
	

	

CICLO DE ESTUDOS

MESTRADO EM INFORMÁTICA MÉDICA

Visual Viper: A Portable
Visualization Library for
Streamlined Scientific
Communication

Mariana Canelas-Pais

M
2023

Visual Viper: A Portable Visualization
Library for Streamlined Scientific

Communication

Mariana Canelas-Pais

Supervisors:
Tiago Taveira-Gomes
Ricardo Cruz-Correia

Work Submitted for the Acquisition of the
Master’s Degree in Medical Informatics

To my son,
António

List of Figures

Figure 2.1 Nightingale’s coxcomb diagram on causes of mortality in the British army. Re-
produced from O’connor et al (2017)[6]. 6

Figure 2.2 Programming Language Popularity Over Time, adapted from RedMonk's 2023
Q1 Programming Language Rankings [33]. 10

Figure 5.1 Screenshot of the development environment in Visual Studio Code, showcas-
ing the editor's interface, code structure, and various extensions for enhanced
productivity. The split terminal on the right side illustrates the integrated de-
velopment and testing workflow. 28

Figure 5.2 Screenshot of the Docker Graphical User Interface (GUI), displaying the running
'visual-viper' container and indicating its operational status. 29

Figure 5.3 GitLab badge for version number 0.0.1. 29

Figure 5.4 Snapshot of a successfully executed CI/CD pipeline for commit 7c800178 on the
main branch, illustrating that all stages passed in a duration of 2 minutes and
13 seconds. 31

Figure 5.5 Examples of Charts Generated by the Author Using Vega-Lite. Note that in
these examples, some graphical details such as legends have been omitted to
simplify the visualizations and highlight the most relevant features for the given
context. A) A bar chart presented by the author in an oral communication in
a national conference [72]. B) A Forest Plot featured in a moderated poster
session at an international conference [73]. C: A line chart with error bars that
represents the adjusted hazard ratio and respective confidence interval at various
time-points, stratified by cohorts, published in a peer-reviewed paper [74]. 35

Figure 5.6 Screenshot of the Visual Viper (VV) Documentation Interface. 36

Figure 6.1 High-level Class Diagram of System Architecture. 38

Figure 6.2 Sequence Diagram for Chart Creation and Deployment in Visual Viper Framework. 39

Figure 6.3 Directory structure of the project. The directory structure and the following
graphical diagram were generated using VV's directory description and LaTeX
diagramming plugins (not described in the current work). For brevity, certain
folders have been excluded or their contents omitted from this diagram. 41

Figure 6.4 Data Flow Diagram of Key System Components of Visual Viper. 42

Figure 6.5 Class diagram of the classes included in the ‘notation builders’ module. 49

Figure 7.1 Folder Containing Google Spreadsheets for the example. 56

Figure 7.2 Spreadsheet Content for Cox Proportional Hazards Model 1 of the example. . . . 57

Figure 7.3 Rendered Forest Plot for Model 1 of the example. 59

Figure 7.4 Forest plot SVG files on Google Drive, uploaded by the Visual Viper agent. . . . 59

Figure 7.5 Forest Plots for Models 1-3 of the example on Miro Board. 60

Figure 7.6 Different example of Forest Plots deployed in Miro with tens of plots laid out in
a grid. 60

iii

iv LIST OF FIGURES

Figure 8.1 Cumulative Time to Handle Spreadsheets for Different Agents 63

List of Listings

1 GitLab CI/CD Configuration YAML file for Automated Testing and Deployment 31
2 Extract from the Makefile, illustrating shorthand commands for various development

tasks. 33
3 Code snippet showing the AbstractDatasetBuilder class, which provides a method in-

terface for building datasets. 43
4 Code snippet showing the Key class used for encapsulating data retrieval attributes. . . 44
5 Code snippet showing the GoogleSpreadsheetDatasetBuilder class, responsible for build-

ing datasets from Google Sheets. 45
6 Code snippet showing the AbstractChartNotationBuilder class, which serves as the

framework for building chart notations. 46
7 Code snippet showing the AbstractChartNotation class, which registers the dataset and

provides a method for solving notation elements. 46
8 Code snippet showing the ForestPlot class, responsible for building the notation for

Forest Plots. 47
9 Code snippet showing the ForestPlotBinding class, which encapsulates the logic for

holding and solving data points specific to Forest Plots. 49
10 Code snippet showing the AbstractChartRenderer class, which provides a method in-

terface for rendering charts. 50
11 Code snippet showing the AltairChartRenderer class, which acts as a wrapper for Vega-

Altair and is responsible for rendering charts using the Altair library. 51
12 Code snippet showing the AbstractChartDeployer class, which provides a method inter-

face for deploying charts. 51
13 Code snippet showing the GdriveChartDeployer class, responsible for deploying charts

to Google Drive. 52
14 Code snippet showing the MiroChartDeployer class, specialized in deploying charts to

Miro boards. 53
15 JSON Configuration for Forest Plot. 58

v

Abstract

Background:: The healthcare industry is seeing a digital revolution, resulting in an ever-growing
influx of data. This transformation creates an urgent need for efficient and automated data visualiza-
tion tools. Visual Viper (VV) aims to meet this demand by offering an automated Python library that
streamlines the complex and often time-consuming process of creating data visualizations for scientific
communication.

Aim: The aim of this study is to outline the development of VV, assess its performance and
adaptability, explore its modular design and development methodologies, and establish its practical
applications in healthcare research.

Methods: Built using Python, VV employs Vega-Lite for high-level interactive graphics. The li-
brary is structured with modular, extensible architecture, developed with object-oriented programming
(OOP) and test-driven development (TDD) practices. Docker containerization ensures a consistent
development environment, and GitLab version control, aligned with Semantic Versioning, streamlines
collaborative development. Native CI/CD capabilities of GitLab further enrich the development pro-
cess. VV operates environment-agnostically and offers serverless deployment options.

Results: VV includes various interconnected components, each responsible for specific tasks rang-
ing from data retrieval to chart rendering. Four main classes ('DatasetBuilder', 'ChartNotation-
Builder', ‘ChartRenderer’, and 'ChartDeployer') encapsulate the respective functionalities, thus aiding
in code maintenance and extension.

Evaluation metrics, captured using Monday.com and Python’s time library, showed that while VV
required a longer initial setup time (2h vs. 0.5h), it outperformed manual methods in ”Time-to-Final-
Chart” (2h9min vs. 14h54min) for a project involving 72 spreadsheets. Adjusted metrics accounting
for task fatigue and human intervention also favor VV, especially for larger and ongoing projects.

VV effectively minimizes manual labor, ensures data visualization consistency and fosters best prac-
tices in scientific communication. Current limitations include a focus on mostly specific organizational
workflows and visualizations.

Conclusion: VV presents a robust and customizable solution for automating data visualization.
It holds promise for significantly enhancing scientific communication efficiency within the healthcare
sector, with its modular and scalable design paving the way for future developments.

vii

Resumo

Contexto: O sector da saúde está a ser alvo de uma revolução digital que resulta no aumento
crescente de dados. Esta transformação cria uma necessidade urgente de ferramentas de visualização
de dados eficientes e automatizadas. Visual Viper (VV) tem em vista responder a esta necessidade,
oferecendo uma biblioteca Python que automatiza e simplifica o processo complexo e muitas vezes
demorado de criação de visualizações de dados para comunicação cient́ıfica.

Objetivo: O objetivo deste trabalho é descrever o desenvolvimento do VV, avaliar o seu desem-
penho e adaptabilidade, explorar o seu desenho modular e metodologias de desenvolvimento utilizadas,
bem como estabelecer as suas aplicações práticas na investigação em saúde.

Métodos: Constrúıdo com recurso à linguagem Python, o VV emprega Vega-Lite para gráficos
interativos de alto ńıvel. A biblioteca é estruturada com arquitetura modular, extenśıvel, desen-
volvida com práticas de programação orientada a objetos (OOP) e desenvolvimento orientado por
testes (TDD). A utilização de contentores Docker garante um ambiente de desenvolvimento consistente,
e o controle de versão utilizando GitLab em conjugação com o sistema de Versionamento Semântico,
simplifica o desenvolvimento colaborativo. As capacidades nativas de CI/CD do GitLab enriquecem
ainda mais o processo de desenvolvimento. O VV opera de forma agnóstica de ambiente e permite
opções de implementação sem servidor.

Resultados: O VV inclui vários componentes interconectados, cada um responsável por tarefas
espećıficas que vão desde a leitura de dados até à renderização de gráficos. Quatro classes princi-
pais - 'DatasetBuilder', 'ChartNotationBuilder', ‘ChartRenderer’, e 'ChartDeployer' - encapsulam as
respectivas funcionalidades, facilitando a manutenção e extensão do código.

As métricas de avaliação, capturadas com recurso ao Monday.com e a biblioteca ‘time’ do Python,
mostraram que embora o VV tenha exigido um tempo de configuração inicial mais longo (2h vs. 0.5h),
superou os métodos manuais em ”Time-to-Final-Chart” (2h9min vs. 14h54min) para um projeto
que envolvia 72 folhas de cálculo. Métricas ajustadas que incluem o efeito da fadiga da tarefa e a
intervenção humana, também favorecem o VV, especialmente para projetos maiores e cont́ınuos.

O VV efetivamente minimiza o trabalho manual, garante a consistência da visualização dos dados,
e promove boas práticas de comunicação cient́ıfica. Atualmente, as limitações incluem um foco em
fluxos de trabalho e visualizações tendencialmente espećıficas da organização.

Conclusão: O VV apresenta uma solução robusta e personalizável para a automação da visual-
ização de dados. Promete melhorar significativamente a eficiência da comunicação cient́ıfica dentro do
setor de saúde, com seu design modular e escalável abrindo caminho para desenvolvimentos futuros.

ix

Acknowledgements

As I reach this significant milestone in my academic and personal journey, I feel compelled to pause
and honor those who have served as irreplaceable pillars of support and inspiration.

Firstly, my deepest gratitude goes to my family. To my son, António, your arrival in the middle
of my Master's program has been the most beautiful and motivating challenge of my life. You are a
constant source of inspiration, a daily reminder of why I sought this new path. To Ricardo, your love
has been an unwavering presence, fundamentally shaping how we've faced the challenges and triumphs
in our lives. To my parents, your support and love helped me refine my commitment. Thank you for
challenging me and for supporting my choices. To my siblings, who have been invaluable in providing
support and in creating a sense of home, no matter the distance that separates us.

My friends, who have been unwavering champions of my aspirations, continually push me to break
boundaries. Thank you for all the joy and fulfillment you bring into my life.

I reserve a profound sense of gratitude for my academic advisors, Professor Tiago Taveira-Gomes
and Professor Ricardo Cruz-Correia. It was under your mentorship that I discovered a new career
path where my clinical experience can merge with technological innovation. You did not just guide
me academically, you instilled in me the confidence to break norms and follow this less-conventional
career trajectory, for which I am incredibly passionate.

To my colleagues in the Master's in Medical Informatics program, your camaraderie has been
invaluable. The diversity and multi-disciplinary nature of our cohort have not only expanded my
horizons but also deeply enriched my perspective.

A special note of appreciation goes to my colleagues at MTG. Your innovative spirit and commit-
ment to excellence have contributed greatly to my professional growth and have continually inspired
me to strive for the best.

Finally, my heartfelt thanks go to the entire team at MEDCIDS. Your warm welcome and consistent
support have been instrumental in shaping me both academically and as a human being.

xi

Abbreviations

API: Application Programming Interface
AWS: Amazon Web Services
CI/CD: Continuous Integration/Continuous Deployment
CLI: Command Line Interface
EHR: Electronic Health Records
GB: Gigabyte
GUI: Graphical User Interface
HR: Hazard Ratio
HTML: HyperText Markup Language
IEEE: Institute of Electrical and Electronics Engineers
IDE: Integrated Development Environment
JSON: JavaScript Object Notation
KPI: key performance indicators
OOP: Object-Oriented Programming
PopHR: Population Health Record
RAM: Random Access Memory
RCT: Randomized Controlled Trials
REST: Representational State Transfer
RWE: Real-World Evidence
SVG: Scalable Vector Graphics
TDD: Test-Driven Development
UML: Unified Modeling Language
VSCode: Visual Studio Code
VV: Visual Viper
YAML: Yet Another Markup Language
XML: Extensible Markup Language
XP: Extreme Programming

xiii

Contents

1 Introduction 1
1 Context . 1
2 Objectives . 1
3 Thesis Overview . 2

2 Background 5
1 Data Visualization . 5

1.1 Historical Development and Evolution . 5
1.2 Design Choices . 6
1.3 Graphics Grammars . 7

2 Technical Foundations and Development Paradigms . 7
2.1 Modularity . 7
2.2 Object-Oriented Programming (OOP) . 9
2.3 Test-Driven Development (TDD) . 9
2.4 Python Programming Language . 9
2.5 Docker for Containerization . 10

3 State-of-the-Art 13
1 Real World Evidence . 13
2 Data Visualization in Healthcare . 14

2.1 Visualization for Electronic Health Records (EHR) 14
2.2 Research Oriented Visualizations . 14
2.3 Challenges in Healthcare Data Visualization . 15
2.4 Comparative Analysis of Visualization Tools . 17
2.5 Gaps and Opportunities for Visual Viper . 19

4 Methodology 21
1 Requirement Analysis . 21

1.1 User Stories . 22
1.2 Non-functional Requirements . 24

2 Applied Technical Foundations and Development Paradigms 25
2.1 Modularity . 25
2.2 Object-Oriented Programming (OOP) . 25
2.3 Test-Driven Development (TDD) . 26

3 Evaluation Metrics and Methods . 26
3.1 Time to First Chart Draft . 26
3.2 Time to Final Chart . 26
3.3 Data Sources for Evaluation . 26
3.4 Simulation for Adjustment for Fatigue and Human Intervention 26

5 Development Environment and Tools 27
1 Development Environment . 27

xv

1.1 Docker for Containerization . 28
2 Version Control . 28
3 Continuous Integration and Deployment (CI/CD) . 29

3.1 CI/CD Configuration . 30
3.2 Before Script and Dependencies . 30
3.3 Test Job . 30
3.4 Pages Job . 30
3.5 Pedagogical Implications . 31

4 Build Automation . 31
4.1 Makefile . 31
4.2 Commands Overview . 33

5 Choice of Programming Language and Visualization Libraries 33
5.1 Python . 33
5.2 Vega Lite . 34

6 Documentation . 34

6 Design and Implementation 37
1 High-level Architecture . 37

1.1 Key Classes and Components . 38
1.2 Component Interactions . 38

2 Description of Components . 40
2.1 Key Directories and Their Functional Roles . 40
2.2 Alignment with Design Philosophy . 40

3 Data Flow among Components . 41
4 Modular and Extensible Plugin Architecture . 42

4.1 Initial Phase Plugins . 42
5 Core Classes and their Responsibilities . 43

5.1 The ‘dataset builders’ Module . 43
5.2 The ‘notation builders’ Module . 45
5.3 The ‘chart renderers’ Module . 50
5.4 The ‘chart deployers’ Module . 51

7 Workflow Demonstration 55
1 Stage 1: Data Retrieval . 55
2 Stage 2: Chart Configuration . 55
3 Stage 3: Chart Rendering . 58
4 Stage 4: Deployment . 58

8 Evaluation Results 61
1 Time Decomposition . 61
2 Time Metrics . 61
3 Adjustment for Fatigue . 61
4 Key Takeaways . 62

9 Discussion 65
1 Integration in Academic and Healthcare Contexts . 65
2 Deployment Options . 65
3 Limitations . 66
4 Planned Future Developments . 66
5 Software Development Learning Insights . 66

10 Conclusion 67

xvi

Chapter 1

Introduction

1 Context . 1

2 Objectives . 1

3 Thesis Overview . 2

1 Context

Healthcare is generating an unprecedented amount of data due to the rise in digital technology
[1, 2]. This data, ranging from patient records to complex genetic information, holds value for various
studies, including those related to real-world evidence. However, the sheer volume of this data makes
manual chart generation and updating increasingly impractical. As such, automation is becoming
essential for efficient data interpretation in healthcare.

As healthcare increasingly digitizes, the sector is inundated with a complex array of data that
professionals and researchers must make sense of. While visualization tools exist, they often don't
address the specific needs of healthcare data or scale well with big data challenges [3, 4]. Moreover,
the manual effort involved in using these tools remains significant. Therefore, there's a growing demand
for an automated and scalable solution capable of simplifying the generation and deployment of relevant
visualizations.

2 Objectives

The aim of this project is to conceive, architect, develop and evaluate Visual Viper (VV), a Python
library aimed to automate the creation of data visualizations in the healthcare sector. This work will
provide a description of each phase, from initial requirement gathering and system architecture design
to coding, testing, and evaluation. Limitations will be discussed, along with suggestions for future
enhancements.

To provide a comprehensive understanding of the scope of this project, the following objectives are
enumerated:

• Conduct an initial requirement analysis to identify the specific needs and constraints that VV
aims to address.

• Outline the architecture of VV while adhering to best practices in software development.

• Implement the designed architecture of VV, emphasizing its modular and extensible nature.

1

2 CHAPTER 1. INTRODUCTION

• Apply and critically analyze software development methodologies such as object-oriented pro-
gramming and test-driven development in the creation of VV, considering their impact on the
code's quality, maintainability, and extensibility.

• Implement, test, and evaluate the features that VV offers for data retrieval, transformation, and
visualization, with a specific focus on retrieving data from Google Sheets, creating Forest Plots,
and deploying visualizations to Miro Board and Google Drive.

• Conduct performance testing on VV to assess its efficiency and scalability, especially when han-
dling large healthcare datasets.

