

Analysis of
respiratory sounds
acquired with
smartphone

João Pedro Sousa
Master's degree in Mathematical Engineering
Department of Mathematics
2023

Supervisor
Rute Almeida, CINTESIS@RISE, FMUP & CMUP

Co-supervisor
Cristina Jácome, CINTESIS@RISE, FMUP

Para ser grande, sê inteiro: nada

 Teu exagera ou exclui.

Sê todo em cada coisa. Põe quanto és

 No mínimo que fazes.

Assim em cada lago a lua toda

 Brilha, porque alta vive.

Ricardo Reis, in "Odes"

FCUP
Analysis of respiratory sounds acquired with smartphone

ii

Acknowledgements

Firstly, I would like to express my heartfelt gratitude to my supervisors, Dr. Rute

Almeida, and Dr. Cristina Jácome, for their unwavering support, guidance, and

mentorship throughout the journey of completing this Dissertation. Your expertise and

dedication were fundamental in shaping my research and academic growth.

To my dearest friends, Andreia Batista, Gabriela Mendes, Juliana Nunes, Rui

Miranda, and Sara Cunha, your friendship has been a constant source of inspiration and

encouragement. Your belief in my abilities has kept me motivated during the most

challenging times of this academic endeavour.

I would also like to acknowledge the four remarkable women who have played

crucial roles in my life. To Inês, your wisdom and love have been a guiding light

throughout the last six years. To my grandmother Glória your resilience and

determination in life have taught me the importance of perseverance and following my

dreams. To my mother Emília and sister Beatriz your kindness and compassion have

shown me the beauty of empathy, and all the support and encouragement have made

me the person I am today.

This Dissertation would not have been possible without the support and love of

all these incredible individuals. Thank you for being a part of my journey.

FCUP
Analysis of respiratory sounds acquired with smartphone

iii

FCUP
Analysis of respiratory sounds acquired with smartphone

iv

Resumo

O estetoscópio é uma das mais essenciais ferramentas que os profissionais de

saúde utilizam para detetar e diagnosticar doenças respiratórias, uma vez que pode

rapidamente ajudar na deteção de algumas doenças letais, enquanto se torna acessível

para os serviços de cuidados de saúde primários. Infelizmente, a necessidade de o

ouvinte ser experiente é uma desvantagem, uma vez que pessoas com doenças

respiratórias crónicas não conseguem auto-monitorizar a sua condição. Por esta razão,

a identificação automática de sons respiratórios é um campo ativo de investigação em

processamento de sinais médicos com o objetivo de detetar crepitações e sibilos.

Crepitações e sibilos são sons respiratórios adventícios comuns que podem

indicar a presença de doença ou de distúrbio pulmonar. Investigações anteriores

propuseram métodos para deteção automática de crepitações e sibilos em sons

respiratórios adquiridos por um estetoscópio eletrónico. O desafio é adaptar algoritmos

já desenvolvidos para gravações de sons respiratórios com smartphones.

O algoritmo de deteção de crepitação é baseado em duas etapas: (1) um valor

de limiar é aplicado à derivada do primeiro valor absoluto do som respiratório para

localizar a “zona de interesse” e (2) nesta zona, uma crepitação é detetada se alguma

das condições forem verificadas. O algoritmo de deteção de sibilos envolve quatro

etapas: (1) cálculo da representação da time-frequency do som gravado, (2) remoção

do som respiratório básico do som respiratório total, (3) deteção de pico e (4)

classificação final do som respiratório: os picos são classificados como sibilos ou não

sibilos. Neste trabalho, estes algoritmos inicialmente desenvolvidos em MATLAB foram

reimplementados em Python para permitir fácil inclusão num ecossistema que já recolhe

sons respiratórios por meio do microfone dos smartphones.

Esses algoritmos foram aplicados a bases de dados de sons adquiridos em

estetoscópios e em smartphones para avaliar o seu desempenho. A concordância entre

os algoritmos de MATLAB e Python é razoável, tendo um coeficiente Kappa de Cohen

de 0.629 atingindo uma exatidão balanceada de 81.7% entre algoritmos, 74.17% na

identificação de sibilos pelo MATLAB e de 76.17% no Python.

Os dados de performance obtidos são promissores, no entanto, análises

adicionais são necessárias para avaliar quais parâmetros e técnicas precisam de ajuste

nas gravações do smartphone.

FCUP
Analysis of respiratory sounds acquired with smartphone

v

Palavras-chave: crepitações, sibilos, auscultação, sons respiratórios, deteção,

smartphone, estetoscópio, algoritmo, time-frequency, picos, MATLAB, Python.

FCUP
Analysis of respiratory sounds acquired with smartphone

vi

Abstract

The stethoscope is one of the essential tools physicians use to detect and

diagnose lung diseases since it can help quickly diagnose some deadly maladies while

making it affordable for primary health care services. Unfortunately, the need for an

experienced listener is a drawback since people with chronic lung diseases cannot

monitor their condition themselves. Therefore, automatic respiratory sound identification

is an active field of medical signal processing research aiming to detect two sounds:

crackles and wheezes.

Crackles and wheezes are common adventitious respiratory sounds that can

indicate the presence of pulmonary disease or disorder. A previous work proposed

methods for automatically detect crackles and wheezes over respiratory sounds

acquired by an electronic stethoscope. The challenge is to adapt already developed

algorithms to smartphone respiratory sound recordings.

The crackle detection algorithm is based on two steps: (1) a threshold value is

applied to the first derivative absolute value of respiratory sound to locate the “zone of

interest”, and (2) in this zone, a crackle is detected if some conditions are verified. The

wheeze detection algorithm involves four steps: (1) calculation of the time-frequency

representation of the recorded sound, (2) removal of the basic breath sound from the

total breath sound, (3) peak detection and (4) final classification of the detected peaks

as wheeze or non-wheeze.

In this work, these initially developed algorithms in MATLAB were reimplemented

in Python to allow easy inclusion in an ecosystem that already collects respiratory sounds

using mobile apps.

These algorithms were applied to databases of stethoscope-acquired and

smartphone-acquired sounds to evaluate their performance. The agreement between

MATLAB and Python algorithms is reasonable since the Kappa Cohen coefficient is

0.629, achieving a balanced accuracy of 81.7% between algorithms, 74.14% in wheeze

detection in MATLAB and 76.17% in Python’s algorithm.

Despite, the performance evaluation results being promising, further analysis is

required to assess what parameters and techniques need adjustment to smartphone

recordings.

FCUP
Analysis of respiratory sounds acquired with smartphone

vii

Keywords: crackles, wheezing, auscultation, respiratory sounds, detection,

smartphone, stethoscope, algorithm, time-frequency, peaks, MATLAB, Python.

FCUP
Analysis of respiratory sounds acquired with smartphone

viii

Table of Contents

List of Tables .. x

List of Charts ... xi

Chart 2 - Number of students by age and gender (n=26)……. xi

List of Figures .. xii

List of Abbreviations ... xiii

1 Introduction .. 1

1.1 Motivation ... 1

1.2 Adventitious respiratory sounds .. 2

1.3 Automatic respiratory sound detection .. 3

2 Signal Processing Methods ... 6

2.1 Window function ... 6

2.2 Hann function ... 6

2.3 Box filtering ... 7

2.4 Convolution... 8

2.5 Savitzky-Golay filter .. 9

3 Adventitious respiratory sounds automatic detection ... 10

3.1 Wheezes detection ... 10

Description of the wheezes detection algorithm ... 11

3.2 Crackles detection .. 12

Description of the crackles detection algorithm .. 12

4 Database description ... 14

5 Python Implementation .. 18

Strategy ... 19

Wheeze Detection Algorithm translation .. 21

6 Performance analysis .. 26

6.1 Preliminary Analysis ... 26

6.2 Performance against specialists’ annotations ... 28

FCUP
Analysis of respiratory sounds acquired with smartphone

ix

Time of implementation .. 30

7 Concluding Remarks ... 31

7.1 Limitations and achievements ... 32

7.2 Future work... 32

8 References .. 33

9 Appendix I – Methodological Foundations.. 37

10 Appendix II – Main function .. 40

11 Appendix III – Auxiliary Functions ... 48

FCUP
Analysis of respiratory sounds acquired with smartphone

x

List of Tables

Table 1 - Number of recordings per location. .. 16

Table 2 - Distribution of Wheezes and Crackles presence in the sample. 17

Table 3 - Version of the packages used in Python’s implementation. 19

Table 4 - Performance of Wheeze and Crackle Detection algorithms. 26

Table 5 - Python vs MATLAB. ... 27

Table 6 - Comparison of performance metrics between MATLAB and Python. 28

Table 7 - Metrics for MATLAB and Python implementations versus Annotations taking

the equipment into account. .. 29

FCUP
Analysis of respiratory sounds acquired with smartphone

xi

List of Charts

Chart 1 - Hann window and correspondent Fourier transform. 7

Chart 2 - Number of students by age and gender (n=26). ... 14

Chart 3 - Box plot (violin chart) of height in cm by gender………………………………. 15

Chart 4 - Box plot (violin chart) of weight in cm by gender. ……………………………… 15

Chart 5 - Correlation plot between annotation presence or absence of wheezes and local

of recording. ………………………………………………………………………………….. 30

Chart 6 - Correlation plot between MATLAB results and local of recording. …………... 30

Chart 7 - Correlation plot between Python results and local of recording. …………….. 31

FCUP
Analysis of respiratory sounds acquired with smartphone

xii

List of Figures

Figure 1 - Anterior and posterior auscultation schema. ... 3

Figure 2 - Representation of different respiratory sounds and the respective spectrogram.

