finally, the de-anonymization autoencoder model could be further improved by con-

sidering a more sophisticated loss function, increasing the training data, or enhancing the

overall architecture. Along the same lines, some anonymization techniques can be further

optimized concerning efficiency and overall design.





Chapter 5

Evaluation and Results

This chapter signifies the culmination of the investigation, unveiling a thorough eval-

uation of the proposed anonymization techniques. The evaluation commences with a

qualitative assessment of the visual outcomes for both the anonymization technique and

the de-anonymization model. Subsequently, a quantitative assessment is conducted from

both privacy and utility perspectives, separately. Finally, the overall effectiveness of each

anonymization is measured, taking into account the privacy-utility trade-off.

5.1 Visual Results

The visual depictions presented in Figures 5.1 and 5.2 offer a representation of how dis-

tinct regulatory parameters influence privacy protection levels in the context of each

anonymization approach applied to two subjects, a man and a woman. The choice of

these parameters aligns with the AUC metric of the face recognition verification mode

(presented in Section 2.3.2), with each image conveying anonymization outcomes across

five equidistant intervals ranging from 0.5 to 1.0, with an interval size of 0.1. Starting

from level 1, which corresponds to transformations producing an AUC within the range

[0.9, 1.0], and culminating in level 5, representing an AUC value within [0.5, 0.6], these

images provide a gradual insight into the impact of varying parameters. Note that these

five levels constitute a subset of the 35 anonymization degrees detailed in Table 4.2 and

were chosen for illustrative purposes.

In both figures, a gradual decrease in the AUC values is observed as moving from left

to right, signifying an increase in privacy protection. The baseline image is included in the

first column as a reference for comparative analysis, representing the 3D to 2D projection

109
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(A) CentroidVoxel.

(B) UniformNoise.

(C) Tapering.

(D) Merge2Faces.

(E) PMP.

(F) SmoothKNN.

FIGURE 5.1: Visual results of the anonymization techniques across five levels of privacy
protection for subject id 003.
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(A) CentroidVoxel.

(B) UniformNoise.

(C) Tapering.

(D) Merge2Faces.

(E) PMP.

(F) SmoothKNN.

FIGURE 5.2: Visual results of the anonymization techniques across five levels of privacy
protection for subject id 192.
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of the non-anonymized point cloud data for each subject. From the second to the last

column, the images illustrate the projections of anonymized inner facial structures over-

laid onto the outer facial features of the subject. This integration enhances the contextual

comprehension of the anonymization process, as already explained. Additionally, the in-

corporation of additional techniques aimed at refining blending was deliberately avoided,

ensuring the preservation of raw outcomes. This decision facilitates a deeper grasp of the

authentic effects of anonymization on the original data, thereby offering better insights

into the mechanisms at play.

5.2 Qualitative Evaluation

5.2.1 Anonymization Techniques

CentroidVoxel The CentroidVoxel anonymization method shares similarities with the 2D

pixelization technique, resulting in a mosaic-like pattern of large, circular pixels. Once

characterized by distinct and expressive features, facial details are transformed into a

composition of coarse and oversized pixel clusters. These clusters replace the finer nu-

ances of the face, simplifying features like eyes, nose, and mouth into arrangements of

circular blocks. The edges defining facial contours exhibit noticeable irregularity, and the

transitions between different facial regions lack the smoothness in the original depiction.

While still recognizable, the colors display a diminished gradient and less nuanced shad-

ing, further contributing to the image’s anonymized appearance.

UniformNoise The UniformNoise anonymization technique materializes as a scattered

arrangement of random pixels that merge and overlay with the underlying facial features.

The introduction of noise has resulted in a granular texture that partially obscures the

subtleties of the face. In terms of color, the noise-infused image retains the original color

palette while introducing subtle variations in pixel values. These variations are most

evident in areas with gradual color transitions, where the noise generates a delicate dotted

effect. Although the overall color accuracy is maintained, the tonal gradients experience a

gentle disruption, contributing further to the image’s anonymized appearance. However,

some visual issues emerge as the noise increases, causing the points to extend beyond the

facial region, as depicted in Figure 5.3.
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FIGURE 5.3: UniformNoise artifacts.

Tapering The Tapering technique, owing to its manipulation of facial geometry, yields

a modified layout of facial features that diverges from their original recognizable form.

The warping process introduces fluidity to the contours of the face, causing edges to

curve and features to adopt new positions. This curvilinear influence gently softens facial

boundaries, veering away from the structured appearance of the unaltered image. The ex-

tent of warping varies across distinct facial regions, with specific areas undergoing more

pronounced adjustments than others (the eye region, for example). Regarding color and

texture, the warped image retains the original color palette and the reshaping of facial ge-

ometry leads to changes in the arrangement of skin textures and tones. While not radical,

these shifts contribute to altered visual perception, enhancing the overall anonymization

impact. Nonetheless, the technique introduces artifacts linked to facial size, progressively

compressing the face and resulting in significant visual alterations, as depicted in Fig-

ure 5.4.

FIGURE 5.4: Tapering artifacts.

Merge2Faces The Merge2Faces technique amalgamates elements from two distinct facial

sources. This method involves a deliberate merging of features and attributes, culminat-

ing in a composite appearance that challenges easy recognition and identification. The

eyes, nose, mouth, and other distinguishing elements undergo a purposeful fusion, yield-

ing an entirely novel facial configuration that gradually loses any immediate resemblance
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to the original visage. The resulting facial structure blends traits evenly, yet certain areas

highlight more distinct characteristics from one source than the other. In terms of color

and texture, the images often retain a unified color palette that slowly diverges from the

original.

However, there may be instances of ghosting effects due to less than optimal align-

ment, particularly noticeable around the eye regions. This misalignment might also in-

troduce white patches. Furthermore, the resulting anonymized image could experience a

decrease in size compared to the original due to the prevalence of hair during face seg-

mentation, causing it to diminish. All these artifacts are represented in Figure 5.5.

FIGURE 5.5: Merge2Faces artifacts.

PMP The PMP anonymization method shares similarities with the noise approach when

introducing slight alterations to the data. However, it exhibits a distinct appearance when

these values are higher. Facial features such as the nose, mouth, and eyes gradually be-

come obscured and lose finer details. The resultant effect resembles a coarse sculpture

of the face with diminishing levels of detail. In terms of color, the technique modifies

the palette, leading to regions with distinct colors that might not harmonize well with

the facial region. For lower regulating parameter values, the anonymization introduces

noticeable artifacts. Only a few regions contain points, particularly those that mark the

transition between facial features. Moreover, with higher parameter values, the technique

can yield peculiar colors or regions with sparse point density, as depicted in Figure 5.6.