• Review and identify areas of improvement within the current version of VV, setting the stage for
future iterations and enhancements.

• Assess the tool's success in automating the data visualization process in healthcare research,
measuring its effectiveness in facilitating scientific communication.

The project seeks to fill a critical gap in the existing tools for automating the generation of health-
care data visualization. By automating the often labor-intensive and complex process of generating
custom visualizations, VV aims to significantly improve the efficiency of scientific communication in
healthcare. It also introduces a modular and extensible architecture, enabling the library to adapt to
diverse data sources and evolving visualization needs, thereby extending its lifespan and relevance.

3 Thesis Overview

This thesis is organized as follows:

• Introduction: This chapter encompasses the background of the study, problem statement,
purpose, research objectives, and justification. It serves to establish the context and significance
of the research.

• Background: This chapter provides a concise assessment of the literature relevant to data
visualization and software development paradigms.

• State-of-the-Art: This chapter conducts a review of the current landscape in visualization
tools used in healthcare, and the specific challenges faced. It sets the stage for the development
of VV by identifying gaps and opportunities in the existing systems.

• Methodology: This chapter details the methodologies adopted. It covers aspects like require-
ment analysis, user stories, and scope of the project. Core principles such as modularity, exten-
sibility, and usability are also elaborated in separate sections.

• Development Approach: Offers an overview of the development approach and programming
paradigms employed. It discusses possible development approaches and discusses the use of
Object-Oriented Programming and Test-Driven Development.

• Development Environment and Tools: In this chapter, the various tools utilized during
the development process are covered. This includes aspects of Docker containerization, version
control through GitLab, and CI/CD pipelines. Furthermore, this chapter elucidates the build
automation process and discusses the Makefile in detail.

• System Architecture: Provides an in-depth description of the system’s architecture. It dis-
cusses the high-level architecture, key classes, component interactions, and data flows among
components.

3. THESIS OVERVIEW 3

• Implementation Details: This chapter delves into the technical nuances of the project's im-
plementation.

• Workflow Demonstration: This chapter provides a demonstration of how the VV system
operates in a real-world context. The aim is to convey both the utility and the user experience
of the system.

• Evaluation Results: This chapter analyzes VV's performance on the specific use cases of
Google Sheets data retrieval, Forest Plots creation, and deployment to Miro Board and Google
Drive.

• Discussion: This chapter serves as a platform to review the research findings and to propose
future recommendations.

• Conclusion: Summarizes the research and outlines the contributions made by the study.

• References: Lists all sources cited throughout the document.

Chapter 2

Background

1 Data Visualization . 5

1.1 Historical Development and Evolution . 5

1.2 Design Choices . 6

1.3 Graphics Grammars . 7

2 Technical Foundations and Development Paradigms 7

2.1 Modularity . 7

2.2 Object-Oriented Programming (OOP) . 9

2.3 Test-Driven Development (TDD) . 9

2.4 Python Programming Language . 9

2.5 Docker for Containerization . 10

This chapter presents an overview of the core concepts critical to the foundation of this project,
centering specifically on data visualization within the context of healthcare research. Additionally, it
outlines the crucial technical tenets that form the backbone of software development, important for
understanding the subsequent material.

1 Data Visualization

Data visualization serves various aims, such as exploration, interpretation, and communication of
data, by harnessing human visual perceptual abilities [5]. The field is inherently complex, integrating
elements of creativity, technology, and social knowledge to achieve its goals. This complexity echoes
the diverse requirements and challenges seen in healthcare research, where visualization tools must be
both scientifically rigorous and accessible for diverse stakeholders.

1.1 Historical Development and Evolution

Historically, visualization techniques have been distributed mainly as stand-alone applications or
specialized libraries. This practice is particularly prevalent for niche or highly specialized visualization
methods. However, over time, there has been a shift towards generalization and abstraction. Develop-
ers have distilled components from these specialized solutions to create general-purpose frameworks.
These frameworks assist in crafting custom visual representations, providing a more flexible toolset for
different applications, including healthcare research [5].

The evolution of visualization tools and techniques in healthcare is a testament to the field’s ongoing
quest to enhance the understanding and communication of complex data. The story begins with an
iconic figure in healthcare history: Florence Nightingale, whose innovative work during the Crimean

5

6 CHAPTER 2. BACKGROUND

War laid the groundwork for modern data visualization. Nightingale’s use of polar area diagrams, or
coxcombs, revolutionized the way data was presented to the British parliament and played a pivotal
role in reforming military and public health practices. Figure 2.1 illustrates Nightingale’s visualization
of mortality causes among soldiers, distinguishing deaths due to preventable diseases, wounds, and
other causes through a vivid color scheme. This early example underscores the power of visualization
to not only convey statistics but also to advocate for change [6].

Figure 2.1: Nightingale’s coxcomb diagram on causes of mortality in the British army. Reproduced
from O’connor et al (2017)[6].

Today’s healthcare industry, driven by data and evidence-based practice, continues to rely on the
effective presentation of information. The plethora of digital health data from electronic medical
records, telehealth systems, and wearable devices necessitates innovative visualization approaches to
inform decisions and policies.

The science of data visualization has since matured, offering sophisticated representations of ge-
nomic, clinical, and personal health data to facilitate quick assimilation of information by diverse
stakeholders.

1.2 Design Choices

To appreciate the role of visualizations in today's research landscape, it's critical to analyze their
evolution and the importance of their design. Over the last three centuries, charts, graphs, and
equivalent visual representations have become primary mediums for quantitative communication [7].

Despite their increasing use, visualization designers have to navigate through multiple decisions.
This includes the choice of visual encoding and styling, which significantly influences the aesthetics and
perception of a graphic [8]. Unfortunately, though principles of effective visualization design have seen
significant development, many contemporary charts exhibit substandard design choices that interfere
with comprehension and aesthetic appeal. However, incorporating automated design methods based

2. TECHNICAL FOUNDATIONS AND DEVELOPMENT PARADIGMS 7

on established visual design principles can improve the effectiveness and consistency of visualizations,
particularly for analysts working with their own data [9].

1.3 Graphics Grammars

One foundational line of research in this field has been the systematic study of structural theories of
graphics, which is thought to have been introduced by Bertin [10]. In this research statistical graphics
were deconstructed into their basic elements such as rectangles, lines or points. This in turn led to the
development of graphical languages. These languages enable a wide array of graphical representations
through the combination of simple geometric primitives and transformations [5].

In the field of data visualization, the term ”Graphics Grammars” refers to a methodological ap-
proach to the creation and manipulation of visual displays using structured, syntax-like rules and
principles. Derived from language theory, grammar here doesn't pertain to linguistic rules; instead, it
represents a system of structures and transformations that directs the visual representation of data.
Graphics grammars enable a more systematic and succinct specification of graphics, which can be a
real advantage in large-scale, complex data visualization projects.

Low-level grammars such as Protovis [11], D3 [12], and Vega [13] are often beneficial for explanatory
data visualization or creating customized analysis tools due to their primitives offering fine-grained
control. For exploratory visualization, however, higher-level grammars like ggplot2 [14], are usually
preferred for their conciseness over expressiveness. Another example of a higher-level grammar is Vega-
Lite, that provides a more concise interface than the lower-level Vega language, making systematic
enumeration and ranking of data transformations and visual encodings more manageable [15]. A
summary of various graphics grammars and their characteristics is provided in Table 2.1.

Visualizations in the Study Lifecycle

Visualizations have a vital role throughout the lifecycle of any research study. They provide key
insights during crucial stages such as [16]:

• Protocol development: Visualizations aid in analyzing design and data issues clearly and
objectively, ensuring study accuracy.

• Diagnostics: They assist in verifying if all prerequisites for the study have been met, including
the requirements set by the chosen statistical methods.

• Results: Visual data representations help to interpret research outcomes enhancing communi-
cation and understanding.

The role of visualizations throughout various stages of a research study underscores the necessity
for specialized tools capable of adapting to the complex demands of healthcare research. VV aims to
address some of these needs by automating the visualization creation process.

2 Technical Foundations and Development Paradigms

This section will outline some key principles that have guided the architecture and functionalities
of robust and scalable software systems.

2.1 Modularity

The idea of modularity has a long history in the field of software development. As early as 1970,
Gouthier and Pont outlined the critical elements of system modularity in their textbook on system

8 CHAPTER 2. BACKGROUND

Table 2.1: Summary of Graphics Grammar Languages

Language Level Implementation Notable Features

Protovis Low JavaScript
No longer under active development, the responsible
team is now maintaining D3.js (see below).

D3.js Low JavaScript

Capable of generating interactive data visualizations,
including transitions and tooltips, using web
technologies. Typical use cases include the creation
of custom visualizations.

Vega Low
JavaScript/
TypeScript

The visualization is defined in a JSON format.
Typical use cases include the creation of explanatory
figures, with high degree of customization.

ggplot2 High R

Part of the tidyverse, a collection of R packages
designed for data science. Based on the concept of
the ”Grammar of Graphics,” initially proposed by
Leland Wilkinson. Widely-used in the academic
community

Vega-Lite High TypeScript

Enables the use of higher-level grammar, defined
using JSON format, that is compiled to Vega
specifications. Typical use cases include the
creation of quick exploratory data visualizations.

Vega-Altair High Python
Leverages the Vega-Lite JSON specification and
creates a declarative Python API for the creation
of visualizations.

Matplotlib Low Python
One of the most popular python libraries for data
visualization. Notable for extensive customization
and ability to generate 2D and 3D Plots.

program design, stating that well-defined project segmentation ensures each task forms a distinct pro-
gram module. This clarity in definition streamlines the implementation, testing, and even maintenance
phases of development, making it easier to trace errors and deficiencies to specific system modules [17].

Parnas' seminal paper in 1972 further evolved the philosophy by introducing the concept of ”in-
formation hiding” in modular programming, laying the groundwork for what later came to be termed
as high cohesion and loose coupling [18][19]. This evolution was particularly important for large code-
bases, offering a framework that allows modules to be written, reassembled, and replaced without
needing to reassemble the entire system [18].

Beyond the code itself, the systematic reuse of software modules offers a series of additional benefits.
This approach not only improves software dependability but also reduces process risks and accelerates
development cycles [20]. These advantages are particularly important in healthcare settings where the
need for reliable and timely solutions is ever-present.

The importance of conceptual integrity in software design shouldn't be underestimated either. In
his 1975 book, ”The Mythical Man-Month: Essays on Software Engineering,” Brooks advocated for
the architecture of a system to be designed by a single mind or a small, cohesive team to ensure a
consistent and well-thought-out framework [21].

Overall, the benefits of a modular design approach are far-reaching. They contribute collectively to
enhancing productivity and software quality, significantly reducing both time-to-market and develop-
ment costs [20]. In fields like healthcare, the positive impacts of adopting a modular design philosophy
can be particularly impactful.

2. TECHNICAL FOUNDATIONS AND DEVELOPMENT PARADIGMS 9

2.2 Object-Oriented Programming (OOP)

OOP has been a common paradigm for solving complex tasks through interactions between objects.
It allows for greater flexibility, better quality coding techniques, and enhanced productivity [22][23].
With the project’s complexity and the need for a clear, modular structure, OOP becomes an ideal
choice. OOP languages like C++, Python, and Java have dominated software development, making
them crucial for both current and future applications [24][25].

While OOP offers many advantages, it is not without limitations. Complexity control remains
a challenge, especially when these codes are updated to cover future requirements [22][26]. This
complexity often results from the very features that make OOP powerful: polymorphism, inheritance,
and encapsulation.

To manage this complexity, several design principles and patterns have been introduced. The Gang
of Four's design patterns provide robust frameworks for addressing recurrent design issues, focusing
on creational, structural, and behavioral patterns. These patterns help in making OOP code more
manageable, reusable, and maintainable [27]. Furthermore, the Unified Modeling Language (UML)
has been instrumental in providing a general-purpose language for visualizing, specifying, constructing,
and documenting the artifacts of software systems. It aids both developers and business stakeholders
throughout the software modeling process [28]. To enhance code quality and manage complexity,
principles such as the SOLID principles have been proposed, promoting design that is easy to manage
and scale [25][29].

2.3 Test-Driven Development (TDD)

The field of software development offers a variety of methodologies aimed at optimizing code quality,
increasing efficiency, and promoting teamwork. Among these, Test-Driven Development (TDD) is
notable for its iterative approach that integrates programming, unit testing, and code refactoring.

TDD promotes the writing of automated tests before the actual production code is developed.
This proactive approach has been shown to lead to projects of higher quality that are completed in a
shorter period compared to traditional methods. One added benefit is the generation of a regression-
test suite as a natural outcome, minimizing the need for manual testing while allowing for earlier error
detection and quicker remediation. Traditional software development often involves considerable time
and resources dedicated to debugging in later stages. TDD, however, facilitates testing early in the
design cycle, significantly reducing the time and financial resources spent on debugging [30]. This can
mitigate some of the complexity control issues that are often seen in OOP [24][26].

In the TDD methodology, refactoring plays a crucial role, enabling ongoing improvements in the
internal structure of the code while preserving its external behavior. This is beneficial for code main-
tainability and long-term project viability [31]. TDD encourages modular code, which aligns with the
OOP principle of high cohesion and loose coupling introduced by Parnas [18][25]. This makes it easier
to maintain and extend the system, thus enhancing productivity, which represents a key advantage of
OOP.

TDD is versatile, compatible with a range of software development paradigms such as Agile, Scrum,
XP, and Lean. This adaptability offers flexibility in project management approaches [32].

2.4 Python Programming Language

The landscape of programming languages is ever-changing, but Python has consistently shown
remarkable growth both in the educational sector and the industry at large. Python's straightforward
syntax and robust set of tools position it as an ideal language for educational settings, particularly
for those new to programming. It's the go-to introductory language at many top-tier universities,
facilitating a seamless transition from basic mathematical reasoning to intricate coding tasks. Python
offers easier code writing, thanks in part to its clean syntax, which may be especially beneficial for
educational environments.

10 CHAPTER 2. BACKGROUND

According to RedMonk's programming language rankings, as depicted in Figure 2.2, Python has
ascended to the second position as of 2023, right behind JavaScript. This ranking reflects a combination
of GitHub repositories and Stack Overflow discussions, providing insights into both code usage and
community discussion. The methodology doesn't claim to offer a statistically valid representation of
current usage but rather aims to provide insights into potential future adoption trends [33].

A comprehensive survey by Stack Overflow, which gathered responses from 89,184 software devel-
opers across 185 countries, revealed that Python is the second most popular programming language
in 2023, trailing only behind JavaScript (64% to 49%, respectively). Python emerged as the most
favored language among non-professional coders. In the educational sector, Python's impact was also
pronounced: 57% of student developers reported using Python, a figure that closely trails JavaScript's
61%, further underscoring Python's growing significance in educational settings. Note that in our the
interpretation of the survey data categories such as HTML/CSS and SQL were deliberately excluded
from this analysis due to their unique and complementary roles in software development [34].

Figure 2.2: Programming Language Popularity Over Time, adapted from RedMonk's 2023 Q1 Pro-
gramming Language Rankings [33].

2.5 Docker for Containerization

With Docker, each part of an application, along with its dependencies and libraries is packaged
together in a container. This ensures that the application runs uniformly regardless of where the
container is deployed [35].

2. TECHNICAL FOUNDATIONS AND DEVELOPMENT PARADIGMS 11

An alternative to Docker is to manage dependencies manually or use a virtual environment such as
Python's native venv. While such options can work, they are not as robust as Docker when it comes
to encapsulating an application and its environment. Specifically, they do not provide the level of
isolation or the ease of deployment that Docker offers [36].

Advantages of Using Docker

• Isolation: Containers operate in isolation, ensuring that each service is unaware of the other
and runs independently.

• Version Control for Environments: Much like source code, the Docker environment can be
version controlled, enabling easy rollback and updates.

• Scalability: Docker makes it easier to create a distributed system, facilitating the application's
scaling without a hassle.

• Easy Deployment: With Docker, the development environment can be precisely replicated in
the production system, minimizing deployment errors.

• Cross-Platform: Docker containers can run anywhere, on any machine that has Docker in-
stalled, regardless of the underlying operating system.

Disadvantages of Using Docker

• Learning Curve: Docker has a learning curve, and initial setup can be complex.

• Resource Intensive: Containers may consume more resources than native applications when
running multiple instances.

• Overhead: For simpler applications, the advantages of Docker may not justify the resource
overhead and the complexity it introduces.

Chapter 3

State-of-the-Art

1 Real World Evidence . 13

2 Data Visualization in Healthcare . 14

2.1 Visualization for Electronic Health Records (EHR) 14

2.2 Research Oriented Visualizations . 14

2.3 Challenges in Healthcare Data Visualization 15

2.4 Comparative Analysis of Visualization Tools 17

2.5 Gaps and Opportunities for Visual Viper 19

The development of this chapter is informed by a non-systematic review of literature drawn from
various academic databases including PubMed, IEEE Xplore, Scopus, and arXiv.org. This review was
aimed at gathering pertinent information to underpin the discussions around real-world evidence and
data visualization in healthcare, setting the stage for the development of the VV project.

1 Real World Evidence

Real-World Evidence (RWE) has emerged as a significant concept in healthcare, aiming to comple-
ment and extend the insights gained from Randomized Controlled Trials (RCTs). While RCTs are the
gold standard for establishing causality and assessing the efficacy of new treatments under controlled
conditions, they often do not reflect the full spectrum of patient profiles encountered in routine clinical
practice. RWE seeks to fill this gap by analyzing the outcomes of treatments as they are used in every-
day settings, encompassing a diverse population with varying genetic backgrounds, comorbidities, and
concomitant medications [37]. This approach aims to provide a more comprehensive understanding of
how treatments perform in the real world, thereby addressing the efficacy-effectiveness gap noted by
Eichler et al (2017)[38].

