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Abstract 

Liquid biopsy (LB) has boosted a remarkable change in the management of cancer patients by contributing to 
tumour genomic profiling. Plasma circulating cell-free tumour DNA (ctDNA) is the most widely searched tumour-
related element for clinical application. Specifically, for patients with lung cancer, LB has revealed valuable to detect 
the diversity of targetable genomic alterations and to detect and monitor the emergence of resistance mechanisms. 
Furthermore, its non-invasive nature helps to overcome the difficulty in obtaining tissue samples, offering a compre‑
hensive view about tumour diversity. However, the use of the LB to support diagnostic and therapeutic decisions still 
needs further clarification. In this sense, this review aims to provide a critical view of the clinical importance of plasma 
ctDNA analysis, the most widely applied LB, and its limitations while anticipating concepts that will intersect the pre‑
sent and future of LB in non-small cell lung cancer patients.

Keywords:  Lung cancer, Adenocarcinoma, Tumour genotyping, Liquid biopsy, Circulating cell-free tumour DNA, Next 
Generation Sequencing

© The Author(s) 2021. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/. The Creative Commons Public Domain Dedication waiver (http://​creat​iveco​
mmons.​org/​publi​cdoma​in/​zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Open Access

Cancer Cell International

*Correspondence:  gfernandes@med.up.pt; ncmartins@med.up.pt
1 Pulmonology Department, Centro Hospitalar Universitário de São João, 
Alameda Prof. Hernâni Monteiro, 4200‑319 Porto, Portugal
2 Faculty of Medicine, University of Porto, Alameda Prof. Hernani Monteiro, 
4200‑319 Porto, Portugal
Full list of author information is available at the end of the article

http://orcid.org/0000-0002-5934-5201
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12935-021-02382-0&domain=pdf


Page 2 of 19Fernandes et al. Cancer Cell International          (2021) 21:675 

Introduction
Lung cancer (LC) is the second most prevalent cancer 
globally, corresponding to 11.4% of diagnosed cancers, 
according to GLOBOCAN 2020 estimates, and it is the 
first cause of cancer death, accounting for 18% of deaths 
[1]. In the majority of cases, it presents with advanced or 
metastatic disease [2].

Numerous actionable genomic alterations have been 
identified in patients with advanced non-small cell lung 
cancer (NSCLC), particularly those with the adenocar-
cinoma subtype. As a result, targeted therapies have 
emerged, and LC treatment has become biomarker-
driven [3, 4]. There are targeted treatments for genomic 
alterations in the ALK, BRAF, EGFR, ERBB2, KRAS, 
MET, NTRK, RET and ROS1 genes, configuring substan-
tial improvements in patient’s survival and quality of life 
[3, 4]. The first targeted drug was approved for patients 
with EGFR activating mutations occurring in the tyros-
ine kinase domain of the gene, present in 15–20% of Cau-
casian patients with lung adenocarcinoma and in 40% of 
Asians [5–7]. Deletions of exon 19 (del 19) and the substi-
tution of the amino acid p.Leu858Arg in exon 21 (L785R) 
comprise about 80–90% of the mutation spectrum. Rarer 
variants can also occur in exons 18 and 20, but their 

association with treatment response is less consistent [5]. 
Presently, for treating patients with tumours harbour-
ing activating mutations in the EGFR gene 1st, 2nd and 
3rd generation TKIs are approved, differing from each 
other on the receptor affinity and selectivity to different 
variants and providing a median progression-free sur-
vival (PFS) of 10 to 19 months [8–11]. In about 50–60% 
of patients treated with 1st or 2nd generation TKIs, the 
acquired resistance mechanism is a p.Thr790Met point 
mutation (T790M) in the EGFR gene [12–14]. This muta-
tion increases the receptor affinity for ATP binding, dras-
tically reducing the drug activity [15]. Third-generation 
TKIs have emerged as selective for both EGFR activat-
ing and T790M resistance mutations [16] with superior 
activity than chemotherapy in patients whose disease 
progressed with the T790M [17]. Still, disease progres-
sion-associated mechanisms are heterogeneous and not 
fully understood, differing whether the 3rd generation 
TKI is used at the frontline or after progression on 1st or 
2nd generation TKIs [18–20].

With different proportions, EGFR-dependent mecha-
nisms include new tertiary mutations, such as the exon 
20 C797S mutation, EGFR amplification or T790M disap-
pearance. The EGFR independent mechanisms can occur 
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with bypass pathway activation, such as ERB-B2 recep-
tor tyrosine kinase 2 (HER2) and MET amplification, 
PIK3CA activating mutations, phosphatase and tensin 
homolog (PTEN) deletion, RAS mutations, and fusions 
affecting anaplastic lymphoma kinase (ALK) and ret-
proto-oncogene (RET). Moreover, there is also the pos-
sibility of phenotypic alteration, such as small-cell lung 
cancer (SCLC) transformation [18–20].

ALK rearrangements occur in 3–5% of lung adenocar-
cinomas [21], consequent to an inversion on the short-
arm of chromosome 2 joining its 3′ end with the 5′ end 
of the echinoderm microtubule-associated protein-like 
4 (EML4), resulting in an EML4-ALK chimeric pro-
tein [22]. Targeted therapy for patients with ALK rear-
rangements have significantly impacted prognosis, with 
patients treated with a sequence of TKIs achieving over 
five years of survival after diagnosis of metastatic disease 
[23]. Tyrosine kinase inhibitors of different generations 
were developed, with relevant differences concerning 
ALK inhibitory potency, intracranial activity and effi-
cacy on ALK mutations associated with resistance [24]. 
For patients with ALK fusions treated with TKIs, muta-
tions in the ALK gene are one of the on-target resist-
ance mechanisms. However, unlike EGFR, mutations are 
diverse and differ depending on each ALK inhibitor [25]. 
In addition, non-targeted alterations can occur along-
side mutations and amplifications in different genes. For 
example, MET amplifications are present in about 15% 
of patients treated with new-generation TKIs, and his-
tological transformation and epithelial-mesenchymal 
transition (EMT) may also occur [26, 27]. Therefore, rec-
ognising genomic alterations is essential for the selection 
and sequencing of ALK inhibitors.

Similar good results have been obtained with TKIs for 
other molecular targets. For example, synergising a BRAF 
inhibitor and a MEK inhibitor is indicated for NSCLC 
with BRAF p.V600E [3, 4]. For ROS proto-oncogene 1 
(ROS1), RET and neurotrophic receptor tyrosine kinase 
1 (NTRK) fusions, highly effective TKIs are available, as 
for the MET exon14 skipping mutation [3, 4]. For ERBB2 
mutations, TKIs and new antibody conjugates are being 
investigated [3]. The most recent advance in targeted 
therapy comprises the inhibition of the p.Gly12Cys muta-
tion in the KRAS gene, one of the most frequent events in 
lung adenocarcinoma [3, 28].

In this sense, tumour genotyping is currently a funda-
mental element to determine the optimal treatment for 
each patient. Molecular tests are advised for untreated 
non-squamous NSCLC patients with advanced disease 
and others with clinical features linked to a greater proba-
bility of having driver mutations [4, 29]. Nonetheless, and 
despite is currently considered the gold standard, tissue 
biopsy is associated with numerous drawbacks. Tumour 

samples refer to small biopsies and cytology specimens 
obtained by invasive methods, as bronchoscopy, tran-
sthoracic biopsies, and pleural techniques. Also, not all 
tumour lesions are accessible, and tissue genotyping is 
linked to a 5–10% failure rate due to inadequate or insuf-
ficient DNA content [30]. In addition, tissue biopsies may 
not fully reflect tumour heterogeneity, as they are usually 
obtained from the most accessible tumour location site 
[31].