FIGURE 5.6: PMP artifacts.
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SmoothKNN The SmoothKNN technique bears a resemblance to the blurring 2D

anonymization approach, producing a comparable effect of gentle pixel diffusion across

the facial contours. By applying the blurring effect, pixel values across facial contours

gradually diffuse, resulting in a softened and slightly obscured depiction that eradicates

features like the eyes, nose, mouth, and others. Particularly around facial features, the

blurring is most prominent, subtly tempering fine textures and edges. Consequently,

these edges become less sharp, creating a more diffused boundary between distinct fa-

cial areas. Concerning color and tonal qualities, the blurred image adheres to the original

color palette but presents a unified and harmonious appearance due to the softened edges.

This aspect fosters cohesiveness among facial regions while reducing distinct color pat-

terns or tonal variations that could facilitate recognition. However, as modification levels

increase, the technique leads to a reduction in the size of the face. Additionally, it might

introduce an augmentation in the visibility of pre-existing white patches, as illustrated in

Figure 5.7.

FIGURE 5.7: SmoothKNN artifacts.

5.2.1.1 Discussion

The visual outcomes of the anonymization techniques underscore their effectiveness in

safeguarding the individual’s identity, particularly at higher privacy levels, as evidenced

in Figures 5.1 and 5.2. However, the degree of identity protection varies among the tech-

niques, which also influences their realism.

For example, the Merge2Faces approach begins to conceal the subject’s identity at lower

privacy levels. At this stage, it becomes challenging for humans to discern the facial at-

tributes of the anonymized subject due to the blending of facial features. Furthermore,

this merging process yields convincing results that nearly give the impression of an ab-

sence of any anonymization.
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Conversely, the Tapering technique exhibits the least authenticity. The pronounced de-

formations it introduces severely alter the facial shape, proportions, and attributes, lead-

ing to a less genuine appearance. Nonetheless, these deformations significantly hinder

the human ability to identify the subject, even at lower privacy levels.

The CentroidVoxel method appears to have less impact, with subject id 192 showing a

relative resemblance to the original image even at high levels, especially for the male sub-

ject in Figures 5.1 and 5.2. A similar but less intense effect is observed with SmoothKNN.

However, the latter approach offers a smoother transition between the facial attributes,

resulting in a more aesthetically pleasing appearance, even though it may not achieve a

high degree of realism.

In contrast, the UniformNoise and PMP techniques yield similar outcomes at lower

anonymization levels, but their distinctions become more pronounced as the intensity

increases. Notably, the PMP approach appears to better conceal the subject’s identity

while imparting a more visually pleasing aesthetic.

5.2.2 De-Anonymization

The de-anonymization is an integral component of the reversibility recognition, for which

an autoencoder has been designed and trained. This attacker paradigm operates by first

reversing the anonymization results. The obtained de-anonymized set will form the probe

set, containing the faces used to perform the recognition task against the gallery set, con-

taining the 200 subjects with a known identity for both verification and identification face

recognition modes.

The autoencoder results regarding the de-anonymization of the six techniques indi-

cate that the model’s performance is unsatisfactory, as the generated images closely re-

semble the anonymized ones, showing minimal reversibility for all the algorithms. Fig-

ure 5.8 showcases the outcomes of the trained model for subject id 047 during testing. The

top row displays the original image, the middle row displays the anonymized version,

and the bottom row presents the de-anonymization results achieved by the Autoencoder.

These outcomes serve as indicative results for the remaining 19 identities that constitute

the entire testing set.

While the model’s inability to reverse anonymization techniques may be partially at-

tributed to the strengths of the anonymization methods, it is plausible to assume that
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FIGURE 5.8: Results of de-anonymization achieved by the trained Autoencoder.

the primary issue lies in the insufficient training data. Hence, due to the substantial simi-

larity between the anonymized and de-anonymized images, it is unnecessary to proceed

with further quantitative evaluation, as the results would likely yield similar metrics for

both sets of images.

Consequently, despite the reversibility recognition potential, this approach could not be

seamlessly integrated into the evaluation framework of this study. As an alternative to

addressing data scarcity, one could consider employing specialized approaches tailored

for each anonymization technique, such as deblurring or denoising. These methods have

shown success in reversing simple anonymizations and might offer more effective solu-

tions in this particular scenario. Therefore, the subsequent quantitative evaluation relies

solely on the naı̈ve recognition paradigm.

5.3 Quantitative Evaluation

5.3.1 Privacy Metrics

The privacy metrics considered encompass a total of two metrics regarding the two face

recognition modes of verification and identification under closed-set. In the context of

verification assessment, the employed metric was the AUC value, whereas for identifica-

tion under closed-set analysis, the metric used was the Rank-1 Identification Rate, repre-

sented as a vertical cross-section within the CMC plot. As a reminder, both metrics are
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elaborated upon in Section 4.2.3, encompassing both their description and the rationale

behind their computation.

To ensure reader clarity and avoid overwhelming numerous results, the six

anonymizations along their anonymization degrees are synthesized into a unified graph

for each mode. Nonetheless, the comprehensive evaluation of each anonymization tech-

nique is presented in Appendix B.1, encompassing ROC curves (used to compute the

AUC) and CMC curves (used to compute the Rank-1 Identification Rate).

The AUC lies within the range of [0, 1]. An AUC score of 1 indicates minimal privacy

protection, while a score of 0.5 signifies maximum protection. An AUC score of 1 em-

phasizes that when confronted with an identity claim of an anonymized subject, the face

recognition model can consistently and accurately accept or reject that claim by establish-

ing a one-to-one comparison between the anonymized subject and the claimed identity.

Conversely, an AUC of 0.5 indicates that the face recognition model performs no better

than a random classifier when accepting or rejecting the claim, indicating a loss of its

discernibility ability. Values below 0.5 are often indicative of incorrect model configura-

tions or instances where the model mistakenly identifies the negative class as positive.

Therefore, attention is primarily directed toward the interval [0.5, 1].

The Rank-1 Identification Rate lies within the range of [0, 1]. A Rank-1 Identification

Rate score of 1 indicates minimal privacy protection, while a score of 0 indicates maxi-

mum protection. A Rank-1 value of 1 signifies that when determining the identity of an

anonymized subject, the face recognition model correctly identifies the subject by return-

ing their identity label as the best match from the pool of 200 identities, achieved through

a one-to-many comparison. In simpler terms, the model always ranks the real identity

of the anonymized subject as the top match, resulting in an identification rate of 100%.

Conversely, a Rank-1 score of 0 means that the face recognition model consistently fails to

identify the true identity of the anonymized subject as the best match from the pool of 200

identities. In simpler terms, the model never ranks the real identity of the anonymized

subject as the top match, resulting in an identification rate of 0%.

5.3.1.1 Comparative Analysis

The privacy metrics reveal that the baseline set, represented by the projection of the sub-

jects’ 3D point clouds into 2D space without any anonymization, achieves a Rank-1 Iden-

tification Rate of 0.995 and an AUC of 1 (dotted lines in Appendix B.1). These values
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indicate that a face recognition model exhibits nearly perfect recognition ability in both

verification and identification tasks. Thus, it underscores that the quality of the iPhone-

PLYv3 dataset does not compromise the research, despite the constraints outlined in Sec-

tion 4.1.5. It also highlights the effectiveness of the 3D to 2D projection in preserving the

facial traits of the subjects.