Given the intricate nature of RWE and its divergence from the more controlled environment of
RCTs, transparency in methodology and findings becomes paramount. RWE studies, by capturing a
diverse array of patient experiences in routine clinical settings, bring forth a complex interplay of ge-
netic backgrounds, comorbidities, and treatments. This diversity, while enriching the data, introduces
challenges in statistical evaluation due to the presence of confounding factors and biases, necessitating
sophisticated analysis techniques for accurate interpretation [39][40].

The need for transparency extends to the sharing of data and code, facilitating computational
reproduction and peer validation. However, the use of routinely collected electronic healthcare data
often restricts public sharing due to privacy and regulatory constraints. This limitation underscores
the importance of detailed reporting in RWE studies, providing a clear and comprehensive account
of methodologies, data handling, and analytical strategies employed. Such detailed documentation

13

14 CHAPTER 3. STATE-OF-THE-ART

ensures that, even when data cannot be shared, the processes and conclusions remain open to scrutiny
and understanding. [41][42].

Wang et al. (2021) advocate for the harmonization and standardization of RWE practices to
foster reproducibility and reliability in the field. This includes developing templates for planning
and reporting that reduce inconsistencies and elevate the quality of RWE research. By adhering to
these structured approaches and emphasizing transparency, the field of RWE can continue to provide
valuable, nuanced insights into healthcare practices and outcomes, bridging the gap between clinical
research and everyday medical care. The complexity of RWE findings necessitates not just textual
explanation but also extensive visualizations. These visual tools are essential for illustrating the nu-
ances of sub-analyses, sensitivity analyses, and other supplementary investigations, often accumulating
into a substantial part of the supplementary material. Through detailed tables, figures, and a mul-
titude of visual representations, researchers can offer a more transparent and digestible overview of
their findings, aiding in the comprehension and further investigation of the intricate data landscapes
characteristic of RWE studies [41].

2 Data Visualization in Healthcare

2.1 Visualization for Electronic Health Records (EHR)

The paper ”EHR STAR: The State-Of-the-Art in Interactive EHR Visualization” provides an up-
to-date overview of the state-of-the-art in Electronic Health Record (EHR) visualization. It presents
a comprehensive analysis of the literature and open access healthcare data sources related to EHR
visualization, emphasizing the importance of this topic. The paper refers to the significance of EHRs in
modern medicine, positioning them as a standard practice and highlighting the potential for innovative
visual methods to support clinical decision-making and research. The poor usability of EHRs is
also noted, with international publications reporting no significant improvements over time. The
significance of interactive visualization applications that interface seamlessly with EHR systems is
highlighted, particularly in facilitating dynamic exploration and rapid extraction of patient data for
researchers [43].

The EHR STAR project has developed an interactive EHR STAR Browser, which serves as a
comprehensive platform containing relevant literature described in the corresponding review. This
browser, accessible at https: // ehr. wangqiru. com/ , provides a user-friendly interface for accessing
and visualizing EHR data, supporting dynamic exploration and rapid extraction of patient data for
researchers [43].

While the EHR STAR Browser and other similar platforms represent significant progress, it’s
important to note that there is extensive literature on EHR visualization focusing primarily on clinical
decision support. However, this thesis’ project concentrates on the unique aspects of visualization for
research purposes, particularly in the context of healthcare, rather than the broader application of
EHR visualizations in clinical care.

2.2 Research Oriented Visualizations

While EHR visualization within clinical interfaces has received considerable attention for its role in
supporting clinical decisions, there has been a notably scant development of visualizations specifically
tailored for broader research purposes. This notable paucity points to a significant gap and presents an
opportunity for the innovation and implementation of more research-focused visualization tools that
could enhance the efficiency and effectiveness of healthcare data analysis.

In the aforementioned work of EHR STAR, a limited number of papers were categorized in a
section related to Population Health Record (PopHR) [44]. PopHR, as defined by Friedman and
Parrish, focuses on health data of populations without storing identifiable information about individual
patients [45]. This type of dataset is closer to what might be needed in research, focusing on population

https://ehr.wangqiru.com/

2. DATA VISUALIZATION IN HEALTHCARE 15

metrics rather than individual-level observation data. However, the focus in these papers was more
towards interpretability, understanding risk factors, and supporting public health decisions rather than
aligning with the rigorous standards typically required for research paper publication.

Specifically, Carroll et al.’s systematic review [46] and Preim and Lawonn’s survey [47] offer insights
into the field of visual analytics for public health, revealing significant gaps in the current state of art
and underscoring the need for advanced support in public health visual analytics. These reviews
and surveys emphasize the requirement for visual analytics solutions that are flexible and tailored to
the unique and often complex nature of public health data, which is inherently high-dimensional and
heterogeneous, containing various data types and often involving large populations.

The tasks identified for public health experts and academics range from exploration, assessment,
and pattern identification to more complex analyses like association and verification. They involve
cooperative situations where interdisciplinary teams jointly analyze data, emphasizing the need for
visual analytics systems that support such collaborative efforts. The requirement for these systems to
provide an overview of the data, enable integration of expert knowledge, and support for association
analysis and comparisons highlights the need for specialized, sophisticated tools in research-oriented
visualizations.

However, it’s clear from the literature that while some tools and techniques have been developed,
they often don’t fully meet the specific demands of research-oriented tasks, especially in terms of facil-
itating publication-ready outputs. The visualizations in public health are often used for interpretative
and exploratory purposes, aiding in hypothesis generation, understanding distributions, and identify-
ing abnormal patterns or interesting subpopulations. While this is invaluable in its own right, there’s a
distinct need for tools and methods that cater specifically to the research community’s needs, aligning
with the standards for research publication and offering capabilities beyond what’s typically used in
clinical or public health settings.

2.3 Challenges in Healthcare Data Visualization

Healthcare data visualization is an evolving discipline that faces a multitude of challenges, exac-
erbated by the field’s inherent complexity and rapid technological advancements. These challenges,
ranging from data diversity to security concerns, substantially impact the effectiveness and adoption
of visualization tools in healthcare settings. Table 3.1 summarizes these critical issues, providing an
overview of the hurdles that need to be navigated. This subsection will detail each of these top-
ics, shedding light on the specific nature of the challenges and their implications for healthcare data
visualization.

One of the inherent challenges is the multidisciplinary nature of the research themes involved.
Projects often require expertise in visualization, Natural Language Processing (NLP), and Machine
Learning (ML), making it difficult to establish a well-defined classification and scope to organize the
previous knowledge effectively [44].

The sensitive nature of electronic healthcare data adds another layer of complexity, necessitating
strict adherence to data protection laws such as GDPR [48] in Europe and HITECH [49] in the United
States of America. This legal and ethical landscape can significantly complicate data acquisition for
research, often requiring researchers and institutions to navigate a maze of regulatory requirements
[44].

Open datasets, which are a cornerstone for developing and refining visualization tools, often become
less accessible due to these privacy concerns. As a result, researchers seeking to improve visualiza-
tions are frequently unable to access the breadth of raw data required to create comprehensive and
detailed visual representations. The scarcity of readily available datasets hampers the development
of new and innovative visualization techniques that could otherwise enhance the understanding and
communication of complex healthcare information [44].

Moreover, when visualizations are necessary, they may have to be constructed from data that
has already undergone extensive processing. Researchers are sometimes left to work with aggregate
parameters, such as model weights or summary statistics, rather than the raw data itself. This creates

16 CHAPTER 3. STATE-OF-THE-ART

Table 3.1: Summary of Challenges in Healthcare Data Visualization

Challenge Description References
Multidisciplinary
Research Themes

Need for expertise in multiple domains such as vi-
sualization, NLP, and ML, making scope definition
and organization challenging.

[44]

Data Protection
Laws

Stringent requirements of GDPR and HITECH sig-
nificantly complicate data acquisition and navigat-
ing legal and ethical constraints.

[44, 48, 49]

Accessibility of
Open Datasets

Privacy concerns limit the availability of open
datasets crucial for developing and refining visu-
alization tools.

[44]

Need for Cus-
tomized Visualiza-
tion Tools

Requirement to work with processed data or aggre-
gate parameters demands highly customizable vi-
sualization modalities.

[47, 50]

Data Heterogene-
ity and High-
Dimensionality

Varied and complex nature of healthcare data
makes standard visualization tools insufficient.

[47, 50]

Resistance to Adop-
tion

Resistance from clinical professionals due to lack of
expertise in complex computer systems, including
visualization tools.

[51]

Bureaucratic Barri-
ers to Data Access

Time-consuming registration and verification pro-
cesses hinder efficient data utilization.

[52]

Data Interoperabil-
ity

Absence of uniform health data standards prevents
seamless data exchange and integration across sys-
tems.

[53]

Big Data Challenges Traditional visualization methods struggle to han-
dle the volume, variety, and velocity of big health-
care data.

[50]

Visual Analytics De-
velopment

Lack of understanding and availability of ad-
vanced methods to address complex questions lim-
its progress in visual analytics.

[54, 55]

Information Over-
load

Risk of ignoring or misinterpreting crucial data due
to overwhelming quantity and complexity of infor-
mation.

[56, 57]

a unique demand for specialized visualization tools that can operate with processed data or aggregate
parameters in reports, unlike other fields where observation-level data may be more readily accessible,

The diverse and intricate nature of healthcare data presents a notable challenge for visualization
tools. A typical dataset might blend various data types—free text from clinical notes, numerical
values from lab tests, ordinal scales from surveys, images from radiology, and categorical codes from
diagnoses. When combined with the high-dimensional nature of such data, this can overwhelm standard
visualization tools, which may lack the flexibility to handle such complexity effectively [47][50].

Given this complexity, it’s often impractical to rely on a single visualization tool to meet the diverse
needs of different healthcare projects. Customization becomes key, with tools needing to be highly
adaptable to accommodate the specific demands of each unique dataset and research question. This
often means that tools must be tailored from the ground up, incorporating specific functionalities to
accurately represent the multifaceted nature of healthcare data. As explained before, visualization
tools must operate on aggregate data or summary reports rather than raw data. These reports often
deviate from standard tabular formats, requiring additional layers of processing to render them into
coherent visual representations. The necessity to adapt to these non-standard data formats means that

2. DATA VISUALIZATION IN HEALTHCARE 17

visualization in healthcare often demands a bespoke approach, with tools designed to interpret and
display data in ways that diverge from the norm found in other sectors where data is more homogenized
and less sensitive [47][50].

Resistance from clinical professionals, often stemming from a lack of expertise in complex computer
systems including visualization, has been identified as a primary barrier to the adoption and deployment
of EHR visualization systems within clinical environments [51]. This resistance is compounded by the
challenges researchers face in accessing EHR data due to time-consuming registration and verification
processes required by some data providers [52]. The necessity for automation becomes apparent in
this context. Automated systems can streamline the data visualization process, enabling researchers
to bypass the repetitive and time-consuming steps involved in data preparation and visualization.

Achieving data interoperability in healthcare is an ongoing challenge, as widespread adoption of
uniform health data standards is yet to be realized. This lack of consensus on a standardized format
for health data, including Electronic Health Records (EHR), impedes seamless data exchange and
integration across various healthcare systems [53].

Moreover, traditional data visualization methods are often inadequate for handling the sheer volume
of big data in healthcare. Many datasets are too large to fit into memory or are distributed across
clusters, posing significant challenges to meaningful and valuable presentation [50]. Real-time analysis
of such complex data is increasingly important, and factors such as data value and veracity must be
considered [50].

Despite the critical role of visual analytics in healthcare decision-making, a lack of understanding,
availability, development, and application of methods to address complex questions remains a signif-
icant hurdle. This gap hinders the development of evidence and effective decision-making processes
[54][55].

Information overload further complicates the landscape. With the abundance of variables that
exceed the limits of human cognition, healthcare professionals are at risk of ignoring or misinterpreting
crucial data. The problem of information overload is pervasive in healthcare, where it can lead to
incorrect data interpretations, wrong diagnoses, and missed early warning signs [56][57]. The multi-
modal and heterogeneous properties of EHR data, along with frequent redundant, irrelevant, and
subjective measures, present substantial challenges in synthesizing information to derive actionable
insights [57].

Addressing these challenges requires an interdisciplinary approach, combining advances in computa-
tional techniques with a deep understanding of the clinical context. It also necessitates the development
of new tools and methods that can handle the volume, variety, and complexity of healthcare data while
ensuring that the insights derived are both accurate and actionable.

2.4 Comparative Analysis of Visualization Tools

In this section, we explore different visualization tools and assess their suitability for healthcare data
visualization, particularly in the context of research. Each sub-section offers a comparative analysis of
popular tools like Tableau, Power BI, and Grafana, outlining their strengths, weaknesses, and unique
features. The goal is to identify gaps that VV aims to fill and highlight opportunities for enhancing
the visualization of healthcare data, especially for research-oriented tasks. This comparative analysis
will inform the development and positioning of VV in the landscape of data visualization tools.

Tableau

Tableau, a robust business intelligence and data visualization tool, has been gaining attention for
its application in various industries, including healthcare. It serves a critical role in presenting complex
data analyses in intuitive and insightful ways, facilitating the whole process from data collection to
sharing.

Ko and Chang (2017) developed a tutorial on interactive visualization of healthcare data using
Tableau that provides comprehensive insights and guidance on implementing Tableau in healthcare

18 CHAPTER 3. STATE-OF-THE-ART

contexts [58]. This resource provides valuable instructions and examples for beginners looking to
explore Tableau’s capabilities in the healthcare domain.

While Tableau is capable of powerful and insightful visualizations, its suitability for healthcare
research needs to be carefully considered.

For instance, creating forest plots, a common visualization in medical research to display the
strength of treatment effects in meta-analysis studies, is not straightforward in Tableau. It requires
inventive solutions and workarounds, such as using Gantt charts to represent confidence intervals, as
described in the example available in [59]. While Tableau’s extensions API provides a pathway to
create custom visualizations (see [60]), the labor and expertise required to develop these from scratch
are substantial, often equating to the effort needed to develop an entirely new module for a specialized
tool like Visual-Viper.

Additionally, the dynamic nature of healthcare data, with varying numbers of covariates or cohorts
across different studies, poses a significant challenge. Each model’s output might require specific
post-processing to fit into Tableau’s visualization framework, which is primarily designed for more
standardized data structures. This means that adapting Tableau to specific research needs often
involves a high degree of customization and technical maneuvering.

Despite these challenges, Tableau offers several advantages that make it a popular choice in many
data-driven industries. Its user-friendly interface, extensive visualization capabilities, and strong sup-
port community are considerable assets. However, the cost can be a barrier for some research institu-
tions or individual researchers, and performance may lag when handling particularly large or complex
datasets.

Power BI

Power BI, part of the Microsoft ecosystem, is increasingly recognized for its robust capabilities
in healthcare data visualization, as described in the use-case description by Virani et al (2023) [61].
It seamlessly integrates with other Microsoft products that are already in use in many healthcare
institutions in Portugal and offers a cost-effective solution with a free version available. While it has
a steeper learning curve and the advanced features require a subscription, its integration within the
Microsoft environment can be particularly beneficial in settings already using Microsoft tools. Despite
these considerations, Power BI’s comprehensive features and competitive pricing make it a viable option
for healthcare data visualization, though its adoption may require a more in-depth understanding to
fully leverage its capabilities.

Power BI facilitates the development of custom visualizations through its API, allowing for tailored
solutions as described in [62]. Moreover, it enables export of reports programmatically [63]. However,
despite these capabilities, Power BI, like Tableau, is not inherently designed for the extensive au-
tomation required in producing hundreds of publication-ready charts. Its standard features might not
suffice for the high customization needed for research outputs or for providing a deployment of image
files for non-technical individuals involved in the publication process to process and include in the
dissemination materials.

This underscores the necessity for more specialized tools that can meet the rigorous demands of
creating and revising numerous, complex visualizations in healthcare research publications.

Grafana

Grafana, known for its open-source nature and extensive plugin ecosystem, is a tool for creating
interactive dashboards and visualizations.

Despite its strengths in customizability and real-time monitoring, there is a notable lack of scientific
publications specifically addressing its application in visualizing large healthcare data from electronic
records.

Grafana is optimized for time-series data visualization and may not suit other types of healthcare
data. It presents a steep learning curve for non-technical users. Similar to other tools, Grafana

2. DATA VISUALIZATION IN HEALTHCARE 19

struggles with non-standardized healthcare data, like model summaries, and lacks efficient mechanisms
for automated exporting of complex, publication-ready visualizations.

2.5 Gaps and Opportunities for Visual Viper

The analysis of existing visualization tools emphasizes the need for solutions like VV, which caters
to the complexity and customization essential in healthcare research.

Specifically, there is a demand for tools adept at producing publication-ready outputs and adeptly
managing non-standardized data, such as the complex reports of model summaries.

VV is designed to meet these needs within healthcare research.

Chapter 4

Methodology

1 Requirement Analysis . 21

1.1 User Stories . 22

1.2 Non-functional Requirements . 24

2 Applied Technical Foundations and Development Paradigms 25

2.1 Modularity . 25

2.2 Object-Oriented Programming (OOP) . 25

2.3 Test-Driven Development (TDD) . 26

3 Evaluation Metrics and Methods . 26

3.1 Time to First Chart Draft . 26

3.2 Time to Final Chart . 26

3.3 Data Sources for Evaluation . 26

3.4 Simulation for Adjustment for Fatigue and Human Intervention 26

The methodology chapter serves as a roadmap detailing the design, development, and evaluation
of the VV Python library. The objective here is to offer comprehensive insights into the technical
aspects of VV, elucidating the rationale behind various design and architectural choices, as well as
the methods used for implementation and assessment. Given that this library aims to bridge a gap in
healthcare data visualization, especially in handling big data and providing customizable solutions for
automation, it is crucial to understand the techniques and technologies that make it both functional
and scalable.