[37] ... 3

Figure 3 - Box filter applied (a) a step function and (b) a sinusoidal function. 8

Figure 4 - Convolution of two functions A (red) and B (blue) produce a third function

describing the overlap (green). ... 9

FCUP
Analysis of respiratory sounds acquired with smartphone

xiii

List of Abbreviations
AIRDOC APLICAÇÃO MÓVEL INTELIGENTE PARA SUPORTE

INDIVIDUALIZADO E MONITORIZAÇÃO DA FUNÇÃO E

SONS RESPIRATÓRIOS DE DOENTES OBSTRUTIVOS

CRÓNICOS

AUC AREA UNDER THE ROC CURVE

BA BALANCED ACCURACY

CINTESIS CENTER FOR HEALTH TECHNOLOGY AND SERVICES

RESEARCH

CNN CONVOLUTIONAL NEURAL NETWORK

COPD CHRONIC OBSTRUCTIVE PULMONARY DISEASE

FCUP FACULTY OF SCIENCES OF THE UNIVERSITY OF PORTO

FD FIRST DERIVATIVE

FDAV FIRST DERIVATIVE ABSOLUTE VALUE

FIR FINITE IMPULSE RESPONSE

ICBHI INTERNATIONAL CONFERENCE ON BIOMEDICAL AND

HEALTH INFORMATICS

IDW INITIAL DEFLECTION WIDTH

ISTFT INVERSE SHORT-TIME FOURIER TRANSFORM

SG SAVITZKY-GOLAY

STFT SHORT-TIME FOURIER TRANSFORM

TF TIME-FREQUENCY

TF-WD TIME-FREQUENCY WHEEZE DETECTOR

UP UNIVERSITY OF PORTO

FCUP
Analysis of respiratory sounds acquired with smartphone

1

1 Introduction
The year 1816 changed the way that physicians diagnose chest diseases. There

was a need for an instrument capable of diagnosing chest conditions, mainly in stout

individuals, where direct auscultation could be challenging and even bothersome. René

Laënnec invented the stethoscope (= stēthos (chest) + skopein (to visualise, to see) [1]),

using only a tube of paper tied with a string to auscultate the heartbeats of his patients.

Later in that century, George P. Camman developed a Binaural stethoscope with two

earpieces [2], with a similar shape to the modern one.

When conjugated with an experienced listener, this instrument has excellent

value once it can quickly diagnose deadly disorders, making it affordable for primary

health care services [3].

Despite all the benefits of performing auscultation as a diagnostic procedure,

some disadvantages need to be considered: as the listener is a human, some random

inaccuracies in identifying abnormal respiratory sounds may occur, possibly resulting in

bad judgments [4]; it is required some silence to make the auscultation, what can be

challenging to achieve in noisy clinical settings; the listener needs much training to make

a good diagnosis, what means that the great majority of unhealthy people cannot monitor

their disease by themselves.

Later in the twentieth century, the first electronic stethoscope was created,

allowing sound to be louder and more precise. Nowadays, digital stethoscopes can filter

the noise of the sound [5], surpassing some of the disadvantages pointed out earlier.

1.1 Motivation

The next big step in the evolution of the stethoscope is using all the scientific

knowledge in signal processing to detect specific patterns that can lead to a diagnosis.

This improvement can substantially reduce human error since clinical reasoning is

interpreted into the detection algorithm [6]. As described in the next chapter, some

algorithms were already developed with exciting results.

The reader may then ask how the stethoscope can be improved to make

auscultation even more profitable. The answer is simple: making it available to everyone

despite their level of knowledge in auscultation [7]. Nowadays, smartphones are

FCUP
Analysis of respiratory sounds acquired with smartphone

2

accessible to everyone [8], so using their microphone and the enormous mathematical

developments might solve this challenge [9].

This Dissertation explores the already-built algorithms with good results for the

digital stethoscope. It adapts them to a database with recordings of respiratory sounds

acquired with smartphones, aiming for the best results.

1.2 Adventitious respiratory sounds

Crackles and wheezes are familiar adventitious respiratory sounds that can

indicate the presence of pulmonary disease or disorder [10].

Crackles are a type of lung sound characterised by a popping or crackling noise.

They are caused by the opening and/or closing small airways and alveoli in the lungs

[11]. Crackles can be heard with a stethoscope and are classified into fine and coarse:

fine crackles are typically heard in the upper lobes of the lungs and are associated with

conditions such as pneumonia and idiopathic pulmonary fibrosis; coarse crackles, on the

other hand, are typically heard in the lower lobes of the lungs and are associated with

conditions such as chronic bronchitis [12]. A possible explanation of crackles in chronic

respiratory disease could be air bubbling in the secretion of the airways. The number of

crackles is correlated with the severity of the underlying disease.

Wheezes are lung sounds characterised by a high-pitched whistling noise. They

are caused by narrowing or obstructing the airways, which increases airflow resistance

[13]. The bronchial obstruction causes harmonic oscillations of the airways due to

Bernoulli’s principle, which can be heard as pitched noises on top of the physiological

breath sounds. If there are multiple obstructions, the different wheezing sounds are

overlapped, which results in polyphonic wheezing.

Wheezes can also be heard with a stethoscope and are associated with asthma

and chronic obstructive lung disease [12]. In addition to helping with diagnosis, crackles

and wheezes can also be used to monitor the progression and treatment of respiratory

diseases [14]. For example, if a patient with chronic obstructive pulmonary disease

(COPD) is experiencing an exacerbation, healthcare providers may hear an increase in

the number and severity of crackles [15]. Similarly, if a patient with asthma is not

responding well to treatment, healthcare providers may hear an increase in the severity

of wheezes [16]. The normal auscultation performed with an analogic stethoscope

FCUP
Analysis of respiratory sounds acquired with smartphone

3

typically cover all zones of the posterior and anterior parts of the chest, which might be

challenging to achieve with a smartphone, especially in a self-monitoring set-up.

1.3 Automatic respiratory sound detection

Automatic respiratory sound identification is an active area of research in medical

signal processing. Intuitively, seeing some waveforms of wheeze, crackle and normal

sounds, some patterns and differences are evident.

Figure 1 - Anterior and posterior auscultation schema.

Figure 2 - Representation of different respiratory sounds and the respective spectrogram. [37]

FCUP
Analysis of respiratory sounds acquired with smartphone

4

Although the first algorithms used spectrogram analysis, fast Fourier transform

and wavelet transform, nowadays, the state of the art in this field involves using machine

learning techniques, such as deep neural networks, to classify respiratory sounds into

different categories. Some relevant articles are reported below:

Petmezas et al. [17] proposed an algorithm that implements a trained focal loss

function (FL) after features are extracted from a short-time Fourier transform (STFT) via

a convolutional neural network (CNN). This algorithm aimed to detect four states for the

sound: normal, crackle, wheeze, crackle and wheeze, and it was trained and tested on

a respiratory sound database developed within the scope of the International Conference

on Biomedical and Health Informatics (ICBHI) 2017.

The data was divided using three different splitting strategies with the following

results: achieving sensitivity between 47.37% and 60.29%, specificity between 82.46%

and 84.26%, a score between 64.92% and 68.52%, and accuracy between 73.69% and

76.39%.

Jizuo Li et al. [18] proposed a deep learning architecture algorithm to detect four

states for the sound - normal, crackle, wheeze, crackle and wheeze - named LungAttn

using a feature extraction method based on dual-tunable Q-factor wavelet transform and

STFT. Implementing this algorithm in the ICBHI 2017 database achieved a sensitivity of

36.36%, a specificity of 71.44% and a score of 53.90%.

Yoonjoo Kim et al. [19] developed a predictive model of abnormal respiratory

sounds with four categories: normal, crackles, wheezes, and rhonchi. The detection of

adventitious sounds had an accuracy of 86.5% and an area under the ROC curve (AUC)

of 0.93. The further classification into the four categories had an overall accuracy of

85.7% and a mean AUC of 0.92.

These algorithms were developed based on stethoscope-recorded sounds, and

their accuracy dealing with smartphone-recorded sounds is still unknown.

The AIRDOC project aimed to develop an innovative solution for the early

detection of adventitious sounds in the lungs using smartphones, developing a mobile

application to record and analyse lung sounds [20]. The project's main objective was to

create a low-cost, accessible, and easy-to-use tool that healthcare professionals and

patients could use to detect potential lung problems. The project also focused on

developing a cloud-based platform for storing and sharing lung sound recordings. This

FCUP
Analysis of respiratory sounds acquired with smartphone

5

research has led to interesting advancements in the use of smartphones for the early

detection of adventitious sounds in the lungs [21].

Respiratory Sound Assessment Toolkit was developed in University of Aveiro

with promising results, with the development of a software application that could

accurately detect adventitious sounds in the lungs, such as crackles and wheezes, and

provide a visual representation of the sound for straightforward interpretation. The

application also analysed the sound in real-time, providing immediate feedback to the

user [22].

In this Dissertation, a wheeze detection algorithm will be addressed as well as

further performance analysis to the implementation of that algorithm in a database with

stethoscope and smartphone respiratory sounds recordings to deduce some conclusions

of its applicability.

FCUP
Analysis of respiratory sounds acquired with smartphone

6

2 Signal Processing Methods
 Mathematical methods are pivotal in implementing algorithms by providing a

solid foundation and a deep understanding of the underlying principles. In this chapter,

some definitions, and methods relevant for this Dissertation are briefly presented.

2.1 Window function

A window function is a mathematical function that is zero-valued outside of some

chosen interval, usually symmetric around the middle where it achieves a maximum of

the interval and also tapering away from the middle.

2.2 Hann function

The Hanning function is a window function is used to perform Hann smoothing.

