

Privacy Concerns

in Android Systems

Samuel Alberto Magalhães Fernandes
Mestrado em Segurança Informática
Departamento de Ciência de Computadores
2023

Orientador
Rolando da Silva Martins
Professor Auxiliar
Faculdade de Ciências da Universidade do Porto

Coorientador
João Miguel Maia Soares de Resende
Professor Auxiliar
Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa

Acknowledgements

I would like to express my heartfelt gratitude to my supervisor, Professor Rolando Mar-

tins, for the opportunity to work on this project and for the profound learning experience

it has represented in my academic journey.

I would also like to extend my thanks to my thesis co-supervisor, Professor João Re-

sende, for the invaluable teachings, suggestions, and guidance that consistently steered

the development of this dissertation work from inception to conclusion.

I wish to convey my appreciation to my fellow students for their motivation and the

shared experiences that often served as the driving force propelling me forward.

Lastly, but by no means less significant, I want to offer my deepest thanks to my fam-

ily and friends who patiently endured my absences, never faltering in their unwavering

support, without which, undoubtedly, the successful completion of this project would not

have been attainable.

Resumo

Os smartphones são uma presença ubı́qua nas nossas vidas e constituem uma valiosa

ajuda nas mais variadas tarefas quotidianas, tais como escolher um restaurante, encon-

trar uma farmácia ou programar uma viagem de lazer. Para oferecer esta vasta panóplia

de serviços, estes dispositivos recolhem, de forma contı́nua, dados pessoais sobre o seu

utilizador.

Embora o objetivo primário do acesso aos dados pessoais do utilizador seja justifi-

cado com o pressuposto de estes serem necessários para o normal funcionamento das

aplicações, estes dados podem também ser utilizados para estabelecer perfis dos uti-

lizadores, permitindo inferir as suas preferências de consumo, crenças religiosas, filiações

polı́ticas e até a sua orientação sexual.

Os dados pessoais dos utilizadores recolhidos pelas aplicações instaladas nos seus

dispositivos podem, também, ser instrumentalizados no sentido de manipular o compor-

tamento dos utilizadores, impactando a sua vida pessoal e, em alguns casos, o próprio

funcionamento da sociedade.

Entre os dados do utilizador, recolhidos pelos smartphones, a localização encontra-

se entre os mais sensı́veis. Para além disso, estes dados são recolhidos e utilizados por

um conjunto alargado de aplicações cujo funcionamento assenta em serviços baseados na

localização do utilizador.

O acesso, por vezes em tempo real, à localização do utilizador representa um risco

de privacidade e de segurança, sendo evidente uma crescente preocupação por parte

dos utilizadores com o controlo do acesso, por parte de terceiros, a este tipo de dados

sensı́veis. Estas preocupações têm sido ampliadas com o aumento da cobertura mediática

das questões em torno da violação da privacidade e da segurança dos utilizadores, no

contexto da utilização de smartphones.

Considerando a posição hegemónica que os dispositivos Android têm no mercado de

smartphones, propomos uma solução que procura oferecer aos utilizadores destes dispos-

itivos a possibilidade de regular, casuisticamente, o acesso aos seus dados de localização

pelas aplicações instaladas nos seus equipamentos.

A nossa solução permite que o utilizador possa optar por fornecer a sua verdadeira

localização ou, em vez disso, uma localização fictı́cia. A localização fictı́cia, escolhida de

iii

forma casuı́stica pelo utilizador, pode ser um ponto estático ou um trajeto, a pé ou de

automóvel, ao longo de uma rota simulada, permitindo que as aplicações mantenham o

seu normal funcionamento, sem comprometer a privacidade do utilizador.

Abstract

Smartphones are an ubiquitous presence in our lives and constitute valuable aids in var-

ious daily tasks, such as choosing a restaurant, finding a pharmacy, or planning a leisure

trip. To offer this extensive range of services, these devices continuously collect personal

data about the device user.

Although the primary objective of accessing the user’s personal data is justified by the

necessity for the normal operation of applications, these data can also be used to establish

user profiles, allowing inferences about their consumption preferences, religious beliefs,

political affiliations, and even their sexual orientation.

The personal data of users collected by applications installed on their devices can also

be instrumentalized to manipulate user behaviour, impacting their personal lives and, in

some cases, the functioning of society itself.

Location data is one of the most sensitive types of user data collected by smartphones,

and it is utilized by a wide range of applications that rely on location-based services for their

functionality.

Access, sometimes in real-time, to the user’s location represents a risk to privacy and

security. There is a growing concern among users about controlling third-party access

to this type of sensitive data. These concerns have been magnified by increased media

coverage of issues surrounding the violation of privacy and user security in the context

of smartphone use.

Considering the dominant position that Android devices have in the smartphone mar-

ket, we propose a solution that seeks to offer users of these devices the possibility to se-

lectively regulate access to their location data by the applications installed on their equip-

ment.

Our solution allows the user to choose to provide their actual location or, instead,

a fictitious location. The fictitious location chosen randomly by the user can be a static

point or a route, either on foot or by car, along a simulated path, allowing applications to

maintain their normal functionality without compromising user privacy.

Contents

Acknowledgements i

Resumo ii

Abstract iv

Contents v

List of Tables viii

List of Figures ix

Acronyms x

1 Introduction 1
1.1 Motivation . 5
1.2 Proposed Solution . 6

1.2.1 Objectives . 6
1.2.2 Features . 7

1.3 Contributions . 7
1.4 Outline . 8

2 Background 10
2.1 Android Platform . 10

2.1.1 Rooting . 12
2.1.2 The Permission Model . 13
2.1.3 Project Building . 14

2.2 The Java Reflection API . 15
2.3 Xposed Framework . 16
2.4 EdXposed Framework . 16
2.5 Magisk . 16

2.5.1 Riru Module . 17
2.6 Programming Language Lua . 18

2.6.1 Embedding Lua in Android Applications 18
2.6.2 Luaj - A Compact Lua VM Written in Java 19

v

CONTENTS vi

3 Related Work 20
3.1 Research Methodology . 20
3.2 Similar Solutions . 21
3.3 Theoretical Approaches . 33
3.4 Summary . 36

4 System Design 37
4.1 Threat Model . 37
4.2 Architecture . 39

4.2.1 MockLocation Application . 40
4.2.2 XPrivacyLua Module . 41
4.2.3 EdXposed Framework . 42

4.3 Summary . 44

5 Implementation 45
5.1 Initial Setup . 45

5.1.1 Rooting the Device . 45
5.1.2 The adb Tool . 46
5.1.3 The Backup Process . 46
5.1.4 Magisk - Systemless Root . 47
5.1.5 Installation of the EdXposed Framework 48
5.1.6 Installing the XPrivacyLua Module in EdXposed 49

5.2 Developing the MockLocation Application 51
5.3 Changing the XPrivacyLua Module . 54

5.3.1 Changes to the Script location createfromparcel.lua 54
5.3.2 Adding a Background Service . 55
5.3.3 Managing Simulated Location Data with Threads 57

5.3.3.1 Handling Fake Static Location 57
5.3.3.2 Handling Dynamic Fake Location 57

5.4 Summary . 60

6 Evaluation 61
6.1 Google Maps . 62
6.2 Facebook . 65
6.3 WhatsApp . 67
6.4 Google Chrome . 70
6.5 Uber . 71
6.6 Reflection on the Results . 72

7 Conclusion 74
7.1 Research Summary . 75
7.2 Current Limitations . 76
7.3 Future Work . 76
7.4 Conclusions . 77

A Changes made to the XprivacyLua module code 79
A.1 Changes to the script location createfromparcel.lua 79
A.2 Java class for the background service . 82

CONTENTS vii

A.3 Java class for the threads managing static fake location data 87
A.4 Java class for the threads managing dynamic fake location data 90

Bibliography 104

List of Tables

3.1 Similar implementations comparison . 36

viii

List of Figures

2.1 Architecture of the Android platform . 11
2.2 Percentage of users who rooted their Android devices in China in 2014 . . . 13
2.3 Compilation process of an Android application 15

3.1 Overview of fine-grained permissions framework 21
3.2 LP-Guardian’s architecture and interactions of its components 23
3.3 TaintDroid architecture within Android . 24
3.4 Execution flow of LP-Doctor when a location-aware app launches 25
3.5 AppFence system architecture . 27
3.6 Koi architecture . 28
3.7 The Framework of the MoveWithMe System 30
3.8 The architecture of PmP . 31
3.9 Sobek - System overview . 32

4.1 System architecture and interactions of its components 39
4.2 Zygote Clone . 43

5.1 Home screen of the Magisk App . 48
5.2 Riru- Core and Riru - EdXposed installed in Magisk 50
5.3 EdXposed Manager . 50
5.4 XPrivacyLua module . 51
5.5 MockLocation main activity . 52
5.6 MockLocation - Working modes . 53
5.7 Operation of the background service added to the XPrivacyLua module . . 56
5.8 Execution flow of threads managing static fake location data 58
5.9 Execution flow of threads managing dynamic fake location data 59

6.1 Most downloaded travel apps worldwide in 2022 63
6.2 Testing the Google Maps application with a fictional location 64
6.3 Testing the Google Maps services with a fictional location 65
6.4 Providing fake location data to Facebook using our solution 67
6.5 Providing fake location data to WhatsApp using our solution 68
6.6 Testing WhatsApp with simulated routes . 69
6.7 Providing fake location data to Uber using our solution 72

ix

Acronyms

adb Android Debug Bridge 46, 47

AOT Ahead-of-time 11

API Application Programming Interface 8, 10, 12– 14, 16, 27, 29, 38– 40, 42, 49, 52,

54, 58– 60

APK Android Package 14, 16, 36, 43

ART Android Runtime 11, 12, 16, 49

DAC Discretionary Access Controls 16

DEX Dalvik Executable 42

ELF Executable and Linkable Format 11

GDPR General Data Protection Regulation 2

GMS Google Mobile Services 17

GPS Global Positioning System 1, 2, 33, 34, 41

GSG Google SafetyNet Attestation API 17

HAL Hardware Abstraction Layer 11, 12

HIV Human Immunodeficiency Virus 2

IL Intermediate Language 42

IP Internet Protocol 2, 70

J2ME Java 2 Platform, Micro Edition 19

x

LIST OF FIGURES xi

JAR Java Archive 43

JIT Just-In-Time 11, 12

LBS Location-based Service 3, 5, 28, 34, 35, 63, 65

MAC Mandatory Access Controls 16

OS Operating System 3, 10, 16, 26, 45, 46

OTA Over-The-Air 17, 47, 48

PmP Protect my Privacy 30, 31

POI Points of Interest 5

ROM Read-Only Memory 22, 23, 36, 47

SDK Software Development Kit 12, 46

SMS Short Message Service 12

TWRP Team Win Recovery Project 47

VM Virtual Machine 43

VPN Virtual Private Network 70

YAHFA Yet Another Hooking Framework for Android 16, 49

Chapter 1

Introduction

The technological advancement we have witnessed in recent years has made it possible to

create devices with high computing power, combined with their compact size, enabling

anyone to carry them anywhere. This has allowed smartphones to become ubiquitous in

the daily lives of the vast majority of people, regardless of their geographic location. It

is estimated that the number of smartphone users worldwide will reach 7.49 billion by

2025 [1].

The increasing usage of smartphones has been driven by the emergence of a myriad

of applications (also known as apps 1) and business models, giving mobile devices 2 a

central role in the lives of their users.

The possibility of having everything in a single device, coupled with the widespread

availability of wireless networks anywhere (e.g., homes, hotels, gyms, shopping malls,

restaurants, and universities), has led smartphone users to become dependent on these

devices [2][3].

The evolution of wireless communication technology has allowed for a wide range of

affordable data services to emerge. In parallel with this reality, all smartphones nowadays

come equipped with Global Positioning System (GPS), which has been a determining fac-

tor in the emergence of a new generation of location-based applications, revolutionising the

entire ecosystem surrounding the use of mobile devices. Alongside all the advantages,

this transformation raises concerns about user privacy, particularly regarding the poten-

tial misuse of location data [4].

1Throughout this thesis, we use the terms apps and applications interchangeably.
2Throughout this thesis, we use the terms smartphones and mobile devices interchangeably.

1

1. INTRODUCTION 2

The use of GPS-equipped smartphones enables users to directly share their location

through various social media platforms such as Facebook, Twitter, and Instagram. In addi-

tion to this aspect, many of the applications installed on users devices require permission

to access location data.

Access to location data on a large scale brings benefits to various stakeholders: the

industry can create more appealing applications with location-based recommendations

for users; governments can use this data to improve traffic mobility conditions and reduce

air pollution; academia can utilise location data to gain deeper insights into fundamental

societal issues, such as epidemiology [5].

Companies like Google, Apple, and Facebook, just to mention a few, collect, aggre-

gate, share, and use personal information of their users. The accumulation of user data

allows them to obtain almost unlimited knowledge about individuals, posing a risk to

their privacy [6].

The mobile application development and data analysis industry have increasingly

shaped the lives of users and their privacy. User profiling is often done, partially based

on passive digital footprints created from data collected without users knowledge [7]. In

addition to this aspect, applications rely on accessing sensitive user data (e.g., accounts,

passwords, contacts, financial information, medical records, GPS, camera, and micro-

phone) [8]. This data collection is different from active digital footprints created based on

personal data provided by users consciously and voluntarily [9].

Article 4 of the General Data Protection Regulation (GDPR) defines personal data as

information relating to an identified or identifiable natural person, and this information

includes a wide range of data, such as full names, Internet Protocol (IP) addresses, ad-

dresses, device identifiers, and their location.

Regarding personal data, a problem arises in that many applications are not transpar-

ent about how personal information is used [10]. This problem is compounded by the fact

that many applications request and share personal user information without providing

any justification for collecting this data or how it is shared. An example of this type of

event occurred in 2018 when the dating application Grindr, targeted at the gay commu-

nity, shared Human Immunodeficiency Virus (HIV) status and user location with third

parties [11].

The privacy policy establishes the legal framework for an application or organisation

1. INTRODUCTION 3

regarding the collection and sharing of data about a user. Despite its importance, the pri-

vacy policy is often perceived by users as being too lengthy to read [12] and too complex

to understand [13].

Android is an Operating System (OS) designed for smartphones, tablets, and other

types of personal devices. It was initially developed by the company Android Inc. in the

earl’s 2000s, and later acquired by Google in 2005 with the aim of developing a platform

and OS for use in mobile devices [14]. The Android OS has dominated the smartphone

market for over a decade, achieving a market share of 87.8% [15].

Given the high market share of the Android OS, there is a large number of applications

available for users of devices that use this OS. The latest numbers indicate that there are

2.59 million applications available in the Google Play Store [16]. These numbers show that

people recognise value in using the Android OS [17]. However, both the popular press

and research have shown that the use of these applications poses serious security and

privacy risks to their users [18] [19].

The privacy risks associated with location are of particular importance, as 74% of users

use Location-based Service (LBS) [20]. According to a study conducted by Pew Research

Center 1, approximately one-fifth of smartphone users (out of 2,254 participants) disabled

location access features on their phones, expressing concerns about others or organisa-

tions accessing their location information [21].

In Android, this problem has been addressed by providing users with information

about sensitive data access by applications. This information is provided when the ap-

plication is installed, when the application first attempts to access sensitive data, and in

some cases, whenever the application needs to access the user’s sensitive data. Despite

efforts by the owners of the Android platform, research in this domain has shown that

this approach is not effective because the majority of users do not pay proper attention to

the interfaces used to manage permissions [22] [23] [24].

Considering the aforementioned difficulties in controlling application access to loca-

tion data, we propose a solution that allows the user to intuitively, dynamically, and in-

teractively choose which installed applications can access their precise location.

1Pew Research Center is a non-partisan think tank based in the United States. Established in 2004, the
Pew Research Center conducts surveys and studies on a wide range of social, political, and economic issues,
providing valuable insights and data-driven analysis to inform public discourse and policy-making.

1. INTRODUCTION 4

Our solution would entail implementing a mechanism to safeguard Android device

users privacy by regulating installed applications access to their actual location. This fea-

ture would provide users with an improved granular control over location data access for

each individual application, while simultaneously allowing them to provide fake location

data to selected applications.

To offer the user the previously described features, our solution would encompass the

following characteristics:

Enhanced control over location data access: The user would have a permission con-

figuration interface for all installed applications on their device. This menu would

allow users to view and manage location permissions for all installed applications

in one central location.

Clear and user-friendly interface: The permission settings menu would have a

clear and user-friendly interface, making it easy for users to understand and navi-

gate.

Dynamic management of real location data access: Users would have the ability

to dynamically manage true location data access for each application. They could

grant or revoke access to their true location at any time, depending on their trust

level or specific needs.

Generation of user-selectable simulated location data: The user can easily and in-

tuitively generate fake location data at any time. This data can be static locations

(choosing fixed points on the map) or dynamic (creating driving or walking simu-

lated routes).

Root access to the device: Acquiring administrative privileges on an Android de-

vice allows its users to have complete access to the system. This privileged access

can be used for customization purposes, as well as to access features that are not

available to regular users. Although this procedure is often discouraged by manu-

facturers, who do not assume warranty for rooted devices, on the other hand, there

are applications designed to enhance Android security that only work with root ac-

cess to the device (e.g., Titanium Backup, AdAway, AFWall, etc.).

1. INTRODUCTION 5

1.1 Motivation

In the context of smartphones, location is considered to be the most sensitive data col-

lected about the user [25]. Several studies conducted show that knowledge of the places

visited (also known as Points of Interest (POI)) by a user allows for inferring various at-

tributes of their profile [26] [27], as well as their social relationships [28] [29]. In addition

to this aspect, if an attacker has the ability to infer or track the device’s location, they can

easily stalk its user [30].

In addition to the privacy risks associated with accessing location data related to the

user’s most visited places, the study referenced in [31] revealed that half of the Android

applications studied (e.g. Evernote and MySpace) expose location data by sending it to

advertising servers without users informed consent.

Privacy risks can also be heightened by the possibility of a malicious actor compro-

mising a LBS application server [32]. An example of this threat was the discovery, in

2013, by a black hat hacker known as Peace, of information about over 167 million LinkedIn

users [33], including location data. In 2016, Peace also accessed the data of over 360 mil-

lion MySpace users [34].

The criticality of location data becomes even more evident as accessing it allows for

sensitive information to be inferred about users, such as social relationships, health, reli-

gion, data related to nightlife and sexual life, among other aspects [35].

Another aspect that holds particular importance in this context is the fact that users

demonstrate significant concerns regarding the privacy of their location data. This con-

cern is clearly demonstrated in a study conducted by ISACA1 [36] in which 90% of the

study participants expressed concern about their location data being disclosed for adver-

tising purposes, to strangers, friends, employers, and others. In the same study, only 6%

of the participants showed no concerns about their location data, while the remaining 4%

were uncertain about whether their location data is shared with third parties during the

use of LBS.

1ISACA (Information Systems Audit and Control Association) is an international non-profit organisation
that specialises in information security and governance.

1. INTRODUCTION 6

1.2 Proposed Solution

The work carried out within the framework of this thesis aims to devise a rooted solution

that provides Android mobile device users with precise control over how various applica-

tions access their true location data. This management should not compromise the normal

functioning of the device or the installed applications.

It is essential that users can, at any time, grant or revoke access to their actual loca-

tion for any application present on their device, while also having the option to choose

fictitious location data to be provided to the applications instead of their real location.

This process should be carried out without the need to revoke previously granted loca-

tion access permissions to applications, allowing them to continue functioning normally,

receiving fictitious location data chosen according to the user’s preferences at any given

time.

1.2.1 Objectives

The main objectives we aim to achieve with the proposed solution are as follows:

Literature review: The literature review aims to identify the current state of the art

regarding research conducted in the context of the problem at hand. This aspect also

provides valuable insights into the pros and cons of various approaches, helping

to propose a more comprehensive solution considering the multiple aspects of the

problem.

Solution design: The conceptualisation of the solution plays a crucial role as it pro-

vides a holistic view of the requirements necessary for implementation and how the

various components will interact with each other.

Implementation: The practical translation of the solution design should allow for

a proof of concept of the proposed architecture, providing a solution capable of ad-

dressing our problem.

Security and performance analysis: To assess the performance of our solution, it

becomes necessary to test its ability to control application access to real location

data by providing them with fictitious location data chosen by the user. These

tests should be conducted with applications that utilise device location data and

are widely popular among users. In addition to these aspects, it is also important to

1. INTRODUCTION 7

evaluate the impact of our solution on the functioning of the selected applications

receiving fictitious location data, as well as its performance, particularly with regard

to battery consumption.

1.2.2 Features

Our proposal presents the following functionalities:

Flexibility: The user should be able to choose, at any time, from the set of installed

applications on their device, which ones will have access to their real location and

which ones will be provided with a false location. In addition to being able to choose

the applications to which fictitious location data will be provided, the user can also

change the type of data at any time, enhancing the flexibility for customising ficti-

tious location data.

Customizable: For the applications that will receive fake location data, users should

be able to choose from the following options:

1. Static location: The user should be able to define static location points as their

location. This can be done in two ways: by selecting a point on the map (man-

ually placing a pin on the map) or by pressing a button to set their current

location as a static point (even if the user moves to another location, their loca-

tion will remain at the point where they pressed the button for this option).

2. Simulated routes: By opting for this mode of operation, the user should have

the ability to create fictional routes that simulate car or pedestrian movements.

1.3 Contributions

With this work, we aim to improve the current state of the art by making the following

contributions:

Literature review: The literature review allowed us to study various approaches to

the problem identified in subsection 1.1 and understand the strengths and weak-

nesses of each solution.

Development of a functional prototype for Android devices: Based on the knowl-

edge acquired through the literature review and related work, we have developed a

1. INTRODUCTION 8

functional prototype that enables the concealment of the user’s true location and fa-

cilitates the capability to present a false location exclusively to selected applications,

as determined by the user.

A rooted solution: Considering the advancements in rooting methods, obtaining

root access on an Android device has become an easy and secure process [37]. This

enables users to take full advantage of their devices, such as performing complete

backups, removing bloatware [38], running paid apps for free [39], running apps

on external memory, modifying user interfaces, running background services, over-

clocking hardware, and installing custom operating systems for receiving the latest

updates [37].

