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Para ser grande, sê inteiro: nada 

          Teu exagera ou exclui. 

 

Sê todo em cada coisa. Põe quanto és 

          No mínimo que fazes. 

 

Assim em cada lago a lua toda 

          Brilha, porque alta vive. 

 

 

Ricardo Reis, in "Odes" 
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Resumo 

O estetoscópio é uma das mais essenciais ferramentas que os profissionais de 

saúde utilizam para detetar e diagnosticar doenças respiratórias, uma vez que pode 

rapidamente ajudar na deteção de algumas doenças letais, enquanto se torna acessível 

para os serviços de cuidados de saúde primários. Infelizmente, a necessidade de o 

ouvinte ser experiente é uma desvantagem, uma vez que pessoas com doenças 

respiratórias crónicas não conseguem auto-monitorizar a sua condição. Por esta razão, 

a identificação automática de sons respiratórios é um campo ativo de investigação em 

processamento de sinais médicos com o objetivo de detetar crepitações e sibilos. 

Crepitações e sibilos são sons respiratórios adventícios comuns que podem 

indicar a presença de doença ou de distúrbio pulmonar. Investigações anteriores 

propuseram métodos para deteção automática de crepitações e sibilos em sons 

respiratórios adquiridos por um estetoscópio eletrónico. O desafio é adaptar algoritmos 

já desenvolvidos para gravações de sons respiratórios com smartphones. 

O algoritmo de deteção de crepitação é baseado em duas etapas: (1) um valor 

de limiar é aplicado à derivada do primeiro valor absoluto do som respiratório para 

localizar a “zona de interesse” e (2) nesta zona, uma crepitação é detetada se alguma 

das condições forem verificadas. O algoritmo de deteção de sibilos envolve quatro 

etapas: (1) cálculo da representação da time-frequency do som gravado, (2) remoção 

do som respiratório básico do som respiratório total, (3) deteção de pico e (4) 

classificação final do som respiratório: os picos são classificados como sibilos ou não 

sibilos. Neste trabalho, estes algoritmos inicialmente desenvolvidos em MATLAB foram 

reimplementados em Python para permitir fácil inclusão num ecossistema que já recolhe 

sons respiratórios por meio do microfone dos smartphones. 

Esses algoritmos foram aplicados a bases de dados de sons adquiridos em 

estetoscópios e em smartphones para avaliar o seu desempenho. A concordância entre 

os algoritmos de MATLAB e Python é razoável, tendo um coeficiente Kappa de Cohen 

de 0.629 atingindo uma exatidão balanceada de 81.7% entre algoritmos, 74.17% na 

identificação de sibilos pelo MATLAB e de 76.17% no Python. 

Os dados de performance obtidos são promissores, no entanto, análises 

adicionais são necessárias para avaliar quais parâmetros e técnicas precisam de ajuste 

nas gravações do smartphone. 
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Abstract 

The stethoscope is one of the essential tools physicians use to detect and 

diagnose lung diseases since it can help quickly diagnose some deadly maladies while 

making it affordable for primary health care services. Unfortunately, the need for an 

experienced listener is a drawback since people with chronic lung diseases cannot 

monitor their condition themselves. Therefore, automatic respiratory sound identification 

is an active field of medical signal processing research aiming to detect two sounds: 

crackles and wheezes.  

Crackles and wheezes are common adventitious respiratory sounds that can 

indicate the presence of pulmonary disease or disorder. A previous work proposed 

methods for automatically detect crackles and wheezes over respiratory sounds 

acquired by an electronic stethoscope. The challenge is to adapt already developed 

algorithms to smartphone respiratory sound recordings. 

The crackle detection algorithm is based on two steps: (1) a threshold value is 

applied to the first derivative absolute value of respiratory sound to locate the “zone of 

interest”, and (2) in this zone, a crackle is detected if some conditions are verified. The 

wheeze detection algorithm involves four steps: (1) calculation of the time-frequency 

representation of the recorded sound, (2) removal of the basic breath sound from the 

total breath sound, (3) peak detection and (4) final classification of the detected peaks 

as wheeze or non-wheeze.  

In this work, these initially developed algorithms in MATLAB were reimplemented 

in Python to allow easy inclusion in an ecosystem that already collects respiratory sounds 

using mobile apps.  

These algorithms were applied to databases of stethoscope-acquired and 

smartphone-acquired sounds to evaluate their performance. The agreement between 

MATLAB and Python algorithms is reasonable since the Kappa Cohen coefficient is 

0.629, achieving a balanced accuracy of 81.7% between algorithms, 74.14% in wheeze 

detection in MATLAB and 76.17% in Python’s algorithm. 

Despite, the performance evaluation results being promising, further analysis is 

required to assess what parameters and techniques need adjustment to smartphone 

recordings. 
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1 Introduction  
The year 1816 changed the way that physicians diagnose chest diseases. There 

was a need for an instrument capable of diagnosing chest conditions, mainly in stout 

individuals, where direct auscultation could be challenging and even bothersome. René 

Laënnec invented the stethoscope ( = stēthos (chest) + skopein (to visualise, to see) [1]), 

using only a tube of paper tied with a string to auscultate the heartbeats of his patients. 

Later in that century, George P. Camman developed a Binaural stethoscope with two 

earpieces [2], with a similar shape to the modern one. 

When conjugated with an experienced listener, this instrument has excellent 

value once it can quickly diagnose deadly disorders, making it affordable for primary 

health care services [3].  

Despite all the benefits of performing auscultation as a diagnostic procedure, 

some disadvantages need to be considered: as the listener is a human, some random 

inaccuracies in identifying abnormal respiratory sounds may occur, possibly resulting in 

bad judgments [4]; it is required some silence to make the auscultation, what can be 

challenging to achieve in noisy clinical settings; the listener needs much training to make 

a good diagnosis, what means that the great majority of unhealthy people cannot monitor 

their disease by themselves. 

Later in the twentieth century, the first electronic stethoscope was created, 

allowing sound to be louder and more precise. Nowadays, digital stethoscopes can filter 

the noise of the sound [5], surpassing some of the disadvantages pointed out earlier. 

 

1.1 Motivation 

The next big step in the evolution of the stethoscope is using all the scientific 

knowledge in signal processing to detect specific patterns that can lead to a diagnosis. 

This improvement can substantially reduce human error since clinical reasoning is 

interpreted into the detection algorithm [6]. As described in the next chapter, some 

algorithms were already developed with exciting results. 

The reader may then ask how the stethoscope can be improved to make 

auscultation even more profitable. The answer is simple: making it available to everyone 

despite their level of knowledge in auscultation [7]. Nowadays, smartphones are 
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accessible to everyone [8], so using their microphone and the enormous mathematical 

developments might solve this challenge [9].  

This Dissertation explores the already-built algorithms with good results for the 

digital stethoscope. It adapts them to a database with recordings of respiratory sounds 

acquired with smartphones, aiming for the best results. 

 

1.2 Adventitious respiratory sounds 

Crackles and wheezes are familiar adventitious respiratory sounds that can 

indicate the presence of pulmonary disease or disorder [10]. 

Crackles are a type of lung sound characterised by a popping or crackling noise. 

They are caused by the opening and/or closing small airways and alveoli in the lungs 

[11]. Crackles can be heard with a stethoscope and are classified into fine and coarse: 

fine crackles are typically heard in the upper lobes of the lungs and are associated with 

conditions such as pneumonia and idiopathic pulmonary fibrosis; coarse crackles, on the 

other hand, are typically heard in the lower lobes of the lungs and are associated with 

conditions such as chronic bronchitis [12]. A possible explanation of crackles in chronic 

respiratory disease could be air bubbling in the secretion of the airways. The number of 

crackles is correlated with the severity of the underlying disease. 

