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Resumo

O objetivo desta dissertação é investigar e implementar técnicas de remate eficientes e precisas
compatíveis com a nova abordagem de dribles desenvolvida pela equipa FC Portugal. Devido
a uma recente alteração nas regras que limitou o método de dribles mais eficaz da equipa, foi
necessário reotimizar a estratégia de dribles. Para enfrentar o desafio de criar remates poderosos
após o drible, foram implementadas técnicas de machine learning.

Foi utilizado o método de Otimização de Política Próxima (PPO) de machine learning para
desenvolver esses remates rápidos. Além disso, vários outros algoritmos de Deep Reinforcement
Learning foram examinados e comparados. A dissertação apresenta uma análise abrangente dos
algoritmos de machine learning, apresentando o estado-da-arte na área.

Ao longo da pesquisa, foram estudadas 16 fases de 2 novas técnicas de dribles com o objetivo
de determinar qual etapa proporcionaria a maior eficiência para um remate em movimento. Após
este estudo, os remates originados nas fases mais promissoras, estudadas anteriormente, foram
otimizados. Os remates desenvolvidos demonstram alta eficiência, precisão e, em comparação
com os remates comummente utilizados pela equipa FC Portugal, são muito mais rápidos. Isso
abre portas para melhorias no desempenho da equipa na liga de simulação 3D da RoboCup.

i



ii



Abstract

The objective of this dissertation is to investigate and implement efficient and precise shooting
techniques compatible with the new dribbling approach developed by the FC Portugal team. Due
to a recent rule change that restricted the team’s most effective dribbling method, they had to
re-optimize their dribbling strategy. To address the challenge of creating powerful shots after
dribbling, machine learning techniques were implemented.

The Proximal Policy Optimization (PPO) method of Reinforcement Learning was employed
to develop these rapid shots. Additionally, various other Deep Reinforcement Learning algorithms
were examined and compared. The dissertation provides a comprehensive analysis of Reinforce-
ment Learning algorithms, presenting the state-of-the-art in the field.

Throughout the research, 16 phases of 2 new dribbling techniques were studied to determine
which phase would offer the most efficiency for a shot in motion. Following this study, the shots
originating from the most promising phases studied earlier were optimized. The developed shots
demonstrate high efficiency, accuracy, and, compared to the commonly used shots by the FC
Portugal team, are much faster. This opens the door to improved performances by the team in the
RoboCup simulation 3D league.
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Chapter 1

Introduction

Robotics and artificial intelligence (AI) have seen remarkable advancements, fueling significant

interest within the scientific community. Initiatives like RoboCup have played a crucial role in

driving research in these fields.

RoboCup, a prestigious international research and education endeavor, serves as a catalyst

for pushing the boundaries of robotics and AI research through soccer-related challenges. This

initiative comprises a robotics competition, featuring a simulation league with a 3D sub-league

where teams showcase their skills, competing in leagues and competitions, with humanoid robots

engaging in simulated soccer matches. The primary aim of this league is to push the boundaries of

algorithm development, empowering these virtual robots to showcase coordination, cooperation,

and learning abilities similar to those of a real soccer team [7],[8].

One such enthusiastic participant in RoboCup is the FCPortugal3D team, a collaborative effort

between the Universities of Porto and Aveiro. They actively engage in this prestigious global

championship for robotic soccer on an annual basis.

This dissertation specifically addresses the challenge of creating, implementing, and evaluating

a learning engine for robot action learning. The primary goal is to design a deep neural network-

based learning engine capable of teaching a single robot the skill of "shot after dribble.’"

1.1 Context

RoboCup [7] is a prestigious international research and education initiative that pushes the bound-

aries of robotics and artificial intelligence research through soccer-related challenges. It was es-

tablished in 1997 with the ambitious goal of creating a team of robots capable of defeating the

human soccer World Cup champions by 2050 [9].

The initiative consists of several leagues, including the simulation league with a 3D sub-

league. In this league, matches are held between two teams of 11 humanoid robots each. These

robots act as autonomous agents and use a 3D soccer simulation alongside NAO robots to explore

and demonstrate cooperation, coordination, and individual as well as collective learning of soccer

skills. The primary objective is to score goals while effectively avoiding conceding them [8].

1
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Beyond the competitive aspect, RoboCup serves as a platform for advancing the forefront of

robotics and AI research, fostering international collaboration among researchers and students,

and inspiring the next generation of researchers and engineers [9].

1.2 Motivation

The field of robotic soccer and the participating in RoboCup competitions motivates researchers to

develop innovative approaches to enhance robot performance, provides a dynamic and challenging

environment for research in machine learning and pushes the boundaries of robotics and artificial

intelligence.

RoboCup’s objective of creating a team of robots capable of defeating human soccer World

Cup champions by 2050 serves as a driving force for continuous improvement. The evolving

competition rules encourage researchers to refine their methods and algorithms, leading to more

realistic and sophisticated robot behaviors. This constant evolution creates a fertile ground for

exploring advanced techniques and cutting-edge approaches in robotic decision-making and coor-

dination [9].

At the core of a robot’s behavior are low-level skills, such as walking, running, shooting, and

standing up. These foundational skills have reached a high level of efficiency, enabling researchers

to focus on more complex implementations and behaviors. The integration of deep neural networks

and learning engines opens up new possibilities for teaching robots complex skills, such as "dribble

and shot," in a more adaptive and intelligent manner [10].

Additionally, the use of simulation leagues, including the 3D Simulation League, provides

several advantages over real robots. It allows researchers to abstract away from hardware-related

issues and focus on algorithm development and performance improvements. The ability to run

numerous simulations and conduct experiments in a controlled and reproducible environment ac-

celerates progress and facilitates the exploration of various learning approaches.

By addressing the challenge of developing a learning engine for robot action learning in the

context of the RoboCup 3D Simulation League, this research aims to contribute to the advance-

ment of robot learning, skill acquisition, and performance optimization. Moreover, the insights

gained from this work have broader implications for the field of robotics, enabling the devel-

opment of more intelligent and capable autonomous systems in diverse real-world applications

beyond robotic soccer.

1.3 Objectives

In the 2023 RoboCup competition, significant rule changes were introduced, rendering the most

commonly used dribbling behavior of the FC Portugal team ineffective. As a response, the team

members collaborated to develop a new dribbling behavior to adapt to the altered rules. Further-

more, the existing versions of the team’s "kick" behavior showed some limitations, although they
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are quite accurate, they are performed somewhat slowly, and do not allow a fluid transition into

the new dribbling behavior, having to change their speed and even stop to make the shot.

The primary objective of this dissertation is to enhance the transition from dribbling to kicking,

enabling the agent to transition from the different variables of the new dribble to a kick without

the need to stop or change its velocity. The performance of the kick must be in the fastest way

possible, while understanding which variable of the dribble allows for a better and faster kick.

This agile and continuous kicking behavior is considered a "kick in motion" after implementing

the new dribble behavior. By achieving this, the agent can perform in a more human-like manner

on the field, significantly improving its overall performance.

The importance of this behavior lies in its impact on both attacking and defending strategies.

When attacking, stopping to perform a kick consumes valuable time, giving the defending team

an opportunity to intercept the ball or reposition their agents. On the other hand, during defensive

plays, a quick removal of the ball from an area of relative danger is crucial, making time improve-

ments critical. Therefore, developing this behavior has the potential to make the play style of the

FC Portugal 3D team much more dynamic, providing a substantial competitive advantage.

1.4 Thesis Structure

In addition to the introduction, this dissertation comprises 7 additional chapters:

• Chapter 2 delves into the background and fundamental aspects;

• Chapter 3 presents a review of the bibliography;

• Chapter 4 focuses on an analysis of the phases following the initial dribble after the shot to

determine under what circumstances the best shot is executed;

• Chapter 5 showcases the results of optimizing the best phases identified in the analysis of

the previous chapter;

• Chapter 6 examines the phases of the second dribble following the shot to understand the

circumstances in which the best shot is achieved;

• Chapter 7 presents the results of optimizing the best phases identified in the analysis of the

previous chapter;

• In Chapter 8, the main conclusions regarding my comprehension of the problem and future

work are elucidated.
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Chapter 2

Background and Fundamental Aspects

2.1 Machine Learning

To establish a foundation for the specific themes discussed in this dissertation, it is essential to

provide an overview of machine learning (ML) and its relevance in the context of RoboCup. This

chapter presents a concise summary of the different areas and sub-areas of AI focused on in this

research.

Machine learning is a subset of artificial intelligence that involves training algorithms to rec-

ognize patterns and make predictions or decisions based on data. The process involves feeding

machine learning algorithms with a dataset containing input data and their corresponding correct

output. The ultimate objective of machine learning is to learn a function capable of effectively

mapping the input data to the correct output [11].

In the present era, the influence of machine learning technology permeates numerous facets

of contemporary society [12]. Its intricate algorithms play pivotal roles in tasks as diverse as

engine otimization [13], manipulating genetic information [14], facilitating interactions on social

networks [15], managing voluminous data within the banking sector [16], and even contributing

to the domains of medical diagnostics and research [17]. Collectively, these remarkable strides

underscore the profound significance of machine learning in shaping our lives.

2.2 Deep Learning and Neural Networks

Deep learning, a branch of machine learning, involves training artificial neural networks (ANNs)

using extensive datasets to produce various outputs depending on the specific task, such as classi-

fication labels, generated text, predicted values, or autonomous decisions, across a wide range of

applications [12].

These neural networks are structured with layers of interconnected nodes, taking inspiration

from the organization of the human brain [18]. Artificial neural networks consist of layers of

nodes, including an input layer, one or more hidden layers, and an output layer, as shown in

Figure 2.1. Each node, or artificial neuron, is connected to others and is associated with a weight

5
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and threshold. When the output of an individual node exceeds the specified threshold value, the

node becomes activated, transmitting data to the next layer of the network. Conversely, if the

output does not surpass the threshold, no data is forwarded to the subsequent layer. ANNs learn

through training data to continually enhance their accuracy over time [19].

Figure 2.1: Example of an artificial neural network.

2.3 Reinforcement Learning

While deep learning implies large networks of neurons that can learn to recognize patterns in a big

dataset, reinforcement learning (RL) teaches computers how to learn from experience [20].

Reinforcement learning is a form of machine learning that focuses on training an agent to

make sequential decisions within an environment to maximize a reward signal. The agent learns

by interacting with the environment and receiving feedback in the form of rewards or penalties for

its actions [21].

In reinforcement learning, the problem is usually modeled as a Markov decision process

(MDP), which consists of states, actions, transitions between states, and a reward function def-

inition [22].

The reinforcement learning procedure, based on the MDP, is illustrated in Figure 2.2. It can

be defined as follows:

• Agent:

An agent is a software or physical entity capable of learning and making decisions within

an environment with the primary goal of maximizing a reward signal. The agent learns

through interactions with the environment, receiving feedback in the form of rewards or

penalties based on its actions.

• Environment (E):
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The environment is the space in which the agent operates and makes decisions. It represents

the task or problem that the agent is trying to solve. The environment provides the agent

with the necessary information and feedback to learn and make informed decisions.

• Action (A):

An action is a decision made by the agent in a given state, which impacts the environment

in some way.

• Action Space:

The action space is the finite set of all possible actions that the agent can take.

• State (S):

A state is a representation of the current situation or condition of the environment.

• State Space:

The state space is the set of all possible states that the agent can encounter while trying to

reach the goal.

• Reward (R):

A reward is an immediate feedback given to the agent when it performs a specific action

or task. The reward signal guides the learning process and helps the agent improve its

decision-making over time.

• Episode:

An episode refers to the entire cycle of actions and states the agent takes, starting from the

initial state and ending in the terminal state.

• Policy π(s):

A policy is a function that determines the action that an agent should take in a given state.

The policy is learned by the agent through interaction with the environment and is used to

map states to actions to maximize the reward signal.

• Value:

The value represents the expected long-term return with discount, compared to the short-

term reward.

• Value Function Vπ(s):

The value function Vπ(s) specifies the value of a state, which is the total amount of reward

an agent should expect to receive starting from that state, and following the policy π .

• Discount Factor γ:
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The discount factor γ is a number between 0 and 1, which balances the importance of future

rewards in defining a policy at a given state. It discounts future rewards to update the policy

since they are subject to uncertainty.

• Explore:

To explore all possible actions and sequences of steps that can lead to the same goal, the

agent generally takes random actions. This helps the agent explore the entire environment,

discover better action sequences, and maximize the reward.

• Exploit:

Exploitation is the opposite of exploration, where the agent takes the best-known action

given a particular state according to the learned policy.

Figure 2.2: The procedure within reinforcement learning [1]

2.3.1 Discrete and Continuous Actions and States Spaces

When creating action and state spaces, we have the option to choose between discrete or continu-

ous frameworks.

In a discrete state space, states are limited and can be listed, offering a clear and definite set of

possibilities. In contrast, a continuous state space allows for an endless range of values within a

specified interval, providing more adaptability and accommodating subtle variations.

Likewise, action spaces can be either discrete or continuous. Discrete action spaces consist of

a finite or countably infinite set of actions, offering a straightforward and well-defined collection

of choices. On the other hand, continuous action spaces cover an uncountable infinite set, granting

an infinite array of possible actions within a given range. Continuous actions provide precise and

detailed control, but they may demand more computational resources.