Enhanced privacy and confidentiality of location data: Our implementation allows

users to protect their location data from applications installed on their device by en-

abling them to define fictional location data of their choice at any time. Our solution

offers privacy protection tailored to individual applications, with the degree of pro-

tection commensurate with the specific threat posed and the level of location detail

required by each application.

Practical deployment and usage: Our solution offers a practical deployment and

user experience, ensuring independent protection for each app without requiring

any modifications to the existing applications and minimising user interaction. This

innovative approach effectively safeguards the apps while maintaining a seamless

user experience.

1.4 Outline

This thesis is structured into the following chapters: Chapter 2 presents the fundamental

concepts necessary to address the issue under analysis. We begin by describing the essen-

tial components of the Android platform, followed by a brief explanation of the process of

rooting Android devices and the frameworks, Application Programming Interface (API),

and tools that underpin the implementation of our solution. In Chapter 3, we conduct

a state-of-the-art review of proposed solutions to tackle the issue of user privacy, specif-

ically concerning the control of access to real location data by applications installed on

Android devices. Chapter 4 elaborates on the architecture of our solution, and Chapter 5

1. INTRODUCTION 9

provides a detailed account of the implementation process of our proposal. In Chapter 6,

we present the results of the tests conducted on our solution. Chapter 7 presents sugges-

tions for future work and concludes with some final considerations on the completion of

this dissertation.

Chapter 2

Background

In this chapter, we present some fundamental concepts for approaching the problem at

hand. We begin by describing the core components of the Android platform, with a par-

ticular focus on the various elements that constitute the Android OS. This is followed by

a brief overview of the process of rooting an Android smartphone, the current permission

model in use, and the compilation process of an Android application. Subsequently, we

provide a comprehensive description of the concept of code reflection and the Java Reflection

API.

The Java Reflection API serves as a vital tool in the operation of the EdXposed frame-

work, which is employed in the development of the proposed solution.

To shed light, albeit in a generic manner, on the main components shaping our solu-

tion, we provide a description of the Xposed framework and one of its latest versions, the

EdXposed framework, along with the Magisk tool and its Riru module, which are employed

for device rooting and supporting the operation of the EdXposed framework.

This chapter concludes with a brief account of the process used for executing Lua

scripts in Android applications and the Lua-to-Java interpreter known as LuaJ.

2.1 Android Platform

The Android OS was designed for smartphones, tablets, and other types of personal

devices. It was initially developed by Android Inc. in the early 2000 and later on it was

bought by Google in 2005, which furthered its development as an operating system and

as a platform for mobile devices [14]. This mobile OS, based on Linux, consists of several

layers, as shown in Figure 2.1.

10

2. BACKGROUND 11

FIGURE 2.1: Architecture of the Android platform
Source: Adapted from [40]

The architecture of the Android platform was conceived with a logic of simplifying

component reuse. Services in modular components allow applications to share their

resources among themselves. Android also allows components to be replaced by the

user [40].

The architecture of the Android framework can be seen as a layered system in which

each layer has the following functionalities:

Kernel - It is responsible for providing support and management for essential sys-

tem services such as memory, security, networking, etc.

Hardware Abstraction Layer (HAL) - This layer serves as an interface for commu-

nication between the Android application/framework and the specific hardware

drivers of the device, such as the camera, Bluetooth, etc. The HAL is specific to

each hardware and its implementation varies depending on the vendor.

Android Runtime (ART) - ART was introduced as a new runtime environment in

Android versions later than 5.0. During the application installation process, it uses

a combination of Ahead-of-time (AOT) and Just-In-Time (JIT) compilation tech-

niques. AOT compilation converts Dalvik bytecode into native binaries Executable

2. BACKGROUND 12

and Linkable Format (ELF), while JIT compilation optimises garbage collection and

power consumption, resulting in improved execution performance.

Native libraries - The core system services and various components of Android,

such as ART and HAL, are built using native libraries written in C/C++. There

are different libraries, which provide support in building user interface application

framework, drawing graphics and accessing database.

Application framework - The Android Software Development Kit (SDK) provides

a comprehensive set of tools and API libraries to support the development of An-

droid applications. This framework, known as Android Application Framework, offers

several essential features, including a database for storing data, support for various

audio, video, and image formats, debugging tools, and more.

System applications - Applications are located at the topmost layer of the Android

stack. These can include both native and third-party applications such as web

browsers, email clients, Short Message Service (SMS) messengers, etc., which are

installed by the user.

2.1.1 Rooting

Rooting is a process that grants device users persistent privileged control, commonly

known as root access, over their devices. The most widely accepted method to achieve

this persistent root access involves installing a custom su binary, also referred to as switch

user, super user, or substitute user. This custom binary enables any application on the de-

vice to execute privileged operations as root (as discussed in Section 1.1).

Once the device has been successfully rooted (i.e., with the custom su binary installed),

users gain the ability to bypass restrictions imposed by carriers and hardware manufac-

turers. They can modify or uninstall system applications, and leverage various root appli-

cations that necessitate elevated privileges.

A good example of the use of root solutions is the popular community-built system im-

ages (e.g.,LinegaOS [41]) and root apps (i.e., apps that require root access such as Titanium

Backup [42], Root Explorer [43]) each has over 10 million downloads.

Although useful to device owners, rooting may weaken the security of Android de-

vices. The security of a rooted device relies solely on the device user regulating root access

2. BACKGROUND 13

properly. Yet, the research shows that many users ignore security warnings due to habit-

uation or lack of contextual information [44] [45].

Despite the security issues posed by the rooting process, it is observed that in cer-

tain contexts, the number of rooted devices is significantly high. According to a Google

security report on Android, conducted in 2014, [46], Google Verify Apps detected rooting

apps (i.e., apps that root the devices via privilege-escalation vulnerabilities) installed on

approximately 2.5 M devices, and particularly about 34% of Chinese devices have a root-

ing application installed. Note that the number does not include other rooting methods

(e.g., unlockable bootloader, bootable SDCard, OEM flash utilities). Moreover, Verify Apps

found that there are numerous applications from major Chinese corporations that include

rooting exploits to provide functionality that is unavailable through the official Android

API [47].

In addition to the aspects mentioned earlier, it is important to note that in a survey

conducted by Tencent [48] in 2014, 80% China smartphone user respondents rooted their

smartphones (see Figure 2.2).

FIGURE 2.2: Percentage of users who rooted their Android devices in China in 2014
Source: Adapted from [48]

2.1.2 The Permission Model

Individuals and organisations frequently depend on requested permissions linked to mo-

bile apps, along with official privacy policies, to assess the safety of an app and ascertain

2. BACKGROUND 14

the type of information being collected [17].

At the API level, every app needs to request permissions to access various resources

on the user’s device [49]. App developers are required to declare this set of permissions

in their AndroidManifest.xml file in order to access the corresponding API [50]. In this

manner, every application must specify the functionality and sensitive data it requires

when users attempt to install them. However, it is not evident to the users how the

granted permissions for accessing sensitive data on their devices will be utilised once

these applications are installed [51].

Aware of the limitations of the initially implemented permissions model, Google start-

ing from Android 6.0 Marshmallow, also enabled applications to request permissions

to access sensitive user data at runtime, rather than solely during the installation pro-

cess [52].

Accessing application permissions statically does not enable the user to have a realis-

tic perception of how these permissions impact their privacy. An application can access

sensitive user data that the user would not permit if they were aware of the risks that

specific application poses to their privacy [14]. For instance, a map application may re-

quire access to the user’s location in order to provide real-time directions. However, once

granted access to the location, the application may transmit the user’s location to a re-

mote server, potentially impacting their privacy in various ways [53]. The user remains

unaware of how the map application handles their location information.

Merely presenting the user with a list of required permissions does not adequately

inform them about how granting those privileges can impact their privacy. As a result,

their privacy can be compromised through various means [54].

2.1.3 Project Building

The process of building an Android application is a highly intricate procedure that en-

compasses various tools. Initially, the resource files undergo compilation and are refer-

enced within an R.java file. Subsequently, the Java code is compiled and transformed

into Dalvik bytecode using the dex tool. These files are then assembled into an Android

Package (APK) file (see Figure 2.3), which is subsequently signed with either a debug or

release key. Finally, the application can be installed on a device [55]. Engaging in each of

these steps manually would entail a laborious and time-intensive endeavour.

2. BACKGROUND 15

FIGURE 2.3: Compilation process of an Android application
Source: Adapted from [43]

Taking into consideration the aforementioned, Google has made an effort to sim-

plify the Android application development process as much as possible. This has been

achieved through the creation of tools, such as Android Studio and Gradle plugin, that facil-

itate and streamline developers work.

2.2 The Java Reflection API

Reflection is a prominent aspect of the Java programming language, providing the capabil-

ity for an executing Java program to scrutinise or introspect its own structure and modify

internal program properties. This powerful feature enables a Java class, for instance, to

retrieve and exhibit the names of all its constituent elements [56].

The use of code reflection provides us valuable insights into the class to which an ob-

ject pertains and further provides us with information about the methods within that class

that can be invoked using said object. By leveraging reflection, we gain the ability to dy-

namically invoke methods during runtime, regardless of the access specifier associated

with them [57].

2. BACKGROUND 16

2.3 Xposed Framework

The Xposed framework adheres precisely to its name, serving as a software component

that facilitates the override of generic code with user code to extend or modify functional-

ity. In essence, it exposes the system’s code to the framework, necessitating root privileges,

and grants users the capability to integrate diverse modules that introduce varied or sup-

plementary modifications without modifying any APK [58] [59].

2.4 EdXposed Framework

With the advent of the Android Pie (version 9, SDK 28), Google introduced a series of

modifications aimed at bolstering the security of the OS, including changes to SELinux1

policies. These alterations resulted in the Xposed framework ceasing to function on de-

vices running this and subsequent versions of Android. To overcome this difficulty, the

EdXposed framework emerged as an extended version of the Xposed framework, which is

compatible with all Android versions from 8 to 10.

EdXposed is a Riru 2 module designed to offer an ART hooking framework that main-

tains consistent API with the original Xposed. It boasts key attributes such as being open-

source, stable, minimally invasive, and remarkably fast [60].

Under the hood, EdXposed utilises the SandHook 3 and Yet Another Hooking Frame-

work for Android (YAHFA) 4 [61] projects.

EdXposed framework includes its own companion app called EdXposed Manager, which

allows users to monitor the core’s status and download various Xposed modules [62].

2.5 Magisk

In essence, Magisk is a versatile tool designed to grant root access to Android devices,

resembling conventional utilities like SuperSU, yet its capabilities extend far beyond mere

1SELinux, which stands for Security-Enhanced Linux, is a security mechanism implemented in the Linux
kernel to enforce Mandatory Access Controls (MAC). It provides an additional layer of security beyond the
traditional Discretionary Access Controls (DAC) commonly used in operating systems.

2We will address the operation of the Riru framework in the Section 2.5.1
3SandHook is a hooking framework used in the context of the EdXposed framework, which allows for the

interception and modification of Android application behaviour. SandHook works by intercepting and modi-
fying the behaviour of Android applications at specific hook points, enabling users to customise and enhance
their Android experience through the use of Xposed modules.

4 YAHFA is a hooking framework used in Android app modification. It facilitates the interception and
customization of Android application behaviour, often in conjunction with the EdXposed framework and
Xposed modules.

2. BACKGROUND 17

root access. It is the brainchild of XDA Senior Recognised Developer, topjohnwu, and serves

as a gateway to a wide array of modifications for Android phones.

Alongside providing root access, Magisk offers an abundance of derivative components

known as Magisk modules, which can be installed for various purposes [63].

Magisk offers an innovative systemless approach, distinguishing it from the Xposed

framework, which involves direct modifications to the Android system, thereby trig-

gering Google SafetyNet to disable services like Google Play, Netflix, and Pokemon GO. In

contrast, Magisk adopts a non-intrusive approach by refraining from altering the system

directly.

Magisk has garnered widespread popularity due to its unique systemless approach to

Android modification. Unlike conventional methods that involve direct alterations to

system files, Magisk operates by utilising the boot partition, ensuring that the core system

remains untouched.

When the operating system requests a system file, Magisk seamlessly overlays a vir-

tual file in its place, preserving the original system file intact and unaltered. This is crucial

for users who wish to receive Over-The-Air (OTA) updates and utilise apps that are safe-

guarded by Google SafetyNet, as any tampering with the core system could result in the

loss of these privileges [64].

When installed through Magisk, the EdXposed framework provides the ability to by-

pass SafetyNet, particularly the Google Mobile Services (GMS) and Google SafetyNet

Attestation API (GSG) services.

2.5.1 Riru Module

Developed by Rikka and yujincheng08, Riru is a meticulously designed Magisk module that

offers functionalities similar to Xposed, thereby eliminating the need to install the conven-

tional Xposed Framework. Its implementation involves injection into Zygote, enabling the

execution of codes from various modules within apps or the system server [65].

In its initial implementation, Riru relied on the substitution of a specific system library

known as libmemtrack. This approach was abandoned in favour of utilising a system prop-

erty referred to as the native bridge (ro.dalvik.vm.native.bridge). By leveraging this

property, developers can dynamically load and unload shared libraries according to their

preference, thereby facilitating the injection procedure into the Zygote process.

2. BACKGROUND 18

Riru functions as a gateway, facilitating the integration of other modules with the Zy-

gote process. Consequently, for the incorporation of Riru-compatible modules, they must

be installed through the Magisk app, following the same procedure as any other Magisk

modules. Once successfully installed, Riru modules will be displayed alongside Magisk

modules within the Magisk app.

2.6 Programming Language Lua

The Lua language was created by Roberto Ierusalimschy, Waldemar, and Luiz in 1993.

Originally developed as an in-house language for two specific projects, Lua has now be-

come extensively utilised across various domains that can derive advantages from a adapt-

able, portable, and efficient scripting language. These domains encompass embedded

systems, mobile devices, the Internet of Things, and, naturally, the realm of gaming [66].

Lua combines a straightforward procedural syntax with robust data description con-

structs that rely on associative arrays and extensible semantics. It is a dynamically typed

language, functioning through bytecode interpretation for a register-based virtual ma-

chine, and incorporates automatic memory management featuring incremental garbage

collection.

Taking into account the listed features, the Lua programming language proves excep-

tionally well-suited for configuration, scripting, and rapid prototyping purposes. Fur-

thermore, Lua is freely available as open-source software, distributed under the widely

recognised and permissive MIT license. Users are granted complete freedom to utilise

Lua for any purpose, including commercial endeavours, without incurring any cost [67].

2.6.1 Embedding Lua in Android Applications

Considering the aspects of the Lua language previously mentioned in section 2.6, such

as its speed and runtime performance, it emerges as a compelling solution for executing

scripts in Java-based Android applications.

The extensibility of Lua provides developers with the opportunity to incorporate cus-

tom extensions and native libraries, thus enhancing application functionalities. Addition-

ally, its portability enables development for multiple platforms and code reuse, making it

an ideal scripting language for optimizing performance while consuming fewer resources,

ultimately enhancing the user experience of Android applications.

2. BACKGROUND 19

2.6.2 Luaj - A Compact Lua VM Written in Java

LuaJ is a Lua interpreter written in Java, boasting an incredibly small size – when ob-

fuscated, it amounts to less than 25 KB. This reduction in size stems from its develop-

ment’s objective to overcome certain limitations imposed by Java 2 Platform, Micro Edi-

tion (J2ME)1, particularly the absence of a ClassLoader.

LuaJ stands as a robust virtual machine, augmented by the inclusion of standard li-

braries, totalling 50 KB. Subsequently, a compiler was incorporated, adding an additional

25 KB, thereby enabling the execution of any valid Lua script. To complement these com-

ponents, a debugging library of approximately 25 KB was added, completing the scope of

this project [68].

The latest version of LuaJ, version 2.0, represents a significant rewrite, strategically

leveraging the Java stack instead of a separate Lua stack. Consequently, LuaJ can be utilized

both with and without an actual Lua bytecode interpreter. This approach facilitates the

direct compilation of Lua bytecode into Java bytecode, the conversion of Lua source code

into Java source code, or the interpretation of Lua bytecode.

Flexibility is paramount, allowing seamless adaptation to the needs of the host run-

time environment [68]. Given its characteristics, this interpreter proves to be a viable

solution for executing Lua scripts within Android applications written in Java.

1J2ME is a platform developed by Sun Microsystems (now Oracle Corporation) for developing mobile
and embedded applications using the Java programming language. J2ME was particularly popular for
developing applications for feature phones and other resource-constrained devices.

Chapter 3

Related Work

Among the sensitive data collected about the user by various applications installed on the

device, as well as location-based services, location stands out as the one perceived to have

the greatest impact on users privacy [69].

In this Chapter, we present several solutions that address this issue. We begin by

examining various implementations, aiming to identify the strengths and weaknesses of

each, in order to pinpoint the most relevant aspects that will enable us to approach the

problem more efficiently.

3.1 Research Methodology

In order to analyse similar solutions, we have established a set of keywords based on the

functionalities defined in Section 1.2.2. The set of keywords used in the research was as

follows:

Android

Instrumentation

Sensitive Information

Security

Personal Information

Privacy Enhancement

Permission Manager

Monitoring

Location privacy preservation

Location-based service

The search engine used in the research was Google Scholar, and searches were also

conducted using the Google search engine for complementary information.

20

3. RELATED WORK 21

Taking into account the evolution of the Android platform, only those solutions that

provide added value to our research from a conceptual and practical perspective were

considered. This is the case, even though some of them are no longer feasible for practical

use.

3.2 Similar Solutions

The protection of user location data on Android devices has been a subject extensively

studied by the academic community, particularly in the last decade. This prevailing trend

is evident in the vast literature dedicated to this theme. It is crucial to emphasise that the

solutions presented herein pertain solely to studies with a specific focus on safeguarding

user privacy concerning location data.

As previously stated, users perceive this data as the most compromising to their pri-

vacy when accessed in an abusive or illegitimate manner. With this aspect in mind, this

section presents the solutions deemed most relevant to our research, accompanied by a

concise description of their functioning.

Jeon et al. [70] propose an unrooted solution based on a set of tools referred to as Refine-

Droid, Mr. Hide, and Dr. Android, whose purpose is to enable application developers and

their users to comprehend, assess, and apply detailed permissions on standard Android

applications and devices. The Figure 3.1 provides an overview of this toolset and how its

components interrelate.

FIGURE 3.1: Overview of fine-grained permissions framework
Source: Adapted from [70]

This solution requires each application to undergo to an adaptation process, during

which the comprising tools offer the following functionalities:

3. RELATED WORK 22

RefineDroid - At the time of its development, this tool was capable of inferring five

types of fine-grained permissions utilized by Android devices, including access to

the Internet, user contacts, and system settings. For instance, this tool can infer

permissions in the form of InternetURL(d) , which grants access solely to the do-

main d .

Mr. Hide - This tool consists of a set of Android services that encapsulate various

privileged Android APIs and dynamically apply a set of fine-grained permissions

created by the authors of this solution. Furthermore, this tool provides a hidelib li-

brary responsible for all communication with Mr. Hide, serving as a direct substitute

for the most sensitive Android APIs.

Dr. Android - Dr. Android (Dalvik Rewriter for Android) is a tool designed to remove

Android permissions from existing application packages, replacing them with spe-

cific versions of fine-grained permissions that are validated by the Mr. Hide tool.

This solution, although conceptually valid, has the disadvantage of relying on de-

velopers to adapt their applications to the finer permissions proposed by the authors.

Although Dr. Android and Mr. Hide can run on unmodified Android devices, they rely

on the developers willingness to use this framework API. Furthermore, to function prop-

erly, application modification is necessary, which significantly complicates the process of

installing a new application [70].

Fawaz et al. [69] propose a framework, named LP-Guardian, for safeguarding the pri-

vacy of Android device users. Despite the fact that this solution was developed for the

Android platform, it is also applicable to other platforms where access to location data is

managed through a permissions system (e.g., Windows Phone, BlackBerry OS), as well

as those that manage access to location data by obtaining explicit user authorisation for

each access (e.g., iOS). The operation of LP - Guardian is only possible on rooted devices or

through the use of a custom Read-Only Memory (ROM).

In the block diagram shown in Figure 3.2, we can observe the components of LP-

Guardian and their interactions. According to the authors, LP-Guardian protects the user’s

privacy at three distinct levels. It tackles tracking threats by reducing the amount of time

tracked per day. It addresses the profiling threat by allowing users to conceal sensitive

locations. Finally, it mitigates identification threats through an innovative mechanism

that renders the user’s mobility pattern indistinguishable.

3. RELATED WORK 23

FIGURE 3.2: LP-Guardian’s architecture and interactions of its components
Source: Adapted from [69]

From a conceptual standpoint, this approach is very similar to the one implemented as

a proof of concept in this dissertation. However, it falls short in providing greater flexibility

to the user regarding the creation of synthetic routes, following a case-by-case logic based

on their privacy perceptions during the use of their Android device.

Beresford et al. [71] propose a solution, which they named MockDroid, consisting of

a modified version of the Android operating system. This modified version enables a

user to mock an application’s access to a resource, subsequently resulting in the resource

being reported as empty or unavailable when the application requests access. With this

implementation, an application never receives location updates, leading to a solution that

allows for complete privacy but, from a practical standpoint, offers no usefulness.

Enck et al. [31] propose a solution known as TaintDroid, which serves as an extension

to the Android mobile-phone platform with the primary objective of tracking the flow of

privacy-sensitive data through third-party applications. This system, based on a custom

ROM, operates on the assumption that downloaded third-party applications cannot be

inherently trusted. Consequently, TaintDroid undertakes real-time monitoring of these

applications, focusing on how they access and manipulate users personal data.

The core objectives of TaintDroid’s implementation are twofold: firstly, to identify in-

stances where sensitive data exits the system through untrusted applications, and sec-

ondly, to facilitate comprehensive application analysis for users and external security ser-

vices.

TaintDroid employs a labelling mechanism that designates privacy-sensitive data, also

referred to as taint source, at various levels, including variable, method, message, and

3. RELATED WORK 24

file. Subsequently, the system tracks the flow of this tainted data throughout the entire

system. When this marked data attempts to exit the system through a network interface,

recognised as a taint sink, TaintDroid promptly provides real-time feedback to users. This

feedback encompasses information concerning the data being transmitted, the application

involved, and the destination to which the data is intended.

The usage of these concepts in the TaintDroid architecture is graphically depicted in

Figure 3.3, which illustrates the data flow from the source to the sink. The visual represen-

tation showcases how the system tracks and discerns the movement of privacy-sensitive

information.