This chapter will start by explaining the basic ideas behind the VV project. Then, we'll get into
the actual development aspects, including our use of Object-Oriented Programming (OOP) and Test-
Driven Development (TDD). Lastly, we will explore how the library was evaluated, describing the
metrics and methods used during the evaluation phase.

1 Requirement Analysis

This section outlines the key functions and quality features expected of the VV system. It provides
a set of clear requirements that will guide the design and implementation stages of the project. To
enhance the system's effectiveness and ease of use, we present selected use cases that illustrate how
VV will interact with other systems for better integration in the broader data visualization landscape.
In short, this section sets the foundational requirements that will guide the development efforts.

21

22 CHAPTER 4. METHODOLOGY

1.1 User Stories

User stories serve as a vehicle for capturing product functionality from the end user's perspective.
These stories encapsulate discrete system features in a format that is easy to read and understand by
both non-technical stakeholders and the development team [64][65]. In the context of VV, a system
designed to automate the rendering of graphical charts from clinical research data, the user stories
described here are aimed to outline the essential features and functionalities that satisfy the needs of
different roles involved in clinical research.

Scope The following user stories are specifically tailored to the needs of clinical researchers, medical
writers, data analysts, and system administrators who are the key stakeholders of the VV system.
They focus on tasks related to data visualization, report generation, and system management within
the context of clinical research.

Stakeholder Definitions

• Clinical Researcher: A professional conducting clinical studies.

• Medical Writer: A professional responsible for creating documents that describe research
results, product use, and other scientific dissemination outlets.

• Data Analyst: A person responsible for interpreting complex clinical data sets.

• Data Scientist: A professional who uses scientific methods, processes, algorithms, and systems
to extract insights and knowledge from structured and unstructured data.

• System Administrator: A person responsible for managing and maintaining the system in-
frastructure, including VV.

Story 1: Batch Rendering of Clinical Charts

• As a clinical researcher/data scientist,

• I want to batch render multiple charts from automatically generated clinical reports,

• So that a large volume of data can be visually represented quickly and efficiently.

• Acceptance Criteria:

– System should be able to accept multiple clinical reports as input.

– System should be able to render charts in batches without manual intervention.

– Rendered charts should accurately represent the data from the clinical reports.

– System should provide an option for selecting the types of charts to be rendered (bar, line,
etc.).

– Batch rendering process should complete within a reasonable time frame (e.g., under 5
minutes for 50 reports).

Story 2: Deployment to Miro for Triage

• As a clinical researcher/data scientist,

• I want to deploy rendered charts directly to specific boards in Miro,

• So that they can be quickly triaged alongside tabular reports.

1. REQUIREMENT ANALYSIS 23

• Acceptance Criteria:

– System should integrate with Miro API.

– System should be able to send rendered charts to specified Miro boards.

– Rendered charts should appear on the Miro boards in a layout that facilitates triage.

– Charts should be deployed to Miro boards without manual intervention.

Story 3: Export Charts for Research Documents

• As a medical writer,

• I want to export rendered charts in formats suitable for academic manuscripts, posters, and
other research documents,

• So that the visual data complements the written content.

• Acceptance Criteria:

– System should offer multiple export formats such as PNG, JPEG, SVG, etc.

– Exported charts should maintain high resolution and quality.

– System should allow for batch export of multiple charts.

Story 4: Inclusion of Supplementary Material

• As a clinical researcher/data scientist,

• I want to render charts that can be included as supplementary material when publishing,

• So that we can increase the transparency of our research.

• Acceptance Criteria:

– System should allow rendering of charts that are suitable for supplementary material in
terms of quality and resolution.

– System should allow for easy categorization or labeling of such charts for supplementary
material.

– Charts should be exportable in a format accepted by major research publications.

Story 5: Automated Data Retrieval

• As a data analyst,

• I want to retrieve data from predefined clinical report formats,

• So that I don't have to manually input data for chart rendering.

• Acceptance Criteria:

– System should be able to identify and read predefined clinical report formats.

– System should accurately extract relevant data fields from these reports.

– Data retrieval should happen automatically through API calls.

24 CHAPTER 4. METHODOLOGY

Story 6: Customization of Chart Types

• As a clinical researcher/data scientist,

• I want to specify the type of chart (bar, line, scatter, etc.) to be rendered,

• So that the chart is most appropriate for the data being represented.

• Acceptance Criteria:

– System should offer a range of chart types (bar, forest plot, survival, etc.).

– Users should be able to easily select the desired chart through configuration.

– Rendered charts should accurately represent the selected chart type.

Story 7: Logging and Monitoring

• As a system administrator,

• I want to keep logs of all chart rendering activities,

• So that I can monitor system performance and troubleshoot issues.

• Acceptance Criteria:

– System should maintain logs for each chart rendering activity.

– Logs should include timestamps, types of charts rendered, and any errors or warnings.

– Logs should be easily accessible for review and analysis.

Story 8: Re-run Chart Rendering with Updated Data

• As a clinical researcher/data scientist/medical writer,

• I want to re-run chart rendering when new data is available,

• So that my visual representations are always up-to-date.

• Acceptance Criteria:

– System should allow for easy updating of data sources.

– Users should be able to initiate re-rendering without having to redo the entire setup.

1.2 Non-functional Requirements

The non-functional requirements for VV aim to outline the quality attributes the system should
possess. These are essential aspects that define how well the system performs its functions rather
than what functions it performs. They encompass characteristics like modularity, error handling, and
auditability, among others. These requirements are especially critical in ensuring that VV is not only
functional but also efficient, maintainable, and adaptable to various environments and use-cases. Below
is a list of the non-functional requirements we deem essential for the system:

System Architecture

• Modularity: The system should be modular to allow for easier debugging and updating of
individual components.

• Extensibility: Designed in a way to easily allow the addition of new functionalities.

2. APPLIED TECHNICAL FOUNDATIONS AND DEVELOPMENT PARADIGMS 25

Usability and User Experience

• Configurability: Users should be able to easily configure chart rendering options regardless of
the environment (API, module, terminal).

• Environment Agnosticism: Should be usable as an importable Python module, accessible via
web API, or through the terminal.

Reliability

• Error Handling: The system should be able to gracefully handle errors and exceptions, pro-
viding useful error messages.

Maintenance and Support

• Documentation: All code should be well-documented, and system documentation should be
easily accessible for maintenance activities.

• Auditability: Should provide logging features to keep track of data processing and rendering
activities.

2 Applied Technical Foundations and Development Paradigms

The objective of VV is the automation of data visualization, helping with the challenges in handling
large and complex data sets common in healthcare. Concurrently, the project serves an educational
purpose, offering the developer a framework to explore and learn fundamental software development
paradigms. This educational aspect makes it crucial to ensure that the project adheres to established
coding practices and methodologies, making it both a practical tool for data visualization and a case
study in applying robust software development principles.

The following sections will delve into the specifics of these foundational principles, revealing how
they guided the choices in architecture and functionalities in VV.

2.1 Modularity

In VV, modularity is a fundamental element guiding our design approach. This ensures that each
module is a self-contained unit with well-defined interfaces, enhancing both reusability and portability,
attributes highly valued in specialized fields like healthcare informatics [66].

2.2 Object-Oriented Programming (OOP)

In the VV library, OOP serves as a pivotal architectural choice, both for the developer's educa-
tional enrichment and the system's overall functionality and extensibility. Employing OOP facilitates
encapsulation, which allows for the bundling of data and methods that operate on that data within
single units or classes.

OOP also uses inheritance, enabling code reusability and abstraction. For instance, different types
of charts, be it a bar chart, a forest plot, or a survival plot, can be represented as individual classes.
These classes can contain methods to set chart properties, draw axes, and render the data. Since
each chart type may have common characteristics such as a title or axes labels, inheritance allows
these shared features to be abstracted into a parent class. Specific chart types can then inherit from
this parent class, enabling them to reuse common code while still allowing for their own specialized
features. Furthermore, different deployment targets, like cloud storage or Miro boards, can also be
abstracted into separate classes, encapsulating the methods required for deploying visualizations to
these locations. This makes the system adaptable and easier to integrate with new deployment options
as needs evolve.

26 CHAPTER 4. METHODOLOGY

2.3 Test-Driven Development (TDD)

TDD serves as a rigorous verification mechanism that aligns with the project’s objective of de-
livering a reliable and high-quality tool. Based on the review on the impact of TDD on program
design and software quality, as well as the educational benefits for the author, we have selected TDD
as a methodology for our software development project. This hands-on exposure is expected to be
invaluable in future projects and particularly beneficial when collaborating within larger teams that
also utilize TDD.

To implement TDD in this project, we selected pytest as the testing library for its feature-rich
environment, ease of use, and compatibility with various Python frameworks. It provides detailed
failure reports to streamline debugging, and its straightforward syntax is especially beneficial for those
new to TDD [67].

3 Evaluation Metrics and Methods

The evaluation phase for the VV Python library was designed to assess both the functional capa-
bilities of the library and its impact on workflow efficiency. The key performance indicators (KPIs)
used for this evaluation were ”Time to First Chart Draft” and ”Time to Final Chart,” designed to
capture the time-efficiency gains enabled by the VV library.

3.1 Time to First Chart Draft

This metric captures the time needed from receiving the initial dataset to generating the first draft
of a chart. For the manual method, this involves gathering values for relevant measures, preparing a
Vega-Lite JSON definition, populating the JSON with the data and adjusting necessary parameters.

3.2 Time to Final Chart

This metric gauges the time from the receipt of the initial data to the point where the chart is
exported in the appropriate format (e.g., SVG) and uploaded to a platform like Google Drive and
included in a Miro board for further analysis and comparison. This encompasses the entire lifecycle
of chart production and is intended to capture any efficiency gains that may be achieved through the
VV library.

3.3 Data Sources for Evaluation

The primary data source for these evaluations is time-tracking data from MTG Research and
Development Lab activities. This data focuses on chart development for academic papers and is
an integral part of our methodology. It has been recorded using a tracker within the Monday.com
platform, which is the project management tool employed by the company for all R&D activities. This
time-tracking data from past projects, where chart generation was performed manually, serves as a
comparative baseline for evaluating the VV Python library's effectiveness.

3.4 Simulation for Adjustment for Fatigue and Human Intervention

To provide a comprehensive evaluation of the VV Python library's efficiency in chart creation,
we extended our analysis by including a simulation that includes considerations for task fatigue and
additional human intervention for validation. For this exercise, we focused on the ”Time-to-Final-
Chart” metric, which captures the total time needed to finalize a chart, accounting for all adjustments
and confirmations.

The analysis was conducted using R (version 4.2.3) [68], and visualizations were generated using
the ggplot2 package [14].

Chapter 5

Development Environment and Tools

1 Development Environment . 27

1.1 Docker for Containerization . 28

2 Version Control . 28

3 Continuous Integration and Deployment (CI/CD) 29

3.1 CI/CD Configuration . 30

3.2 Before Script and Dependencies . 30

3.3 Test Job . 30

3.4 Pages Job . 30

3.5 Pedagogical Implications . 31

4 Build Automation . 31

4.1 Makefile . 31

4.2 Commands Overview . 33

5 Choice of Programming Language and Visualization Libraries 33

5.1 Python . 33

5.2 Vega Lite . 34

6 Documentation . 34

In this chapter, the development environment and tools used in the construction of VV are dis-
cussed. The selection of this environment went beyond mere technical suitability for the project
requirements; it also served as an educational framework for the author. The project was not only
an exercise in software development for clinical research but also a formative experience in employ-
ing modern software development tools and practices. Thus, the choices made were influenced both
by their ability to efficiently realize the project’s goals and their pedagogical utility in skill acquisi-
tion. Through the development process, the author gained valuable insights into effective software
development practices.

1 Development Environment

The development environment consisted of a macOS Ventura machine, running version 13.3, pow-
ered by an Apple M2 Pro processor with 16GB RAM.

For the code editing, Visual Studio Code (VSCode) Version 1.81.1 (Universal) was chosen as the
Integrated Development Environment (IDE), as depicted in Figure 5.1.

The choice of VSCode was influenced by its extensive feature set, including code auto-completion,
debugging tools, and an active extension marketplace. Particularly beneficial was the use of the VS-
Code Live extension, which facilitated live coding sessions for tutoring and collaborative development.

27

28 CHAPTER 5. DEVELOPMENT ENVIRONMENT AND TOOLS

Figure 5.1: Screenshot of the development environment in Visual Studio Code, showcasing the editor's
interface, code structure, and various extensions for enhanced productivity. The split terminal on the
right side illustrates the integrated development and testing workflow.

1.1 Docker for Containerization

The use of Docker for containerization was a strategic decision aimed at creating a consistent and
isolated environment for development and deployment. Figure 5.2 provides a screenshot of the Docker
Graphical User Interface (GUI), where the operational status of the running 'visual-viper' container
is displayed.

Using Docker was not just about setting up a convenient environment for code development. It
also served as a practical way to learn about important modern practices in software engineering, such
as containerization and DevOps. This hands-on experience was valuable for both the project's success
and educational objectives, making Docker an optimal choice for this project.

2 Version Control

GitLab (Version 16.3) was employed as the platform to host the remote repository for this project,
in conjunction with the version control system Git (Version 2.39.2, Apple Git-143).

We adhered to Semantic Versioning 2.0.0 for labeling the versions of our project [69]. Figure 5.3
displays the GitLab badge for version number 0.0.1.

The repository followed a simplified branch structure comprising two most important branches:

• main: Served as the repository for code deemed ready for production.

• feature: Used exclusively for the development of new features or improvements.

The primary driver behind the selection of GitLab for version control and remote repository hosting
was its compatibility with the technology stack currently in use at the author's workplace. This
alignment not only ensured a seamless integration but also leveraged existing organizational workflows.

3. CONTINUOUS INTEGRATION AND DEPLOYMENT (CI/CD) 29

Figure 5.2: Screenshot of the Docker Graphical User Interface (GUI), displaying the running 'visual-
viper' container and indicating its operational status.

Figure 5.3: GitLab badge for version number 0.0.1.

Furthermore, GitLab was advantageous for several other reasons, such as:

• Collaboration Features: The platform supports functionalities such as merge requests, code
reviews, and issue tracking that enhance team collaboration.

• CI/CD Integration: GitLab's native support for Continuous Integration and Deployment pipelines
enriched the development process, with further elaboration in the CI/CD subsection.

3 Continuous Integration and Deployment (CI/CD)

The implementation of Continuous Integration and Deployment (CI/CD) pipelines is central to
modern software development practices. It allows for seamless code integration, testing, and deploy-
ment, thereby accelerating the development cycle and reducing the time to market. For this project,
GitLab's native CI/CD capabilities were utilized to fulfill these objectives. Listing 1 shows the GitLab
CI/CD Configuration YAML file that was used for automated testing and deployment.

Note that all make commands used in this pipeline are elaborated upon in the Build Automation
subsection.

30 CHAPTER 5. DEVELOPMENT ENVIRONMENT AND TOOLS

3.1 CI/CD Configuration

The CI/CD pipeline was configured using a .gitlab-ci.yaml file, which specifies the environment
and commands that GitLab's CI/CD runners should execute. The pipeline was designed to run on a
Python 3.10 environment and included two main jobs: test and pages.

3.2 Before Script and Dependencies

The before script section provides the initial setup, which includes updating package lists and
installing the FreeTDS dependency required for the project. Following this, the make install command
sets up the necessary Python packages.

3.3 Test Job

The test job runs the test suite and generates a code coverage report. It uses the make test-ci script,
capturing the code coverage percentage as well as producing a JUnit XML report. These artifacts are
then stored and can be accessed for further analysis.

3.4 Pages Job

The pages job runs only on the main branch and is responsible for generating project documen-
tation. The documentation is built using the make doc command and the output HTML files are
moved to the public directory. This ensures that the latest version of the documentation is always
available on the project's GitLab Pages. Further details on documentation generation can be found in
the Documentation section.

1 image: python:3.10

2

3 default:

4 before_script:

5 - apt update

6 - apt install -y freetds-dev

7 - make install

8

9 test:

10 script:

11 - make test-ci

12 coverage: '/TOTAL.*\s+(\d+%)$/'

13 artifacts:

14 when: always

15 paths:

16 - dist/test/junit.xml

17 reports:

18 junit: dist/test/junit.xml

19 coverage_report:

20 coverage_format: cobertura

21 path: dist/coverage/coverage.xml

22

4. BUILD AUTOMATION 31

23 pages:

24 only:

25 - main

26 script:

27 - make doc

28 - mv dist/docs/html public

29 artifacts:

30 paths:

31 - public

32 only:

33 - main

34

Listing 1: GitLab CI/CD Configuration YAML file for Automated Testing and Deployment

3.5 Pedagogical Implications

The opportunity to configure and operate a CI/CD pipeline through GitLab has valuable ed-
ucational benefits, offering the opportunity to understand the principles of automated testing and
deployment in the realm of software engineering. Figure 5.4 provides a snapshot of a successfully
executed CI/CD pipeline, illustrating that all stages were completed.

Figure 5.4: Snapshot of a successfully executed CI/CD pipeline for commit 7c800178 on the main
branch, illustrating that all stages passed in a duration of 2 minutes and 13 seconds.