The decision to use discrete or continuous action and state spaces relies on the specific problem

and the desired level of detail. While continuous spaces can present challenges and have compu-

tational consequences, they also provide enhanced flexibility, which is often crucial for accurately

representing and handling complex tasks [23].
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2.3.2 Deterministic and Stochastic Policies

Deterministic policies consistently select a predefined action for a particular state, whereas stochas-

tic policies rely on the creation of action probabilities and choose the optimal action based on these

probabilities for a given state [24].

Deterministic policies are simpler and computationally efficient, as they don’t require calculat-

ing action probabilities. However, they lack flexibility, limiting exploration and potentially leading

to suboptimal choices[24].

Stochastic policies offer flexibility by considering multiple actions for a state, allowing ex-

ploration and the discovery of better alternatives. Yet, implementing stochastic policies can be

more challenging, involving the determination of action probabilities and potentially requiring

additional computational resources[25]

In conclusion, the choice between deterministic and stochastic policies depends on specific

requirements. Deterministic policies prioritize simplicity and efficiency, while stochastic policies

offer increased flexibility and exploration potential despite increased complexity and computa-

tional demands.

2.4 Deep Reinforcement Learning

Deep reinforcement learning is the combination of reinforcement learning and deep learning that

enables agents to learn and make decisions in complex environments by maximizing cumulative

rewards[26]. In this paradigm, neural networks are instrumental in implementing various facets of

the reinforcement learning process, including the agent’s policy and value function[27].

Figure 2.3: Taxonomy of RL algorithms [2]
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As depicted in Figure 2.3, the taxonomy of reinforcement learning algorithms is divided into

model-based methods, model-free methods, and within the model-free, it is further subdivided

into value-based methods, policy-based methods, or the combination of both.

2.4.1 Model-based and Model-free

Model-based learning uses a mathematical model to represent relationships between data and pre-

dictions. It’s trained on examples to find the best-fitting model for accurate future predictions.

In contrast, model-free learning doesn’t rely on an explicit model. Instead, it learns from

experience, adapting to new situations. It uses data to develop rules or heuristics for decision-

making without depending on a specific model for predictions [1].

2.4.1.1 Model-free: Value-based and Policy-based

In value-based methods, we estimate and optimize the value function in order to achieve the best

cumulative reward from a state or state-action pair [28]. We aim to discover the most rewarding

actions without directly learning how to perform a task. We do this by repeatedly evaluating which

actions give us the most rewards in different situations. Then, we use this information to create a

strategy that selects actions with the highest expected rewards [29].

On the other hand, policy-based methods directly learn the best policy without explicitly esti-

mating the value function [28]. Instead of estimating values, we adjust a set of rules or parameters

to find the most effective way to do the task. We use special techniques to make these adjustments

based on the rewards we receive, gradually getting better at the task [30].

2.4.1.2 Value-based: On and Off policies

On-policy methods aim to evaluate and refining the policy that is directly responsible for decision-

making. This implies that the policy used to interact with the environment is the same one being

improved. In practical terms, this approach involves the agent actively engaging with the environ-

ment to gather the needed data for policy evaluation and learning[27].

On the other hand, off-policy methods do not require that the policy employed for evaluation

and improvement is identical to the one that collects data. This means that experiences gathered

by other agents interacting with the environment can also be leveraged to enhance the policy [27].

2.5 Deep Reinforcement Learning Algorithms

Here are some examples of Deep Reinforcement Learning Algorithms [31, 27]:

2.5.1 State-Action-Reward-State-Action (SARSA)

SARSA is an On-policy reinforcement learning algorithm, which means it learns and improves

the policy (the decision-making strategy) that it’s currently using. It focuses on learning from
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its own actions and interactions with the environment, making it a somewhat cautious learner.

SARSA uses the Q-function to estimate how much reward an agent can get by taking a certain

action "a" in a specific state "s" and then following a policy for future actions. It continuously

updates its Q-values (representing the quality of the action "a" in state "s") using observed rewards

and state changes, following the SARSA update rule. SARSA keeps using its current policy to

decide actions and adjusts its Q-values accordingly as it learns.This algorithm is categorized as

value-based and is commonly used in reinforcement learning applications [32, 1].

2.5.2 Q-Learning (QL) and Deep Q-Network (DQN)

Unlike SARSA, Q-learning doesn’t necessarily follow its current policy when selecting actions

during the learning process. It often explores actions that may not be optimal according to the

current policy [33].

The action chosen by Q-learning is based on the maximum Q-value for the next state, regard-

less of whether it’s consistent with the current policy. This exploration can lead to discovering

better policies. Q-learning is more exploratory in nature and is willing to take risks to find the

optimal policy. It’s suitable for situations where the agent can afford to take suboptimal actions

during learning. It can converge to the optimal policy even if the exploration policy is different

from the target optimal policy [34].

In Q-learning, the Q-function is also used to estimate the expected cumulative reward, but it

does so in a slightly different way compared to SARSA. Q-learning updates its Q-values based on

the maximum Q-value for the next state, regardless of the action actually taken. The Q-value for a

state-action pair (Q(s, a)) is updated using the Q-learning update rule[33].

A variant of Q-learning known as Deep Q-Network leverages a neural network to approximate

the Q-function by taking the environment state as input, the neural network calculates estimated

Q-values for all potential actions. The action with the highest expected return is then selected

using these Q-values. Additionally, DQN employs a deep neural network to approximate the Q-

value function in Q-learning and includes an experience replay buffer to store transition samples

acquired during agent-environment interactions [27].

2.5.3 Policy Gradient (PG)

Policy gradient (Policy-based) methods belong to a category of reinforcement learning techniques

that focus on optimizing parameterized policies concerning the expected return, which represents

the long-term cumulative reward. This optimization process is achieved through gradient descent

[27].

The fundamental concept behind policy gradient methods is to enhance the probability of ac-

tions leading to high expected return while reducing the probability of actions associated with low

expected return. This is accomplished by computing the gradient of the expected return concern-

ing the policy parameters and using this gradient to update the policy parameters in a way that

maximizes the expected return.
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PG methods prove to be particularly well-suited for scenarios involving high-dimensional or

continuous action spaces [35].

2.5.4 Actor-Critic Methods (AC)

There exists a hybrid actor-critic approach that combines both value functions and policy search

in reinforcement learning, known as actor-critic approaches [36]. In this approach, the "Critic" is

responsible for estimating the value function, which can be either the action-value (Q value) or

the state-value (V value). On the other hand, the "Actor" takes guidance from the Critic, typically

through policy gradients, to update the policy distribution [3].

In the actor-critic framework (as depicted in figure 2.4), the actor (policy) receives a state

from the environment and selects an action to perform. Meanwhile, the critic (value function)

receives the state and reward resulting from the previous interaction. Using the information from

this interaction, the critic calculates the TD (Temporal Difference) error and utilizes it to update

both itself and the actor’s policy [3].

Figure 2.4: The actor-critic setup [3]

2.5.4.1 Asynchronous Advantage Actor Critic (A3C)

In A3C, multiple agent processes are run in parallel, each with its own actor and critic network.

These processes communicate with each other asynchronously, meaning that they do not have to

wait for one another to complete their computations before moving on to the next step. This allows

for faster training and better utilization of resources [37].

One of the key features of A3C is that it uses an advantage function, which helps the agent

learn more efficiently by taking into account the relative value of different actions. This is in

contrast to traditional value-based methods, which only consider the overall value of a state [38].
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2.5.4.2 Advantage Actor critic (A2C)

The contrast between A3C and A2C lies in their synchronization approach. In A3C, multiple

independent agents create distinct copies of the model, while in A2C, each step model sends

data back to the training model synchronously. This synchronous data exchange in A2C leads

to significant resource savings compared to A3C, all while achieving similar performance levels

[39].

2.5.5 Deep Deterministic Policy Gradients (DDPG)

Deep Deterministic Policy Gradient is an algorithm which concurrently learns a Q-function and

a policy [40]. It merges the DQN and actor-critic (Policy-based) approaches to update policies

using deterministic policy gradients through deep learning. It introduces target networks for the

actor and critic components, enabling more efficient learning from samples. However, DDPG is

known for its fragility and sensitivity to hyperparameters, making it challenging to use effectively

in practice [41].

2.5.6 Trust Proximal Policy Optimization (TRPO)

TRPO is a reinforcement learning method that enhances policies by taking significant steps to im-

prove performance, while adhering to a crucial constraint on the allowable proximity between the

new and old policies. This constraint is quantified using KL-Divergence, which measures the "dis-

tance" between probability distributions, although not in the conventional sense. The trust region

constraint serves as a boundary to restrict the extent of policy updates. By operating within this

region, TRPO avoids making drastic changes that might adversely affect performance, ensuring a

stable learning process [42].

2.5.7 Proximal Policy Optimization (PPO)

PPO algorithms offer several advantages similar to TRPO, but they are more straightforward to

implement, possess greater versatility, and exhibit improved sample efficiency [43]. This improve-

ment is achieved by utilizing a distinct objective function [44].

Due to its user-friendly nature and impressive performance, PPO has become the primary

choice for reinforcement learning at OpenAI, being widely adopted as the default algorithm [43].

During the course of the dissertation, the optimization algorithm that will be predominantly

used is the PPO implementation of Stable Baselines. This algorithm is the primary one being used

by the FCPortugal3D team and with great success. The concept of PPO is well-developed in the

chapter 3.6.4.
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Chapter 3

FC Portugal: Work Environment

This dissertation will use a special environment for the competition of simulated humanoid robots.

Therefore, it is essential to know the technologies used such as the server (SimSpark), the interface

used (RoboViz) and the type and characteristics of the agents used in these games (NAO robots).

In addition, the team of FCPortugal has its own tools to facilitate the training (FCP Gym) of agents

and recommends appropriate software (StableBaselines).

3.1 Robocup

Since 1997, there has been an annual competition that tests teams of humanoid robots, hosted in

different countries [7], as described in 1.1. Among the many existing competitions, there is the 3D

simulation competition, where the realism of the simulated environment is increased compared to

other simulation competitions by adding an extra dimension [8] . In the simulated environment,

there is a multi-agent system in which each agent or robot must think and act independently. This

is the competition where FCPortugal competes in its events and where the work developed in this

dissertation will be implemented.

3.2 SimsPark

SimSpark is a physical multi-agent simulator designed for 3D environments, utilizing the Open

Dynamics Engine library [45]. It operates on the Spark application framework and has served as

the official simulation platform for the RoboCup Simulation League since 2004 [46].

Rcssserver3d was specifically developed for the RoboCup simulation league. It serves as a

soccer simulation server built on the SimSpark platform, offering specialized physical 3D soccer

simulations. The server supports both UDP and TCP communication, enabling implementation in

any programming language that supports these socket types [47].

15
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Figure 3.1: SimsPark Football field [4]

3.2.1 Simulated Field

The simulated soccer field is modeled based on a FIFA soccer field, approximately occupying 35%

of its dimensions, which is about 30 by 20 meters in size. The main features of the field include:

• The goals are 2.1 by 0.6 meters, standing at a height of 0.8 meters.

• Each goal has a penalty area measuring 3.9 by 1.8 meters.

• The center circle has a radius of 2 meters.

• The soccer ball in the simulation has a radius of 0.04 meters and weighs 26 grams.

• Surrounding the soccer field is a border extending 10 meters in both the x and y dimensions.

• Unique markers are placed at each corner of the field and on the goalposts. These markers’

positions are fixed and known to each agent, helping them determine their position on the

soccer field by observing the field lines within their field of view.

The field is divided by two axes, with the origin point (x = 0 and y = 0) located at the center

of the middle circle. The x-axis ranges from -15 to 15, and the y-axis ranges from -10 to 10, as

illustrated in Figure 3.1 [4].

3.2.2 Architecture in a Competition Context

In the RoboCup competition, each team is allocated a client computer. Within each team, every

agent must connect to a proxy, which, in turn, is linked to a server. A monitor is also connected to

the server to provide a visual representation of the game (Figure 3.2).
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Figure 3.2: SimSpark: A Deeper Look into the Architecture [4]

The agent proxy instance consists of two threads. One thread is responsible for forwarding

server perception messages and maintaining synchronization times, while the other thread relays

agent action messages.

In this concept, maintaining the response time of agents is done by simply waiting 20ms after

forwarding a perception message to the agent, before sending a "sync"-command back to the server

in one thread, while the other thread keeps directly forwarding actions messages from the agent as

explained in image 3.3.

Figure 3.3: Proxy treads server thread

In order to stay synchronized with the SimSpark server, the perception messages forwarding

thread always has to first forward all pending perception messages from the server, before waiting

and responding with the next "sync"-command [48].
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Figure 3.4: Proxy treads client thread

Additionally, any "sync"-commands found within action messages sent by the client agent

must be eliminated from those messages before they are relayed to the server. This idea is straight-

forward, clear for both the client and server, and adaptable to the number of connections. It rein-

states synchronization, which is crucial during startup, and treats all connected agents equally. The

time measurement is as precise as the sleep command of the underlying platform allows. If the

sleep command is deemed insufficiently precise, this approach can be straightforwardly expanded

to pause the forwarding of action messages until the next "sync"-command is sent[48].

