
FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO

Fully asynchronous Java APIs for web
applications

Daniel Pereira da Silva

Mestrado Integrado em Engenharia Informática e Computação

Supervisor: João Carlos Viegas Martins Bispo

Receiving Enterprise: Konk Consulting - Consultoria Informática S.A.

July 15, 2021

Fully asynchronous Java APIs for web applications

Daniel Pereira da Silva

Mestrado Integrado em Engenharia Informática e Computação

Approved in oral examination by the committee:

Chair: Prof. Nuno Filipe Moreira Macedo

External Examiner: Prof. Tiago Diogo Ribeiro de Carvalho

Supervisor: Prof. João Carlos Viegas Martins Bispo

July 15, 2021

Abstract

Applications for cloud environments present several non-functional requirements, such as exe-
cution time, responsiveness, and scalability. An increasingly common way of addressing these
requirements is making Application Programming Interfaces (APIs) asynchronous, non-blocking,
and cancelable.

APIs for cloud environments work as a middleman between the servers/resources, and the
calls of client applications. An asynchronous, non-blocking API means that requests to the API
are executed concurrently, returning immediately after firing the request and before the work is
completed. Cancelable means that we are able to interrupt the work started by a request before
it finishes (e.g., in case it takes more than a certain amount of time), freeing its corresponding
resources. Resources may be other APIs or databases.

konkconsulting, the company where this dissertation takes place, already has extensive ex-
perience with C# and frameworks that address the challenges of cancellation in that ecosystem.
However, they now need to develop similar solutions for Java/Kotlin, and the transition proved to
be challenging due to the nonexistence of an equivalent standard framework, as the one found in
C#.

Kotlin is a relatively new programming language that can be compiled to run on the Java
Virtual Machine. It is also interoperable with Java. The objective of this dissertation is to find
a Java/Kotlin framework that can better accommodate the implementation of an API with the
mentioned capabilities. The framework was selected from the set of available open-source tools,
and was studied and tried in different ways to provide the required functionality. Kotlin offers a
set of functionalities, such as coroutines, which are used in the implementation.

Keywords: Kotlin, Java, coroutines, api, async, webflux, reactive, webclient, jpa

i

ii

Resumo

As aplicações para ambientes Cloud apresentam vários requisitos não funcionais, tais como o
tempo de execução, a capacidade de resposta, e a escalabilidade. Uma forma cada vez mais
comum de dar resposta a estes requisitos é fazer as API (Application Programming Interfaces)
assíncronas, não-bloqueantes e canceláveis.

As API para ambientes Cloud funcionam como um intermediário entre os servidores/recur-
sos e os pedidos dos clientes. Entende-se como assíncrona e não-bloqueante uma API em que
os pedidos por ela recebidos são processados paralelamente, retornando imediatamente após o
lançamento do pedido e antes de o trabalho estar concluído. Cancelável significa que é possível
interromper o trabalho iniciado por um pedido antes to seu fim (ex. se demorar mais do que um
determinado período), libertando os recursos correspondentes. Estes recursos poderão ser outras
API ou bases de dados.

A konkconsulting, empresa onde esta dissertação decorre, já tem bastante experiência com C#
e com frameworks que lidam com os desafios do cancelamento nesse ecossistema. No entanto,
precisam agora de desenvolver uma solução semelhante para Java/Kotlin e a transição mostrou-se
complexa devido à inexistência de uma framework equivalente à mencionada no contexto de C#.

Kotlin é uma linguagem de programação relativamente recente que pode ser compilada para
correr na Java Virtual Machine. É também interoperável com Java. O objetivo desta dissertação
é encontrar uma framework em Java/Kotlin que consiga suportar a implementação de uma API
com as capacidades mencionadas. A framework foi escolhida de entre as ferramentas de código
aberto disponíveis, tendo sido estudada e experimentada de diferentes formas de modo a dar a
resposta pretendida. Kotlin tem uma série de funcionalidades, como Coroutines, que são usadas
nesta implementação.

Keywords: Kotlin, Java, coroutines, api, async, webflux, reactive, webclient, jpa

iii

iv

Acknowledgements

I wish to express my gratitude to Professor João Carlos Viegas Martins Bispo, my supervisor in
this Dissertation, who helped me with his guidance and valuable input. I would also like to thank
konkconsulting, in the person of Jorge Almeida, my supervisor at the company. Jorge helped me
push through many difficulties that could have thwarted this effort whilst empowering me to go
beyond what I thought possible in my endeavours.

Naturally, I cannot let go of this opportunity to thank all my colleagues and friends at the IEEE
University of Porto Student Branch, with whom I have spent much time exchanging points of view
about all subjects, including my Dissertation’s. Through the years, they have brightened up my
academic life and helped me grow in several domains.

Moreover, I would like to thank my parents, Fernando Silva and Elisabete Silva, and my sister
Cristiana Silva who have always been present, giving me all kinds of support. Without them, I
would not have arrived at the fruition of this work.

The present LATEX template is provided by professors João Canas Ferreira and João Correia
Lopes, to whom I extend my gratitude as it has dramatically simplified the formatting consid-
erations for this Dissertation. I cannot forget about Dominik Schürmann, the creator of wire-
shark2latex1, a small utility that helped bring the Wireshark output to form in this document.

Daniel Pereira da Silva

1https://github.com/dschuermann/wireshark2latex

v

https://github.com/dschuermann/wireshark2latex

vi

“Right now we are at the place where we actually are using Spring Web MVC in a functional way
and it’s the place where it’s very very easy to migrate to Spring Webflux.“

(emphasis added)

Nicolas Fränkel2

2https://youtu.be/8-6Cd9YemOc?t=1613

vii

https://youtu.be/8-6Cd9YemOc?t=1613

viii

Contents

1 Introduction 1
1.1 Context . 1
1.2 Motivation . 1
1.3 Report Structure . 2

2 Concepts 3
2.1 Kotlin . 3

2.1.1 Data Classes . 4
2.1.2 Coroutine Context & Dispatchers . 5
2.1.3 Performance Analysis . 6
2.1.4 Java Fibers & Kotlin Coroutines . 6

2.2 REST APIs . 6
2.3 Blocking & Non-Blocking IO in the Java Environment 7
2.4 Reactor Schedulers . 8
2.5 Webflux Threading Model . 8
2.6 Idempotence and Safety . 9

2.6.1 HTTP . 10
2.6.2 SQL . 10

2.7 SpEL . 11
2.8 Code sources . 11
2.9 Summary . 11

3 Related Work 13
3.1 Literature Review . 13

3.1.1 Reactive Programming & Cancellation 13
3.1.2 Cancellation . 14

3.2 Tools . 15
3.2.1 Helidon . 16
3.2.2 Ktor . 16
3.2.3 Micronaut . 16
3.2.4 Quarkus . 16
3.2.5 Spring Boot . 17

3.3 Summary . 17

4 Problem & Proposed Solution 19
4.1 Problem Statement . 19
4.2 Proposed Solution . 19
4.3 Validation & Results Evaluation . 21

ix

x CONTENTS

4.4 Expected Results . 21
4.5 Summary . 22

5 Cancellation of Requests to the Server 23
5.1 Simple tasks cancelling . 23

5.1.1 C# Implementation . 23
5.1.2 Kotlin Implementation . 25

5.2 Cancellation in HTTP via underlying TCP layer 26
5.2.1 Cancellation of requests in C# web App (with Kestrel) 27
5.2.2 Failed attempt at cancellation of requests in Spring Boot with Netty and

Kotlin regular functions . 29
5.2.3 Echo Service for Link Detection . 30
5.2.4 Successful cancellation of requests in Spring Boot with Netty and Kotlin

suspend functions . 31

6 SQL, Cancellation & Reactive Streams 35
6.1 Reactive Streams . 36
6.2 Reactive Streams in SQL: R2DBC . 37

6.2.1 Model Definition and Data Retrieval . 37
6.2.2 Constraints . 38
6.2.3 Craftiness . 38

6.3 JDBC: an old Cornerstone . 39
6.3.1 ADBA . 40
6.3.2 jOOQ . 40
6.3.3 Ebean . 40

6.4 Hibernate (via Spring-Data-JPA) . 43
6.4.1 Query Tweaking . 43
6.4.2 Threads & Blocking . 44

6.5 Summary . 45

7 Third-party HTTP Requests: Asynchronous & (sometimes) Cancellable 47
7.1 Setting up an API . 48
7.2 The simplest HTTP request . 48
7.3 Netty as an HTTP Client . 49
7.4 Spring WebClient . 50
7.5 Cancelling HTTP requests . 52
7.6 Handling cancellation when using WebClient 54

8 WebSockets 57
8.1 Service processor setup . 58
8.2 Doing a request to another server . 59

9 Spring MVC to Spring Webflux: An attempt at a smooth transition 61
9.1 Spring MVC . 62
9.2 Spring Webflux . 63
9.3 Co-existence: Spring MVC & Webflux . 63
9.4 konkconsulting’s Dilemma . 64
9.5 Filtering . 64
9.6 Websockets via STOMP . 64

CONTENTS xi

9.7 OAuth2 . 65
9.8 CORS . 65
9.9 Spring-security . 65

9.9.1 SecurityContextHolder . 66
9.9.2 @Secured . 66
9.9.3 User Roles . 67

9.10 Task Scheduling . 68
9.11 Summary . 70

10 Results 73
10.1 SQL . 74

10.1.1 Ebean . 74
10.1.2 JPA . 79

10.2 Third-party HTTP Requests . 83
10.2.1 HttpURLConnection . 83
10.2.2 HttpURLConnection in a Kotlin async 85
10.2.3 WebClient . 88

11 Conclusions & Future Work 91
11.1 Conclusions . 91
11.2 Future Work . 93

11.2.1 Community Efforts . 93
11.2.2 Redoing this Exercise . 94

11.3 Note from the author . 95

A TestData 97
A.1 Posts . 97

A.1.1 Ebean Model . 97
A.1.2 Queries: . 98

B Code examples 101

References 105

xii CONTENTS

List of Figures

4.1 Cancellation overview diagram . 20
4.2 Inner layer cancellation flowchart . 21

5.1 Regular request flow in C# with Kestrel web server 27
5.2 Cancellation in C# with Kestrel web server . 28
5.3 Regular request flow in Spring with Netty web server 30
5.4 Cancellation in Spring with Netty web server 31
5.5 Cancellation in Spring with Netty web server using Coroutines 32

7.1 Regular request flow when calling 3rd party API. 52
7.2 Cancelled request flow when calling 3rd party API. 53

10.1 AB performance tests of the Ebean solution using Test Data A.1 and no wrapping. 75
10.2 AB performance tests of the Ebean solution using Test Data A.1 and wrapping

with async. 77
10.3 AB performance tests of the JPA solution using Test Data A.1. 79
10.4 AB performance tests of the JPA solution using Test Data A.1 and loading Tags

with special @Fetch. 81
10.5 AB performance tests of the HttpURLConnection solution. 83
10.6 AB performance tests of the HttpURLConnection solution inside an async block. 86
10.7 AB performance tests of the WebClient. 88

xiii

xiv LIST OF FIGURES

List of Tables

2.1 Reactor Schedulers . 8
2.2 Cancellation behaviours matrix . 10
2.3 Idempotent and safe methods’ classification in HTTP 10
2.4 Idempotent and safe functions’ classification in SQL 11

3.1 Comparison between cancelling solutions . 15
3.2 Tools overview . 16

6.1 Tools overview . 44
6.2 Tools overview . 44

7.1 Comparison between third-party HTTP request libraries in terms of usefulness. . 56

10.1 Machine specifications for tests run. 74
10.2 Threads CPU time (ms) statistical analysis grouped by thread type — Ebean SQL

requests inside async block . 77
10.3 Threads CPU time (ms) statistical analysis grouped by thread type — JPA SQL

requests with @Fetch Mode. 80
10.4 Comparison between SQL solutions. CPU time is the sum of the worker threads

for the requests. 82
10.5 Threads CPU time (ms) statistical analysis grouped by thread type — HttpURL-

Connection . 84
10.6 Threads CPU time (ms) statistical analysis grouped by thread type — HttpURL-

Connection inside an async block. 86
10.7 Threads CPU time (ms) statistical analysis grouped by thread type — WebClient

http requests . 89
10.8 Comparison between SQL solutions. CPU time is the sum of the worker threads

time for the requests, and does not mean that the CPU was doing intensive work. 90

xv

xvi LIST OF TABLES

Abbreviations

API Application Programming Interface
HTTP Hypertext Transfer Protocol
REST Representational State Transfer
WWW World Wide Web
JVM Java Virtual Machine
IDE Integrated Development Environment
CRUD Create, read, update and delete
GUI Graphical User Interface
SLOC Source lines of code
CD Continuous Deployment
CR (Kotlin) Coroutine(s)
PoC Proof Of Concept
SQL Structured Query Language
DBMS Database Management System
DBAL Database Abstraction Layer
IO Input-Output
NIO Non-blocking Input-Output
MVC Model—View-–Controller
AB ApacheBench
TES (Spring) Task Execution and Scheduling
RFC Request For Comments
Q&A Question and Answer

xvii

Chapter 1

Introduction

1.1 Context

In a world where the speed of replies to API calls is paramount, and the response to an API call

can range from a few milliseconds to minutes or even hours, we consider that cancellation of

these calls is an important topic due to the high volume of data that can be processed and the high

computational effort that can be required to reach an answer or to finish a process. However, it

seems the problem of cancellation has not been properly addressed.

konkconsulting, the company that promoted this dissertation, has been using the asynchronous

and cancellable features of the .NET framework for C# with great success. konkconsulting is now

working in a new project with another company — which has experience with Java. Together,

they decided to implement this project using Kotlin. They have started implementing a series of

micro-services using Kotlin and now wish to implement an API using that language.

The implementation of a vertical solution, using Kotlin, for an API that can have its requests

cancelled is, thus, the objective of this dissertation.

1.2 Motivation

Human operators have time-sensitive objectives when dealing with an API that can be slow, es-

pecially when there are no indications of the progress, such as a progress bar or the ETA. Thus,

it is common for them to cancel an issued request because it is slow and to request something

else. Moreover, human operators are also prone to mistakes, which can result in an API call to

a resource that was not the intended one. Disregarding the destructive effects that such lack of

attention may have, there are also other consequences.

The resources dedicated to replying to requests that have been abandoned by the client, when

those requests take a long time, can be enormous. Additionally, they may be blocking other

operations because they have locked a file or a database table, or they are using all the network

bandwidth available, etc.

1

2 Introduction

Another reason why tackling this issue is so important has got to do with updates. Continuous

deployment has become commonplace in all sorts of environments and is more and more used

in agile development to ensure that features and fixes become live as soon as possible. However,

there is the issue of long tasks. If these tasks cannot be properly interrupted, the system may

have to wait a very long time (during which it cannot receive new requests, otherwise it would be

waiting forever, depending on the load) before applying the update. The possibility to gracefully

interrupt running tasks speeds up the update process and reduces Lead Time, while keeping the

system in a consistent state that can be easily resumed.

1.3 Report Structure

Chapter 1, the present chapter, introduces the document.

In Chapter 2 there are explanations of some concepts pertinent to this dissertation, such as

Kotlin and Rest APIs.

Chapter 3 contains the literature review about Cancellation, Reactive Programming, Corou-

tines and an overview of the tools available for implementing an API using Java/Kotlin.

Chapter 4 describes the problem at hand and its proposed solution, as well as the means to

validate and compare the different approaches that were developed during the dissertation.

Regarding the next Chapters, we have a different approach. Unlike regular dissertations, this

one focuses on several small themes being studied, and although our desire is to find the best

solution to all those and put them together in a single project, they are still rather disconnected to

be studied as a whole. For this reason, instead of the regular approach in which there is a chapter

regarding the proposed solution, we present several chapters, each regarding one of the subjects

studied. There is a special chapter — Chapter 9 — in which we discuss the overall experience of

the integration of the new solution. While this is a rather exploratory dissertation, which aims at

selecting existing solutions, rather than creating a new one, we are still invested in the scientific

and analytic side of the tests that will be executed. For this reason, we present a Results chapter

— Chapter 10 — in which we lay out the diverse trials that were run.

Finally, Chapter 11 ends the dissertation presenting its conclusions and expected Future Work.

Chapter 2

Concepts

The novelty of some key aspects of this dissertation force us to make a clear introduction to those

as we cannot, in good conscience, expect the common reader to be comfortable with them. These

aspects are presented in a way that should be easier to understand than primary sources, and that is

more adequate to the context of this dissertation. Nevertheless, we give footnote references of the

sources used so that further investigation by the reader is possible. Naturally, some of the subjects

presented here may seem irrelevant, but they become important further ahead.