FIGURE 3.3: TaintDroid architecture within Android
Source: Adapted from [31]

This solution embodies a valid conceptual perspective for addressing our issue, albeit

lacking any functionality aimed at preventing unauthorised access to sensitive user data.

Moreover, even if employed solely for monitoring purposes, TaintDroid incurs an exces-

sively high cost in performance, potentially reaching up to 30%, thereby significantly and

adversely impacting the user experience.

Fawaz et al. [72] present LP-Doctor, an application designed at the user level with the

purpose of safeguarding the privacy of Android smartphone users location data.

LP-Doctor proactively assesses the potential privacy risks posed by an application be-

fore launching it. If launching the app from the current location presents any privacy

risks, LP-Doctor intervenes to protect the user’s privacy. Additionally, it discreetly notifies

the user of such potential risks.

3. RELATED WORK 25

This solution effectively serves as a control mechanism for the underlying tools of the

operating system. Furthermore, LP-Doctor empowers users to finely tune the privacy-

utility trade-off for each application, enabling them to adjust the protection level while

the app is in use.

The authors integrated LP-Doctor with CyanogenMod’s app launcher 1. It operates as a

background service, intercepting app-launch events, making informed decisions regarding

suitable actions, executing these actions, and subsequently instructing the app to launch.

The high-level execution flow of LP-Doctor is illustrated in Figure 3.4.

FIGURE 3.4: Execution flow of LP-Doctor when a location-aware app launches
Source: Adapted from [72]

LP-Doctor engages in user interaction to relay privacy-protection status. Additionally,

it empowers the user to configure privacy profiles for various applications and locations.

This solution represents an extremely effective way to raise awareness among users

about the efficient use of the controls already available in the operating system. However,

it proves inefficient in the objective of providing false location information to a specific

application without the application being able to verify whether the location data it is

receiving is real or fake. This is due to the fact that this solution utilises the mock location

provider, which is a developer option provided by the operating system.

1CyanogenMod’s app launcher refers to a software component, developed by the CyanogenMod community,
that provides a user interface for accessing and organising applications on Android-based devices.

3. RELATED WORK 26

This solution is also ineffective for applications that require precise location access,

such as navigation apps. Additionally, it is entirely inefficient in controlling location data

access for background-running applications.

Hornyack et al. [73] have devised a sophisticated system known as AppFence, which

retrofits the Android operating system to enforce privacy controls on pre-existing (unal-

tered) Android applications.

Through AppFence, users are granted the capability to withhold sensitive data from im-

perious applications that inappropriately seek unnecessary information beyond the scope

of their advertised functionalities. Additionally, for data that are legitimately indispens-

able for user-desired functions, AppFence strategically prevents any communications ini-

tiated by the application that might attempt to illicitly exfiltrate these valuable data from

the device.

When an application requests access to sensitive data that a user prefers not to grant,

AppFence adeptly replaces such information with innocuous shadow data, ensuring that

the application remains oblivious to the actual sensitive content while still functioning

appropriately.

AppFence incorporates a supplementary data-egress control mechanism to effectively

safeguard authorised data from improper usage and unauthorised transfer outside the

device, a process known as exfiltration blocking.

The authors have further expanded upon the TaintDroid information flow tracking

system to encompass data derived from information that the user deems private. Conse-

quently, AppFence can intercept and prevent undesirable transmissions of these classified

data. Notably, for each specific sensitive data type within the system, AppFence can be

conveniently customised to intercept and block messages containing such data. For a

visual depiction of the AppFence system architecture, refer to Figure 3.5.

This solution presents a compelling approach, as it safeguards against unauthorised

access to location data by certain more intrusive applications while also limiting the ex-

filtration of user location data from the device when such action is unnecessary for the

normal functioning of the application.

The primary drawback of implementing this solution lies in the need to modify the

OS, as current security measures implemented by Google (e.g., SafetyNet) could poten-

tially compromise the device’s functionality. Moreover, this solution lacks any customiza-

tion options and does not address the issue of providing fictitious data to applications,

3. RELATED WORK 27

FIGURE 3.5: AppFence system architecture
Source: Adapted from [73]

which may lead to abnormal functioning in the majority of applications reliant on user

device location.

Guha et al. [74] introduce the concept of privacy-preserving location-based matching as

a foundational platform primitive and offer it as an alternative to the direct exposure of

low-level latitude-longitude coordinates to applications.

This platform, named Koi, consists of two fundamental components: one that runs on

the user’s mobile device, and the other in the cloud (as shown on the left-hand side of

Figure 3.6).

The mobile component of Koi serves as an interface between applications and the

cloud component. For applications, it offers a straightforward API (shown on the right-

hand side of Figure 3.6), enabling registration and updates of items and triggers, and pro-

viding notification through callbacks.

An item represents a factual statement providing information about a specific entity,

such as a user, a business, or a vehicle (e.g., bus). These statements consist of one or more

attributes pertaining to the entity, including its geographical location.

The location attribute holds particular significance, as it can be automatically updated

by Koi, as the user moves, for example, providing real-time location information. Triggers,

3. RELATED WORK 28

FIGURE 3.6: Koi architecture
Source: Adapted from [74]

on the other hand, share similarities with items but serve as queries, specifically requesting

a callback when a matching condition is met.

The mobile component of the Koi system interacts with the cloud component by en-

gaging in communication to register items and triggers, as well as to set and update their

respective attributes.

The Koi cloud service comprises two non-colluding sub-components: the matcher and

the combiner. Broadly speaking, the matcher possesses knowledge of user identities and

their attributes, including location. However, it remains unaware of the association be-

tween users and their locations or other attributes.

To grant privacy preservation, the authors implemented a protocol to allow the matcher

and the combiner to conduct matching operations without acquiring information about

the association between users and their locations or any other item identities and attribute

relationships. Nevertheless, the matcher can utilise the knowledge of plaintext location

and other attributes to perform comprehensive and semantically-meaningful matching,

encompassing geocoding, location proximity, or spelling correction, among other aspects.

On the contrary, the combiner possesses knowledge about the association between

anonymized users and encrypted locations, as well as other attributes. However, it re-

mains unaware of the actual identities or attribute values.

The Koi service can be employed by multiple applications. To avoid naming conflicts,

attribute names are appropriately name-spaced according to the application responsible

for registering the item.

While this solution is innovative and ensures that only the application and the user

can access sensitive data, preventing LBS from establishing a link between the user and

location data, it lacks mechanisms to enable specific applications to function without re-

quiring access to the device’s actual location.

3. RELATED WORK 29

Depending on a cloud service, the use of this solution will always be dependent on an

Internet connection, which may not be feasible for some users with limited data subscrip-

tion plans.

In addition to the previously mentioned aspects, the interaction among the various

components that constitute this solution may cause delays in the operation of certain ap-

plications, leading to a negative impact on the user experience. This solution also requires

that applications start using the Koi framework’s API to access location data, rather than

using Google’s lat-long location API.

Kang et al. [75] proposed a solution for location-privacy preservation called Move-

WithMe, which requires root access to the device to function properly. The authors named

it MoveWithMe because it automatically generates a number of decoys to move with the

user like real human beings and serve as distractions to the service providers.

In the MoveWithMe system, each decoy has its own moving patterns, favourite places,

daily schedules, social behaviours, etc. Based on the user’s privacy needs, the initial

number of decoys, the decoys social and travel patterns, and their personalised profiles can

be varied.

Figure 3.7 provides an overview of how the components in the MoveWithMe system

collaborate with each other and interact with location-based services. In particular, to obtain

the protection from MoveWithMe, the smartphone user simply needs to open the Move-

WithMe app before visiting any location-based service websites.

If the service monitor detects that a location-based service requires the user’s phone to

upload the user’s location information, the MoveWithMe app will automatically send a

mixed group of the real user request and fake requests based on the decoys locations to

confuse the service provider.

This solution appears to be effective in obfuscating the true device location concerning

location-based service providers. However, it does not offer any user customization options

for the decoys. Additionally, if the number of decoys is limited, the location-based service

may still infer the actual user location, as this information is also transmitted. Moreover,

the MoveWithMe application relies on an Internet connection to access location-based ser-

vices and coordinate the decoys, which may not always be feasible or desirable for certain

users. Furthermore, this solution does not enable concealing the true device location from

other installed applications on the user device.

3. RELATED WORK 30

FIGURE 3.7: The Framework of the MoveWithMe System
Source: Adapted from [75]

Chitkara et al [76] present the design and implementation of Protect my Privacy (PmP)

app for Android. The PmP which requires a rooted device, supports a feature of both App

and library-based privacy control for accesses to sensitive data.

The figure Figure 3.8 illustrates the comprehensive architecture of the PmP app, offer-

ing insights into its various components and control flow. To comprehend why a specific

app accesses sensitive data, the authors capture the stack trace whenever a user makes a

decision (allow, deny, or fake) pertaining to privacy-sensitive data elements (e.g., location,

contacts, identifiers, etc.).

The PmP application for Android empowers users to exercise control over their pri-

vate data by granting, denying, or simulating access to the App or third-party libraries.

The authors have devised a scalable backend system, facilitating the collection of user

decisions and runtime stack traces for the detection and categorisation of libraries.

The fundamental goal of PmP revolves around deducing contextual information re-

lated to data accesses, specifically identifying the entity within the app that accesses sen-

sitive data and the purpose behind it. This contextual understanding aids in the design of

more effective privacy protection mechanisms.

The PmP Android app is not solely focused on identifying third-party libraries. It

also empowers users with the ability to dictate which data is shared with these libraries.

The solution further incorporates a scalable backend, tasked with aggregating, storing,

3. RELATED WORK 31

FIGURE 3.8: The architecture of PmP
Source: Adapted from [76]

and analysing diverse data points sent by PmP concerning user decisions, stack traces,

and results from in-app surveys.

For anonymizing location data, the authors adopt a technique that transforms the in-

put location into a coarser representation, essentially providing the location at the city-

level granularity rather than a specific location. This approach strikes a balance between

privacy preservation and enabling location-based functionalities to operate effectively.

Additionally, the user has the flexibility to select any location as the fake location, utilis-

ing a user-friendly Maps interface.

PmP incorporates a firewall to impede application access to the Internet. This firewall

service operates in the background, receiving callbacks from the Xposed framework when-

ever any app attempts to access private data. Additionally, a server is employed to store

user decisions in an anonymous manner.

The fundamental basis of our proposal, which was limited in its implementation to

the development of a functional prototype as a proof of concept, relies on the same criteria

as this solution that addresses the primary concerns regarding user location data access

by both installed applications and the libraries they utilise.

As for limitations, this solution only falls short in its inability to provide users with the

option to define false routes simulating movement (e.g., by car or on foot), being limited

3. RELATED WORK 32

to static locations.

Concerning the blocking of access to location data by third-party libraries, this imple-

mentation is practically constrained, as it necessitates a manual analysis of applications

to determine which third-party libraries they employ. Subsequently, this information is

stored on a remote server accessed each time the user installs a new application on their

device.

Estrela [77] proposes a new approach to Android security by introspection. This so-

lution, named Sobek, comprises an Android user application responsible for controlling

the instrumentation behaviour. Additionally, it includes a backend service facilitating pref-

erence synchronisation across multiple devices, while also granting access to the Sobek

Instrumentation Tool , which receives regular applications and applies instrumentation to

them.

Figure 3.9 presents an overview of the interconnections between these components.

The Sobek Instrumentation Tool is responsible for applying code modifications, while the

Sobek Manager oversees the behaviour of instrumented applications. Additionally, the

backend serves as an aggregation point for all server-side components, facilitating the de-

livery of instrumented applications, synchronisation of settings, and management of logs.

FIGURE 3.9: Sobek - System overview
Source: Adapted from [77]

This unrooted solution allows the user to redefine permissions granted to a specific ap-

plication, tailoring them to their privacy needs. In addition to this functionality, it also

enables the user to create false personas and provide fictitious locations to applications.

However, there are some drawbacks to consider. Firstly, this solution requires the modifi-

cation (instrumentation) of all applications the user wishes to control, which may hinder

the user from receiving updates for the instrumented applications. As a result, the user

must repeat the instrumentation process whenever they desire to update an application.

3. RELATED WORK 33

Regarding the provision of fictitious location data, this solution lacks the capability

to provide simulated routes to mimic potential user movements (e.g., car or pedestrian

routes). Furthermore, the instrumentation process may be challenging for an average

user to comprehend, and the logs generated during the instrumentation process may also

be difficult for them to understand.

Sobek relies on a remote server to perform the instrumentation and synchronisation of

logs and preferences, causing this functionality to be intermittently available for users

with limited mobile data subscriptions.

3.3 Theoretical Approaches

Theoretical approaches to privacy concerns of users regarding third-party access to their

location data are those that have not been subjected to any implementation on mobile

platforms nor tested in real-world scenarios. The vast majority of these mechanisms fo-

cus their approach on the tracking threat by obfuscating the precise user location, only

revealing the characteristics of their mobility or a geographic region for their location

(e.g., an area at the city level).

Considering the myriad of theoretical solutions that have been proposed in this do-

main in recent years, it would be impractical and beyond the scope of this academic work

to provide a comprehensive presentation of all of them. Therefore, based on the afore-

mentioned, we present a succinct overview of those proposals that have proven to be the

most relevant and influential in shaping our own solution.

Krumm [78] proposes a method for generating realistic false paths to preserve loca-

tion privacy. The main objective of this work is to enhance privacy, and the approach’s

effectiveness is assessed by an attacker’s ability to distinguish false paths from real ones.

The authors generate false paths by abstracting probabilistic models from real trajectories

and utilising these probabilities to generate random start and end points, random routes,

random speeds, and random GPS noise.

Palanisamy and Liu [79] proposes MobiMix, a road network-based mix-zone framework

designed to safeguard the location privacy of mobile users while travelling on road net-

works.

The core idea in MobiMix is to disrupt the continuity of location exposure by employ-

ing mix-zones, where user movements cannot be traced by any applications. The authors

3. RELATED WORK 34

contend that the construction and placement of effective mix-zones demand careful con-

sideration of various factors, including the geometry of the zones, the statistical behaviour

of the user population, spatial constraints on user movement patterns, and the temporal

and spatial resolution of location exposure.

Furthermore, the researchers develop a suite of road network mix-zone construction

methods aimed at achieving a higher level of attack resilience and ensuring a specified

lower bound on the level of anonymity.

Meyerowitz and Roy Choudhury [80] introduces CacheCloak, a real-time location data

anonymization system. CacheCloak operates as an intermediary server between users and

LBS. When a user requests location-centric data, such as nearby restaurants based on their

current location, the CacheCloak server responds by either providing cached data or fetch-

ing new data from the LBS.

Notably, instead of requesting data for a single GPS coordinate, CacheCloak seeks new

data along an entire predicted path. This prediction extends until it intersects with other

previously predicted paths. As a result, the LBS only receives requests from a series of

interweaving paths, effectively preventing accurate tracking of any individual user.

Hara et al. [81] propose a privacy preservation method predicated on the utilisation

of dummy entities with the aim of anonymizing the user’s geographic location in a real

environment. The technique entails the generation of said dummy entities in proximity

to the user, a process which takes into consideration the actual geographical data.

Furthermore, the method imbues these dummy entities with simulated movement

patterns to confer upon them a natural disposition during consecutive usage of the LBS.

The authors premise rests upon the assumption that the user’s mobile device proactively

pre-fetches cartographic data pertaining to the locale in which the user is situated. Addi-

tionally, in this method, a user and dummies share the user’s own registration ID on an

LBS, which is beneficial both for the LBS provider and the user.

Upon the user’s initiation of an LBS service request, the proposed methodology en-

genders the creation of dummy entities encompassing the user’s position, adopting a

grid-like configuration to meet the stipulated criteria for an anonymous spatial region.

During subsequent instances of service utilisation, wherein the user communicates

their location data to the LBS, the method orchestrates the emulation of the dummy en-

tities movements. This emulation is predicated upon the user’s geographic coordinates

3. RELATED WORK 35

and relevant spatial information, thereby ensuring compliance with the anonymous spa-

tial domain requirements and determining the subsequent positions of the dummy enti-

ties. Additionally, the method strategically facilitates an interaction between the user and

the dummy entities, serving to mitigate the traceability of the user.

Bindschaedler and Shokri [82] propose a methodology for generating synthetic yet se-

mantically authentic privacy-preserving location traces. In this approach, the authors

propose two mobility metrics that gauge the authenticity of a synthetic location trace con-

cerning both the geographical and semantic dimensions of human mobility. These metrics

are employed to construct a probabilistic generative model, which produces synthetic yet

credible traces based on these metrics.

The development of this generative model draws from a dataset of actual location

traces as its foundation, necessitating privacy preservation within the model itself. Con-

sequently, the authors design privacy tests aimed at governing and curbing the potential

leakage of information about the foundational seed dataset. Subsequently, state-of-the-

art location inference attacks are employed to assess the efficacy of the synthetic traces in

upholding the privacy of LBS users.

Through empirical evaluation conducted on a real location traces dataset, the authors

demonstrate that by employing this methodology, the attacker’s likelihood of inaccu-

rately estimating users true locations over time stands at 0.9972. In other words, the

approach attains a high degree of privacy protection.

The proposed scheme rests upon the notion that the mobility patterns of distinct indi-

viduals exhibit semantic similarity, irrespective of the geographic locations they visit.

The shared attributes in human mobility patterns emerge from comparable lifestyles,

encompassing movements between home, workplace, friends residences, preferred shops,

recreational venues, and occasional new destinations. These mobility patterns possess a

common structure, encapsulating the collective behaviour of the population at a macro

level.

The authors model individual mobility within two dimensions: geographic and seman-

tic. In addition to these shared mobility patterns reflecting urban movement, geographi-

cal features tend to be distinct to each individual (e.g., the geographically unique location

referred to as home for each individual). Conversely, semantic attributes tend to be univer-

sal and indicative of overall human mobility tendencies (e.g., the presence of an overnight

home for most individuals).

3. RELATED WORK 36

3.4 Summary

In this Chapter, we proceed with the study of similar solutions. In this analysis, we ob-

served a predominance of solutions that require the use of rooted devices or, alternatively,

a custom ROM.

To facilitate a visual comparison of the differences between the various applications,

Table 3.1 summarises the main functionalities offered by each of them.

Features
Refine-Droid

Mr. Hide
Dr. Android

LP-Guardian MockDroid TaintDroid LP-Doctor AppFence Koi MoveWithMe PmP Sobek
Our

Solution

Rooted
device
or
custom
ROM

− • • • − • − • • − •
Need APK
modification • − − − − − • − − • −

Control of
location
data
access

• • • • − • − • • • •
Graphic
user
interface

− • • • • • − • • • •
User-
generated
fake
location

− − − − − − − − − − •
Fake
static
location

− • − − • • − • • • •
Simulated
route

− • − − − • − • − − •
• feature present
− feature absent

TABLE 3.1: Similar implementations comparison

Solutions that do not require acquiring root privileges or the use of custom ROM tend

to be less versatile and robust in protecting user privacy regarding access to their location

data.

Although in fewer numbers, some non-rooted solutions attempt to match the level of

protection and versatility of rooted versions. However, to achieve this goal, they necessi-

tate the implementation of highly performance-penalising mechanisms, significantly af-

fecting the user experience. In other cases, modification of APK of applications to be

installed on the device is required, which is a complex process and not always within the

reach of most users.

The choice of a rooted solution was guided by the greater effectiveness and versatility

that this type of approach allows to offer to users, as well as the need to enable the creation

of realistic fake paths, as suggested in the proposal made by Krumm [78].

Chapter 4

System Design

During the course of the literature review, conducted in the preceding Chapter 3, a com-

prehensive exploration of diverse approaches concerning user control over access to their

location data by applications installed on their device was undertaken.

The analysis conducted on the various existing solutions has revealed that the issue

of controlling access to user location data can be addressed through a wide range of dif-

ferent strategies. However, regardless of the multifaceted approaches taken to tackle this

problem, the examined solutions unanimously recognise location data as a key element

that significantly impacts user privacy.

Among the myriad solutions examined, a conspicuous absence of mechanisms allow-

ing dynamic falsification of location, based on user-defined route creation, is evident.

Drawing from the insights gleaned from existing solutions, our proposition, as articu-

lated in Section 1.2, aims to empower the user with the capacity to dynamically establish

routes, whether on foot or by automobile. These simulated routes can then be employed

as mock location data for applications residing on their device. In addition to this facet,

our approach also encompasses the provision for users to designate static locations to be

presented instead of their actual coordinates.

4.1 Threat Model

Threat modeling constitutes a foundational aspect in crafting a solution encompassing

user privacy protection. In the conceptualisation of our proposed solution, we assume

an honest yet curious and passive adversary, whose aim resides in inferring additional

insights about the user based on accrued location data. We hold that applications serve

37

4. SYSTEM DESIGN 38

as the sole conduit through which this adversary may access user location, leveraging the

location API provided by the Android platform.

The adversary will not attempt to subvert the system or bypass any privacy controls

that may be in place. It’s important to emphasise that the security issues of the Android

platform are orthogonal to our proposal, meaning our objective isn’t to implement a so-

lution that prevents an adversary from circumventing the security mechanisms of the

operating system, in order to compromise our solution and get access to the real user

location. The existence of such a solution would, in fact, strengthen our own solution.

The adversary will access the user’s location data during the application’s operation,

and this access to information results in the following types of threats to user privacy:

Tracking Threat: With continuous access to location data, the adversary can real-

time track the user, as well as identify the user’s mobility patterns (frequent routes),

and predict their future location with high precision by leveraging the typical con-

sistency of people’s mobility patterns [83].

Identification Threat: Sporadic access to location data may enable the adversary to

pinpoint locations frequently visited by the user, such as their residence and work-

place, subsequently using these as pseudo-identifiers to deduce the user’s identity

from anonymous location traces [27] [84].

Profile Threat: Mapping the user’s mobility may exclude revealing identity associ-

ated locations and instead encompass places that the adversary can use to construct

a profile. Such locations could include healthcare or educational institutions, reli-

gious sites, cultural event venues, and more.

We assume that the applications constitute a single recipient of location data and that

all of these originate from the same developer or possess the same signature. We also

assume that the underlying operating system is trustworthy, as implementing such a so-

lution without this trust is practically unfeasible. Lastly, we assume that the user trusts

their device and the underlying operating system to store and manage all of their personal

information.