With this, agents actively interact with the simulation using effector messages, enabling them

to control their movements and actions within the game environment. Conversely, monitors re-

ceive periodic updates of the simulation state for visualization and logging purposes.

3.3 Roboviz

RoboViz is an open-source program for integrating agent-driven visualizations into a real-time

rendered 3D environment.It is the official display interface for the RoboCup 3D simulation league

and was developed and is still maintained by the magmaOffenburg team, an active participant in

the simulation competitions. It is useful to analyze the learning process of the agents [49].

RoboViz serves as a live 3D application that establishes a connection with the Simspark server

through a UDP network protocol between the agents, the server and roboviz . It further connects

with agents via a user-friendly drawing interface. The application operates solely through network-

based communication to handle and process data from ongoing simulations [50].

In Figure 3.5, you can observe a screenshot of the real-time three-dimensional image generated

by Roboviz.
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Figure 3.5: RoboViz Snapshot: Real-time Soccer Simulation Visualization

3.4 NAO Robots

The NAO Robot, depicted in Fig. 3.6, is an advanced humanoid robot developed by SoftBank

Robotics and serves as the foundational unit for simulated scenarios in the RoboCup initiative.

Initially, the simulation league only featured a spherical agent model. However, in 2006,

a simple model of the Fujitsu HOAP-2 robot was introduced, marking the debut of humanoid

models in the competition. This transition shifted the focus of the 3D simulation competition from

developing strategic soccer-playing behaviors to delving into the low-level control of humanoid

robots and creating fundamental behaviors like walking, kicking, turning, and standing up, among

others [8].

Currently, Each NAO robot exhibits specific characteristics that may vary from team to team,

such as maximum running speed. Standing at approximately 57cm tall and weighing around 4.5kg,

the simulated NAO’s biped architecture with 22 degrees of freedom provides exceptional mobility.

Figure 3.6: Simulated NAO

3.4.1 Equipment

The NAO robot model is equipped with an array of preceptors and effectors that furnish a wide-

ranging information base for agent development [51], [6]:

• A gyroscope and accelerometer in its torso monitor its radial and axial movement in three-

dimensional space.
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• Each foot is equipped with a force resistance preceptor to detect contact with the ground or

other objects.

• For visual detection, a restricted vision preceptor is located at the center of its head.

• Communication capabilities include a hear preceptor and a "say" effector.

• The gamestate preceptor conveys information about the actual play time and play mode.

• The position of each joint is represented by a hinge joint preceptor and can be manipulated

through the corresponding hinge joint effector. The arrangement and relative orientation of

the joints are depicted in Fig. 3.7.

Figure 3.7: All available joints name, arrangement and their relative orientation [5]

3.4.2 Joint informations

With 22 angles of freedom the robot joints can rotate about the 3 axes x, y z. The name given to

this three rotational degrees of freedom used to describe the orientation of a rigid body are pitch,

roll, and yaw.

• Pitch refers to the rotation around the x-axis (or longitudinal axis) of the body, i.e., its angle

relative to the horizon.

• Roll refers to the rotation around the y-axis (or lateral axis) of the body, i.e., its angle of tilt

to the right or left.
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• Yaw refers to the rotation around the z-axis (or vertical axis) of the body, i.e., its angle of

deviation from the reference heading direction.

The name applied to the joints will refer to their body part and the type of possible rotation. A

complete list of all available joints of the NAO robot, the minimal and maximum angle limit, and

their corresponding identifiers is listed in the table 3.1 below.

ID Joint Name Min Max
0 Neck Yaw -120 120
1 Neck Pitch -45 45
2 Left Hip YawPitch -90 1
3 Right Hip YawPitch -90 1
4 Left Hip Roll -25 45
5 Right Hip Roll -25 45
6 Left Hip Pitch -25 100
7 Right Hip Pitch -25 100
8 Left Knee Pitch -130 1
9 Right Knee Pitch -130 1
10 Left Foot Pitch -45 75

ID Joint Name Min Max
11 Right Foot Pitch -45 75
12 Left Foot Roll -45 25
13 Right Foot Roll -25 45
14 Left Shoulder Pitch -120 120
15 Right Shoulder Pitch -120 120
16 Left Shoulder Yaw -1 95
17 Right Shoulder Yaw -95 1
18 Left Arm Roll -120 120
19 Right Arm Roll -120 120
20 Left Arm Pitch -90 1
21 Right Arm Yaw -1 90

Table 3.1: Maximum angular variations and their respective joint names [5, 6]

3.4.3 Agent Types

There are five distinct types of humanoid robots, each equipped with either 22 or 24 joints, and

exhibiting characteristic physical differences. These five robot versions have been derived from

the NAO Robot mentioned earlier.

In accordance with the latest tournament regulations, each team participating will be required

to use three different robot types. Moreover, there is a limitation that no more than seven robots of

each type can be utilized during the competition. This rule aims to promote diversity and fairness

among the teams, ensuring that the gameplay remains challenging and dynamic [52].

3.5 2023 Competition Rules

Every year, the rules of the game undergo changes to enhance the simulation and make the agents’

actions appear increasingly realistic. One such new rule has inspired the FCPortugal team to

develop innovative dribbling techniques, becoming a significant motivation for the research con-

ducted in this dissertation.

During a game, a player is now considered to be holding the ball if: the ball is within a distance

of BallHoldRadius meters (the radius in meters from a player’s center where the ball is considered

held) from them, and if there are no opponents closer to the ball.

If the player holds the ball beyond BallHoldMaxTime seconds (the maximum time in seconds

a player can hold the ball) or if the ball travels at least BallHoldMaxDistance (the maximum
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distance in meters the ball can travel while a player is holding it) from its original position with

an opponent within BallHoldOppDistance meters (The minimum distance in meters an opponent

must be from the ball for a holding penalty foul to be called, results in penalties. Similar rules

apply to the goalkeeper.

The ball holding penalty parameters are as follows [52]:

• BallHoldRadius (0.12m): The radius in meters from a player’s center where the ball is

considered held.

• BallHoldMaxTime (5.0s): The maximum time in seconds a player can hold the ball.

• BallHoldGoalieMaxTime (10.0s): The maximum time in seconds a goalie can hold the ball

within their own penalty area.

• BallHoldResetTime (0.5s): The time in seconds since a player stopped holding the ball

before the ball holding time resets.

• BallHoldMaxDistance (1.0m): The maximum distance in meters the ball can travel while a

player is holding it.

• BallHoldOppDistance (0.75m): The minimum distance in meters an opponent must be from

the ball for a holding penalty foul to be called (a negative value results in a foul regardless

of opponent proximity).

3.6 Training Process

3.6.1 FC Portugal’s Transition to Python

After RoboCup 2021, the entire codebase of the FCPortugal team underwent a complete rewrite

in Python, without reusing the previous C++ code, except for a few specific functions. The pri-

mary motivation behind this transition was to ensure compatibility with widely used data science

libraries and machine learning repositories. By adopting Python as the language of choice, the

team aimed to accelerate the development of new behaviors and strategies.

Despite the notable efficiency of Python computing, especially with recent hardware advance-

ments, certain modules still rely on C++ to guarantee precise synchronization of agents with the

server during gameplay. This hybrid approach enables the team to leverage the benefits of both

Python’s flexibility and accessibility, and C++’s low-level control and performance when neces-

sary for critical aspects of their system [10].

3.6.2 TensorFlow

TensorFlow is an open-source Python-based machine learning framework developed by Google

that lets you design, build, and train deep learning models. The name itself derives from the

operations that neural networks perform on multidimensional data arrays or tensors [53].
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3.6.3 Stable Baselines

Stable Baselines [54] is an invaluable tool that simplifies the utilization of various algorithms

by offering common functionalities like training, saving, and loading models. This user-friendly

library stems from a fork of OpenAI Baselines [55], enhancing it with additional features and

improvements.

One notable feature of Stable Baselines is its capability to customize hyperparameters, partic-

ularly the policy. This allows users to define their own network structure by adjusting the number

of layers and nodes, tailoring the learning process to specific needs.

In addition to its ease of use, Stable Baselines comes equipped with comprehensive documen-

tation, which proves indispensable for developers seeking to understand and leverage the library

efficiently [56].

3.6.4 Optimizing Behavior with Proximal Policy Optimization (PPO)

The optimization method chosen for its simplicity, good performance in generating high-quality

behaviors, and the professor’s recommendation was Proximal Policy Optimization (PPO) [43]. To

implement PPO, we utilized the OpenAI baselines implementation [57], which incorporates a loss

function described as :

L(θ) = Êt [min(rt(θ)Ât ,clip(rt(θ),1− ε,1+ ε)Ât ], (3.1)

where rt(θ) is given by:

rt(θ) =
πθ (at | st)

πθold (at | st)
(3.2)

• L(θ): This is a mathematical function that represents the loss we want to minimize during

training, where θ corresponds to the policy parameter.

• Êt : It represents an empirical expectation over time steps, essentially an average over a

series of observations.

• rt(θ) : This is the odds ratio between the probabilities of taking certain actions under the

current policy (θ ) and an old policy θold .

• Ât : It serves as an estimator of the advantage function at a given time step.

• ε: This is a hyperparameter typically set to small values like 0.1 or 0.2.

The purpose of this formula is to evaluate how well the current policy θ is performing compared

to an older policy θold . It does so by considering the advantage of taking certain actions under the

current policy and uses the odds ratio rt(θ) to balance exploration and exploitation.

To maximize the objective function, this implementation enables switching between data sam-

pling from multiple parallel sources and conducting several cycles of the Stochastic Gradient De-

scent method on the sampled data [57].
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3.6.5 Hyperparameters

In the field of reinforcement learning, the effective deployment of algorithms like Proximal Policy

Optimization (PPO) hinges heavily on the meticulous management of hyperparameters. These

hyperparameters are akin to the levers and dials of a finely-tuned machine, influencing the algo-

rithm’s behavior and learning process. As we delve into the workings of PPO, it becomes evident

that understanding and appropriately configuring these hyperparameters is paramount for achiev-

ing optimal training results.

PPO is developed in two steps:

• Step 1: Data Collection and Policy Optimization

In the first step, PPO gathers data called "transitions." These transitions consist of sequences

of states, rewards, and actions that the agent experiences during interactions with its envi-

ronment. The primary objective here is to optimize the agent’s policy based on the data it

has collected. The gathered transitions are saved up to a certain "horizon" range, a time

frame that helps manage the amount of data used for optimization.

Once enough data is collected, PPO employs the stochastic gradient descent method, a

mathematical technique for optimizing functions, to improve the policy. This optimization

occurs incrementally, with small adjustments determined by a parameter called the learning

rate. The stored transitions are processed in batches, allowing for efficient policy updates.

• Step 2: Policy Update and Training

In the second step, PPO updates the policy over a specified number of "epochs." An epoch

is a training cycle in which the agent learns from its experiences. The total number of steps

is a critical parameter, setting the maximum number of interactions the agent will have with

its environment during the training process. This parameter directly affects the number of

updates applied to the policy.

PPO can operate on multiple environments simultaneously, which is a practical approach for

accelerating training. This parallelization enhances the efficiency of the learning process.

One of the strengths of PPO is its flexibility. Researchers and practitioners can customize the

policy used by selecting different algorithms and representations. For instance, the neural network

architecture used in PPO is adaptable, allowing for experimentation with various designs to match

the complexity of the problem and meet specific performance requirements [57, 58].

3.6.6 FCPortugal Gym

OpenAI Gym has established itself as the industry standard for evaluating reinforcement learning

algorithms, providing a benchmarking tool [59]. Its widely adopted interface has paved the way for

exceptional collections of RL algorithm implementations, such as OpenAI Baselines and Stable-

Baselines. For our specific research objectives, we utilized Stable-Baselines.
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The primary aim of this research project was to establish adaptable behaviors that could seam-

lessly integrate into the RoboCup 3D Soccer Simulation League without necessitating extensive

post-training adjustments. To achieve this objective, we needed to create a structure that facili-

tated the training and sharing of reinforcement learning models. For this purpose, we opted for

FCPortugal Gym, a solution that aligns seamlessly with the Gym interface.

The FCPortugal team possesses a unique tool called FCPortugal Gym, which enables contin-

uous improvement and optimization of the team’s skills and performance. It serves as a powerful

framework for implementing reinforcement learning algorithms, similar to the popular OpenAI

Gym [60].

3.6.7 Learning Cycle

The training cycle in FCPortugal Gym involves the use of three essential functions. Firstly, the

reset() function is employed to set up the desired environment, positioning the players and the ball

as required.

After using the reset() function, the observe() function comes into play, enabling the agent to

make observations defined earlier, thus establishing the state space.

Subsequently, the step(action) function executes, applying the neural network’s output as the

agent’s actions. This function serves as the crucial interaction point where changes with the envi-

ronment occur. The agent’s actions and interactions with the environment are guided by the reward

function.

The training cycle will continue with a variation, where after performing the reset() function

once, the other two functions, observe() and step(action), are alternated until the episode con-

cludes. This process ensures that the neural network undergoes updates to enhance the reward

function and improve the agent’s performance.