In line with the baseline set results, the reference values for both metrics used for com-

parison with the anonymization outcomes are approximately 1. Figure 5.9 illustrates the

two privacy metrics for the anonymization techniques across the considered 35 privacy

levels, ranging from 1 to 35, representing varying levels of anonymization intensity. This

figure confirms that all the techniques are capable of providing a broad spectrum of pri-

vacy protection levels, spanning from minimal to complete. This is evident from the range

of values across the maximum variation amplitude of both the AUC and Rank-1 Identifi-

cation Rate, which span from their lower limits of 0.5 and 0, respectively, to 1. Such a con-

tinuous spectrum of privacy protection is achieved by adjusting the corresponding con-

trol parameter to achieve the desired level of protection. However, the control parameter

does not uniformly affect the protection levels, as most of the curves exhibit non-linearity

in both face recognition modes. An exception is the Merge2Faces technique, which demon-

strates some linearity within specific ranges of anonymization levels, for AUC between

levels 12 to 32 and for Rank-1 between levels 12 to 18. Besides, the steepness of the curves

can impact how easily parameter fine-tuning achieves the desired level of privacy. Par-

ticularly for methods with steeper gradients, slight variations in the parameter can lead

to significant differences in privacy protection levels. For instance, the control parameter

of the SmoothKNN and PMP techniques has a substantial impact on privacy protection

levels, as evidenced by the steep slopes of the curves between anonymization degrees

ranging from 5 to 15 in both plots.

Comparing both plots of Figure 5.9 reveals that the Rank-1 Identification Rate is more

responsive to changes in the anonymization degree than the AUC. This is confirmed

by the fact that, at a given anonymization degree, the high level of privacy protection

achieved in face recognition verification (as represented by Rank-1) does not correspond

to the same high level of identification (as represented by the AUC). For example, while

the SmoothKNN and PMP techniques reach a maximum Rank-1 protection value at an

anonymization degree near 20, at the same degree, the AUC still has a score of approxi-

mately 0.6. This pattern is consistent among the other techniques as well. This conclusion
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suggests that ensuring protection in verification also implies protection in identification.

The CentroidVoxel technique presents a unique profile, indicating minimal impact over

a broader range of lower anonymization degrees up to 15. Additionally, the proximity of

the SmoothKNN and PMP techniques in both plots confirms that these two techniques

have a similar influence on privacy protection levels across anonymization degrees. For

the PMP algorithm, the first two anonymization degrees are considered outliers and have

been excluded from the evaluation, as they do not provide relevant information. At both

of these levels, the privacy protection outliers are characterized by an AUC and Rank-1

close to 0.5 and 0, respectively. This behavior can be attributed to the presence of a sig-

nificant number of holes caused by low a values, an intrinsic characteristic of a-shapes

explained in the qualitative evaluation and illustrated in Figure 5.6. The remaining three

anonymization techniques, namely Merge2Faces, UniformNoise, and Tapering, have a sim-

ilar effect on the AUC, while in the Rank-1, Tapering offers slightly more protection at

lower anonymization degrees, as its curve is below the other two.

(A) AUC. (B) Rank-1 Identification Rate.

FIGURE 5.9: Privacy metrics comparison for the anonymization techniques.

5.3.2 Utility Metrics

The utility metrics considered encompass a total of four metrics, each targeting differ-

ent aspects of utility. These metrics complement each other in assessing the overall

anonymized data utility, as explained in Section 4.2.3. Specifically, the four metrics and

their respective evaluative utility components are as follows:
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• Delta Detection: This metric evaluates the anonymization’s ability to maintain a

human-like facial appearance. It quantifies this ability by measuring the impact

on the accuracy of a face detection algorithm in identifying faces;

• Landmark Distance: This metric assesses the anonymization’s capability to preserve

the overall facial structure of the original face. It does so by calculating the average

distance between five landmarks on both the anonymized and non-anonymized in-

stances;

• SSIM: It measures the image quality of the anonymized face in comparison to the

original image. It provides a correlation with human perception, indicating how

closely the anonymized image resembles the original;

• FID: It also evaluates the image quality of the anonymized face compared to the

original image. However, it focuses on the distinction between the feature vector

distributions for the anonymized and non-anonymized image sets.

The Delta Detection score falls within the range of [0, 1]. A Delta Detection score of 1

signifies that the anonymization effectively preserves the human-like appearance of the

face, allowing a face detector to correctly identify all anonymized faces among the 200

subjects. This value is attainable because the face detector achieves an accuracy of 1 on

the baseline set, which corresponds to the non-anonymized 3D to 2D projected images1.

Conversely, a Delta Detection score of 0 indicates that the anonymization entirely disrupts

the human-like appearance of the face, rendering the face detector incapable of detecting

any faces.

The Landmark Distance metric ranges from 0 to 40. A Landmark Distance score of 0

signifies that the facial structure of the face is fully preserved, indicating that the locations

of the eyes, nose, and mouth remain exactly the same as in the original. Conversely, higher

values indicate that the configuration of the facial structure for the anonymized subjects

deviates from the original, which has a detrimental effect on the face detector’s ability to

accurately determine the locations of these five landmarks. The value 40 represents the

penalty imposed whenever the face detector fails to identify any of the five landmarks.

The SSIM metric ranges from 0 to 1. An SSIM score of 1 suggests that the image

quality of the anonymized image closely resembles that of the non-anonymized image,

1This accuracy level serves as the upper quality bound that an anonymization cannot surpass.
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indicating a perfect similarity, while an SSIM score of 0 implies no similarity between the

two images.

The FID metric falls within the range of [0, •]. Lower FID scores have been demon-

strated to be associated with higher-quality images. An FID score of 0 signifies that the

sets of anonymized and non-anonymized images are identical in terms of their feature

distributions, indicating the highest level of image quality.

Following the same approach as with the privacy metrics, all anonymization vari-

ants have been synthesized into four distinct graphs representing the four selected utility

metrics. These graphs offer a simplified view of the comprehensive results presented in

Appendix B.2, which includes additional details. In the Appendix graphs, for each level

of anonymization, mean and standard deviation values of the Intersection over Union

(IoU) corresponding to detection accuracy for Delta Detection are provided, violin plots

illustrate SSIM and Landmark Distance, and the plain FID scores are presented. In con-

trast, the four synthesized graphs that follow focus solely on depicting detection accuracy,

median Landmark Distance, and average SSIM, while the FID scores remain consistent.

In addition, the inference time will also be discussed, although it is not a utility metric

for evaluating the anonymization results; rather, it pertains to the performance of the

anonymization process itself.

5.3.2.1 Comparative Analysis

The utility metrics rely on the baseline set as a reference for computing utility values.

This baseline set has been demonstrated to possess a high quality that the anonymization

techniques strive to maintain. Figure 5.10 presents the outcomes of the four utility metrics

across 35 privacy levels, spanning from 1 to 35, which correspond to different degrees of

anonymization impact. Similar to the privacy metrics, the first two anonymization outlier

levels of the PMP technique are excluded from consideration. The subsequent analysis

addresses each utility metric individually and is supported by the data presented in this

figure.