4 Build Automation

In this section, the utility of build automation is discussed, focusing on the role of the Makefile
in project development. Build automation offers both convenience and standardization, aiding in
the quick execution of repetitive tasks and ensuring that all collaborators are using the same set of
commands.

4.1 Makefile

The Makefile serves as the framework for build automation in this project. It consists of shorthand
commands that encapsulate complex or multi-step tasks into a single-line command. These commands

32 CHAPTER 5. DEVELOPMENT ENVIRONMENT AND TOOLS

serve multiple purposes within the development cycle, from setting up Docker containers to running
tests and generating documentation. The structure and details of the Makefile used in the project are
displayed in Listing 2.

1 docker:

2 bin/dev-docker

3

4 install:

5 python3 -m pip install -q -r requirements.txt

6 python3 setup.py develop

7

8 run:

9 python3 . run

10

11 # Shorthand commands for development

12 dev:

13 ENV=dev \

14 bash -c 'ptw -c . - -vv --diff-symbols '

15

16 # Shorthand commands for test

17 test:

18 ENV=test \

19 bash -c 'pytest . -vv --diff-symbols --cov-report=html:dist/coverage --cov

visual_viper'↪→

20

21 test-ci: install

22 ENV=test \

23 bash -c 'pytest . -vv --diff-symbols --junitxml dist/test/junit.xml

--cov-report=xml:dist/coverage/coverage.xml --cov-report term-missing --cov

visual_viper'

↪→

↪→

24

25 # Shorthand commands for documentation

26 doc:

27 sphinx-build docs dist/docs/html

28

29 dev-doc:

30 ptw --runner 'sphinx-build docs dist/docs/html' --ext py,rst

31

32 # Shorthand commands for pushing

33 push:

34 git add .

35 git commit -m "minor push"

36 git push

5. CHOICE OF PROGRAMMING LANGUAGE AND VISUALIZATION LIBRARIES 33

37

Listing 2: Extract from the Makefile, illustrating shorthand commands for various development tasks.

4.2 Commands Overview

Docker Configuration

• docker: This command starts the Docker container as specified in the bin/dev-docker file.

Project Installation

• install: Installs all the Python package dependencies and runs the setup script for the project.

Project Execution

• run: Executes the application using Python 3.

Development Commands

• dev: A shorthand for running the project in the development environment. This is particularly
useful for quickly testing changes during development.

Test Commands

• test: Executes the unit tests for the application, while also generating an HTML-based code
coverage report.

• test-ci: Executes unit tests and prepares the necessary files for CI/CD pipelines. Specifically
designed to be run in a CI/CD environment.

Documentation Commands

• doc: Builds the project documentation.

• dev-doc: Builds the project documentation and watches for changes, automatically rebuilding
when a change is detected.

Push Commands

• push: A shorthand for adding, committing, and pushing code changes to the remote repository.

5 Choice of Programming Language and Visualization Libraries

Choosing the right programming language and libraries is crucial for a project's success. These
tools affect not just how quickly a project can be developed but also how easily it can be updated or
expanded in the future. In this section, we explain why we chose Python and Vega Lite for the Visual
Viper (VV) library, focusing on their features, community support, and fit for this project's needs.

5.1 Python

Python was chosen for its widespread adoption in the field of data science. It is a high-level,
interpreted language that is not only easy to write but also read. Python's large and active community
means that a plethora of libraries and tools are readily available for tasks ranging from web development
to machine learning. Importantly, Python is open-source, offering an extra layer of flexibility and
community engagement.

34 CHAPTER 5. DEVELOPMENT ENVIRONMENT AND TOOLS

5.2 Vega Lite

We've selected Vega-Lite as our visualization tool influenced by various factors, most importantly
API/tool design and level of abstraction. Vega-Lite operates in a framework-agnostic manner and
predominantly uses a declarative JSON format for specifying visualizations. This format allows for
readability, easy storage, and can even be automatically generated by other tools. Unlike framework-
specific libraries that require prerequisite knowledge about frameworks like React or Angular, Vega-Lite
offers greater flexibility in deployment [70].

Vega-Lite offers a high-level grammar of graphics that's adequate for both explanatory and ex-
ploratory data visualizations. It is based on a JSON format that's platform-independent, thus allowing
it to be readily used across various applications. Importantly, Vega-Lite supports various interaction
techniques, something often lacking in existing high-level languages. This enables us to construct
interactive dashboards and data presentations without delving into low-level code [15]. Vega-Lite's ap-
proach enables quick creation of both simple and sophisticated visualizations using a concise grammar
[71].

Vega-Lite is designed to be expressive yet concise. It allows for an algebra to compose single-
view specifications into multi-view displays, something that expands its application in complex data
visualization scenarios. Its high-level interaction grammar, based on visual elements or data points
chosen when input events occur, adds to its expressiveness [15].

Figure 5.5 shows some examples of charts generated using Vega-Lite, featured in publications co-
authored by the author.

6 Documentation

The documentation for the Visual Viper (VV) library was developed using Sphinx, a documentation
generator that transforms reStructuredText sources into HTML, LaTeX, PDF, and other formats.
This comprehensive guide aims to assist users and developers in understanding the functionalities and
architecture of VV.

The documentation is structured into the following key sections:

1. Getting Started

a. How it works

b. Requirements

c. Installation

d. Configuring .env

e. Commands

f. Make commands

2. Architecture

a. User Workbench

b. Package

3. Development

a. Development guidelines

4. Support

a. Glossary

6. DOCUMENTATION 35

Figure 5.5: Examples of Charts Generated by the Author Using Vega-Lite. Note that in these examples,
some graphical details such as legends have been omitted to simplify the visualizations and highlight
the most relevant features for the given context. A) A bar chart presented by the author in an oral
communication in a national conference [72]. B) A Forest Plot featured in a moderated poster session
at an international conference [73]. C: A line chart with error bars that represents the adjusted hazard
ratio and respective confidence interval at various time-points, stratified by cohorts, published in a
peer-reviewed paper [74].

b. Contacts

The documentation is accessible online at https: // visualviper. mtg. pt/ and is tightly inte-
grated into our development pipeline. Specifically, it's hosted on GitLab Pages, ensuring seamless
compatibility and automatic updates with each code commit. This integration with GitLab CI/CD
serves a dual purpose: it automates the documentation build process and ensures that the documen-
tation is always aligned with the most recent changes to the codebase (Figure 5.6).

Furthermore, we've leveraged AWS Route 53 to route traffic to our custom domain.

https://visualviper.mtg.pt/

36 CHAPTER 5. DEVELOPMENT ENVIRONMENT AND TOOLS

Figure 5.6: Screenshot of the Visual Viper (VV) Documentation Interface.

Chapter 6

Design and Implementation

1 High-level Architecture . 37

1.1 Key Classes and Components . 38

1.2 Component Interactions . 38

2 Description of Components . 40

2.1 Key Directories and Their Functional Roles 40

2.2 Alignment with Design Philosophy . 40

3 Data Flow among Components . 41

4 Modular and Extensible Plugin Architecture . 42

4.1 Initial Phase Plugins . 42

5 Core Classes and their Responsibilities . 43

5.1 The ‘dataset builders’ Module . 43

5.2 The ‘notation builders’ Module . 45

5.3 The ‘chart renderers’ Module . 50

5.4 The ‘chart deployers’ Module . 51

In this chapter, we explore VV’s design and implementation, detailing the architecture’s modular
framework and its components’ interplay. It emphasizes the principles of modularity, extensibility, and
object-oriented design, showcasing how these foundational elements combine to a versatile, scalable
system.

1 High-level Architecture

To facilitate a comprehensive understanding of the system's architecture, this section presents a
high-level overview of the primary classes and their interactions. Figure 6.1 below provides a simplified
visual representation of the class structure and their relationships. It's important to note that this
diagram is an abstraction intended to clarify the core architectural elements; it does not depict every
attribute or method within these classes. The diagram has been constructed using PlantUML [75].

The architecture of the VV system is designed to be both modular and extensible, adhering to
the principles of OOP. This design allows for high cohesion among components, low coupling between
modules, and promotes scalability. To elaborate on the components that constitute this architecture,
we have categorized them into Abstract Classes, Concrete Implementations, and an Orchestrator Class.

37

38 CHAPTER 6. DESIGN AND IMPLEMENTATION

Figure 6.1: High-level Class Diagram of System Architecture.

1.1 Key Classes and Components

The Abstract Classes act as templates or interfaces, specifying what actions must be performed but
not how to perform them. Concrete Implementations are subclasses that provide the specific 'how-to',
the logic and the behavior. The Orchestrator Class serves as the orchestrating agent that ties these
different components together into a cohesive, functioning system.

Abstract Classes

• AbstractDatasetBuilder: Provides the framework for constructing datasets.

• AbstractChartNotation: Functions as the foundational class for handling chart notations. It
provides the methods for registering datasets and solving elements.

• AbstractChartRenderer: Serves as the interface for chart rendering mechanisms.

• AbstractChartDeployer: Serves as the base class for all chart deployment mechanisms.

Concrete Implementations

• GoogleSpreadsheetDatasetBuilder: Specially designed to build datasets from Google Spread-
sheets.

• AltairChartRenderer: A concrete implementation of AbstractChartRenderer, which specifi-
cally uses Vega-Altair for rendering charts [76].

• GdriveChartDeployer and MiroChartDeployer: These are specialized implementations of
AbstractChartDeployer designed to deploy charts on Google Drive and Miro, respectively.

Orchestrator Class

• VisualViperOrchestrator: This class manages the interaction between the various compo-
nents. It references a DatasetBuilder, a ChartNotationBuilder, a ChartRenderer, and a Chart-
Deployer. This allows the orchestrator to manage the flow of operations.

1.2 Component Interactions

The VisualViperOrchestrator serves as the fulcrum around which the entire architecture revolves. It
dynamically links to various components, directing the flow of data and operations throughout the sys-
tem. Subclasses of AbstractDatasetBuilder, AbstractChartNotationBuilder, AbstractChartRenderer,
and AbstractChartDeployer, can be plugged into the orchestrator, thereby fulfilling the design goals
of modularity and extensibility.

1
.

H
IG

H
-L
E
V
E
L
A
R
C
H
IT

E
C
T
U
R
E

39

Figure 6.2: Sequence Diagram for Chart Creation and Deployment in Visual Viper Framework.

40 CHAPTER 6. DESIGN AND IMPLEMENTATION

Sequence of Operations To provide a more concrete understanding of the interactions between
components, Figure 6.2 presents a sequence diagram illustrating the flow of operations in a typical use
case. This diagram was also constructed using PlantUML.

In this sequence diagram:

1. The Application Runtime initializes the VisualViperOrchestrator and registers the required com-
ponents: AbstractDatasetBuilder, AbstractChartNotation, AbstractChartRenderer, and Ab-
stractChartDeployer.

2. The VisualViperOrchestrator initiates the dataset construction process by calling the build dataset()
method on an AbstractDatasetBuilder object. This object may retrieve data from an external
system, abstracted here for generality.

3. Upon successful dataset construction, the VisualViperOrchestrator registers the dataset with
AbstractChartNotation for further processing.

4. The VisualViperOrchestrator then invokes the render() method on an AbstractChartRenderer
object to create the actual visual representation.

5. Finally, the VisualViperOrchestrator calls the deploy chart() method on an AbstractChartDe-
ployer object, deploying the rendered chart to an external system.

This sequence of operations encapsulates the VV system's core functionality while emphasizing its
modularity and extensibility. It serves as an exemplar flow, illustrating how the system components
interact to accomplish the data visualization task.

2 Description of Components

In this section, we elaborate on the various components of our system, their roles, and how they
interact. To give you a comprehensive understanding, we've included a directory structure in Figure
6.3.

2.1 Key Directories and Their Functional Roles

• defaults/: This directory contains the default configuration settings, enabling the system to
operate with a predefined set of parameters.

• docs/: Comprising comprehensive documentation, this directory aids in the effective utilization
and understanding of the system.

• tests/: This is dedicated to unit testing.

• visual viper/: This directory encapsulates the core functionalities and classes of the project,
which include the orchestrators and Command-Line Interface (CLI) mechanisms (which is still
under development).

2.2 Alignment with Design Philosophy

The directory structure reflects the project’s commitment to modularity and extensibility, design
philosophies that are integral to the project. The clear demarcation of responsibilities through spe-
cialized directories, such as those for dataset builders, notation builders, chart renderers, and chart
deployers, underscores the project’s modular and extensible architecture.

3. DATA FLOW AMONG COMPONENTS 41

Figure 6.3: Directory structure of the project. The directory structure and the following graphical
diagram were generated using VV's directory description and LaTeX diagramming plugins (not de-
scribed in the current work). For brevity, certain folders have been excluded or their contents omitted
from this diagram.

3 Data Flow among Components

To complement the understanding of the system's architecture, Figure 6.4 provides a simplified data
flow diagram that outlines the relationships and interactions among key components. The diagram
was constructed using the DOT language and serves as a conceptual map for how data is passed and
manipulated within the system.

As illustrated in Figure 6.4:

• DatasetBuilder: Initiates the process by constructing the dataset based on the provided pa-
rameters.

• Dataset: Serves as the data store which is consumed by both the DataBinding and Abstract-
Notation classes.

• NotationBuilder: Builds the visual representation of the chart, laying out the aesthetics and
graphical elements.

• Visual Representation: This is the generated graphical layout of the chart, whose appearance
is dictated by the NotationBuilder.

• DataBinding: Consumes keys from the Dataset to resolve any data dependencies and supplies
this resolved data to the visual representation.

• AbstractNotation: This class receives data from the Dataset and utilizes the DataBinding
class to solve for any data-related calculations.

42 CHAPTER 6. DESIGN AND IMPLEMENTATION

Figure 6.4: Data Flow Diagram of Key System Components of Visual Viper.

The DataBinding class plays a crucial role in combining the dataset with its visual representation,
ensuring that the data points are correctly mapped onto the chart. On the other hand, the Abstract-
Notation class establishes the fundamental structure of the chart, including its underlying logic and
computations.

This high-level overview allows for easy plug-and-play of different dataset builders, data binding
mechanisms, and visual representations, making the system highly modular and extensible.

4 Modular and Extensible Plugin Architecture

In line with the system's commitment to modularity and extensibility, the architecture of VV
features a plugin-based mechanism. This is a crucial subsystem within the broader architecture that
enables users to enhance or alter the functionality without changing the core codebase. It facilitates
a more dynamic, user-driven ecosystem that aligns with the project's design philosophy. Below we
describe the key aspects of this plugin architecture.

4.1 Initial Phase Plugins

In the initial phase of development, we aimed to build a set of plugins to meet our most immediate
data visualization needs. Specifically, we focused on the following:

• Google Spreadsheet Data Fetcher: This plugin will serve the role of a specialized Abstract-
DatasetBuilder. It will be designed to fetch data from Google Spreadsheets, making it easier for
users to source data without manual intervention.

• Vega-Lite Notation Builders: A group of specialized AbstractChartNotation plugins will be
developed to create notations for Vega-Lite charts. The focus will initially be on generating
Forest Plots.

• Vega-Altair Chart Renderer: An implementation of AbstractChartRenderer, this plugin will
use the Vega-Altair library for rendering the visual representation of the charts.

• Multi-platform Chart Deployers: To augment the deployment capabilities, we aimed to
create two deployer plugins:

– Google Drive Deployer: Specialized for storing rendered image files in Google Drive,
making it convenient for users to access and share their visualizations.

5. CORE CLASSES AND THEIR RESPONSIBILITIES 43

– Miro Deployer: Places the generated charts in Miro boards with a predefined layout,
aiding in the interpretation and comparison of the charts.

Our plugin architecture is designed for future expansion, both by our team and external contribu-
tors. It allows for:

• User Customization: Users can tailor the software to their needs by adding or removing
features.

• Easy Maintenance: Since the core code is not altered when adding plugins, system updates
are more straightforward.

• Community Input: The architecture is open to contributions from others, allowing for further
enhancements.

This architecture supports the previously described low coupling by allowing independent develop-
ment and integration of plugins, and high cohesion by ensuring each plugin is a self-contained, focused
unit of functionality.

5 Core Classes and their Responsibilities

In the following subsections, we will examine each core class to detail its role and responsibilities
in the system architecture.

5.1 The ‘dataset builders’ Module

The dataset builders module serves as the core for data acquisition in the Visual Viper Framework.
This module offers an abstract class, AbstractDatasetBuilder, designed to be extended for specific data
sourcing implementations. Its design promotes low coupling, making it easier to integrate new data
sources.

The ‘AbstractDatasetBuilder’ Class The first class in the architecture is AbstractDataset-
Builder, which is an abstract class acting as a blueprint for all dataset builders. The class declares
a method build dataset(params=None), which subclasses should implement to provide the actual
dataset-building functionality (Listing 3). This abstract class is crucial in achieving low coupling as it
ensures that other components of the system need not know the specific dataset builder that will be
used.

1 class AbstractDatasetBuilder:

2

3 @abc.abstractmethod

4 def build_dataset(self, params=None):

5

6 raise NotImplementedError()

Listing 3: Code snippet showing the AbstractDatasetBuilder class, which provides a method interface
for building datasets.

44 CHAPTER 6. DESIGN AND IMPLEMENTATION

The ‘Key’ Class Within the dataset builders module, there's a simple but critical class named Key
(Listing 4). This class serves to encapsulate key-value pairs used for data retrieval. The Key class has
an initializer that takes two arguments: key and an optional src parameter. Here, key represents the
data attribute, while src can be used to specify the data source.

1 class Key():

2

3 def __init__(self, key, src=None) -> None:

4 self.key = key

5 self.src = src

Listing 4: Code snippet showing the Key class used for encapsulating data retrieval attributes.
The utility of the Key class becomes more evident when used in conjunction with the nota-

tion builders module, where it plays an instrumental role in linking dataset attributes to visual elements
in a chart.