Over time, clinicians and researchers have pursued the 
idea of using non-invasive techniques for tumour diagno-
sis through a deeper study of peripheral blood and other 
fluids. Indeed, tumours release part of themselves into 
the circulation through the form of free nucleic acids, 
tumour cells, exosomes, among other elements, that can 
be extracted and analysed [32]. Fortunately, the advances 
stated in sequencing technologies have been a determi-
nant step in making this ambition a reality.

Liquid biopsy (LB) is a non-invasive, easily taken, 
repeatable and less expensive technique than tissue 
biopsy and potentially reflects the heterogeneity of the 
genomic landscape, as it gets biological information from 
all tumour shedding sources [32]. A LB consists of analys-
ing tumour-related biomarkers in body fluids, like blood, 
cerebrospinal fluid, pleural, pericardial effusions, and 
urine. It is a source of circulating cell-free DNA (cfDNA), 
circulating cell-free tumour DNA (ctDNA), circulating 
tumour cells (CTCs), exosomes, microRNAs, as well as 
proteins derived from cancer cells [32]. These compo-
nents have distinct properties, potentialities and meth-
ods of capture and analysis, requiring further validation 
for clinical use, as briefly exposed in Table 1 [32–36].

Cell-free DNA has been the most studied compo-
nent, with ctDNA being the portion of cfDNA delivered 
by the tumour [37]. In these DNA fractions released by 
tumour apoptosis and necrosis and some active secre-
tion [38], mutations in cancer-associated genes, micro-
satellite instability, and epigenetic alterations have been 
identified [39]. Cell-free circulating tumour DNA repre-
sents less than 1% of cfDNA [40], requiring highly sen-
sitive analytic methods [41, 42]. Different sequencing 
technologies have been developed to detect mutant DNA 
and have evolved to achieve higher performance. They 
can be broadly grouped into two approaches: digital PCR 
and NGS-based methods [39, 43]. Both approaches have 
strengths and limitations. PCR-based assays are highly 
sensitive, able to detect variants with a frequency as low 
as 0.01%, less expensive and straightforward than NGS, 
but restricted to the detection of limited pre-planned 
alterations [40, 44]. NGS approaches are more complex 
but allow the detection of multiple alterations in different 
genes simultaneously. They can embrace "whole" altera-
tions or be selected for targeted panels, being this one 
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the most used for clinical application due to the highest 
sensitivity, lower cost, and simplicity of interpretation. 
Generally, NGS techniques can be amplicon-based or 
hybrid-capture-based, accounting for differences in test 
performance and the range of alterations capable of being 
detected [39, 44].

In the NSCLC setting, LB, particularly ctDNA genomic 
analysis, has an expanding role in detecting oncogenic 
driver alterations as well as emerging resistance mecha-
nisms [45]. Thus, considering the role of LB in the most 
relevant clinical scenarios, we aim to provide a critical 
view of its importance and limitations while anticipating 
concepts intersecting the present and future clinical uses 
of LB in NSCLC patients, considering our "real-world" 
experience towards LB implementation [46, 47]. Spe-
cifically, in this review, we will discuss the application of 
LB for genotyping LC in its most relevant scenarios, for 
detection of resistance-related mutations, disease moni-
toring, with a focus being also given to the future appli-
cations of LB, reflecting on results’ interpretation and 
pitfalls.

Circulating cell‑free tumour DNA for detection 
of EGFR mutations
The detection of EGFR mutations, either activating or 
resistance-associated, is extremely relevant, given the 
link between EGFR mutations, treatment response and 
clinical outcomes. However, genetic testing for detec-
tion of EGFR mutations is not always successful, and 
re-biopsies display numerous difficulties, as previously 
mentioned. Before ctDNA genotyping is accepted as a 
surrogate for tissue genotyping, it is essential to reflect on 
the test accuracy and its predictive value as a biomarker 

for treatment selection. Several studies have addressed 
the analytical agreement between the mutational status 
assessed in plasma and tumour samples, and, in general, 
a robust correlation was found (Table 2). The meta-anal-
ysis (Table 3) published so far have demonstrated a sen-
sitivity for detecting EGFR mutations ranging from 60 to 
70% and a specificity of 80–98% [48–53]. Distinct stud-
ies with different technologies were included, that ulti-
mately accounted for highly variable sensitivity values. 
For instance, when the effectiveness for detecting EGFR 
mutations with LB was addressed in a "real-world" set-
ting, as in the multicentric studies, IGNITE and ASSESS 
[54, 55] (Table 2), plasma sensitivity was below 50%, with 
significant variability between centres and the technique 
used. Such findings reinforce the need to standardise 
procedures and validate techniques for large-scale imple-
mentation. The latest ultrasensitive sequencing technolo-
gies, such as digital PCR or plasma digital droplet PCR 
(ddPCR), use probes that allow the detection of del19 and 
L858R with very high sensitivity rates (greater than 80%) 
and specificity of 100% [56, 57] (Table 2). Moreover, it has 
become possible to analyse cfDNA by NGS, with advan-
tages in sensitivity and wealth of information. Either 
amplicon-based [58, 59] or hybrid-capture sequencing 
[60, 61] have shown sensitivity reaching 94% and speci-
ficity exceeding 95% (Table 4).

The first data considering the predictive value of 
cfDNA for response to EGFR TKIs came from the trial 
comparing chemotherapy with a 1st generation TKI 
[62, 63]. Goto et  al. [63] firstly found a significant cor-
relation between cfDNA EGFR mutation status and PFS, 
and although the serum test had low sensitivity (43.1%), 
it opened the window for further investigation. The 

Table 1  Tumour-related components characteristics and potentialities

CTC​ circulating tumour cell, ctDNA circulating tumour DNA, mRNA messenger RNA, miRNAS microRNAs

Components Characteristics and potential applications

CTC​ Cells found in the blood of patients with solid tumours
Surrogate marker for tumour growth and aggressiveness
Genomic analysis

Exosomes Cell-derived extracellular vesicles containing proteins, DNA, mRNAs, and miRNAs
Biomarker analysis
Potential therapeutic application

Circulating RNAs miRNAs are the most abundant circulating RNA molecules
miRNAs amount and composition differ between cancer and non-cancer landscape and correlates with that of solid tumours
Potential early diagnosis biomarker

ctDNA Tumour-derived fragmented DNA in the bloodstream that is not associated with cells
Detection of oncogenic mutations, prognostic biomarker, tumour burden and minimal residual detection
ctDNA methylation profiles

Tumour educated 
Platelets (TEPs)

TEPs may offer certain advantages over other blood-based biosources, including their abundance and easy isolation, high-
quality RNA, and capacity to process RNA in response to external signals
Different RNA profiles in platelets from cancer patients and healthy individuals

Proteins Protein/proteome profile as a biomarker for cancer detection; predictive and prognostic biomarkers
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Table 2  ctDNA plasma detection of EGFR mutation

PPA Positive percent agreement, NPA Negative percent agreement, OPA overall percent agreement, n.r. not reported