Delta Detection The Merge2Faces and SmoothKNN techniques consistently demonstrate

high face detection accuracy across all levels of anonymization. The former maintains an

accuracy of no less than 0.995, while the latter stays above 0.975. This indicates that even
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(A) Delta Detection. (B) Landmark Distance.

(C) SSIM. (D) FID.

FIGURE 5.10: Utility metrics comparison for the anonymization techniques.

though these techniques significantly alter the facial features of the subjects in the origi-

nal image, the anonymized results still closely resemble human faces, allowing them to be

recognized as such. In contrast, the CentroidVoxel, UniformNoise, and Tapering techniques

start to introduce noticeable changes in the appearance of the results, making them less

recognizable as faces, starting from an anonymization level of 20. This continues until

they reach a point where no faces can be identified among the 200 subjects. However,

starting from level 25, the UniformNoise technique has a less severe impact on facial de-

tection, as indicated by the milder slope of its curve. For example, while the other two

techniques fail to detect any faces at level 30, the noise-based approach can identify 18.5%

of the faces (37 subjects) at level 25. The PMP technique exhibits an earlier decline in

accuracy, starting at level 8 and decreasing at a slower rate than the three previous tech-

niques. By level 25, it performs better in facial detection than the sampling-based and

deformation-based techniques, and it even surpasses the noise-based technique at level

29. Ultimately, at level 35, the PMP achieves a relatively higher face detection accuracy
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of 12.5% (25 subjects) compared to the other three techniques. However, the difference

between the other two top-performing methods is still significant.

Landmark Distance The Merge2Faces and SmoothKNN techniques result in a minimal

alteration to the facial structure of the subjects, with a median distance of the five land-

marks not exceeding 5. Both techniques exhibit an approximately linear trend with slight

variations in the values. In contrast, the Tapering technique consistently shows the highest

median distance between the facial landmarks in comparison to all the techniques, likely

due to its inherent nature of deforming the facial structure. The PMP technique introduces

the second-largest difference. While it doesn’t directly modify the facial dimensions as the

warping-based method does, the loss of detail and the more uniform appearance of facial

features compromise the detector’s ability to place the landmarks accurately, resulting in

unusual positions such as eyes on the forehead and exaggerated mouth inclinations. The

remaining two anonymization techniques, CentroidVoxel and UniformNoise, exhibit a simi-

lar exponential increase, comparable to Merge2Faces and SmoothKNN, until an anonymiza-

tion degree of 10.

SSIM The SmoothKNN technique exhibits a relatively narrow range of variation, start-

ing with a high SSIM value of 0.82 at its maximum and gradually decreasing to 0.71 at

its lowest point. In contrast, the UniformNoise technique displays the widest amplitude,

initiating with an SSIM value close to one and progressively decreasing to less than 0.5

at the most extreme anonymization levels. Both the CentroidVoxel and PMP techniques

follow a similar trajectory, with their SSIM values reaching around 0.65 for anonymiza-

tion degrees greater than 6. The dip registered in the SSIM values of the PMP technique

between levels 13 and 14 are attributed to changes in sorting indices as explained in Sec-

tion 4.3.2. This pattern of fluctuations is consistently observed in all the graphs. As for

the Merge2Faces and Tapering techniques, they exhibit a comparable range of image qual-

ity variation. However, the Tapering technique consistently yields lower SSIM values,

primarily due to the shrinkage of facial dimensions it introduces.

FID The Tapering technique consistently exhibits higher values than all other methods

across various privacy levels. Unexpectedly, this anonymization does not peak at higher

levels; instead, it demonstrates a decrement from levels beyond 20, ultimately reaching

values lower than those at lower anonymization degrees. This distinct behavior lacks a
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clear explanation. As the curves of the remaining anonymizations might be challenging

to discern because of the value discrepancy, referring to Appendix B.2 can enhance in-

sights by providing the values of the metric individually. Concerning the CentroidVoxel

and UniformNoise, they exhibit an exponential increase, with disparities in the FID am-

plitude, ranging respectively between [0.0016, 0.5] and [0.002497, 1.5]. Unlike expected,

Merge2Faces demonstrates a decline from 1.53 to 1.02 in the mid-range anonymization lev-

els, followed by an increase up to a value of 3.47. This metric’s unexpected behavior lacks

a clear rationale. In fact, the presence of white patches in the middle and facial contours,

which result from poor alignment and segmentation, could theoretically increase the met-

ric for intermediate anonymization values, the opposite occurs. PMP experiences a swift

incline in FID from 0.23 to 3.20. This incline is marked by a slight slope increase, which

is preceded by a disruption attributed to ordering indices. Following this, it maintains

an almost constant behavior until reaching 0.62. Lastly, SmoothKNN displays an increase

from 0.15 to 3.20, characterized by a cubic trend that gradually intensifies as parameter

values increase.

Another crucial aspect to consider when evaluating anonymization techniques is their

execution time. Although not classified as a utility metric for the anonymization out-

comes, execution time offers a more comprehensive gauge of anonymization’s overall

practicality. This metric serves as a criterion for distinguishing techniques suited for real-

time demands from those requiring offline processing. In Figure 5.11, a comparison shows

the mean execution times for processing one face from the 200, considering all parameters.

The range of mean execution times spans significantly across all anonymization methods,

ranging from 0.00004 to 0.6751 seconds. However, it’s worth noting that relying solely on

the mean value can be misleading, as some anonymization techniques exhibit substantial

standard deviations, such as SmoothKNN and CentroidVoxel. This highlights the fact that

the chosen regulating parameter profoundly influences the latency period.

To provide more insightful findings, Figure 5.12 comprehensively illustrates the execu-

tion times across all anonymization techniques in relation to the anonymization degree,

related to the regulating parameter. It’s important to note that the y-scale, corresponding

to the execution time, differs for each anonymization. The execution time of CentroidVoxel

exhibits a descending trend as the regulating parameter increases. This technique initi-

ates at approximately 0.045 seconds and progressively diminishes to under 0.005 second.

Consequently, as the level of anonymization intensifies, the execution time experiences
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FIGURE 5.11: Mean and standard deviation execution time for all the anonymization
techniques.

a notable exponential reduction. This feature favors the technique for scenarios where

rapid inference precedes utility considerations. Conversely, the latency of SmoothKNN

linearly increases, with a pronounced surge at an anonymization degree of 33, corre-

sponding to nearly 300 neighbors. Starting at around 0.18 seconds, it escalates to over

0.85 seconds. In contrast, the PMP technique displays a relatively linear progression in

execution time, spanning from 0.11 seconds to over 0.14 seconds. Its amplitude of vari-

ation is smaller, merely 0.03 seconds, compared to the preceding techniques at 0.04 and

0.7 seconds. Meanwhile, Merge2Faces showcases a marginally ascending execution time

from 0.66 until reaching 0.69, after which it remains relatively stable around 0.67, causing

an amplitude shift of merely 0.026 seconds in total. On the other hand, both UniformNoise

and Tapering exhibit execution times largely unaffected by the regulating parameter, both

maintaining a relatively stable duration with only occasional random fluctuations.