It should be noted that some of our sources are Podcasts, Webinars, recorded workshops, etc

(throughout the whole document, not just in this chapter). The target-audience of the technologies

involved makes it so. Whenever crucial information is necessary, we quote or paraphrase the

original author, which helps the reader as they do not have to search the original piece.

2.1 Kotlin

Kotlin is a programming language usually compared to Java, due to its origin, as explained below.

The differences between Java and Kotlin have been extensively studied. Gakis el al. [7] and

Gotseva et al. [8] compare them, and have helped shed some light on the topic. This comparison

makes sense because Kotlin was created from a Java background and compiles to Java Bytecode.

It also compiles to Javascript and machine code. Because it runs on the JVM, Kotlin has the

same advantages as Java regarding portability. Moreover, Kotlin is interoperable with Java, which

facilitates reusage and integration of legacy code. Kotlin is not the first language developed to

run on the JVM after Java, but it is the one that became most popular in such short time. Its

development started in 2010, by JetBrains, the developer of the well-known IntelliJ IDEA IDE. Its

first stable version was released in 2016, released under the Apache 2.0 license. The source code

is available on its GitHub page. In 2017, Google included Kotlin in Android Studio, and in 2019

Google officially announced Kotlin as the preferred language for Android development1.

Kotlin has a series of advantages over Java:

1https://android-developers.googleblog.com/2019/05/google-io-2019-empowering-
developers-to-build-experiences-on-Android-Play.html

3

https://android-developers.googleblog.com/2019/05/google-io-2019-empowering-developers-to-build-experiences-on-Android-Play.html
https://android-developers.googleblog.com/2019/05/google-io-2019-empowering-developers-to-build-experiences-on-Android-Play.html

4 Concepts

• Null safety

One of the biggest differences between Java and Kotlin, according to Gotseva et al. [8], is

the fact that variables in Kotlin can be nullable or non-nullable, in an effort to reduce the

occurrence of null-pointer exceptions. Gakis et al. [7] note that developers can access a not

nullable variable without checking its value first as they know that a null pointer exception

will never be thrown when accessing it.

• Coroutines

Despite being similar to Java threads, coroutines are significantly lighter and perform better

than threads when bulk-launched. Gakis et al [7] also mention that coroutines are useful for

background computations when developing a GUI as they enable the developer to launch

parallel tasks, thus not blocking the main UI. Coroutines are a complex syntactic construct

that creates a hidden callback structure in Java Bytecode.

• Smaller language features

Everlönn et al. [7] recognize this as a minor feature, but still find it relevant: two equivalent

programs in both Java and Kotlin are much smaller (in terms of Source Lines of Code) when

Kotlin is used.

Type inference was a feature provided by Kotlin, but has since become available in Java 10.

Kotlin also features "smart casting", which reduces the number of calls to instanceof.

This is also available since Java 14.

Everlönn et al. and Chakraborty[7, 8] both mention the fact that Kotlin supports named

arguments when calling methods, which greatly reduces the amount of definitions for meth-

ods. This also allows for easier reading of the code as the name of each parameter is in the

code itself.

Chakraborty [8] also notes the fact that functions can be marked as inline, as well as as tail

recursive, in Kotlin.

There are a series of special mechanisms in Kotlin that are used in this dissertation, or that

temporarily thwarted our efforts. Both cases are listed below:

2.1.1 Data Classes

Data Classes 2 are a special kind of classes in Kotlin used for classes whose main purpose is to hold

data. Such classes can be marked with the data keyword, as follows:

data class Book(val name: String, val year: Int)

This makes the compiler automatically implement several functions for said class:

• equals() and hashCode()

2https://kotlinlang.org/docs/data-classes.html

https://kotlinlang.org/docs/data-classes.html

2.1 Kotlin 5

• toString() of the form Book(name=Eragon, year=2002)

• copy() which receives as named parameters the fields to be changed, e.g.:

val cor = eragon.copy(name="Coraline")

• componentN() allowing to extract variables as follows: val (name, year)= cor, keeping

the variable order as specified in the class declaration. 3

Most ORM libraries work well with data classes, the exception being JPA, which is not de-

signed to work with immutable classes. 4

2.1.2 Coroutine Context & Dispatchers

Each Kotlin Coroutine runs in a context that the documentation calls CoroutineContext, which

contains the running Job, its dispatching mechanism, and other related elements.

The coroutine dispatcher determines on which thread the coroutine will run. According to the

documentation5, the "coroutine dispatcher can confine coroutine execution to a specific thread,

dispatch it to a thread pool, or let it run unconfined":

• Thread: a specific thread is used for this coroutine. Threads can easily be created using

newSingleThreadContext(). However, this is an expensive resource. The documen-

tation advises closing the thread when it is no longer needed, or alternatively reusing it

throughout the application.

• Thread Pool: the default option — Kotlin offers a dedicated thread pool for coroutine exe-

cution. Dy default, the thread-pool size is the same as the number of cores available, with

a minimum of two. However, a custom-sized thread pool may be provided. An example is

provided in Listing 2.1.

• Unconfined: the coroutine will be ran in the calling thread until the first suspension. After

that, it will be resumed in a thread defined by the suspending function that was invoked.

1 import kotlinx.coroutines.asCoroutineDispatcher

2 import java.util.concurrent.Executors

3

4 val dispatcher = Executors.newFixedThreadPool(128).asCoroutineDispatcher()

5

6 CoroutineScope(coroutineContext).async(dispatcher) {

7 // code block

8 }

Listing 2.1: Creating a thread pool for running coroutines.

3https://stackoverflow.com/a/43158972/1469991
4https://github.com/spring-guides/tut-spring-boot-kotlin#persistence-with-jpa
5https://kotlinlang.org/docs/coroutine-context-and-dispatchers.html

https://stackoverflow.com/a/43158972/1469991
https://github.com/spring-guides/tut-spring-boot-kotlin#persistence-with-jpa
https://kotlinlang.org/docs/coroutine-context-and-dispatchers.html

6 Concepts

2.1.3 Performance Analysis

Everlönn et al. [7] have done extensive benchmarks using several programs implemented in both

Java and Kotlin, and running on a Windows machine and an Android phone. In the Windows

simulations, the speed of execution on both languages was very similar, with differences ranging

from 1% to 4% both ways.

Memory usage, however, yielded unexpected results, with Kotlin always using more RAM

than Java. Of the 4 benchmarks that hey performed, two had a difference under 5%, but other

two had a 17% and 340% difference. The authors do not present any studies trying to explain this

difference.

2.1.4 Java Fibers & Kotlin Coroutines

Java Fibers are to be a native JVM construct defined by Warski [23] as "light-weight threads".

Paluch describes this technique as "offloading blocking calls to a Fiber-backed Executor". Consid-

ering the apparent similarity between Java Fibers and Kotlin Coroutines, the second point presents

an interesting prospect: the possibility of wrapping the JDBC in an IO Coroutine-based Executor,

so that it can be used in with Spring-Webflux. Further investigation has shown, however, that

this shall not be possible: Warski [23], in his blog post about Java Fibers, presents a side note

where he explains the differences between those and Kotlin Coroutines. While Java Fibers, part

of the Loom project, are implemented on the JVM itself, and therefore have native access to the

OS layer, Kotlin Coroutines, as magical as they may seem, are a mere syntactic construct that cre-

ate a hidden callback structure in Java Bytecode. Other members of the development community

have suggested the possibility of Kotlin making use of JVM Fibers, but that is not a reality as of

yet, and its implementation did not take place in useful time for this dissertation. Despite Project

Loom being currently in active development6, there have not been any news on it for some time.

Nevertheless, its development remains active on GitHub7.

2.2 REST APIs

REST commonly relies on HTTP(S). HTTP is a protocol created in CERN in 1991 which is the

foundation for the WWW as we know it today. When it was created, HTTP was not designed to

be cancellable. This means that once a request is fired, there is no way to cancel that particular

request, because no state is kept by either party of the communication. It may be possible, however,

to close the underlying TCP socket. If the server can detect that the socket was closed, it may then

choose to cancel the resolution of the request. 8

Alternatively, HTTP codes 102 Processing and 202 Accepted may be used for long tasks.

6https://wiki.openjdk.java.net/display/loom/Main
7https://github.com/openjdk/loom/commits/fibers
8https://softwareengineering.stackexchange.com/questions/362187/can-a-caller-

abort-an-execution-of-code-invoked-by-http-request

https://wiki.openjdk.java.net/display/loom/Main
https://github.com/openjdk/loom/commits/fibers
https://softwareengineering.stackexchange.com/questions/362187/can-a-caller-abort-an-execution-of-code-invoked-by-http-request
https://softwareengineering.stackexchange.com/questions/362187/can-a-caller-abort-an-execution-of-code-invoked-by-http-request

2.3 Blocking & Non-Blocking IO in the Java Environment 7

REST is an architectural style which defines the way messages are to be exchanged between

computers on the web. Some characteristics of REST are:

• Stateless: the meaning of each message is the same regardless of the messages previously

exchanged. A counter-example would be the get <file> command on FTP: if a relative path

is provided, the previous cd command (e.g.: cd /public) affects the result.

• Client to Server architecture: the client performs a CRUD (Create, Read, Update, Delete)

operation on a resource and the server issues a reply. The server cannot initiate an operation

to a client.

REST makes use of the HTTP methods (verbs) to indicate what kind of request is being issued

[16]. The most common are GET, POST, DELETE, PUT. It is possible to implement custom

methods, despite this being undiplomatic:

• Frameworks rarely offer support for custom HTTP methods.

• Additional methods change the protocol and turn it into a superset of HTTP, which may

hinder communication with other systems.

2.3 Blocking & Non-Blocking IO in the Java Environment

The concept of thread is a considerably complicated subject when compared with the early non-

time-sharing Operating Systems.

The first computers were able to execute simple tasks and were programmed by setting the

instructions directly on physical binary switches. Nowadays, computers have several cores (some-

times even several CPUs), and multi-threaded programming takes advantage of this to provide

much faster results when parallelisation is possible.

Threads exist within processes and share most of the memory of that process, effectively being

a lighter version of a child process.

However, while launching a handful of threads is a lightweight operation — much more

lightweight than forking, the process which creates child processes — launching a thousand

threads, for example, can be a heavy operation: especially considering the constant context switch

necessary to accommodate every running thread.

In Java applications, usage of threads is very commonplace as those allow offloading of heavy

operations off the main thread, keeping applications responsive and allowing for controlled par-

allelisation. Thread-pools are used as an abstraction in order to manage the available threads in

a simple fashion. A regular use case is launching a thread for each incoming request in a server

application.

According to Elizarov [3], creator of Kotlin, "Threads are expensive", and blocking a thread

should be avoided. While blocking is unavoidable when a CPU-bound operation is taking place,

such as a heavy mathematical calculation, the same cannot be said for IO-bound operations.

8 Concepts

Elizarov defends that "if you block because of IO, then you can (...) avoid blocking by us-

ing non-blocking (...) IO libraries that do not block threads at all." While IO-blocked threads

do not consume CPU resources, they are still taking up space in the thread-pool and their cre-

ation, scheduling, and destruction become heavier as the number of threads increases, according

to Thirunavukkarasu [21].

Karabyn [11] explains that non-blocking IO (NIO) libraries work by implementing buffers

from and to which the main thread can read/write respectively. The buffer processing is done by

a specialized thread (usually just one) — even for several concurrent files or other resources —

which reduces the amount of open threads at a time and also reduces the combined sum of time

that threads in a program are waiting for IO. This behaviour is observed in our trials ahead, e.g. in

Chapter 10.2.3.

2.4 Reactor Schedulers

Reactor Schedulers are an "abstraction that give the user control about threading"9. While Reactor

operators are usually concurrent agnostic, time-dependent operators are not. Those must run on a

scheduler, the Schedulers.parallel() scheduler by default. These Schedulers are important

for us because of the way Spring Webflux deals with and uses them. There are several schedulers

available10, as shown in Table 2.1.

Scheduler Description
Parallel Runnable, non-blocking executions
Single low-latency, Runnable, single-shot executions
Elastic longer executions, blocking tasks, growing # of tasks

Bounded Elastic longer executions, blocking tasks, capped # of tasks
Immediate do not schedule, "null-scheduler"
(custom) fromExecutorService(ExecutorService)

Table 2.1: Reactor Schedulers

2.5 Webflux Threading Model

Webflux and Netty are important parts of this dissertation, as we explain in section 5.2.4. The

Webflux documentation delves into the threading model 11 explaining why it may seem so unusual

for newcomers: explaining the blocking calls dilemma, the reactive pipeline call structure, and the

actual threads that one may expect to see in a Webflux Application (considering that Java Reactor

and Netty are used):
9https://spring.io/blog/2019/12/13/flight-of-the-flux-3-hopping-threads-and-

schedulers
10https://projectreactor.io/docs/core/release/api/reactor/core/scheduler/

Schedulers.html#boundedElastic
11https://docs.spring.io/spring-framework/docs/current/reference/html/web-

reactive.html#webflux-concurrency-model}

https://spring.io/blog/2019/12/13/flight-of-the-flux-3-hopping-threads-and-schedulers
https://spring.io/blog/2019/12/13/flight-of-the-flux-3-hopping-threads-and-schedulers
https://projectreactor.io/docs/core/release/api/reactor/core/scheduler/Schedulers.html#boundedElastic
https://projectreactor.io/docs/core/release/api/reactor/core/scheduler/Schedulers.html#boundedElastic
https://docs.spring.io/spring-framework/docs/current/reference/html/web-reactive.html#webflux-concurrency-model
https://docs.spring.io/spring-framework/docs/current/reference/html/web-reactive.html#webflux-concurrency-model

2.6 Idempotence and Safety 9

• server thread, launched by the main application.

• reactor-http-nio- threads, usually as many as the available cores on the CPU. These handle

incoming requests and take care of Reactor-related operations.

• Reactor Schedulers threads, which exist when the running Reactor code has defined a Sched-

uler. The thread names are as found in the first column of Table 2.1, e.g.: boundedElastic-12

• Other Libraries’ threads, depending on which external libraries are used. e.g.: Hibernate.

• Language-specific threads, depending on the Language used (Kotlin, Groovy, Java) and the

constructs that the developer crafted for thread management.

However, the documentation does not explain how it deals with blocking code on the request

handlers. Fortunately, Piotr [20] studied extensively the Webflux Threading Model. He reports

that the worker threads (reactor-http-nio-*) delegate long-running tasks to threads available in the

boundedElastic pool, which is a Reactor Scheduler as described in Chapter 2.4. This is compatible

with what we have observed.

2.6 Idempotence and Safety

Idempotence is a property of certain operations characterised by the possibility of being applied

several times without changing the result beyond the initial execution.

Safety is a property of certain operations characterised by the no change of the accessed re-

source, regardless of the number of times it is accessed.

This is applicable to all calls/requests done between two parties, as for example in:

• HTTP requests

• SQL requests

• Websocket requests/messages

Idempotence does not mean that the call does not change the state. It merely means that one or

more requests to the same operation always yield the same result in the system — not necessarily

the same result to the requesting party. Another way of putting it, according to T. Yuan et al [24]

is that a method being idempotent "means duplicate actions cause no effect". Safety, on the other

hand, means that nothing is changed when executing that method.

For example, in HTTP, a DELETE operation is idempotent because, in the first run, the re-

source is deleted and a 200 Ok response is returned. Additional calls to the same method may

yield different responses (such as 404 Not Found), but the state is preserved (the resource is

still deleted). Another example is doing a PUT, where the first call will create the content, usually

returning a 201 Created response. Subsequent identical requests can return whatever response,

but the status of the server will not be changed.

10 Concepts

Conversely, subsequent POST requests will create several resources, each changing the state

of the database, which makes it an non-idempotent method.

Studying idempotence and safety is relevant because this dissertation focuses on cancellation,

and in many cases it is not possible to know what state the cancelled operation stayed in. The

matrix below can help us understand what may be necessary:

Idempotent Not Idempotent
Safe Cancellation is always safe. Impossible combination.

Unsafe Changes can be rolled back carefully, or
redone if cancellation was unintended.

Redoing changes is dangerous. There
should be a way to check what was
changed in order to react to that.

Table 2.2: Cancellation behaviours matrix

2.6.1 HTTP

Idempotence is a big theme in HTTP. The HTTP Specification [6] is clear about which methods

should be idempotent and safe:

Method Idempotent Safe
GET Yes Yes

POST No No
PUT Yes No

DELETE Yes No
HEAD Yes Yes

OPTIONS Yes Yes
Table 2.3: Idempotent and safe methods’ classification in HTTP

It is clear that only POST requests are supposed to be idempotent. However, it is not uncom-

mon to see implementations where multiple GET requests result multiple in changes to state (e.g.

some websites have visitor counts which do not require a POST to be increased). For this reason,

evaluating idempotence of API calls should not be solely based on the HTTP method used: the

context and implementation must be taken into account. The same goes for Safety evaluation.