Reference Method of detection Study type/ Sample 
size

Sensitivity/ PPA Specificity/NPA Concordance/ OPA 
between tissue and 
liquid biopsy

Douillard J et al. [65] QUIAGEN therascreen® 
EGFR RGQ PCR Kit

Prospective, single-arm 
phase IV study (IFUM 
study); N = 652

65.7% 99.8% 94.3%

Reck M et al. [54] QUIAGEN therascreen® 
EGFR RGQ PCR Kit; 
Cobas® EGFR mutations 
test version 2; Cycleave®; 
PNA-LNA PCR Clamp; 
other

Multicenter (ASSESS 
study); N = 1162

46% 97% 89%

Han B et al. [55] Cobas® EGFR mutations 
test version 2

Multicenter (IGNITE 
study); N = 2561

46.9% 95.6% 80.5%

Wu YL et al. [148] QUIAGEN therascreen® 
EGFR RGQ PCR Kit

Phase III, Prospective 
(Lux-Lung 3 and 6 stud‑
ies); N = 334 (plasma); 
N = 287 (serum)

60.5% (plasma)
28.6% (serum)

n.r n.r

Jenkins et al. [74] Cobas® EGFR Mutation 
Test v2

AURA extension and 
AURA2 phase II studies; 
N = 210

T790M: 61%
L858R: 76%
Del19: 91%

T790M: 79%
L858R: 98%
Del19: 98%

T790M: 65%
L858R: 85%
Del19: 90%

Oxnard et al. [76] BEAMing (Sysmex®) Retrospective (AURA 
phase I)
N = 216

T790M: 70%
L858R: 86%
Del19: 82%

T790M: 69%
L858R: 97%
Del19: 98%

n.r

Karlovich et al. [73] Cobas® EGFR mutations 
test; BEAMing (Symex® 
Inostics GmbH)

Prospective, multi‑
centre, observational 
and phase-1 TIGER-X; 
N = 153

(Cobas/BEAMING)
Activating mutations: 
73%/82%
T790M: 64%/73%

(Cobas/BEAMING)
Activating mutations: 
100%
T790M: 98%/50%

(Cobas/BEAMING)
Activating mutations: 
80%
T790M: 86%/67%

Sacher et al. [56] Droplet digital PCR 
(ddPCR)

Prospective; N = 180 
(120 newly diag‑
nosed + 60 acquired 
resistance)

Del19: 82%
L858R: 74% T790M: 77%

Del19:100% L858R: 
100% T790M: 63%

Del19: 91%
L858R: 80%
T790M: 40%

Zheng D et al. [57] Droplet digital PCR 
(ddPCR)

N = 117 T790M: 81% T790M: 100% 88%

Table 3  Meta-analysis on the diagnostic accuracy of LB for detecting EGFR mutations

PPA Positive percent agreement, NPA Negative percent agreement, OPA overall percent agreement, n.r. not reported

Reference Study type/ Sample size Sensitivity/PPA Specificity/NPA Concordance/ OPA 
between tissue and liquid 
biopsy

Quian et al. [48] 27 studies
N = 3938

60% 94% n.r

Luo et al. [49] 20 studies
N = 2012

67.4% 93.5% n.r

Qiu M et al. [50] 27 studies
N = 3110

62% 95.9% n.r

Mao et al. [51] 25 studies
N = 2605

61% 90% 79%

Zhou et al. [52] 32 studies
N = 4527

70% 98% n.r

Passiglia et al. [53] 21 studies
N = 1639

67% 80% n.r
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clinical utility of plasma EGFR mutation detection and 
the concordance between the mutational status in plasma 
and tissue were investigated in EGFR-mutated patients 
undergoing 1st line treatment with TKIs, with sensitivity, 
specificity, and concordance rates of 66.5, 99.8 and 94.3%, 
respectively [64]. Also, OS and PFS did not differ regard-
less of whether the mutation was detected in plasma or 
tissue [64, 65]. Besides that, plasma allowed the detec-
tion of additional cases that were not identified in the 
available tissue sample [64]. Likewise, in a retrospective 
analysis of a 1st generation TKI versus standard chemo-
therapy as 1st line treatment for European patients with 
advanced EGFR mutation-positive NSCLC, the plasma 
detection of EGFR mutations by real-time PCR showed 
a predictive capacity with an OS and PFS overlapping 
that of tissue [66]. These data were of enough robustness, 
demonstrating a strong association between detection of 
plasma mutations and response to TKIs, leading to the 
first approval of a LB for detecting EGFR mutations [67] 
(Table 5).

Patients with EGFR sensitising mutations treated with 
1st or 2nd generation TKIs presented a profound overall 
response rate (ORR) around 60–70% but display a PFS 
of only 9 to 14 months [9, 10, 65]. The T790M mutation 
is the most frequent mechanism [12, 13] and is associ-
ated with response to 3rd generation TKIs [68], making 
detection crucial for selecting candidates for this treat-
ment. In this context, re-biopsy is even more difficult, 

not succeeded in 20–30% of patients [69–72] due to inac-
cessible tumour localisation sites, patients’ fragility, or 
increased risk for tissue biopsies. Therefore, LB assumes 
a relevant role in progressive disease. The usefulness of 
plasma for detecting T790M mutation was addressed in 
studies exploring the activity of 3rd generation TKIs. As 
main findings, the plasma detection rate of the T790M 
ranged from 51 to 81%, with specificity ranging from 77 
to 100% [73–75] (Table  2), and dPCR and NGS-based 
assays displayed a higher sensitivity over the Cobas test 
(Table  4) [60]. Besides, plasma identified T790M resist-
ance mutations missed by tissue biopsy due to tumour 
heterogeneity or inadequate or unavailable tumour tissue 
[59].

Regarding the predictive value of finding a T790M 
mutation in plasma, the response rate was similar, 
whether the T790M was identified in the plasma or 
tumour (ORR: 63 vs 62%) [76], suggesting that in patients 
with a plasma T790M positive assay, tissue biopsy could 
be avoided. Considering the rate of false-negative results 
observed (30%), the negative plasma results justify fur-
ther investigation [76]. Similar findings were stated with 
3rd generation TKIs used in the 1st line [77]. The details of 
approved EGFR plasma detection assays [67, 78, 79] are 
shown in Table 5.

In patients treated with 3rd generation TKIs, sev-
eral secondary resistance mechanisms may occur. The 
role of plasma genomic profiling of ctDNA was well 

Table 4  NGS-based studies analysing cfDNA for EGFR mutation detection

PPA Positive percent agreement, NPA Negative percent agreement, OPA overall percent agreement. n.r. not reported

Reference Method of detection Study type/ Sample 
size

Sensitivity/ PPA Specificity/ NPA Concordance/ OPA 
between tissue and 
liquid biopsy

Kukita Y et al. [58] NGS amplicon-based 
(Ion Torrent PGM®)

Retrospective n = 155  
(144 plasma and 11 
other fluids)

Del 19: 73%
L858R or L861Q: 78%

n.r n.r

Prospective n = 22 78% 92% 86%

Reckamp et al. [59] NGS Amplicon -based
(Illumina MiSeq plat‑
form®)

Retrospective
(TIGER-X study)
N = 60
(urine and plasma)

T790M 93%
L858R 100%
Del19 87%
(urine: T790M 72%; 
L858R 75%
Del19 67%)