4. SYSTEM DESIGN 39

4.2 Architecture

Our solution encompasses three fundamental functionalities. It allows for the creation of

simulated routes or fake static location points based on user preferences. It enables the

user to select, from the applications installed on their device, those that will receive mock

location data, and provides this mock location data to the applications chosen by the user to

receive this type of information. In the Figure 4.1, we can visually observe the components

that constitute our solution’s architecture, as well as the interactions among them.

FIGURE 4.1: System architecture and interactions of its components

The architecture of our solution is built upon three essential components: the Mock-

Location application, the XPrivacyLua module, and the EdXposed framework. The MockLo-

cation application can be launched by the user at any time, with its primary functionality

being to allow the user to create fictitious location data whenever they wish. This loca-

tion data is accessed by the XPrivacyLua module, which has the functionality of enabling

the user to intercept applications access to their real location data, providing them with

fictitious location data without compromising the application’s functionality.

The EdXposed framework provides the necessary API for the XPrivacyLua module to

hook into the methods used by applications to access various location providers offered

by the Android platform. In the subsequent sections of this chapter, we will describe

4. SYSTEM DESIGN 40

the functionalities of the components within our solution and how they work together to

achieve the objectives we outlined in Section 1.2.2.

4.2.1 MockLocation Application

In order to provide users with complete control over the creation of mock location data to be

supplied to their selected applications, we have developed the MockLocation application.

This application allows users to choose from various types of mock locations, which can

be either related to fake fixed points on the map or simulated routes based on the user’s

choice of route way-points.

To generate false location fixed points, the user has two options. They can either drop

a pin on the map at any location of their choice or choose to provide their current location,

which will be converted into a fixed coordinate. The latter option is intended to allow

the user to set their current position as static, so they can keep moving without it being

noticeable to the applications selected to receive the fake location data.

The MockLocation application also allows for the simulation of routes, which can be

either for driving or walking. To create a route, the user first needs to choose whether

they want to create a walking or driving route. After that, the user selects two way-points

for the route by placing two pins on the map at any location of their choice. Once the pins

are placed at the chosen locations, the user clicks on the route creation button, and the

application generates the route. For simplicity, the route begins and ends at the user’s

actual location, passing through the two fixed points selected by the user.

After obtaining the user’s choices for mock locations, the MockLocation application sends

a request to the Google Directions API to acquire coordinates for the respective locations

or routes. Once the coordinates for the user-defined mock locations are received, the Mock-

Location application stores this information in device storage, as depicted in Figure 4.1 as

Storage.

The data placed in the device storage by the MockLocation application is intended to

be accessed by the XPrivacyLua module, as detailed in the upcoming Section 4.2.2. In

addition to the coordinates obtained from the Google Directions API, the MockLocation

application stores information about the type of fictional location chosen by the user

(static/dynamic and walking/driving) on the device storage.

4. SYSTEM DESIGN 41

4.2.2 XPrivacyLua Module

The XPrivacyLua module, developed by Marcel Bokhorst @ M66B [85], serves as the foun-

dation for our work. Since this software is open source and distributed under the GNU

GENERAL PUBLIC LICENSE, Version 3, 29 June 2007, we chose to modify its source code

rather than developing a similar solution from the ground up.This decision was made to

optimise resource usage while achieving our objectives.

The most significant modification made to the XPrivacyLua module was the addition

of dynamic fictitious location data generation capability. This enhancement allows users

to simulate walking or driving routes as needed.

As depicted in Figure 4.1, the modified version of the XPrivacyLua module is respon-

sible for allowing users to select, from among the applications installed on their device,

those that will receive simulated location data. In addition to this functionality, this mod-

ule is also accountable for updating the location data through the execution of a back-

ground service (this task is crucial for dynamically providing location data). Furthermore,

it delivers the fictitious location data by hooking into the methods used by the applications,

previously selected by the user, to obtain the location data.

Considering that applications have various options for obtaining device location data,

the XPrivacyLua module hooks into the methods used to access the following location

providers:

Fused Location Provider: This method is the most recommended for accessing de-

vice location data. It combines multiple sources like GPS, WiFi, and cellular data to

provide accurate and efficient location updates.

GPS Provider: Apps can request location updates from the GPS provider using the

LocationManager class. This method provides high-precision location data but may

consume more battery.

Network Provider: This method uses network-based location data, such as WiFi

and cellular networks, to determine the user’s location. It’s less accurate than GPS

but consumes less power.

Passive Provider: This provider listens for location updates generated by other apps

or services on the device. It doesn’t actively request updates but can be useful in

scenarios where you want to passively listen to location changes.

4. SYSTEM DESIGN 42

When the user intends to provide a fictitious location dynamically (simulating a walk-

ing or driving route), the XPrivacyLua module will process the route’s coordinates, ob-

tained by the MockLocation application, in order to simulate the movement of a real user.

This process will be discussed in detail in Chapter 5.

4.2.3 EdXposed Framework

As mentioned in Section 2.3, EdXposed is an extended version of the Xposed framework.

This framework can be viewed as the API used by the XPrivacyLua module to perform

method hooking on the applications selected by the user. To better grasp the role of the

EdXposed framework, we need to briefly delve into the Android startup process and how

applications are initialised.

As part of the startup process, the Android system needs to create virtual machines

and the runtime environment for all system services that are compiled into the Dalvik

Executable (DEX) Intermediate Language (IL). Additionally, it must offer a means to

start and initialize fresh runtime environments for new applications as they commence.

To address this requirement, Android employs an ingenious program named Zygote.

Zygote serves a similar role in Android as init does in Linux: it acts as the parent of all

applications. During the system’s startup, init initiates the launching of Zygote.

Zygote proceeds to self-initialize by pre-loading the complete Android framework.

Unlike desktop Java, it doesn’t employ lazy loading of libraries; instead, it loads all of

them during the system’s startup phase. Once fully initialised, it enters a continuous

loop, waiting for connections to a socket [86].

When the system needs to launch a new application, it establishes a connection with

the Zygote socket and sends a small packet containing information about the application to

be started. Zygote replicates itself, creating a new kernel-level process. Figure 4.2 show-

cases the memory arrangement of a recently cloned application originating from Zygote.

This novel application possesses its individual page table, with the majority of this new

page table essentially mirroring that of Zygote.

Most modern Android devices start two zygotes — one for 32-bit applications and one

for 64-bit apps—and default to 64-bit version [86].

The application actually started as the root user with the highest priority by the init

process is located at /system/bin/app process [86]. This is where EdXposed comes into

action. Upon installing the framework, an extended app process executable is copied to

4. SYSTEM DESIGN 43

FIGURE 4.2: Zygote Clone
Source: Adapted from [86]

/system/bin. This extended startup process introduces an extra Java Archive (JAR) to

the classpath and invokes methods from it at specific points. For example, right after the

Virtual Machine (VM) has been established, even before the main method of Zygote has

been called. Within that method, we are part of Zygote and can act in its context [87].

What truly empowers EdXposed is its capability to hook method calls. When modifying

an APK by decompiling, we can directly insert or alter commands as desired. Neverthe-

less, recompilation and signing of the APK are necessary afterward, and only the entire

package can be distributed.

With the hooks available through EdXposed, altering code within methods isn’t feasible

(as defining the precise changes and their locations would be challenging). Instead, we

can inject our custom code before and after methods, which represent the smallest unit in

Java that can be distinctly addressed.

XposedBridge1 [88] incorporates a private native method called hookMethodNative.

This method is also implemented in the extended app process. It transforms the method

type to native and associates the method’s implementation with its proprietary native,

generic method. Consequently, whenever the hooked method is invoked, the generic

method is activated without the caller’s awareness.

1The XposedBridge is an EdXposed class that encompasses the majority of Xposed’s core logic, including
initialisation and callbacks employed by the native side. It also incorporates functions for introducing new
hooks.

4. SYSTEM DESIGN 44

Within this process, the handleHookedMethod method in XposedBridge is invoked. It

passes the arguments, the this reference, and more to the method call. Subsequently,

this method is responsible for triggering registered callbacks meant for this method call.

These callbacks can modify call arguments, instance/static variables, invoke other meth-

ods, manipulate results, or skip any of these actions.

4.3 Summary

In summary, our proposal is based on two fundamental objectives. The first one consists

of providing the user with an easy and intuitive way to select, from the applications in-

stalled on their device, those that can access their real location data. The second objective

aims to allow the user to customise the type of fictitious location data that will be supplied

to the applications they have chosen to receive false location information.

As described throughout this Chapter, the architecture of this solution involves the

utilisation of three fundamental components, with each assigned a specific task in the

process of concealing the user’s actual location. However the interaction between them is

crucial for the final outcome.

The creation of our solution involved implementing the MockLocation application,

which allows for the generation of fake location data and modifying the code of the XPri-

vacyLua module, enabling the use of this software to dynamically provide simulated route

location data.

In addition to developing the MockLocation application and making modifications to

the XPrivacyLua module’s code, we also established a setup to support the operation of

our solution, as described in Section 5.1. This setup primarily focuses on the device rooting

process and the installation of various frameworks that enhance the functionality of our

solution.

The following Chapter 5, in which we will delve into the implementation of our solu-

tion, will provide a more detailed description of how the components shaping our archi-

tecture function.

In Chapter 6, where we will present the results of our solution’s testing, we will offer a

more visual description of how the various components of our solution operate and how

their interaction enables us to achieve the goals outlined in the Section 1.2.

Chapter 5

Implementation

In Section 4.2, we presented the components comprising our solution. This chapter delves

into the complete implementation process, along with the challenges that emerged as we

advanced in constructing our solution.

In order to provide a holistic perspective on our implementation, this chapter begins

by providing a description of the supportive setup for the implementation. It subse-

quently progresses to elaborate on the remaining stages of development, which encom-

passed the implementation and adaptation of the components that underpin our solution.

5.1 Initial Setup

To develop our solution, it was necessary to create an initial setup, bringing together a

set of tools and supporting components for implementing the functionalities described in

Section 1.2.2. In this section, we describe the steps involved in establishing the setup to

support the implementation of our solution.

5.1.1 Rooting the Device

With the technological advancements characterising our current era, Android devices

have garnered significant interest that extends beyond their mere utilisation. Nowadays,

we observe an increasing number of users seeking to modify and personalise these sys-

tems. In this context, the concept of rooting emerges, encompassing a process through

which elevated administrative privileges can be obtained over the Android OS.

45

5. IMPLEMENTATION 46

The rooting process enables users to access areas of the system that would typically re-

main inaccessible. Despite Android being regarded as an open-source OS, certain software

configurations and hardware resources are only accessible with root level access.

The root access facilitates a range of operations, spanning from the installation of cus-

tom applications to the optimisation of device performance. However, it is worth noting

that the rooting process is not devoid of risks, necessitating users to exercise a more judi-

cious and cautious management of their devices from a security standpoint.

Considering our choice to develop a solution that requires root access to the device, this

section outlines the process of rooting the device, including software-level modifications

and the tools used to accomplish this task.

5.1.2 The adb Tool

The Android Debug Bridge (adb) is a versatile command-line tool, included in the Android

SDK Platform Tools package, that enables communication with a device [89]. Executing

the adb command allows for a variety of actions on the device, including debugging and

application installation. The adb tool provides access to a Unix shell that can be used to

execute various instructions on the device. It is a client-server program composed of three

components:

A client responsible for sending commands.

A daemon (adbd) that executes commands on the device, functioning as a background

process on each device.

A server that manages communication between the client and the daemon.

5.1.3 The Backup Process

Considering that the rooting process carries some risks, it becomes imperative to perform

a backup of all its original partitions before making any changes to the device.

Prior to commencing the rooting process, we performed an examination of the device’s

features by executing the following commands through the adb tool:

$adb shell getprop ro.build.version.release - To get the Android version re-

lease.

5. IMPLEMENTATION 47

$adb shell getprop ro.build.version.sdk - To retrieve the Android SDK ver-

sion.

$getprop ro.secure - To check if the phone is already rooted.

To perform the backup of all partitions in their original state, it’s necessary to run a

custom recovery software in remote mode (i.e. without installing the custom recovery

software) and having root privileges. By doing so, we prevent modifying the recovery

partition, allowing us to restore the device to its initial state in the future. To perform this

task, we employed the Team Win Recovery Project (TWRP) recovery software, executing

the command $fastboot boot twrp.img.

TWRP is the leading custom recovery for Android phones. A custom recovery is used

for installing custom software on the device. This custom software can include smaller

modifications like rooting the device or even replacing the firmware of the device with a

completely custom ROM [90].

Running TWRP in remote mode allows for the installation of the Magisk application

on the device. The Magisk application enables the acquisition of root privileges on the

device and, consequently, the backup of all partitions using the adb tool.

5.1.4 Magisk - Systemless Root

Systemless rooting is considered a more recent workaround for advanced users who wish

to utilise services that check for rooting without needing to unroot their devices [91]. This

process involves modifying the device’s boot partition instead of altering the system par-

tition, by injecting the necessary files into the boot partition to grant root privileges to

third-party apps, install custom ROM, or perform other advanced tasks without modify-

ing the system partition.

One of the main advantages of systemless rooting is that it allows you to continue re-

ceiving OTA updates from the device manufacturer while maintaining root privileges, as

long as the update doesn’t overwrite the device’s boot partition. Due to its non-alteration

of the system partition, this rooting method is also less risky and easier to revert to a non-

root state.

Magisk is an open-source root solution compatible with a wide range of Android de-

vices. This tool enables the installation of modules that make changes to the Android

operating system without affecting the system partition. In broad strokes, its operation

5. IMPLEMENTATION 48

involves installing a modified boot image that intercepts calls to the system partition and

redirects them to a virtual partition created in the data partition. This virtual partition

contains the modified files and modules installed by Magisk. Figure 5.1 illustrates the

layout of this application after being installed on the device.

FIGURE 5.1: Home screen of the Magisk App

The authors of Magisk offer various types of modules, including solutions that enable

evading root detection methods implemented by Google, such as SafetyNet [92] and Google

Play Protect, as well as continuing to enjoy OTA updates [93].

5.1.5 Installation of the EdXposed Framework

After obtaining root privileges on the device and having installed the Magisk application,

we are in a position to install the EdXposed framework, which is one of the three funda-

mental components of our solution.

After Android 8.0 (Oreo), the developers of the Xposed framework ceased to produce

new versions of this software. EdXposed provides an alternative to the Xposed framework,

and it is compatible with Android 8.0, Android 9.0, and Android 10.0. The functioning of

this framework is based on the coordination among the following components:

5. IMPLEMENTATION 49

YAHFA: YAHFA is a hook framework for Android ART. It provides an efficient way

for Java method hooking or replacement [61].

Riru: Riru inject into zygote in order to allow modules to run their codes in apps or

the system server [94].

XposedBridge: Is the original Xposed framework API [95].

Dexmaker and dalvikdx: Used to dynamiclly generate YAHFA hooker classes [96] [97].

SandHook: ART hooking framework for SandHook variant [98].

Dobby: Used for inline hooking [99].

Magisk: Magisk is a suite of open-source software for customising Android, sup-

porting devices running Android 6.0 and higher. The main functionalities [100] of

this module are as follows:

MagiskSU: Provides root access for applications.

Magisk Modules: Modify read-only partitions by installing modules.

MagiskBoot: The most complete tool for unpacking and repacking Android

boot images.

Zygisk: Run code in every Android applications processes.

In order to have the EdXposed framework installed on our device, after installing

Magisk as described in Section 5.1.4, we use this application to install the Riru module

and finally install the EdXposed framework. Figure 5.2 shows the Riru Core module and

the Riru - EdXPosed module installed on the device.

The installation of the EdXposed framework is only complete after installing the EdX-

posed Manager. This application (see Figure 5.3) for Android is used to manage the EdX-

posed framework on rooted devices using Magisk.

5.1.6 Installing the XPrivacyLua Module in EdXposed

In order to use the XPrivacyLua module [85] to manage the access of location data for

other applications installed on the system, it needs to be installed within the EdXposed

framework (see Figure 5.3b).

5. IMPLEMENTATION 50

FIGURE 5.2: Riru- Core and Riru - EdXposed installed in Magisk

(A) EdXposed - Main
layout

(B) EdXposed - Mod-
ules installed

FIGURE 5.3: EdXposed Manager

5. IMPLEMENTATION 51

The XPrivacyLua module, whose layout is displayed in Figure 5.4, primarily functions

to empower the user to select the applications to which false location data, generated by

the MockLocation application detailed in the following Section 5.2, will be provided.

The original version of the XPrivacyLua module does not allow for the dynamic provi-

sion of fake location data. As mentioned in Section 1, one of the intended functionalities

for our solution was the ability for the user to generate false routes, either on foot or by

car, in order to simulate a journey. To fulfil this objective, we conducted an analysis of the

XPrivacyLua module’s code, identifying the necessary changes to implement this feature.

This process is described further in Section 5.3.

FIGURE 5.4: XPrivacyLua module

5.2 Developing the MockLocation Application

The requirements for providing false location data can vary based on the device user,

as well as the applications for which they intend to supply fake location data. Keeping

this consideration in mind, we have developed an application named MockLocation (see

Figure 5.5 and Figure 5.6), which enables the user to create four types of false locations.

The four types of simulated location generated by the MockLocation application, as

shown in Figure 5.6, have the following characteristics:

5. IMPLEMENTATION 52

FIGURE 5.5: MockLocation main activity

Setting the current location as permanent: When this option is selected, the appli-

cation saves the coordinates of the user’s current position in the device storage. This

becomes the information provided to all selected applications for receiving fictitious

location data.

Creating a walking route: Upon selecting this option, the user is directed to a map

where they can choose two points for the route. For simplicity, all routes start and

end at the user’s current position, passing through the two chosen points. To obtain

the route coordinates, the MockLocation application calls the Google Directions API,

specifying the coordinates of the starting point, the endpoint, and any intermediate

points of the route. In addition to these arguments, the desired mode of transporta-

tion is also specified in the call to the Google Directions API. After obtaining the

coordinates of the route, the MockLocation application stores this information in the

device’s memory.

Creating a car route: This option is similar to the previous one, with the parame-

ters passed to the Google Directions API corresponding to a car journey instead of

walking, as in the previous option.

5. IMPLEMENTATION 53

(A) Save current location (B) Create walking route

(C) Create driving route (D) Create static location

FIGURE 5.6: MockLocation - Working modes

Setting a static location point: In this option, the user can choose a fictional location

of their choice on the map. This is done by placing a pin on the map and clicking a

button to instruct the application to save this information. The application will store

5. IMPLEMENTATION 54

the coordinates of the user’s chosen point in the device’s memory.

In addition to the user-defined fictional location coordinates, the MockLocation application

also saves a code-word in the device’s memory, related to the chosen mode of fictional

location. This information is crucial for the functioning of the XPrivacyLua module, as we

will see in the next section.

The MockLocation application allows the user to change their fictitious location data

at any time. This aspect aims to address the flexibility requirement mentioned in Sec-

tion 1.2.2.

5.3 Changing the XPrivacyLua Module

As mentioned in Section 5.1.6, the original version of the XPrivacyLua module only allows

providing a fixed coordinate as fictitious location data. This fixed coordinate is hardcoded

in the script location createfromparcel.lua, used by the XPrivacyLua module to sup-

ply fake location data to the user-selected applications by hooking into the methods they

use to access the device’s location data.

In order to enable the XPrivacyLua module to provide fake location data dynamically,

it became necessary, among other changes, to allow the location createfromparcel.lua

script to update the fictitious coordinate values defined by the user through the MockLoca-

tion application every time it was executed. Therefore, to address this requirement, after

conducting a thorough analysis of the entire XPrivacyLua module code, we made several

modifications to the application’s code, which are detailed throughout this section.

5.3.1 Changes to the Script location createfromparcel.lua

As previously mentioned, in the original version of the XPrivacyLua module, the false

location provided to applications results from inserting hardcoded fictitious latitude and

longitude coordinate values into the Lua script (location createfromparcel.lua). This

script is responsible for rewriting the parameter values of methods used by applications

to access location data, which are hooked using the EdXposed framework’s API.

In order to allow the script location createfromparcel.lua to update the fake lo-

cation data with each execution, its code was modified to read the fictitious coordinates

from the device’s memory, rather than providing hardcoded coordinates as in the original

version of the XPrivacyLua module.

5. IMPLEMENTATION 55

The coordinates read by the script location createfromparcel.lua from the device’s

memory are updated by the XPrivacyLua module through a background service, as de-

scribed in the following section. The source code of the modified version of the Lua script

location createfromparcel.lua can be found in Appendix A.1.

5.3.2 Adding a Background Service

As highlighted in Section 5.1.6, the XPrivacyLua module enables users to choose, from

among the applications installed on their device, those that will receive fictitious location

data.

To allow the XPrivacyLua module to access the fictitious location data created by the

MockLocation application, a background service has been integrated. This background service

runs every time the XPrivacyLua module is launched by the user.

The background service operates seamlessly for the user, periodically verifying the se-

lected type of fictitious location (refer to Section 5.2) and cyclically updating the fictitious

location data (latitude and longitude) that will be provided to the user-selected applications

requesting this kind of data.

The types of mock locations (static point, user’s current location, car route, and walking

route) are encoded using a code-word stored in the device’s memory by the MockLocation

application and read by the background service of the XPrivacyLua module.

For each chosen type of simulated fictitious location data, the XPrivacyLua background

service launches a different thread. Depending on the type of fictitious data to be provided

to applications (static or dynamic), it updates pairs of coordinates (latitude and longitude)

used in hooking location data retrieval methods by the location createfromparcel.lua

script described in Section 5.3.1. A graphical depiction of the background service operation

is presented in Figure 5.7.

As shown in Figure 5.7, the background service operates with the following logic:

1. The service is initiated whenever the user launches the XPrivacyLua module. This

service continues to run until the XPrivacyLua module terminates its execution.

2. Once started, the background service reads the code-word stored in the device’s mem-

ory by the MockLocation application.

5. IMPLEMENTATION 56

FIGURE 5.7: Operation of the background service added to the XPrivacyLua module

3. Based on the value of the code-word, the background service launches the correspond-

ing thread responsible for processing the mock location data to be provided to the

user-selected applications.

4. The background service then enters a loop to check the code-word, continuously. In

this loop, whenever the code-word, is changed by the MockLocation application, the

background service terminates the currently running thread and starts a new thread to

process the mock location data related to the user’s new choice.