Wheezes are lung sounds characterised by a high-pitched whistling noise. They 

are caused by narrowing or obstructing the airways, which increases airflow resistance 

[13]. The bronchial obstruction causes harmonic oscillations of the airways due to 

Bernoulli’s principle, which can be heard as pitched noises on top of the physiological 

breath sounds. If there are multiple obstructions, the different wheezing sounds are 

overlapped, which results in polyphonic wheezing.  

Wheezes can also be heard with a stethoscope and are associated with asthma 

and chronic obstructive lung disease [12]. In addition to helping with diagnosis, crackles 

and wheezes can also be used to monitor the progression and treatment of respiratory 

diseases [14]. For example, if a patient with chronic obstructive pulmonary disease 

(COPD) is experiencing an exacerbation, healthcare providers may hear an increase in 

the number and severity of crackles [15]. Similarly, if a patient with asthma is not 

responding well to treatment, healthcare providers may hear an increase in the severity 

of wheezes [16]. The normal auscultation performed with an analogic stethoscope 
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typically cover all zones of the posterior and anterior parts of the chest, which might be 

challenging to achieve with a smartphone, especially in a self-monitoring set-up. 

 

1.3 Automatic respiratory sound detection 

Automatic respiratory sound identification is an active area of research in medical 

signal processing. Intuitively, seeing some waveforms of wheeze, crackle and normal 

sounds, some patterns and differences are evident. 

Figure 1 - Anterior and posterior auscultation schema. 

Figure 2 - Representation of different respiratory sounds and the respective spectrogram. [37] 
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Although the first algorithms used spectrogram analysis, fast Fourier transform 

and wavelet transform, nowadays, the state of the art in this field involves using machine 

learning techniques, such as deep neural networks, to classify respiratory sounds into 

different categories. Some relevant articles are reported below: 

Petmezas et al. [17] proposed an algorithm that implements a trained focal loss 

function (FL) after features are extracted from a short-time Fourier transform (STFT) via 

a convolutional neural network (CNN). This algorithm aimed to detect four states for the 

sound: normal, crackle, wheeze, crackle and wheeze, and it was trained and tested on 

a respiratory sound database developed within the scope of the International Conference 

on Biomedical and Health Informatics (ICBHI) 2017.  

The data was divided using three different splitting strategies with the following 

results: achieving sensitivity between 47.37% and 60.29%, specificity between 82.46% 

and 84.26%, a score between 64.92% and 68.52%, and accuracy between 73.69% and 

76.39%. 

Jizuo Li et al. [18] proposed a deep learning architecture algorithm to detect four 

states for the sound - normal, crackle, wheeze, crackle and wheeze - named LungAttn 

using a feature extraction method based on dual-tunable Q-factor wavelet transform and 

STFT. Implementing this algorithm in the ICBHI 2017 database achieved a sensitivity of 

36.36%, a specificity of 71.44% and a score of 53.90%. 

Yoonjoo Kim et al. [19] developed a predictive model of abnormal respiratory 

sounds with four categories: normal, crackles, wheezes, and rhonchi. The detection of 

adventitious sounds had an accuracy of 86.5% and an area under the ROC curve (AUC) 

of 0.93. The further classification into the four categories had an overall accuracy of 

85.7% and a mean AUC of 0.92. 

These algorithms were developed based on stethoscope-recorded sounds, and 

their accuracy dealing with smartphone-recorded sounds is still unknown. 

The AIRDOC project aimed to develop an innovative solution for the early 

detection of adventitious sounds in the lungs using smartphones, developing a mobile 

application to record and analyse lung sounds [20]. The project's main objective was to 

create a low-cost, accessible, and easy-to-use tool that healthcare professionals and 

patients could use to detect potential lung problems. The project also focused on 

developing a cloud-based platform for storing and sharing lung sound recordings. This 
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research has led to interesting advancements in the use of smartphones for the early 

detection of adventitious sounds in the lungs [21]. 

Respiratory Sound Assessment Toolkit was developed in University of Aveiro 

with promising results, with the development of a software application that could 

accurately detect adventitious sounds in the lungs, such as crackles and wheezes, and 

provide a visual representation of the sound for straightforward interpretation. The 

application also analysed the sound in real-time, providing immediate feedback to the 

user [22].  

In this Dissertation, a wheeze detection algorithm will be addressed as well as 

further performance analysis to the implementation of that algorithm in a database with 

stethoscope and smartphone respiratory sounds recordings to deduce some conclusions 

of its applicability. 
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2 Signal Processing Methods 
 Mathematical methods are pivotal in implementing algorithms by providing a 

solid foundation and a deep understanding of the underlying principles. In this chapter, 

some definitions, and methods relevant for this Dissertation are briefly presented. 

 

2.1 Window function 

A window function is a mathematical function that is zero-valued outside of some 

chosen interval, usually symmetric around the middle where it achieves a maximum of 

the interval and also tapering away from the middle. 

 

2.2 Hann function 

The Hanning function is a window function is used to perform Hann smoothing. 

The function, with length 𝐿 and amplitude 1/𝐿 defined as: 

𝑤 (𝑥) ≜

1

𝐿

1

2
+

1

2
cos 

2𝜋𝑥

𝐿
=  

1

𝐿
cos

𝜋𝑥

𝐿
, if |𝑥| ≤ 𝐿/2

0, if |𝑥| > 𝐿/2 

 

By applying the Hann window to a signal before computing its Fourier transform 

the signal is multiplied by the window function elementwise. This means the signal will 

be modulated with the shape of the Hann window. The result is that the signal smoothly 

tapers to zero at its edges, reducing the side lobes and improving the accuracy frequency 

component estimation in the Fourier domain. This phenomenon can be seen in the chart 

below. 
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2.3 Box filtering 

The box filter equally weights all samples within a square region of the image. 

Box filtering involves replacing each pixel of an image with the average in a box. When 

extended in several simple ways, it becomes an efficient general-purpose tool for image 

processing [23].  

When applied to signal, a box slides over the signal, averaging the values within 

the box at each step. This process continues until the end of the signal.  

The filtered signal is obtained by replacing the centre values in each box with the 

average of the values within that box. 

The result is a smoothened signal that reduces the high-frequency noise, giving 

us a clearer representation of the underlying sinusoidal wave. An example of this method 

can be seen in Figure 3. 

 

Chart 1 - Hann window and correspondent Fourier transform. 
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The box filter reconstructs (a) a step function and (b) a sinusoidal function with 

increasing frequency as x increases. As expected, this filter does well with the step 

function and does an inferior job with the sinusoidal function [24].  

 

2.4 Convolution 

Convolution is a mathematical way of combining two signals to form a third signal. 

It is the single most important technique in Digital Signal Processing. Convolution is 

essential because it relates the input, output, and impulse response of a system. 

Abstractly, a convolution is defined as a product of functions 𝑓 and 𝑔 that are 

objects in the algebra of Schwartz functions in ℝ . The convolution of two functions 𝑓 

and 𝑔 over a finite range [0, 𝑡] is given by 

[𝑓 ∗ 𝑔] =  𝑓(𝜏)𝑔(𝑡 − 𝜏)𝑑𝜏 

 

Figure 3 - Box filter applied (a) a step function and (b) a sinusoidal 
function. [24] 
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When taking over an infinite range, 

𝑓 ∗ 𝑔 =  𝑓(𝜏)𝑔(𝑡 − 𝜏)𝑑𝜏 

A visual way to understand the convolution is shown in Figure 4: 

 

2.5 Savitzky-Golay filter 

The Savitzky–Golay smoothing, and differentiation filter optimally fits a set of data 

points to a polynomial in the least-squares sense. 

The smoothing is achieved by fitting successive subsets of adjacent data points 

with a low-degree polynomial by the method of linear least squares. 