2.6.2 SQL

Like in HTTP, SQL operations can also be studied regarding their idempotence and safety prop-

erties. However, this study is much harder as there is the possibility of sub-queries, if-clauses and

triggers. Assuming only the simplest constructions, we can classify the different SQL functions

as follows:

Again, note that errors and exceptions are not taken into account when studying idempotence.

Only the (final) state of the database is considered.

2.7 SpEL 11

Function Idempotent Safe
SELECT Yes Yes

INSERT (with ID as default value) No No
INSERT (with a defined ID) Yes No

UPDATE Yes No
DELETE Yes No

Table 2.4: Idempotent and safe functions’ classification in SQL

2.7 SpEL

Spring Expression Language12 is a simple language that Spring executes at runtime. It can be

used in several annotations, such as @PreAuthorize. SpEL offers support for calling functions,

getting a specific element from an array, a list, a map, or an object’s properties, among others. Its

complete documentation explains the ways it can be used.

2.8 Code sources

Throughout this dissertation, we will be using several sources of code and tutorials:

• GitHub — an online repository where developers from all around the globe contribute to

public and private projects. Public repositories (also called repos) are searchable across the

platform and can be scoured for code examples, configuration files, etc.

• StackOverflow — a Q&A website where users ask questions and get answers from the com-

munity. It is considered one of the biggest sources for code examples and quick solutions

for numerous problems.

• Baeldung — a blog where Spring contributors publish tutorials explaining how to do a task,

e.g. using the WebClient library.

2.9 Summary

Kotlin is a novel language which shall facilitate the present work via its many quality-of-life

mechanisms, namely the Coroutines13. Additionally, the REST standard, well laid out as it is,

seems to lack support for cancellation. This shall be studied further during the dissertation.

As any computer tool, the present dissertation work shall interact with many external platforms

and protocols, such as databases, the OS, other (REST) APIs. However, those were not mentioned

in this report as it is impossible, at this stage, to predict what kind of knowledge will be required

to achieve the goals of the present dissertation.

12https://docs.spring.io/spring-framework/docs/4.3.10.RELEASE/spring-framework-
reference/html/expressions.html

13https://kotlinlang.org/docs/reference/coroutines/basics.html

https://docs.spring.io/spring-framework/docs/4.3.10.RELEASE/spring-framework-reference/html/expressions.html
https://docs.spring.io/spring-framework/docs/4.3.10.RELEASE/spring-framework-reference/html/expressions.html
https://kotlinlang.org/docs/reference/coroutines/basics.html

12 Concepts

Chapter 3

Related Work

The study of the related work is an important step before starting work on the solution. Here, we

present the state of the art regarding the cancellation of tasks, asynchronous programming, and

reactive programming.

We have been unable to find literature correlating Kotlin (see section 2.1) with cancellable

APIs, despite great effort. Further research yielded no literature results relating cancellation with

languages such as Java or C#.

For this reason, we will be focusing on the same subject — cancellation, asynchronicity and

parallel programming —, but mostly in a language-agnostic way.

3.1 Literature Review

3.1.1 Reactive Programming & Cancellation

Several of the tools described in the next section mention the term "reactive programming" or

"reactive streams" in their websites. Redhat defines reactive programming as "a development

model structured around asynchronous data streams". [4] Asynchronous programming is a way

of parallel programming that allows a task to run separately from the primary application thread.

When the task is complete (or interrupted), it notifies the main thread, usually via a callback. It is,

thus, characterized by the presence of callbacks, function references, etc.

Reactive programming is a subset of this, and refers specifically to when code runs reactively

to an event, usually the reception of data streams, and which propagates changes to interested

parties automatically. Chakraborty, R. [2] gives the example of spreadsheets which update cells

as the formulas they contain get up to date data from other cells. Reactive programming has

been being used at least in Javascript[10] and Kotlin[2], in both contexts usually via specialized

libraries/frameworks.

Kambona et al. [10] defend that the major problem with Asynchronous Programming which

makes Reactive Programming an interesting proposition is the presence of nested callbacks. These

13

14 Related Work

are used in event-driven programming and are used to call a function to handle the success or in-

success of an asynchronous task. They highlight that using callbacks extensively ends up in "com-

plex flows" that require the programmer to be omnisciently aware of all the program, especially

when several events may fire up at the same time. Chakraborty agrees, calling this phenomenon

"callback hell". Belson et al. [1] also note this problem and employ the same term.

Reactive programming solves this issue by implementing observables, a tool which helps pro-

grammers catch data stream events and their contents. Escoffier [4], from Redhat, lists a series

of operations that can be performed on the observed variables: "combine, merge, filter, transform

(...)". Kambona et al. [10] also mention the merging of streams, which utility they exemplify

with the scenario of a file being auto-saved periodically (periodic event) or when the user clicks

the save button (stochastic event), both of which do the same operation: saving the file. Without

observables, implementing the same functionality would involve catching both events and calling

the same function for both, or possibly copying the code from one to the other.

3.1.2 Cancellation

One of the goals of this dissertation will be the cancellation of tasks. For this reason, we have

done a review of the literature on this matter.

Kolesnichenko et al. [12] have documented the cancellation of tasks in a client/server (sup-

plier) environment and have classified tasks cancellation techniques as:

• Client-based cancellation — where the client is the sole responsible for requesting the can-

cellation. Client-based cancellation can be further classified as:

– Forceful cancellation — where the client asks the server to stop. Forceful cancellation

can be:

* Abortive cancellation — the server immediately stops execution of the task.

* Interruptive cancellation — the server can reach a safe point before cancelling

the task.

– Passive cancellation — the client merely stops waiting for the reply and does not in-

form the server that the request has been canceled. HTTP is a typical example of

this.

• Supplier-based cancellation — the server itself takes the initiative to cancel the task. This is

common when the server finds an error and cannot proceed.

• Client/supplier cancellation — the server and the client negotiate the cancellation of the

task.

3.2 Tools 15

Kolesnichenko et al. [12] call safe points to the places in the execution of a task where it can be

cancelled safely. These are usually added by the programmers as checks that the task has not been

cancelled, and they are added specifically in places where it is possible to revert the tasks effects,

if desired, or release the allocated resources. Kolesnichenko et al. also note that "this work is

the first to attempt a comprehensive classification and evaluation of task cancellation techniques".

This does not seem to have changed in the meantime.

Kumar, V. [13] presents a different approach regarding these safe points, calling them yield-

points, defending that these points can be generated on compile-time and thus there is no need for

manual verification of the cancellation status. The author relied on this to implement Featherlight,

"a new programming model for speculative task parallelism ". This approach is novel as it does

not require any explicit cancellation checks throughout the code. This way, developers can focus

on the issue they are solving, thus increasing productivity. However, its purpose is for task sets

in which most tasks will fail (i.e., only one needs to succeed), such as computations with graphs

(e.g. finding the best move in a game tree or route planning in GPS systems). Moreover, Kumar

does not focus on the issue of cancelling external requests gracefully, which is paramount in this

dissertation.

Kangwood Lee et al. [14] have studied an interesting theme: cancellation in distributed data

storage. They study the idea that it may be possible to reduce job latency by scheduling the same

job at several servers and waiting for the first reply, cancelling the rest after that. The problem,

according to the authors, is that the models that study the cancellation of said tasks do not take into

account the fact that cancelling a task can be a heavy task, i.e., cancellation is not instantaneous.

In some cases, cancellation is not even possible (e.g. DNS or HTTP requests).

Solution/Method Cancellation technique Safe Points Overhead Analysis
Featherlight[13] Supplier-based

cancellation (non-suited
for client-server)

Compiler-made no overhead because
cancellation is not
graceful

Distributed tasks
cancellation[14]

Some form of Forceful
cancellation (depending
on the task)

not studied by
the authors

The central point of this
work. Overhead is taken
into account before
launching parallel tasks

Table 3.1: Comparison between cancelling solutions

Cancellation technique as defined by Kolesnichenko et al. [12] and showed previously in this
chapter.

3.2 Tools

It is clear that the development of this dissertation will implicate the selection of a Kotlin microser-

vices framework. While that study is extensive, and a part of the dissertation itself, we believe it

makes sense to provide an overview of the available tools as an entry point for the rest of this

dissertation.

16 Related Work

After some searching, the following tools were found:

Framework Supported Languages Build Tools
Helidon SE Java, Kotlin Maven

Ktor Kotlin Maven, Gradle
Micronaut Groovy, Java, Kotlin Maven, Gradle
Quarkus Java, Kotlin, Scala Maven

Spring Boot Groovy, Java, Kotlin Maven, Gradle
Table 3.2: Tools overview

Scala and Groovy are languages that, like Kotlin, compile to the JVM.

3.2.1 Helidon SE1

Helidon SE is part of Project Helidon. The project’s slogan, as displayed on their website, is

Lightweight. Fast. Crafted for Microservices. Helidon is split in two parts:2

• Helidon SE – designed to be a microframework that supports the reactive programming

model.

• Helidon MP – an Eclipse MicroProfile runtime for running microservices portably.

3.2.2 Ktor3

Ktor is a Kotlin framework developed by JetBrains. Its home page title is Ktor: Build Asyn-

chronous Servers and Clients in Kotlin. Its website features Documentation, Tutorials and Samples

for developers.

3.2.3 Micronaut4

Micronaut introduces itself as the Polyglot Framework, as it natively supports several languages:

Java, Groovy and Kotlin. It integrates easily with several databases, such as Redis, MongoDB,

SQL databases, etc.

Micronaut can be used both for serverless applications, such as AWS Lambda or regular server

APIs. Its website also mentions that it can be used to "build fully reactive and non-blocking apps".

3.2.4 Quarkus5

Quarkus’ value proposition is what has become known as "live reload". Its website advertises the

"Developer Joy" of having code reloaded on save. Its focus is mainly on Java, and while it does

support Kotlin, there is no mention to it on their page.
1https://helidon.io/
2https://www.baeldung.com/microservices-oracle-helidon
3https://ktor.io/
4https://micronaut.io/
5https://quarkus.io/

https://helidon.io/
https://www.baeldung.com/microservices-oracle-helidon
https://ktor.io/
https://micronaut.io/
https://quarkus.io/

3.3 Summary 17

3.2.5 Spring Boot6

Spring Boot is the oldest player in the field. In its website, there are several highlighted aspects:

Microservices, Reactive, Cloud, Web Apps, Serverless, Event Driven and Batch. Spring Boot

comes bundled with an integrated webserver (such as Tomcat).

A complete setup guide for Spring Boot and Kotlin is provided in their blog. 7

Spring Boot is part of the Spring family. Spring Boot is an extension of the Spring framework

that speeds up the setup of a Spring application by reducing the necessary boilerplate configura-

tions 8. Guntupally et al. [9] reeinforce this idea, saying that is has "definite advantages over other

spring-based frameworks", allowing for "simpler dependency management, auto configuration,

built-in CRUD handling, and flexible project startup".

Bootstrapping

As of January 2021, all the aforementioned frameworks’ websites provide what is called a Web

Starter. This helps programmers bootstrap the application, allowing them to explore and select the

packages that they would like to import. The final result is a zip file with the application and also

the configuration file(s) for the selected build tool. Alternatively, some frameworks also support

CLI tools for the same process, such as Micronaut.9

Such bootstrapping platforms simplify the deployment of testing environments, creating of

PoC projects, among others.

3.3 Summary

Despite our best efforts, it was not possible to find literature correlating Kotlin with cancellation.

This may be due to the fact that the people engaged in the development of this subject are not

integrated in the creation of literature. This theory is further supported by the fact that the amount

of literature about cancellation of tasks as a whole is very diminute. The revised literature per-

tains to cancellation in a language and protocol-agnostic way. Nevertheless, the literature review

process provided noteworthy results, such as the classification of cancellations and the notion of

automatic cancellation. The idea of launching the same task on different servers and waiting for

the first result is also notable, but out of scope for this project.

In Chapter 4.2, we explain which kinds of cancellation are expected to be used in the proposed

solution, as per the technique classification by Kolesnichenko et al. [12].

The fact that most of the tools and related technology that this dissertation focuses on are

mostly used in enterprises makes it understandable that there is so little literature on the subject.

Concepts like Reactive Programming or even Task Cancellation, as primary as they may sound,

are not as studied as other fields of computation — which could be due to the newness of the

6https://spring.io/projects/spring-boot
7https://spring.io/guides/tutorials/spring-boot-kotlin/
8https://www.baeldung.com/spring-vs-spring-boot
9https://docs.micronaut.io/1.3.3/guide/index.html#buildCLI

https://spring.io/projects/spring-boot
https://spring.io/guides/tutorials/spring-boot-kotlin/
https://www.baeldung.com/spring-vs-spring-boot
https://docs.micronaut.io/1.3.3/guide/index.html#buildCLI

18 Related Work

first or the apparent irrelevance of the latter. Regardless, it is clear for us that this dissertation can

become a great addition to libraries, as there are no documents regarding the subject at hand.

Kotlin is indeed a recent language that has not had its full potential reviewed in the literature,

and while this dissertation does not focus on it, it does cover some of its aspects.

We note that the research done has shed some light on the ins and outs of cancellation of tasks

and parallel programming. This dissertation does not approach cancellation in this structured

manner, focusing instead on its low-level complication and the way it is accomplished, as well as

the study of its side-effects.

Moreover, the tools review that has been done in this stage greatly aided in the selection of the

framework for the development of this dissertation.

Chapter 4

Problem & Proposed Solution

In this Chapter, there can be found an explanation of the problem at hand, the proposed solution

for that problem, albeit in a descriptive and generic way, and lastly the validation and evaluation

methods for the solutions found during the dissertation.

4.1 Problem Statement

The cancellation of API calls is an uncommon subject to discuss, in a world where these calls

should become increasingly faster in terms of response time. However, in the case of konkcon-

sulting, some calls are immutably slow: they access huge amounts of data spread through several

microservices and involve heavy computations. The ability to cancel such calls is crucial for

konkconsulting. Cancellation should be as quick as possible, it must keep all the resources in a

graceful state (databases, files, etc.) and should free all allocated resources so that further calls can

be accommodated. konkconsulting has started its endeavours on the creation of a solution using

Spring Boot, so this tool is preferred.

4.2 Proposed Solution

konkconsulting has already been integrating some of the newly developed APIs using Spring Boot.

Their request, however, is to select one of the tools (section 3.2) based on how they are designed

regarding the support for coroutines and cancellation1, and to extend it so that calls can be can-

celled. In the beginning, the protocols to support cancellation had not yet been determined, as we

kept the scenery open for whatever solution seemed possible. HTTP and WebSocket were the first

possibilities we considered. Previous use of Spring MVC by konkconsulting means that Spring (or

any tool of the Spring family, such as Spring Webflux) is preferred. Cancellation will have to be

implemented across all layers of the application, i.e., each layer (call reply, database access, other

APIs access) must have its own cancellation code, pertaining to its special needs in that regard.

1https://kotlinlang.org/docs/reference/coroutines/cancellation-and-timeouts.html

19

https://kotlinlang.org/docs/reference/coroutines/cancellation-and-timeouts.html

20 Problem & Proposed Solution

For example, the cancellation of a database request must be made in such a way that the query is

cancelled, if possible, while keeping the connection open for further requests.

Depending on the way cancellation will take place, it can be classified as follows (according

to the technique classification by Kolesnichenko et al. [12]:

• Client-based cancellation > Forceful cancellation > Interruptive Cancellation
Whenever a cancellation request is received from a client, pertaining an ongoing request.

• Supplier-based cancellation
Upon receiving an update request from Continuous Deployment, the application should

decide which tasks to cancel and carry that out. Not all tasks will need to be cancelled

if there is a study about cancellation overhead. Only the cancelled tasks will fall into the

Supplier-based cancellation category.

Figures 4.1 and 4.2 show cancellation across layers and in the deepest layer(s), respectively.

Figure 4.1: Cancellation overview diagram - A cancellation request, be it issued by the system or
by an external entity, should be handled across all layers of the application. External API calls is
given as an example.

4.3 Validation & Results Evaluation 21

Task start

Task run

Cancel? Resume task runResume task runTask finish

Graceful cancel

at each safe point

no

programmed finish

yes

Figure 4.2: Inner layer low-level cancellation flowchart - The inner most layer(s) should contain
safe points, which allow code execution to be interrupted in a graceful manner. Alternatively,
Exceptions may be used, but that is not planned in order to keep the consistency with konkcon-
sulting’s present C# solution, which is desired.