Each new thread is responsible for the appropriate processing of mock location data to

be provided to the user-selected applications. The specifics of how each thread processes

the mock location data are described in the following sections. It is worth mentioning that

the main difference in the operation of the threads responsible for handling the fictitious

location data arises from the user’s choice to provide either static or dynamic location data,

as we will see next.

5. IMPLEMENTATION 57

5.3.3 Managing Simulated Location Data with Threads

As mentioned in the previous section, the background service is responsible for managing

various tasks, including how fake location data is provided to the user-selected applica-

tions. While the background service launches a thread for each of the four types of fake

locations, the key distinction lies between static and dynamic location data.

5.3.3.1 Handling Fake Static Location

When the user chooses to provide a fixed point as mock location data, the background service

of the XPrivacyLua module launches a specific thread to handle this type of mock location

data.

The operation of the thread responsible for handling static location data is depicted in

Figure 5.8 and consists of the following steps:

1. Upon being launched, the thread reads the mock location data stored in the device’s

memory by the MockLocation application.

2. Next, the thread writes the mock location data into the device’s memory so that it can

be read by the location createfromparcel.lua script during the process of hooking

into location access methods used by applications.

3. The thread enters a loop in which it checks if the static location data has been altered

by the MockLocation application. Whenever the user changes the static mock location

data, the thread also updates the data to be read by the location createfromparcel.lua

script.

This process repeats itself as long as the background service does not terminate the thread

due to a change in the type of mock location data chosen by the user (e.g., the user selects a

mock location with a simulated route for a car). The Java class code responsible for handling

static location data can be found in Appendix A.3.

5.3.3.2 Handling Dynamic Fake Location

When the user intends to provide dynamic fake location data, simulating a route by walking

or driving, it becomes necessary to process the coordinates of these routes obtained by the

MockLocation application in the route simulation process described in Section 5.2.

5. IMPLEMENTATION 58

FIGURE 5.8: Execution flow of threads managing static fake location data

Before delving into a more comprehensive explanation of this procedure, Figure 5.9

illustrates the sequence of actions executed by the threads tasked with handling dynamic

location data manipulation.

Similar to the processing of static fake location data, the data for simulated routes is

processed by the background service through the execution of a specific thread.

The simulation of walking and driving routes is done in a similar manner, with the

only difference being the speed of movement between the various points that make up

the route. For the sake of simplicity, we will present only the simulation of a driving

route. However, please note that all the Java code related to the threads responsible for

handling dynamic location data is available in Appendix A.4.

The first action performed by the thread, handling fake location data, is to read the coor-

dinates of the simulated route obtained from the MockLocation application through a call

to the Google Directions API, as described in Section 5.2. Since directly using these coordi-

nates to simulate a route would result in abrupt position variations, significantly different

from the normal movement pattern of a user, we process the coordinates obtained from

the Google Directions API to smooth out the position changes along the route, aiming to

simulate a route that appears as close to reality as possible.

5. IMPLEMENTATION 59

FIGURE 5.9: Execution flow of threads managing dynamic fake location data

Considering the impossibility of directly using the coordinates from the Google Direc-

tions API in route simulation, the execution of the thread, whose execution flow is shown

in Figure 5.9, performs the following actions:

1. Upon initiation, it reads the coordinates of the route points provided by the Google

Directions API.

2. It then defines the number of intermediate segments that will be calculated between

each pair of consecutive coordinates provided by the Google Directions API. The

number of intermediate segments always assumes a constant value, resulting from

tests conducted with various types of routes.

3. After setting the number of intermediate segments between each point on the route

provided by the Google Directions API, it defines the time interval that will be used

to update the false coordinates to be provided to the user-selected applications for

receiving this type of fake location data. Similar to the number of intermediate seg-

ments, the time interval for updating the fictitious location values also assumes a

constant value, resulting from tests performed with various types of routes.

5. IMPLEMENTATION 60

4. Next, it calculates the distance between two points on the route using the Haversine

formula. The result of this operation is used to determine the length of the interme-

diate segments between each pair of coordinates provided by the Google Directions

API.

5. After calculating the size of the intermediate segments between two points on the

route provided by the Google Directions API, interpolation of the coordinates is per-

formed, with intermediate coordinates being defined based on the length of the in-

termediate segments, resulting in a smoothing of the movement and giving a more

realistic appearance to the simulated route.

Simulating a route involves movement with variable speeds. Since the coordinates

provided by the Google Directions API have varying distances between them depending

on the characteristics of each route, by setting a constant value for the number of inter-

mediate segments between two points, as well as for the time interval for updating false

coordinates, we obtain a simulated route with random variable speeds. This pattern of

variable speed never repeats because it depends on the characteristics of each calculated

route.

5.4 Summary

In summary, the implementation of our solution began with the process of rooting the

Android device, which involved utilising various tools and applications that enable us to

operate the device with administrative privileges (root). Among the set of tools used in the

rooting process, it’s worth highlighting the Magisk application, which enables a systemless

rooting approach, and the EdXposed framework, allowing us to inject code into the Zygote

process, from which all other processes are cloned.

Once the setup phase was overcome, the MockLocation application was developed to

enable users to create both static and dynamic fictitious location data. Finally, leveraging

an existing solution, an analysis was carried out on the code of the XPrivacyLua module,

to which the necessary modifications were made to enable the simulation of walking and

driving routes, as well as the selection of static user-defined location points.

Chapter 6

Evaluation

Considering that our solution consists of a functional prototype, its purpose is to demon-

strate the concept that revolves around the ability to provide fictitious location data to

applications installed on an Android device.

Given the complexity of the Android ecosystem and the various ways in which a par-

ticular application can infer the user’s location, our expectation is that our solution may

not yield the expected results in all applications whose functionality may be influenced

by the user’s location.

Considering that the applications provided by Google, in conjunction with the op-

erating system, are not optional installations for users, the development of our solution

focused on this type of application. This choice was made because these applications, be-

ing an integral part of the software that comes with the device, pose the highest privacy

risk to users.

In order to assess the behaviour of other applications outside the realm of Google, we

selected a set of the most popular applications on the Google Play Store with which we

tested our solution.

Throughout this Chapter, we have presented the results of the tests conducted on our

solution, starting with the pre-installed applications on the device, which are also widely

used by Android users. Subsequently, we conducted tests with applications sourced from

the Google Play Store that are not part of the Google ecosystem.

For the tests, we selected a set of applications whose functionality relies on the user’s

location and are concurrently commonly used among the Android device user commu-

nity.

61

6. EVALUATION 62

In order to test our solution in a real-world environment, we chose to acquire a device

available in the market with the following specifications:

Device Model: Mi A2 Lite

Serial number: 9e45643d0305

Android version: 10 aka Android Q

Android SDK version: 29

Android security patch level: 1/07/2021

Baseband version: 953 GEN PACK-1.240106.1.282152.1

Kernel version: 3.18.124-perf-g48df2b1

Build number: QKQ1.191002.002.V11.0.21.0.QDLMIXM

Wi-Fi MAC address: f4:60:e2:c6:14:cc

Bluetooth address: f4:60:e2:c6:14:cb

The device underwent the rooting process, and it was observed that it retained all

the functionalities it had previously. All the tested applications were obtained from the

Google Play Store and installed on the device without any modifications.

6.1 Google Maps

Google Maps is a globally used mapping application, regarded as the world’s most pop-

ular navigation app [101] [102]. This application provides users with a wide range of

navigation options, route planning, and location exploration.

In addition to navigation services, Google Maps also offers real-time data on road traffic,

public transport schedules, and information about local businesses. Figure 6.1 illustrates

the statistical data confirming the global popularity of the Google Maps application.

Considering the impossibility of demonstrating the operation of the Google Maps ap-

plication with data from a simulated route in the MockLocation application, we opted, for

the sake of simplicity, to demonstrate the operation of this application by providing static

fictitious location data.

6. EVALUATION 63

FIGURE 6.1: Most downloaded travel apps worldwide in 2022
Source: Adapted from [102]

After providing fictitious location data to the Google Maps application, we tested its

LBS for the user’s current location. The first test, as shown in Figure 6.2, illustrates the

application using fictitious data to display the user’s current location. In Figure 6.3, the test

of the remaining location-based services of the Google Maps application is depicted.

To make the application assume the fictitious data as the user’s current location, the

test described in Figure 6.2 was conducted, during which the following actions were per-

formed:

1. The application was launched without any controls regarding device location data

access, and it was observed that it accessed real location data (see Figure 6.2a).

2. Next, the MockLocation application was used to set a fictitious location near the cen-

ter of Paris (see Figure 6.2b).

3. After creating the fictitious location point, we launched the XPrivacyLua module and

selected the Google Maps application to receive fictitious location data.

4. The Google Maps application was relaunched, and it was observed that it displayed

the current location as the point corresponding to the fictitious data created by the

MockLocation application (see Figure 6.2c).

6. EVALUATION 64

(A) Google Maps
showing the true

current location

(B) Using the MockLo-
cation app to choose a

fake location point

(C) Google Maps
showing the fake

location

FIGURE 6.2: Testing the Google Maps application with a fictional location

As previously mentioned, to assess the functionality of our solution in the remaining

services of the Google Maps application, we conducted the test described in Figure 6.3, in

which the following services were tested:

1. Searching for places of interest near the current location (food and drinks; things to

do; shopping and services).

2. Public transport information.

3. Route calculation, starting from the fictitious location point.

As can be observed in Figure 6.3, the tested services of the Google Maps application

continue to function normally with fictitious location data. Figure 6.3a displays the result

of a search for museums near the user’s current location. In Figure 6.3b, information about

the available public transportation between the user’s current location and the Louvre Mu-

seum is shown, and finally, in Figure 6.3c, the planning of a car route between the user’s

current location and the Louvre Museum is presented.

6. EVALUATION 65

It’s worth mentioning that similar results were obtained when we provided simulated

routes to Google Maps. It was possible to observe a continuous change in the user’s fake

location as the fictitious coordinates were being provided.

(A) Google Maps
searching for services
(museums) with fake

location

(B) Google Maps
searching for public
transport with fake

location

(C) Calculating a
Google Maps route
using a fictitious

location

FIGURE 6.3: Testing the Google Maps services with a fictional location

6.2 Facebook

Social media has become an integral aspect of the daily lives of millennials in the digital

age. Among the social media platforms extensively utilized by millennials is Facebook,

boasting over 2 billion active users. This firmly establishes Facebook as a cornerstone of

social media widely embraced by its users [103].

According to Facebook’s LBS Terms, this application may collect and use the user’s

location data for purposes such as providing personalised content and information, en-

abling users to share their current and past locations with others, conducting measure-

ment and analytics, offering various business services, promoting safety, conducting re-

search and innovation for social benefit, and enhancing its products [104].

6. EVALUATION 66

While Facebook collects location data and provides users with various features to share

their location data, there is, however, the possibility of these data being exploited in a

malicious manner. For instance, a digital stalker could utilise Facebook’s profile viewing

options to ascertain that their location has been tagged in a status, subsequently giving

them the option to locate the individual or even go to their current location, which has

been shared as a status [105].

Taking into consideration the previously mentioned, we chose to test the Facebook ap-

plication with our solution, aiming to understand if it would be possible to provide ficti-

tious location data, thereby altering its functionality regarding location-based application

services.

Facebook has a feature called memories that allows users to review or share meaningful

content from their past experiences on the platform. These memories can include the user’s

location data, provided that the user enables access to their location data.

To test the capability of our solution to provide Facebook with fake location data, the

following actions were performed:

1. The Facebook application was launched without any restrictions on user location data

access. We navigated to the memories option and selected the option to add location

data to a memory. We observed that Facebook suggested locations around the user’s

real location.

2. Next, using the XPrivacyLua module, we blocked Facebook’s access to our location

data while providing fictitious location data previously generated using the Mock-

Location application.

3. We relaunched the Facebook application and noticed that it still had access to the

user’s real location data.

Upon realising that our solution was not working for Facebook, we proceeded with

debugging to identify the root cause of the issue. Analysis of the logs revealed that the

script location createfromparcel was unable to read the fictitious coordinates stored

in the device memory.

The log analysis also indicated that the Facebook application uses multiple threads to

access location data, leading us to consider that we might be facing a concurrency issue

among these threads when accessing the memory location containing the fictitious coordi-

nates.

6. EVALUATION 67

To validate our hypothesis, we modified the location createfromparcel.lua script

by directly writing the values of the fictitious coordinates into the script code.

We then repeated the entire process described earlier and observed that the Face-

book application now displayed the fictitious location data that we had hardcoded into the

location createfromparcel.lua script, as shown in Figure 6.4.

(A) Facebook access-
ing real location

(B) Facebook access-
ing fake location data

FIGURE 6.4: Providing fake location data to Facebook using our solution

Testing our solution with the Facebook application revealed that our solution likely

suffers from a concurrency issue among threads when reading the device memory where

user-defined fictitious coordinates are stored. Despite this concurrency problem, which

prevents us from using our solution with all its functionalities, we were still able to pro-

vide fake static locations to Facebook without compromising the application’s function.

6.3 WhatsApp

WhatsApp is a cross-platform instant messaging application for smartphones. It allows

users to send and receive location information, images, videos, audio, and text messages

in real-time to individuals and groups of friends, all at no cost [106].

6. EVALUATION 68

WhatsApp, with over 1.3 billion users across more than 180 countries, is widely re-

garded as one of the world’s most popular mobile applications. This free online messag-

ing service is owned by Facebook. Additionally, due to the increasing trend of remote work,

WhatsApp has emerged as one of the primary communication tools in use today[107].

Considering the significance of WhatsApp in the realm of Android device communica-

tions, we chose to test our solution with this application.

Given that WhatsApp allows the real-time sharing of location with other users, our test,

which yielded a positive outcome, aimed to verify whether the use of our solution enabled

the sending of false location information to other users through the location-sharing fea-

ture provided by this application. Figure 6.5 presents the results of the tests conducted on

WhatsApp using our solution which involved providing a fake static location.

(A) WhatsApp access-
ing real location

(B) WhatsApp access-
ing fake location data

FIGURE 6.5: Providing fake location data to WhatsApp using our solution

Our test was conducted as follows:

1. The WhatsApp application was launched without any controls in place regarding

access to the actual device location. We observed that WhatsApp was accessing the

user’s real location (see Figure 6.7a).

6. EVALUATION 69

2. Subsequently, through the XPrivacyLua module, access to the user’s real location

was blocked, and fictitious static location data created by the MockLocation applica-

tion was provided (see Figure 6.2b).

3. Following the blocking of the user’s real location, it was observed that when the real-

time location-sharing feature was requested, WhatsApp proceeded to send fictitious

location data (see Figure 6.7b).

In addition to allowing location sharing at a specific moment, WhatsApp has the func-

tionality to share location permanently for a specified period determined by the user.

Considering the positive result obtained in the test with a static fake location, we pro-

ceeded to test our solution to simulate a car journey, sharing our fake location in real-time

with another WhatsApp user. The results of the tests conducted with real-time location

sharing in the WhatsApp application are shown in Figure 6.6.

(A) Creating a sim-
ulated route in the

MockLocation

(B) Sharing location
from the simulated

route

(C) Sharing another
location from the sim-

ulated route

FIGURE 6.6: Testing WhatsApp with simulated routes

The test with the simulated route had the following steps:

1. We simulated a car route using the MockLocation application (see Figure 6.6a).

6. EVALUATION 70

2. Next, we launched the WhatsApp application and shared the fake location in real-time

with another user. It was possible to observe that the location sent by WhatsApp to

the chosen user for location sharing corresponded to points located on the simulated

route (see Figure 6.6b and Figure 6.6c).

The tests conducted enabled us to observe the possibility of using our solution to pro-

vide fake static and dynamic location data to the WhatsApp application, while also allowing

the sharing of this data with other users of the application.

6.4 Google Chrome

With a market share of 66.22% [108] on a global scale as of November 2022, Google Chrome

is currently the most widely used mobile browser worldwide. To provide a personalised

service, this application collects user location data [109], offering content and information

specifically tailored to the user’s current location.

To test our solution with the Google Chrome application, we followed the following

procedure:

1. We launched the Google Chrome application without any restrictions regarding ac-

cess to the user’s true location.

2. Next, we blocked access to location data using the XPrivacyLua module and pro-

vided the application with fake location data that we had created previously us-

ing the MockLocation application (see Figure 6.2b). We observed that Google Chrome

started determining the device’s location solely based on IP address information,

completely disregarding our fake location data. This test was conducted while con-

nected to both a WiFi network and a mobile data connection.

Based on the results obtained, restricting access to the user’s actual location data for

this application can be achieved by combining our solution with a Virtual Private Net-

work (VPN) 1 service that allows concealing the true IP address from which the device is

accessing the internet.

1A VPN is a technology that provides secure and private internet connectivity by encrypting data traffic
and routing it through servers located in different geographical regions. VPN are commonly used for
safeguarding personal information, bypassing geo-restrictions, and ensuring a safer online experience.

6. EVALUATION 71

6.5 Uber

In 2022, the Uber app was the second-most downloaded application worldwide, with 107

million downloads [102].

The access of this application to user location data is justified by the need to determine

their location in order to provide a transportation service by matching the user’s request

with a nearby vehicle driver. However, Uber’s access to user location data extends beyond

providing the transportation service to the user.

This application implemented a controversial method that allowed the ride-hailing

app to track the location of customers even when the application is running in the back-

ground. Before this tool was employed, Uber only collected user data when the app was

actively open. Nevertheless, with this practice, Uber could gather location data for up

to five minutes after the rider had closed the app, implying that Uber was attempting to

ascertain the customer’s final destination[110].

Keeping in mind that this type of application relies on user location access for its

proper functioning, the fact that it accesses user data beyond the necessary period for ser-

vice provision has made this application a candidate for testing with our solution. Thus,

to test if we could provide fictitious location data to the Uber application, we carried out

the following actions:

1. We launched the application without any restrictions on location data access and

then selected a destination. We observed that the application calculated the trip

using the user’s real location as the starting point (see Figure 6.7a).

2. Next, we proceeded to block location data access to the Uber application using the

XPrivacyLua module. Similar to what happened in our tests with the Facebook appli-

cation, here too, the script location createfromparcel.lua was unable to read the

fictitious coordinates from the device memory.

Upon realising that we were facing a situation similar to what occurred during the

Facebook application test, we modified the script location createfromparcel.lua, rewrit-

ing the fictitious coordinates directly into the script’s source code.

After making changes to the script locate createfromparcel.lua, we re-ran the Uber

application. When selecting a destination, the application calculated the route, using the

hardcoded fictitious coordinates from the script location createfromparcel.lua as the

user’s location (see Figure 6.7b).

6. EVALUATION 72

In order to understand if the issue of concurrency, where the fictitious coordinates

are stored, we proceeded to debug our solution. During this process, we found that the

Uber application utilises a multi-threaded approach in accessing location data, resulting in

a malfunction of our solution. The test results for the Uber application are displayed in

Figure 6.7.

(A) Uber accessing
real location

(B) Uber accessing
fake location data

FIGURE 6.7: Providing fake location data to Uber using our solution

6.6 Reflection on the Results

Throughout this section, we describe the tests conducted on our solution to assess whether

the initial objectives had been achieved. Considering that our solution was designed as

a proof of concept and developed to provide both static and dynamic location data to the

Google Maps application, our initial objectives have been met.

In addition to the Google Maps application, we were able to verify that our solution

yielded positive results with the WhatsApp application. However, with the remaining

tested applications, we obtained partially satisfactory results.

6. EVALUATION 73

Race condition issues in accessing the memory location where fictitious coordinates are

stored hindered the correct functioning of our solution in applications that use a multi-

threaded approach to access user data.

A possible resolution to the race condition problem could be achieved by modifying the

code of the background service executed by the XPrivacyLua module. Instead of storing the

value of fictitious coordinates in a shared memory location to be read with each execution

of the location createfromparcel.lua script, we can utilise global variables accessible by

the Lua script responsible for hooking the methods used by applications to access device

location data.

Apart from the applications mentioned in this section, similar tests were conducted,

with results comparable to those obtained for Facebook and Uber, on the following appli-

cations:

Strava

Tinder

AccuWeather

Waze

Considering that the tests on these applications yielded results similar to those ob-

tained with the Facebook and Uber applications, we have chosen not to provide a detailed

description of them in this section.

The possibility of developing a solution that allows for the provision of false location

data, both statically and dynamically, to all applications installed on an Android device is

strongly limited by the complexity of the Android operating system, which implements

robust mechanisms such as sandboxing to restrict access to data manipulated by different

applications.

Chapter 7

Conclusion

Despite the core of the operating system continuing to be released as part of the Android

Open Source Project, the majority of applications that come pre-installed by Google and

some manufacturers on Android devices are not open source. This situation is exacer-

bated by the increasing number of libraries and APIs that are only available on devices

running pre-installed Google apps, making the overwhelming majority of third-party ap-

plications dependent on the Google ecosystem. Furthermore, it is not possible to uninstall

these applications without obtaining administrative privileges (root), which are restricted

by default for users. For these reasons, Android is described as a kind of open system

where you can ”look but don’t touch” [111].

In addition to not allowing access to the system with administrator privileges, regard-

ing user privacy protection, especially in controlling applications access to user location

data, Android implements a permission system that proves insufficient in achieving the

objectives for which it was designed, as described in Section 2.1.2.

The Android permission system is based on a binary logic where the user can only

choose between two possible options - granting access or denying access to their loca-

tion data. This model, while effective in blocking access to location data, limits the use

of certain applications whose functionality depends on access to this data. In these appli-

cations, by revoking the permission to access location data, the user becomes unable to

continue using the application.

The mechanisms implemented by Android for granting and revoking permissions to

access location data by various applications that the user has installed on their device are

often ignored by users who perceive this process as too cumbersome relative to their user

experience [112] [113].

74

7. CONCLUSION 75

With privacy concerns of users gaining increasing attention in the media, as well as

issues of illegitimate data collection and abuse of dominant position by Google, some

open-source software enthusiasts have been developing solutions to safeguard user pri-

vacy. One of the most promising solutions currently in development is called the microG

Project [111], which aims to provide an Android operating system without the need for

Google’s applications or its APIs.

Given the impossibility of undertaking a project as extensive as the microG Project, our

solution focuses on creating mechanisms that, first and foremost, allow obtaining admin-

istrative privileges on the device and also control access to the user’s location data by

installed applications, with a particular emphasis on Google Maps, which is undoubtedly

the most well-known and widely used navigation application globally.