The function, with length 𝐿 and amplitude 1/𝐿 defined as:

𝑤଴(𝑥) ≜ ቐ

1

𝐿
ቆ

1

2
+

1

2
cos ൬

2𝜋𝑥

𝐿
൰ቇ =

1

𝐿
cosଶ ቀ

𝜋𝑥

𝐿
ቁ , if |𝑥| ≤ 𝐿/2

0, if |𝑥| > 𝐿/2

By applying the Hann window to a signal before computing its Fourier transform

the signal is multiplied by the window function elementwise. This means the signal will

be modulated with the shape of the Hann window. The result is that the signal smoothly

tapers to zero at its edges, reducing the side lobes and improving the accuracy frequency

component estimation in the Fourier domain. This phenomenon can be seen in the chart

below.

FCUP
Analysis of respiratory sounds acquired with smartphone

7

2.3 Box filtering

The box filter equally weights all samples within a square region of the image.

Box filtering involves replacing each pixel of an image with the average in a box. When

extended in several simple ways, it becomes an efficient general-purpose tool for image

processing [23].

When applied to signal, a box slides over the signal, averaging the values within

the box at each step. This process continues until the end of the signal.

The filtered signal is obtained by replacing the centre values in each box with the

average of the values within that box.

The result is a smoothened signal that reduces the high-frequency noise, giving

us a clearer representation of the underlying sinusoidal wave. An example of this method

can be seen in Figure 3.

Chart 1 - Hann window and correspondent Fourier transform.

FCUP
Analysis of respiratory sounds acquired with smartphone

8

The box filter reconstructs (a) a step function and (b) a sinusoidal function with

increasing frequency as x increases. As expected, this filter does well with the step

function and does an inferior job with the sinusoidal function [24].

2.4 Convolution

Convolution is a mathematical way of combining two signals to form a third signal.

It is the single most important technique in Digital Signal Processing. Convolution is

essential because it relates the input, output, and impulse response of a system.

Abstractly, a convolution is defined as a product of functions 𝑓 and 𝑔 that are

objects in the algebra of Schwartz functions in ℝ௡. The convolution of two functions 𝑓

and 𝑔 over a finite range [0, 𝑡] is given by

[𝑓 ∗ 𝑔] = න 𝑓(𝜏)𝑔(𝑡 − 𝜏)𝑑𝜏
ఛ

଴

Figure 3 - Box filter applied (a) a step function and (b) a sinusoidal
function. [24]

FCUP
Analysis of respiratory sounds acquired with smartphone

9

When taking over an infinite range,

𝑓 ∗ 𝑔 = න 𝑓(𝜏)𝑔(𝑡 − 𝜏)𝑑𝜏
ஶ

ିஶ

A visual way to understand the convolution is shown in Figure 4:

2.5 Savitzky-Golay filter

The Savitzky–Golay smoothing, and differentiation filter optimally fits a set of data

points to a polynomial in the least-squares sense.

The smoothing is achieved by fitting successive subsets of adjacent data points

with a low-degree polynomial by the method of linear least squares.

Figure 4 - Convolution of two functions A (red) and B
(blue) produce a third function describing the overlap
(green).

FCUP
Analysis of respiratory sounds acquired with smartphone

10

3 Adventitious respiratory sounds

automatic detection

This chapter delves into advanced algorithms for identifying abnormal respiratory

sounds. It will provide detailed insights into the underlying computational methods and

signal processing techniques used to identify adventitious sounds.

3.1 Wheezes detection

The algorithm to detect wheezes was initially developed by Taplidou in 2007 [25].

It aims to locate wheezing episodes in breath sound recordings based on time-frequency

(TF) analysis of the signal.

The TF representation is usually obtained using the STFT on a time signal 𝑠(𝑡):

𝐹ௌ்ி்(𝜏, 𝑓) = න 𝑠(𝑡) ∙
ିஶ

ାஶ

 ℎ∗(𝑡 − 𝜏)𝑒ି௝ଶగ௙ 𝑑𝑡

Equation 1

The use of the STFT for wheeze detection has been already proposed by M.

Waris et al. [26] but it was insufficient in the presence of noise, such as cardiac sounds.

Therefore, Taplidou et al. developed this time-frequency wheeze detector (TF-

WD) using five steps:

Step 1: Calculation of the TF representation of the recorded sound.

Step 2: The underlying basic breath sound is subtracted from the total breath

sound.

Step 3: Peak detection in the TF plane.

Step 4: Classification of the detected peaks as wheeze and non-wheeze.

Step 5: Wheeze representation in the time domain.

FCUP
Analysis of respiratory sounds acquired with smartphone

11

Description of the wheezes detection algorithm

Step 1

Consider the signal 𝑠(𝑡) as

𝑠(𝑡) = 𝑤(𝑡) + 𝑛(𝑡)

where 𝑤(𝑡) and 𝑛(𝑡) correspond to wheezing and white noise sounds, respectively.

The 𝑠(𝑡) signal is analysed in the TF plane using Equation 1, with ℎ(𝑡) being a

256-sample Hanning sliding window shifted by 128 overlapping samples in the time

domain; at each window position, the fast Fourier transform of the windowed signal

(extended to 2048 samples after zero-padding) is estimated, resulting in the 𝐹ௌ்ி்(𝜏, 𝑓).

Step 2

To remove the basic breath sound from the sample, a smoothing procedure is

used to estimate the trend of the frequency content of the windowed signal at each time

instance. This estimation is based on the Box filtering procedure, which reduces the

variation of a signal, a commonly used technique to reduce white noise.

Step 3

The frequency axis is segmented into four frequency bands: B1: 60–300 Hz, B2:

300–600 Hz, B3: 600–1400 Hz, and B4: 1400–1900 Hz, so that different magnitude

criteria can be defined for each one to facilitate the peak detection in the TF domain.

This detection method involves a search for peaks that overpass a specific magnitude

threshold, nT, (in dB) per frequency band: nT1: 1.8, nT2: 2, nT3: 3 and nT4: 3.

When these peaks are identified, their time and frequency location are marked. This

procedure is repeated for each time window, resulting in 𝐹ௌ்ி்
ௌ௉ (𝜏, 𝑓).

Step 4

A set of criteria is applied to examine the validity of the detected peaks at step 3.

These criteria include:

1) Local maxima: the peaks should have the maximum magnitude of a 70Hz

frequency window sliding over the frequency bands at each time-window position.

2) Peak coexistence: the number of peaks coexisting at each time instance should

not be greater than four.

3) Continuity in time: peaks should have a duration greater than 150ms.

4) Grouping: peaks are part of the same wheeze when the frequency proximity of

peaks that belong to successive time-window positions is no mere than 50 Hz;

FCUP
Analysis of respiratory sounds acquired with smartphone

12

their time proximity is no more than 23.2 ms, and the total duration of the

gradually formed wheeze does not exceed 2.5 s.

The detected peaks in the 𝐹ௌ்ி்
ௌ௉஼ (𝜏, 𝑓) that satisfy the criteria described above

correspond to wheezes; if not, they are considered non-wheezing sounds and are

discarded.

Step 5

By applying the inverse short-time frequency transform (ISTFT), the 𝑤(𝑡) signal

is estimated, showing the wheeze information in the time domain.

This algorithm was used to detect wheezes in stethoscope-recorded sounds from

patients with stable and exacerbated COPD. [27], [28]

3.2 Crackles detection

The algorithm to detect crackles was initially developed by Laura Vannuccini in

1998 [29]. This automatic method detects peaks corresponding to the points of the

maximum slope. The respiratory sound's first derivative (FD) is calculated to emphasise

pitch and speed, and the crackle should be detected using the deflection property. So,

this algorithm is generically based on two steps:

Step 1: Locate the zone of interest using the lung sound's first derivative absolute

value (FDAV).

Step 2: Verify if the zones detected in the first step fulfil all requisites to consider

it a crackle.

Description of the crackles detection algorithm

Step 1

Apply the FDAV to the sample and compare it to a predefined threshold, T. The

intervals ton and toff are calculated using this comparison: ton is the time during which

FDAV remains over T, and toff is the time it remains under T:

𝑡on = ෍ 𝑡on೔

௜

 , 𝑡off = ෍ 𝑡off೔

௜

This counting continues until ton is greater than toff and the sum of these two

variables is less than the temporal window TW. When the counting stops, a zone of

interest is found.

FCUP
Analysis of respiratory sounds acquired with smartphone

13

Step 2

To verify if the zone of interest found contains a crackle, these conditions must be

achieved:

1) At least three close peaks of FDAV in TW must exist. This condition is easy to

verify since the number of peaks is equal to the number of 𝑇௢௡೔
. The positions of

these peaks correspond to the points of the maximum slope of the signal (t1, t2

and t3).

2) FDAV(t2) must be greater than FDAV(t1) and FDAV(t3).

3) The intervals 𝑡ଵ − 𝑡ௌ, 𝑡ଶ − 𝑡ଵ and 𝑡ଷ − 𝑡ଶ must increase because:

 𝑡ଵ − 𝑡ௌ > 𝑡ଶ − 𝑡ଵ > 𝑡ଷ − 𝑡ଶ

where tS is the starting point.

To know the variable tS, some parameters of the crackle are helpful, such as the

initial deflection width (IDW).

A finite impulse response (FIR) filter evaluates the FD. These kinds of filters

belong to the Savitsky–Golay (SG) group and are low-pass filters, well adapted for

smoothing and differentiation, whose properties are defined in the time domain rather

than the Fourier domain. Specifications for an SG filter are the number of coefficient n,

the degree of the fitting polynomial p, the order of derivation d and the order of the higher

moment to preserve m.

Similar to wheezes detection algorithm, this crackles detection algorithm was

used previously in stethoscope-recorded sounds from patients with stable and

exacerbated COPD. [27], [28]

FCUP
Analysis of respiratory sounds acquired with smartphone

14

4 Database description
This database contains recordings from 26 young students with ages between

10 and 13 years. Recordings were acquired with a smartphone (iPhone 7,

MN902ZD/A, iOS 12.1.2) and one stethoscope (Littmann® model 3200, 3M, Cerritos,

CA, USA) at 7 locations simultaneously, totalling 415 respiratory sounds.