  

Figure 4 - Convolution of two functions A (red) and B 
(blue) produce a third function describing the overlap 
(green). 
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3 Adventitious respiratory sounds 

automatic detection 
 

This chapter delves into advanced algorithms for identifying abnormal respiratory 

sounds. It will provide detailed insights into the underlying computational methods and 

signal processing techniques used to identify adventitious sounds. 

 

3.1 Wheezes detection  

The algorithm to detect wheezes was initially developed by Taplidou in 2007 [25]. 

It aims to locate wheezing episodes in breath sound recordings based on time-frequency 

(TF) analysis of the signal.  

The TF representation is usually obtained using the STFT on a time signal 𝑠(𝑡): 

𝐹 (𝜏, 𝑓) = 𝑠(𝑡)  ∙  ℎ∗(𝑡 − 𝜏)𝑒 𝑑𝑡 

Equation 1 

The use of the STFT for wheeze detection has been already proposed by M. 

Waris et al. [26] but it was insufficient in the presence of noise, such as cardiac sounds. 

Therefore, Taplidou et al. developed this time-frequency wheeze detector (TF-

WD) using five steps: 

Step 1: Calculation of the TF representation of the recorded sound. 

Step 2: The underlying basic breath sound is subtracted from the total breath 

sound. 

Step 3: Peak detection in the TF plane. 

Step 4: Classification of the detected peaks as wheeze and non-wheeze. 

Step 5: Wheeze representation in the time domain. 
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Description of the wheezes detection algorithm 

Step 1 

Consider the signal 𝑠(𝑡) as 

𝑠(𝑡) = 𝑤(𝑡) + 𝑛(𝑡) 

where 𝑤(𝑡) and 𝑛(𝑡) correspond to wheezing and white noise sounds, respectively.  

The 𝑠(𝑡) signal is analysed in the TF plane using Equation 1, with ℎ(𝑡) being a 

256-sample Hanning sliding window shifted by 128 overlapping samples in the time 

domain; at each window position, the fast Fourier transform of the windowed signal 

(extended to 2048 samples after zero-padding) is estimated, resulting in the 𝐹 (𝜏, 𝑓). 

Step 2 

To remove the basic breath sound from the sample, a smoothing procedure is 

used to estimate the trend of the frequency content of the windowed signal at each time 

instance. This estimation is based on the Box filtering procedure, which reduces the 

variation of a signal, a commonly used technique to reduce white noise. 

Step 3 

The frequency axis is segmented into four frequency bands: B1: 60–300 Hz, B2: 

300–600 Hz, B3: 600–1400 Hz, and B4: 1400–1900 Hz, so that different magnitude 

criteria can be defined for each one to facilitate the peak detection in the TF domain. 

This detection method involves a search for peaks that overpass a specific magnitude 

threshold, nT, (in dB) per frequency band: nT1: 1.8, nT2: 2, nT3: 3 and nT4: 3.  

When these peaks are identified, their time and frequency location are marked. This 

procedure is repeated for each time window, resulting in 𝐹 (𝜏, 𝑓). 

Step 4 

A set of criteria is applied to examine the validity of the detected peaks at step 3. 

These criteria include: 

1) Local maxima: the peaks should have the maximum magnitude of a 70Hz 

frequency window sliding over the frequency bands at each time-window position. 

2) Peak coexistence: the number of peaks coexisting at each time instance should 

not be greater than four. 

3) Continuity in time: peaks should have a duration greater than 150ms. 

4) Grouping: peaks are part of the same wheeze when the frequency proximity of 

peaks that belong to successive time-window positions is no mere than 50 Hz; 
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their time proximity is no more than 23.2 ms, and the total duration of the 

gradually formed wheeze does not exceed 2.5 s. 

The detected peaks in the 𝐹 (𝜏, 𝑓) that satisfy the criteria described above 

correspond to wheezes; if not, they are considered non-wheezing sounds and are 

discarded. 

Step 5 

By applying the inverse short-time frequency transform (ISTFT), the 𝑤(𝑡) signal 

is estimated, showing the wheeze information in the time domain. 

This algorithm was used to detect wheezes in stethoscope-recorded sounds from 

patients with stable and exacerbated COPD. [27], [28] 

 

3.2 Crackles detection 

The algorithm to detect crackles was initially developed by Laura Vannuccini in 

1998 [29]. This automatic method detects peaks corresponding to the points of the 

maximum slope. The respiratory sound's first derivative (FD) is calculated to emphasise 

pitch and speed, and the crackle should be detected using the deflection property. So, 

this algorithm is generically based on two steps: 

Step 1: Locate the zone of interest using the lung sound's first derivative absolute 

value (FDAV). 

Step 2: Verify if the zones detected in the first step fulfil all requisites to consider 

it a crackle. 

Description of the crackles detection algorithm  

Step 1 

Apply the FDAV to the sample and compare it to a predefined threshold, T. The 

intervals ton and toff are calculated using this comparison: ton is the time during which 

FDAV remains over T, and toff is the time it remains under T: 

𝑡on = 𝑡on     ,            𝑡off = 𝑡off  

This counting continues until ton is greater than toff and the sum of these two 

variables is less than the temporal window TW. When the counting stops, a zone of 

interest is found. 
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Step 2 

To verify if the zone of interest found contains a crackle, these conditions must be 

achieved: 

1) At least three close peaks of FDAV in TW must exist. This condition is easy to 

verify since the number of peaks is equal to the number of 𝑇 . The positions of 

these peaks correspond to the points of the maximum slope of the signal (t1, t2 

and t3). 

2) FDAV(t2) must be greater than FDAV(t1) and FDAV(t3).  

3) The intervals 𝑡 − 𝑡 , 𝑡 − 𝑡  and 𝑡 − 𝑡  must increase because: 

 𝑡 − 𝑡 > 𝑡 − 𝑡 > 𝑡 − 𝑡   

where tS is the starting point. 

To know the variable tS, some parameters of the crackle are helpful, such as the 

initial deflection width (IDW). 

A finite impulse response (FIR) filter evaluates the FD. These kinds of filters 

belong to the Savitsky–Golay (SG) group and are low-pass filters, well adapted for 

smoothing and differentiation, whose properties are defined in the time domain rather 

than the Fourier domain. Specifications for an SG filter are the number of coefficient n, 

the degree of the fitting polynomial p, the order of derivation d and the order of the higher 

moment to preserve m. 

Similar to wheezes detection algorithm, this crackles detection algorithm was 

used previously in stethoscope-recorded sounds from patients with stable and 

exacerbated COPD. [27], [28] 
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4 Database description 
This database contains recordings from 26 young students with ages between 

10 and 13 years. Recordings were acquired with a smartphone (iPhone 7, 

MN902ZD/A, iOS 12.1.2) and one stethoscope (Littmann® model 3200, 3M, Cerritos, 

CA, USA) at 7 locations simultaneously, totalling 415 respiratory sounds. 

The characterisation of the sample is presented below: 

 

 

 

 

 

 

 

 

 

Chart 2 - Number of students by age and gender (n=26). 
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Chart 3 - Box plot (violin chart) of height in cm by gender. 

Chart 4 - Box plot (violin chart) of weight in kg by gender. 
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 Regarding height and weight, the data shows some symmetry around the mean 

values for weight and height which indicates that the sample can be from a normal 

population.   

 Each sound file has a duration of thirty seconds and were obtained from 7 

different locations: 

 Anterior right lower lobe 

 Anterior left lower lobe 

 Posterior right lower lobe 

 Posterior left lower lobe 

 Posterior right upper lobe 

 Posterior left upper lobe 

 Trachea 

Due to the simultaneous recording between the smartphone and stethoscope, 

the data was balanced regarding local and equipment. 

Two researchers independently classified the recordings in terms of sound quality 

(yes/no) and presence of adventitious sounds (yes/no) was only assessed in the 

recordings with quality. This created a slight discrepancy between the number of 

recordings per location (Table 1). In the event of disagreement, the recordings were 

classified by a third investigator and the final decision was determined by the majority 

rule. 