Our solution aims to provide a mechanism that frees the user from the need to manage

permissions to access location data through the mechanisms provided by the operating

system, offering an alternative through which it is possible to provide fake location data

to any application installed on the device without compromising its normal functioning

and without the need to revoke any previously granted permissions.

7.1 Research Summary

Research conducted on the topic of user privacy in Android devices, with a special focus

on location data, has shown that investigations related to this theme have been ongoing

since the inception of Android, highlighting the significance of this issue in the context of

mobile devices.

Within the extensive literature available on this subject, three significantly different

approaches can be distinguished:

1. Solutions that monitor the data sent by applications outside the device have been

studied. These solutions block, alter, or anonymize the data that leaves the device,

preventing the inference of the user’s true location.

2. The research conducted has revealed another type of approach focused on making

app permissions more granular, replacing the permission system implemented by

the Android operating system.

3. Finally, approaches that involve modifying the operating system itself to block ac-

cess to location data and provide fake data to installed applications on the device.

7. CONCLUSION 76

Considering that users should have the ability to selectively determine when and

which applications can access their actual location, and in cases where it is advantageous

to provide fake data to an application for user safety, such as in cases of cyberstalking as

mentioned in Section 6.2 regarding the Facebook application, we have chosen to create a

solution that allows blocking access to the user’s real location data and also allows the

user to arbitrarily define a fictional location, which can be a static location or a simulated

route.

7.2 Current Limitations

Given the ongoing evolution of the Android ecosystem, any solution requires constant

maintenance and development. The EdXposed framework, which is used in our solution,

is only compatible with devices running Android versions 8.0 to 11. In addition to this

limitation, there has been no source code update for this framework from its developers

since June 2021, which suggests that this project may be on the verge of being abandoned.

For the latest Android models (8.1 - 12, 12L DP1), the LSPosed [114] framework has

emerged, offering the same functionalities as its predecessor, the EdXposed framework.

Although the rooting process is becoming increasingly simplified and, as a result, more

accessible to a greater number of users, it remains a task that is beyond the reach of most

users. Additionally, manufacturers do not provide warranty coverage for rooted devices

in case of malfunctions.

The use of the device’s shared memory for manipulating fictitious location data presents

a dual limitation. On one hand, it generates race condition problems, restricting the func-

tionality of our solution with applications that employ a multi-threaded approach to access

location data. Moreover, it significantly elevates battery consumption due to its high pro-

cessing demands, thereby limiting the temporal usage of our solution.

7.3 Future Work

During the completion of this dissertation, it was not possible to carry out some tasks and

test certain ideas that arose due to time constraints in the development of this work.

In this section, we describe the tasks, improvements, and ideas that have been deferred

to future work due to the lack of time.

7. CONCLUSION 77

While testing our solution with various applications, we observed instances of race

condition issues in the script location createfromparcel.lua accessing the device shared

memory where fictitious coordinates are stored for supply to the applications. One pos-

sible solution to this problem would involve modifying the source code of the background

service in the XPrivacyLua module and storing these values in class variables, accessible

from the Lua script. This change would also help reduce battery consumption by requir-

ing fewer computational resources.

Considering that the requirement of having a rooted device may deter a significant

portion of users from adopting this solution, this limitation could potentially be overcome

by using VirtualXposed [115]. Although it does not offer the same level of capability as

EdXposed, it allows the use of EdXposed framework modules without the need to root the

device.

Considering the existence of LSPosed for the latest Android versions, implementing

our solution using this framework would allow us to encompass models equipped with

the most recent Android versions.

In order to enhance the user experience of our solution, the creation of fictitious lo-

cation data (routes and static points) performed through the MockLocation application

should be integrated into the XPrivacyLua module, consolidating all the functionalities

of our solution into a single application.

Our solution requires the user to be proactive in controlling access to their location

data whenever they perceive that the knowledge of their true location by a particular

application could threaten their privacy. The implementation of a mechanism that au-

tonomously generates random fake location data whenever the user is in an area con-

sidered sensitive in terms of their privacy would free the user from the need to activate

location data access controls every time they visit such places.

Finally, in order to provide a more realistic appearance to the fake location data, imple-

menting fake accelerometer data on the device, correlated with the location data provided

by our solution, would expand the usage spectrum of our solution, especially in fitness

applications and those that rely on accelerometer data to infer the user’s location.

7.4 Conclusions

During the course of our research, we addressed the main limitations of existing solu-

tions in the context of controlling access to user location data by applications on Android

7. CONCLUSION 78

devices.

The development of our solution was guided by the need to provide users with the

ability to customise fictitious location data to be supplied to applications, allowing them

to choose between static data or simulated routes.

Although it is just a functional prototype, our solution fulfills the objective of providing

a proof of concept regarding the issue of application access to user location data.

While true location data is essential for effectively using the services that applications

offer most of the time, there are situations in which users may benefit in terms of privacy

and security by having the option to provide fictitious location data to certain applica-

tions. For example, this could help prevent situations such as cyberstalking or the abusive

collection of data for profiling purposes, or to establish a system of penalties for citizens,

as has been observed in countries with authoritarian political regimes.

Appendix A

Changes made to the XprivacyLua

module code

In this appendix, we present the code of the XPrivacyLua module that has been mod-

ified and added during the course of this dissertation work.

A.1 Changes to the script location createfromparcel.lua

-- This file is a modified version of the

-- location_createfromparcel.lua file from the XPrivacyLua

-- module.

function after(hook , param)

local result = param:getResult ()

if result == nil then

return false

end

local old = result:toStrin

-- start of added code

local fakeCords = nil

local file_path = nil

"/sdcard/Android/mokLocation/fake_coordinates.txt"

if io.open(file_path) then

79

A. CHANGES MADE TO THE XPRIVACYLUA MODULE CODE 80

local file = io.open(file_path , "r")

for line in io.lines(file_path) do

fakeCords = line

break

end

file:close ()

else

print("File not found")

end

local fLatitude = nil

local fLongitude =

-- Extract lat and long values

fLatitude , fLongitude =

string.match(fakeCords , "^%s*(.-)%s*,%s*(.-)%s*$")

local latitude = fLatitude

local longitude = fLongit

local type = param:getSetting(’location.type ’)

if type == ’set’ then

latitude = param:getSetting(’location.latitude ’)

longitude = param:getSetting(’location.longitude ’)

if latitude == nil or longitude == nil then

latitude = fLatitude

longitude = fLongitude

end

-- end of added code

elseif type == ’coarse ’ then

local accuracy = param:getSetting(’location.accuracy ’)

if accuracy ~= nil then

local clatitude = param:getValue(’latitude ’, hook)

local clongitude = param:getValue(’longitude ’, hook)

if clatitude == nil or clongitude == nil then

clatitude , clongitude =

A. CHANGES MADE TO THE XPRIVACYLUA MODULE CODE 81

randomoffset(result:getLatitude (),

result:getLongitude (), accuracy)

param:putValue(’latitude ’, clatitude , hook)

param:putValue(’longitude ’, clongitude , hook)

end

latitude = clatitude

longitude = clongitude

end

end

if result:hasAccuracy () then

local accuracy = result:getAccuracy ()

if accuracy > 0 then

latitude , longitude =

randomoffset(latitude , longitude , accuracy)

end

end

result:setLatitude(latitude)

result:setLongitude(longitude)

return true , old , result:toString ()

end

function randomoffset(latitude , longitude , radius)

local r = radius / 111000; -- degrees

local w = r * math.sqrt(math.random ())

local t = 2 * math.pi * math.random ()

local lonoff = w * math.cos(t)

local latoff = w * math.sin(t)

lonoff = lonoff / math.cos(math.rad(latitude))

return latitude + latoff , longitude + lonoff

end

A. CHANGES MADE TO THE XPRIVACYLUA MODULE CODE 82

LISTING A.1: Lua code for the script location createfromparcel.lua

A.2 Java class for the background service

package eu.faircode.xlua;

import android.app.Notification;

import android.app.NotificationChannel;

import android.app.NotificationManager;

import android.app.Service;

import android.content.Intent;

import android.os.Build;

import android.os.IBinder;

import android.util.Log;

import androidx.annotation.Nullable;

import androidx.core.app.NotificationCompat;

import java.io.BufferedReader;

import java.io.File;

import java.io.FileReader;

import java.io.IOException;

import java.util.Timer;

import java.util.TimerTask;

public class BackGroundService extends Service {

private static final int NOTIFICATION_ID = 1;

private static final String CHANNEL_ID =

"BackGroundServiceChannel";

private String codeWord = "";

private String last_cw = "";

@Override

public void onCreate () {

A. CHANGES MADE TO THE XPRIVACYLUA MODULE CODE 83

super.onCreate ();

}

@Override

public int onStartCommand(Intent intent , int flags ,

int startId) {

createNotificationChannel ();

NotificationCompat.Builder builder =

new NotificationCompat.Builder(this , CHANNEL_ID)

.setSmallIcon(R.drawable.ic_launcher_background)

.setContentTitle("My Background Service")

.setContentText("Running in the background");

Notification notification = builder.build ();

startForeground(NOTIFICATION_ID , notification);

// Schedule a task to read the code word

// from the file every 5 seconds

Timer setCodeWordTimer = new Timer ();

setCodeWordTimer.scheduleAtFixedRate(new TimerTask () {

@Override

public void run() {

try {

File file =

new File("/sdcard/Android/mokLocation/

codeWord.txt");

BufferedReader reader =

new BufferedReader(new FileReader(file));

String line = reader.readLine ();

reader.close ();

codeWord = line;

Log.d("ccd", "Set code word >>> " + codeWord);

A. CHANGES MADE TO THE XPRIVACYLUA MODULE CODE 84

} catch (IOException e) {

e.printStackTrace ();

}

}

}, 0, 5000);

TimerTask task = new TimerTask () {

private Thread currentThread = null;

@Override

public void run() {

try {

File file =

new File("/sdcard/Android/mokLocation/

codeWord.txt");

BufferedReader reader =

new BufferedReader(new FileReader(file));

String line = reader.readLine ();

reader.close ();

Log.d("ccd", "Check CodeWord >>> " + codeWord);

Log.d("ccd", "Check Last CodeWord >>> " + last_cw);

if (!line.equals(last_cw)) {

last_cw = line;

switch (line) {

case "USER_CURRENT_LOCATION":

// Stop the previous thread if it exists

if (currentThread != null) {

currentThread.interrupt ();

}

// Start a new thread to

// handle user current location

currentThread = new UserCurrentLocationThread ();

currentThread.start ();

break;

A. CHANGES MADE TO THE XPRIVACYLUA MODULE CODE 85

case "DRIVING":

// Stop the previous thread if it exists

if (currentThread != null) {

currentThread.interrupt ();

}

// Start a new thread to handle driving

currentThread = new DrivingThread ();

currentThread.start ();

break;

case "WALKING":

// Stop the previous thread if it exists

if (currentThread != null) {

currentThread.interrupt ();

}

// Start a new thread to handle walking

currentThread = new WalkingThread ();

currentThread.start ();

break;

case "STATIC_POINT":

// Stop the previous thread if it exists

if (currentThread != null) {

currentThread.interrupt ();

}

// Start a new thread to handle static point

currentThread = new StaticPointThread ();

currentThread.start ();

break;

default:

// Do nothing if the code word

//is not recognized

break;

}

}

A. CHANGES MADE TO THE XPRIVACYLUA MODULE CODE 86

} catch (IOException e) {

e.printStackTrace ();

}

}

};

Timer timer = new Timer ();

timer.schedule(task , 0, 5000);

return START_STICKY;

}

@Override

public void onDestroy () {

super.onDestroy ();

stopForeground(true);

}

@Override

public void onTaskRemoved(Intent rootIntent) {

super.onTaskRemoved(rootIntent);

stopSelf ();

}

@Nullable

@Override

public IBinder onBind(Intent intent) {

return null;

}

private void createNotificationChannel () {

if (Build.VERSION.SDK_INT >= Build.VERSION_CODES.O) {

NotificationChannel channel = new NotificationChannel(

CHANNEL_ID ,

A. CHANGES MADE TO THE XPRIVACYLUA MODULE CODE 87

"My Background Service Channel",

NotificationManager.IMPORTANCE_DEFAULT

);

NotificationManager manager =

getSystemService(NotificationManager.class);

manager.createNotificationChannel(channel);

}

}

}

LISTING A.2: Java class code for the background service

A.3 Java class for the threads managing static fake location data

package eu.faircode.xlua;

import java.io.BufferedReader;

import java.io.BufferedWriter;

import java.io.File;

import java.io.FileReader;

import java.io.FileWriter;

import java.io.IOException;

public class StaticPointThread extends Thread {

private boolean isInterrupted = false;

@Override

public void run() {

try {

while (! isInterrupted) {

// Read the location from the file

File locationFile =

new File("/sdcard/Android/mokLocation/

location.txt");

A. CHANGES MADE TO THE XPRIVACYLUA MODULE CODE 88

BufferedReader locationReader =

new BufferedReader(new FileReader(locationFile));

String location = locationReader.readLine ();

locationReader.close ();

// Write the location to the fake coordinates file

File fakeCoordinatesFile =

new File("/sdcard/Android/mokLocation/

fake_coordinates.txt");

BufferedWriter fakeCoordinatesWriter =

new BufferedWriter(

new FileWriter(fakeCoordinatesFile));

fakeCoordinatesWriter.write(location);

fakeCoordinatesWriter.newLine ();

fakeCoordinatesWriter.close ();

// Wait for 5 seconds before

// reading and writing again

Thread.sleep (5000);

}

} catch (InterruptedException e) {

// Thread was interrupted , exit gracefully

} catch (IOException e) {

e.printStackTrace ();

}

}

@Override

public void interrupt () {

isInterrupted = true;

super.interrupt ();

}

}

LISTING A.3: Java code for the thread that manages location data for the user-chosen

static point

A. CHANGES MADE TO THE XPRIVACYLUA MODULE CODE 89

package eu.faircode.xlua;

import java.io.BufferedReader;

import java.io.BufferedWriter;

import java.io.File;

import java.io.FileReader;

import java.io.FileWriter;

import java.io.IOException;

public class UserCurrentLocationThread extends Thread {

private boolean isInterrupted = false;

@Override

public void run() {

try {

while (! isInterrupted) {

// Read the location from the file

File locationFile =

new File("/sdcard/Android/mokLocation/

location.txt");

BufferedReader locationReader =

new BufferedReader(new FileReader(locationFile));

String location = locationReader.readLine ();

locationReader.close ();

// Write the location to the fake coordinates file

File fakeCoordinatesFile =

new File("/sdcard/Android/mokLocation/

fake_coordinates.txt");

BufferedWriter fakeCoordinatesWriter =

new BufferedWriter(

new FileWriter(fakeCoordinatesFile));

fakeCoordinatesWriter.write(location);

fakeCoordinatesWriter.newLine ();

fakeCoordinatesWriter.close ();

A. CHANGES MADE TO THE XPRIVACYLUA MODULE CODE 90

// Wait for 5 seconds before

// reading and writing again

Thread.sleep (5000);

}

} catch (InterruptedException e) {

// Thread was interrupted , exit gracefully

} catch (IOException e) {

e.printStackTrace ();

}

}

@Override

public void interrupt () {

isInterrupted = true;

super.interrupt ();

}

}

LISTING A.4: Java code for the thread that manages location data for the user-current

location

A.4 Java class for the threads managing dynamic fake location

data

package eu.faircode.xlua;

import android.os.Environment;

import android.util.Log;

import java.io.BufferedReader;

import java.io.File;

A. CHANGES MADE TO THE XPRIVACYLUA MODULE CODE 91

import java.io.FileReader;

import java.io.FileWriter;

import java.io.IOException;

import java.util.ArrayList;

import java.util.List;

public class DrivingThread extends Thread {

private boolean isInterrupted = false;

@Override

public void run() {

simulateDrivingRoute ();

}

@Override

public void interrupt () {

isInterrupted = true;

super.interrupt ();

}

public void setIsInterrupted () {

isInterrupted = false;

}

public void simulateDrivingRoute () {

String waypointsFilePath =

"/sdcard/Android/mokLocation/location_driving_route.txt";

int segmentsPerWaypoint = 5;

int timeInterval = 200;

try {

interpolatePathToFile(waypointsFilePath ,

A. CHANGES MADE TO THE XPRIVACYLUA MODULE CODE 92

segmentsPerWaypoint , timeInterval);

} catch (IOException e) {

e.printStackTrace ();

}

}

// Interpolates positions between waypoints to

// create a smooth path and writes the

// simulated coordinates to a file

public void interpolatePathToFile(String waypointsFilePath ,

int segmentsPerWaypoint , int timeInterval)

throws IOException {

List <String > waypoints =

readWaypointsFromFile(waypointsFilePath);

List <String > path =

interpolatePath(waypoints , segmentsPerWaypoint);

writeCoordinatesToFile(path , timeInterval);

}

// Reads waypoints from a file

private static List <String >

readWaypointsFromFile(String filePath)

throws IOException {

List <String > waypoints = new ArrayList <>();

try (BufferedReader reader =

new BufferedReader(new FileReader(filePath))) {

String line;

while ((line = reader.readLine ()) != null) {

waypoints.add(line);

}

}

A. CHANGES MADE TO THE XPRIVACYLUA MODULE CODE 93

return waypoints;

}

private void writeCoordinatesToFile(List <String > path ,

int timeInterval) throws IOException {

for (int i = 0; i < path.size (); i++) {

Log.d("ccd", path.get(i));

Log.d("ccd",

"isInterrupted value driving route >>> " +

isInterrupted);

if(isInterrupted == true){

return;

}

writeLocationCodeToFile(path.get(i));

if (i < path.size() - 1) {

try {

Thread.sleep(timeInterval);

} catch (InterruptedException e) {

e.printStackTrace ();

}

}

}

}

private static void writeLocationCodeToFile(

String locationCodeWord){

String data = locationCodeWord + "\n\r";

// Create the file to store the user static location

File sdCard = Environment.getExternalStorageDirectory ();

// Create a new file with the specified name and path

String storageDir =

sdCard.getAbsolutePath () + "/Android/mokLocation";

A. CHANGES MADE TO THE XPRIVACYLUA MODULE CODE 94

File file = new File(storageDir , "fake_coordinates.txt");

if (file.exists ()){

}

if (!file.exists ()) {

try {

file.createNewFile ();

} catch (IOException e) {

e.printStackTrace ();

}

}

try {

FileWriter writer = new FileWriter(file);

writer.write(data);

writer.flush ();

writer.close ();

} catch (IOException e) {

e.printStackTrace ();

}

}

// Interpolates positions between

// waypoints to create a smooth path

public static List <String >

interpolatePath(List <String > waypoints ,

int segmentsPerWaypoint) {

List <String > path = new ArrayList <String >();

for (int i = 0; i < waypoints.size() - 1; i++) {

String startPoint = waypoints.get(i);

String endPoint = waypoints.get(i + 1);

double [] startCoords = parseCoords(startPoint);

double [] endCoords = parseCoords(endPoint);

A. CHANGES MADE TO THE XPRIVACYLUA MODULE CODE 95

double distance =

haversine(startCoords [0], startCoords [1],

endCoords [0], endCoords [1]);

double segmentDistance = distance / segmentsPerWaypoint;

for (int j = 0; j < segmentsPerWaypoint; j++) {

double t = (double) j / (double) segmentsPerWaypoint;

double [] coords = interpolate(startCoords , endCoords , t);

path.add(formatCoords(coords [0], coords [1]));

}

}

// Add last waypoint

path.add(waypoints.get(waypoints.size() - 1));

return path;

}

// Parses coordinates from a string

//in the format "latitude , longitude"

private static double [] parseCoords(String coordsString) {

String [] parts = coordsString.split(",");

double [] coords = new double [2];

coords [0] = Double.parseDouble(parts [0]. trim ());

coords [1] = Double.parseDouble(parts [1]. trim ());

return coords;

}

// Formats coordinates as a string

//in the format "latitude , longitude"

private static String formatCoords(

double latitude , double longitude){

return String.format("%.6f, %.6f", latitude , longitude);

}

A. CHANGES MADE TO THE XPRIVACYLUA MODULE CODE 96

// Interpolates between two points

//using linear interpolation

private static double [] interpolate(double [] startCoords ,

double [] endCoords , double t) {

double latitude = startCoords [0] +

(endCoords [0] - startCoords [0]) * t;

double longitude = startCoords [1] +

(endCoords [1] - startCoords [1]) * t;

return new double [] { latitude , longitude };

}

// Calculates the great -circle distance

// between two points using the Haversine formula

private static double haversine(double lat1 ,

double lon1 , double lat2 , double lon2) {

final int R = 6371; // Earth ’s radius in km

double latDistance = Math.toRadians(lat2 - lat1);

double lonDistance = Math.toRadians(lon2 - lon1);

double a = Math.sin(latDistance / 2) *

Math.sin(latDistance / 2)

+ Math.cos(Math.toRadians(lat1)) *

Math.cos(Math.toRadians(lat2))

* Math.sin(lonDistance / 2) *

Math.sin(lonDistance / 2);

double c = 2 * Math.atan2(Math.sqrt(a), Math.sqrt(1 - a));

double distance = R * c;

return distance;

}

}

LISTING A.5: Java code for the thread that manages simulated driving route coordinates

A. CHANGES MADE TO THE XPRIVACYLUA MODULE CODE 97

package eu.faircode.xlua;

import android.os.Environment;

import android.util.Log;

import java.io.BufferedReader;

import java.io.File;

import java.io.FileReader;

import java.io.FileWriter;

import java.io.IOException;

import java.util.ArrayList;

import java.util.List;

public class DrivingThread extends Thread {

private boolean isInterrupted = false;

@Override

public void run() {

simulateDrivingRoute ();

}

@Override

public void interrupt () {

isInterrupted = true;

super.interrupt ();

}

public void setIsInterrupted () {

A. CHANGES MADE TO THE XPRIVACYLUA MODULE CODE 98

isInterrupted = false;

}

public void simulateDrivingRoute () {

String waypointsFilePath =

"/sdcard/Android/mokLocation/location_driving_route.txt";

int segmentsPerWaypoint = 20;

int timeInterval = 2000;

try {

interpolatePathToFile(waypointsFilePath ,

segmentsPerWaypoint , timeInterval);