The characterisation of the sample is presented below:

Chart 2 - Number of students by age and gender (n=26).

FCUP
Analysis of respiratory sounds acquired with smartphone

15

Chart 3 - Box plot (violin chart) of height in cm by gender.

Chart 4 - Box plot (violin chart) of weight in kg by gender.

FCUP
Analysis of respiratory sounds acquired with smartphone

16

 Regarding height and weight, the data shows some symmetry around the mean

values for weight and height which indicates that the sample can be from a normal

population.

 Each sound file has a duration of thirty seconds and were obtained from 7

different locations:

 Anterior right lower lobe

 Anterior left lower lobe

 Posterior right lower lobe

 Posterior left lower lobe

 Posterior right upper lobe

 Posterior left upper lobe

 Trachea

Due to the simultaneous recording between the smartphone and stethoscope,

the data was balanced regarding local and equipment.

Two researchers independently classified the recordings in terms of sound quality

(yes/no) and presence of adventitious sounds (yes/no) was only assessed in the

recordings with quality. This created a slight discrepancy between the number of

recordings per location (Table 1). In the event of disagreement, the recordings were

classified by a third investigator and the final decision was determined by the majority

rule.

Table 1 - Number of recordings per location.

Anterior Posterior

Trachea Right

Lower

Left

Lower

Right

Lower

Left

Lower

Right

Upper

Left

Upper

Smartphone 25 25 25 23 25 25 26

Stethoscope 24 25 24 24 21 22 25

Total 49 50 49 47 46 47 51

FCUP
Analysis of respiratory sounds acquired with smartphone

17

 The presence of adventitious sounds, as annotated by the specialists, is

presented in the table 2 below.

Table 2 - Distribution of Wheezes and Crackles presence in the sample.

 Smartphone Stethoscope Total

Wheezes 16 17 33

No-Wheezes 158 148 306

Crackles 0 1 1

No-Crackles 174 164 338

 As the sounds with wheezes presence represent only 9.73% of the total sample,

this database can be considered unbalanced, and the performance analysis must take it

into consideration. Regarding the crackle’s presence, it only represents 0.29% of the

sample, much less than wheezes. This data is not adequate to evaluate automatic

crackle detection.

FCUP
Analysis of respiratory sounds acquired with smartphone

18

5 Python Implementation
MATLAB, short for MATrix LABoratory, is a powerful and versatile programming

environment and numerical computing software widely used in academia, industry, and

research, where all variables are multidimensional arrays, no matter what type of data.

In February 2014, both algorithms described in the previous chapter were

implemented in MATLAB by a team in the University of Aveiro, taking advantage of digital

signal processing packages in the platform. These algorithms were then integrated in a

computer-assisted learning tool which simultaneously allows the recording and analyses

of respiratory sounds to be used by healthcare providers. [30]

Later in this Dissertation, the results of applying the algorithms to sounds

recorded from different equipments are discussed.

Python is a versatile and high-level programming language that has gained

widespread popularity among developers and data scientists due to its simplicity,

readability, and extensive libraries. Guido van Rossum initially created Python in the late

1980s [31], and it has since evolved into a powerful tool for various applications, from

web development to scientific research and machine learning.

One of Python's standout features is its rich standard library, which includes

modules for various tasks, from handling files and working with data to creating graphical

user interfaces. Additionally, Python's active open-source community has contributed to

an extensive ecosystem of third-party libraries and frameworks, such as NumPy for

numerical computing [32] and TensorFlow for machine learning [33].

Targeting the implementation of these algorithms in a cloud server, Python was

the chosen language to translate the previous MATLAB algorithm directly.

Due to the vast difference in syntax between both languages, this implementation

showed lots of challenges to overcome, having also in interest the computational

economy needed for this kind of project.

The Python version used in this implementation was 3.11. The packages used in

the implementation are described in the table below.

FCUP
Analysis of respiratory sounds acquired with smartphone

19

Table 3 - Version of the packages used in Python’s implementation.

Package Version Control

cv2 4.8.0

numpy 1.25.2

pandas 2.1.0

scipy 1.11.2

soundfile 0.12.1

Strategy

Translating an algorithm from MATLAB to Python is a challenging task, as these

two languages have significant differences in their syntax and operation. To bypass this

problem, a proper strategy to approach this difficulty was made, making it possible to

efficiently perform this conversion.

Step 1: Understand the MATLAB Algorithm

Before beginning Python’s implementation, it's crucial to have a comprehensive

understanding of the algorithm in MATLAB. This was made not only from the algorithm’s

documentation but also from knowledge of digital signal processing.

Step 2: Choose the right Python Libraries

Python has an extensive collection of libraries that can replace MATLAB's

functions and features. Depending on the algorithm, some needed libraries might be for

linear algebra (e.g., NumPy), data processing (pandas), visualisation (Matplotlib), among

others.

Step 3: Map Variables and Data Types

In MATLAB, variables are dynamically typed, while in Python, they are statically

typed. Mapping MATLAB variables to their corresponding data types in Python is

essential to grant the biggest equivalence between implementations. For example, a

matrix in MATLAB can be mapped to a list of lists in Python, where each list corresponds

to a matrix row.

FCUP
Analysis of respiratory sounds acquired with smartphone

20

Step 4: Translate Flow Control Structures

Translation flow control structures like loops (for, while) and conditionals (if, else)

from MATLAB to Python. A particularity is that Python uses indentation to define code

blocks, unlike MATLAB, which uses "end" to delimit these blocks.

Step 5: Convert Functions and Operations

Translation of MATLAB-specific functions and operations to their Python

equivalents. For example, if the zeros function in MATLAB is used to create an array of

zeros, in Python, it can be used numpy.zeros.

Step 6: Recall Differences in Indexing and adjust parameters accordingly

One of the main difficulties is that in MATLAB, array indexing starts at 1, while in

Python, it starts at 0. Also, when defining intervals, MATLAB assumes the input as a

closed interval, while Python assumes the first input as belonging to the interval and the

last as a majorant.

Step 7: Test and Debug

After the initial translation, it is essential to test the Python code to ensure it

produces results equivalent to MATLAB. Using known test cases, it is possible to step

by step verify the results it produces. Some Python debugging tools like the pdb module

also help detect and fix errors and ensure the code works as expected.

Step 8: Code Optimisation

As the main goal is to implement the algorithm in a cloud-based server, optimising

the Python code is essential to improve performance or leverage specific language

features, using fewer resources and increasing the response time.

Step 9: Comments

Commenting on the Python code properly explains complex parts and provides

information about input, output, and the algorithm's logic, making it easier to understand.

Step 10: PEP 8 – Style Guide for Python

PEP 8, "Python Enhancement Proposal 8," is a style guide for writing Python

code. It provides a set of conventions and guidelines for formatting and structuring

Python code to make it more readable and consistent. By following it, it is ensured that

the code remains aligned with modern best practices.

FCUP
Analysis of respiratory sounds acquired with smartphone

21

These few steps were aligned to make an organised code translation, considering

the particularities of each programming language.

Wheeze Detection Algorithm translation

Step 1

The first step, as mentioned before, calculates the TF of the recorded sound. The

decimation frequency is set to 5512Hz, and a bandpass filter to the interval 60Hz –

2100Hz is done through the auxiliary function butter_filter, returning the filtered signal.

This function made use of the package signal for the function butter and was defined as:

def butter_filter(x, n, fc, fs, t):
 # INPUT parameters:
 # x - signal to be filtered
 # n - order of the filter
 # fc - cut frequency
 # fs - taxa de amostragem do sinal
 # type - "high" or "low"

 if t == "high":
 (b, a) = signal.butter(n, fc/(fs/2), "highpass")
 elif t == "low":
 (b, a) = signal.butter(n, fc/(fs/2), "lowpass")
 else:
 print("ERROR: Filter Type unknown.")
 return signal.lfilter(b, a, x)

Then, to downsample, the signal was decimated. Ideally, the package signal

could be used again, as in the snippet below.

ratio = Fraction(Decimal(str(fs / fs_raw)))
y_filt = signal.resample_poly(y_filt, ratio.numerator,
ratio.denominator)

Due to computational memory usage, this code could not be used, and a

decimation function needed to be defined. It took advantage of numpy properties. Please

note that numpy functions are preceded by the prefix “np.”.

FCUP
Analysis of respiratory sounds acquired with smartphone

22

def decimation(signal, input_fs, output_fs):

 scale = output_fs / input_fs
 n = round(len(signal) * scale)

 resampled_signal = np.interp(
 np.linspace(0.0, 1.0, n, endpoint=False),
 np.linspace(0.0, 1.0, len(signal), endpoint=False),
 signal,
)
 return resampled_signal

 Finally, the STFT can be calculated applying the Hanning Sliding Window to the

signal.

nfft = 512
noverlap = round(nfft * 0.9)
vf, vt, y_spec = signal.stft(y_filt, fs, "hann", noverlap=noverlap,
nperseg=nfft, nfft=nfft)

Steps 2 and 3

To estimate the wanted trend, it is used a box filtering procedure. The below code

snippet shows the way it was implemented. Let c be the number of columns in the object

y_spec.

for i in range(0, c-1, 2):
 t_window = [z[i:i + 2] for z in y_spec]
 t_mean = [statistics.mean(z.real) for z in t_window]

 # BOX FILTERING
 M_boxfilt = 10
 nn = M_boxfilt * 2
 tt_mean = [t_mean[0] for _ in range(nn)] + t_mean + [t_mean[-1]
for i in range(nn)]

FCUP
Analysis of respiratory sounds acquired with smartphone

23

 t_filt = signal.lfilter([1 for _ in range(M_boxfilt)], 1,
tt_mean)