4.3 Validation & Results Evaluation

Validation of the achieved results shall be done with proofs of concept, in an initial phase. Posterior

validation and comparison of the different alternatives with different frameworks and cancellation

techniques shall be done taking into account the variables that have proved themselves to be the

most relevant. It was hard to anticipate these. We considered the following:

• Cancellation time

• Amount of wasted resources

• Maximum amount of tasks supported

• Interoperability with the already developed code

4.4 Expected Results

The ultimate goal of this dissertation is the creation of a proof of concept, in Kotlin and using a

suitable web framework (preferably Spring Webflux), of cancellation in the requested contexts:

third party API access, database access, Websockets. The literature review has shown how nec-

essary this is, and that it will be a breakthrough in modern times for Kotlin and Web develop-

ment. Optionally, and if time allows, the developed work shall be integrated in an actively used

22 Problem & Proposed Solution

real-world application developed by konkconsulting which assists in the synchronisation of data

between SAP systems.

4.5 Summary

The problem that the present dissertation aims at solving — cancellation of asynchronous API

calls, in a reactive environment — is a challenging matter that shall have several approaches in

order to solve it. Careful evaluation of each alternative, the results it yields and its drawbacks is

paramount to ensure that the best solution is chosen for production. Such integration shall make

systems with long running tasks where cancellation is commonplace much more responsive and

update-friendly.

Chapter 5

Cancellation of Requests to the Server

As previously explained, konkconsulting is looking for ways of bringing their Java/Kotlin products

to the same level of their C# products in terms of cancellation capabilities. For this reason, we

figured the best place to start would be the selection of a web framework capable of cancellation.

However, just before looking at that, we started with simpler examples.

5.1 Simple tasks cancelling

We quickly realised that cancellation is an intricate subject and that studying cancellation in sim-

pler scenarios was preferable for starting, and thus we did so using threads and similar structures.

5.1.1 C# Implementation

konkconsulting was kind enough to provide examples of code and their explanation regarding

graceful cancellation in C#, both in a Console Application, and in a Web Application. The latter

is explained in section 5.2.1.

Regarding the Console Application, two implementations are possible: using Threads or 1

using Tasks2.

In both cases, the algorithm to be run asynchronously is implemented in a function, which

receives an instance of a CancellationToken3. This cancellation token is used to check if the

execution is to be interrupted at each safe point, as seen on Listing 5.1.

The CancellationToken can be used in several ways. Instead of doing a loop of tasks, it can be

mingled in the task itself if that is wished, as displayed on Listing 5.2.

Notice the simplicity of the implementation, possible due to the language natively supporting

CancellationToken. The rest of the code is shown in listing B.4.

1https://docs.microsoft.com/en-us/dotnet/api/system.threading.thread
2https://docs.microsoft.com/en-us/dotnet/api/system.threading.tasks.task
3https://docs.microsoft.com/en-us/dotnet/api/system.threading.cancellationtoken

23

https://docs.microsoft.com/en-us/dotnet/api/system.threading.thread
https://docs.microsoft.com/en-us/dotnet/api/system.threading.tasks.task
https://docs.microsoft.com/en-us/dotnet/api/system.threading.cancellationtoken

24 Cancellation of Requests to the Server

1 private static void Do(object cancellationToken)
2 {
3 CancellationToken token = (CancellationToken)cancellationToken;
4 while (!token.IsCancellationRequested)
5 {
6 //heavy computation
7 }
8 return;
9 }

Listing 5.1: CancellationToken usage in while loop

1 private static void Do(object cancellationToken)
2 {
3 CancellationToken token = (CancellationToken)cancellationToken;
4

5 // "atomic operation 1"
6 if (token.IsCancellationRequested) doRollback();
7 // "atomic operation 2"
8 if (token.IsCancellationRequested) doRollback();
9 // "atomic operation 3"

10

11 // no need to check cancellation at end of task.
12

13 return;
14 }

Listing 5.2: CancellationToken usage within task code

5.1 Simple tasks cancelling 25

5.1.2 Kotlin Implementation

As introduced in Chapter 2.1, Koltin has native support for Coroutines4. Their parallel nature

is highly corresponded by the reactive, non-blocking nature of current web frameworks. This

evidentiates both the strengths and weaknesses of coroutines, which of the latter we can highlight

the fact that a blocking function running in a coroutine scope will make all coroutines in that scope

block when said function hangs waiting for some event. Naturally, coroutines were not made for
running blocking functions.

5.1.2.1 Using Coroutines (Job)

When a coroutine is launched, a Job is returned so that the programmer can control the newly

launched coroutine. The cancel method marks the coroutine for interruption at its convenience.

However, a coroutine may be abruptly interrupted if the cancel call is executed while the corou-

tine execution is running a delay call, unless said call is done in a try catch block. This may

make it look like Kotlin has no support for graceful cancellation of running coroutines. Listing

5.3 shows an example of cancellation using coroutines where the cancellation event takes place a

certain amount of time past the creation of said coroutine.

1 import kotlinx.coroutines.*

2

3 fun main() = runBlocking {

4 val job = launch {

5 repeat(1000) { i ->

6 println("job: I’m sleeping $i ...")

7 try {

8 delay(500L)

9 } catch (e : CancellationException){

10 println(e.message)

11 }

12 if(!isActive)

13 return@launch

14 }

15 }

16 delay(1300L) // delay a bit

17 println("main: I am tired of waiting!")

18 job.cancel() // cancels the job

19 job.join() // waits for completion of the job

20 println("main: Now I can quit.")

21 }

Listing 5.3: Cancellation in Kotlin using Coroutines

4https://kotlinlang.org/docs/coroutines-overview.html

https://kotlinlang.org/docs/coroutines-overview.html

26 Cancellation of Requests to the Server

5.1.2.2 Using Threads

An alternative to coroutines is the use of Threads, as implemented by the JVM. Kotlin offers native

support for running threaded code, and can be used in a way which is very similar to C#. Listing

5.4 shows an example of graceful cancellation using Kotlin threads, where a Boolean variable ct

is made available to the thread which it can use to check the cancellation status.

1 import kotlin.concurrent.thread

2

3 fun main() {

4 var ct = false

5 val t1 = thread {

6 val tid = Thread.currentThread().id

7

8 repeat(1000) { i ->

9 println("thread $tid: I am sleeping $i ...")

10 Thread.sleep(1000)

11 if (ct) {

12 return@thread

13 }

14 }

15 }

16

17 val tc = thread {

18 val tid = Thread.currentThread().id

19 println("thread $tid: hit ENTER to cancel...")

20 readLine()

21 ct=true;

22 }

23

24 t1.join()

25 tc.join()

26 }

Listing 5.4: Cancellation in Kotlin using Threads

5.2 Cancellation in HTTP via underlying TCP layer

It is well established that HTTP does not support cancellation. Some web servers, namely Kestrel,

do a careful handling of the underlying TCP layer in order to determine when a request has been

"cancelled". If the requesting party (browser, API, etc.) cancels the request by sending a FIN

TCP packet, the server could detect this and, without having to write to the socket (in the hope of

retrieving an ACK from the client), cancel the request on its end. Terminating a TCP connection

requires that both parties send a FIN TCP packet [22].

There are three parts in this section:

5.2 Cancellation in HTTP via underlying TCP layer 27

• Cancellation of requests in C# web App (with Kestrel).

• Failed attempt at cancellation of requests in Spring Boot with Netty and Kotlin regular

functions.

• Successful cancellation of requests in Spring Boot with Netty and Kotlin suspend functions.

The second part denotes the initial approach at cancellation using JVM technologies and the

mistakes and misassumptions taken during that attempt. The third and last part presents the solu-

tion to those mistakes and concludes this chapter with a successful implementation.

5.2.1 Cancellation of requests in C# web App (with Kestrel)

C# ASP.NET web applications use the built-in web server Kestrel by default.5 This web server

supports cancellation of HTTP requests via the underlying TCP layer. In order to understand this

behaviour, we started by studying a regular connection using Wireshark6 in order to study the TCP

packets being exchanged between the client and the server, which are shown in Figure 5.1.

66 [SYN]TCP
68 [SYN ACK] TCP

54 [ACK]TCP
602 GET / HTTP/1.1IPA

60 [ACK] TCP
788 HTTP/1.1 200 OK IPA

54 [ACK]TCP

Client Server

1 1

22

3 3

4 4

55

66

7 7

Figure 5.1: Regular request flow in C# with Kestrel web server

The first three packets {1-3} that are exchanged are what is known as the TCP three-way

handshake [22]. It is initiated by the client. The server had passively opened its socket and was

waiting for connections. After the TCP connection is established, an HTTP GET request is sent

by the client {4}, i.e., the browser. The server sends an ACK (acknowledged) {5} back to the

browser 60ms after having received the request. Usually the ACK would be sent in the TCP packet

which includes the HTTP reply, but because this request is taking longer than that to be processed,

the server lets the browser know that the previous packet arrived. Eventually, the HTTP reply is

ready and is sent to the client {6}, which ACKs the response {7}. The TCP channel is left open for

further requests.

It is relevant to see what happens when the HTTP request is cancelled while the server is

preparing the response. This is shown in Figure 5.2.

The first three packets {1-3} are the TCP three-way handshake. After that, an HTTP GET

request is sent by the client {4}. Like before, the server sends an ACK {5} back to the browser 60ms
5https://docs.microsoft.com/en-us/aspnet/core/fundamentals/servers/kestrel
6https://www.wireshark.org/

https://docs.microsoft.com/en-us/aspnet/core/fundamentals/servers/kestrel
https://www.wireshark.org/

28 Cancellation of Requests to the Server

66 [SYN]TCP
68 [SYN ACK] TCP

54 [ACK]TCP
602 GET / HTTP/1.1IPA

60 [ACK] TCP
54 [FIN ACK]TCP

60 [ACK] TCP
60 [FIN ACK] TCP

54 [ACK]TCP

Client Server

1 1

22

3 3

4 4

55

6 6

77

88

9 9

Figure 5.2: Cancellation in C# with Kestrel web server

after having received the request. Differently than before, however, the browser’s user presses

cancel, and the browser sends a FIN ACK TCP packet to the server {6}, which the server ACKs

{7}. Note that the ACK was unnecessary, but it is common to send an ACK with a FIN just in case

the previous ACK was lost.7. In turn, the server sends a FIN ACK TCP packet to the client {8},

which the client ACKs {9}. The TCP connection is closed and no further packets are exchanged.

7https://cs.stackexchange.com/questions/76393/tcp-connection-termination-fin-
fin-ack-ack

https://cs.stackexchange.com/questions/76393/tcp-connection-termination-fin-fin-ack-ack
https://cs.stackexchange.com/questions/76393/tcp-connection-termination-fin-fin-ack-ack

5.2 Cancellation in HTTP via underlying TCP layer 29

5.2.2 Failed attempt at cancellation of requests in Spring Boot with Netty and
Kotlin regular functions

It was necessary to find an environment suitable for testing cancellation in Spring. Considering

konkconsulting’s preference for the Spring environment, a new Spring Application was created

using the web starter8 using Spring Webflux. The endpoint created to test cancellation was served

by the method shown in listing 5.5:

1 @GetMapping(value= ["/"], produces= ["application/json"])

2 fun index() : String {

3

4 logger.info("got request")

5 Thread.sleep(1000)

6 logger.info("replying to request")

7 return "{\"threadid\": " + Thread.currentThread().id + "}"

8 }

Listing 5.5: Spring fun for testing cancellation

The first observation made was that when using Spring with the Netty web server, hitting the

cancel button in the browser would not interrupt the request, as the message "replying to request"

was being logged. The app would finish its response and only then, when trying to flush it back

to the client, learn that it was no longer needed. 9 This is shown in Figure 5.4. Moreover, when

receiving the RST packet from the browser, the server would throw an IOException.

Several sources suggested that cancellation detection, or listening for client channel closed

events in server side, must be first implemented on the web server ran by Spring10 11. Spring

supports several web servers:

• Netty - NIO (Non-blocking I/O) server engine.

• Tomcat - Spring’s preferred web server engine.

• Jetty - Similar to Tomcat, but more lightweight.

• Undertow - NIO and IO server engine.

In order to understand the underlying behaviours, we used Wireshark12 to study the TCP

packets being exchanged between the client and the server. This is shown in Figure 5.3.

8https://start.spring.io
9https://stackoverflow.com/a/64042877

10https://stackoverflow.com/questions/8785949/netty-channel-closed-detection
11https://stackoverflow.com/a/2962511/1469991
12https://www.wireshark.org/

https://start.spring.io
https://stackoverflow.com/a/64042877
https://stackoverflow.com/questions/8785949/netty-channel-closed-detection
https://stackoverflow.com/a/2962511/1469991
https://www.wireshark.org/

30 Cancellation of Requests to the Server

66 [SYN]TCP
68 [SYN ACK] TCP

54 [ACK]TCP
561 GET / HTTP/1.1HTTP

60 [ACK] TCP
140 HTTP/1.1 200 OK (text/html) HTTP

54 [ACK]TCP
493 GET /favicon.ico HTTP/1.1HTTP

424 HTTP/1.1 404 Not Found (text/html) HTTP
54 [ACK]TCP

Client Server

1 1

22

3 3

4 4

55

66

7 7

8 8

99

10 10

Figure 5.3: Regular request flow in Spring with Netty web server
The first three packets {1-3} are the TCP three-way handshake. After the TCP connection is
established, an HTTP GET request is sent by the client {4}, i.e., the browser. The server sends an
ACK (acknowledged) {5} back to the browser 50ms after having received the request. Usually the
ACK would be sent in the TCP packet which includes the HTTP reply, but because this request is
taking longer than that to be processed, the server lets the browser know that the previous packet
arrived. Eventually, the HTTP reply is ready and is sent to the client {6}, which ACKs the response
{7}. The following TCP packets exchanged pertain to the HTTP request for the favicon {8-10}.
The TCP channel is left open for further requests.

It is relevant to see what happens when the HTTP request is cancelled while the server is

preparing the response. This is shown in Figure 5.4.

In both cases, the method returns, not knowing if the user is still interested in the response.

5.2.3 Echo Service for Link Detection

Echo Service for Link Detection is an idea we conceived which consists in flushing some data to

the client with a well-defined frequency. Clients which have not closed the connection will receive

the data and ACK it. However, clients which have closed the connection will not be expecting a

TCP packet from the server, effectively returning a TCP RST packet, which can in turn be caught

by the server and used to throw an exception of some sort. It is not clear how user code would

have access to that framework information.

Summary

The aforementioned tests were repeated for all 4 supported web servers, with all showing the same

behaviour. After having (mistakenly) concluded that it would be necessary to change/extend one

of these solutions in order to achieve a behaviour similar to Kestrel’s, and discarding the possibility

of implementing an echo service for link detection, we decided to move on to cancellation in the

other layers of the application.

5.2 Cancellation in HTTP via underlying TCP layer 31

66 [SYN]TCP
68 [SYN ACK] TCP

54 [ACK]TCP
587 GET / HTTP/1.1 [PSH]HTTP

60 [ACK] TCP
54 [FIN ACK]TCP

60 [ACK] TCP
140 HTTP/1.1 200 OK (text/html) [PSH] HTTP

60 [FIN ACK] TCP
54 [RST ACK]TCP

Client Server

1 1

22

3 3

4 4

55

6 6

77

88

99

10 10

Figure 5.4: Cancellation in Spring with Netty web server
The first three packets {1-3} are the TCP three-way handshake. After that, an HTTP GET request
is sent by the client {4}. Like before, the server sends an ACK {5} back to the browser 50ms
after having received the request. Differently than before, however, the browser’s user presses
cancel, and the browser sends a FIN TCP packet to the server {6}, which the server ACKs {7}.
The FIN flag merely means that the sender will not send any more data. For this reason, it is
acceptable for the server to send the reply {8}, and only then send its FIN {9}. However, in
an HTTP scenario, sending the FIN flag is a hack used to cancel a request, which both Google
Chrome and Mozilla Firefox implement. After sending it, and getting an ACK, they clear their
TCB (Transmission control block, the data structure that holds all information pertaining to one
specific TCP connection). After this, no further replies are expected, which is why the browser
replies with a RST {10}, signaling the server to immediately destroy its own TCB and send no
more data.

5.2.4 Successful cancellation of requests in Spring Boot with Netty and Kotlin sus-
pend functions

Shortly after having given up on HTTP requests’ cancellation, another approach regarding the

definition of the method for handling requests was experimented with in order to use Flow ob-

jects. This alternative methodology yielded a radically different and unexpected result which was

graceful cancellation on HTTP.

Spring’s integration with Kotlin features has been carefully developed to make use of all the

language’s features. When defining the handler method as a suspend fun (suspending func-

tion), it is ran in a coroutine context, and is cancelled when the request’s transport layer is closed.