} catch (IOException e) {

e.printStackTrace ();

}

}

// Interpolates positions between waypoints to

// create a smooth path and writes the

// simulated coordinates to a file

public void interpolatePathToFile(String waypointsFilePath ,

int segmentsPerWaypoint , int timeInterval)

throws IOException {

List <String > waypoints =

readWaypointsFromFile(waypointsFilePath);

List <String > path =

interpolatePath(waypoints , segmentsPerWaypoint);

writeCoordinatesToFile(path , timeInterval);

}

// Reads waypoints from a file

private static List <String >

A. CHANGES MADE TO THE XPRIVACYLUA MODULE CODE 99

readWaypointsFromFile(String filePath)

throws IOException {

List <String > waypoints = new ArrayList <>();

try (BufferedReader reader =

new BufferedReader(new FileReader(filePath))) {

String line;

while ((line = reader.readLine ()) != null) {

waypoints.add(line);

}

}

return waypoints;

}

private void writeCoordinatesToFile(List <String > path ,

int timeInterval) throws IOException {

for (int i = 0; i < path.size (); i++) {

Log.d("ccd", path.get(i));

Log.d("ccd",

"isInterrupted value driving route >>> " +

isInterrupted);

if(isInterrupted == true){

return;

}

writeLocationCodeToFile(path.get(i));

if (i < path.size() - 1) {

try {

Thread.sleep(timeInterval);

} catch (InterruptedException e) {

e.printStackTrace ();

}

}

}

}

A. CHANGES MADE TO THE XPRIVACYLUA MODULE CODE 100

private static void writeLocationCodeToFile(

String locationCodeWord){

String data = locationCodeWord + "\n\r";

// Create the file to store the user static location

File sdCard = Environment.getExternalStorageDirectory ();

// Create a new file with the specified name and path

String storageDir =

sdCard.getAbsolutePath () + "/Android/mokLocation";

File file = new File(storageDir , "fake_coordinates.txt");

if (file.exists ()){

}

if (!file.exists ()) {

try {

file.createNewFile ();

} catch (IOException e) {

e.printStackTrace ();

}

}

try {

FileWriter writer = new FileWriter(file);

writer.write(data);

writer.flush ();

writer.close ();

} catch (IOException e) {

e.printStackTrace ();

}

}

// Interpolates positions between

// waypoints to create a smooth path

A. CHANGES MADE TO THE XPRIVACYLUA MODULE CODE 101

public static List <String >

interpolatePath(List <String > waypoints ,

int segmentsPerWaypoint) {

List <String > path = new ArrayList <String >();

for (int i = 0; i < waypoints.size() - 1; i++) {

String startPoint = waypoints.get(i);

String endPoint = waypoints.get(i + 1);

double [] startCoords = parseCoords(startPoint);

double [] endCoords = parseCoords(endPoint);

double distance =

haversine(startCoords [0], startCoords [1],

endCoords [0], endCoords [1]);

double segmentDistance = distance / segmentsPerWaypoint;

for (int j = 0; j < segmentsPerWaypoint; j++) {

double t = (double) j / (double) segmentsPerWaypoint;

double [] coords = interpolate(startCoords ,

endCoords , t);

path.add(formatCoords(coords [0], coords [1]));

}

}

// Add last waypoint

path.add(waypoints.get(waypoints.size() - 1));

return path;

}

// Parses coordinates from a

// string in the format "latitude , longitude"

private static double [] parseCoords(String coordsString) {

String [] parts = coordsString.split(",");

double [] coords = new double [2];

coords [0] = Double.parseDouble(parts [0]. trim ());

A. CHANGES MADE TO THE XPRIVACYLUA MODULE CODE 102

coords [1] = Double.parseDouble(parts [1]. trim ());

return coords;

}

// Formats coordinates as a string

//in the format "latitude , longitude"

private static String formatCoords(

double latitude , double longitude){

return String.format("%.6f, %.6f", latitude , longitude);

}

// Interpolates between two

// points using linear interpolation

private static double [] interpolate(double [] startCoords ,

double [] endCoords , double t) {

double latitude = startCoords [0] +

(endCoords [0] - startCoords [0]) * t;

double longitude = startCoords [1] +

(endCoords [1] - startCoords [1]) * t;

return new double [] { latitude , longitude };

}

// Calculates the great -circle distance

// between two points using the Haversine formula

private static double haversine(double lat1 ,

double lon1 , double lat2 , double lon2) {

final int R = 6371; // Earth ’s radius in km

double latDistance = Math.toRadians(lat2 - lat1);

double lonDistance = Math.toRadians(lon2 - lon1);

double a = Math.sin(latDistance / 2) *

Math.sin(latDistance / 2)

A. CHANGES MADE TO THE XPRIVACYLUA MODULE CODE 103

+ Math.cos(Math.toRadians(lat1)) *

Math.cos(Math.toRadians(lat2))

* Math.sin(lonDistance / 2) *

Math.sin(lonDistance / 2);

double c = 2 * Math.atan2(Math.sqrt(a), Math.sqrt(1 - a));

double distance = R * c;

return distance;

}

}

LISTING A.6: Java code for the thread that manages simulated walking route coordinates

Bibliography

[1] I. The Radicati Group, “Mobile Statistics Report, 2021-2025,” The Radi-

cati Group, Inc. - A Technology Market Research Firm, Tech. Rep., 2021.

[Online]. Available: https://www.radicati.com/wp/wp-content/uploads/2021/

Mobile Statistics Report, 2021-2025 Executive Summary.pdf [Cited on page 1.]

[2] Y.-K. Lee, C.-T. Chang, Y. Lin, and Z.-H. Cheng, “The dark side of smartphone

usage: Psychological traits, compulsive behavior and technostress,” Computers

in Human Behavior, vol. 31, pp. 373–383, Feb. 2014. [Online]. Available: https:

//linkinghub.elsevier.com/retrieve/pii/S074756321300397X [Cited on page 1.]

[3] D. Rozgonjuk and J. Elhai, “Problematic smartphone usage, emotion regulation,

and social and non-social smartphone use,” in Proceedings of the Technology, Mind,

and Society. Washington DC USA: ACM, Apr. 2018, pp. 1–1. [Online]. Available:

https://dl.acm.org/doi/10.1145/3183654.3183664 [Cited on page 1.]

[4] H. Yun, D. Han, D.-R. Bundang-Gu, S.-S. Gyeonggi-do, and C. C. Lee, “UN-

DERSTANDING THE USE OF LOCATION-BASED SERVICE APPLICATIONS:,”

vol. 14, no. 3, 2013. [Cited on page 1.]

[5] F. Zhao, L. Gao, Y. Zhang, Z. Wang, B. Wang, and S. Guo, “You Are Where You

App: An Assessment on Location Privacy of Social Applications,” in 2018 IEEE

29th International Symposium on Software Reliability Engineering (ISSRE), Oct. 2018,

pp. 236–247, iSSN: 2332-6549. [Cited on page 2.]

[6] S. Y. Esayas, “The idea of ‘emergent properties’ in data privacy: towards a holistic

approach,” International Journal of Law and Information Technology, vol. 25, no. 2, pp.

139–178, 2017. [Cited on page 2.]

[7] J. Thatcher, “Big Data, Big Questions| Living on Fumes: Digital Footprints,

Data Fumes, and the Limitations of Spatial Big Data,” International Journal of

104

https://www.radicati.com/wp/wp-content/uploads/2021/Mobile_Statistics_Report,_2021-2025_Executive_Summary.pdf
https://www.radicati.com/wp/wp-content/uploads/2021/Mobile_Statistics_Report,_2021-2025_Executive_Summary.pdf
https://linkinghub.elsevier.com/retrieve/pii/S074756321300397X
https://linkinghub.elsevier.com/retrieve/pii/S074756321300397X
https://dl.acm.org/doi/10.1145/3183654.3183664

BIBLIOGRAPHY 105

Communication, vol. 8, no. 0, p. 19, Jun. 2014, number: 0. [Online]. Available:

https://ijoc.org/index.php/ijoc/article/view/2174 [Cited on page 2.]

[8] P. Gilbert, B.-G. Chun, L. P. Cox, and J. Jung, “Vision: automated security validation

of mobile apps at app markets,” in Proceedings of the second international workshop on

Mobile cloud computing and services, 2011, pp. 21–26. [Cited on page 2.]

[9] M. Madden, “Public Perceptions of Privacy and Security in the Post-Snowden Era,”

Nov. 2014. [Online]. Available: https://www.pewresearch.org/internet/2014/11/

12/public-privacy-perceptions/ [Cited on page 2.]

[10] A. Sunyaev, T. Dehling, P. L. Taylor, and K. D. Mandl, “Availability and quality

of mobile health app privacy policies,” Journal of the American Medical Informatics

Association, vol. 22, no. e1, pp. e28–e33, 2015. [Cited on page 2.]

[11] A. G. Ray, Sri, “Grindr Is Sharing The HIV Status Of Its Users With Other

Companies,” Apr. 2018, section: Science. [Online]. Available: https://www.

buzzfeednews.com/article/azeenghorayshi/grindr-hiv-status-privacy [Cited on

page 2.]

[12] A. M. McDonald and L. F. Cranor, “The cost of reading privacy policies,” Isjlp, vol. 4,

p. 543, 2008. [Cited on page 3.]

[13] P. B. Brandtzæg, M. Lüders, and J. H. Skjetne, “”Too many Facebook ’friends’? Con-

tent sharing and sociability versus the need for privacy in social network sites”:

Corrigenda,” International Journal of Human-Computer Interaction, vol. 27, no. 1, pp.

106–106, 2011, place: United Kingdom Publisher: Taylor & Francis. [Cited on

page 3.]

[14] A. Khatoon and P. Corcoran, “Android permission system and user privacy — A

review of concept and approaches,” in 2017 IEEE 7th International Conference on

Consumer Electronics - Berlin (ICCE-Berlin). Berlin: IEEE, Sep. 2017, pp. 153–158.

[Online]. Available: http://ieeexplore.ieee.org/document/8210616/ [Cited on

pages 3, 10, and 14.]

[15] H. Anwar, D. Pfahl, and S. N. Srirama, “Evaluating the impact of code smell refac-

toring on the energy consumption of android applications,” in 2019 45th Euromicro

Conference on Software Engineering and Advanced Applications (SEAA). IEEE, 2019,

pp. 82–86. [Cited on page 3.]

https://ijoc.org/index.php/ijoc/article/view/2174
https://www.pewresearch.org/internet/2014/11/12/public-privacy-perceptions/
https://www.pewresearch.org/internet/2014/11/12/public-privacy-perceptions/
https://www.buzzfeednews.com/article/azeenghorayshi/grindr-hiv-status-privacy
https://www.buzzfeednews.com/article/azeenghorayshi/grindr-hiv-status-privacy
http://ieeexplore.ieee.org/document/8210616/

BIBLIOGRAPHY 106

[16] “Google Play Store: number of apps 2023.” [Online].

Available: https://www.statista.com/statistics/266210/number-of-available-

applications-in-the-google-play-store/ [Cited on page 3.]

[17] D. Hayes, F. Cappa, and N. A. Le-Khac, “An effective approach to mo-

bile device management: Security and privacy issues associated with mobile

applications,” Digital Business, vol. 1, no. 1, p. 100001, Sep. 2020. [Online]. Avail-

able: https://linkinghub.elsevier.com/retrieve/pii/S2666954420300016 [Cited on

pages 3 and 14.]

[18] D. Barrera and P. Van Oorschot, “Secure software installation on smartphones,”

IEEE Security & Privacy, vol. 9, no. 3, pp. 42–48, 2010. [Cited on page 3.]

[19] E. Chin, A. P. Felt, K. Greenwood, and D. Wagner, “Analyzing inter-application

communication in android,” in Proceedings of the 9th international conference on Mobile

systems, applications, and services, 2011, pp. 239–252. [Cited on page 3.]

[20] K. Zickuhr, Three-quarters of smartphone owners use location-based services. Pew In-

ternet & American Life Project, 2012. [Cited on page 3.]

[21] J. L. Boyles, A. Smith, and M. Madden, “Privacy and data management on mo-

bile devices,” Pew Internet & American Life Project, vol. 4, pp. 1–19, 2012. [Cited on

page 3.]

[22] A. P. Felt, E. Ha, S. Egelman, A. Haney, E. Chin, and D. Wagner, “Android per-

missions: User attention, comprehension, and behavior,” in Proceedings of the eighth

symposium on usable privacy and security, 2012, pp. 1–14. [Cited on page 3.]

[23] P. G. Kelley, S. Consolvo, L. F. Cranor, J. Jung, N. Sadeh, and D. Wetherall, “A co-

nundrum of permissions: installing applications on an android smartphone,” in Fi-

nancial Cryptography and Data Security: FC 2012 Workshops, USEC and WECSR 2012,

Kralendijk, Bonaire, March 2, 2012, Revised Selected Papers 16. Springer, 2012, pp.

68–79. [Cited on page 3.]

[24] P. G. Kelley, L. F. Cranor, and N. Sadeh, “Privacy as part of the app decision-making

process,” in Proceedings of the SIGCHI conference on human factors in computing sys-

tems, 2013, pp. 3393–3402. [Cited on page 3.]

https://www.statista.com/statistics/266210/number-of-available-applications-in-the-google-play-store/
https://www.statista.com/statistics/266210/number-of-available-applications-in-the-google-play-store/
https://linkinghub.elsevier.com/retrieve/pii/S2666954420300016

BIBLIOGRAPHY 107

[25] Y.-A. De Montjoye, C. A. Hidalgo, M. Verleysen, and V. D. Blondel, “Unique in the

Crowd: The privacy bounds of human mobility,” Scientific Reports, vol. 3, no. 1, p.

1376, Mar. 2013. [Online]. Available: https://www.nature.com/articles/srep01376

[Cited on page 5.]

[26] J. Pang and Y. Zhang, “Deepcity: A feature learning framework for mining loca-

tion check-ins,” in Proceedings of the International AAAI Conference on Web and Social

Media, vol. 11, no. 1, 2017, pp. 652–655. [Cited on page 5.]

[27] P. Golle and K. Partridge, “On the Anonymity of Home/Work Location Pairs,”

in Pervasive Computing, H. Tokuda, M. Beigl, A. Friday, A. J. B. Brush, and

Y. Tobe, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009, vol. 5538,

pp. 390–397, series Title: Lecture Notes in Computer Science. [Online]. Available:

http://link.springer.com/10.1007/978-3-642-01516-8 26 [Cited on pages 5 and 38.]

[28] S. Scellato, A. Noulas, and C. Mascolo, “Exploiting place features in link prediction

on location-based social networks,” in Proceedings of the 17th ACM SIGKDD interna-

tional conference on Knowledge discovery and data mining, 2011, pp. 1046–1054. [Cited

on page 5.]

[29] M. Backes, M. Humbert, J. Pang, and Y. Zhang, “walk2friends: Inferring social links

from mobility profiles,” in Proceedings of the 2017 ACM SIGSAC Conference on Com-

puter and Communications Security, 2017, pp. 1943–1957. [Cited on page 5.]

[30] G. Wang, B. Wang, T. Wang, A. Nika, H. Zheng, and B. Y. Zhao, “Whispers in the

dark: analysis of an anonymous social network,” in Proceedings of the 2014 conference

on internet measurement conference, 2014, pp. 137–150. [Cited on page 5.]

[31] W. Enck, P. Gilbert, B.-G. Chun, L. P. Cox, J. Jung, P. McDaniel, and A. N. Sheth,

“TaintDroid: an information flow tracking system for real-time privacy monitoring

on smartphones,” Communications of the ACM, vol. 57, no. 3, pp. 99–106, Mar. 2014.

[Online]. Available: https://dl.acm.org/doi/10.1145/2494522 [Cited on pages 5,

23, and 24.]

[32] H. Jiang, J. Li, P. Zhao, F. Zeng, Z. Xiao, and A. Iyengar, “Location Privacy-

preserving Mechanisms in Location-based Services: A Comprehensive Survey,”

ACM Computing Surveys, vol. 54, no. 1, pp. 1–36, Jan. 2022. [Online]. Available:

https://dl.acm.org/doi/10.1145/3423165 [Cited on page 5.]

https://www.nature.com/articles/srep01376
http://link.springer.com/10.1007/978-3-642-01516-8_26
https://dl.acm.org/doi/10.1145/2494522
https://dl.acm.org/doi/10.1145/3423165

BIBLIOGRAPHY 108

[33] J. Leyden, “Dark net LinkedIn sale looks like the real deal.” [Online]. Available:

https://www.theregister.com/2016/05/18/linkedin/ [Cited on page 5.]

[34] S. Perez, “Recently confirmed Myspace hack could be the largest yet,” May 2016.

[Online]. Available: https://techcrunch.com/2016/05/31/recently-confirmed-

myspace-hack-could-be-the-largest-yet/ [Cited on page 5.]

[35] K. Drakonakis, P. Ilia, S. Ioannidis, and J. Polakis, “Please forget where i was

last summer: The privacy risks of public location (meta) data,” arXiv preprint

arXiv:1901.00897, 2019. [Cited on page 5.]

[36] N. Eddy, “Location-Based Applications Popular, Despite Privacy Concerns: ISACA

- Mobile and Wireless - News & Reviews - eWeek.com,” Apr. 2012. [On-

line]. Available: https://www.eweek.com/mobile/location-based-applications-

popular-despite-privacy-concerns-isaca/ [Cited on page 5.]

[37] B. Soewito and A. Suwandaru, “Android sensitive data leakage prevention

with rooting detection using Java function hooking,” Journal of King Saud

University - Computer and Information Sciences, vol. 34, no. 5, pp. 1950–1957,

2022. [Online]. Available: https://www.sciencedirect.com/science/article/pii/

S1319157820304201 [Cited on page 8.]

[38] Y. Shao, X. Luo, and C. Qian, “Rootguard: Protecting rooted android phones,” Com-

puter, vol. 47, no. 6, pp. 32–40, 2014. [Cited on page 8.]

[39] S.-T. Sun, A. Cuadros, and K. Beznosov, “Android rooting: Methods, detection, and

evasion,” in Proceedings of the 5th Annual ACM CCS Workshop on Security and Privacy

in Smartphones and Mobile Devices, 2015, pp. 3–14. [Cited on page 8.]

[40] S. Garg and N. Baliyan, “Comparative analysis of Android and iOS from security

viewpoint,” Computer Science Review, vol. 40, p. 100372, May 2021. [Online]. Avail-

able: https://www.sciencedirect.com/science/article/pii/S1574013721000125

[Cited on page 11.]

[41] “LineageOS Statistics.” [Online]. Available: https://stats.lineageos.org/ [Cited on

page 12.]

https://www.theregister.com/2016/05/18/linkedin/
https://techcrunch.com/2016/05/31/recently-confirmed-myspace-hack-could-be-the-largest-yet/
https://techcrunch.com/2016/05/31/recently-confirmed-myspace-hack-could-be-the-largest-yet/
https://www.eweek.com/mobile/location-based-applications-popular-despite-privacy-concerns-isaca/
https://www.eweek.com/mobile/location-based-applications-popular-despite-privacy-concerns-isaca/
https://www.sciencedirect.com/science/article/pii/S1319157820304201
https://www.sciencedirect.com/science/article/pii/S1319157820304201
https://www.sciencedirect.com/science/article/pii/S1574013721000125
https://stats.lineageos.org/

BIBLIOGRAPHY 109

[42] “Titanium Backup (root needed) - Apps on Google Play.” [On-

line]. Available: https://play.google.com/store/apps/details?id=com.keramidas.

TitaniumBackup&hl=en US [Cited on page 12.]

[43] “Explorer - Apps on Google Play.” [Online]. Available: https://play.google.com/

store/apps/details?id=com.speedsoftware.explorer&hl=en US [Cited on pages 12

and 15.]

[44] S. Egelman, L. F. Cranor, and J. Hong, “You’ve been warned: an empirical study of

the effectiveness of web browser phishing warnings,” in Proceedings of the SIGCHI

conference on human factors in computing systems, 2008, pp. 1065–1074. [Cited on

page 13.]

[45] J. Sunshine, S. Egelman, H. Almuhimedi, N. Atri, and L. F. Cranor, “Crying wolf:

An empirical study of ssl warning effectiveness.” in USENIX security symposium.

Montreal, Canada, 2009, pp. 399–416. [Cited on page 13.]

[46] Google, “Google Report - Android Security 2014 Year in Review,” Tech. Rep.

[Online]. Available: https://source.android.com/static/docs/security/overview/

reports/Google Android Security 2014 Report Final.pdf [Cited on page 13.]

[47] S.-T. Sun, A. Cuadros, and K. Beznosov, “Android Rooting: Methods, Detection,

and Evasion,” in Proceedings of the 5th Annual ACM CCS Workshop on Security and

Privacy in Smartphones and Mobile Devices. Denver Colorado USA: ACM, Oct. 2015,

pp. 3–14. [Online]. Available: https://dl.acm.org/doi/10.1145/2808117.2808126

[Cited on page 13.]

[48] “80% China’s Mobile Users Rooted Smartphones in 2014,” Apr. 2015. [Online].

Available: https://www.chinainternetwatch.com/12926/80-china-smartphone-

users-rooted/ [Cited on page 13.]

[49] C. Stach, “How to Assure Privacy on Android Phones and Devices?” in 2013 IEEE

14th International Conference on Mobile Data Management, vol. 1, Jun. 2013, pp. 350–

352, iSSN: 2375-0324. [Cited on page 14.]

[50] J. Kim, Y. Yoon, K. Yi, and J. Shin, “SCANDAL: Static Analyzer for Detecting Privacy

Leaks in Android Applications.” [Cited on page 14.]

https://play.google.com/store/apps/details?id=com.keramidas.TitaniumBackup&hl=en_US
https://play.google.com/store/apps/details?id=com.keramidas.TitaniumBackup&hl=en_US
https://play.google.com/store/apps/details?id=com.speedsoftware.explorer&hl=en_US
https://play.google.com/store/apps/details?id=com.speedsoftware.explorer&hl=en_US
https://source.android.com/static/docs/security/overview/reports/Google_Android_Security_2014_Report_Final.pdf
https://source.android.com/static/docs/security/overview/reports/Google_Android_Security_2014_Report_Final.pdf
https://dl.acm.org/doi/10.1145/2808117.2808126
https://www.chinainternetwatch.com/12926/80-china-smartphone-users-rooted/
https://www.chinainternetwatch.com/12926/80-china-smartphone-users-rooted/

BIBLIOGRAPHY 110

[51] W. Enck, D. Octeau, P. McDaniel, and S. Chaudhuri, “A Study of Android Applica-

tion Security.” [Cited on page 14.]