 D = round(M_boxfilt / 2)
 # Divide by M_boxfilt to obtain the averaging filter
 tt_filt = [i / M_boxfilt for i in t_filt[D + nn:-1 - nn + D +
1]]

 for z in range(len(M_det)):
 M_det[z][i] = y_spec[z, i] - tt_filt[z]
 M_det[z][i + 1] = y_spec[z, i+1] - tt_filt[z]

DELETE VALUES less than 0
for i in range(len(M_det)):
 for j in range(len(M_det[0])):
 # Delete the null complex part of the cells.
 M_det[i][j] = M_det[i][j].real
 if M_det[i][j] < 0:
 M_det[i][j] = 0

 The frequency axis is then segmented into four bands, and a vector of threshold

values is created, as explained in the algorithm’s third step. To detrend the bands, an

auxiliary function is defined: f_detrended.

def f_detrended(detrend_1band, nThreshold):
 detrend_1band_temp = list(map(list, zip(*detrend_1band)))
 mean_band = [statistics.mean(x) for x in detrend_1band_temp]
 std_band = [statistics.stdev(x) for x in detrend_1band_temp]

 vThreshold = [x+y*nThreshold for x, y in zip(mean_band,
std_band)]

 for j in range(len(detrend_1band[0])):
 for i in range(len(detrend_1band)):
 if detrend_1band[i][j] <= vThreshold[j]:
 detrend_1band[i][j] = 0

 detrend_1band_peak = detrend_1band

 return detrend_1band_peak

FCUP
Analysis of respiratory sounds acquired with smartphone

24

This function uses the package statistics to calculate the means and standard

deviations needed.

Step 4

The detected peaks are stored in a data frame using the package pandas. The

columns' names are: 'obj_sizes', 'tstart', 'tstop', 'duration', 'valid_obj', 'flag' and 'indices'.

In the last step, the identified peaks are evaluated to a set of criteria. If a peak

does not fulfil the criteria, it is marked as 0 in the valid_obj columns, and then this row is

eliminated. In the end, the rows of the data frame only contain valid wheezes.

One of the limitations of Python compared to MATLAB is the lack of matrix-ready

packages and specific capabilities like finding indices of an element and the opposite:

finding the row and column of and given a specific index. To bypass these difficulties,

the approach was to maintain the original MATLAB design as a data frame and create

two auxiliary functions.

def f_findIndices(Acc, N):
 temp = []
 for j in range(len(Acc[0])):
 for i in range(len(Acc)):
 temp.append(Acc[i][j])

 IND = np.nonzero(temp)[0].tolist()
 Acc_short = [temp[i] for i in IND]

 M_indices = []
 for k in range(1, N):
 temp2 = [i for i, x in enumerate(Acc_short) if x == k]
 M_indices.append([IND[i] for i in temp2])
 return M_indices

def ind2sub(size, ind):
 row = []
 col = []

 for z in ind:
 row.append(z % size[0])

FCUP
Analysis of respiratory sounds acquired with smartphone

25

 col.append(int(z/size[0]))

 return row, col

All these functions described in this chapter were essential to translate the code

from MATLAB. It allowed us to maintain the same line of thought while making this

algorithm available to be implemented in all platforms due to the versatility of Python.

FCUP
Analysis of respiratory sounds acquired with smartphone

26

6 Performance analysis

6.1 Preliminary Analysis

All the statistical analysis was done in R, version 4.3.1, using the package caret

version 6.0-94.

To evaluate the performance of the algorithm over for smartphone recording

adventitious sound detection, we first applied the MATLAB algorithm in the smartphone

recordings database and compared it with the specialists’ annotations.

Table 4 - Performance of Wheeze and Crackle Detection algorithms.

 Wheezes Crackles

Accuracy 0.631 0.015

Kappa 0.187 1e-04

Sensitivity 0.879 1.000

Specificity 0.604 0.012

Precision 0.193 0.003

F1 Score 0.317 0.006

The accuracy of the crackle’s detection algorithm is much worse than the

wheezes one. Cohen’s Kappa also shows that the annotations are very different from

the result of the implementation.

Considering the crackles' poor results and due to time limitations, only the

wheeze detection algorithm was translated into Python language, aiming to achieve, in

the worst-case scenario, an equivalent algorithm of this already satisfactory method.

Considering the actual values as the MATLAB output, the Python ones as the

predicted class and implementing the metrics of Appendix I – Methodological

Foundations, the results are shown in Table 5.

FCUP
Analysis of respiratory sounds acquired with smartphone

27

Table 5 - Python vs MATLAB.

Accuracy 0.817

Kappa 0.629

Sensitivity 0.787

Specificity 0.841

Precision 0.797

F1 Score 0.792

Cohen’s Kappa of 0.629 shows a reasonable similarity between the MATLAB and

Python algorithms. Due to the different syntax and filters used, it was expected not to

have a completely equal algorithm, but one somehow equivalent.

With 81.7% accuracy, Python’s algorithm is equivalent to MATLAB results, as

expected. Indeed, high accuracy requires high precision and trueness, following the

International Organization for Standardization nomenclature. Even so, there are

differences between both, and a deeper examination of the results was needed.

FCUP
Analysis of respiratory sounds acquired with smartphone

28

6.2 Performance against specialists’ annotations

Considering specialists’ annotations as ground truth, the predicted results from

the two implementations were validated against them.

Table 6 - Comparison of performance metrics between MATLAB and Python.

 Annotation vs MATLAB Annotation vs Python

Accuracy 0.631 0.643

Kappa 0.187 0.205

Sensitivity 0.879 0.909

Specificity 0.604 0.614

Precision 0.193 0.203

F1 Score 0.317 0.331

As concluded from Table 2, the data is unbalanced, and precision and sensitivity

might be biased because of that characteristic. On the other hand, the F1 Score is more

stable for this data set and should be the proper parameter to analyse. As the F1 Score

is greater for Python’s implementation, we can conclude that it has better precision and

recall, meaning fewer errors when detecting wheezes.

Accuracy is not the best parameter to consider because the sample is

unbalanced. Alternatively, there is another approach using Balanced Accuracy.

Definition – Balanced Accuracy

Balanced accuracy, 𝐵𝐴, is the arithmetic mean of sensitivity and specificity.

For Annotations versus MATLAB, the Balanced Accuracy is 74.17%, and

Annotations versus Python is 76.17%. This result shows an increase of 2% in BA for the

Python implementation, meaning that the number of correctly detected wheezes out of

all recordings is more significant for Python.

FCUP
Analysis of respiratory sounds acquired with smartphone

29

 The difference between equipments may also affect the detection of wheezes. In

fact, considering that one equipment, the stethoscope, is made precisely to perform

medical auscultation and smartphone not, it is expected to have noticeable differences.

To enlighten possible differences, some more measurements were made.

Table 7 - Metrics for MATLAB and Python implementations versus Annotations taking the equipment into account.

 Sensitivity Specificity BA Precision F1 Score

M
A

T
L

A
B

S
m

a
rt

p
h

o
n

e

0.938 0.709 0.823 0.246 0.389

S
te

th
o

sc
o

p
e

0.824 0.493 0.658 0.157 0.264

P
y

th
o

n

S
m

a
rt

p
h

o
n

e

0.938 0.722 0.829 0.254 0.400

S
te

th
o

sc
o

p
e

0.882 0.500 0.691 0.168 0.283

Surprisingly, the implementation of the algorithms in both languages showed

better results for the smartphone subset, and again, Python’s implementation is

statistically better than in MATLAB, reaching a 0.4 score in the F1 Score metric. Also, the

balanced accuracy for smartphone recordings is very satisfactory, 82% for MATLAB and

1% more in Python.

Another cause that can influence the results is the location where the samples

were previously recorded. To address this possibility, some exploratory analysis of

correlation was made.

FCUP
Analysis of respiratory sounds acquired with smartphone

30

Time of implementation

In MATLAB, the algorithm implementation for the smartphone dataset takes 9.97

minutes; for the stethoscope dataset, it takes 12.54 minutes.

In Python, the algorithm implementation for the smartphone dataset takes 7.55

minutes, as, for the stethoscope data set, it takes 9.49 minutes.

For both cases, Python implementation is around 25% faster than MATLAB’s.

FCUP
Analysis of respiratory sounds acquired with smartphone

31

7 Concluding Remarks
The smartphone has emerged as a powerful tool in eHealth. Detecting

adventitious sounds such as wheezes would revolutionise how we monitor and manage

respiratory health outside medical facilities. Its portability, accessibility, and ever-

evolving technological capabilities have made it an indispensable companion for better

health and well-being.

Furthermore, the smartphone's role extends beyond mere detection; it empowers

individuals by providing valuable information and resources for managing their

respiratory conditions. From tracking symptoms and medication schedules to connecting

with healthcare professionals remotely, smartphones have become an essential lifeline

for those living with respiratory issues. By aggregating anonymised data from millions of

users, researchers and healthcare providers can gain insights into patterns and trends

in respiratory health, ultimately leading to improved treatments and preventive

measures.

In this Dissertation, the objective was, as the title says, to analyse respiratory

sounds acquired with a smartphone. With two already available algorithms implemented

in MATLAB and previously used in clinical studies, we took an additional step to

implement them in Python. As the crackles detection algorithm showed significant

limitations, there was no time to assess that problem.

During this time, the knowledge of digital signal processing increased due to the

contact with diverse methods.

The implemented algorithm in Python had a remarkable performance overall:

from better accuracy to faster execution time, proving the value that it has and that with

further work, better results may appear, encouraging to continue the research in this

field.

FCUP
Analysis of respiratory sounds acquired with smartphone

32

7.1 Limitations and achievements

In the development of this Dissertation, some limitations conditioned the

progress:

 Python’s huge syntax difference compared to MATLAB and the lack of matrix-

ready packages delayed the translation more than expected also making the

debug period very complicated;

 available signal packages are not sufficiently optimized to these complex

projects, being even more difficult to perform digital signal processing in Python;

 the database has some limitations as the same stethoscope and smartphone

were used, created a small bias in the results interpretations;

 the sample was small and only included children, more specifically for recordings

with crackles.