Listing 5.6 shows an example of method implementation.

isActive is a property of the coroutineContext variable. This variable in only available

if suspending functions are used, and these functions can only be called by a coroutine. Had not

Webflux handlers been thought of in a way that would support suspending functions, an error

would be thrown, as is the case with other Webflux-related functions (such as configuration and

Webfilter functions).

32 Cancellation of Requests to the Server

1 @GetMapping("/coroutine")

2 suspend fun cancellable(): String {

3 try {

4 delay(1000)

5 } catch (e: Exception) {

6 log.warn(e.message)

7 }

8 log.warn("cr is active: " + coroutineContext.isActive)

9 return "Ok"

10 }

Listing 5.6: Reactive Spring fun for testing cancellation

isActive — which indicates whether the coroutine has been cancelled — is a property of

the coroutineContext variable. This variable in present in any coroutine execution scope.

When calling the /coroutine endpoint, without cancelling, the log will show cr is active:

true However, if the request is cancelled, the output is cr is active: false.

In terms of Wireshark output, in the context of a cancelled request, the result is shown in

Figure 5.5, which is similar to Figure 5.2.

56 [SYN] TCP
56 [SYN ACK]TCP

44 [ACK] TCP
151 GET /coroutine HTTP/1.1 IPA

44 [ACK]TCP
44 [FIN ACK] TCP

44 [ACK]TCP
44 [FIN ACK]TCP

44 [ACK] TCP

Server Client

11

2 2

33

44

5 5

66

7 7

8 8

99

Figure 5.5: Cancellation in Spring with Netty web server using Coroutines

Summary

What was initially proving to be impossible and motivated so much effort and learning regarding

the use of Wireshark, the TCP protocol and the efforts that the community has made to achieve

cancellation on HTTP became much more straightforward when using suspend Kotlin functions.

The novelty of these methods has complicated searching for an adequate solution. The presented

solution was found while investigating something else, in this case. This breakthrough opens doors

both for HTTP cancellation, this section’s topic, and passing the cancellation to the next layers of

the application, one of the objectives in terms of implementation of this dissertation.

It is also worth noting that the suspend modifier was tested in Ktor, the framework written

in Kotlin (and presumably most compatible with its functionalities), using diverse configurations.

5.2 Cancellation in HTTP via underlying TCP layer 33

However, it failed to provide graceful cancellation — the suspending function handler, ran via a

coroutine, would never have its status set to cancelled.

Unfortunately, this behaviour that enables us to do so much in terms of cancellation, allowing

for reduction of wasted time and resources such as energy and component’s wear and tear, is not

documented anywhere (or at least, we could not find it, despite our best efforts). It is our firm

conviction that something as useful as this should not only be available in the documentation, but

should also be publicised and used as a selling point.

Other webflux-supported web servers — Jetty, Tomcat and Undertow — were also tested with

the Kotlin suspend fun construct. In all these tests, none of these managed to present graceful

cancellation like Netty did. This sealed our choice for Spring Webflux (which was the preferred

solution by konkconsulting), and that had consequences, as seen in section 9, which focuses on

the mix of Spring MVC and Spring Webflux, and the transition from one to another, while using

different Web Servers.

34 Cancellation of Requests to the Server

Chapter 6

SQL, Cancellation & Reactive Streams

After concluding a PoC (Proof of Concept) regarding HTTP cancellation, and choosing Spring

Webflux on Netty as our solution, we focused on SQL. konkconsulting has been using Post-

greSQL but has kept its implementation SQL-agnostic, and that is a hard constraint regarding

the technologies available for usage, which must support that database and allow for keeping the

implementation SQL-agnostic.

Soft constraints set by konkconsulting are twofold: first, that SQL operations such as JOIN

need not be manually specified, i.e., an Object–Relational Mapping (ORM) is dealing with the

SQL mechanics needed for accessing properties, retrieving and updating values of associated en-

tities, etc., and secondly, that there is the possibility of defining models in the code so that the

database can be generated by the library, using the model mentioned above.

Database abstractions are used to support several Database Management Systems (DBMS),

though not more than one at each given time. Essentially, this means that different instances of the

application can be launched using different DBMSes, which has several advantages:

• migration of DMBS will not involve changing the source-code.

• the choice of the DMBS belongs to the client, when the application is licensed to a third

party.

• Database Abstraction Layers (DBAL) are usually deployed with ORM, which allow for easy

construction and maintenance of the database using that layer.

However, there are also downsides to using DBALs, namely:

• reduced support for DMBS-specific features which could be used if that DMBS was explic-

itly used.

• If the selected DBAL does not allow for manually specifying some queries, some form of

abstraction inversion may be necessary to code more complex queries, ultimately leading to

significant performance losses. Alternatively, queries could be manually specified for each

DBMS, if that is deemed necessary.

35

36 SQL, Cancellation & Reactive Streams

• When DBALs are deployed with ORM, where the data constraints are defined, these may

end up not being defined on the database level (depending on the ORM), which complicates

sharing the database with several systems, especially when more than one writes to it — an

uncommon, but realistic scenario.

Database Abstraction in the Java environment is a mature issue that has been addressed by

several different solutions. There is a specification, JDBC1 (Java Database Connectivity). The

implementation of this specification is usually provided by the DBMS vendors.

The most well-established ORM is specified by JPA2 (Jakarta Persistency, formerly Java Per-

sistence API). There are several implementation of this, such as OpenJPA or Oracle TopLink.

6.1 Reactive Streams

SQL data retrieval is the first subject that we studied that entails retrieving data from a third party.

For this reason, we decided it would be a perfect opportunity to use reactive programming, the

paradigm on which Spring Webflux is built upon and that is preferred for this framework. The

reactive streams website defines the technology in a sentence:

"Reactive Streams is an initiative to provide a standard for asynchronous stream pro-

cessing with non-blocking back pressure."3

Stream processing is the processing of data as a Flow, this is, as it is made available by the

producer to be processed by the consumer. Flows can be either a Flux — 0 or more elements —

or a Mono — 0 or 1 elements.

Non-blocking back pressure means that the consumer has the ability to signal the producer

that the rate of emission is too high (or not as high as it could be). One can think of back pressure

as the resistance the software offers to the flow and transformation of data through and by it. If

a user generates 30 requests per second, but the server can only handle 15 requests per second,

some form of back pressure mechanism is necessary. Phelps explains this well [19]. He presents

3 strategies to deal with back pressure:

• Control the producer: using reactive mechanisms, the Subscriber requests that the Publisher

reduce the rate of emission of data.

• Buffer — used when the flow from the producer is expected to diminish, so that the buffer

will not become full. This solution is not scalable.

• Drop — when control is impossible and the producer’s throughput is too high to handle —

e.g. user input data.

1https://docs.oracle.com/javase/8/docs/technotes/guides/jdbc/
2https://javaee.github.io/javaee-spec/javadocs/javax/persistence/package-

summary.html
3https://www.reactive-streams.org/

https://docs.oracle.com/javase/8/docs/technotes/guides/jdbc/
https://javaee.github.io/javaee-spec/javadocs/javax/persistence/package-summary.html
https://javaee.github.io/javaee-spec/javadocs/javax/persistence/package-summary.html
https://www.reactive-streams.org/

6.2 Reactive Streams in SQL: R2DBC 37

Part of dealing with back pressure entails the right of the consumer to abort or cancel the flow.

This is part of what makes Reactive Streams an attractive possibility in this scenario.

Reactive Streams are comprised of two key elements, the Publisher and the Subscriber. The

relation between the two is called a Subscription. When an element is both a Subscriber and a

Publisher it is called a Processor. Processors typically subscribe to one or more Publishers (as

a Subscriber), and emit data to a Subscriber (as a Publisher). The emitted data is a transforma-

tion/mapping/etc. of the original flow(s).

When doing reactive programming, one creates what is called a reactive pipeline. This pipeline

is the description of the operations to be applied to the Flow. A Flow is a set of elements emitted

by the Publisher. Only when the flow is subscribed will the pipeline run.

The Reactive Specification does not mention any security considerations regarding abuse from

users. For example, a malicious user could subscribe a big stream and only request one item

(similar to a SYN Flood4). However, from a reactive perspective, this should not create additional

load for the server because it will only request (from the source) the pieces that the client has

requested. It can, however, be problematic if the server is loading the data to be emitted from a

non-reactive source, as it must buffer the payload until it is fully emitted.

6.2 Reactive Streams in SQL: R2DBC

From a reactive perspective, present database drivers and ORM solutions are unable to provide

results as a subscribable flow. For this reason, R2DBC5 has emerged.

R2DBC is natively supported by Spring Data and has special integration capabilities with

Kotlin. With the shortcomings of other solutions, this has become the de facto standard in the Java

environment for reactive database access. However, no major release has yet been launched, with

paramount functionalities like SQL JOIN still missing. Moreover, it is not production ready yet.

R2DBC is founded on the Reactive Streams specification, and this means that its usage implies

that the developer is familiar with one of the supported implementations, either Project Reactor6,

RxJava7 or Smallrye Mutiny8. As Spring has integration with Project Reactor, that is the one we

used in our investigation.

6.2.1 Model Definition and Data Retrieval

Defining models while using R2DBC is a simple task. The fact that there is no support for relations

makes it much cleaner than other alternatives, but also much more limited. Due to this limitation,

we chose to model a User (shown in Listing 6.1), instead of the common Posts & Tags model

(shown in Appendix A.1).

4https://en.wikipedia.org/wiki/SYN_flood
5https://r2dbc.io/
6https://projectreactor.io/
7https://github.com/ReactiveX/RxJava
8https://smallrye.io/smallrye-mutiny/

https://en.wikipedia.org/wiki/SYN_flood
https://r2dbc.io/
https://projectreactor.io/
https://github.com/ReactiveX/RxJava
https://smallrye.io/smallrye-mutiny/

38 SQL, Cancellation & Reactive Streams

1 @Table("users")

2 data class User(

3 @Id

4 val id: Long? = null,

5 val name: String,

6 val login: String,

7 val email: String,

8 val avatar: String? = null

9)

Listing 6.1: User Model for R2DBC.

6.2.2 Constraints

• R2DBC offers no support for relations — It is possible to declare a @Transient property

(which means it will not be persisted by R2DBC) and manually fetch and match the related

object(s).9 This simple (but laborious) hack merely allows accessing a relation property as it

had been automatically retrieved, but requires that the user does it manually, which is hardly

acceptable.

• The way R2DBC is built makes is unfeasible to add relation support. Moreover even if sup-

port is added, in the near future and after solving the issues that prevent it from happening,

plans are for read-relation mapping, which is insufficient for konkconsulting.10

• R2DBC is the reactive solution for simple APIs. Complex environments should use Spring

Data JPA and execute calls to repositories in a separate thread using subscribeOn.9

6.2.3 Craftiness

As with almost every other situation, it is possible find a workaround and make things work in a

way that is not the envisioned one.

Some guides, such as "You Don’t Need Hibernate With Spring WebFlux and R2DBC"11, by

Yuri Mednikov, claim that R2DBC is relation-ready and even present a working solution. How-

ever, they work by manually defining the SQL queries and collecting data as a flow. While this

may be a good solution for the common PoC, it will not work for our needs as we’ve explained in

the introduction of this chapter.

Another alternative is the specification of Views on the DBMS, joining the desired tables.

These views are interpreted as tables by R2DBC and allow for fetching results from the database

in a cancellable flow, provided that the view is defined as a model in the R2DBC configuration.

However, there are several limitations to this idea that make it unfeasible:
9 https://stackoverflow.com/a/60249642/1469991

10https://github.com/spring-projects/spring-data-r2dbc/issues/99#issuecomment-
610783285

11https://dzone.com/articles/you-dont-need-hibernate-with-spring-webflux-and-r2

https://stackoverflow.com/a/60249642/1469991
https://github.com/spring-projects/spring-data-r2dbc/issues/99#issuecomment-610783285
https://github.com/spring-projects/spring-data-r2dbc/issues/99#issuecomment-610783285
https://dzone.com/articles/you-dont-need-hibernate-with-spring-webflux-and-r2

6.3 JDBC: an old Cornerstone 39

• Most views combining tables are read-only (depending on the DBMS and the viewed ta-

bles), i.e., no writes are possible.

• All combinations of used relations would have to be defined using Views, which, if not done

programmatically, would become extremely time-consuming.

• There is a possibility that this solution may have a weak performance due to usage of sub-

optimal views when optimal views are not available.

6.3 JDBC: an old Cornerstone

Considering the large limitations of R2DBC, we have decided to look into the possibility of using

JDBC in a way that, while not being reactive, is at least asynchronous. There are two aspects to

consider:

• How well does the library fit to our aforementioned constraints.

• If the previous item is satisfied, how much can we obtain in terms of bandwidth/response

time?

The analysis of the second item is relevant for several reasons, namely the fact that the switch

from blocking synchronous to blocking asynchronous only makes sense if the current system is

constrained by the amount of users using the application concurrently, and also that the jump to

reactive becomes more necessary as the quality of our results decreases (though there are alter-

natives that may be put in place before that, such as a data cache [e.g. Redis]). Results for these

trials are presented in section 10.1.

Developers and authors dwell on a solution for preventing regular DBALs from blocking the

entire application when using them in a reactive environment. There are two main ideas:

• Using thread pools: a heavy solution, according to Paluch, in the Spring Blog [18]. Reactive

programs usually limit the number of threads to the number of cores available, in a process

called "thread limiting". "Additional threads introduce overhead and reduce the effect of

thread limiting", says Paluch.

• Using Java Fibers: Paluch suggests combining the well-established JDBC with Project

Loom’s Java Fibers. Unfortunately, they are not yet available. A comparison of Java Fibers

and Kotlin Coroutines is presented in section 2.1.4.

Naturally, only the first of the above is feasible. With this in mind, we started looking for

libraries using JDBC. Several caught our attention, namely: ADBA, jOOQ, Ebean and Hibernate.

40 SQL, Cancellation & Reactive Streams

6.3.1 ADBA

ADBA was an effort by Oracle to provide a non-blocking database access API, to be integrated

as a Java Standard.12 However, work on ABDA abruptly came to an end in September 201913 as

Oracle prepared to launch Project Loom featuring Java Fibers. While the developed efforts have

been made public and licensed in a way that allows further development by third parties, no one

has continued the effort. This is not a viable option considering that it is unfinished and the lack

of support for what is currently available.

6.3.2 jOOQ

jOOQ Object Oriented Querying (jOOQ) is a database-mapping software library. Its fluent API is

one of its banners and that initially drew our attention. However, another of its banners is the ability

to "generate Java code from your database". While this is interesting from a theoretical point of

view, konkconsulting’s environment is currently prepared in a way that the database is generated

by the code, not the opposite. jOOQ revolves around this feature, providing no documentation for

users wanting to manually define their own models.

Conversely, jOOQ is the first tool we have found during this dissertation that offers paid sup-

port plans. This is something that companies appreciate as it guarantees proper support while

using that product. However, the lack of the required functionalities in jOOQ is not compensated

by this advantage.

It is also worth noting that, while the jOOQ blog has some posts regarding the use of the library

in Kotlin, there is no official support. Additionally, the lack of an advanced ORM is commonly

frowned upon by the community.

For these reasons, we have concluded that jOOQ is not a viable option for defining data struc-

tures in the Java/Kotlin code, which is konkconsulting’s case.

6.3.3 Ebean

Ebean came across our radar due to its capability to return a Java Future when doing SQL queries.

Ebean offers support for Kotlin and Java and has an extensive documentation. Its banners are Type

safe queries, ORM and Database migrations, among others. Ebean’s Futures look promising for

our Asynchronous SQL effort and are used in our experiments.

Ebean Models are well explained in their documentation, and are similar to JPA specification,

which allows for easier migration. The Ebean model definition is shown in Appendix A.1.

1 suspend fun getAllPosts(): List<Post> {

2 val future = QPost().orderBy("id").findFutureList()

3 // other calls to database or other services

12https://blogs.oracle.com/java/jdbc-next:-a-new-asynchronous-api-for-connecting-
to-a-database

13https://mail.openjdk.java.net/pipermail/jdbc-spec-discuss/2019-September/
000529.html

https://blogs.oracle.com/java/jdbc-next:-a-new-asynchronous-api-for-connecting-to-a-database
https://blogs.oracle.com/java/jdbc-next:-a-new-asynchronous-api-for-connecting-to-a-database
https://mail.openjdk.java.net/pipermail/jdbc-spec-discuss/2019-September/000529.html
https://mail.openjdk.java.net/pipermail/jdbc-spec-discuss/2019-September/000529.html

6.3 JDBC: an old Cornerstone 41

4 return future.get()

5 }

Listing 6.2: Obtaining a Java Future using Ebean

Listing 6.2 shows a request to the database which returns a Java Future14. This means that

the call immediately returns, and only when calling the object’s get() method will there we

block for the response, if necessary (depending on whether the result has yet been fetched or not).