T790M 94%
L858R 100%
Del19 96%
(urine: T790M 
96%; L858R 100%
Del19 94%)

n.r

Papadimitrakopoulou V 
et al. [60]

Cobas® EGFR Mutation 
Test v2;

Retrospective analysis 
from AURA 3 study
N = 562

T790M: 51%
L858R: 68%
Del19: 82%

T790M: 77%
L858R: 99%
Del 19: 99%

T790M: 61% L858R: 88%
Del 19: 89%

ddPCR (Biodesix®) T790M: 58%
L858R: 70%
Del19: 73%

T790M: NA
L858R: 98%
Del 19: 100%

n.r

NGS (Guardant360®, 
Guardant Health)

T790M: 66%
L858R: 63%
Del19: 79%

T790M: NA
L858R: 98%
Del 19: 99%

n.r

Schwartzberg et al. [61] NGS HiSeq® 2500 
(Illumina)

Prospective
N = 117

94% 100% 94%
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documented in the trial where osimertinib was studied 
in patients with T790M-positive NSCLC. Out of the 
73 patients included, 49% had no detectable  T790M 
at progression, and 15% acquired an EGFR secondary 
mutation in C797S/G. Amplifications of MET, ERBB2, 
and Phosphatidylinositol-4,5-Bisphosphate 3-Kinase 
Catalytic Subunit Alpha (PIK3CA) were detected in 
19%, 5%, and 4% samples, respectively. Other mecha-
nisms of acquired resistance included mutations in 
B-Raf Proto-Oncogene, Serine/Threonine Kinase 
(BRAF) (V600E, 4%), Kirsten Rat Sarcoma Viral Proto-
Oncogene (KRAS) (1%) and PIK3CA (E545K; 1%), and 
oncogenic fusion mutations in fibroblast growth fac-
tor receptor 3 (FGFR3), ret-proto-oncogene (RET) 
and NTRK (4%) [75]. The resistance mechanisms after 
frontline osimertinib therapy in 91 patients were ana-
lysed through plasma NGS, and as expected, they did 
not lead to the emergence of T790M mutation. Instead, 
the most common acquired resistance mechanisms 
detected were MET amplification (15%), EGFR C797S 
mutation (7%) and ERBB2, PIK3CA and RAS mutations 
(2–7%) [80]. Circulating tumour DNA NGS-based gen-
otyping demonstrated an expanding value, capturing 
the clonal heterogeneity manifested by various resist-
ance mechanisms and overcoming the difficulty in car-
rying out re-biopsies at progression.

Circulating cell‑free tumour DNA for detection 
of ALK rearrangements and ALK resistance 
mutations
The detection of an ALK rearrangement can be done 
in a tissue sample by fluorescence in  situ hybridisation 
(FISH), immunohistochemistry (IHC), retro-transcrip-
tion polymerase chain reaction (RT-PCR), or integrated 
into a multiplex test by NGS [81]. EML4-ALK translo-
cation is challenging to detect in cfDNA due to the dif-
ferent possible breakpoints and the number of base 
pairs involved larger than the typical cfDNA fragments. 
Options to look for gene translocations are to search 
for genomic breakpoint junctions or to analyse cell-free 
RNA[82]. Unlike the analysis of cfDNA to detect muta-
tions, which has already been validated and imple-
mented, plasma RNA analysis is not yet routinely used, 
despite its feasibility. Technically, RNA isolation and 
conservation difficulties exceed those in DNA [83], and 
the sensitivity of RT-PCR is low [84], limiting its use in 
clinical practice. Other methods under investigation for 
ALK translocation detection are the CTC and circulating 
tumour-associated platelets [85]. However, CTC analy-
sis is challenging to implement due to demanding pre-
analytical requirements and a lack of clinical validation. 
Also, RNA released from tumour cells can be transported 
by vehicles as exosomes to circulant platelets and be 

Table 5  Characteristics of commercially approved platforms for ctDNA

FDA Food and Drug Administration, FFPE Formalin-fixed paraffin-embedded

Methodology Assay Technique Sample Gene Spectrum Approved indications

Allelic-specific PCR Cobas EGFR mutation Test 
v2®

Real-time PCR DNA derived from 
FFPE tissue or 
cfDNA from plasma

42 EGFR mutations in exons 
18, 19, 20, 21

FDA approval for detection
of EGFR del19, EGFR L858R, 
and EGFR T790M; FDA, Jun 
and Sept, 2016 [67]

Therascreen® EGFR Plasma 
RGQ PCR kit

Real-time PCR cfDNA from plasma 29 EGFR mutations in exons 
19, 20, 21

E.U. approval for detection of 
EGFR del19 and
EGFR L858R;
EMA, Jan 2015 [78]

AmoyDx Super-ARMS® 
EFGR mutation test kit

Real-time PCR Compatible with 
FFPE tissue or 
plasma/serum 
samples

41 EGFR mutations in exons 
18–21, including L858R, 
exon 19 deletions, and 
T790M

Chinese FDA approval for 
detection of EGFR del19,
EGFR 858R, and EGFR T790M
China FDA. Jan 2018 [79]

NGS Guardant360 CDx® Targeted 
hybridization-
based capture 
technology

cfDNA 73-gene panel
(single nucleotide variants 
(SNVs), insertions and dele‑
tions (indels) in 55 genes, 
copy number amplifications 
(CNAs) in two [2] genes, and 
fusions in four [4] genes

FDA, Nov 2016 [122] to 
identify NSCLC patients who 
may benefit from treatment 
with the targeted therapies 
in accordance with the 
approved therapeutic prod‑
ucts labelling

FoundationOne Liquid 
CDx®

Targeted 
hybridization-
based capture 
technology

cfDNA 311 genes panel including 
substitutions, insertions and 
deletions (indels), rearrange‑
ments and copy number 
losses only in BRCA1 and 
BRCA2

US FDA, August 2020 [149] 
to identify NSCLC patients 
who may benefit from 
treatment with the targeted 
therapies in accordance with 
the approved therapeutic 
products labelling
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extracted from the platelets to be analysed, although this 
technique is still under investigation [86].

Concerning LB for ALK fusion detection, results are 
promising. Generally, sensitivity is not as high as for 
EGFR, but 100% specificity ensures a high predictive pos-
itive value. A PCR-based target sequencing showed low 
sensitivity, 50% with 100% specificity [87]. Instead, with 
amplicon-based technology, ALK rearrangement detec-
tion sensitivity was 78% and 100% for ROS1 [88]. With 
capture-based next-generation sequencing, sensitivity 
ranged from 50 to 79% with 100% specificity [61, 89, 90]. 
The agreement between tissue and plasma NGS for ALK 
rearrangements was acceptable in different studies, vary-
ing from 79.2 to 100% (Table 6).