The GoogleSpreadsheetDatasetBuilder Class Extending the AbstractDatasetBuilder is the
GoogleSpreadsheetDatasetBuilder class (Listing 5). This concrete implementation utilizes the Google
Sheets API to fetch data. The class uses the gspread library and OAuth 2.0 for secure and efficient
data retrieval. One of the significant advantages of this class is its ability to handle multiple named
ranges across multiple worksheets.

1

2 from google.oauth2 import service_account as sa

3 from googleapiclient.discovery import build

4

5 from .abstract_dataset_builder import *

6

7 class GoogleSpreadsheetDatasetBuilder(AbstractDatasetBuilder):

8

9 DEFAULT_SA_PATH = "./service_account.json"

10 DEFAULT_SCOPES = ['https://www.googleapis.com/auth/drive']

11

12 def __init__(self, file_id=None, sa_path=None) -> None:

13 self.file_id = file_id

14 self.sa_path = sa_path or self.DEFAULT_SA_PATH

15 self.auth = sa.Credentials.from_service_account_file(

16 self.sa_path,

17 scopes=self.DEFAULT_SCOPES

18)

19 self.dataset = dict()

20

21 def build(self, params=None, ws_index=0):

22 gs = gspread.service_account(self.sa_path)

23 range_sets = dict()

5. CORE CLASSES AND THEIR RESPONSIBILITIES 45

24

25 for el in params["ranges"]:

26 if not isinstance(el, tuple):

27 el = (el, self.file_id)

28 named_range, file_id = el

29 if not file_id in range_sets:

30 range_sets[file_id] = []

31 range_sets[file_id].append(named_range)

32

33 for file_id, ranges in range_sets.items():

34 sheet = gs.open_by_key(file_id)

35 worksheet = sheet.get_worksheet(ws_index)

36 response = worksheet.batch_get(

37 ranges,

38 value_render_option="UNFORMATTED_VALUE",

39)

40 response = {

41 ranges[i]: response[i][0][0] for i in range(len(response))

42 }

43 self.dataset.update(response)

44 return self.dataset

45

Listing 5: Code snippet showing the GoogleSpreadsheetDatasetBuilder class, responsible for building
datasets from Google Sheets.

5.2 The ‘notation builders’ Module

The notation builders module encapsulates the logic required for constructing the chart notations
and solving data dependencies for the actual visualization. Two abstract classes form the core of this
module: AbstractChartNotationBuilder and AbstractChartNotation.

The ‘AbstractChartNotationBuilder’ Class AbstractChartNotationBuilder is an abstract class
that acts as a blueprint for all chart notation builders (Listing 6). It declares methods like build()
that subclasses need to implement to provide the actual chart-building functionality. The class uses
an internal property bindings, designed to be overridden in subclasses, that links the dataset keys to
visual elements in a chart.

The AbstractChartNotationBuilder class also introduces a collect keys() method, which traverses
all the bindings and collects the Key instances, serving as a bridge to the dataset builders module.
This method ensures that all necessary data points can be fetched efficiently from the dataset.

1 class AbstractChartNotationBuilder:

2 # ...

3

4 def _init_(self, bindings=None, id=None, opts=None):

46 CHAPTER 6. DESIGN AND IMPLEMENTATION

5 # ...

6

7 @property

8 def bindings(self):

9 raise NotImplementedError()

10

11 def collect_keys(self, dataset):

12 # ...

13

14 @abc.abstractmethod

15 def build(self, params=None) -> dict:

16 raise NotImplementedError()

Listing 6: Code snippet showing the AbstractChartNotationBuilder class, which serves as the frame-
work for building chart notations.

The ‘AbstractChartNotation’ Class The AbstractChartNotation class functions as a comple-
mentary element to the AbstractChartNotationBuilder class. This class registers the dataset and con-
tains a solve() method. The solve() method uses instances of the Key class from the dataset builders
module to fetch the necessary data points, thereby linking the chart notation to the actual data (Listing
7).

1 class AbstractChartNotation:

2

3 def _init_(self):

4 self.dataset = {}

5

6 def register_dataset(self, dataset):

7 # ...

8

9 def solve(self, el):

10 # ...

11

Listing 7: Code snippet showing the AbstractChartNotation class, which registers the dataset and
provides a method for solving notation elements.

The ‘ForestPlot’ Class The ForestPlot class (Listing 8) is a concrete implementation that inherits
from AbstractChartNotationBuilder. It specializes in building Forest Plots, a type of chart that is
commonly used to visualize grouped data points in a graphical format. The class provides the option
to include labels for different measures (hr, lo, hi) and customizes them as needed.

1 from .abstract_notation_builder import AbstractChartNotationBuilder

2 from .forest_plot_binding_notation import ForestPlotBinding

5. CORE CLASSES AND THEIR RESPONSIBILITIES 47

3

4 class ForestPlot(AbstractChartNotationBuilder):

5

6 OPTS = dict(

7 labels = dict(

8 hr="HR",

9 lo="CI Low",

10 hi="CI High",

11)

12)

13

14 @property

15 def bindings(self):

16 return [

17 ForestPlotBinding(

18 measure="",

19 hr=self.opts["labels"]["hr"],

20 lo=self.opts["labels"]["lo"],

21 hi=self.opts["labels"]["hi"],

22),

23 *self._bindings

24]

25

26 def build(self, params=None) -> dict:

27 base_schema = {

28 "$schema": "https://vega.github.io/schema/vega-lite/v5.json",

29 "data": {

30 "values": [

31]

32 },

33 #...

34 }

35 notation = base_schema.copy()

36 values = [binding.solved_data for binding in self.bindings]

37 notation["data"]["values"] = values

38 return notation

39

Listing 8: Code snippet showing the ForestPlot class, responsible for building the notation for Forest
Plots.

The ForestPlot class overrides the bindings property, providing a default ForestPlotBinding instance
that serves as a blueprint for all bindings related to this specific type of chart. It also defines the
build(params=None) method to generate the notation for rendering the chart using the Vega-Lite
schema.

48 CHAPTER 6. DESIGN AND IMPLEMENTATION

The ForestPlotBinding Class This class inherits from AbstractChartNotation and serves to hold
and solve the data points necessary for a Forest Plot. Unlike the generic AbstractChartNotation,
ForestPlotBinding has additional properties specific to Forest Plots, such as hr (Hazard Ratio), lo
(Low Confidence Interval), and hi (High Confidence Interval), as can be seen in Listing 9.

The ForestPlotBinding class introduces the data and solved data properties. The data property
returns the initial (unsolved) key-value pairs, whereas the solved data property uses the inherited
solve() method to get the actual data points from the dataset. These properties bridge the gap
between data sourcing and data representation in the chart.

1 import json

2 from .abstract_chart_notation import AbstractChartNotation

3

4 class ForestPlotBinding(AbstractChartNotation):

5

6 def __init__(self, measure, hr, lo, hi) -> None:

7 super().__init__()

8 self.measure = measure

9 self._hr = hr

10 self._lo = lo

11 self._hi = hi

12

13 @property

14 def data(self) -> dict:

15 return dict(

16 measure=self.measure,

17 lo=self._lo,

18 hr=self._hr,

19 hi=self._hi,

20)

21

22 @property

23 def solved_data(self) -> dict:

24 return dict(

25 measure=self.measure,

26 lo=self.lo,

27 hr=self.hr,

28 hi=self.hi,

29)

30

31 @property

32 def lo(self):

33 return self.solve(self._lo)

34

35 @property

5. CORE CLASSES AND THEIR RESPONSIBILITIES 49

36 def hr(self):

37 return self.solve(self._hr)

38

39 @property

40 def hi(self):

41 return self.solve(self._hi)

42

43 def items(self):

44 yield ("hr", self._hr)

45 yield ("lo", self._lo)

46 yield ("hi", self._hi)

47

48 def __repr__(self):

49 return f"hr:{self.hr}, lo:{self.lo}, hi:{self.hi}"

Listing 9: Code snippet showing the ForestPlotBinding class, which encapsulates the logic for holding
and solving data points specific to Forest Plots.

Summary Diagram for the ‘notation builders’ Module To sum up the relationships between
these classes, please refer to the following class diagram depicted in Figure 6.5.

Figure 6.5: Class diagram of the classes included in the ‘notation builders’ module.

The ForestPlot class inherits from AbstractChartNotationBuilder, while ForestPlotBinding inherits
from AbstractChartNotation. The ForestPlot class uses instances of ForestPlotBinding to build the
chart, leveraging the options and methods provided by the parent classes.

50 CHAPTER 6. DESIGN AND IMPLEMENTATION

Again, this setup ensures low coupling and high cohesion, thus aligning well with the principles of
clean architecture.

5.3 The ‘chart renderers’ Module

The chart renderers module is a pivotal component in the VV Framework responsible for rendering
visualizations. The module houses an abstract class, AbstractChartRenderer, which is designed to be
extended by specific rendering engines.

The ‘AbstractChartRenderer’ Class The backbone of the chart renderers module is the Ab-
stractChartRenderer class (Listing 10). It is an abstract class serving as a blueprint for all chart
rendering implementations. It declares a method render(notation=None, params=None), which is
expected to be implemented by subclasses to provide the actual chart rendering functionality. This
design pattern ensures that other system components do not need to be aware of the specific renderer
in use, thereby achieving low coupling.

1 class AbstractChartRenderer:

2 def _init_(self) -> None:

3 pass

4

5 def render(self, notation=None, params=None):

6 raise NotImplementedError

Listing 10: Code snippet showing the AbstractChartRenderer class, which provides a method interface
for rendering charts.

The ‘AltairChartRenderer’ Class Extending the AbstractChartRenderer is the AltairChartRen-
derer class (Listing 11). This specialized class serves as a wrapper for Vega-Altair, utilizing the Altair
library to perform the rendering of visualizations. One of its key features is the flexibility of outputting
the rendered chart through a file pointer (fp). This fp can be either a string representing a file path or
an in-memory file-like object such as a StringIO object. This offers versatility for different use-cases,
including real-time chart generation and embedding charts into web applications.

By overriding the render method, this class takes in a chart notation and a file pointer (fp) param-
eter. The chart is generated from the notation and saved in SVG format to the location pointed to by
fp.

1 import altair

2 from .abstract_chart_renderer import AbstractChartRenderer

3

4 class AltairChartRenderer(AbstractChartRenderer):

5 def _init_(self) -> None:

6 super().__init__()

7

8 def render(self, fp, notation=None, params=None):

9 chart = altair.Chart.from_dict(notation)

5. CORE CLASSES AND THEIR RESPONSIBILITIES 51

10 chart.save(fp, format="svg")

11 return fp

Listing 11: Code snippet showing the AltairChartRenderer class, which acts as a wrapper for Vega-
Altair and is responsible for rendering charts using the Altair library.

5.4 The ‘chart deployers’ Module

The chart deployers module serves as the component in the VV Framework that specializes in
the deployment of visualizations. This module introduces an abstract class, AbstractChartDeployer,
which acts as a blueprint for various chart deployment strategies, including concrete implementations
like GdriveChartDeployer and MiroChartDeployer. These implementations provide specialized mech-
anisms for deploying charts to Google Drive and Miro boards, respectively. The design of the module
encourages low coupling, allowing easy integration of different deployment methods without altering
the core framework.

The AbstractChartDeployer Class The foundational class in this architecture is AbstractChart-
Deployer, an abstract class that defines the standard for all chart deployers (Listing 12). It declares a
method deploy chart(buffer, params=None), which is designed to be overridden by subclasses to offer
the actual chart deployment functionality.

1 class AbstractChartDeployer:

2

3 @abc.abstractmethod

4 def deploy_chart(buffer: io.BytesIO, params=None) -> None:

5 raise NotImplementedError()

Listing 12: Code snippet showing the AbstractChartDeployer class, which provides a method interface
for deploying charts.

The ‘GdriveChartDeployer’ Class Extending the AbstractChartDeployer is the GdriveChartDe-
ployer class (Listing 13). This concrete implementation leverages Google Drive's API for the deploy-
ment of visualizations. It uses the google-auth and google-api-python-client libraries for secure and
authenticated communication with Google Drive.

1 class GdriveChartDeployer(AbstractChartDeployer):

2

3 DEFAULT_SA_PATH = "./service_account.json"

4 DEFAULT_SCOPES = ['https://www.googleapis.com/auth/drive']

5 DEFAULT_FILE_NAME = "filename.svg"

6

7 def __init__(self, folder_id, mime_type=None, sa_path=None, params=None):

8 self.sa_path = sa_path or self.DEFAULT_SA_PATH

9 self.auth = sa.Credentials.from_service_account_file(

10 self.sa_path,

11 scopes=self.DEFAULT_SCOPES

52 CHAPTER 6. DESIGN AND IMPLEMENTATION

12)

13 self.drive_service = build('drive', 'v3', credentials=self.auth)

14 self.folder_id = folder_id

15 self.file_name = params.get("filename") if params else self.DEFAULT_FILE_NAME

16 self.mime_type = mime_type

17

18 def deploy(self, fp):

19 files = []

20 file_metadata = {

21 'name': self.file_name,

22 'parents': [self.folder_id],

23 }

24

25 if hasattr(fp, 'getvalue'):

26 content = BytesIO(fp.getvalue().encode("utf-8"))

27 elif isinstance(fp, (str, bytes, os.PathLike)):

28 with open(fp, 'rb') as file:

29 content = file.read()

30 else:

31 raise TypeError("fp must be a file-like object or a file path")

32

33 #...

34 response = request.execute()

35 return response.get('id')

Listing 13: Code snippet showing the GdriveChartDeployer class, responsible for deploying charts to
Google Drive.

The ‘MiroChartDeployer’ Class Another subclass of AbstractChartDeployer is the MiroChart-
Deployer class (Listing 15). This specialized class is designed for deploying charts to Miro boards. It
uses Miro's REST API for communication with Miro boards.
[ht]

1 class MiroChartDeployer(AbstractChartDeployer):

2

3 DEFAULT_IMAGE_WIDTH = 2000

4 DEFAULT_IMAGE_X_POSITION = 0

5 DEFAULT_IMAGE_Y_POSITION = 0

6 DEFAULT_IMAGE_TITLE = "Default Image Title"

7

8 DEFAULT_LAYOUT_COLUMNS = 2

9 DEFAULT_LAYOUT_COLUMN_SPACING = 150

10 DEFAULT_LAYOUT_ROW_SPACING = 150

5. CORE CLASSES AND THEIR RESPONSIBILITIES 53

11

12 def __init__(self, board_id, token, params=None):

13 self.board_id = board_id

14 self.oauth_token = token

15 self.parent_id = params.get("parent_id") if params else None

16

17 self.image_title = params.get("image_title") if params else

self.DEFAULT_IMAGE_TITLE↪→

18 self.image_width = params.get("image_width") if params else

self.DEFAULT_IMAGE_WIDTH↪→

19 self.image_x_position = params.get("image_x_position") if params else

self.DEFAULT_IMAGE_X_POSITION↪→

20 self.image_y_position = params.get("image_y_position") if params else

self.DEFAULT_IMAGE_Y_POSITION↪→

21

22 self.layout_columns = params.get("layout_columns") if params else

self.DEFAULT_LAYOUT_COLUMNS↪→

23 self.layout_x_position = params.get("layout_x_position") if params else

self.DEFAULT_IMAGE_X_POSITION↪→

24 self.layout_row_spacing = params.get("layout_row_spacing") if params else

self.DEFAULT_LAYOUT_ROW_SPACING↪→

25 self.layout_column_spacing = params.get("layout_column_spacing") if params else

self.DEFAULT_LAYOUT_COLUMN_SPACING↪→

26

27 self.deployment_counter = 0

28 self.row_elements_height = []

29 self.last_widget_id = None

30

31 def calc_position(self, last_widget_id=None):

32 # ...

33

34 def get_widget_attribute(self, widget_id, attribute_path):

35 # ...

36

37 def deploy(self, fp):

38 # ...

Listing 14: Code snippet showing the MiroChartDeployer class, specialized in deploying charts to Miro
boards.

The MiroChartDeployer class encapsulates a set of attributes and methods designed to automate
the deployment of charts onto a Miro board. Within the class, several attributes warrant particular
attention for their role in shaping the class functionality:

• Default Constants: A suite of class-level constants prefixed with DEFAULT is defined to estab-

54 CHAPTER 6. DESIGN AND IMPLEMENTATION

lish fallback values for various properties.

• deployment counter: This attribute serves as a counter of the number of deployments executed
through the deploy method.

• row elements height: This list-based attribute is specifically designed to capture the height of
individual elements within each row on the Miro board. The data stored in this list informs the
layout calculations, facilitating the arrangement of multiple widgets on the board.

• last widget id: After each successful deployment, the ID of the last deployed widget is stored in
this attribute for later manipulation (namely getting the widget height for layout calculations).

The deploy(fp) method is responsible for actually uploading a chart as an image widget onto a
Miro board. It accepts the parameter fp, which stands for file pointer.

The calc position method is designed to calculate the position for placing a new image widget on
the Miro board according to the parameters defined for a given structured layout such as number of
columns and column and row spacing.

The get widget attribute method serves the purpose of fetching specific attributes from a widget
already deployed on the Miro board. It takes two parameters: widget id, the ID of the widget from
which an attribute needs to be fetched, and attribute path, a list describing the nested keys to reach
the target attribute in the widget's data structure. It is specifically used to get the height of the last
widget which is essential for determining how much vertical space a row of widgets will occupy in a
structured layout with multiple rows and columns. Specifically, the height attribute helps to calculate
the next y-coordinate (image y position) for starting a new row of widgets.