 

Table 1 - Number of recordings per location. 

 

Anterior Posterior 

Trachea Right 

Lower 

Left 

Lower 

Right 

Lower 

Left 

Lower 

Right 

Upper 

Left 

Upper 

Smartphone 25 25 25 23 25 25 26 

Stethoscope 24 25 24 24 21 22 25 

Total 49 50 49 47 46 47 51 
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 The presence of adventitious sounds, as annotated by the specialists, is 

presented in the table 2 below. 

 

Table 2 - Distribution of Wheezes and Crackles presence in the sample. 

 Smartphone Stethoscope Total 

Wheezes 16 17 33 

No-Wheezes 158 148 306 

Crackles 0 1 1 

No-Crackles 174 164 338 

  

 As the sounds with wheezes presence represent only 9.73% of the total sample, 

this database can be considered unbalanced, and the performance analysis must take it 

into consideration. Regarding the crackle’s presence, it only represents 0.29% of the 

sample, much less than wheezes. This data is not adequate to evaluate automatic 

crackle detection. 

 

  



FCUP 
Analysis of respiratory sounds acquired with smartphone 

18 

 
 

5 Python Implementation 
MATLAB, short for MATrix LABoratory, is a powerful and versatile programming 

environment and numerical computing software widely used in academia, industry, and 

research, where all variables are multidimensional arrays, no matter what type of data. 

In February 2014, both algorithms described in the previous chapter were 

implemented in MATLAB by a team in the University of Aveiro, taking advantage of digital 

signal processing packages in the platform. These algorithms were then integrated in a 

computer-assisted learning tool which simultaneously allows the recording and analyses 

of respiratory sounds to be used by healthcare providers. [30] 

Later in this Dissertation, the results of applying the algorithms to sounds 

recorded from different equipments are discussed. 

Python is a versatile and high-level programming language that has gained 

widespread popularity among developers and data scientists due to its simplicity, 

readability, and extensive libraries. Guido van Rossum initially created Python in the late 

1980s [31], and it has since evolved into a powerful tool for various applications, from 

web development to scientific research and machine learning. 

One of Python's standout features is its rich standard library, which includes 

modules for various tasks, from handling files and working with data to creating graphical 

user interfaces. Additionally, Python's active open-source community has contributed to 

an extensive ecosystem of third-party libraries and frameworks, such as NumPy for 

numerical computing [32] and TensorFlow for machine learning [33]. 

Targeting the implementation of these algorithms in a cloud server, Python was 

the chosen language to translate the previous MATLAB algorithm directly. 

Due to the vast difference in syntax between both languages, this implementation 

showed lots of challenges to overcome, having also in interest the computational 

economy needed for this kind of project. 

The Python version used in this implementation was 3.11. The packages used in 

the implementation are described in the table below. 
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Table 3 - Version of the packages used in Python’s implementation. 

Package Version Control 

cv2 4.8.0 

numpy 1.25.2 

pandas 2.1.0 

scipy 1.11.2 

soundfile 0.12.1 

 

Strategy 

Translating an algorithm from MATLAB to Python is a challenging task, as these 

two languages have significant differences in their syntax and operation. To bypass this 

problem, a proper strategy to approach this difficulty was made, making it possible to 

efficiently perform this conversion.  

Step 1: Understand the MATLAB Algorithm 

Before beginning Python’s implementation, it's crucial to have a comprehensive 

understanding of the algorithm in MATLAB. This was made not only from the algorithm’s 

documentation but also from knowledge of digital signal processing. 

Step 2: Choose the right Python Libraries 

Python has an extensive collection of libraries that can replace MATLAB's 

functions and features. Depending on the algorithm, some needed libraries might be for 

linear algebra (e.g., NumPy), data processing (pandas), visualisation (Matplotlib), among 

others. 

Step 3: Map Variables and Data Types 

In MATLAB, variables are dynamically typed, while in Python, they are statically 

typed. Mapping MATLAB variables to their corresponding data types in Python is 

essential to grant the biggest equivalence between implementations. For example, a 

matrix in MATLAB can be mapped to a list of lists in Python, where each list corresponds 

to a matrix row. 



FCUP 
Analysis of respiratory sounds acquired with smartphone 

20 

 
 

Step 4: Translate Flow Control Structures 

Translation flow control structures like loops (for, while) and conditionals (if, else) 

from MATLAB to Python. A particularity is that Python uses indentation to define code 

blocks, unlike MATLAB, which uses "end" to delimit these blocks. 

Step 5: Convert Functions and Operations 

Translation of MATLAB-specific functions and operations to their Python 

equivalents. For example, if the zeros function in MATLAB is used to create an array of 

zeros, in Python, it can be used numpy.zeros. 

Step 6: Recall Differences in Indexing and adjust parameters accordingly 

One of the main difficulties is that in MATLAB, array indexing starts at 1, while in 

Python, it starts at 0. Also, when defining intervals, MATLAB assumes the input as a 

closed interval, while Python assumes the first input as belonging to the interval and the 

last as a majorant. 

Step 7: Test and Debug 

After the initial translation, it is essential to test the Python code to ensure it 

produces results equivalent to MATLAB. Using known test cases, it is possible to step 

by step verify the results it produces. Some Python debugging tools like the pdb module 

also help detect and fix errors and ensure the code works as expected. 

Step 8: Code Optimisation 

As the main goal is to implement the algorithm in a cloud-based server, optimising 

the Python code is essential to improve performance or leverage specific language 

features, using fewer resources and increasing the response time. 

Step 9: Comments 

Commenting on the Python code properly explains complex parts and provides 

information about input, output, and the algorithm's logic, making it easier to understand. 

Step 10: PEP 8 – Style Guide for Python 

PEP 8, "Python Enhancement Proposal 8," is a style guide for writing Python 

code. It provides a set of conventions and guidelines for formatting and structuring 

Python code to make it more readable and consistent. By following it, it is ensured that 

the code remains aligned with modern best practices. 
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These few steps were aligned to make an organised code translation, considering 

the particularities of each programming language. 

Wheeze Detection Algorithm translation 

Step 1  

The first step, as mentioned before, calculates the TF of the recorded sound. The 

decimation frequency is set to 5512Hz, and a bandpass filter to the interval 60Hz – 

2100Hz is done through the auxiliary function butter_filter, returning the filtered signal. 

This function made use of the package signal for the function butter and was defined as: 

 
def butter_filter(x, n, fc, fs, t): 
    # INPUT parameters: 
    #   x - signal to be filtered 
    #   n - order of the filter 
    #   fc - cut frequency 
    #   fs - taxa de amostragem do sinal 
    #   type - "high" or "low" 
 
    if t == "high": 
        (b, a) = signal.butter(n, fc/(fs/2), "highpass") 
    elif t == "low": 
        (b, a) = signal.butter(n, fc/(fs/2), "lowpass") 
    else: 
        print("ERROR: Filter Type unknown.") 
    return signal.lfilter(b, a, x) 
 

 

Then, to downsample, the signal was decimated. Ideally, the package signal 

could be used again, as in the snippet below. 

 

 
ratio = Fraction(Decimal(str(fs / fs_raw))) 
y_filt = signal.resample_poly(y_filt, ratio.numerator, 
ratio.denominator) 
 

 

Due to computational memory usage, this code could not be used, and a 

decimation function needed to be defined. It took advantage of numpy properties. Please 

note that numpy functions are preceded by the prefix “np.”. 
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def decimation(signal, input_fs, output_fs): 
 
    scale = output_fs / input_fs 
    n = round(len(signal) * scale) 
 
    resampled_signal = np.interp( 
        np.linspace(0.0, 1.0, n, endpoint=False),   
        np.linspace(0.0, 1.0, len(signal), endpoint=False),   
        signal,   
    ) 
    return resampled_signal 
 

 

 Finally, the STFT can be calculated applying the Hanning Sliding Window to the 

signal. 