5.3.3 Privacy-Utility Trade-Off

The privacy protection and data utility achieved by an anonymization technique are de-

lineated by an adversarial relationship. This analysis of the relationship, commonly re-

ferred to as the privacy-utility trade-off, is paramount as it is the primary criterion for

measuring the overall anonymization effectiveness. The trade-off between privacy and

utility is explored through three visualizations: a pair plot, a correlation matrix, and a
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(A) CentroidVoxel. (B) UniformNoise. (C) Tapering.

(D) Merge2Faces. (E) PMP. (F) SmoothKNN.

FIGURE 5.12: Execution time of each anonymization technique.

scatter plot that illustrates the connection between mean privacy and utility, as elaborated

upon later.

5.3.3.1 Comparative Analysis

Figures 5.13 and 5.14 present a pair plot encompassing all privacy and utility variables,

along with the corresponding correlation matrix. These visual representations comple-

ment each other and are jointly analyzed to extract valuable insights. Before delving into

the analysis of the privacy-utility trade-off, it is beneficial to examine the relationships

between privacy and utility metrics independently.

Privacy Metrics Both privacy metrics, AUC and Rank-1 Identification Rate, display a

strong positive correlation of 0.93 (as shown in Figure 5.14), suggesting a robust align-

ment between privacy protection levels in both verification and closed-set identification

scenarios. Additionally, Figure 5.13 highlights that the CentroidVoxel exhibits a unique

characteristic compared to the others, demonstrating a linear relationship between both

metrics, while the remaining techniques share a similar trait, nearly all falling within a

curve with negative concavity.

Utility Metrics The FID metric demonstrates a moderate negative correlation of �0.51

with SSIM, which is somewhat lower than expected. Thus, while both metrics evaluate
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the quality of images, they shed light on different elements associated with “quality”,

which in essence is a subjective concept (despite the metrics being objective numerical

measurements). This emphasizes the significance of the careful selection of the evalua-

tion metrics based on the specific requirements of the use cases. Moreover, FID shows

a weak correlation of 0.28 with Landmark Distance and virtually no correlation of �0.095

with Delta Detection, indicating the absence of a linear relationship between these metrics.

In contrast, SSIM exhibits a moderate correlation of �0.67 with Landmark Distance and

a positive correlation of 0.54 with Delta Detection. This suggests that decreases in image

quality correspond to disruptions in facial structure and reduced facial detection accu-

racy, as anticipated. The strong negative correlation of �0.93 between Delta Detection and

Landmark Distance is logical, as the inability to detect faces and landmarks is inherently in-

terconnected. Consequently, these variables tend to approach their extreme values jointly.

Privacy-Utility Metrics Both the AUC and Rank-1 privacy metrics exhibit a similar re-

lationship with the four utility metrics, as illustrated in Figure 5.13. The overall arrange-

ment of the curves remains consistent, with the same order and relative positions main-

tained throughout. However, Rank-1 tends to show a more pronounced decline in com-

parison to AUC when evaluating the same values of utility metrics. For example, when

examining the UniformNoise technique against Landmark Distance values in the range of

5 to 10, Rank-1 values hover around 0, while AUC reaches values as high as 0.6 1. Addi-

tionally, Rank-1 curves often feature steeper inclines, indicating regions of abrupt changes

across utility metrics and anonymization degrees. Another conclusion pertains to the ad-

versarial relationship between privacy and utility metrics, as demonstrated in Figure 5.13

where data utility diminishes as privacy protection is enhanced. This relationship is fur-

ther substantiated by the presence of moderate to strong correlations between the two

metric categories, with absolute correlation values falling within the range of 0.51 to 0.72,

as illustrated in Figure 5.9. The FID metric deviates from this trend, as it does not exhibit

a significant correlation with the two privacy metrics.

Acknowledging the intrinsic adversarial nature of privacy and utility metrics, the cen-

tral goal and challenge of any anonymization technique lies in attaining an equilibrium

between these elements. To capture and convey information about the effectiveness of

1Still, do note the different range variation between the metrics of [0, 1], [0.5, 1].
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FIGURE 5.13: Pair plot for the privacy-utility trade-off.

FIGURE 5.14: Correlation matrix for the privacy-utility trade-off.
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anonymization while emphasizing the trade-off, a novel visualization approach is pro-

posed. This approach amalgamates the mean privacy and utility into a unified plot by

consolidating the two privacy metrics through the use of the mean. As the AUC metric

range was considered between 0.5 and 1, it was rescaled to fit within the [0, 1] interval.

The Rank-1 identification rate already resides within this interval. The perceptibility of

the visualization was optimized by inverting the values and setting a mean privacy score

of 1, signifying maximum protection, while a score of 0 denoting minimum protection.

Shifting the focus to the utility metrics, the Delta Detection accuracy and SSIM were em-

ployed. Both of these metrics range from 0 to 1, wherein higher values correspond to

heightened utility. In this context, the Landmark Distance metric was omitted due to its

high correlation with Delta Detection, and due to the absence of a straightforward con-

version mechanism that would enable its comparison on a uniform scale, the same goes

for the FID. The conceptual underpinning of mean privacy and mean utility is defined as

follows:

µprivacy = 1� norm(AUC) + Rank1
2

(5.1)

µutility =
DeltaDetection + SSIM

2
(5.2)

Figure 5.15 provides a visual representation of the overall performance demonstrated by

the anonymization techniques concerning privacy and utility standpoints. The x-axis de-

notes mean privacy, while the y-axis signifies mean utility, with both variables being cal-

culated according to Equations 5.1 and 5.2. Anonymization configurations that achieve

a favorable balance between privacy and utility are positioned in the upper-right cor-

ner, representing the most satisfactory privacy-utility trade-off. Conversely, points in the

lower-left region indicate instances with the least desirable trade-offs, resulting in both

low privacy and utility. However, due to the inverse relationship between the two vari-

ables, observations lying below the diagonal line y = 1� x are considered atypical. Ad-

ditionally, instances located in the upper region of the plot signify anonymization config-

urations that are more effective in providing privacy protection, while those on the right

are better at preserving data utility.

The least effective technique is the CentroidVoxel, which exhibits a severe compromise

in data utility at the expense of privacy protection. For instance, when targeting a mean

privacy level surpassing 0.8, the technique results in a mean utility hovering around 0.4.
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FIGURE 5.15: Privacy-utility trade-off for the anonymization techniques, with the pro-
posed mean aggregation solution.

The deficiency in privacy protection is further supported by the qualitative evaluation,

where it appears that a human observer may be able to visually identify the identity of

the anonymized subject even for the higher anonymization degrees.