In the calc position method, after each widget deployment, the height of the last deployed widget
is fetched and stored in the row elements height list. When it's time to move to a new row, i.e.,
when the number of widgets in the current row equals the predefined maximum number of columns
(layout columns), the maximum height in the row elements height list is used to calculate the new
y-coordinate.

Chapter 7

Workflow Demonstration

1 Stage 1: Data Retrieval . 55

2 Stage 2: Chart Configuration . 55

3 Stage 3: Chart Rendering . 58

4 Stage 4: Deployment . 58

To provide a clearer understanding of how the VV library operates in a real-world scenario, this
chapter walks through a complete workflow of data visualization automation. The illustration starts
from obtaining data from a specific data source to rendering a chart and ultimately deploying it to a
Miro board and Google Drive.

1 Stage 1: Data Retrieval

In this example, we consider healthcare data obtained from Google Spreadsheets, which serve as our
data source (see Figure 7.1). The spreadsheets are organized into named ranges and contain essential
metrics for Cox Proportional Hazards Models (see Figure 7.2). These metrics include hazard ratios
along with their corresponding confidence intervals for various covariates. The VV library leverages
the GoogleSpreadsheetDatasetBuilder class to fetch this data, which is then transformed into a format
suitable for chart rendering.

2 Stage 2: Chart Configuration

Once the data is retrieved and prepared, the next step involves defining the chart specifications.
For our example, we aim to visualize the metrics from the Cox Proportional Hazards Models in the
form of a Forest Plot. VV library allows this by leveraging Vega-Lite, a high-level JSON syntax for
generating visualizations.

To accomplish this, the ForestPlot class is employed. This class is a concrete implementation that
inherits from AbstractChartNotationBuilder. It specializes in constructing Forest Plots by setting the
necessary parameters, configurations, and data values. Moreover, the ForestPlotBinding class plays
a vital role. This class inherits from AbstractChartNotation and is designed to hold and resolve the
data points essential for a Forest Plot.

The JSON configuration for our Forest Plot, generated by the aforementioned classes, includes
specific elements that are essential for visualizing the hazard ratios and their corresponding confidence
intervals for the listed covariates (see Listing 15). The JSON file lays out not only the type of chart
to be generated but also fine-grains the aesthetic details such as titles, subtitles, and axes properties.

55

56 CHAPTER 7. WORKFLOW DEMONSTRATION

Figure 7.1: Folder Containing Google Spreadsheets for the example.

The configuration also takes advantage of Vega-Lite's layering capabilities. This enables us to
represent multiple elements like the confidence intervals and hazard ratios within the same plot while
maintaining visual coherence. Each metric, such as 'Age', 'Sex', 'Obesity', etc., is represented as a
horizontal line in the Forest Plot, with markers indicating the confidence interval and a point indicating
the hazard ratio. For this example we will use only three covariates.

1 {

2 "$schema": "https://vega.github.io/schema/vega-lite/v5.json",

3 "data": {

4 "values": [

5 {"measure": "LDL-C decrease", "lo": 1.127, "hr":0.775, "hi": 1.64},

6 {"measure": "Age", "lo": 1.594, "hr": 1.103, "hi": 2.303},

7 {"measure": "Female", "lo": 1.698, "hr":1.148, "hi":2.512}

8]

9 },

10 "title": {

11 "text": "Title 1",

12 "fontSize": 12,

13 "subtitle": "Subtitle 1"

14 },

15 "facet": {

16 "row": {

17 "field": "cohort",

2. STAGE 2: CHART CONFIGURATION 57

Figure 7.2: Spreadsheet Content for Cox Proportional Hazards Model 1 of the example.

18 "header": {

19 "labelAngle": 360,

20 "labelFontSize": 10.5

21 }

22 }

23 },

24 "spec": {

25 "encoding": {

26 "y": {

27 "field": "measure",

28 "type": "nominal",

29 "axis": {

30 "labelFontSize": 10

31 }

32 },

33 "x": {

34 "type": "quantitative",

35 "axis": {

36 "labelFontSize": 9

37 }

38 }

39 },

58 CHAPTER 7. WORKFLOW DEMONSTRATION

40 "layer": [

41 {

42 "mark": {

43 "type": "rule"

44 },

45 "encoding": {

46 "x": {

47 "field": "lo"

48 },

49 "x2": {

50 "field": "hi"

51 }

52 }

53 }

54 // Additional layers truncated for brevity

55]

56 },

57 "config": {

58 "background": "#F7F7F7",

59 "font": "Barlow, Lato, Roboto, sans-serif"

60 }

61 }

Listing 15: JSON Configuration for Forest Plot.

3 Stage 3: Chart Rendering

With the data properly set and the chart configuration in place, we are now ready to render the
Forest Plot. To achieve this, we make use of altair-save, an external package that integrates with our
architecture.

The core class responsible for this task is AltairChartRenderer, which extends the AbstractChartRen-
derer. This specialized class serves as a wrapper for Vega-Altair, utilizing the Altair library to perform
the rendering of visualizations. In this architecture, the AltairChartRenderer takes the JSON con-
figuration produced by ForestPlot and ForestPlotBinding classes and uses it to generate the visual
representation of the Forest Plot.

In most of our workflows, the AltairChartRenderer outputs a file pointer (fp), typically an in-
memory file-like object such as a StringIO object. This allows for easy manipulation and further use
of the chart in the subsequent steps of deployment. However, the renderer is also flexible enough to
output the chart as a saved image file, supporting various formats like SVG, for example.

In Figure 7.3, you will find a sample of what the rendered Forest Plot looks like.

4 Stage 4: Deployment

The final stage of the workflow involves deploying the rendered Forest Plot to a Miro board and
Google Drive. To achieve this, the VV library employs the specialized classes MiroBoardDeployer and

4. STAGE 4: DEPLOYMENT 59

Figure 7.3: Rendered Forest Plot for Model 1 of the example.

GoogleDriveDeployer.
Both classes automatically handle the upload process, ensuring that the visualizations are trans-

ferred to their designated platforms. This streamlined approach makes the visualizations readily
accessible for team collaboration (see Figure7.4).

Figure 7.4: Forest plot SVG files on Google Drive, uploaded by the Visual Viper agent.

When deploying to a Miro board, the MiroBoardDeployer class offers additional layout capabilities.
Specifically, it arranges the Forest Plots in a grid formation based on a user-defined number of columns.
In our example, the Forest Plots are laid out in a two-column grid, facilitating a visually organized
comparison of different plots (see Figure 7.5).

For more extensive projects that require the deployment of a large number of Forest Plots, the
MiroBoardDeployer is equally capable. It can layout tens of plots on the Miro board in an organized
grid, allowing for seamless interpretation and analysis of a more extensive data set (see Figure 7.6 for
a different example of Forest Plots deployed in Miro with tens of plots).

60 CHAPTER 7. WORKFLOW DEMONSTRATION

Figure 7.5: Forest Plots for Models 1-3 of the example on Miro Board.

Figure 7.6: Different example of Forest Plots deployed in Miro with tens of plots laid out in a grid.

Chapter 8

Evaluation Results

1 Time Decomposition . 61

2 Time Metrics . 61

3 Adjustment for Fatigue . 61

4 Key Takeaways . 62

This chapter presents the effectiveness of the VV Python library in improving healthcare data
visualization for academic research. We compare its performance against traditional methods. Our
focus is on two metrics: ”Time-to-First-Chart Draft” and ”Time-to-Final-Chart.”

The data for this evaluation was collected from a project that involved producing visual repre-
sentations from a set of 72 spreadsheets. These times were captured using Monday.com, following
a well-established practice within the organization where the author works for project management,
including time-tracking. Time measurements for VV were taken using Python's time library, by cal-
culating the delta of time between the start and completion of relevant tasks.

1 Time Decomposition

The total time to complete the project was decomposed into two main categories:
Initial Setup Time

• For a human analyst, this refers to the time spent on organizing the spreadsheets and preparing
the necessary files for task completion.

• For the VV system, this means the time required for adequately setting up the software environ-
ment and data linkage.

Time per Spreadsheet

• This is the time taken to generate a chart from each individual spreadsheet.

2 Time Metrics

3 Adjustment for Fatigue

To enrich our evaluation, we extend the previous comparison by adding considerations for two
essential factors. The analysis was performed using R (version 4.2.3) [68] and the plots were generated
using the ggplot2 package [14].

61

62 CHAPTER 8. EVALUATION RESULTS

Table 8.1: Time Metrics Comparing Manual Methods and VV Python Library for a Project with 72
Spreadsheets.

Metric
Manual
Methods

Visual Viper

Time-to-First-Chart-Draft
Initial setup 0h30min 2h00min
Time per spreadsheet 5min <10-3

Total time (72 spreadsheets) 6h30min 2h00min

Time-to-Final-Chart
Initial setup 0h30min 2h00

Time per spreadsheet 12min
To Miro: ∼4 sec

To GDrive: ∼3 sec
Total time (72 spreadsheets) 14h54min 2h9min

VV: Visual Viper Library; h: hour; min: minute; sec: second.

We considered the following factors:

• Task Fatigue: It's acknowledged that task fatigue can affect the time taken for task completion
in a non-linear manner.

• Additional Human Intervention: The output visualizations generated by VV requires ad-
ditional human intervention for validation of accuracy, a factor not considered in the initial
metrics.

In this simulation, we concentrate on the ”Time-to-Final-Chart” metric, aiming to provide a more
comprehensive view of the time required to produce a finalized chart, inclusive of all adjustments and
confirmations.

The time adjusted for fatigue was computed using the equation (1):

Adjusted Time = setup time + (task time× ix) + (task time× ixfatigue rate) (8.1)

We used bootstrapping with 100 samples, assuming a normal distribution for each variable. The
5th and 95th percentiles (P05 and P95) were calculated to construct 90% Confidence Intervals for our
time metrics.

4 Key Takeaways

The data presented in Table 8.1 and Figure 8.1 offer significant insights into the operational effi-
ciencies associated with the VV Python library for chart creation in academic research. In particular,
the differential impact of using VV in comparison to manual methods becomes more pronounced as
the size of the project increases.

Figure 8.1 illustrates the cumulative time required to process 72 spreadsheets for both a standalone
analyst and an augmented system involving both an analyst and VV. One of the striking observations
is the crossover point where VV starts to show a time advantage. While the initial setup time for VV
is significantly higher (2 hours compared to 0.5 hours for the analyst), the system starts to outperform
the analyst alone at around 8 spreadsheets. By the time 25 spreadsheets are processed, the confidence
intervals for the two methods no longer overlap, signaling a clear advantage for VV.

Our adjusted metrics also account for factors like task fatigue and the need for additional human
verification of VV’s outputs. Even after these considerations, VV holds an advantage in larger projects,
both in terms of time efficiency and likely in terms of reduced human error owing to fatigue.

Another significant aspect that adds complexity to this evaluation is the dynamic nature of these
data collection processes. Studies are rarely static; they often require adjustments to the design or
updating of data. These changes necessitate updating the charts, perhaps multiple times over the

4. KEY TAKEAWAYS 63

Figure 8.1: Cumulative Time to Handle Spreadsheets for Different Agents

course of a study. While the initial setup is a one-time task, adjustments and updates are recurring
tasks that continue to consume time. If the initial process is manual and lacks scalability, these
frequent updates can quickly become a resource-consuming bottleneck. This is where the growing
performance advantages of VV become particularly compelling. Our evaluation so far has considered
only a single iteration of a project with 72 spreadsheets. In a dynamic study environment requiring
frequent adjustments and updates, the scalability advantages of VV could be even more pronounced.
Each update in a manual setting can be seen as an iteration that consumes substantial time and
resources. VV, which already shows performance benefits in larger projects and single iterations, is
likely to magnify these advantages in the context of ongoing, multiple iterations. Therefore, in a
continually evolving study, the initial time investment in setting up VV is likely to yield significant
long-term savings.

Chapter 9

Discussion

1 Integration in Academic and Healthcare Contexts 65

2 Deployment Options . 65

3 Limitations . 66

4 Planned Future Developments . 66

5 Software Development Learning Insights . 66

The earlier chapters provided an in-depth look at the system I've developed, focusing on its archi-
tecture, features, and the evaluation metrics that attest to its performance. This discussion aims to
offer a comprehensive reflection on this work, examining its current limitations, potential for future
development, and the broader implications it could have in academic and healthcare contexts.

1 Integration in Academic and Healthcare Contexts

The ability to dynamically create and update charts like Forest Plots could be invaluable in both
educational settings and medical research. For example, the tool could be integrated into academic
courses focusing on statistical methods, epidemiology, or healthcare management, offering students
hands-on experience with data visualization. In healthcare settings, the system could aid in real-
time data tracking and analytics, which is crucial in making timely and data-backed decisions. The
application's modularity and the possibility of developing specific plugins make it highly adaptable to
different academic and clinical use-cases.

2 Deployment Options

As it currently stands, the system operates solely in a local environment. While this setup serves its
purpose for small-scale, individual projects, it's limited in terms of scalability and ease of integration
into larger workflows. Transitioning to a cloud-based service could effectively address these limitations.

AWS Lambda offers an appealing solution for several reasons. First, it eliminates the need to
manage servers or clusters, allowing the focus to remain on code execution. This is particularly
beneficial because you only pay for the computation time used, making it a cost-effective choice.
Lambda can also automatically respond to code execution requests on any scale, from a few events
per day to hundreds of thousands per second, which makes it well-suited for projects with variable
demand [77].

65

66 CHAPTER 9. DISCUSSION

3 Limitations

One limitation of the current system is that the developed plugins are inherently designed to suit
the specific workflow requirements of the company where the author works. This could pose challenges
in adapting the tool for more generalized use-cases. To enhance the system's utility across various
applications, it would be necessary to either develop additional plugins or modify the existing ones to
accommodate different configuration parameters.

Another significant limitation remains in terms of deploying charts that handle vector graphics,
which would allow researchers to fine-tune the charts intuitively. We initially considered Figma as
a potential platform for deployment, but the Figma API is predominantly read-only. It permits
only writing comments but restricts manipulating graphical elements directly. This gap opens up a
possibility for future work in finding or creating a more versatile platform for chart deployment.

4 Planned Future Developments

While our focus has been on the Forest Plot plugin due to its prominence in our current large-scale
projects, such as one that involves creating 360 Forest Plots, we acknowledge the need for additional
chart types. Upcoming releases could include plugins for survival charts, bar charts, and Sankey
diagrams.

To make the system more user-friendly, we aim to develop a Command Line Interface (CLI). A CLI
would streamline the user experience by providing a straightforward way to configure various system
parameters, ideally reducing the initial setup time.

5 Software Development Learning Insights

Another important outcome of this project is the experience gained in software development
methodologies and best practices. While architecting the system, there was an emphasis on employing
effective development paradigms and applying established design patterns. Overall, the development
process served as a practical case study in applying a blend of software engineering principles, devel-
opment paradigms, and data structures to create a robust and scalable data visualization tool.

Chapter 10

Conclusion

This work has explored the specificities of data visualization in healthcare research, with a particular
focus on big datasets and described the development of a data visualization automation tool.

The original contribution of this work lies in the development of a specialized data visualization
system designed to meet the specific needs of academic and healthcare settings. While it currently
operates in a local environment, it offers a modular architecture that is ripe for future expansion and
integration into cloud-based platforms.

The system demonstrated its ability to efficiently create and update complex visualizations, such
as Forest Plots, offering substantial advantages in terms of time and resource efficiency.

Importantly, the development process served as an applied case study in employing a range of
software development methodologies and best practices, offering significant learning experiences that
can inform future work in this domain.

Several limitations were identified, setting the stage for future development that could focus on
expanding the types of visualizations supported, increasing scalability, and offering more versatile
deployment options.

Ultimately, the insights gained through this work affirm the power of data visualization as a critical
tool for data interpretation and decision-making in healthcare research. As this field continues to
evolve, it is anticipated that the integration of specialized tools, coupled with advancements in software
engineering practices, will further amplify the capabilities of data visualization to serve the complex
needs of healthcare research and beyond.

As a final note, it is worth mentioning that the tool developed through this work will be actively
leveraged in our scientific communication processes, particularly in the context of real-world evidence.
This incorporation not only adds a practical dimension to the academic contributions of this research
but also paves the way for a sustained impact on healthcare research and outcomes.

67

Bibliography

[1] Sheryl Coughlin, David Roberts, Kenneth O’Neill, and Peter Brooks. Looking to tomorrow’s
healthcare today: a participatory health perspective. Intern. Med. J., 48(1):92–96, January 2018.

[2] Sabyasachi Dash, Sushil Kumar Shakyawar, Mohit Sharma, and Sandeep Kaushik. Big data in
healthcare: management, analysis and future prospects. Journal of Big Data, 6(1):1–25, June
2019.

[3] Mounir El Khatib, Samer Hamidi, Ishaq Al Ameeri, Hamad Al Zaabi, and Rehab Al Marqab.
Digital disruption and big data in healthcare - opportunities and challenges. Clinicoecon. Outcomes
Res., 14:563–574, August 2022.

[4] T Le, B Reeder, H Thompson, and G Demiris. Health providers’ perceptions of novel approaches
to visualizing integrated health information. Methods Inf. Med., 52(03):250–258, 2013.

[5] Daniel Filonik, Markus Rittenbruch, Marcus Foth, and Tomasz Bednarz. Visualisation design as
language transformations - from conceptual models to graphics grammars. In 2019 23rd Interna-
tional Conference in Information Visualization – Part II, pages 18–23. ieeexplore.ieee.org, July
2019.