 

 
nfft = 512 
noverlap = round(nfft * 0.9) 
vf, vt, y_spec = signal.stft(y_filt, fs, "hann", noverlap=noverlap, 
nperseg=nfft, nfft=nfft)  
 

 

Steps 2 and 3 

To estimate the wanted trend, it is used a box filtering procedure. The below code 

snippet shows the way it was implemented. Let c be the number of columns in the object 

y_spec. 

 

 
for i in range(0, c-1, 2): 
    t_window = [z[i:i + 2] for z in y_spec] 
    t_mean = [statistics.mean(z.real) for z in t_window] 
 
    # BOX FILTERING 
    M_boxfilt = 10 
    nn = M_boxfilt * 2 
    tt_mean = [t_mean[0] for _ in range(nn)] + t_mean + [t_mean[-1] 
for i in range(nn)] 
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    t_filt = signal.lfilter([1 for _ in range(M_boxfilt)], 1, 
tt_mean) 
 
    D = round(M_boxfilt / 2) 
    # Divide by  M_boxfilt to obtain the averaging filter 
    tt_filt = [i / M_boxfilt for i in t_filt[D + nn:-1 - nn + D + 
1]] 
 
    for z in range(len(M_det)): 
        M_det[z][i] = y_spec[z, i] - tt_filt[z] 
        M_det[z][i + 1] = y_spec[z, i+1] - tt_filt[z] 
 
# DELETE VALUES less than 0 
for i in range(len(M_det)): 
    for j in range(len(M_det[0])): 
        # Delete the null complex part of the cells. 
        M_det[i][j] = M_det[i][j].real 
        if M_det[i][j] < 0: 
            M_det[i][j] = 0 
 

 

 The frequency axis is then segmented into four bands, and a vector of threshold 

values is created, as explained in the algorithm’s third step. To detrend the bands, an 

auxiliary function is defined: f_detrended. 

 

 
def f_detrended(detrend_1band, nThreshold): 
    detrend_1band_temp = list(map(list, zip(*detrend_1band))) 
    mean_band = [statistics.mean(x) for x in detrend_1band_temp] 
    std_band = [statistics.stdev(x) for x in detrend_1band_temp] 
 
    vThreshold = [x+y*nThreshold for x, y in zip(mean_band, 
std_band)] 
 
    for j in range(len(detrend_1band[0])): 
        for i in range(len(detrend_1band)): 
            if detrend_1band[i][j] <= vThreshold[j]: 
                detrend_1band[i][j] = 0 
 
    detrend_1band_peak = detrend_1band 
     
    return detrend_1band_peak 
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This function uses the package statistics to calculate the means and standard 

deviations needed. 

Step 4 

The detected peaks are stored in a data frame using the package pandas. The 

columns' names are: 'obj_sizes', 'tstart', 'tstop', 'duration', 'valid_obj', 'flag' and 'indices'. 

In the last step, the identified peaks are evaluated to a set of criteria. If a peak 

does not fulfil the criteria, it is marked as 0 in the valid_obj columns, and then this row is 

eliminated. In the end, the rows of the data frame only contain valid wheezes. 

One of the limitations of Python compared to MATLAB is the lack of matrix-ready 

packages and specific capabilities like finding indices of an element and the opposite: 

finding the row and column of and given a specific index. To bypass these difficulties, 

the approach was to maintain the original MATLAB design as a data frame and create 

two auxiliary functions. 

 

 
def f_findIndices(Acc, N): 
    temp = [] 
    for j in range(len(Acc[0])): 
        for i in range(len(Acc)): 
            temp.append(Acc[i][j]) 
 
    IND = np.nonzero(temp)[0].tolist() 
    Acc_short = [temp[i] for i in IND] 
 
    M_indices = [] 
    for k in range(1, N): 
        temp2 = [i for i, x in enumerate(Acc_short) if x == k] 
        M_indices.append([IND[i] for i in temp2]) 
    return M_indices 
 

 

 
def ind2sub(size, ind): 
    row = [] 
    col = [] 
 
    for z in ind: 
        row.append(z % size[0]) 
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        col.append(int(z/size[0])) 
 
    return row, col 

 

All these functions described in this chapter were essential to translate the code 

from MATLAB. It allowed us to maintain the same line of thought while making this 

algorithm available to be implemented in all platforms due to the versatility of Python. 
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6  Performance analysis 

6.1 Preliminary Analysis 

All the statistical analysis was done in R, version 4.3.1, using the package caret 

version 6.0-94. 

To evaluate the performance of the algorithm over for smartphone recording 

adventitious sound detection, we first applied the MATLAB algorithm in the smartphone 

recordings database and compared it with the specialists’ annotations. 

Table 4 - Performance of Wheeze and Crackle Detection algorithms. 

 Wheezes Crackles 

Accuracy 0.631 0.015           

Kappa 0.187   1e-04 

Sensitivity 0.879 1.000 

Specificity 0.604          0.012 

Precision 0.193          0.003 

F1 Score 0.317   0.006 

 

The accuracy of the crackle’s detection algorithm is much worse than the 

wheezes one. Cohen’s Kappa also shows that the annotations are very different from 

the result of the implementation. 

Considering the crackles' poor results and due to time limitations, only the 

wheeze detection algorithm was translated into Python language, aiming to achieve, in 

the worst-case scenario, an equivalent algorithm of this already satisfactory method. 

Considering the actual values as the MATLAB output, the Python ones as the 

predicted class and implementing the metrics of Appendix I – Methodological 

Foundations, the results are shown in Table 5. 
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Table 5 - Python vs MATLAB. 

Accuracy 0.817 

Kappa 0.629 

Sensitivity 0.787 

Specificity 0.841 

Precision 0.797 

F1 Score 0.792 

 

Cohen’s Kappa of 0.629 shows a reasonable similarity between the MATLAB and 

Python algorithms. Due to the different syntax and filters used, it was expected not to 

have a completely equal algorithm, but one somehow equivalent. 

With 81.7% accuracy, Python’s algorithm is equivalent to MATLAB results, as 

expected. Indeed, high accuracy requires high precision and trueness, following the 

International Organization for Standardization nomenclature. Even so, there are 

differences between both, and a deeper examination of the results was needed. 
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6.2 Performance against specialists’ annotations 

Considering specialists’ annotations as ground truth, the predicted results from 

the two implementations were validated against them. 

Table 6 - Comparison of performance metrics between MATLAB and Python. 

 Annotation vs MATLAB Annotation vs Python 

Accuracy 0.631           0.643   

Kappa 0.187   0.205 

Sensitivity 0.879 0.909 

Specificity 0.604          0.614 

Precision 0.193         0.203 

F1 Score 0.317   0.331          

 

As concluded from Table 2, the data is unbalanced, and precision and sensitivity 

might be biased because of that characteristic. On the other hand, the F1 Score is more 

stable for this data set and should be the proper parameter to analyse. As the F1 Score 

is greater for Python’s implementation, we can conclude that it has better precision and 

recall, meaning fewer errors when detecting wheezes. 

Accuracy is not the best parameter to consider because the sample is 

unbalanced. Alternatively, there is another approach using Balanced Accuracy. 

Definition – Balanced Accuracy 

Balanced accuracy, 𝐵𝐴, is the arithmetic mean of sensitivity and specificity. 

  

For Annotations versus MATLAB, the Balanced Accuracy is 74.17%, and 

Annotations versus Python is 76.17%. This result shows an increase of 2% in BA for the 

Python implementation, meaning that the number of correctly detected wheezes out of 

all recordings is more significant for Python. 
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 The difference between equipments may also affect the detection of wheezes. In 

fact, considering that one equipment, the stethoscope, is made precisely to perform 

medical auscultation and smartphone not, it is expected to have noticeable differences. 

To enlighten possible differences, some more measurements were made. 