The trade-off curves of Tapering, UniformNoise, and PMP exhibit a characteristic shape

characterized by a non-linear, concave-down curve. Despite their similar shapes, PMP

yields more robust results compared to the other two, as it is positioned closer to the

upper-right region. Consequently, PMP ranks as the third most suitable option among

the evaluated anonymization techniques. Nonetheless, when considering a mean privacy

level exceeding 0.8, this technique exhibits nearly identical values compared to Uniform-

Noise, with both curves almost superimposed. Specifically, the PMP technique demon-

strates the best ability to preserve the most utility when the privacy protection falls within

the range of approximately 0.1 to 0.4. However, it’s worth noting that typically, more em-

phasis is placed on the heightened privacy component, rendering this status less relevant.

The Tapering is positioned as the worst between the three and it is the second least satisfac-

tory anonymization technique in terms of trade-off results, surpassing the CentroidVoxel.
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Finally, Figure 5.15 also demonstrates that both the Merge2Faces and SmoothKNN tech-

niques excel in achieving a favorable balance between privacy and utility, with the latter

having a slight edge. This is supported by their nearly vertical trade-off lines positioned

on the right side of the plot, where the mean utility exceeds 0.74. This indicates that in-

creasing the intensity of anonymization has minimal impact on the utility of the data.

In particular, by adjusting the regulating parameter configuration for both techniques,

Merge2Faces reaches a coordinate of (0.95, 0.76), while SmoothKNN achieves (0.95, 0.86).

However, the qualitative evaluation suggests that Merge2Faces may offer greater reliabil-

ity in terms of privacy, as it can significantly attenuate or even replace facial traits in an

extreme case. Additionally, the visual appearance of the anonymization is more realis-

tic, and the anonymization is less perceptible, almost unnoticed, in comparison with the

SmoothKNN.

5.3.3.2 Summary

The trade-off results are closely tied to the metrics used to assess both privacy and utility.

In this regard, the pair plot and correlation matrix in Figures 5.13 and 5.14 provided initial

insights into the privacy-utility trade-off for the anonymization techniques and facilitated

the selection of the most relevant metrics for characterization. As a result, the proposed

mean performance solution was implemented to consolidate all the key evaluation com-

ponents relating to both privacy and utility within a single graph. This approach enabled

not only the ranking of anonymization techniques based on their effectiveness and the

highlighting of their strengths and weaknesses but also the determination of the appropri-

ate control parameter for an effective privacy-utility trade-off. When combined with the

qualitative evaluation, this evaluation procedure identified Merge2Faces and SmoothKNN

as the most effective techniques, potentially suitable for a wide variety of use cases, owing

to the comprehensive nature of the proposed evaluation.



Chapter 6

Conclusion

The goal of this thesis was to create 3D face anonymization methods for point clouds and

perform a thorough assessment of their effectiveness. Considering the scarcity of existing

research in the domain of 3D face anonymization in point clouds, this study holds signif-

icant relevance, particularly in response to increasing privacy concerns and the growing

collection of 3D facial data, driven in part by developments in autonomous vehicles.

In response to this challenge, this research demonstrates the feasibility of extending

concepts from the well-established realm of 2D face anonymization into the 3D domain.

This conceptual shift led to the creation of six novel anonymization techniques. These

techniques are rooted in 2D solutions but have been adapted to the higher-dimensional

space by leveraging algorithms from various fields. In addition, these techniques have

never been extended to the context of anonymization, and this thesis innovates in this

regard. The development of such solutions benefited from the iPhonePLYv3, a custom

dataset created specifically for this research. This dataset includes nearly twice the num-

ber of identities compared to some existing datasets. The data collection process, con-

ducted without the need for specialized expertise or expensive equipment, yields a rele-

vant methodology that can be replicated by the scientific community.

The effectiveness of the anonymization techniques was assessed using a set of privacy

and utility metrics on the iPhonePLYv3 dataset. Both types of metrics were integrated

into a unified evaluation methodology that was proposed and implemented to address

the challenge of moderating the adversarial relationship between privacy and utility. This

methodology can be adapted for evaluating the specific requirements of other use cases

and can offer guidance on configuring anonymization parameters to achieve an effective

privacy-utility trade-off. In conjunction with the qualitative evaluation, the evaluation
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methodology identified Merge2Faces and SmoothKNN as the most effective techniques dis-

playing a positive compromise between privacy protection and data utility. Furthermore,

this status demonstrates the potential for developing other solutions based on the same

principles employed by these algorithms in morphing and smoothing.

6.1 Practical Implications

The findings derived from the experiments conducted in this thesis on 3D face

anonymization suggest that several anonymization techniques hold promise for applica-

tion within practical contexts that demand robust privacy protection mechanisms. In the

realm of autonomous driving applications, the integration of the proposed anonymization

techniques is likely to become indispensable with the advent of higher-resolution LiDAR

sensor technology. This integration would ensure the preservation of individuals’ privacy.

However, additional investigation is warranted to determine the extent to which it main-

tains the integrity of perception tasks executed on the collected data. Moreover, various

other fields that leverage 3D mapping technology, including aerial inspection and general

robotics, stand to benefit from these solutions. Particularly in the latter, where LiDAR

plays a pivotal role as a perception component, these techniques could play a crucial role

in enhancing privacy without compromising functionality.

6.2 Limitations and Future Research

While the present study has provided valuable insights into the realm of 3D face

anonymization within point clouds, it is imperative to acknowledge certain limitations

that have influenced the scope and findings of this research.

The efficacy of the proposed anonymization techniques was evaluated on a custom-

made 3D facial dataset. Consequently, the results are limited to the dataset size and char-

acteristics. For a more robust assessment, the extent to which these techniques generalize

across diverse datasets with varying demographics, facial expressions, and environmen-

tal conditions, warrants further investigation. Besides, the evaluation methodology ex-

erts significant influence over the outcomes. Eliminating the need for 2D projection and

directly measuring the privacy and utility of anonymization within the 3D space holds
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promise, mitigating biases and errors originating from the projection. Comparing the re-

sults of such evaluation to those presented in this work is crucial for a comprehensive

assessment of the efficacy of anonymization techniques.

These two primary limitations can serve as a starting point for future research. How-

ever, other significant aspects can also be explored. For instance, the utilization of deep

learning and generative models may open up avenues for more sophisticated anonymiza-

tion techniques. Moreover, exploring the potential adaptation of the techniques initially

designed for anonymizing 3D facial data within point clouds to anonymize various other

objects or scenes has the prospect of broadening the practical applicability of these meth-

ods.





Appendix A

iPhonePLYv3

A.1 Folder Structure

The directory tree representation of the dataset is depicted in Figure A.1. This directory

includes the information of 201 subjects, identified by an id code from id 000 to id 200,

based on the scanning order of each.