When running this code, some early testing using Apache Bench (AB) quickly revealed that this

approach was actually worse than calling the regular .findList() function, which immediatelly

blocks for the result. While the reason why this happens in not clear, there is a blocking call on

line 4, which is unacceptable in a coroutine context. Thus, we started looking into the possibility

of asynchronous, Kotlin-friendly way of waiting for a Java Future to be done, albeit without

success. Webflux cannot handle receiving a Java Future, like it does with Flow, for example.

1 suspend fun getAllPostsv3(): List<Post> {

2 return GlobalScope.async {

3 val future = QPost().orderBy("id").findFutureList()

4 while(!future.isDone){

5 delay(10)

6 }

7 return@async future.get()

8 }.await()

9 }

Listing 6.3: Using Java Futures and the async method in Kotlin, we can use a special coroutine for

asynchronous polling of the Future.

Listing 6.3 displays polling for a Future. This approach runs the call in a separate coroutine,

which is acceptable. While this looks terrible, it did evidentiate something expectable, but unseen

thus far: the PostgreSQL tests server, with show max_connections; returning 100, reached

its limit when benchmarking the application with over 100 concurrent connections. Upon further

investigation, we have determined that Ebean does not offer any control and queuing mechanisms,

which also deters its selection as a viable choice.

In order to assess Ebean’s usability as an ORM framework, we developed a query with a

certain degree of complexity (Listing A.1.2.1) and attempted to code its ORM equivalent. The

core code is shown in Listing 6.4. Running this code is only possible if we declare a model class

for the relation, which is not desired, and if that class has a dummy property used for accessing

the result of the select as shown on Listing 6.5, which is also not desired.

14https://docs.oracle.com/en/java/javase/14/docs/api/java.base/java/util/
concurrent/Future.html

https://docs.oracle.com/en/java/javase/14/docs/api/java.base/java/util/concurrent/Future.html
https://docs.oracle.com/en/java/javase/14/docs/api/java.base/java/util/concurrent/Future.html

42 SQL, Cancellation & Reactive Streams

1 val o = QPostTag._alias

2 val res = QPostTag().select(o.post_id, o.totalCount).having().totalCount.

greaterThan(5).findList()

Listing 6.4: Example of Ebean COUNT HAVING

1 @Aggregation("count(*)")

2 var totalCount: Long? = null

Listing 6.5: Dummy property needed for querying an aggregation

Throughput Analysis

Further tests were ran regarding Ebean’s throughput. Results for these trials are displayed, com-

pared and studied in section 10.1.1.

Summary

Ebean shows lots of potential and makes accessing relational databases relatively easy, especially

when simple lookups/inserts are done. The use of Futures also potentiates the cancellation of

queries and makes it much simpler to mix database access with other resources’ access, by taking

advantage of Java Futures. The fact that it automatically introduces some optimizations makes it

look better than the alternatives, but ends ups hiding the potential for further tweaking, which is

not a good thing in our opinion.

However, the need to define a class for a relation, and even to define a property for each special

query that we may wish to retrieve makes it a hurdle in terms of maintenance. This is one of the

main reasons why we cannot use it. Another strong motive to discard it is the fact that it does not

have a thread-pool management system, which would mean that requests would be dropped after

a certain number of concurrent requests. This is not the type of back-pressure response that we

intend.

It is worth noting that Ebean development is facilitated by the usage of an Intellij IDEA plu-

gin15. The documentation states that it can be used so that "entity beans and transactional methods

are enhanced when run develop and run tests in the IDE". Note that it is only available for the

mentioned IDE.

Moreover, using Ebean requires the inclusion of a Gradle/Maven plugin, Kapt, which is neces-

sary for generating Q-classes. These are generated from the provided models and used for creating

queries. It is easy to miss this caveat, which is why we include a full build.gradle.kts in

Listing B.1.

15https://ebean.io/docs/getting-started/intellij-idea

https://ebean.io/docs/getting-started/intellij-idea

6.4 Hibernate (via Spring-Data-JPA) 43

The documentation is vast, but simple, and seems to have grown a lot recently, as the com-

munity frequently complained about its shortcomings. The small community, the reduced support

(due to the small community) and a lack of a guarantee that the project will not be abandoned soon

force us to remove this option from the table.

6.4 Hibernate (via Spring-Data-JPA)

Having reviewed the remaining alternatives with little success, we moved to JPA, namely its inter-

face with Spring — spring-data-jpa — which uses the Hibernate implementation by default.

This interface offers no support for futures or any form of cancellation, making it a simple, block-

ing library. Nevertheless, Hibernate is the de facto solution for relational database access in the

Java Ecosystem16, and it is also the one that konkconsulting has been using.

spring-data-jpa has its own thread-pool management library, HikariCP17, which means

that unlike Ebean, we are not taking the risk of dropped requests when the database limit is

reached. Moreover, as connections are kept open, even though they might be idle, we reduce

the overhead of connecting to the database. Hence, when using a thread-pool, requests are queued

and allotted to a thread as soon as one is available. HikariCP allows the developers to tweak the

minimum and maximum number of threads in the thread-pool. This means that HikariCP does an

elastic management of the available threads, which is something positive in our opinion.

6.4.1 Query Tweaking

When defining models, it is possible to set the way objects are retrieved from the database. These

parameters influence the speed of the retrieval, which is important because we want to minimize

blocking and waiting times.

FetchType

The JPA documentation [17] mentions FetchType in several circumstances, but always with the

same meaning: it is a parameter for setting up relationships which defines the way the related

objects are fetched:

• LAZY — fetch related data from the database as it is necessary (e.g. because it is being

accessed).

• EAGER — fetch related data from the database together with the primary data.

Default values are shown on table 6.1.

Trials with this parameter on the Test Data A.1 had no notable results.

16https://www.jrebel.com/blog/best-java-frameworks
17https://github.com/brettwooldridge/HikariCP

https://www.jrebel.com/blog/best-java-frameworks
https://github.com/brettwooldridge/HikariCP

44 SQL, Cancellation & Reactive Streams

Context Default Value
Basic EAGER

ElementCollection LAZY

ManyToOne EAGER

ManyToMany LAZY

OneToMany LAZY

OneToOne EAGER

Table 6.1: Tools overview

@Cacheable

This annotation specifies if an @Entity should be cached, as long as caching is enabled and the

configuration value shared-cache-mode is ENABLE_SELECTIVE or DISABLE_SELECTIVE. How-

ever, some caching mechanism must be available. Spring makes it easy to do that by setting the

spring-boot-starter-cache dependency.

@BatchSize

This annotation is not specified in the JPA specification. However, Hibernate implements it. When

using Lazy Fetching, this defines the number of entities to be fetched from the database per each

query. Without this setting, each entity is fetched at once. We should note that Ebean implements

a similar mechanism with a default value of 10 entries per request.

@Fetch

This is another Hibernate-specific annotation. It is applied to relations, and sets the way that the

related entities shall be retrieved. Its possible values are displayed on Table 6.2.

As this setting is Hibernate specific and actually overrides the JPA FetchType parameter, we

focused on it for our trials.

Value Description
SELECT A secondary SELECT will be used for retrieving each requested related entity.

This is equivalent to FetchType.LAZY.
JOIN An OUTER JOIN will be used to fetch the related entities. This is equivalent

to FetchType.EAGER.
SUBSELECT A single secondary SELECT will be used to load all the related entities.

Table 6.2: Tools overview

6.4.2 Threads & Blocking

As previously explained, blocking code should not be mixed with reactive code: it breaks the reac-

tive pipeline and thwarts the effort of going reactive, making the whole application block (not just

the thread or request). Tests shown in the Results Chapter helped us realise that Spring Webflux

6.5 Summary 45

can detect that a Spring JPA query may/will take place in a handler and thus uses something we

had not seen before: boundedElastic Threads. After persevering our our search, we found what

these are. Their usage is documented in section 2.4. Considering the way we have read and heard

about blocking code being a hazard, it is good to learn that no special care is needed when using

Hibernate with Spring Webflux, as it is specially coded to handle it. It is not clear, however, how

other blocking libraries would be handled.

Throughput Analysis

Further tests were ran regarding JPA’s throughput. Results for these trials are displayed, compared

and studied in section 10.1.2.

6.5 Summary

As much as we would have liked using a reactive access layer, the lack of support for pivotal

functionalities, such as relations, made us forego that possibility. We believe that in a few year’s

time it might be possible to redo this exercise with a different outcome.

That said, access to databases is done mainly using the JPA specification, and there are several

implementations, such as Hibernate or Ebean. Of all the analysed possibilities, JPA proved to be

the most reliable and customisable. It is also the one konkconsulting has experience with. As

Kotlin makes it simple to run queries in a Thread Pool, its usage is acceptable and it is our choice.

The management of connections to the database offered by HikariCP, part of spring-data-jpa,

is rather complete, allowing developers to tune the minimum and maximum number of open con-

nections.

The comparison of the performance of these libraries was not one of our objectives, but became

relevant when we realised that there were major performance differences between them. This

exercise can be found in section 10.1.

We do an overall positive balance of this effort: it is good to have learned that there are several

libraries for different people with different use cases and objectives; however, there is one solution

with clear advantage in terms of functionality and developer preference: Hibernate.

Not all languages are like this. For example, the PHP documentation — which is built with

support for users’ comments, showing on top the most up-voted ones — is ambivalent in terms of

MySQL/MariaDB access (for example): users can use the mysqli library18, or PDO19 (PHP Data

Objects). Many developers discuss and debate which one is best, but there is no clear winner, with

both having their pros and cons; we feel the ORM access environments in Java lack this variety.

18https://www.php.net/manual/en/book.mysqli.php
19https://www.php.net/manual/en/book.pdo.php

https://www.php.net/manual/en/book.mysqli.php
https://www.php.net/manual/en/book.pdo.php

46 SQL, Cancellation & Reactive Streams

Chapter 7

Third-party HTTP Requests:
Asynchronous & (sometimes)
Cancellable

The rise of container orchestration tools, such as Docker, contributed to the decoupling and in-

creasing of the number of services that compose an application, by simplifying the deployment of

the development environment and the production version. The usage of such tools greatly sim-

plifies both of these operations. As the number of services increases, so increases the number of

messages exchanged between them.

Beside messages being exchanged between containers running on the same machine, in which

latency is hardly a problem, there can also be communication with third-party APIs, such as gov-

ernment data/ID sources, currency exchange ratio providers, weather providers, etc. These may

be slow to respond, may respond with an error, or may even not respond at all. This means that

implementations should carefully handle the obtained response, and make a senseful management

of timeouts — these are just as important as keeping everything non-blocking.

Considering both latency and the Time to First Byte (TTFB), it is important that applications

do not block while waiting for an external API: as previously explained, whenever threads block

on something, more threads are required to keep the application running, which may degrade

performance after a certain point.

For all the reasons stated above, the study of an asynchronous, non-blocking way of doing

HTTP calls is paramount in the search for the best tools for developing Fully Asynchronous APIs

for Java Web Applications.

47

48 Third-party HTTP Requests: Asynchronous & (sometimes) Cancellable

7.1 Setting up an API

In order to conduct tests, we implemented a simple API returning a JSON file. For this, we used

Node.js. The implemented API code is shown in Listing 7.1.

1 const http = require(’http’);

2 const fs = require(’fs’);

3

4 let f = fs.readFileSync(<file.json>)

5

6 //create a server object:

7 http.createServer(function (req, res) {

8 setTimeout(function () {

9 res.write(f)

10 res.end(); //end the response

11 }, <sleep_time>)

12 }).listen(8081); //the server object listens on port 8080

Listing 7.1: Simple HTTP responder implemented in Node.js

7.2 The simplest HTTP request

For reference, we started by implementing a simple HTTP GET request to our API, which is

shown in Listing 7.2. It is based on a Baeldung guide.1.

1 @GetMapping("/3prest/1")

2 fun rest1(): String

3 {

4 val url = URL("http://localhost:8081")

5 val con = url.openConnection() as HttpURLConnection

6 con.requestMethod = "GET"

7

8 val input = BufferedReader(InputStreamReader(con.inputStream))

9 var inputLine: String?

10 val content = StringBuffer()

11 while (input.readLine().also { inputLine = it } != null) {

12 content.append(inputLine)

13 }

14 input.close()

15 con.disconnect();

16 return content.toString()

17 }

Listing 7.2: Example of simple HTTP GET request

1https://www.baeldung.com/java-http-request

https://www.baeldung.com/java-http-request

7.3 Netty as an HTTP Client 49

If the handler function is marked with suspend, IntelliJ IDEA shows warnings saying:

Inappropriate blocking method call

However, the general behaviour seems to be consistent regardless of suspend being present.

The result is that the issued request completes successfully and the retrieved content is dis-

played in the browser — as expected.

7.3 Netty as an HTTP Client

The simplest solution works — both with a dedicated thread-pool and without (see section 10.2).

However, thread-pools are always present, and they are known for not scaling well. Naturally,

we continued our study onto the field of non-blocking HTTP libraries. Netty was an easy con-

sideration, as we were already using it in the project. However, implementation was not easy

for a number of reasons, from the lack of up-to-date documentation to the cryptic name of the

classes involved. Netty allows for low-level configuration and that has some advantages, but also

disadvantages. HTTPS is not supported in our current implementation, part of which is shown in

Listing 7.3.

1 @GetMapping("/3prest/3")

2 suspend fun rest3(): String {

3 val url = System.getProperty("url", "http://run.mocky.io/v3/3e1e2a69-93e8

-41e7-9870-602531b08d45")

4 val uri = URI(url)

5

6 // Configure the client.

7 try {

8 val handler = HttpSnoopClientHandler()

9 val initer = HttpSnoopClientInitializer(handler)

10 val b = this.bootstrap.clone()

11 b.handler(initer)

12

13 // Make the connection attempt.

14 val ch: Channel = suspendCoroutine<Channel> { continuation ->

15 b.connect(host, port).addListener {

16 continuation.resume((it as ChannelFuture).channel())

17 }

18 }

19

20 // Prepare the HTTP request.

21 val request: HttpRequest = DefaultFullHttpRequest(

22 HttpVersion.HTTP_1_1, HttpMethod.GET, uri.rawPath

23)

24 request.headers().set(HttpHeaders.HOST, host)

25 request.headers().set(HttpHeaders.CONNECTION, "close")

26

27 // Send the HTTP request.

50 Third-party HTTP Requests: Asynchronous & (sometimes) Cancellable

28 ch.writeAndFlush(request)

29

30 // Wait for the server to close the connection.

31 suspendCoroutine<Unit?> { continuation ->

32 ch.closeFuture().addListener {

33 continuation.resume(null)

34 }

35 }

36 ch.close()

37 return handler.output

38 } catch (e: Exception) {

39 println(e.message)

40 e.printStackTrace()

41 }

42 return "error"

43 }

Listing 7.3: Example of HTTP GET request implemented using Netty

Naturally, the usage of this solution would entail creating a wrapper class for simplifying

access to the functionality.

While running tests for this implementation, we realised that it is faulty: although it works

for some requests per second, bench testing it in volume, like done previously, resulted in a silent

failure in which the response body came out empty. During our investigation, in order to solve this

issue, we discovered Spring’s WebClient. This became our choice, partly due to time constraints,

and also due to its simplicity when compared to a Netty Implementation.

7.4 Spring WebClient

In retrospect, this should have been our first choice. Unfortunately, it did not present itself to us

when searching for ways to make third-party web requests. Baeldung explains that "WebClient

is an interface representing the main entry point for performing web requests"2. Its reactive and

non-blocking nature makes it an exceptionally ideal candidate for this kind of task. However, the

fact that it is bundled with Spring Webflux makes it harder to use it in other frameworks.

The implementation is remarkably simple when compared to previous approaches. It is shown

in Listing 7.4.

1 @GetMapping("/3prest/wc/0")

2 fun rest4(): Flux<Todo>{

3 WebClient.create("http://localhost:8081")

4 .get()

5 .uri("/")

6 .retrieve()

2https://www.baeldung.com/spring-5-webclient

https://www.baeldung.com/spring-5-webclient

7.4 Spring WebClient 51

7 .bodyToFlux(String::class.java)

8 }

Listing 7.4: Example of simple HTTP GET request using WebClient.

As the reader has certainly noticed, we always implement handler endpoints using the suspend

keyword, so that we can catch the HTTP cancellation and handle it, as shown in Chapter 5.2.4.