Table 7 - Metrics for MATLAB and Python implementations versus Annotations taking the equipment into account. 

 Sensitivity Specificity BA Precision F1 Score 

M
A

T
L

A
B

 

S
m

a
rt

p
h

o
n

e 

0.938 0.709 0.823   0.246 0.389 

S
te

th
o

sc
o

p
e 

0.824 0.493 0.658 0.157 0.264 

P
y

th
o

n
 

S
m

a
rt

p
h

o
n

e 

0.938 0.722 0.829 0.254 0.400 

S
te

th
o

sc
o

p
e 

0.882 0.500 0.691   0.168 0.283 

 

Surprisingly,  the implementation of the algorithms in both languages showed 

better results for the smartphone subset, and again, Python’s implementation is 

statistically better than in MATLAB, reaching a 0.4 score in the F1 Score metric. Also, the 

balanced accuracy for smartphone recordings is very satisfactory, 82% for MATLAB and 

1% more in Python. 

Another cause that can influence the results is the location where the samples 

were previously recorded. To address this possibility, some exploratory analysis of 

correlation was made. 
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Time of implementation 

In MATLAB, the algorithm implementation for the smartphone dataset takes 9.97 

minutes; for the stethoscope dataset, it takes 12.54 minutes. 

In Python, the algorithm implementation for the smartphone dataset takes 7.55 

minutes, as, for the stethoscope data set, it takes 9.49 minutes. 

For both cases, Python implementation is around 25% faster than MATLAB’s. 
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7 Concluding Remarks 
The smartphone has emerged as a powerful tool in eHealth. Detecting 

adventitious sounds such as wheezes would revolutionise how we monitor and manage 

respiratory health outside medical facilities. Its portability, accessibility, and ever-

evolving technological capabilities have made it an indispensable companion for better 

health and well-being.  

Furthermore, the smartphone's role extends beyond mere detection; it empowers 

individuals by providing valuable information and resources for managing their 

respiratory conditions. From tracking symptoms and medication schedules to connecting 

with healthcare professionals remotely, smartphones have become an essential lifeline 

for those living with respiratory issues. By aggregating anonymised data from millions of 

users, researchers and healthcare providers can gain insights into patterns and trends 

in respiratory health, ultimately leading to improved treatments and preventive 

measures. 

In this Dissertation, the objective was, as the title says, to analyse respiratory 

sounds acquired with a smartphone. With two already available algorithms implemented 

in MATLAB and previously used in clinical studies, we took an additional step to 

implement them in Python. As the crackles detection algorithm showed significant 

limitations, there was no time to assess that problem. 

During this time, the knowledge of digital signal processing increased due to the 

contact with diverse methods. 

The implemented algorithm in Python had a remarkable performance overall: 

from better accuracy to faster execution time, proving the value that it has and that with 

further work, better results may appear, encouraging to continue the research in this 

field. 
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7.1 Limitations and achievements 

In the development of this Dissertation, some limitations conditioned the 

progress:  

 Python’s huge syntax difference compared to MATLAB and the lack of matrix-

ready packages delayed the translation more than expected also making the 

debug period very complicated;  

 available signal packages are not sufficiently optimized to these complex 

projects, being even more difficult to perform digital signal processing in Python; 

 the database has some limitations as the same stethoscope and smartphone 

were used, created a small bias in the results interpretations;  

 the sample was small and only included children, more specifically for recordings 

with crackles. 

Despite these limitations, interesting achievements were made: 

 A Python equivalent algorithm to MATLAB implementation was written; 

 Statistical analysis shows even greater performance on Python’s algorithm; 

 When applied to smartphone data, both precision and balanced accuracy 

increases around 10%. 

 Execution time in Python is 25% faster than in MATLAB. 

These achievements increase expectations about the future of automatic 

detection of adventitious sounds as current algorithms already returns satisfactory 

results.  

7.2 Future work 

Despite the work developed in this Dissertation allowing an exciting discussion 

about automatic adventitious sound detection algorithms in stethoscopes and 

smartphone databases, this topic is far from being finished. 

Wheezes detection algorithm needs to be tested in more extensive databases 

with different age groups to investigate more about its performance and allow, with that 

implementation, to tune this method. 

The same should be done with the crackles detection algorithm, although the 

performance in MATLAB was inferior. 

Once this research is done, it would be possible to implement these algorithms 

in a cloud-based server and make them available to the population.  
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9 Appendix I – Methodological Foundations 
 

Observational error is the difference between a measured value of a quantity and 

its actual value. In statistics, an error is not necessarily a "mistake": variability is inherent 

in measurement results and the measurement process. 

The standard statistical model used is that the error has two additive parts: 

 Statistical bias always occurs with the same value when we use the 

instrument in the same way and in the same case. 

 A random error may vary from one observation to another due to the 

independence of the subjects. 

Definition – Confusion Matrix 

A Confusion matrix is an N x N matrix used for evaluating the performance of a 

classification model, where N is the number of target classes. 

 

Example – Binary Confusion Matrix 
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Using the confusion matrix, there are two errors [34] to take some conclusions 

from: 

 Type I error (α-error): occurs if an investigator rejects a null hypothesis that is 

true in the population → false positives. 

 Type II error (β-error) occurs if the investigator fails to reject a false null 

hypothesis in the population → false negatives. 

To analyse the performance of the algorithms, some metrics were used [35], 

based on the confusion matrix.  

For the following definitions, consider 𝑁𝑇 as the number of elements in the 

sample.  

Definition – Accuracy (ACC) 

Accuracy is the degree of closeness of the measured value to the actual value. It 

considers the true positives and true negatives over the whole sample. 

𝐴𝐶𝐶 =  
𝑇𝑃 + 𝑇𝑁

𝑃 + 𝑁
 

 

Definition – Precision (Positive predictive value - PPV) 

A term applied to the likely spread of parameter estimates in a statistical model and 

measured by the inverse of the standard deviation of the estimator.  

𝑃𝑃𝑉 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

 

Definition – Sensitivity (Recall / True Positive Rate - TPV) 

An index of a diagnostic test's performance is calculated as the percentage of 

individuals with a disease who are correctly classified as having the disease. 

𝑇𝑃𝑉 =  
𝑇𝑃

𝑃
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Definition – Specificity (True Negative Rate - TNV) 

An index of the performance of a diagnostic test, calculated as the percentage of 

individuals without the disease who are classified as not having the disease. 

𝑇𝑁𝑉 =  
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 

 

Definition – F1 Score 

The F1 Score combines the precision and sensitivity of a classifier into a single metric 

by taking their harmonic mean. 

𝐹 =  
2 ∙ 𝑇𝑃

2 ∙ 𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
 

 

Definition – Kappa coefficient 

 

Cohen’s Kappa is a chance-corrected index of the agreement between datasets. 