The iPhonePLYv3 dataset directory encompasses two main branches: PointClouds and

Images, containing 3D and 2D related information, respectively. The PointClouds branch

has two sub-branches: Raw, containing raw 3D face models of each subject with separate

files for geometry data, material color, textures, and surface properties, and MeshLab, con-

taining point clouds obtained from the processed 3D facial models. On the other hand,

the Images branch has a single sub-branch called Gallery, which contains high-resolution

frontal images of each subject. Each file in both branches corresponds to a specific subject

and is named according to its id number. The dataset comprises 1 005 samples, with five

data files per subject. Specifically, three files store the raw 3D model, one file contains the

point cloud data, and the other file stores the corresponding 2D image. The entire dataset

requires approximately 2.1 GB of storage space.

The dataset employs different file formats for storing the 3D face models and point

clouds. The 3D face models are saved in the OBJ, MTL, and JPG formats. The OBJ format

represents the surface geometry of the 3D model using a polygon mesh, while the MTL

file type contains descriptions of surface appearance properties to be applied to the facets.

Additionally, the textures used in the model are stored in JPG files. An example of the

texture file for a subject within the dataset can be seen in Figure A.2.
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iPhonePLYv3

PointClouds/ ..............................3D information of the

subjects.

Raw/

id 000/

id 000.jpg

id 000.mtl

id 000.obj

id 001/
...

...

MeshLab/

id 000.ply

id 001.ply
...

Images/

Gallery/ ............................... 2D information of the

subjects.

id 000.png

id 001.png
...

FIGURE A.1: iPhonePLYv3 directory tree.

The point clouds are stored in the Polygon File Format (PLY) format, a versatile file for-

mat used for describing objects as polygonal models. It supports various properties for

storage, such as color, transparency, surface normals, texture coordinates, and more.

The 2D face images are stored in the Portable Network Graphic (PNG) file format,

capable of displaying high-quality digital images.
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(A) 3D model. (B) Texture image.

FIGURE A.2: The JPG file contains texture information for loading the raw 3D model
from the OBJ file, along with material data stored in the MTL file.

A.2 Construction Details

The iPhonePLYv3 utilizes the Scaniverse mobile application, incorporating photogram-

metry and leveraging the iPhone 13 Pro LiDAR sensor for enhanced precision. Pho-

togrammetry is a method that reconstructs detailed 3D models of objects, scenes, or land-

scapes using multiple photographs from different angles. By analyzing overlapping im-

ages, the technique applies triangulation1 to derive precise measurements and depth in-

formation, ultimately reconstructing the 3D structure of the subject.

Figure A.3 presents the main steps in creating the iPhonePLYv3, which are further

elaborated in detail later. The image furthest to the left corresponds to a raw 3D face

scan, which is a mesh. The mesh is then registered to a specific location depicted in the

subsequent image. In the following image, mesh components are illustrated, with points

represented in yellow, edges depicted in gray, and the facets with the corresponding color.

Subsequently, the resulting mapping of texture colors to the mesh’s vertices and edges

is depicted in the next image with the facets removed. Finally, the vertices are filtered,

originating the final point cloud.

FIGURE A.3: Illustration of some steps of the employed processing for the dataset con-
struction.

1A fundamental principle of the technique that identifies common points on the overlap images and
calculates their relative positions through intersecting converging lines in space.
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The iPhonePLYv3 construction methodology was initiated with the Scaniverse mobile

application. First, the NEW SCAN button was pressed, followed by selecting Small Object

and setting the range to 0.3 M. The iPhone was moved slowly and smoothly around the

subject’s face, covering different angles from the right to the left side. The processing

mode was set to Detail to capture surface textures accurately. The obtained 3D model was

exported by selecting Share > Export Model and choosing the OBJ format, which resulted

in a zip file containing JPG, MTL, and OBJ files with mesh information. The files were

stored within the Raw sub-branch.

In MeshLab, the 3D face model was opened as a new project. The Draw XYZ axis in

world coordinates and Points utilities were used to display the XYZ axis coordinates and

the mesh’s vertices. The mesh was manually aligned using the Manipulator, and trans-

formations were applied and saved using Filters > Normals, Curvatures, and Orientation

> Matrix: Freeze Current Matrix. RGB color was assigned to each vertex with Filters >

Color Creation and Processing > Transfer Color: Texture to Vertex. All faces and edges were

deleted using Filters > Selection > Delete ALL Faces, and the altered mesh was saved as a

PLY file through File > Export Mesh As..., selecting the file name and directory for saving.

The result was a point cloud obtained from the original mesh, stored within the MeshLab

sub-branch.

A.3 iPhonePLYv1 and iPhonePLYv2

The iPhonePLYv3 dataset represents the third iteration of its kind, resulting from a se-

quence of iterative developments guided by strategic decisions. Figure A.4 illustrates the

raw point clouds obtained from the three dataset iterations.

The initial version, named iPhonePLYv1, was captured using the Polycam application.

However, due to export limitations regarding the payment of fees, the 3D model dataset

was restricted to the GLTF file format, resulting in low point density, no color information,

and overall low data quality.

Seeking higher-quality and budget-friendly options led to the discovery of Scaniverse

for the second iteration, iPhonePLYv2. For its creation, the 3D face models were directly

exported as PLY files, bypassing the MeshLab stage of the current version. Although a

more straightforward approach, many subjects’ point clouds exhibited noise and visual

blurring, despite preprocessing attempts to alleviate these effects. Thus, while efforts
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(A) iPhonePLYv1.

(B) iPhonePLYv2.

(C) iPhonePLYv3.

FIGURE A.4: Raw point clouds taken from the three dataset iterations.

were made to preserve color and enhance point density, the results still lacked the desired

quality.

In the latest version, iPhonePLYv3, these limitations were addressed by incorporating

color, achieving commendable point density, albeit lower than version two, and signifi-

cantly enhancing overall quality. The OBJ file exportation, and the additional processing

steps were crucial to the satisfactory outcome.

This iterative development process demonstrates progressive dataset refinement, with

each version improving critical aspects such as point density, color representation, and

overall data quality.





Appendix B

Anonymization Results

B.1 Privacy Metrics

(A) ROC. (B) CMC.

FIGURE B.1: Privacy metrics for CentroidVoxel.
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(A) ROC. (B) CMC.

FIGURE B.2: Privacy metrics for UniformNoise.

(A) ROC. (B) CMC.

FIGURE B.3: Privacy metrics for Tapering.

(A) ROC. (B) CMC.

FIGURE B.4: Privacy metrics for Merge2Faces.
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(A) ROC. (B) CMC.

FIGURE B.5: Privacy metrics for PMP.

(A) ROC. (B) CMC.

FIGURE B.6: Privacy metrics for SmoothKNN.
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B.2 Utility Metrics

(A) Delta Detection and IoU. (B) Landmark Distance.

(C) SSIM. (D) FID.

FIGURE B.7: Utility metrics for CentroidVoxel anonymization.
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(A) Delta Detection and IoU. (B) Landmark Distance.

(C) SSIM. (D) FID.

FIGURE B.8: Utility metrics for UniformNoise anonymization.
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(A) Delta Detection and IoU. (B) Landmark Distance.

(C) SSIM. (D) FID.