The episode’s conclusion can arise from various reasons, and these are indicated by a termi-

nal flag within the step(action) function. This flag signs the end of the episode and marks the

completion of the training cycle for that particular episode.

3.6.8 Training evaluation

During the course of the training, it is possible to assess how it’s doing due to a series of factors

that are analyzed in order to give us feedback. The printout in question is the training progress

summary generated by the Stable Baselines library while training a reinforcement learning model

with the Proximal Policy Optimization (PPO) algorithm. This printout provides various metrics

and statistics that help monitor the progress and performance of the training.

This information provides insights into various aspects of the training process, including policy

update stability, entropy, value function approximation, and the overall progress of optimization.

It’s important to monitor these metrics to ensure that the training process is proceeding as expected

and that the model is improving over time.
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After a predefined number of iterations, the model undergoes testing to calculate both the av-

erage reward per episode and the average episode duration. This process plays a pivotal role in

monitoring the training’s progress and gauging the consistent improvement of the reward function.

If the reward function reaches a point where it no longer shows significant evolution, it becomes

unnecessary to prolong the training. Following this assessment, a graphical representation is gen-

erated to illustrate the evolution of the average reward per episode over time.

This tool is immensely valuable for saving time because it allows us to halt the training as

soon as the reward value stabilizes, rather than continuing it for a fixed number of steps.

3.6.9 Vectorized Environments

Vectorized Environments represent a method for merging multiple independent environments into

a single unified entity. Instead of training a reinforcement learning (RL) agent on a single envi-

ronment step by step, this approach allows for training across a multitude of environments concur-

rently. Consequently, the actions supplied to the environment form a vector with a dimension of

’n.’ This same principle extends to observations, rewards, and signals indicating the conclusion of

an episode.

3.6.10 Behavior inversion

To achieve symmetrical inversion of a behavior learned exclusively for one limb, it is advanta-

geous to invert both the state space and the action space. This allows for the execution of the

behavior with the opposite limb, enhancing the efficiency of utilizing the acquired knowledge and

expediting the learning process by training only one side.

3.6.10.1 State Space Inversion

In order to achieve the inversion of the state space, specific adjustments are implemented during

the data collection phase when gathering sensor information. These adjustments are designed to

allow the agent to perceive the environment symmetrically while utilizing the pre-trained neural

network. The resulting modifications are reflected in the changes detailed in Table 3.2.

In order for the robot to exhibit a behavior symmetrical to what it has learned, it must receive

input from its own sensors inverted along the sagittal axis of the robot. This means that the

coordinates of the sensors should be inverted along the vertical axis. If the base of a robot joint

was initially situated at coordinates (x, y, z), after inversion, its position would become (-x, y, z),

effectively mirroring the movement in relation to the sagittal axis. For instance, the position of the

left hip actuator would then become the right hip actuator.

This inversion approach is commonly employed when seeking to generate symmetrical move-

ments in robots, particularly in cases where a learned behavior needs to be replicated in a mirrored

fashion.

This table illustrates the transformation applied to the state space within the algorithm. It

provides a clear mapping of how each initial input value is adjusted to its inverted position. These
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Initial Input value Inverted position
Neck Yaw -Neck Yaw
Neck Pitch Neck Pitch

Left Hip YawPitch Right Hip YawPitch
Right Hip YawPitch Left Hip YawPitch

Left Hip Roll Right Hip Roll
Right Hip Roll Left Hip Roll
Left Hip Pitch Right Hip Pitch

Right Hip Pitch Left Hip Pitch
Left Knee Pitch Right Knee Pitch

Right Knee Pitch Left Knee Pitch
Left Foot Pitch Right Foot Pitch

Initial Input value Inverted position
Right Foot Pitch Left Foot Pitch
Left Foot Roll Right Foot Roll

Right Foot Roll Left Foot Roll
Left Shoulder Pitch Right Shoulder Pitch

Right Shoulder Pitch Left Shoulder Pitch
Left Shoulder Yaw Right Shoulder Yaw

Right Shoulder Yaw Left Shoulder Yaw
Left Arm Roll Right Arm Roll

Right Arm Roll Left Arm Roll
Left Arm Pitch Right Arm Yaw
Right Arm Yaw Left Knee Pitch

Table 3.2: Inverse State Space Changes in Sensor Position

adjustments are crucial for achieving a symmetrical perception of the environment and play a

fundamental role in the algorithm’s operation. In this way, ensuring that the agent can effectively

interact with the environment in a mirrored fashion, ultimately contributing to the achievement of

the desired objectives within the robotic system.

3.6.10.2 Action Space Inversion

To create symmetrical behavior in a robot, it’s also necessary to perform an action space inversion.

This means that the actions the robot performs need to be adjusted to reflect the opposite behavior.

For example, if the robot has been trained to move its left hip as an action, to achieve symmet-

rical behavior, it’s needed to adjust the action to move the right hip instead. In other words, it’s

needed to invert the actions that the robot executes so that they align with the mirrored behavior

that it’s desired. This inversion ensures that the robot’s movements are symmetrical, mirroring

actions on either side of its body along the sagittal axis.

By performing both inversions simultaneously, it expected to align the robot’s perceptions

with its actions consistently. This enables the robot to operate effectively within the new mirrored

environment. If only the state is inverted or only the action space, the robot might encounter

challenges in comprehending and interacting with the mirrored environment, potentially resulting

in undesirable or non-symmetrical outcomes.

The alterations made in the action space are analogous to those in the state space, as evidenced

in the table 3.2.

3.7 Low-level Skills

In this section, we delve into the fundamental skills in the realm of robotic soccer, known as low-

level skills. These skills constitute the essential building blocks for effective execution of more

intricate tasks on the field. Through meticulous analysis and careful development, the FCPortugal

team has honed and refined these skills to maximize our robots’ performance in competitive games.
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The emphasis on low-level skills is instrumental in enhancing control, precision, and efficiency

of our robots across a spectrum of game situations. Through the exploration of these skills, we

are poised to tackle the dynamic and intricate challenges of robotic soccer, ensuring exceptional

performance and a strategic approach in every match.

3.7.1 Kick

The ability to kick is crucial in soccer to score goals and win games. The kick skills are based

on a hand-tuned base model, divided into two sections: backswing and forward acceleration.

FCPortugal team offers two kicking skills:

• Short Kick: Primarily used for passes, with a controllable range between 3 and 9 meters.

• Long Kick: Generally used for shooting, with an average distance of 17 to 19 meters,

depending on the robot type.

These kicks, despite being highly accurate, come with a significant drawback, which is the

speed at which they are executed. Agents spend a considerable amount of time aligning themselves

with the ball to execute this shot. This can pose issues in sporting performance, as a substantial

amount of time is consumed in their execution [10].

3.7.2 Walk

The walk skill boasts omnidirectional capabilities, enabling movement in any direction. Depend-

ing on the robot type and movement direction, the walk skill maintains an average linear speed

ranging from 0.70 to 0.90 m/s.

3.7.3 Dribble

The dribble skill allows the robot to push the ball forward while maintaining close control. During

forward dribbling, the robot achieves an average maximum speed of 1.25 to 1.41 m/s, varying

depending on the robot type. This particular dribbling technique ensures precise ball control within

a maximal distance of 0.12 meters.

3.7.4 Dribble Long

The previous approach to dribbling, involving sustained ball control within a radius smaller than

0.12 meters when an opponent was nearby, has been prohibited. To adhere to this new regulation,

an innovative skill known as "Dribble Long" was formulated.

This dribbling technique comprises various distinct versions, which will be presented in the

next sections. The behaviors explored in this dissertation will take inspiration from the diverse

versions of the new dribbling technique.
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3.7.4.1 Double Footed Dribble Long (DFDL)

The DFDL behavior relies on several key indicators influencing the creation of other behaviors in

this thesis.

One crucial indicator is the activation status of the left leg. When the left leg is active, it

signifies that is moving, while its inactivity denotes support for the robot’s movement.

During each active and inactive phase of the left leg, there are eight distinct movement phases

associated with its utilization for the action. These phases play a crucial role in effectively execut-

ing the dribble long behavior.

The subsequent photographs display all conceivable phases in Figure 3.16 and 3.25:

Figure 3.8: Dribbling
phase (0,false) of
DFDL

Figure 3.9: Dribbling
phase (1,false) of
DFDL

Figure 3.10: Dribbling
phase (2,false) of
DFDL

Figure 3.11: Dribbling
phase (3,false) of
DFDL

Figure 3.12: Dribbling
phase (4,false) of
DFDL

Figure 3.13: Dribbling
phase (5,false) of
DFDL

Figure 3.14: Dribbling
phase (6,false) of
DFDL

Figure 3.15: Dribbling
phase (7,false) of
DFDL

Figure 3.16: 8 phases of dribbling with inactive phase of the left leg of the DFDL
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Figure 3.17: Dribbling
phase (0,true) of DFDL

Figure 3.18: Dribbling
phase (1,true) of DFDL

Figure 3.19: Dribbling
phase (2,true) of DFDL

Figure 3.20: Dribbling
phase (3,true) of DFDL

Figure 3.21: Dribbling
phase (4,true) of DFDL

Figure 3.22: Dribbling
phase (5,true) of DFDL

Figure 3.23: Dribbling
phase (6,true) of DFDL

Figure 3.24: Dribbling
phase (7,true) of DFDL

Figure 3.25: 8 phases of dribbling with active phase of the left leg of DFDL



3.7 Low-level Skills 31

The dribbling phases will now be denoted using the notation (x, y), where x represents the

phase number ranging from 0 to 7, and y indicates whether the left foot is active (true) or inactive

(false). An active left foot signifies that, during that particular phase of dribbling, the left leg is

elevated, while the right leg is providing support.

As the name suggests, this version of DFDL employs both feet to perform the dribble.

3.7.4.2 Left Footed Dribble Long (LFDL)

This version of the LFDL behavior has a distinctive feature: it exclusively employs the left foot

for dribbling. This approach offers the advantage of facilitating a smoother and more seamless

transition to the rapid shot. Moreover, the distance between the ball and the robot during the

dribble execution is notably greater in this LFDL, resulting in a prolonged control distance.

Similar to the preceding phase, this dribble consists of 16 distinct moments, each delineated

by the phases depicted in Figure 3.34 and 3.43.

Figure 3.26: Dribbling
phase (0,false) of LFDL

Figure 3.27: Dribbling
phase (1,false) of LFDL

Figure 3.28: Dribbling
phase (2,false) of LFDL

Figure 3.29: Dribbling
phase (3,false) of LFDL

Figure 3.30: Dribbling
phase (4,false) of LFDL

Figure 3.31: Dribbling
phase (5,false) of LFDL

Figure 3.32: Dribbling
phase (6,false) of LFDL

Figure 3.33: Dribbling
phase (7,false) of LFDL

Figure 3.34: 8 phases of dribbling with inactive phase of the LFDL
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Figure 3.35: Dribbling
phase (0,true) of LFDL

Figure 3.36: Dribbling
phase (1,true) of LFDL

Figure 3.37: Dribbling
phase (2,true) of LFDL

Figure 3.38: Dribbling
phase (3,true) of LFDL

Figure 3.39: Dribbling
phase (4,true) of LFDL

Figure 3.40: Dribbling
phase (5,true) of LFDL

Figure 3.41: Dribbling
phase (6,true) of LFDL

Figure 3.42: Dribbling
phase (7,true) of LFDL

Figure 3.43: 8 phases of dribbling with active phase of the LFDL
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The contrast in ball control distance exhibited by the robot during the 3.7.4.1 dribble and the

3.7.4.2 dribble is illustrated in figures 3.44 and 3.45. When employing the Left Footed Dribble

Long, a more considerable gap between the ball and the robot throughout the dribble becomes

evident.

Figure 3.44: Maximum dribbling distance for
DFDL

Figure 3.45: Maximum dribbling distance for
LFDL

The notation used for the DFDL version will also be applied in this version (notation (x, y),

where x represents the phase number ranging from 0 to 7, and y indicates whether the left foot is

active (true) or inactive (false)).

3.8 Previous work contributions

Recent work, created by other members of the FCPortugal team, related to humanoid robot skills

using RL were outlined and analyzed in order to help me in the understanding of the current

existing capabilities and approaches used for the team.

Some of these works concentrated on refining shooting behaviors while in motion [61], [62],

as well as executing controlled distance shots [63]. Additionally, the team developed behaviors

like running and sprinting [64], [65]. The team’s efforts also extended to creating various low-level

and high-level behaviors [66], [67], [68], [69], [70], [71], [72], [73].
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Chapter 4

Kick in motion after Double Footed
Dribble Long

Previous efforts have laid the foundation for various kicking methodologies. However, the cur-

rent implementations of FCPortugal still lack the ability to perform kicks in a manner similar to

humans, without interrupting their forward motion during the Dribble behavior.

Achieving a seamless transition from the gait to a kick, without the need to halt or alter veloc-

ity, is what defines a kick in motion. This behavior not only enhances the agent’s performance but

also lends a more human-like quality to their on-field performance.

Consequently, the research conducted in this context holds immense potential to infuse FC-

Portugal 3D team’s gameplay with greater dynamism, ultimately providing a notable competitive

advantage.