Despite the good results with ALK inhibitors, resist-
ance is inevitable, where mutations in the ALK gene are 
one of the resistance mechanisms. ALK mutations are 
diverse and differ depending on each ALK inhibitor. For 
example, L1196M often occurs after treatment with cri-
zotinib, G1202R with ceritinib or alectinib, F1174C with 
ceritinib and I1171T/N/S with alectinib [25]. New gen-
eration ALK TKIs, like lorlatinib, ensartinib and entrec-
tinib are potent inhibitors that showed promising results 
for most resistance mutations [24]. Most studies address-
ing the resistance to ALK inhibitors have used ctDNA 
analysis as the dominant tool for detecting mutations and 
dynamic surveillance [91–93]. Dagogo et  al. used a 566 
hybrid-capture gene assay to perform a longitudinal anal-
ysis of plasma specimens from 22 ALK-positive patients 
with acquired resistance to ALK TKIs. At the disease 
progression, an ALK fusion and ALK resistance muta-
tions were detected in plasma in 86% and 50% of patients, 

respectively, with 100% agreement between tissue- and 
plasma-detected ALK fusions [91]. LB will be essen-
tial for selecting and sequencing ALK inhibitors, and in 
this context, the use of NGS platforms is an asset. As for 
EGFR progression, non-targeted mechanisms are harder 
to capture with an LB. MET amplifications can occur in 
about 15% of patients treated with new-generation TKIs 
and rarely histological transformation and Epithelial-
Mesenchymal Transition [26, 27]. Thus, it is advisable to 
pursue a tissue biopsy whenever no resistance mecha-
nism is found in the liquid assay.

The predictive value of cfDNA for selecting patients 
for ALK TKI treatment was proven in a prospective trial 
to use blood-based NGS testing to identify actionable 
genetic alterations and allocate patients to targeted or 
immunotherapy; among the ALK cohort, ORR was 87.4% 
with the studied ALK TKI [94]. There is enough evidence 
for treating patients with an ALK fusion detected on an 
LB, as supported by the IASCL in the Perspective of the 
International Society of Liquid Biopsy (ISLB) [95]. How-
ever, consistent data correlating plasma findings with 
clinical outcomes remain scarce, and the standardisation 
of the methodology is lacking; therefore, clinical applica-
tion is fragile and more prospective trials are needed.

Circulating cell‑free tumour DNA for detection 
of other oncogenic alterations
Beyond ALK rearrangements, other fusion transcripts 
from the ROS1, RET or NTRK genes are considered for 
targeted treatment. For the detection of these alterations, 
NGS applied to circulating nucleic acids can be helpful. 

Table 6  Major studies focus on the cfDNA plasma detection of ALK fusions

PPA Positive percent agreement, NPA Negative percent agreement, OPA overall percent agreement. n.r. not reported

Reference Method of detection Study type/ Sample size Sensitivity/ PPA Specificity/ NPA Concordance/ OPA 
between tissue and 
liquid biopsy

Kunimasa et al. [87] PCR-based target sequenc‑
ing ALK intron19

N = 20 50% 100% n.r

Mezquita et al. [88] Amplicon-based
(InVision™)

Retrospective
N = 59/6

ALK 78%/ROS1 100% n.r 86%

Schwartzberg et al. [61] NGS HiSeq® 2500 (Illu‑
mina)

Prospective
N = 115

50% 100% 96%

Cui S et al. [89] Capture-based NGS N = 39 54% 100% n.r

Wang Ye et al. [90] Capture-based NGS N = 24 79% 100% 92%

Horn L et al. [92] Hybrid-capture system 
NGS
(Resolution Bioscience)

(Phase I/II multicohort 
eXalt2 trial)
N = 76 (22 with paired 
pre-treatment tissue and 
plasma)

n.r n.r 91%

Dagogo-Jack I et al. [91] Hybrid-capture next-gen‑
eration sequencing

Prospective
N = 22 with ALK progres‑
sive disease

86% ALK fusions
50% ALK mutations

n.r 100%
100%
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Still, due to the rarity of these subsets, available data is 
minimal.

ROS1 was punctually detected in studies evaluat-
ing NGS for LC genotyping [88, 96], stating that NGS-
based assays can detect fusions partners accurately. In 
the study of Mezquita et al. [97], 67% of ALK and ROS1 
fusions were detected in LB specimens at diagnosis with 
an amplicon-based assay. Dagogo-Jack et  al. [98] found 
that the sensitivity of plasma genotyping for detecting 
ROS1 fusions was 50% with hybrid-capture plasma NGS. 
However, in another study (NILE study), only two ROS1 
positive patients had paired plasma and tissue samples, 
and in both, the rearrangement was solely detected in 
tissue [99]. Data from patients with different drivers pro-
gressing on TKIs where the emergence of ROS1 fusions 
was present, revealed that plasma genotyping allowed to 
detect the same spectrum of ROS1 fusions and genetic 
alterations mediating resistance observed in tissue [91]. 
However, negative results must be interpreted cautiously 
due to the limited sensitivity and lack of robust data.

RET alterations occur in different cancers, including 
LC [100]. In a large study involving multiple advanced 
cancers types, using a hybrid-capture targeted 70-gene 
cfDNA test, KIF5B-RET fusion was dominant in NSCLC, 
and that non-KIF5B-RET fusion contributed to anti-
EGFR resistance, highlighting the importance of know-
ing the specific gene partner [101]. RET gatekeeper 
mutations (e.g. RET V804M and RET S904F) can medi-
ate resistance to multikinase inhibitors [102], and sol-
vent front mutations (e.g. RET G810) were described 
as a mechanism of resistance to the new selective RET 
inhibitor, selpercatinib [103]. In the late case, analysis 
was performed in ctDNA and confirmed in tissue [103]. 
The European Society of Medical Oncology (ESMO), 
Translational Research and Precision Medicine Working 
Group (TR and PM WG) recommendations on the meth-
ods to detect RET fusions and mutations for NSCLC 
advise NGS, and if it is not available, FISH or RT-PCR. 
Also, consider performing a cell-free nucleic acid NGS 
broad panel for patients whose tissue is unavailable or 
exhausted. Tumour testing is still required if a RET alter-
ation is not detected in a LB [104].

NTRK 1, NTRK 2 and NTRK 3 fusions encode NTRK 
fusion oncogenic proteins involved in multiple infan-
tile and adult cancers and are biomarkers for the use of 
TRK small molecule inhibitors [105]. NTRK fusion gene 
can be detected by IHQ, FISH, RT-PCR, and both RNA-
based and DNA-based NGS. NGS platforms should 
include all fusions variants, including NTRK2 and 3 that 
present large intronic regions. Also, targeted-RNA plat-
forms are helpful for this kind of detection. The ESMO 
TR and PM WG evaluated the available methods used 
to detect these tumour-agnostic alterations for daily 

practice and clinical research in different scenarios [106]. 
In the scenario of testing an unselected population where 
NTRK1/2/3 fusions are uncommon, as it is in LC, either 
frontline sequencing (preferentially RNA-sequencing) 
or screening by IHQ followed by sequencing of posi-
tive cases is advised [106]. NTRK fusions and resistance 
mutations detection in cfDNA is feasible [107], awaiting 
further experience.

LB was used to detect the MET exon 14 skipping 
mutation in a clinical trial, the phase II VISION study, 
in which 66 out of 99 patients who entered the study 
were included based on the detection in the plasma and 
derived the same benefit as those detected on tissue 
[108]. Thus, and considering that all these events are rare 
in LC, ideally, the detection should be part of a strategy 
that allows the simultaneous screening of multiple targ-
etable alterations. The contribution of cfDNA genotyping 
in this strategy will be clarified below.

Liquid biopsy cfDNA NGS for genotyping untreated 
advanced lung cancer
In LC patients with advanced disease, identifying poten-
tially treatable tumour genomic changes is a key element. 
Considering the current target drugs availability and cur-
rent evidence, ESMO recommends routine use of NGS 
on tumour samples in advanced NSCLC, including ALK, 
BRAF, EGFR, ERBB2, KRAS, MET, NTRK, RET and ROS1 
genes [109, 110]. The panel may need to be expanded 
depending on the clinical or investigational setting [110].