FIGURE B.9: Utility metrics for Tapering anonymization.
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(A) Delta Detection and IoU. (B) Landmark Distance.

(C) SSIM. (D) FID.

FIGURE B.10: Utility metrics for Merge2Faces anonymization.
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(A) Delta Detection and IoU. (B) Landmark Distance.

(C) SSIM. (D) FID.

FIGURE B.11: Utility metrics for PMP anonymization.
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(A) Delta Detection and IoU. (B) Landmark Distance.

(C) SSIM. (D) FID.

FIGURE B.12: Utility metrics for SmoothKNN anonymization.
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[167] H. Hukkelås, R. Mester, and F. Lindseth, “DeepPrivacy: A generative adversarial

network for face anonymization,” in International symposium on visual computing.

Springer, 2019, pp. 565–578.

[168] J. Lin, Y. Li, and G. Yang, “FPGAN: Face de-identification method with generative

adversarial networks for social robots,” Neural Networks, vol. 133, pp. 132–147, 2021.

[169] P. Nousi, S. Papadopoulos, A. Tefas, and I. Pitas, “Deep autoencoders for attribute

preserving face de-identification,” Signal Processing: Image Communication, vol. 81,

p. 115699, 2020.

[170] Y. Qiu, Z. Niu, Q. Tian, and B. Song, “Privacy preserving facial image processing

method using variational autoencoder,” in International Conference on Big Data and

Security. Springer, 2021, pp. 3–17.

[171] P. Rustici, “Anonymization of 3D face models for GDPR compliant outsourcing to

3rd party companies,” 2020, Delft University of Technology.

[172] J. M. Singh and R. Ramachandra, “3D face morphing attacks: Generation, vulnera-

bility and detection,” arXiv:2201.03454, 2022.

[173] N. Schimke, M. Kuehler, and J. Hale, “Preserving privacy in structural neuroim-

ages,” in Data and Applications Security and Privacy XXV: 25th Annual IFIP WG

11.3 Conference, DBSec 2011, Richmond, VA, USA, July 11-13, 2011. Proceedings 25.

Springer, 2011, pp. 301–308.

[174] Y. U. Jeong, S. Yoo, Y.-H. Kim, and W. H. Shim, “De-identification of facial features

in magnetic resonance images: Software development using deep learning technol-

ogy,” J Med Internet Res, vol. 22, no. 12, p. e22739, Dec 2020.

[175] P. Churi, D. A. Pawar, and A. Moreno Guerrero, “A comprehensive survey on data

utility and privacy: Taking indian healthcare system as a potential case study,” In-

ventions, vol. 6, pp. 1–30, 06 2021.

[176] L. Rakhmawati, Wirawan, and Suwadi, “Image privacy protection techniques: A

survey,” in TENCON 2018 - 2018 IEEE Region 10 Conference, 2018, pp. 0076–0080.

[177] Z. Kuang, H. Liu, J. Yu, A. Tian, L. Wang, J. Fan, and N. Babaguchi, “Effective de-

identification generative adversarial network for face anonymization,” in Proceed-

ings of the 29th ACM International Conference on Multimedia, 2021, pp. 3182–3191.



170
PRIVACY-PRESERVING FACE DETECTION: A COMPREHENSIVE ANALYSIS OF FACE

ANONYMIZATION TECHNIQUES

[178] P. Korshunov, A. Melle, J.-L. Dugelay, and T. Ebrahimi, “Framework for objective

evaluation of privacy filters,” in Applications of Digital Image Processing XXXVI, vol.

8856. SPIE, 2013, pp. 265–276.

[179] P. Terhörst, M. Huber, N. Damer, F. Kirchbuchner, and A. Kuijper, “Unsuper-

vised enhancement of soft-biometric privacy with negative face recognition,”

arXiv:2002.09181, 2020.

[180] J. Todt, S. Hanisch, and T. Strufe, “Fantômas: Evaluating reversibility of
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no. 3, 1957, pp. 183–198.

[185] L. Zhai, Q. Guo, X. Xie, L. Ma, Y. E. Wang, and Y. Liu, “A3GAN: Attribute-aware

anonymization networks for face de-identification,” in Proceedings of the 30th ACM

International Conference on Multimedia, ser. MM ’22. New York, NY, USA: Associa-

tion for Computing Machinery, 2022, p. 5303–5313.

[186] M. Sharif, F. Naz, Y. Mussarat, M. Shahid, and A. Rehman, “Face recognition: A

survey,” Journal of Engineering Science and Technology Review, vol. 10, pp. 166–177, 06

2017.

[187] W. T. Hrinivich, T. Wang, and C. Wang, “Interpretable and explainable machine

learning models in oncology,” Frontiers in Oncology, vol. 13, p. 1184428, 2023.



BIBLIOGRAPHY 171

[188] G. P. Kusuma and C.-S. Chua, “Pca-based image recombination for multimodal 2D+

3D face recognition,” Image and Vision Computing, vol. 29, no. 5, pp. 306–316, 2011.

[189] J. Li, J. Zhou, Y. Xiong, X. Chen, and C. Chakrabarti, “An adjustable farthest point

sampling method for approximately-sorted point cloud data,” in 2022 IEEE Work-

shop on Signal Processing Systems (SiPS), 2022, pp. 1–6.

[190] X.-F. Han, J. S. Jin, M.-J. Wang, W. Jiang, L. Gao, and L. Xiao, “A review of algorithms

for filtering the 3d point cloud,” Signal Processing: Image Communication, vol. 57, pp.

103–112, 2017.

[191] A. H. Barr, “Global and local deformations of solid primitives,” in Proceedings of

the 11th Annual Conference on Computer Graphics and Interactive Techniques, ser. SIG-

GRAPH ’84. New York, NY, USA: Association for Computing Machinery, 1984, p.

21–30.

[192] M. A. Fischler and R. C. Bolles, “Random sample consensus: A paradigm for model

fitting with applications to image analysis and automated cartography,” in Read-

ings in Computer Vision, M. A. Fischler and O. Firschein, Eds. San Francisco (CA):

Morgan Kaufmann, 1987, pp. 726–740.

[193] R. B. Rusu, N. Blodow, and M. Beetz, “Fast point feature histograms (FPFH) for 3D

registration,” in 2009 IEEE international conference on robotics and automation. IEEE,

2009, pp. 3212–3217.

[194] Y. Chen and G. Medioni, “Object modelling by registration of multiple range im-

ages,” Image and vision computing, vol. 10, no. 3, pp. 145–155, 1992.

[195] S. Rusinkiewicz and M. Levoy, “Efficient variants of the ICP algorithm,” in Proceed-

ings third international conference on 3-D digital imaging and modeling. IEEE, 2001, pp.

145–152.

[196] N. Akkiraju, H. Edelsbrunner, M. Facello, P. Fu, E. Mucke, and C. Varela, “Alpha

shapes: Definition and software,” in Proceedings of the 1st international computational

geometry software workshop, vol. 63, no. 66, 1995.
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