4.1 Problem

To enhance the team’s performance, the development of quick shots with speed after a dribble has

been needed. The objective is to execute these shots as swiftly and fastest as possible. Currently,

the team only has two types of kicks available, both of which solely allow for kicking the ball that

are relatively slow in execution, requiring the player to transition to a run or walk phase after the

dribble to approach the ball before taking the shot.

This foundational kick lays the groundwork for subsequent behavior refinement.

The purpose behind this training initiative was to comprehend the nuanced circumstances de-

tailed in section 3.7.4.1 of the dribbling behavior. This comprehension serves to enhance the

success rate of shooting during various phases of the dribble, alongside different activations of the

left leg.

Hence, prior to establishing the viability of consistently achieving successful shots from spe-

cific positions during the variable dribbling phase, it becomes imperative to evaluate the most

effective type of dribble phase for executing a shot.

35
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Through a meticulous analysis of these variables and the identification of the optimal shot type

for each phase of the dribble, the establishment of a high success rate shot becomes attainable.This

investigation serves as a crucial step in developing effective behaviors for executing quick shots,

contributing to the team’s overall performance.

4.2 Action Space

The simulated NAO robot depicted in Figure 3.7 is equipped with actuators associated with each

of its joints. In total, there are 20 actuators utilized, excluding the head pitch and yaw actuators as

they are not part of the optimization objective.

To effectively control each actuator, the simulator operates based on angular speeds ranging

from -7°/s to +7°/s, which are provided as continuous variables. In our approach, the agent em-

ploys an indirect control method. Instead of directly generating speed values for each actuator, the

optimization algorithm produces target angles for each joint. These target angles are then used to

determine the appropriate angular speeds for the actuators, enabling effective control of the robot’s

movements.

4.3 State Space

The state space comprises the following observations:

• Angular positions for all robot hinge joints, expressed in degrees.

• Torso angular velocity, measured by a gyroscope, presented in degrees per second.

• Torso proper acceleration relative to free fall, recorded by an accelerometer, provided in

square meters per second.

• Relative position of the ball in relation to the robot’s torso, calculated based on the robot’s

vision, presented in meters.

• Time steps since the agent began controlling the robot.

The robot’s vision preceptor is subject to noise, which indirectly impacts the observed relative

position of the ball as perceived by the agent. This noisy observation is used instead of a noiseless

one to train the agent to handle the real-life conditions encountered during actual games.

4.4 Control Step Size

In order to accommodate the limited update frequency of visual information, the robot’s percep-

tion of visual data is refreshed every 3 simulation cycles. As a result, the agent only assumes

control of the robot’s actions when new visual information is received, precisely once every 3
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time steps. During the intermediate steps, the previously determined actions are transmitted to the

robot, enabling it to continue executing the planned actions until new visual information becomes

accessible. This approach guarantees that the agent’s control decisions align with the updated

visual input, preserving synchronization between perception and action.

4.5 Episode layout

During the initial training phase, the NAO robot begins at a distance of 0.3 meters from the center

of the field and the joints are reset to an initial position, with the ball also positioned there facing

it. It then initiates a DFDL, with a random duration ranging from 0 to 2 seconds, and a random ori-

entation between -180 to 180 degrees. This randomness is introduced to create greater variability

in the training process.

Once the robot completes the random time limit for dribbling and remains upright, the learning

controller takes over. It commands the robot’s joints every third time step, allowing for precise

control over its movements.

The episode lasts approximately 10 steps and is terminated. This termination condition is

specifically designed to encourage the robot to execute the shot as quickly as possible, regardless

of whether it maintains its balance or falls during the process.

The objective of this kick in motion scenario is to train the agent to execute a kick immediately

after the dribble without any additional movement.

4.6 Network Shape and Hyperparameter Tuning

It was opted for this thesis a neural network architecture with 2 hidden layers, each consisting of

64 neurons, following the Stable Baselines standard. With a short episode duration and concise

actions, a Horizon Range of 256 steps was sufficient; a larger value wasn’t justified.

To keep computation efficient, we set the minibatch size to 64, and the learning rate was chosen

as 3e-4.

In parallel, we ran the training across the maximum available logical CPUs or cores in the

system, performing approximately 20 million total steps.

4.7 Reward

During mid-dribbling, the agent assumes control of the robot. To mitigate challenges associated

with inappropriate behaviors, such as kicking the ball sideways instead of forward, and considering

the added complexity of learning this task, a simpler reward function was chosen. In this approach,

the agent receives feedback based solely on the velocity the ball gains along the desired kick path.

r = v∗ (180−α)/180 (4.1)
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In the context of the training episode, the variable v represents the velocity of the ball at the end

of the episode. It captures the speed at which the ball is propelled after the kick.

Additionally, the variable α denotes the difference between the absolute orientation of the ball

direction and the absolute orientation of the robot. This difference is measured to ensure that a

frontal shot is intended. By considering the alignment between the robot and the ball’s orientation,

the agent aims to execute a kick directly facing the target, optimizing the chances of a successful

shot.

As evident from the graph depicted in function 4.1, the reward value exhibits a linear variation.

An increase in the α value corresponds to a proportional linear decrease in the reward value, as

governed by the preceding function. Similarly, a higher shot speed yields a greater reward. When

the angle α reaches 90 degrees, the value will be at 50% of its total.

Figure 4.1: Plot of the function y = (180−α)/180

4.8 Results

During the testing of the initial training, where the robot performs random dribbles to various sides,

it is observed that the robot successfully learns to shot in all phases of the dribble, regardless of the

left foot activation. Additionally, it is observed that the robot learns to exclusively shot with the

left foot. This phenomenon can be attributed to the nature of neural network algorithms, as they

tend to find it easier to specialize in a specific action, in this case, shooting with one foot, rather

than attempting to learn multiple variations.

As described in 3.6.8, training involves periodic testing to assess its progression. Initially, the

average reward experiences a steep rise, which then stabilizes after 2 million steps. Subsequently,

there are no significant fluctuations until the training process concludes at 11,345,920 steps, as

depicted in figure 4.2.
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Figure 4.2: Reward Evolution Over Time Steps from first training session DFDL

The outcome of the previous training test, involving the test of over 4500 shots, is presented

in figures and table below.

An analysis of the provided graphs offers insights into the frequency distribution of both

achieved speeds and α angles, denominated alpha, across various dribbling phases. Initially, we

present the frequency graphs concerning the speed parameter for each dribbling phase, as depicted

in the figures.

Upon closer examination of the speed-related graphs, it becomes evident that the (2,true)

phase, shown in Figure 4.7, can attain favorable speed values, with 4 m/s being the most frequently

recorded speed. Furthermore, phases (4,true), (5,true), and (6,true), represented by Figures 4.11,

4.13, and 4.15 respectively, yielded the most noteworthy shot velocities.
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Figure 4.3: Graph of speed frequency for phase
(0,true) from first training session DFDL

Figure 4.4: Graph of speed frequency for phase
(0,false) from first training session DFDL

Figure 4.5: Graph of speed frequency for phase
(1,true) from first training session DFDL

Figure 4.6: Graph of speed frequency for phase
(1,false) from first training session DFDL

Figure 4.7: Graph of speed frequency for phase
(2,true) from first training session DFDL

Figure 4.8: Graph of speed frequency for phase
(2,false) from first training session DFDL

Figure 4.9: Graph of speed frequency for phase
(3,true) from first training session DFDL

Figure 4.10: Graph of speed frequency for phase
(3,false) from first training session DFDL
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Figure 4.11: Graph of speed frequency for phase
(4,true) from first training session DFDL

Figure 4.12: Graph of speed frequency for phase
(4,false) from first training session DFDL

Figure 4.13: Graph of speed frequency for phase
(5,true) from first training session DFDL

Figure 4.14: Graph of speed frequency for phase
(5,false) from first training session DFDL

Figure 4.15: Graph of speed frequency for phase
(6,true) from first training session DFDL

Figure 4.16: Graph of speed frequency for phase
(6,false) from first training session DFDL

Figure 4.17: Graph of speed frequency for phase
(7,true) from first training session DFDL

Figure 4.18: Graph of speed frequency for phase
(7,false) from first training session DFDL
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In terms of the alpha parameter, it is worth highlighting that the graphs associated with phases

(2,true), as illustrated in Figure 4.23, as well as phases (3,false), (4,false), (5,false), and (6,false)

represented by Figures 4.26, 4.28, 4.30, and 4.32 respectively, have exhibited promising outcomes.

Specifically, they have demonstrated the lowest average alpha values in the shots taken during their

respective phases.

Figure 4.19: Graph of alpha frequency for phase
(0,true) from first training session DFDL

Figure 4.20: Graph of alpha frequency for phase
(0,false) from first training session DFDL

Figure 4.21: Graph of alpha frequency for phase
(1,true) from first training session DFDL

Figure 4.22: Graph of alpha frequency for phase
(1,false) from first training session DFDL
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Figure 4.23: Graph of alpha frequency for phase
(2,true) from first training session DFDL

Figure 4.24: Graph of alpha frequency for phase
(2,false) from first training session DFDL

Figure 4.25: Graph of alpha frequency for phase
(3,true) from first training session DFDL

Figure 4.26: Graph of alpha frequency for phase
(3,false) from first training session DFDL

Figure 4.27: Graph of alpha frequency for phase
(4,true) from first training session DFDL

Figure 4.28: Graph of alpha frequency for phase
(4,false) from first training session DFDL
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Figure 4.29: Graph of alpha frequency for phase
(5,true) from first training session DFDL

Figure 4.30: Graph of alpha frequency for phase
(5,false) from first training session DFDL

Figure 4.31: Graph of alpha frequency for phase
(6,true) from first training session DFDL

Figure 4.32: Graph of alpha frequency for phase
(6,false) from first training session DFDL

Figure 4.33: Graph of alpha frequency for phase
(7,true) from first training session DFDL

Figure 4.34: Graph of alpha frequency for phase
(7,false) from first training session DFDL



4.9 Conclusion 45

Also, by analyzing the hit rates in relation to the different phases of the dribble, it becomes

possible to identify which specific variable has a significant impact on the shooting accuracy,

summarized in Table 4.1. We characterize a successful shot as one in which the alpha value falls

within the initial range of 0º to 15º, coupled with a shot speed exceeding 2m/s.

This table includes the hit rates for each dribbling phase, categorized according to the active

or inactive state of the left foot. This knowledge can then be utilized to guide subsequent training

efforts, enabling the development of more refined and effective behaviors.

Dribble Phase Left Foot Active Left Foot Inactive
0 20.54% 7.04%
1 21.60% 21.50%
2 34.20% 17.75%
3 19.43% 21.08
4 14.28% 30.81%
5 10.93% 23.66%
6 9.98% 31.25%
7 5.34% 24.07%

Average 16.80% 29.34%
Table 4.1: DFDL general training hit rate

Additionally, all shots were executed swiftly, without needing the agent to fully utilize the

available 10 time steps per episode. This rapid shot execution was a key challenge in this disserta-

tion, and significantly outperformed the team’s other shots in terms of time.

4.9 Conclusion

Based on the previous results, it’s clear that phase (2,true) of dribbling, especially with the left foot

active, shows the most promise for accurate shots. The speed and alpha graphs, along with the hit

rate, suggest that this phase has the highest potential compared to others. Visually, this phase also

looks smoother and more fluid when shooting.

Furthermore, the results regarding the success rate of phases (4,false) and (6,false) also suggest

potential for further exploration and optimization. However, visually, these two phases don’t allow

for a fluid shot motion. This is due to the agent’s left leg serving as support during these phases,

requiring a quick transition to the right leg as support for the shot.

Also if focusing solely on training this specific phases of dribbling, there’s a likelihood that

the neural network, starting from scratch, might predominantly learn to use the right foot. This

would render the values from the initial training ineffective, as the agent’s learned behavior would

differ from the left-footed kicking taught during that phase.

Taking these observations into consideration, the decision has been made to optimize the be-

havior by focusing exclusively on training specific on (2,true) phase of the dribble. By narrowing
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the training scope to this phase, the aim is to further enhance the shooting performance and im-

prove the overall results obtained.

This strategic adjustment reflects a targeted approach to training, leveraging the strengths and

effectiveness observed in phase 2 of the dribble with the active left foot. By dedicating efforts to

optimizing this particular phase, the goal is to achieve even greater success rates and improved

shooting fluency.



Chapter 5

Kicking optimization of Dribbling
phase (2,True)

5.1 Problem

Based on the analysis of the previous chapter’s results, it is evident that focusing the training solely

on some phases of the dribble can lead to a more efficient shot. By narrowing the agent’s focus to

shooting only in one phase, the variability in training is reduced, resulting in increased efficiency.

Additionally, it is worth noting that during the dribble, the left foot was consistently used for

the shot, regardless of the direction of the dribble. Therefore, in this chapter, the objective is to

specifically train the left foot shot when the dribble turns to the right. Following the completion

of this training, the neural network can be reversed to enable the use of the right foot after a

symmetrical dribble to the left, as explained in 3.6.10.