Undoubtedly the sequential analysis, gene by gene, is 
impractical in the real-world setting, indicating the need 
for multiplex sequencing [111]. NGS is based on the mas-
sive and parallel sequencing of millions of different DNA 
molecules, allowing the detection of several mutations in 
multiple genes [112]. Initially used in tumour samples, as 
the sensitivity improved, it became possible to be applied 
to LB, with new platforms able to detect tiny fractions of 
tumour DNA in circulation. Unlike conventional plasma 
genotyping techniques, such as the Cobas test, or digital 
PCR, which detect specific mutations of a given probe, 
NGS techniques have the potential to genotype tumours 
more comprehensively [113]. Generally, NGS tech-
niques can be amplicon-based or hybrid-capture based, 
accounting for differences in test performance and range 
of alterations detected [113].

For LC genotyping, cfDNA test performance depends 
on the technology used, with overall sensitivity around 
70–81% and very high specificity, as proved in different 
studies (Table 7).

The BioCAST/IFCT-1002 was a pilot trial from Con-
raud and colleagues where a technology based on multi-
plex PCR covering 12 specific genomic regions covering 
the most relevant genes was used. Test’s sensitivity was 
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58% and specificity 87% having tumour samples as refer-
ence [114]. In the work of Thompson et al., NGS-based 
LB found genomic changes in 84% of patients, 50 con-
sidered "drivers", 12 resistance and 22 additional changes 
in genes for which there were experimental therapies or 
clinical trials [115]. In untreated NSCLC patients with no 
tissue sample available, plasma NGS detected clinically 
relevant molecular changes in 23% [116], being extremely 
useful in that context. Our group used a DNA amplicon-
based assay in a cohort of 115 Portuguese treatment-
naive patients with paired tissue samples, attaining 81.0% 
sensitivity, 95% specificity, 95% PPV, 84% NPV, 88% and 
76% concordance [46].

To improve gene fusions detection, Papadopoulou et al. 
used an amplicon-based NGS combined panel for cfDNA 
and cfRNA for the initial molecular characterisation of 
121 NSCLC patients. The panel included 12 genes fre-
quently altered in NSCLC and fusions in ALK, ROS1 and 
RET genes. At least one mutation was found in 49% of 

patients, including one EML4-ALK translocation. Among 
the 36 patients with tissue paired samples, concordance 
was high (77 to 83%). Using ultra-deep NGS technology 
and filtering the clonal hematopoietic somatic mutations, 
the detection of de novo known oncogenic drivers with a 
hybrid capture panel covering 37 LC-related genes led to 
a sensitivity of 75% with 100% specificity [117]. Plagnol 
et al. validated an enhanced tagged amplicon sequencing 
(eTAm-Seq™) technology to profile 36 genes commonly 
mutated in NSCLC for actionable genomic alterations in 
cell-free DNA, including point mutations, indels, ampli-
fications and fusions. This assay allowed the detection of 
ALK and ROS1 gene fusions and DNA amplifications in 
ERBB2, FGFR1, MET and EGFR with high sensitivity and 
specificity [118]. Also, a large assay for initial genomic 
profiling studied ctDNA from 1552 patients with NSCLC 
with a hybrid capture-based of 62 genes. At least one 
genomic alteration was detected in 86% of cases, among 
which 32% was a targetable alteration according to 

Table 7  Studies focus on the cfDNA plasma NGS for genotyping of newly diagnosed NSCLC

Study Method Sample size Sensitivity Specificity Concordance tissue/liquid 
biopsy %

Conraud et al. [114] NGS amplicon-based (ion 
Torrent PGM)

N = 68 Del19: 55%
Exon 18 = 100%
All = 58%

68%

Thompson et al. [115] NGS
70 genes Guardant360 
panel
Illumina Hi-Seq 2500

N = 102 84% (50 drivers, 12 resist‑
ance and 22 in additional 
genes)

NA 60%
(79% for EGFR mutations)

Leighl et al. [99] NGS
Guardant360CDX

N = 282 80% for any guideline-
recommended biomarker

For (EGFR, ALK, ROS1, BRAF) 
concordance was > 98.2%

Aggarwal et al. [120] NGS
Guardant360CDX

N = 323 90%

Li et al. [117] NGS
hybrid capture panel 
covering 37 lung cancer-
related genes

N = 127 75% for de novo plasma 
detection of known onco‑
genic drivers

100% NA

Fernandes et al. [46] NGS amplicon-based N = 115 81% 95% 76%

Papadopoulou et al. [150] NGS amplicon-based N = 121 (36 with 
matched plasma and 
tissue)

49% at least one mutation 
detected
89% sensitivity for the 
matched population

86%

Mack et al. [121] NGS
Guardant 360

N = 8388 Somatic alterations 
were detected in 86% 
of samples. Activating 
alterations in actionable 
oncogenes were identi‑
fied in 48% of patients, 
EGFR (26.4%), MET (6.1%), 
and BRAF (2.8%) altera‑
tions and fusions (ALK, RET, 
and ROS1) in 2.3%

Schrock et al. [119] NGS
hybrid capture panel 
covering 62 lung cancer-
related genes

N = 1552 Genomic alterations were 
detected in 86% of sam‑
ples. Most frequent were: 
(TP53) (59%), EGFR (25%), 
and KRAS (17%)
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NCCN guidelines. Also, kinases fusions were detected in 
5% of cases in ALK, RET, ROS1, FGFR3, platelet-derived 
growth factor receptor alpha gene (PDGFRA), and plate-
let-derived growth factor receptor beta gene (PDGFRB). 
Furthermore, exon 14 MET skipping mutation was pre-
sent in 1.9% of cases [119].

The clinical relevance of integrating cfDNA genotyp-
ing in metastatic NSCLC clinical management has pro-
gressively been proven. Leigh et  al. conducted a large 
prospective trial, Non-invasive versus Invasive Lung 
Evaluation (NILE) [99], to demonstrate that a com-
prehensive cfDNA test used at diagnosis of metastatic 
NSCLC is non-inferior to that of physician discretion 
standard of care tissue genotyping to identify guideline-
recommended genomic biomarkers. The authors found 
80% cfDNA sensitivity for any guideline-recommended 
biomarker, including EGFR mutations, ALK fusions, 
ROS1 fusions, BRAF V600E mutation, RET fusions, MET 
amplification and MET exon 14 skipping variants, and 
ERBB2 mutations. For FDA-approved targets (EGFR, 
ALK, ROS1, BRAF), the concordance was 98.2%, with 
100% positive predictive value for cfDNA versus tis-
sue. Also, when using cfDNA in addition to tissue, the 
detection increased by 48%, including in patients with 
negative, not assessed, or insufficient tissue results. The 
median turn-around time for cfDNA was significantly 
faster than that of tissue (9 vs 15  days; P < 0.0001) [99]. 
In another crucial study, from a “real-world” clinical set-
ting, Aggarwal et  al. demonstrated that the integration 
of plasma NGS testing into the routine management of 
stage IV NSCLC increased the detection of therapeuti-
cally targetable mutations [120]. Recently, in one of the 
most extensive studies with ctDNA on 8388 advanced 
NSCLC patients, activating alterations in actionable 
oncogenes were identified in 48% of patients, including 
EGFR (26.4%), MET (6.1%), and BRAF (2.8%) alterations 
and fusions (ALK, RET, and ROS1) in 2.3% [121].