This solution, however, omits that. That is because when using that keyword we were getting the

following output on the browser, instead of the contents emitted by the server:

{

scanAvailable: true,

prefetch: -1

}

In fact, we were getting the Flux<*> object instead of its content. Transforming the out-

put into a Kotlin Flow fixes the issue, but creates another, as explained in Section 9.9.2. Re-

gardless of fixes, this is highly unnecessary because the function immediately returns the Pub-

lisher which is in turn subscribed by Webflux. Thus, supporting cancellation (by checking the

coroutineContext.isActive property) in this kind of function is unnecessary. Neverthe-

less, this quick fix is shown in Listing 7.5.

1 @GetMapping("/3prest/wc/1")

2 suspend fun rest4(): Flow<Todo>{

3 WebClient.create("http://localhost:8081")

4 .get()

5 .uri("/")

6 .retrieve()

7 .bodyToFlux(Todo::class.java)

8 .asFlow()

9 }

Listing 7.5: Example of simple HTTP GET request using WebClient.

Both implementations yielded very similar results. We analysed the second one, as this al-

lowed to further understand the implications of returning asFlow(). Results are available in

Chapter 10.2.3.

52 Third-party HTTP Requests: Asynchronous & (sometimes) Cancellable

7.5 Cancelling HTTP requests

The cancellation of requests to the server must entail the cancellation of requests created by the

server to other APIs. For this reason, we found it necessary to study how WebClient handles

cancelled requests. Previously created endpoint shown in Listing 7.5 is perfect for trials, so we

will be using it.

We started by studying the behaviour without any kind of cancellation. Figure 7.1 shows this

behaviour.

76 [SYN]TCP
76 [SYN ACK] TCP

64 [ACK]TCP
977 GET /3prest/wc/1 HTTP/1.1HTTP

64 [ACK] TCP
56 [SYN]TCP

56 [SYN ACK] TCP
44 [ACK]TCP

152 GET / HTTP/1.1HTTP
44 [ACK] TCP

28134 HTTP/1.1 200 OK HTTP
44 [ACK]TCP

18382 HTTP/1.1 200 OK HTTP
64 [ACK]TCP

Client Server 3rd Party API

1 1

22

3 3

4 4

55

6 6

77

8 8

9 9

1010

1111

12 12

1313

14 14

Figure 7.1: Regular request flow when calling 3rd party API.

The first three packets {1-3} are the TCP three-way handshake. After the TCP connection is

established, an HTTP GET request is sent by the client {4}, i.e., the browser. The server sends an

ACK (acknowledged) {5} back to the browser, letting it know that the previous packet arrived.

After that the request to the third party API is started. The first three packets {6-8} are the TCP

three-way handshake. After the connection is established, an HTTP GET is sent by the server {9}

to the third party API, which ACKs the request {10}. When it is ready, the third party API sends

the response to the server {11}, which in turn ACKs the response {12}.

Lastly, the HTTP reply is ready and is sent to the client {13}, which ACKs the response {14}.

The results are as expected, so we repeat the same exercise, but cancelling the HTTP request

before it is completed. Figure 7.2 shows this behaviour.

7.5 Cancelling HTTP requests 53

76 [SYN]TCP
76 [SYN ACK] TCP

64 [ACK]TCP
977 GET /3prest/wc/1 HTTP/1.1HTTP

64 [ACK] TCP
56 [SYN]TCP

56 [SYN ACK] TCP
44 [ACK]TCP

152 GET / HTTP/1.1HTTP
44 [ACK] TCP

54 [FIN ACK]TCP
60 [ACK] TCP

60 [FIN ACK] TCP
54 [ACK]TCP

54 [FIN ACK]TCP
60 [ACK] TCP

60 [FIN ACK] TCP
54 [ACK]TCP

Client Server 3rd Party API

1 1

22

3 3

4 4

55

6 6

77

8 8

9 9

1010

11 11

1212

1313

14 14

15 15

1616

1717

18 18

Figure 7.2: Cancelled request flow when calling 3rd party API.

Steps {1} through {10} as the same as explained in Figure 7.1.

This time, however, before the third party API manages to get its response ready to flush back

to the server, the server receives a FIN ACK TCP packet from the browser {11}, signaling the

cancellation of the request, which the server ACKs {12}. Note that the ACK was unnecessary, but

it is common to send an ACK with a FIN just in case the previous ACK {5} was lost3. In turn, the

server sends a FIN ACK TCP packet to the client {13}, which the client ACKs {14}. The TCP

connection is closed and no further packets are exchanged between the server and the client.

Lastly, the server attempts to close the connection to the third party API, to which it sends

a FIN ACK TCP packet {15}, which the third party API ACKs {16}. In turn, the third party

API sends a FIN ACK TCP packet to the server {17}, which the server ACKs {18}. The TCP

connection is closed and no further packets are exchanged between the server and the third party

API.

The same tests were repeated for the other WebClient endpoint, shown in Listing 7.4, which

yielded the same results.

We drew several conclusions from these trials:

• The less relevant conclusion, albeit most interesting: Node.js’ http library which allows us

to create a server via http.createServer() supports cancellation of the likes of Kestrel

3https://cs.stackexchange.com/questions/76393/tcp-connection-termination-fin-
fin-ack-ack

https://cs.stackexchange.com/questions/76393/tcp-connection-termination-fin-fin-ack-ack
https://cs.stackexchange.com/questions/76393/tcp-connection-termination-fin-fin-ack-ack

54 Third-party HTTP Requests: Asynchronous & (sometimes) Cancellable

and Spring Webflux on Netty. Naturally, we did not delve into detecting cancellation in that

platform, but a quick search seems to indicate it is possible4.

• Repeating the tests with a POST request instead of a GET resulted in the same behaviour.

This is problematic because POST is not an idempotent operation, and no feedback is given

on whether the operation was:

– cancelled and rolled back

– cancelled and left mid-way

– not cancelled, and finished

• When getting a cancellation request, Webflux first cancels with the client, and only after

that will it cancel with the 3rd party API, favouring the client, and providing a smoother

experience. The process is quite quick anyway: from the browser’s FIN ACK {11} to the

server, to the third Party API’s ACK to the server {18}, it takes about 0.55ms (on localhost,

where latency is negligible, and without any load).

• When returning a Publisher — a Flux or a Mono — in a Controller handler function, it

is Webflux itself that subscribes to that publisher in order to send the response back to the

request’s origin, e.g. the browser. While we knew this, we had not conceived that non-

suspending functions could have any kind of cancellation behaviour associated. Moreover,

there is actually a way to treat a cancellation request when a Flux is returned, which is

explained in the next section.

7.6 Handling cancellation when using WebClient

As we have seen, Webclient performs cancellation regardless of the method used. POST, the only

non-idempotent method in HTTP, should, in our opinion, not be cancelled. Because it is cancelled

we must develop a strategy to ensure that there is a way to either:

• enforce the execution until the request finishes gracefully, catch the cancellation, and then

take some action, depending on the situation.

• catch the cancellation on-the-flux and handle it there, taking some action, depending on the

situation.

The first alternative is quite simple: just use one of the blocking alternatives presented in this

chapter. However, this introduces inconsistency regarding the use of WebClient. An alternative is

to block() the Publisher and check for cancellation afterwards, but this must be run in a special

thread or Kotlin async block, because calls to block() are not supported in the threads running

the controllers, reactor-http-nio-*.

4https://stackoverflow.com/questions/35198208/handling-cancelled-request-with-
express-node-js-and-angular

https://stackoverflow.com/questions/35198208/handling-cancelled-request-with-express-node-js-and-angular
https://stackoverflow.com/questions/35198208/handling-cancelled-request-with-express-node-js-and-angular

7.6 Handling cancellation when using WebClient 55

The second alternative is simpler, in our opinion. However, depending on the nature of the

code to be run (blocking or non-blocking), it may not be the best option. Thanks to Kotlin’s

SAM conversions5, it is possible to pass an Anonymous Runnable directly to the doOnCancel()

function. An example of this is shown in Listing 7.6.

1 @GetMapping("/wc/2")

2 fun rest6(): Flux<Todo>? {

3 return WebClient.create(url)

4 .post()

5 .uri("/")

6 .body(Mono.just("a body"), String::class.java)

7 .retrieve()

8 .bodyToFlux(Todo::class.java)

9 .doOnCancel {

10 println("http request was cancelled")

11 // handle cancellation here

12 }

13 }

Listing 7.6: Example of simple HTTP POST request using WebClient, featuring a cancellation

handler in the Reactor pipeline.

Unfortunately, there is no way to prevent cancellation in this scenario (or if there is, we

could not find it). However, one can detect if cancellation took place (by providing a handler

to .doOnCancel()) and deal with that according to the safety of the cancelled request.

Summary

The research of HTTP requests to third-party APIs has proven to be a great opportunity to use the

reactive model and to understand it in a deeper way. Unfortunately, we only addressed this subject

very late in our work. Nevertheless, we learned that it is usually a good idea to look for a way to do

a task in a Webflux environment, and not simple in a Java or Spring environment. The differences

in the architecture and the fact that reactive solutions are preferred makes it much simpler to use

the solutions that have been specifically tailored for Webflux.

The need to set up a testing environment and the fact we intuitively decided to use Node.Js

yielded this conclusion: that Express.js, the commonly used Web framework in the JavaScript

environment6, does support cancellation. It was to be expected, but despite that, it is a ground-

breaking information.

We learned that not everything on Baeldung is worth our time: our first attempt was taken

from Baeldung, but was hardly a good choice. The main problem is that the website does not

5https://kotlinlang.org/docs/java-interop.html#sam-conversions
6https://nodejs.org/en/user-survey-report/#profile2

https://kotlinlang.org/docs/java-interop.html#sam-conversions
https://nodejs.org/en/user-survey-report/#profile2

56 Third-party HTTP Requests: Asynchronous & (sometimes) Cancellable

differentiate between Spring MVC and Spring Webflux articles, which confuses developers who

erroneously think they found what they were looking for.

Despite all these positive aspects, there are two details that we consider to be negative out-

comes. First, we consider that using Netty as an HTTP client is harder than it should be. Online

guides are non-existent, and tutorials are poor, at best. We found the class and function names

complex, possibly because we do not have all the knowledge necessary to use it correctly. Nev-

ertheless, its implementation on WebClient seems to be more than sufficient, which is positive.

Secondly, how WebClient works better than antecipated, with a low learning curve despite its re-

active nature. It is an amazing piece of software, which only works on Spring Webflux. Its usage

may be undesired if one wants to keep their team fluent with one library that can be used and

reused across several projects.

All in all, achieving cancellation was our greatest objective and despite it being mostly an

undocumented feature, we managed to achieve it. Table 7.1 below sums up the pros and cons of

each solution.

Solution Viable under stress Cancellable First-requests’ overhead
HttpURLConnection Yes if using a thread-

pool
No Negligible

Netty Client No, responses are lost No n/a
WebClient Yes Yes Measurable (Section 10.2.3)

Table 7.1: Comparison between third-party HTTP request libraries in terms of usefulness.

Further conclusions regarding loading times and performance benchmarks can be found in

section 10.2.

Chapter 8

WebSockets

This is the last subject that we will be studying. The Websocket Protocol, which introduced bidi-

rectional communication in the browser environment, seems recent but it will actually be 10 years

old by December 20211. Nevertheless, web applications featuring bidirectional communication

existed before Websocket, and were usually based on what has become known as HTTP Polling

— regularly repeating a request to the server asking for updates.

The Websocket Protocol Specification [5] explains that it is highly versatile, working for ap-

plications such as "games, stock tickers, multiuser applications with simultaneous editing, user

interfaces exposing server-side services in real time, etc."

Despite its great advantages in bidirectional communication, Kharraz et al. [15] note that

Websocket adoption is low, with HTTP polling remaining "significantly more common than Web-

Sockets". Their studies uncovered that from the most popular websites, according to Tranco Top

1M, approximately 6% use Websockets and 15% use HTTP Polling.

Another interesting point raised by Kharraz et al. is the fact that Websocket, as a more complex

and less well-established protocol, is usually ill-implemented — security-wise. They suggest

improvements to the protocol, to its documentation, and a general push for responsible usage of

this alternative to HTTP Polling which can have significative bandwidth and power savings.

The Webflux documentation puts forward that "restrictive proxies" outside of the program-

mer’s control may close Websocket connections because they perceive them as idle. Based on this

argument, they propose that shifting from HTTP (polling) to Websockets is something that should

be more easily done in-doors, where firewalls are controllable.

Ben Hale, the creator of R2DBC, said in an Oracle conference2 that one of the advantages

of WebSockets over HTTP is the possibility of bidirectional communication, which enables full-

fledged reactive subscriptions, including support for back-pressure.

It should be noted, however, that Kharraz et al. focus on WebSockets when used for communi-

cation between the browser and the web server. While this use case is important, and possibly the

one more easily thought of, there are other use cases, such as inter-systems communication, which

1https://datatracker.ietf.org/doc/html/rfc6455
2https://www.youtube.com/watch?v=WVnAbv65uCU

57

https://datatracker.ietf.org/doc/html/rfc6455
https://www.youtube.com/watch?v=WVnAbv65uCU

58 WebSockets

is the scenario that konkconsulting has been using for WebSockets. However, we should note that

konkconsulting uses Websocket in a request-response structure, not unlike HTTP. For this reason,

this is what we will be focusing on.

To avoid trying to use a library that is not adequate because it is from outside the Spring ecosys-

tem (as we did before), the first place we looked for a way to implement Websocket functionally

was within the ecosystem it self.

The documentation has a chapter about Websocket, and another about RSocket. RSocket is

a "binary protocol for use on byte stream transports" providing support "for Reactive Streams

semantics between client-server, and server-server communication"3.

While RSocket does sound interesting from a features point-of-view, its usage requires that

both parties (in the communication) use it. Despite it being available in several programming lan-

guages and ecosystems, we still have difficulty embracing it as there is no interest in migrating all

other konkconsulting’s microservices. For this reason, we will focus our efforts on the simple Web-

socket implementation available on Webflux. It consists in extending the WebSocketHandler

class appropriately.

8.1 Service processor setup

Despite not being our objective, we started by implementing a processor (something that would

receive an object, process it, and return an answer), since it can be easily implemented in a com-

pletely reactive way. However, one of the greatest challenges ahead of us is that this library is fully

reactive, which makes usage of blocking libraries, such as spring-data-jpa, more complex.

Listing 8.1 shows a handler. The remaining code blocks are shown in Appendix B.3.

1 import com.google.gson.Gson

2

3 class MainHandler : WebSocketHandler {

4 private val gson = Gson()

5 override fun handle(session: WebSocketSession): Mono<Void> {

6 val out = session.receive().log().map {

7 val pl = gson.fromJson(it.payloadAsText, MyPayload::class.java)

8 if (!pl.processed && pl.number != null) {

9 pl.number = sqrt(pl.number!!.toDouble()).toInt()

10 pl.processed=true

11 }

12 session.textMessage(gson.toJson(pl))

13 }

14 return session.send(out)

15 }

16 }

17

18 class MyPayload {

3https://rsocket.io/

https://rsocket.io/

8.2 Doing a request to another server 59

19 var processed: Boolean = false

20 var number: Int? = null

21 }

Listing 8.1: Websocket handler receiving and processing a MyPayload object.

Despite the Websocket Protocol RFC not defining a format for the payload, it is common to

use JSON. Thus, we used Gson by Google to serialise/deserialise the MyPayload Objects.

8.2 Doing a request to another server

Having successfully tested this processor with a simple graphical client, we moved on to the

implementation of an HTTP Webflux handler that would to a Websocket request and wait for an

answer, an then return that answer via HTTP. However, due to time constraints, we were unable

to complete it. Regardless, Listing 8.2 shows the code which opens the Websocket and sends the

request, only missing the response handling.

1 val gson = Gson()

2

3 @GetMapping("/ws")

4 suspend fun ws0(): Flow<Void> {

5 val client = ReactorNettyWebSocketClient()

6 val url = URI("ws://localhost:8081/")

7 client.execute(url) { session ->

8 val msg = session.textMessage(MyPayload(49).asJson())

9 session.send(Flux.just(msg))

10 }

11 return emptyFlow()

12 }

13

14 class MyPayload(var number: Int?) {

15 var processed: Boolean = false

16

17 fun asJson(): String {

18 return gson.toJson(this)

19 }

20 }

Listing 8.2: HTTP handler sending a request via Websocket. Receiving and processing the

response is missing.

60 WebSockets

Summary

Our incursion in the Websocket reality was short, but concise. After our experience with HTTP

requests, we considered that it would be a better approach to use the built-in tools. Despite not

reaching our objective in full, it was clear that the functionality is present and in a reactive way.

Better code examples and a more complete documentation would have helped us tremendously to

finish this specific PoC.