[6] Siobhan O’connor, Marion Waite, David Duce, Alison O’Donnell, and Charlene Ronquillo. Data
visualization in health care: The florence effect. Journal of Advanced Nursing, 76(7):1488–1490,
2020.

[7] Edward R Tufte. The Visual Display of Quantitative Information. 1983.

[8] William S Cleveland and Robert McGill. Graphical perception: Theory, experimentation, and
application to the development of graphical methods. J. Am. Stat. Assoc., 79(387):531–554, 1984.

[9] Manolis Savva, Nicholas Kong, Arti Chhajta, Li Fei-Fei, Maneesh Agrawala, and Jeffrey Heer.
ReVision: automated classification, analysis and redesign of chart images. In Proceedings of the
24th annual ACM symposium on User interface software and technology, UIST ’11, pages 393–402,
New York, NY, USA, October 2011. Association for Computing Machinery.

[10] Leland Wilkinson. The Grammar of Graphics. Springer New York.

[11] Michael Bostock and Jeffrey Heer. Protovis: a graphical toolkit for visualization. IEEE Trans.
Vis. Comput. Graph., 15(6):1121–1128, 2009.

[12] Michael Bostock, Vadim Ogievetsky, and Jeffrey Heer. D³: Data-Driven documents. IEEE Trans.
Vis. Comput. Graph., 17(12):2301–2309, December 2011.

[13] Try Online. A visualization grammar. https://vega.github.io/vega/. Accessed: 2023-8-31.

[14] Hadley Wickham. Programming with ggplot2. In Hadley Wickham, editor, ggplot2: Elegant
Graphics for Data Analysis, pages 241–253. Springer International Publishing, Cham, 2016.

https://vega.github.io/vega/

70 BIBLIOGRAPHY

[15] Arvind Satyanarayan, Dominik Moritz, Kanit Wongsuphasawat, and Jeffrey Heer. Vega-Lite:
A grammar of interactive graphics. IEEE Trans. Vis. Comput. Graph., 23(1):341–350, January
2017.

[16] Nicolle M Gatto, Shirley V Wang, William Murk, Pattra Mattox, M Alan Brookhart, An-
drew Bate, Sebastian Schneeweiss, and Jeremy A Rassen. Visualizations throughout pharma-
coepidemiology study planning, implementation, and reporting. Pharmacoepidemiol. Drug Saf.,
31(11):1140–1152, November 2022.

[17] Richard Gauthier and Stephen Ponto. Designing Systems Programs. Automatic Computation S.
Prentice Hall, Old Tappan, NJ, November 1970.

[18] D L Parnas. On the criteria to be used in decomposing systems into modules. Commun. ACM,
15(12):1053–1058, December 1972.

[19] Hans Van Vliet. Software engineering: principles and practice, volume 13. John Wiley & Sons
Hoboken, NJ, 2008.

[20] Hongyi Sun, Waileung Ha, Pei-Lee Teh, and Jianglin Huang. A case study on implementing
modularity in software development. Journal of Computer Information Systems, 57(2):130–138,
April 2017.

[21] Frederick Brooks (Jr.). The Mythical Man-month: Essays on Software Engineering. Addison-
Wesley Publishing Company, 1975.

[22] Nehul Singh, Satyendra Singh Chouhan, and Karan Verma. Object oriented programming: Con-
cepts, limitations and application trends. In 2021 5th International Conference on Information
Systems and Computer Networks (ISCON), pages 1–4, October 2021.

[23] Andrew P Black. Object-oriented programming: Some history, and challenges for the next fifty
years. Inform. and Comput., 231:3–20, October 2013.

[24] Nehul Singh, Satyendra Chouhan, and Karan Verma. Object oriented programming: Concepts,
limitations and application trends. September 2021.

[25] Mauŕıcio Aniche, Joseph Yoder, and Fabio Kon. Current challenges in practical Object-Oriented
software design. In 2019 IEEE/ACM 41st International Conference on Software Engineering:
New Ideas and Emerging Results (ICSE-NIER), pages 113–116, May 2019.

[26] Massimiliano Dessi. Spring 2.5 Aspect Oriented Programming. Packt Pub., 2009.

[27] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns: Elements of
Reusable Object-Oriented Software. Pearson Deutschland GmbH, 1995.

[28] L Jacobson and J R G Booch. The unified modeling language reference manual. Addison-Wesley
Professional, January 2005.

[29] Robert C Martin. Design principles and design patterns. http://staff.cs.utu.fi/staff/

jouni.smed/doos_06/material/DesignPrinciplesAndPatterns.pdf. Accessed: 2023-8-29.

[30] Dua Agha, Rashida Sohail, Areej Fatemah Meghji, Ramsha Qaboolio, and Sania Bhatti. Test
driven development and its impact on program design and software quality: A systematic literature
review. 11(1):268–280, June 2023.

[31] Maria Teresa Baldassarre, Danilo Caivano, Davide Fucci, Natalia Juristo, Simone Romano,
Giuseppe Scanniello, and Burak Turhan. Studying test-driven development and its retainment
over a six-month time span. J. Syst. Softw., 176:110937, June 2021.

http://staff.cs.utu.fi/staff/jouni.smed/doos_06/material/DesignPrinciplesAndPatterns.pdf
http://staff.cs.utu.fi/staff/jouni.smed/doos_06/material/DesignPrinciplesAndPatterns.pdf

BIBLIOGRAPHY 71

[32] Fahmi Taufiqurrahman, Sri Widowati, and Muhammad Johan Alibasa. The impacts of test driven
development on code coverage. In 2022 1st International Conference on Software Engineering and
Information Technology (ICoSEIT), pages 46–50, November 2022.

[33] Stephen O’Grady. The RedMonk programming language rankings: January 2023. https://

redmonk.com/sogrady/2023/05/16/language-rankings-1-23/, May 2023. Accessed: 2023-8-
28.

[34] Stack overflow developer survey 2023. https://survey.stackoverflow.co/2023/. Accessed:
2023-8-28.

[35] “home”. https://docs.docker.com/, August 2023. Accessed: 2023-8-31.

[36] What is a container? https://www.docker.com/resources/what-container/. Accessed: 2023-
8-31.

[37] Hans-Georg Eichler, Eric Abadie, Alasdair Breckenridge, Bruno Flamion, Lars L Gustafsson,
Hubert Leufkens, Malcolm Rowland, Christian K Schneider, and Brigitte Bloechl-Daum. Bridging
the efficacy–effectiveness gap: a regulator’s perspective on addressing variability of drug response.
Nature reviews Drug discovery, 10(7):495–506, 2011.

[38] Amr Makady, Anthonius de Boer, Hans Hillege, Olaf Klungel, Wim Goettsch, et al. What is
real-world data? a review of definitions based on literature and stakeholder interviews. Value in
health, 20(7):858–865, 2017.

[39] Massimo Di Maio, Francesco Perrone, and Pierfranco Conte. Real-world evidence in oncology:
Opportunities and limitations. The Oncologist, 25(5):e746–e752, 2020.

[40] Christen M Gray, Fiona Grimson, Deborah Layton, Stuart Pocock, and Joseph Kim. A framework
for methodological choice and evidence assessment for studies using external comparators from
real-world data. Drug safety, 43:623–633, 2020.

[41] Stelios Kympouropoulos. Real world evidence: methodological issues and opportunities from the
european health data space. BMC Medical Research Methodology, 23(1):185, 2023.

[42] Shirley V Wang, Simone Pinheiro, Wei Hua, Peter Arlett, Yoshiaki Uyama, Jesse A Berlin,
Dorothee B Bartels, Kristijan H Kahler, Lily G Bessette, and Sebastian Schneeweiss. Start-rwe:
structured template for planning and reporting on the implementation of real world evidence
studies. Bmj, 372, 2021.

[43] Benjamin S Glicksberg, Boris Oskotsky, Phyllis M Thangaraj, Nicholas Giangreco, Marcus A
Badgeley, Kipp W Johnson, Debajyoti Datta, Vivek A Rudrapatna, Nadav Rappoport, Mark M
Shervey, et al. Patientexplorer: an extensible application for dynamic visualization of patient
clinical history from electronic health records in the omop common data model. Bioinformatics,
35(21):4515–4518, 2019.

[44] Qiru Wang and Robert S Laramee. Ehr star: the state-of-the-art in interactive ehr visualization.
In Computer Graphics Forum, volume 41, pages 69–105. Wiley Online Library, 2022.

[45] Daniel J Friedman and R Gibson Parrish. The population health record: concepts, definition,
design, and implementation. Journal of the American Medical Informatics Association, 17(4):359–
366, 2010.

[46] Lauren N Carroll, Alan P Au, Landon Todd Detwiler, Tsung-chieh Fu, Ian S Painter, and Neil F
Abernethy. Visualization and analytics tools for infectious disease epidemiology: a systematic
review. Journal of biomedical informatics, 51:287–298, 2014.

https://redmonk.com/sogrady/2023/05/16/language-rankings-1-23/
https://redmonk.com/sogrady/2023/05/16/language-rankings-1-23/
https://survey.stackoverflow.co/2023/
https://docs.docker.com/
https://www.docker.com/resources/what-container/

72 BIBLIOGRAPHY

[47] Bernhard Preim and Kai Lawonn. A survey of visual analytics for public health. In Computer
Graphics Forum, volume 39, pages 543–580. Wiley Online Library, 2020.

[48] General Data Protection Regulation (GDPR) Compliance Guidelines — gdpr.eu. https://gdpr.
eu/. [Accessed 27-12-2023].

[49] The American Recovery and Reinvestment Act of 2009. https://www.congress.gov/bill/

111th-congress/house-bill/1/text. [Accessed 27-12-2023].

[50] Rajeev Agrawal, Anirudh Kadadi, Xiangfeng Dai, and Frederic Andres. Challenges and op-
portunities with big data visualization. In Proceedings of the 7th International Conference on
Management of computational and collective intElligence in Digital EcoSystems, pages 169–173,
2015.

[51] Jaillah Mae Gesulga, Almarie Berjame, Kristelle Sheen Moquiala, and Adrian Galido. Barriers to
electronic health record system implementation and information systems resources: a structured
review. Procedia Computer Science, 124:544–551, 2017.

[52] MIT Critical Data. Secondary analysis of electronic health records. Springer Nature, 2016.

[53] Kagiso Ndlovu, Maurice Mars, and Richard E Scott. Interoperability frameworks linking mhealth
applications to electronic record systems. BMC Health Services Research, 21(1):459, 2021.

[54] Jawad Ahmed Chishtie, Jessica Babineau, Iwona Anna Bielska, Monica Cepoiu-Martin, Michael
Irvine, Andriy Koval, Jean-Sebastien Marchand, Luke Turcotte, Tara Jeji, and Susan Jaglal.
Visual analytic tools and techniques in population health and health services research: protocol
for a scoping review. JMIR research protocols, 8(10):e14019, 2019.

[55] Younjin Chung, Nasser Bagheri, Jose Alberto Salinas-Perez, Kayla Smurthwaite, Erin Walsh,
MaryAnne Furst, Sebastian Rosenberg, and Luis Salvador-Carulla. Role of visual analytics in
supporting mental healthcare systems research and policy: A systematic scoping review. Inter-
national Journal of Information Management, 50:17–27, 2020.

[56] Graeme S Halford, Rosemary Baker, Julie E McCredden, and John D Bain. How many variables
can humans process? Psychological science, 16(1):70–76, 2005.

[57] Jesus J Caban and David Gotz. Visual analytics in healthcare–opportunities and research chal-
lenges. Journal of the American Medical Informatics Association, 22(2):260–262, 2015.

[58] Inseok Ko and Hyejung Chang. Interactive visualization of healthcare data using tableau. Health-
care informatics research, 23(4):349–354, 2017.

[59] Tableau Community Forums — community.tableau.com. https://community.tableau.com/s/
question/0D54T00000C6lOuSAJ/odds-ratio-plot-forest-plot. [Accessed 27-12-2023].

[60] Create Custom Charts with the Extensions API — A Slice of Keesh — sliceofkeesh.com. https://
sliceofkeesh.com/post/custom-charts-dashboard-extensions-api. [Accessed 27-12-2023].

[61] Jash Virani, Nikita Daredi, Aayush Bhanushali, Madhu Shukla, and Pooja Shah. Mental health-
care analysis using power bi & machine learning. In 2023 4th International Conference on Signal
Processing and Communication (ICSPC), pages 73–76. IEEE, 2023.

[62] mberdugo. Learn how to develop your own Power BI visual using the circle card visual as an
example. - Power BI — learn.microsoft.com. https://learn.microsoft.com/en-us/power-bi/
developer/visuals/develop-circle-card. [Accessed 27-12-2023].

https://gdpr.eu/
https://gdpr.eu/
https://www.congress.gov/bill/111th-congress/house-bill/1/text
https://www.congress.gov/bill/111th-congress/house-bill/1/text
https://community.tableau.com/s/question/0D54T00000C6lOuSAJ/odds-ratio-plot-forest-plot
https://community.tableau.com/s/question/0D54T00000C6lOuSAJ/odds-ratio-plot-forest-plot
https://sliceofkeesh.com/post/custom-charts-dashboard-extensions-api
https://sliceofkeesh.com/post/custom-charts-dashboard-extensions-api
https://learn.microsoft.com/en-us/power-bi/developer/visuals/develop-circle-card
https://learn.microsoft.com/en-us/power-bi/developer/visuals/develop-circle-card

BIBLIOGRAPHY 73

[63] rloutlaw. Reports - Export To File - REST API (Power BI Power BI REST APIs)
— learn.microsoft.com. https://learn.microsoft.com/en-us/rest/api/power-bi/reports/

export-to-file. [Accessed 27-12-2023].

[64] Fabiano Dalpiaz and Sjaak Brinkkemper. Agile requirements engineering with user stories. In
2018 IEEE 26th International Requirements Engineering Conference (RE), pages 506–507. ieeex-
plore.ieee.org, August 2018.

[65] Garm Lucassen, Fabiano Dalpiaz, Jan Martijn E M van der Werf, and Sjaak Brinkkemper. The
use and effectiveness of user stories in practice. In Requirements Engineering: Foundation for
Software Quality, pages 205–222. Springer International Publishing, 2016.

[66] Ivan Buzurovic, Tarun K Podder, Lei Fu, and Yan Yu. Modular software design for brachytherapy
Image-Guided robotic systems. In 2010 IEEE International Conference on BioInformatics and
BioEngineering, pages 203–208, May 2010.

[67] Pytest: Helps you write better programs — pytest documentation. https://docs.pytest.org/
en/7.4.x/. Accessed: 2023-8-29.

[68] R R Foundation for Statistical Computing. R: A language and environment for statistical com-
puting. RA Lang Environ Stat Comput.

[69] Tom Preston-Werner. Semantic versioning 2.0.0. https://semver.org/spec/v2.0.0.html. Ac-
cessed: 2023-8-28.

[70] Krist Wongsuphasawat. Navigating the wide world of
data visualization libraries. https://medium.com/nightingale/

navigating-the-wide-world-of-web-based-data-visualization-libraries-798ea9f536e7,
September 2020. Accessed: 2023-8-28.

[71] Jeffrey Heer. Introduction to Vega-Lite. https://observablehq.com/@uwdata/

introduction-to-vega-lite, March 2019. Accessed: 2023-8-28.

[72] Cristina Gavina. Lipid management in pre-diabetes and diabetes - a RWE study of an unselected
portuguese population. Congresso Português de Endocrinologia 2023, February 2023.

[73] Low-density lipoprotein cholesterol reduction and short-term incidence of ASCVD in the
population-based cohort study LATINO. https://esc365.escardio.org/presentation/

267983?resource=abstract. Accessed: 2023-8-28.

[74] Cristina Gavina, Francisco Araújo, Carla Teixeira, Jorge A Ruivo, Ana Lúısa Corte-Real, Leonor
Luz-Duarte, Mariana Canelas-Pais, and Tiago Taveira-Gomes. Sex differences in LDL-C control
in a primary care population: The PORTRAIT-DYS study. Atherosclerosis, May 2023.

[75] PlantUML language reference guide. https://plantuml.com/guide. Accessed: 2023-8-31.

[76] Saving altair charts — Vega-Altair 5.1.1 documentation. https://altair-viz.github.io/user_
guide/saving_charts.html. Accessed: 2023-8-31.

[77] AWS lambda. https://aws.amazon.com/pt/lambda/. Accessed: 2023-8-31.

https://learn.microsoft.com/en-us/rest/api/power-bi/reports/export-to-file
https://learn.microsoft.com/en-us/rest/api/power-bi/reports/export-to-file
https://docs.pytest.org/en/7.4.x/
https://docs.pytest.org/en/7.4.x/
https://semver.org/spec/v2.0.0.html
https://medium.com/nightingale/navigating-the-wide-world-of-web-based-data-visualization-libraries-798ea9f536e7
https://medium.com/nightingale/navigating-the-wide-world-of-web-based-data-visualization-libraries-798ea9f536e7
https://observablehq.com/@uwdata/introduction-to-vega-lite
https://observablehq.com/@uwdata/introduction-to-vega-lite
https://esc365.escardio.org/presentation/267983?resource=abstract
https://esc365.escardio.org/presentation/267983?resource=abstract
https://plantuml.com/guide
https://altair-viz.github.io/user_guide/saving_charts.html
https://altair-viz.github.io/user_guide/saving_charts.html
https://aws.amazon.com/pt/lambda/

	

	

 SED
E A

D
M

IN
ISTRA

TIVA

	
FA

C
U

LD
A

D
E D

E C
IÊ
N
C
IA
S	

 FA
C

U
LD

A
D

E D
E M
E
D
IC
IN
A	