This approach allows for targeted training to enhance the effectiveness of the left foot shot in

specific situations, while also providing the flexibility to adapt the learned behavior for the right

foot shot when required. By optimizing the training for these scenarios, the agent can further

refine its shooting capabilities and adapt to different dribbling situations with improved precision.

5.2 Action Space, State Space, Network Shape and Hyperparameter
Tuning

As employed in the previous model, all joints will be used except the 2 in the head for the action

space. For the State Space of this model, it will be considered the same observations as the

previous models are used. For the Network Shape and Hyperparameter, we used the same presets

as in the previous training.

47
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5.3 First training

5.3.1 Episode layout

During the subsequent training sessions, we employed phase 2 with the left foot active.

The objective was to execute the shot only when the robot was in this specific phase of the

dribble and turning to the right.

The upcoming episode will follow a similar pattern as the previous training runs, with one

distinction: the agent will now dribble the ball while facing a random orientation ranging from

-180 to 0 degrees. This adjustment compels the robot to dribble in a rightward direction before

taking a shot. All other factors and parameters will remain unchanged.

5.3.2 Reward

At the outset, we utilized the same reward function as employed in the previous training phase, as

referenced in the 4.1, which did produce favorable results.

5.3.3 Results of the first training

To begin with, solely employing the initial reward function, denoted as 4.1, resulted in the agent

learning to prefer using their left foot, as anticipated. Once it became evident that the average

reward value had peaked,as illustrated in 5.1, the training was concluded.

Figure 5.1: Reward Evolution Over Time Steps during second first training session of phase
(2,true) of DFDL

A comprehensive test involving approximately 200 shots was conducted. This test allowed for

the generation of graphs representing the frequency of shot speeds and the α angle.

The speed frequency graph, showcased some achievements in terms of shot speeds attained.

The most frequently recorded speed was 4m/s, yet it was also noteworthy that shooting at 6m/s
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occurred quite frequently, as evidenced in 5.2. On average, a speed of 3.836 m/s was achieved,

with shots exhibiting the correct direction (0 < α < 15) averaging 3.255 m/s.

Figure 5.2: Graph of speed frequency for optimized phase (2,true) for the first training

Regarding the α angle, in figure 5.3, it’s evident that only approximately 16% of the shots

exhibited an acceptable direction (0 < α < 15). This is a key factor contributing to the less-than-

ideal outcomes in this chapter.

Figure 5.3: Graph of alpha frequency for optimized phase (2,true) for the first training

The hit rates for shots meeting the criteria of α < 15 and speed > 2m/s were approximately

12.925% for the first trained shot.

5.3.4 Analysis of the first training

Upon analyzing the results presented in the previous section, it becomes evident that there is

potential for optimizing the shot during the (2,true) phase of the dribble. Initially, using the first

reward function, we were able to achieve high shot speeds. However, this came at the cost of

accuracy, prompting us to retrain the neural network with an alternative reward function.
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5.4 Second training

5.4.1 Changing Reward Function

Given the unsatisfactory performance of the α angle during the initial training phase, we decided

to undergo a retraining process using a second reward function. We introduced a new reward

function, which is outlined as follows:

r = v∗0.93α (5.1)

Within the training episode’s context, it continues to represent the velocity at which the ball

reached its destination following the shot.

Additionally, the variable α continues to denote the difference between the absolute orientation

of the ball direction and the absolute orientation of the robot.

The updated reward scheme, as visualized in the graph, enables the achievement of maximum

speed when the deviation α is at 0 degrees. However, it notably diminishes, offering just half of

the speed value when the deviation is as minimal as 10 degrees, as seen in 5.1. This adaptation

amplifies the penalty for shots with higher α values, while incentivizing those with lower α values.

Nevertheless, the overall reward value remains in proportion to the shot’s speed. This exponential

function provides added motivation for the agent to master challenging behaviors, with rewards

rapidly escalating as the agent approaches the desired performance. Conversely, it can also be

harnessed to strongly discourage undesirable behaviors.

Figure 5.4: plot of the function y = 0.93α

5.4.2 Results of the second training

As illustrated in Figure 5.5, the average reward per episode rapidly increases until reaching ap-

proximately one million steps and stabilizes at a constant value.
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Figure 5.5: Reward Evolution Over Time Steps during second training session of phase (2,true) of
DFDL

A post-training analysis enabled us to scrutinize the algorithm’s best-generated model, where

the agent shoots with its left foot. By subjecting this model to testing with approximately 500

shots, a statistical analysis was conducted.

To start, when examining the velocity graph as referenced in 5.6, the most frequently recorded

velocity was 4 m/s. The average velocity stood at 3.608 m/s, and the average velocity for the

correct direction shot (0 < α < 15) was 4.330 m/s.

Figure 5.6: Frequency distribution of speed for the optimized phase (2, true) during the second
training session.

In the second training session, there were significant improvements in the frequency distribu-

tion concerning α . Approximately 70% of the shots hit the correct direction by the end of the

episode, with α < 15, as observed in 5.7.
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Figure 5.7: Frequency distribution of angle (α) for the optimized phase (2, true) during the second
training session.

The shot accuracy rate, with α < 15 and speed > 2 m/s, reached 64.328%

5.4.3 Analysis of the second training

In this second training session, a noticeable improvement in overall performance becomes evi-

dent. A commendable level of shot velocity has been maintained in relation to shot accuracy.

Furthermore, there has been a substantial enhancement in shot precision, with the agent correctly

targeting its shots approximately 70% of the time. This positive shift can be attributed to a modi-

fication in the reward function, which compels the agent to execute more precise shots in order to

attain higher rewards.

One approach would involve changing the side from which the agent performs the dribble.

Instead of dribbling to the right, it would dribble to the left. Although this change might not

appear visually smooth, it requires the agent to use its left foot for shooting while turning to the

left. The agent will continue to learn to shoot with the left foot, thanks to the inherent nature of

the PPO algorithm. When training an agent, it’s crucial to strike a balance between exploration

(trying new actions to learn) and exploitation (using the best-known actions to maximize rewards).

In this training scenario, the agent quickly realizes that using one limb yields relatively higher

rewards, leading it to exploit that strategy and adhere to it, consequently neglecting the other limb.

Nevertheless, over time, this strategy has the potential to yield positive results.

The second approach entails optimizing the reward function even further. This optimization

could entail making the reward function more sensitive to shot accuracy, discouraging high re-

wards for shots with significant alpha values. By carefully adjusting the reward function, you can

guide the agent toward more accurate shots.

Both approaches have their merits, and it may be advantageous to experiment with both to de-

termine which one produces superior outcomes. Additionally, the choice of approach may depend

on the specific requirements and constraints of your application and the desired behavior for the

agent.
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5.5 Third training

5.5.1 Changing Episode Layout

To further improve the performance of the shooting model in the (2,true) phase, a modification

was introduced during training while retaining the same reward function as the previous training

5.1, which had shown promising results. This modification is a straightforward yet potentially

impactful change. Instead of having the agent dribble the ball to the right, it now executes the

opposite action by turning to the left. Essentially, it shifts from turning right within a range of -180

to 0 degrees to turning left within a range of 0 to 180 degrees, all while maintaining the previously

mentioned dribbling duration of 0 to 2 seconds before transitioning into the shot learning phase.

All other variables remain unchanged.

Although this adjustment may not appear as visually fluid, the change in dribbling direction

could potentially reduce the distance between the player and the ball as they enter the shooting

phase. This proximity might facilitate better shot framing and, consequently, improve overall

performance.

5.5.2 Results of the third training atempt

Following this change in the dribbling direction during the initial learning phase, the agent suc-

cessfully developed the ability to perform shots using its left foot.

In comparison to the previous symmetric training of turning to the right, this training was

relatively longer, indicating a more extended learning curve, though not as steep. We decided to

halt the training around 4 million steps when the average reward per episode stabilized, as can be

seen in 5.8
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Figure 5.8: Reward Evolution Over Time Steps from third training session of phase (2,true) of
DFDL

After this point, we conducted testing on approximately 450 shots.

The speed-frequency graph, as shown in Figure 5.9, displayed less favorable outcomes com-

pared to the previous training. It revealed that the most frequently measured speed was 3 m/s. The

average speed of the shots was 3.004 m/s, and the average speed of successful shots (α < 15) was

3.530 m/s.

Figure 5.9: Graph of speed frequency for optimized phase (2,true) for the third training

Regarding the value of the angle α , as illustrated in Figure 5.10, a similar outcome to the

previous training was achieved, with approximately 70% of the shots demonstrating an acceptable

direction (0 < α < 15).



5.6 Fourth training 55

Figure 5.10: Graph of alpha frequency for optimized phase (2,true) for the third training

The success rate for shots meeting the conditions of α < 15 and a speed exceeding 2m/s stood

at approximately 67.299%.

5.5.3 Analysis of the third training

This third test served as an experiment to determine if reversing the side to which the agent turned

when dribbling could influence the shot performance. It was revealed that there are no significant

gains to be made by doing so, as despite the shot accuracy being relatively positive, the ball’s

velocity values were not optimal. This test also showed slightly higher accuracy than the previous

one, but it won’t be significant enough to change the initial approach of training the shot by

turning to one side during dribbling, optimizing that aspect to the maximum, and then reversing

the behavior to achieve it with the symmetrical limb.

5.6 Fourth training

5.6.1 Changing Reward Function

To improve the success rates in this promising shot phase, we initiated a fourth round of adjust-

ments, in which we further modified the reward function to penalize shots that do not have an

acceptable angle (α). This new function will be a variation of the one previously used, as shown

in 5.1. To accomplish this, we introduced the following function:

r = v∗0.80α (5.2)

In the context of the training episode, v remains a representation of the velocity attained by the

ball upon reaching its destination post-shot.

Similar to function 5.1, the new reward setup allows us to reach the full speed value when the

deviation (α) is 0. However, it decreases even more rapidly, providing only half the speed value

at a deviation angle (α) of just 3 degrees, as can be observed in the graph in Figure 5.11.
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Figure 5.11: plot of the function y = 0.80α

It’s worth noting that this function may give rise to a "lack of information" problem. Since the

reward is the sole means by which the robot perceives its performance, and this function is highly

restrictive, the agent may fail to learn actions that are critical for overall success. This could lead

to suboptimal training outcomes.

To address this potential issue, we can retrain the previously trained neural network, allowing

for a concept known as "Weight Initialization." This approach equips the agent with a solid foun-

dation for learning the new task, as the network has already captured valuable insights from prior

tasks. Additionally, we anticipate a significant reduction in training times.

5.6.2 Results of the fourth training atempt

Examining the graph in Figure 5.12, and despite a small initial growth, I decided to terminate the

training relatively early due to the lack of substantial increase in the average reward.
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Figure 5.12: Reward Evolution Over Time Steps from fourth training session of phase (2,true) of
DFDL

From the trained model, we conducted a test comprising approximately 385 shots.

A statistical examination of the velocity frequency, depicted in Figure 5.13, indicates that the

4 m/s shot is the most frequently occurring.

The average shot velocity is 3.461 m/s, and the average velocity of successful shots (0° < α <

15°) is 4.446 m/s.

Figure 5.13: Graph of speed frequency for optimized phase (2,true) for the fourth training

Concerning the α angle value, as depicted in Figure 5.14, approximately 65% of the shots

demonstrated an acceptable direction (0° < α < 15°).
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Figure 5.14: Graph of alpha frequency for optimized phase (2,true) for the fourth training

The success rate for shots meeting the conditions of α < 15° and a velocity exceeding 2 m/s

stood at approximately 58.961%.

5.6.3 Analysis of the fourth training attempt

The results presented earlier reveal the inadequacy of this new reward function, as the agent was

unable to successfully optimize the shot. It becomes evident that despite retraining a previously

trained neural network, this function is poorly designed and does not provide informative and

consistent feedback. Consequently, the agent encountered difficulties in determining which actions

are desirable. This issue has hindered both consistent training and learning, as indicated by the

significant variability and lack of growth in the average reward value per episode over time.

As for the robot’s velocity, these results are consistent with the outcomes observed in the

previous training, where the pre-trained neural network underwent further training.

Regarding the precision and hit rate values, there was a slight depreciation in the final output.

Additional tests were conducted using this reward function, including training a neural net-

work from scratch, without pre-training. Various other reward functions, which were slight varia-

tions of function 5.1, were also explored. However, none of these yielded significant or noteworthy

results.

5.7 Conclusion

A summary of the optimizations performed can be observed in Table 5.1, which presents, for each

of the previous training sessions, the hit rate, average speed, and average speed of successful shots.

After thoroughly examining all the analyses conducted on various training variable variations,

it’s evident that the model developed and demonstrated in 5.4.2 has proven to be the best.

The achieved accuracy in this model makes this shot suitable for use in competitions. Consid-

ering that only 10% of shots exhibit a speed lower than 2m/s, it establishes this shot as a valuable
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Training Trial Hit Rate Average Speed Average Speed of Successful Shots
1 12.925% 3.836 m/s 3.255 m/s
2 64.328% 3.608 m/s 4.330 m/s
3 67.299% 3.0 m/s 3.530 m/s
4 58.961% 3.461 m/s 4.446 m/s

Table 5.1: Training Optimization Summary of DFDL

defensive option for clearing the ball from dangerous areas, particularly when combined with this

dribbling phase.