These studies confirm that a cfDNA comprehensive 
analysis is powerful to detect targetable genomic altera-
tions in untreated NSCLC patients. At present, blood-
based genomic profiling-based clinical trials are being 
conducted. More results from the BFAST, phase II/III 
global, multi-cohort study evaluating blood-based NGS 
detection of actionable genetic alterations in ctDNA for 
selecting patients for 1st line targeted therapies/immu-
notherapy will elucidate the predictive value of LB, as 
already stated for ALK [94]. Both the Guardant360 CDx® 
assay (Guardant Health, Redwood City, CA) [122] and 
the Foundation One Liquid CDx® test (Foundation Med-
icine, Inc.) are approved for multiple biomarkers detec-
tion in cfDNA isolated from plasma specimens [123] 
(Table  5). Other platforms are under investigation and 
approval process.

Clinical value of liquid biopsy for monitoring 
treatment response and progression
Currently, tumour response evaluation is based on radi-
ology RECIST criteria [124] and complemented with 
functional images. This evaluation represents an isolated 
timepoint, dependent on the exam resolution and expos-
ing patients to radiation. At progression, tumours had 
been suffering from temporal and therapeutic selective 
pressure and cancer heterogeneity [31], and clonal diver-
gence from the primary tumour emerges as an obstacle 
to be overcome and thus needs to be considered in sub-
sequent therapeutic options [125]. As a potential repre-
sentative of all shedding tumour focus with each clonal 
expression, LB is a potential tool to face this challenge. 
Molecular disease monitoring has three significant pur-
poses: monitoring disease burden as an indicator of 
tumour response or relapse, monitoring clonal evolution 
by analysing variations of the variant allelic fractions and 
detecting the emergence of resistance mechanisms.

One of the first studies approaching response through 
LB was the FASTACT-2 trial, chemotherapy interspersed 
with erlotinib. Blood persistence of EGFR mutation 
after an 8-week treatment was linked to a poor prog-
nosis [125]. The PFS was lower in patients who main-
tained detectable levels of EGFR mutation in plasma after 
2-month treatment, 6.3 vs 10.1  months [126]. Also, as 
with 1st line EGFR TKI treatment, early disappearance, 
within 6  weeks, of the T790M mutation was associated 
with better clinical outcomes with osimertinib treat-
ment [127]. Serial ctDNA analysis can detect the appear-
ance of T790M before radiological progression defined 
by the RECIST criteria. Zheng and colleagues detected 
the T790M mutation at the median of 2.2 months before 
radiological progression [57]. The mutation was pre-
sent before radiological progression in another series as 
early as 344  days [128]. Likewise, after 3rd generation 
TKI treatment, changes in plasma T790M levels were 
detected, in most cases mirroring the clinical and radio-
logical evolution [129]. Among our patients submitted 
to ctDNA longitudinal monitoring, a decrease in variant 
allelic frequency (VAF) or clearance of mutant alleles was 
associated with response, while an increase or emergence 
of novel alterations was linked to progression. In most 
cases, such variations anticipated radiographic changes, 
with a median time of 0.86 months [47].

Clonal monitoring has been integrated into recent trials 
involving new generation ALK inhibitors. For example, 
Dagogo et al. demonstrated with serial plasma sampling 
that ALK mutations emerged and disappeared dur-
ing treatment with sequential ALK TKIs, and that such 
data was helpful to guide TKIs selection [91]. Also, Shaw 
et  al. studied the efficacy of lorlatinib among patients 
with and without ALK mutations using plasma or tissue 
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genotyping [130]. For plasma genotyping, PFS did not 
differ significantly in patients with and without ALK 
mutations [130], meaning that plasma negative patients 
include true negative cases and some false negatives that 
are positive on tissue. Therefore, like in the EGFR T790M 
context, tissue confirmation must be pursued whenever 
possible in case of a negative plasma result.

These findings reinforce the need to monitor the dis-
ease in a model that integrates clinical progression 
assessed by symptoms, radiological (RECIST) and clonal 
finding through monitoring the ctDNA. Nevertheless, 
from a clinical point of view, the most pertinent ques-
tion is whether early detection, prior to radiological, and 
the consequent anticipation of therapeutic change will 
translate into more favourable clinical outcomes. To date, 
there is no data available supporting this hypothesis. The 
results from The AZD9291 (Osimertinib) Treatment 
on Positive Plasma T790M in EGFR-mutant NSCLC 
Patients (APPLE Trial) as well as of similar studies are 
expected to confirm the value of LB for the decision-
making process [131].

Liquid biopsies pitfalls
Considering the increasing accuracy and the conquered 
role in guiding clinical decisions, adopting LB in LC 
management, specifically cfDNA analysis, is inevitable. 
Still, it is indispensable to understand the LB limita-
tions and drawbacks. First of all, there is some discrep-
ancy between cfDNA results and paired tissue samples 
relating to the reduced sensitivity of cfDNA responsible 
for false negatives. Cell-free DNA analysis is technically 
demanding, requiring rigorous standardised protocols 
for plasma collection preservation, DNA isolation, library 
preparation and sequencing, being susceptible to fail-
ures in those multiple pre-analytical steps [41, 45, 132]. 
Regarding sequencing analytics, understanding the 
accuracy of the test and the range of hotspots covered is 
essential and is a new requirement for the clinician. As 
an example, not all assays can detect gene amplifications 
and rearrangements, requiring appropriate technologies, 
as elucidated before. Also, accurate post-analytical pro-
cedures are needed to avoid misinterpretations. In this 
sense, expertise in bioinformatics is paramount in inter-
preting findings, distinguishing germline alterations and 
clonal haematopoiesis-related alterations from oncogenic 
tumour mutations, and avoiding false-positive results 
[42, 45, 132]. Detected variants must be reported accord-
ing to the Association for Molecular Pathology (AMP), 
American Society of Clinical Oncology (ASCO), and Col-
lege of American Pathologists [133].

The intrinsic nature of the disease can compromise 
LB results. Some tumours release low or no DNA to the 
circulation (non-shedders) [134]. The amount of ctDNA 

is related to the disease stage, tumour burden, localisa-
tion, and size of the metastasis, particularly limited in 
less extensive, oligometastatic disease and exclusively 
brain metastization [46, 135, 136]. Also, cfDNA profiling 
does not allow the morphologic characterisation of the 
tumour, PDL1 IHQ assessment, and rule out histological 
transformation.

Thus, considering the clinical context and the exposed 
limitations, a proper interpretation requires collabora-
tive efforts between clinicians, pathologists and molecu-
lar biologists gathered in a Mutational Tumour Board 
to optimise treatment personalisation and contribute to 
accurate precision medicine.

Interpretation of liquid biopsy results
The predictive value of ctDNA findings supports LB reli-
ability for clinical decisions. As exposed above, ctDNA 
genotyping revealed extremely high analytic specific-
ity and positive predictive value, making false positives 
improbable. In addition, identifying oncogenic mutations 
through the ctDNA analysis predicts the clinical response 
in a similar magnitude of tumour detection. Therefore, if 
a mutation is detected, it is probably a true positive result 
and identifies candidates for treatment. However, due to 
the low sensitivity, a negative test does not exclude the 
presence of a mutation and results must be designated as 
uninformative or alteration(s) not detected. It is advised 
confirmation through tissue biopsy.