[52] “App permissions best practices.” [Online]. Available: https://developer.android.

com/training/permissions/usage-notes [Cited on page 14.]

[53] C. Stach and B. Mitschang, “Design and Implementation of the Privacy Manage-

ment Platform,” in 2014 IEEE 15th International Conference on Mobile Data Manage-

ment, vol. 1, Jul. 2014, pp. 69–72, iSSN: 2375-0324. [Cited on page 14.]

[54] R. L. Finn, D. Wright, and M. Friedewald, “Seven Types of Privacy,” in European

Data Protection: Coming of Age, S. Gutwirth, R. Leenes, P. De Hert, and Y. Poullet,

Eds. Dordrecht: Springer Netherlands, 2013, pp. 3–32. [Online]. Available:

https://link.springer.com/10.1007/978-94-007-5170-5 1 [Cited on page 14.]

[55] K. Pelgrims, Gradle for Android. Packt Publishing Ltd, 2015. [Cited on page 14.]

[56] Oracle, “Using Java Reflection.” [Online]. Available: https://www.oracle.com/

technical-resources/articles/java/javareflection.html [Cited on page 15.]

[57] GeeksforGeeks, “Reflection in Java,” Mar. 2016, section: Java. [Online]. Available:

https://www.geeksforgeeks.org/reflection-in-java/ [Cited on page 15.]

[58] M. T. Serrafero, “Xposed: Best of XDA,” Jun. 2015, section: XDA Android. [Online].

Available: https://www.xda-developers.com/xposed-best-of-xda/ [Cited on

page 16.]

[59] rovo89, “rovo89/Xposed,” Jul. 2023, original-date: 2012-03-25T13:40:18Z. [Online].

Available: https://github.com/rovo89/Xposed [Cited on page 16.]

[60] XDA-Forums, “[OFFICIAL] EdXposed - The successor of

Xposed [Oreo/Pie/Q/R, 2020/07/19],” Mar. 2020. [Online]. Avail-

able: https://forum.xda-developers.com/t/official-edxposed-the-successor-of-

xposed-oreo-pie-q-r-2020-07-19.4070199/ [Cited on page 16.]

[61] “PAGalaxyLab/YAHFA,” Aug. 2023, original-date: 2017-03-30T06:45:05Z. [Online].

Available: https://github.com/PAGalaxyLab/YAHFA [Cited on pages 16 and 49.]

[62] S. Hazarika, “What is EdXposed, and what can you do with it on your

Android device?” May 2022, section: Mobile. [Online]. Available: https:

//www.xda-developers.com/edxposed/ [Cited on page 16.]

https://developer.android.com/training/permissions/usage-notes
https://developer.android.com/training/permissions/usage-notes
https://link.springer.com/10.1007/978-94-007-5170-5_1
https://www.oracle.com/technical-resources/articles/java/javareflection.html
https://www.oracle.com/technical-resources/articles/java/javareflection.html
https://www.geeksforgeeks.org/reflection-in-java/
https://www.xda-developers.com/xposed-best-of-xda/
https://github.com/rovo89/Xposed
https://forum.xda-developers.com/t/official-edxposed-the-successor-of-xposed-oreo-pie-q-r-2020-07-19.4070199/
https://forum.xda-developers.com/t/official-edxposed-the-successor-of-xposed-oreo-pie-q-r-2020-07-19.4070199/
https://github.com/PAGalaxyLab/YAHFA
https://www.xda-developers.com/edxposed/
https://www.xda-developers.com/edxposed/

BIBLIOGRAPHY 111

[63] XDA-Developers, “How to Install Magisk on your Android Phone,” Aug. 2021,

section: Mobile. [Online]. Available: https://www.xda-developers.com/how-to-

install-magisk/ [Cited on page 17.]

[64] A. Srivastava, “Android Xposed Framework,” Aug. 2020. [On-

line]. Available: https://abhiappmobiledeveloper.medium.com/android-xposed-

framework-ee763e5dda8e [Cited on page 17.]

[65] XDA-Developers, “What is Riru, and what can you do with it on your

Android device?” Apr. 2022, section: Mobile. [Online]. Available: https:

//www.xda-developers.com/riru/ [Cited on page 17.]

[66] R. Ierusalimschy, Programming in Lua, Fourth Edition, 2016. [Cited on page 18.]

[67] L. Jordan and P. Greyling, “Embedding Lua in Android Applications,” in Practical

Android Projects. Berkeley, CA: Apress, 2011, pp. 155–192. [Online]. Available:

http://link.springer.com/10.1007/978-1-4302-3244-5 4 [Cited on page 18.]

[68] “Roseborough.com.” [Online]. Available: http://www.luaj.org/luaj.html [Cited

on page 19.]

[69] K. Fawaz and K. G. Shin, “Location Privacy Protection for Smartphone Users,” in

Proceedings of the 2014 ACM SIGSAC Conference on Computer and Communications

Security. Scottsdale Arizona USA: ACM, Nov. 2014, pp. 239–250. [Online].

Available: https://dl.acm.org/doi/10.1145/2660267.2660270 [Cited on pages 20,

22, and 23.]

[70] J. Jeon, K. K. Micinski, J. A. Vaughan, A. Fogel, N. Reddy, J. S. Foster, and

T. Millstein, “Dr. Android and Mr. Hide: fine-grained permissions in android

applications,” in Proceedings of the second ACM workshop on Security and privacy in

smartphones and mobile devices. Raleigh North Carolina USA: ACM, Oct. 2012, pp.

3–14. [Online]. Available: https://dl.acm.org/doi/10.1145/2381934.2381938 [Cited

on pages 21 and 22.]

[71] A. R. Beresford, A. Rice, N. Skehin, and R. Sohan, “MockDroid: trading privacy

for application functionality on smartphones,” in Proceedings of the 12th Workshop

on Mobile Computing Systems and Applications. Phoenix Arizona: ACM, Mar. 2011,

pp. 49–54. [Online]. Available: https://dl.acm.org/doi/10.1145/2184489.2184500

[Cited on page 23.]

https://www.xda-developers.com/how-to-install-magisk/
https://www.xda-developers.com/how-to-install-magisk/
https://abhiappmobiledeveloper.medium.com/android-xposed-framework-ee763e5dda8e
https://abhiappmobiledeveloper.medium.com/android-xposed-framework-ee763e5dda8e
https://www.xda-developers.com/riru/
https://www.xda-developers.com/riru/
http://link.springer.com/10.1007/978-1-4302-3244-5_4
http://www.luaj.org/luaj.html
https://dl.acm.org/doi/10.1145/2660267.2660270
https://dl.acm.org/doi/10.1145/2381934.2381938
https://dl.acm.org/doi/10.1145/2184489.2184500

BIBLIOGRAPHY 112

[72] K. Fawaz, H. Feng, and K. G. Shin, “Anatomization and Protection of Mobile Apps’

Location Privacy Threats,” 2015. [Cited on pages 24 and 25.]

[73] P. Hornyack, S. Han, J. Jung, S. Schechter, and D. Wetherall, “These aren’t the droids

you’re looking for: retrofitting android to protect data from imperious applica-

tions,” 2011. [Cited on pages 26 and 27.]

[74] S. Guha, M. Jain, and V. N. Padmanabhan, “Koi: A Location-Privacy Platform for

Smartphone Apps,” 2012. [Cited on pages 27 and 28.]

[75] J. Kang, D. Steiert, D. Lin, and Y. Fu, “MoveWithMe: Location Privacy Preservation

for Smartphone Users,” IEEE Transactions on Information Forensics and Security,

vol. 15, pp. 711–724, 2020. [Online]. Available: https://ieeexplore.ieee.org/

document/8759922/ [Cited on pages 29 and 30.]

[76] S. Chitkara, N. Gothoskar, S. Harish, J. I. Hong, and Y. Agarwal, “Does

this App Really Need My Location?: Context-Aware Privacy Management

for Smartphones,” Proceedings of the ACM on Interactive, Mobile, Wearable and

Ubiquitous Technologies, vol. 1, no. 3, pp. 1–22, Sep. 2017. [Online]. Available:

https://dl.acm.org/doi/10.1145/3132029 [Cited on pages 30 and 31.]

[77] J. Estrela, “Android Security by Introspection,” Ph.D. dissertation, 2019. [Cited on

page 32.]

[78] J. Krumm, “Realistic driving trips for location privacy,” in Pervasive Computing: 7th

International Conference, Pervasive 2009, Nara, Japan, May 11-14, 2009. Proceedings 7.

Springer, 2009, pp. 25–41. [Cited on pages 33 and 36.]

[79] B. Palanisamy and L. Liu, “MobiMix: Protecting location privacy with mix-zones

over road networks,” in 2011 IEEE 27th International Conference on Data Engineering,

Apr. 2011, pp. 494–505, iSSN: 2375-026X. [Cited on page 33.]

[80] J. Meyerowitz and R. Roy Choudhury, “Hiding stars with fireworks: location

privacy through camouflage,” in Proceedings of the 15th annual international

conference on Mobile computing and networking, ser. MobiCom ’09. New York, NY,

USA: Association for Computing Machinery, Sep. 2009, pp. 345–356. [Online].

Available: https://dl.acm.org/doi/10.1145/1614320.1614358 [Cited on page 34.]

https://ieeexplore.ieee.org/document/8759922/
https://ieeexplore.ieee.org/document/8759922/
https://dl.acm.org/doi/10.1145/3132029
https://dl.acm.org/doi/10.1145/1614320.1614358

BIBLIOGRAPHY 113

[81] T. Hara, A. Suzuki, M. Iwata, Y. Arase, and X. Xie, “Dummy-Based User Location

Anonymization Under Real-World Constraints,” IEEE Access, vol. 4, pp. 673–687,

2016, conference Name: IEEE Access. [Cited on page 34.]

[82] V. Bindschaedler and R. Shokri, “Synthesizing Plausible Privacy-Preserving Loca-

tion Traces,” in 2016 IEEE Symposium on Security and Privacy (SP), May 2016, pp.

546–563, iSSN: 2375-1207. [Cited on page 35.]

[83] O. Jan, A. J. Horowitz, and Z.-R. Peng, “Using global positioning system data to un-

derstand variations in path choice,” Transportation Research Record, vol. 1725, no. 1,

pp. 37–44, 2000. [Cited on page 38.]

[84] J. Krumm, “Inference attacks on location tracks,” in Pervasive Computing: 5th Inter-

national Conference, PERVASIVE 2007, Toronto, Canada, May 13-16, 2007. Proceedings

5. Springer, 2007, pp. 127–143. [Cited on page 38.]

[85] M. Bokhorst, “XPrivacyLua,” Aug. 2023, original-date: 2018-01-05T11:54:06Z.

[Online]. Available: https://github.com/M66B/XPrivacyLua [Cited on pages 41

and 49.]

[86] G. B. Meike and L. Schiefer, Inside the android OS: building, customizing, managing,

and operating android system services, 1st ed. Hoboken: Pearson Education, Inc,

2021. [Cited on pages 42 and 43.]

[87] “Development tutorial.” [Online]. Available: https://github.com/rovo89/

XposedBridge/wiki/Development-tutorial [Cited on page 43.]

[88] “XposedBridge | Xposed Framework API.” [Online]. Available: https://api.

xposed.info/reference/de/robv/android/xposed/XposedBridge.html [Cited on

page 43.]

[89] “Android Debug Bridge (adb) | Android Studio.” [Online]. Available: https:

//developer.android.com/tools/adb [Cited on page 46.]

[90] “TeamWin - TWRP.” [Online]. Available: https://twrp.me/ [Cited on page 47.]

[91] L. Nguyen-Vu, N.-T. Chau, S. Kang, and S. Jung, “Android Rooting: An Arms

Race between Evasion and Detection,” Security and Communication Networks, vol.

2017, pp. 1–13, 2017. [Online]. Available: https://www.hindawi.com/journals/

scn/2017/4121765/ [Cited on page 47.]

https://github.com/M66B/XPrivacyLua
https://github.com/rovo89/XposedBridge/wiki/Development-tutorial
https://github.com/rovo89/XposedBridge/wiki/Development-tutorial
https://api.xposed.info/reference/de/robv/android/xposed/XposedBridge.html
https://api.xposed.info/reference/de/robv/android/xposed/XposedBridge.html
https://developer.android.com/tools/adb
https://developer.android.com/tools/adb
https://twrp.me/
https://www.hindawi.com/journals/scn/2017/4121765/
https://www.hindawi.com/journals/scn/2017/4121765/

BIBLIOGRAPHY 114

[92] “Download Universal SafetyNet Fix [Magisk Module],” Aug. 2022, section: Magisk

Module. [Online]. Available: https://magiskroot.net/universal-safetynet-fix/

[Cited on page 48.]

[93] “How to Keep Magisk Root after OTA Update? | MagiskRoot,” Dec. 2022, section:

Rooting. [Online]. Available: https://magiskroot.net/how-to-keep-magisk-root-

after-ota-update/ [Cited on page 48.]

[94] “GitHub - RikkaApps/Riru: Inject into zygote process.” [Online]. Available:

https://github.com/RikkaApps/Riru [Cited on page 49.]

[95] rovo89, “rovo89/XposedBridge,” Aug. 2023, original-date: 2012-03-31T12:01:55Z.

[Online]. Available: https://github.com/rovo89/XposedBridge [Cited on page 49.]

[96] “Dexmaker,” Aug. 2023, original-date: 2014-12-17T07:22:19Z. [Online]. Available:

https://github.com/linkedin/dexmaker [Cited on page 49.]

[97] J. Wharton, “Android dalvik Dx Library,” Aug. 2023, original-date: 2016-01-

26T19:58:39Z. [Online]. Available: https://github.com/JakeWharton/dalvik-dx

[Cited on page 49.]

[98] Lody, “SandHook,” Aug. 2023, original-date: 2019-01-12T18:32:08Z. [Online].

Available: https://github.com/asLody/SandHook [Cited on page 49.]

[99] jmpews(AKA.zz), “jmpews/Dobby,” Aug. 2023, original-date: 2017-08-

03T17:51:59Z. [Online]. Available: https://github.com/jmpews/Dobby [Cited

on page 49.]

[100] J. Wu, “topjohnwu/Magisk,” Aug. 2023, original-date: 2016-09-08T12:42:53Z.

[Online]. Available: https://github.com/topjohnwu/Magisk [Cited on page 49.]

[101] “Google Maps Usage Statistics 2023: The Most Important Facts • GITNUX,” Aug.

2023, section: Market Data. [Online]. Available: https://blog.gitnux.com/google-

maps-usage-statistics/ [Cited on page 62.]

[102] “Most downloaded travel apps worldwide 2022.” [Online]. Avail-

able: https://www.statista.com/statistics/1229187/most-downloaded-travel-

apps-globally/ [Cited on pages 62, 63, and 71.]

https://magiskroot.net/universal-safetynet-fix/
https://magiskroot.net/how-to-keep-magisk-root-after-ota-update/
https://magiskroot.net/how-to-keep-magisk-root-after-ota-update/
https://github.com/RikkaApps/Riru
https://github.com/rovo89/XposedBridge
https://github.com/linkedin/dexmaker
https://github.com/JakeWharton/dalvik-dx
https://github.com/asLody/SandHook
https://github.com/jmpews/Dobby
https://github.com/topjohnwu/Magisk
https://blog.gitnux.com/google-maps-usage-statistics/
https://blog.gitnux.com/google-maps-usage-statistics/
https://www.statista.com/statistics/1229187/most-downloaded-travel-apps-globally/
https://www.statista.com/statistics/1229187/most-downloaded-travel-apps-globally/

BIBLIOGRAPHY 115

[103] D. R. Piranda, D. Z. Sinaga, and E. E. Putri, “ONLINE MARKETING

STRATEGY IN FACEBOOK MARKETPLACE AS A DIGITAL MARKETING

TOOL,” JOURNAL OF HUMANITIES, SOCIAL SCIENCES AND BUSINESS,

vol. 1, no. 3, pp. 1–8, Mar. 2022, number: 3. [Online]. Available: http:

//ojs.transpublika.com/index.php/JHSSB/article/view/123 [Cited on page 65.]

[104] “Terms of Location-Based Services | Facebook Help Centre.” [Online]. Available:

https://www.facebook.com/help/626057554667531 [Cited on page 65.]

[105] M. H. Alkawaz, H. Rajandran, and M. I. Abdullah, “The Impact of Current Relation

between Facebook Utilization and E-Stalking towards Users Privacy,” in 2020 IEEE

International Conference on Automatic Control and Intelligent Systems (I2CACIS), Jun.

2020, pp. 141–147. [Cited on page 66.]

[106] K. Church and R. De Oliveira, “What’s up with whatsapp?: comparing mobile

instant messaging behaviors with traditional SMS,” in Proceedings of the 15th

international conference on Human-computer interaction with mobile devices and

services. Munich Germany: ACM, Aug. 2013, pp. 352–361. [Online]. Available:

https://dl.acm.org/doi/10.1145/2493190.2493225 [Cited on page 67.]

[107] R. Khan, S. Barakat, L. AlAbduljabbar, Y. AlTayash, N. AlMussa, M. AlQattan, and

N. S. M. Jamail, “WhatsApp: Cyber Security Risk Management, Governance and

Control,” in 2022 Fifth International Conference of Women in Data Science at Prince

Sultan University (WiDS PSU), Mar. 2022. [Cited on page 68.]

[108] “Mobile browser market share worldwide 2022.” [Online]. Avail-

able: https://www.statista.com/statistics/263517/market-share-held-by-mobile-

internet-browsers-worldwide/ [Cited on page 70.]

[109] D. D. Rathod, “WEB BROWSER FORENSICS: GOOGLE CHROME,” International

Journal of Advanced Research in Computer Science, 2017. [Cited on page 70.]

[110] J. Skov, “New urban mobility ecosystem,” 2017. [Cited on page 71.]

[111] “microG Project.” [Online]. Available: https://microg.org/ [Cited on pages 74

and 75.]

[112] W. Luo, S. Xu, and X. Jiang, “Real-time detection and prevention of android

sms permission abuses,” in Proceedings of the First International Workshop on

http://ojs.transpublika.com/index.php/JHSSB/article/view/123
http://ojs.transpublika.com/index.php/JHSSB/article/view/123
https://www.facebook.com/help/626057554667531
https://dl.acm.org/doi/10.1145/2493190.2493225
https://www.statista.com/statistics/263517/market-share-held-by-mobile-internet-browsers-worldwide/
https://www.statista.com/statistics/263517/market-share-held-by-mobile-internet-browsers-worldwide/
https://microg.org/

BIBLIOGRAPHY 116

Security in Embedded Systems and Smartphones, ser. SESP ’13. New York, NY,

USA: Association for Computing Machinery, 2013, p. 11–18. [Online]. Available:

https://doi.org/10.1145/2484417.2484422 [Cited on page 74.]

[113] S. Ramachandran, A. Dimitri, M. Galinium, M. Tahir, I. V. Ananth, C. H. Schunck,

and M. Talamo, “Understanding and granting android permissions: A user survey,”

in 2017 International Carnahan Conference on Security Technology (ICCST), 2017, pp. 1–

6. [Cited on page 74.]

[114] “LSPosed Framework,” Aug. 2023, original-date: 2021-02-02T07:22:47Z. [Online].

Available: https://github.com/Magisk-Modules-Repo/riru lsposed [Cited on

page 76.]

[115] “VirtualXposed/README.md at vxp · android-hacker/VirtualXposed.” [On-

line]. Available: https://github.com/android-hacker/VirtualXposed/blob/vxp/

README.md [Cited on page 77.]

https://doi.org/10.1145/2484417.2484422
https://github.com/Magisk-Modules-Repo/riru_lsposed
https://github.com/android-hacker/VirtualXposed/blob/vxp/README.md
https://github.com/android-hacker/VirtualXposed/blob/vxp/README.md

	Acknowledgements
	Resumo
	Abstract
	Contents
	List of Tables
	List of Figures
	Acronyms
	1 Introduction
	1.1 Motivation
	1.2 Proposed Solution
	1.2.1 Objectives
	1.2.2 Features

	1.3 Contributions
	1.4 Outline

	2 Background
	2.1 Android Platform
	2.1.1 Rooting
	2.1.2 The Permission Model
	2.1.3 Project Building

	2.2 The Java Reflection API
	2.3 Xposed Framework
	2.4 EdXposed Framework
	2.5 Magisk
	2.5.1 Riru Module

	2.6 Programming Language Lua
	2.6.1 Embedding Lua in Android Applications
	2.6.2 Luaj - A Compact Lua VM Written in Java

	3 Related Work
	3.1 Research Methodology
	3.2 Similar Solutions
	3.3 Theoretical Approaches
	3.4 Summary

	4 System Design
	4.1 Threat Model
	4.2 Architecture
	4.2.1 MockLocation Application
	4.2.2 XPrivacyLua Module
	4.2.3 EdXposed Framework

	4.3 Summary

	5 Implementation
	5.1 Initial Setup
	5.1.1 Rooting the Device
	5.1.2 The adb Tool
	5.1.3 The Backup Process
	5.1.4 Magisk - Systemless Root
	5.1.5 Installation of the EdXposed Framework
	5.1.6 Installing the XPrivacyLua Module in EdXposed

	5.2 Developing the MockLocation Application
	5.3 Changing the XPrivacyLua Module
	5.3.1 Changes to the Script location_createfromparcel.lua
	5.3.2 Adding a Background Service
	5.3.3 Managing Simulated Location Data with Threads
	5.3.3.1 Handling Fake Static Location
	5.3.3.2 Handling Dynamic Fake Location

	5.4 Summary

	6 Evaluation
	6.1 Google Maps
	6.2 Facebook
	6.3 WhatsApp
	6.4 Google Chrome
	6.5 Uber
	6.6 Reflection on the Results

	7 Conclusion
	7.1 Research Summary
	7.2 Current Limitations
	7.3 Future Work
	7.4 Conclusions

	A Changes made to the XprivacyLua module code
	A.1 Changes to the script location_createfromparcel.lua
	A.2 Java class for the background service
	A.3 Java class for the threads managing static fake location data
	A.4 Java class for the threads managing dynamic fake location data

	Bibliography