Calculated as the ratio of the observed excess over the chance agreement to the 

maximum possible excess over chance, the coefficient takes the value one when there 

is perfect agreement and zero when the observed agreement is equal to the chance 

agreement. Can be written as [36]: 

 

𝜅 =  
2 ∙ (𝑇𝑃 × 𝑇𝑁 − 𝐹𝑁 × 𝐹𝑃)

(𝑇𝑃 + 𝐹𝑃) × (𝐹𝑃 + 𝑇𝑁) × (𝑇𝑃 + 𝐹𝑁) × (𝐹𝑁 + 𝑇𝑁)
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10 Appendix II – Main function 
 

 
# WHEEZES DETECTION ALGORITHM 
 
# UA, CP, Feb2014 
# Wheeze detection based on paper Taplidou et al. 2007 (DOI: 
10.1016/j.compbiomed.2006.09.007) 
# Python implementation by Sousa, João (FCUP - Math Dept., Oct2023) 
 
from fractions import Fraction 
from decimal import Decimal 
import math 
import statistics 
import AuxiliarWh 
import cv2 
import numpy as np 
import pandas as pd 
import scipy.signal as signal 
import soundfile as sf 
 
 
def taplidou_main(file_fullpath): 
    # ~ PRE-PROCESSING ~ 
 
    # Decimation frequency 
    fs = 5512  # 5012.5; 11025; 
 
    # Read .wav file 
    y_raw, fs_raw = sf.read(file_fullpath) 
 
    # Band-pass filtering [60-2100] Hz 
    fc1 = 60 
    fc2 = 2100 
 
    if fs_raw / 2 < fc2: 
        fc2 = fs_raw / 2 - 1 
 
    y_filt = AuxiliarWh.butter_filter(y_raw, 4, fc1, fs_raw, "high") 
    y_filt = AuxiliarWh.butter_filter(y_filt, 4, fc2, fs_raw, "low") 
 
    # Decimate the signal 
    y_filt = AuxiliarWh.decimation(y_filt, fs_raw, fs) 
    nfft = 512 
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    # window = signal.windows.hann(nfft)      # Hanning window 
    # noverlap = [i*0.9 for i in window]      # Overlap (128 - 50%) 
     
    noverlap = round(nfft * 0.9) 
    vf, vt, y_spec = signal.stft(y_filt, fs, "hann", 
noverlap=noverlap, nperseg=nfft, nfft=nfft)  # returns STFT 
 
    # Select SFTF only until 2000 Hz 
    n = next(x for x, val in enumerate(vf) if val >= 2000) 
    y_spec = y_spec[:n] 
    vf = vf[:n] 
 
    for i in range(len(vf)): 
        for j in range(len(vt)): 
            y_spec[i][j] = 20 * math.log10(abs(y_spec[i][j]) ** 2) 
 
    dt = vt[1] - vt[0]  # 23.2 ms   ->  Detrend (mean filter)  
    df = vf[1] - vf[0]  # 0.25 Hz 
 
    # to guarantee that y_spec has an even number of columns 
    (l, c) = (len(y_spec), len(y_spec[0])) 
 
    if c % 2 == 1: 
        temp = y_spec[:, -1] 
        y_spec = np.column_stack((y_spec, temp)) 
 
    (l, c) = (len(y_spec), len(y_spec[0])) 
 
    # Matrix detrended 
    M_det = [[0 for _ in range(c)] for _ in range(l)] 
 
    for i in range(0, c-1, 2): 
        t_window = [z[i:i + 2] for z in y_spec] 
        t_mean = [statistics.mean(z.real) for z in t_window] 
 
        # BOX FILTERING 
        M_boxfilt = 10 
        nn = M_boxfilt * 2 
        tt_mean = [t_mean[0] for _ in range(nn)] + t_mean + 
[t_mean[-1] for i in range(nn)] 
 
        t_filt = signal.lfilter([1 for _ in range(M_boxfilt)], 1, 
tt_mean) 
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        D = round(M_boxfilt / 2) 
        # Divide by  M_boxfilt to obtain the averaging filter 
        tt_filt = [i / M_boxfilt for i in t_filt[D + nn:-1 - nn + D 
+ 1]] 
 
        for z in range(len(M_det)): 
            M_det[z][i] = y_spec[z, i] - tt_filt[z] 
            M_det[z][i + 1] = y_spec[z, i+1] - tt_filt[z] 
 
    # DELETE VALUES less than 0 
    for i in range(len(M_det)): 
        for j in range(len(M_det[0])): 
            # Delete the null complex part of the cells. 
            M_det[i][j] = M_det[i][j].real 
            if M_det[i][j] < 0: 
                M_det[i][j] = 0 
 
    # SEGMENT 4 FREQUENCY BANDS 
    # B1 = 60 - 300 Hz - STD(3) 
    # B2 = 300 - 600 Hz - STD(3) 
    # B3 = 600 - 1400 Hz - STD(2) 
    # B4 = 1400 - 1900 Hz - STD(2) 
    # alteration from 2000 to 1900 – due to some problems  
 
    MB = [60, 300, 600, 1400, 1900] 
    nMB = [0 for _ in range(len(MB))] 
 
    for i in range(len(nMB)): 
        nMB[i] = next(x for x, y in enumerate(vf) if y >= MB[i]) 
 
    if nMB[-1] > len(M_det): 
        nMB[-1] = len(M_det) 
 
    n1 = sum([x2 - x1 for x1, x2 in zip(nMB, nMB[1:])]) 
    n2 = c 
 
    Mdet_total_peak = [[0 for _ in range(n2)] for _ in range(n1)] 
    Nthreshold = [1.8, 2, 3, 3] 
 
    for j in range(0, c, 2): 
        Mdet_b1 = AuxiliarWh.f_detrended([z[j:j + 2] for z in 
M_det[nMB[0]:nMB[1]]], Nthreshold[0]) 
        Mdet_b2 = AuxiliarWh.f_detrended([z[j:j + 2] for z in 
M_det[nMB[1]:nMB[2]]], Nthreshold[1]) 
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        Mdet_b3 = AuxiliarWh.f_detrended([z[j:j + 2] for z in 
M_det[nMB[2]:nMB[3]]], Nthreshold[2]) 
        Mdet_b4 = AuxiliarWh.f_detrended([z[j:j + 2] for z in 
M_det[nMB[3]:nMB[4]]], Nthreshold[3]) 
 
        Mdet_window_peak = Mdet_b1 + Mdet_b2 + Mdet_b3 + Mdet_b4 
 
        for i in range(len(Mdet_window_peak)): 
            Mdet_total_peak[i][j:j + 2] = Mdet_window_peak[i] 
 
    Mdet_total_peak = [[0 for _ in range(c)] for _ in range(nMB[0] - 
1)] + Mdet_total_peak  # add the frequency band 
 
 
    # CLASSIFICATION OF DETECTED PEAKS 
 
    img = np.array(Mdet_total_peak).astype(np.uint8) 
    analysis = cv2.connectedComponentsWithStats(img, connectivity=8) 
    (N, Acc, values, centroid) = analysis 
 
    Acc_ind = AuxiliarWh.f_findIndices(Acc, N) 
 
    (rA, cA) = (len(Acc), len(Acc[0])) 
 
    min_duration = 0.12 
 
    Mdata = pd.DataFrame(columns=['obj_sizes', 'tstart', 'tstop', 
'duration', 'valid_obj', 'flag', 'indices']) 
 
    for k in range(N - 1): 
        ind = Acc_ind[k] 
        (r, c) = AuxiliarWh.ind2sub([rA, cA], ind) 
 
        if isinstance(ind, int):  # Garantir que todos os elementos 
dos indices são adicionados como vetores. 
            ind = [ind] 
 
        Mdata.loc[len(Mdata)] = [len(r), min(c) * dt, max(c) * dt, 
max(c) * dt - min(c) * dt, 0, k, ind] 
 
        if Mdata.iloc[k, 3] < min_duration:  # Remove a sibilância 
caso a duração seja inferior à mínima. 
            for i, j in zip(r, c): 
                Acc[i][j] = 0 
        else: 



FCUP 
Analysis of respiratory sounds acquired with smartphone 

44 

 
 

            Mdata.iloc[k, 4] = 1  # O objeto é válido. 
 