Despite these limitations, interesting achievements were made:

 A Python equivalent algorithm to MATLAB implementation was written;

 Statistical analysis shows even greater performance on Python’s algorithm;

 When applied to smartphone data, both precision and balanced accuracy

increases around 10%.

 Execution time in Python is 25% faster than in MATLAB.

These achievements increase expectations about the future of automatic

detection of adventitious sounds as current algorithms already returns satisfactory

results.

7.2 Future work

Despite the work developed in this Dissertation allowing an exciting discussion

about automatic adventitious sound detection algorithms in stethoscopes and

smartphone databases, this topic is far from being finished.

Wheezes detection algorithm needs to be tested in more extensive databases

with different age groups to investigate more about its performance and allow, with that

implementation, to tune this method.

The same should be done with the crackles detection algorithm, although the

performance in MATLAB was inferior.

Once this research is done, it would be possible to implement these algorithms

in a cloud-based server and make them available to the population.

FCUP
Analysis of respiratory sounds acquired with smartphone

33

8 References
[1] A. Roguin, “Rene Theophile Hyacinthe Laënnec (1781-1826): The man

behind the stethoscope,” Clin Med Res, vol. 4, no. 3, pp. 230–235, 2006,

doi: 10.3121/cmr.4.3.230.

[2] F. Weinberg, “The history of the stethoscope,” Canadian Family Physican,

vol. 39, pp. 2223–2224, 1993.

[3] S. Núñez, A. Moreno, K. Green, and J. Villar, “The stethoscope in the

emergency department: A vector of infection?,” Epidemiol Infect, vol. 124,

no. 2, pp. 233–237, 2000, doi: 10.1017/S0950268800003563.

[4] E. G. M. Cox et al., “Should the ultrasound probe replace your stethoscope?

A SICS-I sub-study comparing lung ultrasound and pulmonary auscultation

in the critically ill,” Crit Care, vol. 24, no. 1, pp. 1–7, 2020, doi:

10.1186/s13054-019-2719-8.

[5] F. Belloni, D. Della Giustina, M. Riva, and M. Malcangi, “A new digital

stethoscope with environmental noise cancellation,” International

Conference on Mathematical and Computational Methods in Science and

Engineering - Proceedings, no. May 2014, pp. 169–174, 2010.

[6] T. Grzywalski et al., “Practical implementation of artificial intelligence

algorithms in pulmonary auscultation examination,” Eur J Pediatr, pp. 883–

890, 2019, doi: 10.1007/s00431-019-03363-2.

[7] S. Dramburg, E. Dellbrügger, W. van Aalderen, and P. M. Matricardi, “The

impact of a digital wheeze detector on parental disease management of

pre-school children suffering from wheezing—a pilot study,” Pilot Feasibility

Stud, vol. 7, no. 1, pp. 1–11, 2021, doi: 10.1186/s40814-021-00917-w.

[8] M. A. Batista and S. M. Gaglani, “The future of smartphones in health care,”

Virtual Mentor, vol. 15, no. 11, pp. 947–950, 2013, doi:

10.1001/virtualmentor.2013.15.11.stas1-1311.

[9] H. Ferreira-Cardoso et al., “Lung auscultation using the smartphone—

feasibility study in real-world clinical practice,” Sensors, vol. 21, no. 14, pp.

1–15, 2021, doi: 10.3390/s21144931.

FCUP
Analysis of respiratory sounds acquired with smartphone

34

[10] J. C. Aviles-Solis et al., “Prevalence and clinical associations of wheezes

and crackles in the general population: The Tromsø study,” BMC Pulm

Med, vol. 19, no. 1, Sep. 2019, doi: 10.1186/s12890-019-0928-1.

[11] R. X. A. Pramono, S. Bowyer, and E. Rodriguez-Villegas, “Automatic

adventitious respiratory sound analysis: A systematic review,” PLoS One,

vol. 12, no. 5, May 2017, doi: 10.1371/journal.pone.0177926.

[12] A. Bohadana, G. Izbicki, and S. S. Kraman, “Fundamentals of Lung

Auscultation,” New England Journal of Medicine, vol. 370, no. 8, pp. 744–

751, Feb. 2014, doi: 10.1056/nejmra1302901.

[13] B. Zimmerman and D. Williams, Lung Sounds. Treasure Island (FL):

StatPearls Publishing, 2022.

[14] S. Dramburg, E. Dellbrügger, W. van Aalderen, and P. M. Matricardi, “The

impact of a digital wheeze detector on parental disease management of

pre-school children suffering from wheezing—a pilot study,” Pilot Feasibility

Stud, vol. 7, no. 1, pp. 1–11, 2021, doi: 10.1186/s40814-021-00917-w.

[15] U. Koehler et al., “Die akute Exazerbation der COPD: Kann die Telemedizin

einen Beitrag zur Früherkennung leisten?,” Deutsche Medizinische

Wochenschrift, vol. 138, no. 16. pp. 837–841, 2013. doi: 10.1055/s-0032-

1332982.

[16] J. E. Fergeson, S. S. Patel, and R. F. Lockey, “Acute asthma, prognosis,

and treatment,” Journal of Allergy and Clinical Immunology, vol. 139, no. 2.

Mosby Inc., pp. 438–447, Feb. 01, 2017. doi: 10.1016/j.jaci.2016.06.054.

[17] G. Petmezas et al., “Automated Lung Sound Classification Using a Hybrid

CNN-LSTM Network and Focal Loss Function,” Sensors, vol. 22, no. 3,

Feb. 2022, doi: 10.3390/s22031232.

[18] J. Li et al., “LungAttn: Advanced lung sound classification using attention

mechanism with dual TQWT and triple STFT spectrogram,” Physiol Meas,

vol. 42, no. 10, Oct. 2021, doi: 10.1088/1361-6579/ac27b9.

[19] Y. Kim et al., “Respiratory sound classification for crackles, wheezes, and

rhonchi in the clinical field using deep learning,” Sci Rep, vol. 11, no. 1,

Dec. 2021, doi: 10.1038/s41598-021-96724-7.

FCUP
Analysis of respiratory sounds acquired with smartphone

35

[20] R. Almeida et al., AIRDOC: SMART MOBILE APPLICATION FOR

INDIVIDUALIZED SUPPORT AND MONITORING OF RESPIRATORY

FUNCTION AND SOUNDS OF PATIENTS WITH CHRONIC

OBSTRUCTIVE DISEASE. 2020.

[21] H. Ferreira-Cardoso et al., “Lung auscultation using the smartphone—

feasibility study in real-world clinical practice,” Sensors, vol. 21, no. 14, pp.

1–15, 2021, doi: 10.3390/s21144931.

[22] J. Dinis, G. Campos, J. Rodrigues, and A. Marques, “RESPIRATORY

SOUND ANNOTATION SOFTWARE,” in Proceedings of the International

Conference on Health Informatics, SciTePress - Science and and

Technology Publications, 2012, pp. 183–188. doi:

10.5220/0003756301830188.

[23] M. J. McDonnell, “Box-filtering techniques,” Computer Graphics and Image

Processing, vol. 17, no. 1, pp. 65–70, Sep. 1981, doi: 10.1016/S0146-

664X(81)80009-3.

[24] M. Pharr, W. Jakob, and G. Humphreys, Physically Based Rendering.

Elsevier, 2017. doi: 10.1016/C2013-0-15557-2.

[25] S. A. Taplidou and L. J. Hadjileontiadis, “Wheeze detection based on time-

frequency analysis of breath sounds,” Comput Biol Med, vol. 37, no. 8, pp.

1073–1083, Aug. 2007, doi: 10.1016/j.compbiomed.2006.09.007.

[26] M. Waris, P. Helistö, S. Haltsonen, A. Saarinen, and A. R. A. Sovijärvi, “A

new method for automatic wheeze detection,” IOS Press, 1998.

[27] C. Jácome, A. Oliveira, and A. Marques, “Computerized respiratory sounds:

a comparison between patients with stable and exacerbated COPD.,” Clin

Respir J, vol. 11, no. 5, pp. 612–620, Sep. 2017, doi: 10.1111/crj.12392.

[28] C. Jácome and A. Marques, “Computerized Respiratory Sounds: Novel

Outcomes for Pulmonary Rehabilitation in COPD,” Respir Care, vol. 62, no.

2, pp. 199–208, Feb. 2017, doi: 10.4187/respcare.04987.

[29] L. Vannuccini, M. Rossi, and G. Pasquali, “A new method to detect crackles

in respiratory sounds,” Technology and Health Care, vol. 6, no. 1, pp. 75–

79, Feb. 1998, doi: 10.3233/THC-1998-6109.

FCUP
Analysis of respiratory sounds acquired with smartphone

36

[30] J. Semedo et al., “Computerised Lung Auscultation – Sound Software

(CLASS),” Procedia Comput Sci, vol. 64, pp. 697–704, 2015, doi:

10.1016/j.procs.2015.08.589.

[31] C. Severance, “Guido van Rossum: The Early Years of Python,” Computer

(Long Beach Calif), vol. 48, no. 2, pp. 7–9, Feb. 2015, doi:

10.1109/MC.2015.45.

[32] C. R. Harris et al., “Array programming with NumPy,” Nature, vol. 585, no.

7825, pp. 357–362, Sep. 2020, doi: 10.1038/s41586-020-2649-2.

[33] B. Pang, E. Nijkamp, and Y. N. Wu, “Deep Learning With TensorFlow: A

Review,” Journal of Educational and Behavioral Statistics, vol. 45, no. 2,

pp. 227–248, Apr. 2020, doi: 10.3102/1076998619872761.