In comparison to the model from training session 3, the one from training session 2 is prefer-

able due to the higher shot speeds it achieves. Although training session 3 has a slightly better

hit rate, what matters more in defensive situations is the speed at which the ball is cleared, which

leads to a quicker clearance, rather than the precision of the shot.

However, it’s worth noting that this shot developed in the second training attempt may not

be the most accurate when preparing to execute the shot, as it only hits the target about 70%

of the time. This limitation restricts its use, for example, when the robot has an open goal and

it’s wanted a fast shot with high confidence in scoring. Achieving a higher accuracy rate would

be necessary for such scenarios. Additionally, due to the challenge of achieving great precision

during this dribbling phase, it may not be possible to further optimize the shot to execute with

specific directions; it will generally be directed straight ahead during this dribbling phase.
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Chapter 6

Kick in motion after Left Footed
Dribble Long

6.1 Problem

Continuing the investigation within the scope of this thesis, aimed at comprehending the tech-

niques of dribbling that could enhance a more efficient shooting motion, we have now initiated

training the agent for the transition between dribbling and shooting during specific phases of drib-

ble LFDL. This approach is detailed in section 3.7.4.2.

The specific dribbling technique in question involves using only the left foot for controlling the

ball, executed at a considerably greater distance from the ball compared to the previous dribbling

method studied. This aspect could potentially pose challenges to the transition between dribbling

and shooting during certain phases of the dribbling process.

Nonetheless, prior to drawing such conclusions, a more inclusive and comprehensive training

similar to the one described in section 4 will be essential. This will aid in determining the spe-

cific phases of dribbling where the player is more likely to excel. Following an assessment of

these various factors, we can ascertain whether there exists potential for optimization and prac-

tical application of this dribbling technique. Our primary focus remains on the speed at which

the robot executes the shot, ensuring both shot velocity and direction are significantly accurate for

competitive use.

6.2 Action Space, State Space, Network Shape and Hyperparameter
Tuning

Similar to the 4 model, all joints except the two in the head are considered for the action space.

The state space of this model employs the same observations as the previous models. Additionally,

the network shape and hyperparameters are kept consistent with the presets used in the previous

training sessions.
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6.3 Episode layout

Just like in the training explained in section 4, the robot will start 0.3 meters away from the ball

and dribble it for a random duration between 0 and 2 seconds. It will dribble in any direction, from

-180 to 180 degrees.

After this, the training switches to teaching the robot how to shot. The agent has only 2

seconds, or 10 time steps, to shot. This short time frame is meant to make the robot shot as

quickly as possible.

6.4 Reward

Similar to the previous dribbling training, we tested various functions, but we are now focusing

solely on the one that had the most substantial impact. Notably, this function is in line with the

equation 4.1 mentioned earlier, which demonstrated greater success in this initial training phase,

where we aim to optimize future motion shots.

6.5 Results

The training was concluded once the average reward curve per episode had stabilized, which

occurred after 1.75 million steps.

Figure 6.1: Reward Evolution Over Time Steps from first training session of phase of LFDL

In the face of utilizing solely the left foot for dribbling, the neural network successfully ac-

quired the skill of executing shots using only the left foot. This phenomenon can be ascribed to the

inherent tendencies of neural network algorithms, which find it more convenient to specialize in a
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distinct action – in this context, shooting with a specific foot – rather than grappling with the com-

plexities of learning multiple variations. However, despite this accomplishment, the utilization of

left-footed shots failed to facilitate a seamless transition between dribbling and shooting during

some phases of the dribbling process. This challenge arises from the player’s control of the ball at

an extended distance in this specific dribbling instance, coupled with the constraints imposed by

the limited training duration that prevented effective shooting practice. The imposition of a time

constraint is crucial in achieving one of the objectives of this thesis, which is to ensure effective

and fast shooting.

The analysis encompassed the shot velocity and the α value of the ball. In this context, α

signifies the disparity between the absolute orientation of the ball’s trajectory and that of the robot,

as previously elucidated. The dataset consists of over 1000 collected shots.

The velocity and α graphs for each of the following dribbling phases are presented below:

In terms of the velocity graphs, only the (5,true), (6,true) and (7,true) phases, seen in 6.12,

6.30 and 6.32, displayed positive outcomes. This can be attributed to the fact that during these

dribbling phases, the feet are closely positioned, enabling better shot preparation, particularly for

left-footed shots. The success was confined to these phases because the agent’s distance from the

ball upon its departure from dribbling is significantly greater compared to the previous dribbling

scenario 3.7.4.1. As a result, when the feet aren’t relatively close together, the robot refrains from

initiating the shot. This explains the notable prevalence of shots at 1m/s in the graphs. A velocity

of 1m/s was measured when the ball maintained the same speed it had when it left the dribble, and

the robot was incapable of further increasing its velocity.
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Figure 6.2: Graph of speed frequency for phase
(0,true) from first training session LFDL

Figure 6.3: Graph of speed frequency for phase
(0,false) from first training session LFDL

Figure 6.4: Graph of speed frequency for phase
(1,true) from first training session LFDL

Figure 6.5: Graph of speed frequency for phase
(1,false) from first training session LFDL

Figure 6.6: Graph of speed frequency for phase
(2,true) from first training session LFDL

Figure 6.7: Graph of speed frequency for phase
(2,false) from first training session LFDL

Figure 6.8: Graph of speed frequency for phase
(3,true) from first training session LFDL

Figure 6.9: Graph of speed frequency for phase
(3,false) from first training session LFDL
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Figure 6.10: Graph of speed frequency for phase
(4,true) from first training session LFDL

Figure 6.11: Graph of speed frequency for phase
(4,false) from first training session LFDL

Figure 6.12: Graph of speed frequency for phase
(5,true) from first training session LFDL

Figure 6.13: Graph of speed frequency for phase
(5,false) from first training session LFDL

Figure 6.14: Graph of speed frequency for phase
(6,true) from first training session LFDL

Figure 6.15: Graph of speed frequency for phase
(6,false) from first training session LFDL

Figure 6.16: Graph of speed frequency for phase
(7,true) from first training session LFDL

Figure 6.17: Graph of speed frequency for phase
(7,false) from first training session LFDL
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Moving on to the analysis of the α values, it’s apparent that most of the dribbles exhibit low

α values across their shots. This outcome can be attributed to the ball simply maintaining the

direction set by the agent at the conclusion of the dribble. Nevertheless, the agent struggles to

impart more speed to the ball, leading to missed shots.

As a result, our focus for consideration narrows down to the (5,true) and (6,true) phases. These

two phases consistently display low α values for the majority of their shots, as depicted in the

graphs labeled as 6.28 and 6.30.

Figure 6.18: Graph of alpha frequency for phase
(0,true) from first training session LFDL

Figure 6.19: Graph of alpha frequency for phase
(0,false) from first training session LFDL

Figure 6.20: Graph of alpha frequency for phase
(1,true) from first training session LFDL

Figure 6.21: Graph of alpha frequency for phase
(1,false) from first training session LFDL
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Figure 6.22: Graph of alpha frequency for phase
(2,true) from first training session LFDL

Figure 6.23: Graph of alpha frequency for phase
(2,false) from first training session LFDL

Figure 6.24: Graph of alpha frequency for phase
(3,true) from first training session LFDL

Figure 6.25: Graph of alpha frequency for phase
(3,false) from first training session LFDL

Figure 6.26: Graph of alpha frequency for phase
(4,true) from first training session LFDL

Figure 6.27: Graph of alpha frequency for phase
(4,false) from first training session LFDL
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Figure 6.28: Graph of alpha frequency for phase
(5,true) from first training session LFDL

Figure 6.29: Graph of alpha frequency for phase
(5,false) from first training session LFDL

Figure 6.30: Graph of alpha frequency for phase
(6,true) from first training session LFDL

Figure 6.31: Graph of alpha frequency for phase
(6,false) from first training session LFDL

Figure 6.32: Graph of alpha frequency for phase
(7,true) from first training session LFDL

Figure 6.33: Graph of alpha frequency for phase
(7,false) from first training session LFDL
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After analyzing these graphs, the hit rates were also analyzed. We considered hit rates a shot

at more than 2m/s and with a α less than 15º.

Analyzing them in the table 6.1, we can see that the phase with the best hit rate is the phase

(6,true), as expected. In addition, phase (5,true) also had promising results.

Dribble Phase Left Foot Active Left Foot Inactive
0 17.021% 3.614%
1 26.563% 5.263%
2 32.877% 37.681%
3 39.683% 20.968%
4 37.097% 5.172%
5 45.161% 6.557%
6 58.730% 14.925%
7 16.0% 11.290%

Average 35.124% 13.295%
Table 6.1: LFDL general training hit rate

6.6 Conclusion

Upon analyzing the previous findings, it becomes evident that phases (5,true) and (6,true) exhibit

the highest potential for future improvements in training. This is primarily because, during these

phases, the robot’s feet are closely positioned when initiating the shot. This unique alignment is

absent in the other dribbling phases, resulting in a greater distance between the left leg and the

ball. Consequently, the left leg can effectively cover the increased gap between the robot and the

ball in this particular dribble phase, thereby facilitating successful shots. Based in the results of

table 6.1, the decision has been made to focus on optimizing the shot execution following phase

(6,true) of the LFDL in the upcoming chapter through dedicated training sessions.
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Chapter 7

Kicking optimization of Dribbling
phase (6,True)

7.1 Problem

Continuing with the optimization approach employed in the LFDL model, we will adopt a similar

strategy of exclusively training the phase that exhibited the most potential in the prior results. This

deliberate focus on a single training phase introduces heightened consistency, enabling the learning

algorithm to concentrate its efforts on mastering a specific aspect of the task. This concentrated

approach not only bolsters the likelihood of success but also enhances overall training efficiency.

To further streamline the training process and reduce variability, the intention is to exclusively

train turning to one direction. This approach not only minimizes training time but also leverages

the ability to reverse behavior, as expounded upon in Chapter 3.6.10. By employing this strategy,

we aim to achieve enhanced training efficiency and proficiency in executing the desired behavior.

Upon reviewing the outcomes of the described dribbling phases of LFDL, as outlined in 6.5,

the analysis highlights two particularly promising dribbling phases: (5,true) and (6,true). Given

that phase (6,true) demonstrated the most encouraging results between the two, our subsequent

course of action involves initiating an optimization process specifically targeting this phase.

7.2 Action Space, State Space, Network Shape and Hyperparameter
Tuning

Equivalent to the preceding model, all joints except the two located in the head are included in the

action space. The state space for this model utilizes identical observations as the models prior. Net-

work configuration and hyperparameters adhere to the same presets employed in previous training

sessions.
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7.3 First training

7.3.1 Episode layout

To begin this optimization process, certain changes were made. In the episode layout, a modifica-

tion was introduced where the agent’s dribbling behavior was limited to making right turns only.

These right turns were performed randomly within a range of -180 to 0 degrees and took place

over a period of 0 to 2 seconds.

7.3.2 Reward

During this initial training phase, we employed the reward equation 5.1. The results observed

in the previously optimized model have demonstrated its superior performance in comparison to

other equations used. This function allows for a higher penalty to be applied to the reward value for

high shot direction deviation values, thereby making the final trained model more precise, which

aligns with one of our primary objective.

7.3.3 Results of the first attempt

After the initial training session and achieving a peak average reward, as depicted in Figure 7.1,

subsequent model testing was conducted to generate a frequency graph illustrating the relationship

between speed and alpha values.

Figure 7.1: Reward Evolution Over Time Steps from first training session of phase (6,true) of
LFDL

After the end of the training, a test with approximately 200 shots was conducted.

Firstly, when analyzing the velocity graph (Figure 7.2), it was observed that the most fre-

quently recorded shot velocity during attempts was approximately 1 m/s.
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The average shot velocity recorded was 1.783 m/s, while the average velocity for successful

shots (0° < α < 15°) was 3.880 m/s.

Figure 7.2: Graph of speed frequency for optimized phase (6,true) of the first training session

Approximately only 35% of the shots achieved the desired angle (α), as illustrated in Figure

7.3.

Figure 7.3: Graph of alpha frequency for optimized phase (6,true) of the first training session

The success rate for shots meeting the conditions of α < 15° and a velocity exceeding 2 m/s

was approximately 23.5%.

7.3.4 Analysis on the first training session

From the graph examined in Figure 7.1, it was evident that the achieved results would not be

optimal, primarily due to the low peak value of the average reward. Analyzing the velocity graph

in Figure 7.2 revealed that in the majority of shots, the robot fails to hit the ball accurately or does

so inadequately during the shooting phase. This behavior is visually confirmed.

This can be attributed to the fact that the most frequently measured velocity was 1 m/s, indi-

cating the robot’s inability to impart sufficient speed to the ball with a successful shot, thus failing
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to achieve high ball velocities. Consequently, the analysis of the shooting angle becomes less

meaningful due to the velocity results

Both of the above graphs clearly exhibit subpar results. Upon visual examination of the al-

gorithm’s performance, it becomes evident that when the robot executes a left turn, it encounters

difficulties in positioning itself effectively for a straight-ahead shot. This results in higher alpha

values and insufficient velocity, as most of the time, the outcome is unsatisfactory.