On the opposite, but less frequent, is detecting onco-
genic alterations in plasma not present in the tissue, 
which can be considered a false positive if tissue is the 
reference. This can occur due to tumour heterogene-
ity, with some alterations not being expressed in the 
correspondent sample, especially concerning progres-
sion, where “de novo” alterations are expected to occur. 
It is not a handicap of LB but an advantageous, express-
ing the complementary role to tissue analysis. Genuine 
false positives are rare and can be associated with ana-
lytic or interpretation errors, different tumour origin or 
clonal haematopoiesis [95]. In the last case, germline cell 
sequencing can help exclude this.

Considering the EGFR mutated scenario as the para-
digmatic example, LB is the first test to look for the 
T790M mutation, as recommended [4]. If the resistance 
mutation is found in plasma (positive test), the patient 
is eligible for treatment with a 3rd generation inhibitor. 
On the other hand, a tissue biopsy is advised when the 
T790M mutation is not detected. The absence of plasma 
mutation (negative test) may occur because the resistance 
mechanism is another, due to a false-negative attributed 
to the test’s low sensitivity or the absence of "secretion" 
for the circulation of DNA through the tumour. In the 
latter case, the initial driver mutation will also not be 
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present. In cases where it is not possible to perform a tis-
sue biopsy, the LB can be repeated, and as the tumour 
or its metastases growths, it may "release" more ctDNA, 
allowing to detect the T790M. Depending on the context, 
other alternatives to plasma ctDNA may be other biologi-
cal fluids, like CSF [136]. The same rationale for interpre-
tation applies to the other oncogenic alterations found 
with a plasma assay, as illustrated in Fig. 1.

Future perspectives
LB conquered a definitive place in the management of 
patients with advanced or metastatic LC. Future perspec-
tives will embrace expanding its application to immuno-
therapy and less advanced stages of the disease.

Concerning NSCLC advanced disease, targeted treat-
ments produce remarkably high and sustained response 
rates, contributing to the incremental survival observed 
in the last decade in NSCLC patients [137] and must 
be the first treatment option. The following options are 
immunotherapy with checkpoint inhibitors alone or 
combined with chemotherapy [3, 4]. The only validated 
predictive factor for selecting patients for immune check-
point inhibition is tissue expression of PD-L1[4], which 
has numerous limitations that are beyond the scope 
of this review. Other biomarkers have been explored, 
namely Tumour Mutation Burden (TMB)[138]. Briefly, 
TMB refers to the number of nonsynonymous mutations 
per megabase. Hypothetically, a high TMB correlates 
with patients’ responses to treatment with PD-1/PD-L1 
inhibitors [130]. Blood TMB (bTMB) has been investi-
gated in clinical trials with different plasma-based NGS 
platforms. For example, in patients treated with atezoli-
zumab, a high bTMB (> 16 SNVs, detected among 394 

genes) correlated with the response with the Founda-
tionOne CDx NGS assay [139], pointing to blood TMB 
as a surrogate of tissue TMB. However, there is contro-
versy regarding concordance between tissue TMB and 
cfDNA TMB, particularly when different assays are com-
pared [140]. Therefore, adopting blood TMB requires 
additional validation and harmonisation of the technical 
aspects [140]. In addition, other specific mutations, such 
as KRAS, TP53, STK11 and PTEN have been described as 
influencing the response to immune checkpoint inhibi-
tors and can be detected and tracked in the blood [141, 
142]. Future perspectives shall explore the role of LB in 
patient selection, response evaluation, disease monitor-
ing and interpretation of pseudo-progressive disease. 
Clinical trials embracing genomics with immunotherapy 
must be held.

Moving to the role of LB in localized disease, the 
detection and molecular characterisation of minimal 
residual disease (MRD) is of particular importance. 
MRD evaluation can improve patient selection for 
adjuvant therapy, contributing to clinical outcomes 
while avoiding overtreatments [44]. Several studies 
have suggested that ctDNA can be used to detect the 
presence of MRD after surgical resection in several 
cancer types, including LC, by documenting a marked 
decline in presurgical and postsurgical levels of ctDNA 
[143, 144]. Additional data in support of using ctDNA-
based MRD detection was obtained from the TRAC-
ERx trial [145]. This study created an individualized 
panel of single-nucleotide variants for each patient 
using exome sequencing of their primary tumour. The 
results demonstrated that ctDNA status was closely 
linked to disease relapse after intent-to-cure surgery 

Fig. 1  Proposed algorithm for clinical interpretation of a liquid biopsy for the detection of targetable mutations. For clinical interpretation, a 
targetable alteration found in a liquid biopsy is considered a true positive finding and is used to guide treatment selection. A liquid biopsy with no 
detectable alteration must be confirmed with a tissue biopsy to overcome false negative results
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[145]. Subsequently, another study reported the appli-
cation of CAPP-Seq to assess for MRD. Detectable 
ctDNA was found in 72% of all patients who exhibited 
radiographic progression and preceded these findings 
by a median of 5.2 months. The results of these stud-
ies together imply a robust potential role of ctDNA-
assessed MRD [146] that must be further explored. 
Promising results of the application of cfDNA to early 
cancer detection are ongoing and technical advances 
are expected to overcome the sensitivity and specificity 
limitations inherent to the study of an asymptomatic 
and low burden disease population. Furthermore, 
ctDNA epigenetic markers in plasma can be detected 
early during cancer pathogenesis and provide informa-
tion on early detection, prognosis, MRD, and therapy 
response and will open a new era in the LB field [147]. 
Finally, incorporating ctDNA in clinical trial design in 
the different scenarios of LC management is becoming 
indispensable and must be accomplished.

Integrating cfDNA comprehensive genomic tumour 
profile in lung cancer management
Integrating a comprehensive genomic tumour profile will 
be the cornerstone for LC management, and cfDNA will 
be an indispensable tool, as proposed in Fig. 2. Circulat-
ing-tumour DNA genotyping is, at least, complementary 
to tissue genotyping, with the potential of having a bet-
ter cost/efficacy profile with a shorter turn-around time 
[99]. Head-to-head comparison of a liquid-first versus 
tissue-first genotyping strategy, using the same NGS plat-
form, with a comprehensive analysis of costs and asso-
ciated health resources expenditure is eagerly needed. 
For detection of resistance mechanisms, evidence cor-
roborates LB as the first step test, with tissue biopsy as a 
backup for negative results.

Conclusion
The therapeutic decision in advanced LC stages is com-
plex, involving several parameters. Clinical and func-
tional evaluation of the patient condition and disease 
extension, combined with tumour morphological, 

Non-Small Cell LungCancerMolecularGenotyping

Tissue Genomic Pro ingLiquid biopsy cfDNAprofiling
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Fig. 2  Proposed workflow integrating liquid biopsy in the management of advanced NSCLC
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immunohistochemical and molecular characterization, 
is paramount for clinical decision. As the disease pro-
gresses, all those factors are susceptible to changes, 
including the emergence of resistance mechanisms. 
Through ctDNA genomic profiling, a LB will more likely 
be the choice to identify genomic alterations in untreated 
patients and monitor and detect resistance mechanisms, 
as it embraces tumour heterogeneity, is non-invasive and 
repeatable. The LB will have a promissory impact on LC 
patients’ survival and quality of life.
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