[34] A. Banerjee, U. Chitnis, S. Jadhav, J. Bhawalkar, and S. Chaudhury,

“Hypothesis testing, type I and type II errors,” Ind Psychiatry J, vol. 18, no.

2, p. 127, 2009, doi: 10.4103/0972-6748.62274.

[35] B. Everitt and A. Skrondal, “The Cambridge Dictionary of Statistics,” 2010.

[36] D. Chicco, M. J. Warrens, and G. Jurman, “The Matthews Correlation

Coefficient (MCC) is More Informative Than Cohen’s Kappa and Brier

Score in Binary Classification Assessment,” IEEE Access, vol. 9, pp.

78368–78381, 2021, doi: 10.1109/ACCESS.2021.3084050.

[37] N. Sengupta, M. Sahidullah, and G. Saha, “Lung sound classification using

cepstral-based statistical features,” Comput Biol Med, vol. 75, pp. 118–129,

Aug. 2016, doi: 10.1016/j.compbiomed.2016.05.013.

FCUP
Analysis of respiratory sounds acquired with smartphone

37

9 Appendix I – Methodological Foundations

Observational error is the difference between a measured value of a quantity and

its actual value. In statistics, an error is not necessarily a "mistake": variability is inherent

in measurement results and the measurement process.

The standard statistical model used is that the error has two additive parts:

 Statistical bias always occurs with the same value when we use the

instrument in the same way and in the same case.

 A random error may vary from one observation to another due to the

independence of the subjects.

Definition – Confusion Matrix

A Confusion matrix is an N x N matrix used for evaluating the performance of a

classification model, where N is the number of target classes.

Example – Binary Confusion Matrix

Where:

 TP: True Positives → hit

 FN: False Negatives → type II error

 FP: False Positives → type I error

 TN: True Negatives → correct rejection

Prediction value

Yes

(PP)

No

(NN)

A
ct

u
al

 v
al

u
e Yes

(P)
TP FN

No

(N)
FP TN

FCUP
Analysis of respiratory sounds acquired with smartphone

38

Using the confusion matrix, there are two errors [34] to take some conclusions

from:

 Type I error (α-error): occurs if an investigator rejects a null hypothesis that is

true in the population → false positives.

 Type II error (β-error) occurs if the investigator fails to reject a false null

hypothesis in the population → false negatives.

To analyse the performance of the algorithms, some metrics were used [35],

based on the confusion matrix.

For the following definitions, consider 𝑁𝑇 as the number of elements in the

sample.

Definition – Accuracy (ACC)

Accuracy is the degree of closeness of the measured value to the actual value. It

considers the true positives and true negatives over the whole sample.

𝐴𝐶𝐶 =
𝑇𝑃 + 𝑇𝑁

𝑃 + 𝑁

Definition – Precision (Positive predictive value - PPV)

A term applied to the likely spread of parameter estimates in a statistical model and

measured by the inverse of the standard deviation of the estimator.

𝑃𝑃𝑉 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃

Definition – Sensitivity (Recall / True Positive Rate - TPV)

An index of a diagnostic test's performance is calculated as the percentage of

individuals with a disease who are correctly classified as having the disease.

𝑇𝑃𝑉 =
𝑇𝑃

𝑃

FCUP
Analysis of respiratory sounds acquired with smartphone

39

Definition – Specificity (True Negative Rate - TNV)

An index of the performance of a diagnostic test, calculated as the percentage of

individuals without the disease who are classified as not having the disease.

𝑇𝑁𝑉 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃

Definition – F1 Score

The F1 Score combines the precision and sensitivity of a classifier into a single metric

by taking their harmonic mean.

𝐹ଵ =
2 ∙ 𝑇𝑃

2 ∙ 𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁

Definition – Kappa coefficient

Cohen’s Kappa is a chance-corrected index of the agreement between datasets.

Calculated as the ratio of the observed excess over the chance agreement to the

maximum possible excess over chance, the coefficient takes the value one when there

is perfect agreement and zero when the observed agreement is equal to the chance

agreement. Can be written as [36]:

𝜅 =
2 ∙ (𝑇𝑃 × 𝑇𝑁 − 𝐹𝑁 × 𝐹𝑃)

(𝑇𝑃 + 𝐹𝑃) × (𝐹𝑃 + 𝑇𝑁) × (𝑇𝑃 + 𝐹𝑁) × (𝐹𝑁 + 𝑇𝑁)

FCUP
Analysis of respiratory sounds acquired with smartphone

40

10 Appendix II – Main function

WHEEZES DETECTION ALGORITHM

UA, CP, Feb2014
Wheeze detection based on paper Taplidou et al. 2007 (DOI:
10.1016/j.compbiomed.2006.09.007)
Python implementation by Sousa, João (FCUP - Math Dept., Oct2023)

from fractions import Fraction
from decimal import Decimal
import math
import statistics
import AuxiliarWh
import cv2
import numpy as np
import pandas as pd
import scipy.signal as signal
import soundfile as sf

def taplidou_main(file_fullpath):
 # ~ PRE-PROCESSING ~

 # Decimation frequency
 fs = 5512 # 5012.5; 11025;

 # Read .wav file
 y_raw, fs_raw = sf.read(file_fullpath)

 # Band-pass filtering [60-2100] Hz
 fc1 = 60
 fc2 = 2100

 if fs_raw / 2 < fc2:
 fc2 = fs_raw / 2 - 1

 y_filt = AuxiliarWh.butter_filter(y_raw, 4, fc1, fs_raw, "high")
 y_filt = AuxiliarWh.butter_filter(y_filt, 4, fc2, fs_raw, "low")

 # Decimate the signal
 y_filt = AuxiliarWh.decimation(y_filt, fs_raw, fs)
 nfft = 512

FCUP
Analysis of respiratory sounds acquired with smartphone

41

 # window = signal.windows.hann(nfft) # Hanning window
 # noverlap = [i*0.9 for i in window] # Overlap (128 - 50%)

 noverlap = round(nfft * 0.9)
 vf, vt, y_spec = signal.stft(y_filt, fs, "hann",
noverlap=noverlap, nperseg=nfft, nfft=nfft) # returns STFT

 # Select SFTF only until 2000 Hz
 n = next(x for x, val in enumerate(vf) if val >= 2000)
 y_spec = y_spec[:n]
 vf = vf[:n]

 for i in range(len(vf)):
 for j in range(len(vt)):
 y_spec[i][j] = 20 * math.log10(abs(y_spec[i][j]) ** 2)

 dt = vt[1] - vt[0] # 23.2 ms -> Detrend (mean filter)
 df = vf[1] - vf[0] # 0.25 Hz

 # to guarantee that y_spec has an even number of columns
 (l, c) = (len(y_spec), len(y_spec[0]))

 if c % 2 == 1:
 temp = y_spec[:, -1]
 y_spec = np.column_stack((y_spec, temp))

 (l, c) = (len(y_spec), len(y_spec[0]))

 # Matrix detrended
 M_det = [[0 for _ in range(c)] for _ in range(l)]

 for i in range(0, c-1, 2):
 t_window = [z[i:i + 2] for z in y_spec]
 t_mean = [statistics.mean(z.real) for z in t_window]

 # BOX FILTERING
 M_boxfilt = 10
 nn = M_boxfilt * 2
 tt_mean = [t_mean[0] for _ in range(nn)] + t_mean +
[t_mean[-1] for i in range(nn)]

 t_filt = signal.lfilter([1 for _ in range(M_boxfilt)], 1,
tt_mean)

FCUP
Analysis of respiratory sounds acquired with smartphone

42

 D = round(M_boxfilt / 2)
 # Divide by M_boxfilt to obtain the averaging filter
 tt_filt = [i / M_boxfilt for i in t_filt[D + nn:-1 - nn + D
+ 1]]

 for z in range(len(M_det)):
 M_det[z][i] = y_spec[z, i] - tt_filt[z]
 M_det[z][i + 1] = y_spec[z, i+1] - tt_filt[z]

 # DELETE VALUES less than 0
 for i in range(len(M_det)):
 for j in range(len(M_det[0])):
 # Delete the null complex part of the cells.
 M_det[i][j] = M_det[i][j].real
 if M_det[i][j] < 0:
 M_det[i][j] = 0

 # SEGMENT 4 FREQUENCY BANDS
 # B1 = 60 - 300 Hz - STD(3)
 # B2 = 300 - 600 Hz - STD(3)
 # B3 = 600 - 1400 Hz - STD(2)
 # B4 = 1400 - 1900 Hz - STD(2)
 # alteration from 2000 to 1900 – due to some problems

 MB = [60, 300, 600, 1400, 1900]
 nMB = [0 for _ in range(len(MB))]

 for i in range(len(nMB)):
 nMB[i] = next(x for x, y in enumerate(vf) if y >= MB[i])

 if nMB[-1] > len(M_det):
 nMB[-1] = len(M_det)

 n1 = sum([x2 - x1 for x1, x2 in zip(nMB, nMB[1:])])
 n2 = c

 Mdet_total_peak = [[0 for _ in range(n2)] for _ in range(n1)]
 Nthreshold = [1.8, 2, 3, 3]

 for j in range(0, c, 2):
 Mdet_b1 = AuxiliarWh.f_detrended([z[j:j + 2] for z in
M_det[nMB[0]:nMB[1]]], Nthreshold[0])
 Mdet_b2 = AuxiliarWh.f_detrended([z[j:j + 2] for z in
M_det[nMB[1]:nMB[2]]], Nthreshold[1])

FCUP
Analysis of respiratory sounds acquired with smartphone

43

 Mdet_b3 = AuxiliarWh.f_detrended([z[j:j + 2] for z in
M_det[nMB[2]:nMB[3]]], Nthreshold[2])
 Mdet_b4 = AuxiliarWh.f_detrended([z[j:j + 2] for z in
M_det[nMB[3]:nMB[4]]], Nthreshold[3])