The problem at hand is a result of the rapid turn performed during dribbling, specifically the

LFDL, and the extended distance that the robot keeps from the ball while executing this particular

dribbling maneuver. Consequently, the robot does not have adequate time to precisely reposition

itself with the ball for a successful shot, leading to an inability to close the considerable gap

between the ball and the agent as they transition to the shooting phase within the limited time

available.

Therefore, it becomes imperative to implement modifications to improve shot accuracy.

7.4 Second training

7.4.1 Changing Episode Layout

In the previous scenario, the distance between the robot and the ball while executing the right turn

during dribbling was too significant, rendering it impossible to align for a shot within the available

time frame. To enable the robot to maintain closer proximity to the ball, facilitating a swift setup

for a shot, we adjusted our approach in the second training iteration.

During the LFDL, a notable difference was observed in the distance the robot kept from the

ball when turning left as opposed to turning right. Specifically, when the robot turned left, it kept

the ball closer.

To enhance the neural network training and improve overall results, we modified the training

process to take advantage of this LFDL characteristic. Instead of executing a right turn within a

range of -180 to 0 degrees, the robot now performs a left turn within a range of 0 to 180 degrees,

completing the maneuver in a maximum of 2 seconds. Subsequently, it transitions to the shooting

phase, using the same function (5.1) as before to achieve the aforementioned objective.

7.4.2 Results of the second attempt

After 3,500 training steps, and upon observing that the reward had reached its peak for this specific

training scenario, as depicted in Fig. 7.4, it became evident that the reward value had reached

a plateau. At this point, we concluded the training phase. The reward value per episode had

exceeded a threshold of 2.5 reward points per episode.
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Figure 7.4: Reward Evolution Over Time Steps from second training session of phase (6,true) of
LFDL

The outcomes are graphically depicted in the speed and alpha frequency graphs, following

approximately 400 test shots:

The speed graph (Fig. 7.5) demonstrates promising results, with the most frequently recorded

speed hovering at approximately 3m/s.

The average shot velocity recorded was 3.352 m/s, while the average velocity for successful

shots (0° < α < 15°) was 3.646 m/s.

Figure 7.5: Graph of speed frequency for optimized phase (6,true) of the second training session

Furthermore, the alpha graph (Fig. 7.6) indicates an impressive success rate of roughly 95%,

underscoring remarkable achievements in this aspect.
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Figure 7.6: Graph of alpha frequency for optimized phase (6,true) of the second training session

Due to the low results shown in the alpha graph, we are presenting the same frequency graph

but with a finer level of detail.

Figure 7.7: Detailed graph of alpha frequency for optimized phase (6,true) of the second training
session

The success rate for shots meeting the conditions of α < 15° and a velocity exceeding 2 m/s

was approximately 88.029%.

7.4.3 Analysis on the second training session

Following the training and the analysis of the reward graph (Figure 7.4), it became evident that the

results were highly promising, especially when compared to reward graphs from previous training

sessions using the same function (5.1).

In terms of velocity, the most frequently recorded speeds of 3 m/s and 4 m/s highlight the

robot’s exceptional ability during this training to execute precise shots and effectively strike the

ball in the shooting phase. Additionally, the accuracy graph for α values revealed outstanding

performance, with the robot correctly aligning with the ball’s direction in an impressive 97% of

the shots taken, resulting in a remarkable 88% success rate.
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These collective findings unequivocally establish this training endeavor as an impressive suc-

cess. It has demonstrated the capacity to seamlessly transition from dribbling to a kick in motion,

achieving a remarkable success rate and remarkably swift preparation and execution speeds. This

outcome substantiates the feasibility of swiftly transitioning from a dribble to a shot using this

particular technique.

It is clear that the change in direction during the dribbling phase, turning left instead of right,

has produced the desired result of reducing the distance between the robot and the ball when

entering the shooting phase, thus promoting better results. Despite the initial visual impression

that using the opposite foot to the side of the turn might be more logical, the results have defied

this expectation. In fact, the opposite has proven true, as the ball’s positioning facilitates precise

alignment for a left-footed shot when turning left, resulting in an exceedingly low occurrence of

missed shots.

Due to these excellent results, this model developed for this dribbling phase can be employed

in competitive environments, given its high success rate. It can be used in both defensive and

offensive situations, with a high degree of efficiency almost guaranteed.

The positive results have also motivated us to further optimize this shooting technique. In

the next training session, we plan to introduce some direction into the shots to make them more

versatile and usable in a wider range of situations.

7.5 Third training

7.5.1 Changing State Space

To further enhance the optimization of our previous shot, we are planning to incorporate directional

control into our shots. This strategic adjustment aims to increase the versatility and adaptability

of our shots across a wider range of scenarios. To achieve this, several modifications will need

to be made to enable the system to perceive the intended direction of the ball’s trajectory. Based

on this direction, the system will calculate the accuracy of the shot and subsequently assign the

appropriate reward.

In the context of the state space, we have introduced a new variable, as mentioned earlier, to

determine the intended direction of the shot. At the onset of the shooting phase, this variable will

be initially randomized, falling within a range of -20 to +20 degrees relative to the robot’s initial

orientation. To clarify, this means that the robot’s targeted shot will have the potential to span a

range of roughly 40 degrees when the shooting phase commences.

All other parameters remain constant. The robot undergoes the same pre-training process

as in the previous training session and then transitions to the shooting phase. However, in this

phase, it is imperative that the direction applied to the ball matches the randomly chosen value

to maintain a high reward. The α value in the function 5.1 will now represent the difference

between the direction of the ball and the randomly selected intended direction. If this training
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proves successful, the randomly chosen direction may, in the future, be employed by the team as

a deliberate choice for executing shots.

7.5.2 Results of the third attempt

After 2 million steps, we decided to stop the training as the average reward per training session

had stabilized at its peak value. This trend can be observed in Figure 7.8, which illustrates the

evolution of the reward over time steps.

Figure 7.8: Reward Evolution Over Time Steps from third training session of phase (6,true) of
LFDL

The outcomes are visually represented in the speed and alpha frequency graphs, following

approximately 400 test shots.

In Figure 7.9, the speed graph showcases promising results, with the most frequently recorded

speed hovering around 3 m/s.

The average shot velocity recorded was 3.378 m/s, while the average velocity for successful

shots (0° < α < 15°) amounted to 3.675 m/s.
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Figure 7.9: Graph of alpha frequency for optimized phase (6,true) of the third training session

Due to the requirement for high precision in this type of targeted shot, we present the graph

in figure 7.10, illustrating the angle α that represents the difference between the desired final

direction of the shot and the actual direction of the shot, in increments of 5 degrees instead of

the previously presented 15 degrees. In this case, approximately 40% of the shots exhibited very

precise direction, with α < 5º.

Figure 7.10: Graph of alpha frequency for optimized phase (6,true) of the third training session

The hit rate, maintaining the previous criteria of α < 15° and a velocity exceeding 2 m/s, was

determined to be 77.673%.

7.5.3 Analysis of the third training session

In this third training session, a change was made to the state space to enable targeted shots. How-

ever, the results reveal that the agent learns to impart some direction to the ball during the shot.
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Nevertheless, the speed at which the robot enters the shooting phase, coming from the dribbling

phase, is too high for the robot to achieve high precision in its shots. As a result, approximately

only 40% of the shots exhibit very precise direction, with α < 5º.

Regarding shot velocity, compared to the previous model, the average shot velocities were

similar.

This model proves viable for introducing some direction into the shot when needed, such as

in passes, clearances, or quick shots where the agent has to impart some direction to the shot.

However, precision is limited, indicating that additional adjustments may be necessary to improve

accuracy in targeted shots.

7.6 Conclusion

A summary of the optimizations performed can be observed in Table 7.1, which presents, for each

of the previous training sessions, the hit rate, average speed, and average speed of successful shots.

Training Trial Hit Rate Average Spee0d Average Speed of Successful Shots Targeted shot
1 23.5% 1.783 m/s 3.885 m/s NO
2 88.029% 3.352 m/s 4.646 m/s NO
3 77.673% 3.378 m/s 3.675 m/s YES

Table 7.1: Training Optimization Summary of LFDL

After conducting a comprehensive analysis of various training variable variations, we have

successfully developed a kick in motion after dribbling with an accuracy of approximately 90%

when shooting straight ahead. Additionally, we have devised a shooting technique where the agent

attempts to add some direction to the shot despite the inherent difficulty in the process. This is

due to the robot’s high speed when entering the shooting phase, leaving little time for precise

alignment. However, the primary goal of these shots has always been to execute them as quickly

as possible.

The high level of accuracy achieved in the model developed during the second training session

makes this shot suitable for use in competitions. With a success rate of 90%, it establishes this

shot as a valuable defensive option for clearing the ball from dangerous areas and also in offensive

situations like passes or shots, where the accuracy rate is high. Furthermore, by reversing the state

space and action space, it will be possible to achieve these high success rates when dribbling, both

to the left and to the right.

This preference for turning to the left for a shot with the left foot, as opposed to turning to the

right, in the model from the second training session, stems from the fact that the agent keeps the

ball at a much closer distance to the left foot when turning left than when turning right. This closer

proximity allows for better alignment and contributes to the higher success rate when executing

shots in that direction. It may not be as visually intuitive, but it proves to be a more effective

approach in practice.



Chapter 8

Conclusion

This thesis delved into the utilization of reinforcement learning methodologies to enhance the

kicking capabilities of NAO robots within the RoboCup framework. The primary goals encom-

passed an exploration of the Proximal Policy Optimization (PPO) deep reinforcement learning

algorithm, a comprehensive grasp of the FCPortugal work environment, and the proposal of effi-

cient strategies for augmenting agent performance.

The document initiates by presenting an introduction and rationale for this endeavor in chapter

1, within the context of the FCPortugal team and the broader RoboCup competition.

Subsequently, we embarked on an exhaustive survey of machine learning, deep learning, and

reinforcement learning in Chapter 2. This exploration encompassed an array of algorithms, in-

cluding SARSA, Q-Learning, DQN, DDPG, Policy Gradient, TRPO, and PPO. These algorithms

laid the foundation for devising effective learning strategies for the NAO robots.

Chapter 3 brought us to the heart of the FCPortugal work environment, with a particular focus

on the RoboCup simulator, SimsPark. Here, we dissected the components of Roboviz, delved

into the intricacies of the NAO robots, and familiarized ourselves with the regulations governing

the 2023 competition. These insights established the framework for our subsequent experimental

endeavors.

In Chapter 4, we took on the challenge of achieving a kick in motion following a Double

Footed Dribble Long. This involved a meticulous examination of the problem, the definition

of action and state spaces, and a careful tuning of network shapes and hyperparameters. Our

dedicated experimentation in this chapter provided valuable insights into the optimal phases for

transitioning from dribbling to a shot.

Chapter 5 was dedicated to optimizing the kicking technique following a dribbling phase of

(2,True). While our experiments led to significant improvements in kicking techniques during this

phase, we have developed a model that achieves approximately 70% accuracy.

In Chapter 6, our focus shifted to enhancing the kick in motion following a Left Footed Dribble

Long. Here, the experimental findings enriched our understanding of the most promising phases

for executing a successful shot in this specific dribbling context.
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Chapter 7 reached its climax with the culmination of our journey to optimize the kicking

phase during the dribbling process (6,True). Extensive testing of various episode layouts resulted

in achieving a remarkable shot success rate of approximately 90%. We attained these results

because, during this phase of the LFDL, the robot keeps its feet close together. Furthermore, the

robot manages to stay close to the ball while dribbling to the left, something that didn’t happen

when dribbling to the right. All of these factors allow the robot, in the limited time available during

the shooting phase, to close the gap between the ball and the robot and successfully take a shot.

In conclusion, this thesis represents a comprehensive exploration of the Proximal Policy Op-

timization (PPO) algorithm in the realm of RoboCup, specifically within the FCPortugal team.

Through our collective efforts, we have successfully developed a shot technique that aligns with

the objectives set forth in this dissertation. Our journey not only advances the capabilities of NAO

robots but also contributes to the broader field of robotics and reinforcement learning.

8.1 Future Work

Despite the significant advancements made in this dissertation, numerous avenues for future re-

search and development in the realm of reinforcement learning for robot soccer remain open,

offering promising opportunities for further exploration and improvement.

Algorithmic Exploration: Future work could consider alternative algorithms beyond PPO

(Proximal Policy Optimization). Exploring a variety of algorithms may yield valuable insights

and improvements in skill development.

Reward Function Experimentation: Experimenting with diverse reward functions, state space

configurations, and episode structures can potentially unlock novel and previously unattainable

results.

Transfer Learning to Real Robots: Adapting the learned policies from simulation to real-

world NAO robots is a critical aspect for practical applicability. Research in this area should

tackle challenges such as the reality gap, calibration issues, and domain adaptation techniques to

seamlessly deploy learned behaviors on physical robots.

In conclusion, the future of reinforcement learning for robot soccer holds immense potential

to revolutionize the fields of robotics and autonomous systems. By pursuing these research direc-

tions, we can pave the way for more sophisticated and capable robot soccer players. This not only

contributes to advancements in sports but also has broader implications in real-world applications

involving complex decision-making in dynamic environments.
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