    # DELETE INVALID WHEEZES 
    Mdata = Mdata[Mdata.valid_obj > 0]   
 
    # REMOVING OVERLAPING WHEEZES & APPLYING RULES 
 
    min_gap = 2 * dt 
 
    D = [abs(a - b) for a, b in zip(Mdata.tstart.tolist()[1:], 
Mdata.tstop.tolist()[:-1])] 
    n = [i + 1 for i in range(len(D)) if D[i] <= min_gap] 
 
    temp = [] 
    for i in range(len(Mdata)): 
        temp.append(Mdata.iloc[i, 6]) 
 
    for k in n: 
        Mdata.iloc[k, 0] += Mdata.iloc[k - 1, 0]  # junta os dois 
objetos 
        Mdata.iloc[k, 1] = min([Mdata.iloc[k - 1, 1], Mdata.iloc[k, 
1]])  # t_start 
        Mdata.iloc[k, 2] = max([Mdata.iloc[k - 1, 2], Mdata.iloc[k, 
2]])  # t_stop 
        Mdata.iloc[k, 3] = Mdata.iloc[k, 2] - Mdata.iloc[k, 1]  # 
duração 
 
        temp[k] = temp[k - 1] + temp[k] 
 
        Mdata.iloc[k - 1, 4] = 0 
 
        (r, c) = AuxiliarWh.ind2sub([rA, cA], list(Mdata.iloc[k - 1, 
6])) 
        for i, j in zip(r, c): 
            Acc[i][j] = Mdata.iloc[k, 5]  
 
    Mdata.drop("indices", axis=1) 
    Mdata["indices"] = temp 
 
 
    # DELETE INVALID WHEEZES 
    Mdata = Mdata[Mdata.valid_obj > 0] 
 
    N = len(Mdata.valid_obj) 
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    # RE-NUMBERING WHEEZES 
    for k in range(N): 
        (r, c) = AuxiliarWh.ind2sub([rA, cA], list(Mdata.iloc[k, 
6])) 
        for i, j in zip(r, c): 
            Acc[i][j] = k 
 
        Mdata.iloc[k, 5] = k 
 
    # POLYPHONIC WHEEZES -> Deciding whether it is polyphonic or 
monophonic 
    # The last decision is based on the number of time slices where 
there is a frequency component greater than 1.8 time 
    # lowest frequency. 
    # If there are 10% of such time slices, then the patch is said 
to be polyphonic. 
 
    Mdata["poly"] = "" 
    Mdata["freq"] = "" 
    Mdata["freq_max"] = "" 
    Mdata["freq_min"] = "" 
 
    for i in range(N): 
        (r, c) = AuxiliarWh.ind2sub([rA, cA], Mdata.iloc[i, 6]) 
        k_min = [[] for _ in range(max(c) - min(c))] 
        k_max = k_min 
        k_peak = k_min 
        poly_flag = [0 for _ in range(max(c) - min(c))] 
 
        for j in range(min(c), max(c)): 
            m = j - min(c) 
 
            ind = [i for i, x in enumerate(c) if x == j] 
            k_ind = [r[i] - 1 for i in ind] 
            if len(ind) != 0: 
                k_min[m] = min(k_ind) 
                k_max[m] = max(k_ind) 
 
                if k_max[m] > 1.8 * k_min[m]: 
                    poly_flag[m] = 1 
 
                pows = [y_spec[r[z]][j] for z in ind] 
                pows_trans = np.array(pows).transpose() 
                q2 = [np.argmax(i) for i in pows_trans] 
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                k_peak[m] = [r[z] for z in ind if ind.index(z) in 
q2] 
 
        k_peak = [x for xs in k_peak for x in xs] 
        k_max = [x for xs in k_max for x in xs] 
        k_min = [x for xs in k_min for x in xs] 
 
        Mdata.iloc[i, Mdata.columns.get_loc("poly")] = 
sum(poly_flag) > 0.1 * len(poly_flag) 
        Mdata.iloc[i, Mdata.columns.get_loc("freq")] = 
statistics.mean([i * df for i in k_peak]) 
        Mdata.iloc[i, Mdata.columns.get_loc("freq_max")] = 
max(k_max) * df 
        Mdata.iloc[i, Mdata.columns.get_loc("freq_min")] = 
min(k_min) * df 
 
        if 960 < Mdata["freq"].iloc[i] < 1100: 
            Mdata.iloc[i, 4] = 0 
        elif Mdata["freq"].iloc[i] < 120: 
            Mdata.iloc[i, 4] = 0 
        elif Mdata["freq"].iloc[i] > 1700: 
            Mdata.iloc[i, 4] = 0 
        elif Mdata["duration"].iloc[i] < 0.130: 
            Mdata.iloc[i, 4] = 0 
        else: 
            Mdata.iloc[i, 4] = 1 
 
        for z in range(len(k_peak)): 
            if 0 == k_peak[z]: 
                k_peak[z] = statistics.median(k_peak) * df 
 
    # DELETE INVALID WHEEZES 
    Mdata = Mdata[Mdata.valid_obj > 0] 
    N = len(Mdata) 
 
    Acc_f = [[0 for _ in range(len(Acc[0]))] for _ in 
range(len(Acc))] 
    (rA, cA) = (len(Acc), len(Acc[0])) 
 
    # Re-numbering WHEEZES 
 
    for k in range(N): 
        (r, c) = AuxiliarWh.ind2sub([rA, cA], Mdata.iloc[k, 6]) 
        for i, j in zip(r, c): 
            Acc_f[i][j] = k 
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        Mdata.iloc[k, Mdata.columns.get_loc("flag")] = k 
        Mdata.iloc[k, Mdata.columns.get_loc("tstart")] -= 0.035 
        Mdata.iloc[k, Mdata.columns.get_loc("tstop")] += 0.035 
        Mdata.iloc[k, Mdata.columns.get_loc("duration")] += 0.07 
 
    return Mdata 
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11 Appendix III – Auxiliary Functions 
 

 
import scipy.signal as signal 
import statistics    
import numpy as np 
 
 
def butter_filter(x, n, fc, fs, t): 
    # INPUT parameters: 
    #   x - signal to be filtered 
    #   n - order of the filter 
    #   fc - cut frequency 
    #   fs - taxa de amostragem do sinal 
    #   type - "high" or "low" 
 
    if t == "high": 
        (b, a) = signal.butter(n, fc/(fs/2), "highpass") 
    elif t == "low": 
        (b, a) = signal.butter(n, fc/(fs/2), "lowpass") 
    else: 
        print("ERROR: Filter Type unknown.") 
 
    return signal.lfilter(b, a, x) 
 
 
def f_detrended(detrend_1band, nThreshold): 
    detrend_1band_temp = list(map(list, zip(*detrend_1band))) 
    mean_band = [statistics.mean(x) for x in detrend_1band_temp] 
    std_band = [statistics.stdev(x) for x in detrend_1band_temp] 
 
    vThreshold = [x+y*nThreshold for x, y in zip(mean_band, 
std_band)] 
 
    for j in range(len(detrend_1band[0])): 
        for i in range(len(detrend_1band)): 
            if detrend_1band[i][j] <= vThreshold[j]: 
                detrend_1band[i][j] = 0 
 
    detrend_1band_peak = detrend_1band 
     
    return detrend_1band_peak 
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def f_findIndices(Acc, N): 
    temp = [] 
    for j in range(len(Acc[0])): 
        for i in range(len(Acc)): 
            temp.append(Acc[i][j]) 
 
    IND = np.nonzero(temp)[0].tolist() 
    Acc_short = [temp[i] for i in IND] 
 
    M_indices = [] 
    for k in range(1, N): 
        temp2 = [i for i, x in enumerate(Acc_short) if x == k] 
        M_indices.append([IND[i] for i in temp2]) 
    return M_indices 
 
 
def ind2sub(size, ind): 
    row = [] 
    col = [] 
 
    for z in ind: 
        row.append(z % size[0]) 
        col.append(int(z/size[0])) 
 
    return row, col 
 
def decimation(signal, input_fs, output_fs): 
 
    scale = output_fs / input_fs 
    # calculate new length of sample 
    n = round(len(signal) * scale) 
    resampled_signal = np.interp( 
        np.linspace(0.0, 1.0, n, endpoint=False),  # where to 
interpret 
        np.linspace(0.0, 1.0, len(signal), endpoint=False),  # known 
positions 
        signal,  # known data points 
    ) 
    return resampled_signal 

 