 Mdet_window_peak = Mdet_b1 + Mdet_b2 + Mdet_b3 + Mdet_b4

 for i in range(len(Mdet_window_peak)):
 Mdet_total_peak[i][j:j + 2] = Mdet_window_peak[i]

 Mdet_total_peak = [[0 for _ in range(c)] for _ in range(nMB[0] -
1)] + Mdet_total_peak # add the frequency band

 # CLASSIFICATION OF DETECTED PEAKS

 img = np.array(Mdet_total_peak).astype(np.uint8)
 analysis = cv2.connectedComponentsWithStats(img, connectivity=8)
 (N, Acc, values, centroid) = analysis

 Acc_ind = AuxiliarWh.f_findIndices(Acc, N)

 (rA, cA) = (len(Acc), len(Acc[0]))

 min_duration = 0.12

 Mdata = pd.DataFrame(columns=['obj_sizes', 'tstart', 'tstop',
'duration', 'valid_obj', 'flag', 'indices'])

 for k in range(N - 1):
 ind = Acc_ind[k]
 (r, c) = AuxiliarWh.ind2sub([rA, cA], ind)

 if isinstance(ind, int): # Garantir que todos os elementos
dos indices são adicionados como vetores.
 ind = [ind]

 Mdata.loc[len(Mdata)] = [len(r), min(c) * dt, max(c) * dt,
max(c) * dt - min(c) * dt, 0, k, ind]

 if Mdata.iloc[k, 3] < min_duration: # Remove a sibilância
caso a duração seja inferior à mínima.
 for i, j in zip(r, c):
 Acc[i][j] = 0
 else:

FCUP
Analysis of respiratory sounds acquired with smartphone

44

 Mdata.iloc[k, 4] = 1 # O objeto é válido.

 # DELETE INVALID WHEEZES
 Mdata = Mdata[Mdata.valid_obj > 0]

 # REMOVING OVERLAPING WHEEZES & APPLYING RULES

 min_gap = 2 * dt

 D = [abs(a - b) for a, b in zip(Mdata.tstart.tolist()[1:],
Mdata.tstop.tolist()[:-1])]
 n = [i + 1 for i in range(len(D)) if D[i] <= min_gap]

 temp = []
 for i in range(len(Mdata)):
 temp.append(Mdata.iloc[i, 6])

 for k in n:
 Mdata.iloc[k, 0] += Mdata.iloc[k - 1, 0] # junta os dois
objetos
 Mdata.iloc[k, 1] = min([Mdata.iloc[k - 1, 1], Mdata.iloc[k,
1]]) # t_start
 Mdata.iloc[k, 2] = max([Mdata.iloc[k - 1, 2], Mdata.iloc[k,
2]]) # t_stop
 Mdata.iloc[k, 3] = Mdata.iloc[k, 2] - Mdata.iloc[k, 1] #
duração

 temp[k] = temp[k - 1] + temp[k]

 Mdata.iloc[k - 1, 4] = 0

 (r, c) = AuxiliarWh.ind2sub([rA, cA], list(Mdata.iloc[k - 1,
6]))
 for i, j in zip(r, c):
 Acc[i][j] = Mdata.iloc[k, 5]

 Mdata.drop("indices", axis=1)
 Mdata["indices"] = temp

 # DELETE INVALID WHEEZES
 Mdata = Mdata[Mdata.valid_obj > 0]

 N = len(Mdata.valid_obj)

FCUP
Analysis of respiratory sounds acquired with smartphone

45

 # RE-NUMBERING WHEEZES
 for k in range(N):
 (r, c) = AuxiliarWh.ind2sub([rA, cA], list(Mdata.iloc[k,
6]))
 for i, j in zip(r, c):
 Acc[i][j] = k

 Mdata.iloc[k, 5] = k

 # POLYPHONIC WHEEZES -> Deciding whether it is polyphonic or
monophonic
 # The last decision is based on the number of time slices where
there is a frequency component greater than 1.8 time
 # lowest frequency.
 # If there are 10% of such time slices, then the patch is said
to be polyphonic.

 Mdata["poly"] = ""
 Mdata["freq"] = ""
 Mdata["freq_max"] = ""
 Mdata["freq_min"] = ""

 for i in range(N):
 (r, c) = AuxiliarWh.ind2sub([rA, cA], Mdata.iloc[i, 6])
 k_min = [[] for _ in range(max(c) - min(c))]
 k_max = k_min
 k_peak = k_min
 poly_flag = [0 for _ in range(max(c) - min(c))]

 for j in range(min(c), max(c)):
 m = j - min(c)

 ind = [i for i, x in enumerate(c) if x == j]
 k_ind = [r[i] - 1 for i in ind]
 if len(ind) != 0:
 k_min[m] = min(k_ind)
 k_max[m] = max(k_ind)

 if k_max[m] > 1.8 * k_min[m]:
 poly_flag[m] = 1

 pows = [y_spec[r[z]][j] for z in ind]
 pows_trans = np.array(pows).transpose()
 q2 = [np.argmax(i) for i in pows_trans]

FCUP
Analysis of respiratory sounds acquired with smartphone

46

 k_peak[m] = [r[z] for z in ind if ind.index(z) in
q2]

 k_peak = [x for xs in k_peak for x in xs]
 k_max = [x for xs in k_max for x in xs]
 k_min = [x for xs in k_min for x in xs]

 Mdata.iloc[i, Mdata.columns.get_loc("poly")] =
sum(poly_flag) > 0.1 * len(poly_flag)
 Mdata.iloc[i, Mdata.columns.get_loc("freq")] =
statistics.mean([i * df for i in k_peak])
 Mdata.iloc[i, Mdata.columns.get_loc("freq_max")] =
max(k_max) * df
 Mdata.iloc[i, Mdata.columns.get_loc("freq_min")] =
min(k_min) * df

 if 960 < Mdata["freq"].iloc[i] < 1100:
 Mdata.iloc[i, 4] = 0
 elif Mdata["freq"].iloc[i] < 120:
 Mdata.iloc[i, 4] = 0
 elif Mdata["freq"].iloc[i] > 1700:
 Mdata.iloc[i, 4] = 0
 elif Mdata["duration"].iloc[i] < 0.130:
 Mdata.iloc[i, 4] = 0
 else:
 Mdata.iloc[i, 4] = 1

 for z in range(len(k_peak)):
 if 0 == k_peak[z]:
 k_peak[z] = statistics.median(k_peak) * df

 # DELETE INVALID WHEEZES
 Mdata = Mdata[Mdata.valid_obj > 0]
 N = len(Mdata)

 Acc_f = [[0 for _ in range(len(Acc[0]))] for _ in
range(len(Acc))]
 (rA, cA) = (len(Acc), len(Acc[0]))

 # Re-numbering WHEEZES

 for k in range(N):
 (r, c) = AuxiliarWh.ind2sub([rA, cA], Mdata.iloc[k, 6])
 for i, j in zip(r, c):
 Acc_f[i][j] = k

FCUP
Analysis of respiratory sounds acquired with smartphone

47

 Mdata.iloc[k, Mdata.columns.get_loc("flag")] = k
 Mdata.iloc[k, Mdata.columns.get_loc("tstart")] -= 0.035
 Mdata.iloc[k, Mdata.columns.get_loc("tstop")] += 0.035
 Mdata.iloc[k, Mdata.columns.get_loc("duration")] += 0.07

 return Mdata

FCUP
Analysis of respiratory sounds acquired with smartphone

48

11 Appendix III – Auxiliary Functions

import scipy.signal as signal
import statistics
import numpy as np

def butter_filter(x, n, fc, fs, t):
 # INPUT parameters:
 # x - signal to be filtered
 # n - order of the filter
 # fc - cut frequency
 # fs - taxa de amostragem do sinal
 # type - "high" or "low"

 if t == "high":
 (b, a) = signal.butter(n, fc/(fs/2), "highpass")
 elif t == "low":
 (b, a) = signal.butter(n, fc/(fs/2), "lowpass")
 else:
 print("ERROR: Filter Type unknown.")

 return signal.lfilter(b, a, x)

def f_detrended(detrend_1band, nThreshold):
 detrend_1band_temp = list(map(list, zip(*detrend_1band)))
 mean_band = [statistics.mean(x) for x in detrend_1band_temp]
 std_band = [statistics.stdev(x) for x in detrend_1band_temp]

 vThreshold = [x+y*nThreshold for x, y in zip(mean_band,
std_band)]

 for j in range(len(detrend_1band[0])):
 for i in range(len(detrend_1band)):
 if detrend_1band[i][j] <= vThreshold[j]:
 detrend_1band[i][j] = 0

 detrend_1band_peak = detrend_1band

 return detrend_1band_peak

FCUP
Analysis of respiratory sounds acquired with smartphone

49

def f_findIndices(Acc, N):
 temp = []
 for j in range(len(Acc[0])):
 for i in range(len(Acc)):
 temp.append(Acc[i][j])

 IND = np.nonzero(temp)[0].tolist()
 Acc_short = [temp[i] for i in IND]

 M_indices = []
 for k in range(1, N):
 temp2 = [i for i, x in enumerate(Acc_short) if x == k]
 M_indices.append([IND[i] for i in temp2])
 return M_indices

def ind2sub(size, ind):
 row = []
 col = []

 for z in ind:
 row.append(z % size[0])
 col.append(int(z/size[0]))

 return row, col

def decimation(signal, input_fs, output_fs):

 scale = output_fs / input_fs
 # calculate new length of sample
 n = round(len(signal) * scale)
 resampled_signal = np.interp(
 np.linspace(0.0, 1.0, n, endpoint=False), # where to
interpret
 np.linspace(0.0, 1.0, len(signal), endpoint=False), # known
positions
 signal, # known data points
)
 return resampled_signal