Chapter 9

Spring MVC to Spring Webflux: An
attempt at a smooth transition

konkconsulting’s present solution runs on Spring MVC. Having realised that Spring Webflux is

the best environment currently available for reactive applications in Java/Kotlin, it became relevant

to study how to transition from Spring MVC to Spring Reactive. We could do it by rewriting

the application from scratch, or incrementally, module by module. Regardless of this choice,

transitioning a system under development can be very complex, considering the fact that teams are

actively developing, closing issues, and have a schedule to respect. Nevertheless, it is still better

than doing it after the development is finished or when the system is live. Moreover, it should be

simpler to transition a system from a solution to another in the same ecosystem, as compared to

changing ecosystems (e.g. Spring MVC to Ktor).

Due to the nature of reactive applications, a soft transition is undesired as blocking code can

block the whole application if not handled carefully. Moreover, it is not recommended to parallelly

use the servlet API and the Netty API — Spring MVC and Spring Webflux core functionalities,

respectively — despite it being allegedly possible1.

This leaves the absolute transition, which is actually the most recommended in many webinars

about this subject. This means that no blocking code/libraries can stay working like before —

and preferably they’re removed altogether. This focus on transitioning from Spring MVC — as

opposed to an approach focused on newcomers which would help those who want a fresh start —

is probably the one that targets the biggest audience, but makes the approach to Webflux require

an approach to Spring MVC first, which is not ideal.

We should note that during the course of this dissertation there were two2,3 webinars presented

by Jetbrains4 about Spring Webflux. In the last one, we asked several questions, which did not

receive an answer. The questions asked were the following:

1https://github.com/bigpuritz/netty-servlet-bridge
2https://www.youtube.com/watch?v=FcwR34DFqIc
3https://www.youtube.com/watch?v=8-6Cd9YemOc
4https://www.youtube.com/channel/UCP7uiEZIqci43m22KDl0sNw

61

https://github.com/bigpuritz/netty-servlet-bridge
https://www.youtube.com/watch?v=FcwR34DFqIc
https://www.youtube.com/watch?v=8-6Cd9YemOc
https://www.youtube.com/channel/UCP7uiEZIqci43m22KDl0sNw

62 Spring MVC to Spring Webflux: An attempt at a smooth transition

• How is support for relations when using R2DBC? Is it as robust as JPA?

• Do suspending functions support HTTP request cancellation via TCP FIN?

Previous chapters of this dissertation allow the reader to understand that these are paramount

questions which could have been answered in a clear way, but they were not picked for answering.

9.1 Spring MVC

Spring MVC5 is the primary building block in the Spring ecosystem. It is a framework following

the Model—View-–Controller design pattern, which does not, however, oblige the developer to

use it in that way, which makes it highly flexible.

Spring MVC is a request-driven framework based on blocking web servers. Before 2009, this

meant that for each request received, a new thread was launched — or taken from a thread pool —

by the underlying server. As previously explained, while threads enable lightweight concurrency,

as the number of threads increases, so does the computational effort required to schedule them and

the memory requirements necessary to accommodate their proliferation. For this reason, it is im-

portant to reduce the amount of time that threads take to finish their job — assuming that there is

no control over the number of requests received, and, thus, the number of threads launched. How-

ever, since 2009, and Spring 3.0, it has been possible to code asynchronously, returning control

of a thread to the server in periods of io-blocking or while waiting for a third-party thread. More

recently, Spring MVC has come to support some reactive constructions: e.g. it is possible to have

a Spring MVC controller return a Flux. The thread will be decoupled from the servlet container,

reactively flushing the Flux output as it comes.

While these changes allow Spring to improve scalability, some internal server functionalities,

such as WebFilter or WebHandler continue having a blocking nature. In a podcast, Rossen

Stoyanchev6 notes that there are many hidden processes that are blocking and can easily be over-

looked, such as parsing the request parameters (a blocking operation which involves parsing the

body of the request).

It is widely accepted that the thread/blocking scheme is a simple solution that has served us

well for a long time, and that continues to serve us, but it is becoming dated due to the way we

interact with other systems and the amount of information and sources that are used nowadays.

When using a thread to deal with a request, said thread may need to do things that are, can be,

or must be, asynchronous, such as:

• calling databases

• calling REST services

• reading/writing from/to files

5https://docs.spring.io/spring-framework/docs/3.2.x/spring-framework-reference/
html/mvc.html

6https://open.spotify.com/episode/4RGWIfpx4HhqiAsuieXOcz

https://docs.spring.io/spring-framework/docs/3.2.x/spring-framework-reference/html/mvc.html
https://docs.spring.io/spring-framework/docs/3.2.x/spring-framework-reference/html/mvc.html
https://open.spotify.com/episode/4RGWIfpx4HhqiAsuieXOcz

9.2 Spring Webflux 63

The most common solution is using libraries that obfuscate these processes by allotting re-

quests to threads in a thread pool, increasing the number of threads necessary to run the applica-

tion.

Regarding web servers, Spring MVC comes embedded with Tomcat web server, but can also

be used with Jetty or Undertow.

9.2 Spring Webflux

Spring Webflux7 is a framework in the Spring ecosystem targeting reactive development, as per

the Reactive Manifesto.

Unlike Spring MVC, is not based on a blocking structure, but on an event-loop. A simple way

of looking at it, according to Rossen Stoyanchev, is comparing with Node.js. In Node.js, there are

no thread pools, which imposes the asynchronous model on developers using it. This means that

developers must solve their issues in an asynchronous way.

Stoyanchev defends that asynchronous, event-driven programming is a trend that should be

addressed; it becomes relevant in situations with increased amounts of latency like calls to third-

party services, which should be declared in a way that no unnecessary calls are made, while still

respecting precedence of calls (e.g. the result of call A is necessary to make call B, but call C can

be done concurrently with calls A and B).

Stoyanchev also notes that writing the response back to the client can be a slow process, de-

pending of the ability of the client to receive the payload, the network bandwidth and the network

stability. While blocking servlets will write and block until the complete payload can be flushed,

asynchronous implementations can use a single thread to reply to many clients simultaneously.

Spring Webflux comes embedded with Netty web server, but can also be used with Jetty or

Undertow. However, cancellation as presented in section 5.2.4 is only attainable with Netty.

9.3 Co-existence: Spring MVC & Webflux

Our investigation of the possibility of coexistence of Spring MVC and Spring Webflux started,

naturally, at the Spring Boot Starter page, where we have successfully created a Spring application

with both modules, which compiles and runs. A major incompatibility between the two modules

should result in an error in the starter page, in our opinion, and the fact that it did not makes us

believe that it is possible.

Initial tests revealed that, when launching a project with both Spring MVC and Spring Webflux,

Tomcat will be used. This means using the servlet API and all the APIs that use it.

Stoyanchev advocates that while mixing blocking and asynchronous code is usually a hard

thing to do, it is possible. However, one must be careful not to use blocking code in the same

7https://docs.spring.io/spring-framework/docs/current/reference/html/web-
reactive.html

https://docs.spring.io/spring-framework/docs/current/reference/html/web-reactive.html
https://docs.spring.io/spring-framework/docs/current/reference/html/web-reactive.html

64 Spring MVC to Spring Webflux: An attempt at a smooth transition

thread where non-blocking code is running. This makes it necessary to continue having thread-

pools in order to run blocking code, which it not ideal in a reactive context. However, with the

help of Kotlin constructs such as Coroutines and Dispatchers (vide section 2.1.2), this should not

be a problem.

9.4 konkconsulting’s Dilemma

Everyone makes transitioning from Spring MVC to Spring Webflux look simple: Kotlin webinars,

Baeldung blog posts. The attentive reader may recall the quote at the beginning of this dissertation.

While their message seems authentic, it does not take into account the way code evolves and is

shaped to the underlying platforms. In konkconsulting’s case, the first problem arose when taking

out Tomcat off the application: there are several places where the servlet APIs are used, which are

not natively provided by Netty. While the use of a Netty servlet container would probably make it

possible to integrate these two parts, konkconsulting has decided to proceed with a full transition.

With this situation on our hands, we have delved into the lengthy task of changing the project

so that it can run on Webflux. There were several complications, which we explain in the next

subsections.

9.5 Filtering

Spring Boot offers filters, a tool that allows requests to be filtered and managed. For example, a

filter can analyze the headers of the requests, and issue a redirect based on a specific value, or a

filter can make it so that requests over a certain threshold (in terms of requests per amount of time)

can be stopped without ever launching the controller, an operation which must inject dependencies

and may be heavy.

The way these filters are implemented in Spring MVC is totally different from the way they

are implemented in Spring Webflux. As konkconsulting is using filters, they have to be redone.

However, Webinars advocating for developers to switch to Webflux do not mention filters whatso-

ever.

9.6 Websockets via STOMP

Websockets in Spring MVC are ideally implemented using STOMP8, the simple text-orientated

messaging protocol. STOMP is a specification defining the way messages are to be structured, and

works even when using other communication channels, such as telnet. STOMP implementations

are available for many platforms, such as Java, Python, JavaScript and PHP. konkconsulting was

using STOMP, however, due to its reactive nature, Webflux does not support the STOMP imple-

mentation that Spring MVC provides. In April 2018, a concerned user asked about this on GitHub

and a Spring contributor replied that "There is a general intent to provide higher-level, messaging

8https://stomp.github.io/

https://stomp.github.io/

9.7 OAuth2 65

support aligned with WebFlux" but there were not yet any solutions. However, he mentioned ef-

forts to add support for gRPC and RSocket. The latter is already integrated and well supported.

However, it is incompatible with STOMP. This means that all Websocket functionality will have

to be re-implemented. In the context of this dissertation, no implementation was done. Instead,

these functionalities were removed because they were not being used extensively.

9.7 OAuth2

Spring natively supports OAuth2, thus making it easy to setup authentication with third party

providers. However, the programmatic interfaces used to access the user data differ significantly,

breaking authentication until it is adjusted to the Webflux way.

In the case of konkconsulting, because they are using an internal Identity Provider (IdP) — as

opposed to a public, generic one, like Facebook or GitHub —, further configuration is necessary.

Thankfully, this configuration need not be changed in order to use the Webflux version of OAuth2

on Spring.

9.8 CORS

CORS (Cross-Origin Resource Sharing) is usually known to be something that breaks applica-

tions, but that is extremely important for preventing attacks. When migrating konkconsulting’s

product, adjusting the CORS configuration as specified on Baeldung9 did not work, even though

we asserted that those lines were being executed. We only managed to get a working application

when copying code from an online example on GitHub10, which — as a development method —

is far from ideal.

9.9 Spring-security

Spring MVC APIs such as SecurityContextHolder or AuthenticationManager are

blocking. While this is acceptable in a thread-per-request reality, it cannot be in an event-loop

reality like Spring Webflux.

For this reason, such APIs have reactive counterparts: ReactiveSecurityContextHolder

and ReactiveAuthenticationManager, respectively.

These new, Reactive, APIs implement different interfaces and must thus be used in different

ways: their reactive nature forces the developers to use reactive programming, as any kind of

reactor blocking code will throw an exception and the request will not be fulfilled.

9https://www.baeldung.com/spring-webflux-cors section 3. Enabling CORS on the Global Configu-
ration

10https://github.com/inoutch/inochat/blob/master/server/src/main/kotlin/sample/
security/SecurityConfig.kt#L46

https://www.baeldung.com/spring-webflux-cors
https://github.com/inoutch/inochat/blob/master/server/src/main/kotlin/sample/security/SecurityConfig.kt#L46
https://github.com/inoutch/inochat/blob/master/server/src/main/kotlin/sample/security/SecurityConfig.kt#L46

66 Spring MVC to Spring Webflux: An attempt at a smooth transition

1 java.lang.IllegalStateException: block()/blockFirst()/blockLast() are blocking,

which is not supported in thread reactor-http-nio-4

Listing 9.1: Example of error when using blocking calls in webflux configuration classes.

We find errors like the one in Listing 9.1 harsh on the developer. However, it is absolutely

understandable that developers be stopped, at all costs, from blocking the event-loop. This forces

good coding practices and helps Webflux not receive a bad reputation due to low performance

caused by blocking code.

Rob Winch, Project Lead for Spring Security, did a presentation11 in 2018 regarding the use

of Spring Security in reactive applications. However, not all the topics were covered as this is a

rather extensive framework.

9.9.1 SecurityContextHolder

In Spring MVC, the SecurityContextHolder uses the ThreadLocal data structure in order

to store the authentication variables. When using reactive programming, it becomes necessary to

let go of this data structure. The reasons for this are two-fold:

• There is no telling if the setting and posterior retrieving of these values takes place in the

same thread. Because ThreadLocal is attached to a single thread, any thread switch would

result in that content no longer being accessible.

• On another hand, there may be several reactor pipelines running on the same thread, causing

ThreadLocal collisions.

For these reasons, the reactive version of SecurityContextHolder must be used. The

problem with ReactiveSecurityContextHolder is that it is inaccessible outside of a Reac-

tive context. This means that the security context set in a WebFilter, for example, is not available in

the blocking libraries that konkconsulting decided to use for managing database filters, which need

to know which user is signed in. Because the database layer is blocking, we could not integrate

the new APIs.

9.9.2 @Secured

Spring Security makes use of the @Secured annotation. This is used to make sure that only some

users with certain roles can access certain endpoints. In spring WebFlux, this is not possible, and

other annotations need to be used, such as @PreAuthorize or @PostAuthorize. These were

already present in Spring MVC. The two annotations in Listing 9.2 have the same behaviour12.

1 @PreAuthorize("hasRole(’ROLE_USER’)")

11https://www.youtube.com/watch?v=YcAufUtfm44
12https://stackoverflow.com/questions/3785706/whats-the-difference-between-

secured-and-preauthorize-in-spring-security-3

https://www.youtube.com/watch?v=YcAufUtfm44
https://stackoverflow.com/questions/3785706/whats-the-difference-between-secured-and-preauthorize-in-spring-security-3
https://stackoverflow.com/questions/3785706/whats-the-difference-between-secured-and-preauthorize-in-spring-security-3

9.9 Spring-security 67

2 public void create(Contact contact) {}

3

4 @Secured("ROLE_USER")

5 public void create(Contact contact) {}

Listing 9.2: Two Spring Security annotations showing the same behaviour in Spring MVC.

In light of this, migrating from the old @Secured to the new @PreAuthorize should not

be complicated. However, a member of the community migrating a Spring MVC application to

Spring Webflux created an issue on Github asking about the possibility of using these annota-

tions13 and the response from Rob Winch was that the usage of said annotations requires that
all methods return either a Mono or a Flux: "this is the way Reactor Context propagates the

SecurityContext." — he says.

We tested prepending a handler which returned a Flow with a PreAuthorize annotation,

which resulted in requests to that endpoint returning an error 500, with this message on the console:

1 java.lang.IllegalStateException: The returnType class java.lang.Object on public

java.lang.Object ...HttpController.rest5(kotlin.coroutines.Continuation) must

return an instance of org.reactivestreams.Publisher (i.e. Mono / Flux) in order

to support Reactor Context

2 at org.springframework.util.Assert.state(Assert.java:97) ~[spring-core-5.3.5.jar:5

.3.5]

3 ...

The same happened when testing on a function returning a String. This annotation only worked

when applied to a handler returning a Publisher, as per the message shown above. However, we

should note that merely returning a Mono.just(ret) where ret is the original return value

makes the annotations work. This is only acceptable if if is not necessary to pass context to the

handler’s body. However, if the handler uses a reactive library that requires the context, then the

reactive variable (mono/flow) should be returned directly, otherwise the context flow is broken.

9.9.3 User Roles

As previously explained, @PreAuthorize is an annotation which interprets Spring Expression

Language (SpEL)14. SpEL is explained in section 2.7. The hasRole(role) function is the di-

rect translation of the old @Secured annotation used by konkconsulting, but the switch to Spring

Webflux and the different OAuth2implementation created barriers to the usage of hasRole(role).

hasRole(role) works by checking if the passed role is in the authorities set, which

is a member of the authentication object, a part of the SecurityContext we analysed

earlier. In the specific case of konkconsulting, roles pertaining to an authenticated user’s session

are gathered from two main sources: the OAuth2 IdP and the database.

13https://github.com/spring-projects/spring-security/issues/5103
14https://docs.spring.io/spring-framework/docs/3.0.x/reference/expressions.html

https://github.com/spring-projects/spring-security/issues/5103
https://docs.spring.io/spring-framework/docs/3.0.x/reference/expressions.html

68 Spring MVC to Spring Webflux: An attempt at a smooth transition

Regarding the OAuth2 IdP’s roles, they were being stored under an attribute of the principal

object. We had to manually copy them to the authorities object, as shown in Listing 9.3.

1 ((sc.authentication.principal as OAuth2User).attributes["authorities"] as JSONArray

).forEach {

2 updatedAuthorities.add(SimpleGrantedAuthority("ROLE_$it"))

3 }

4 sc.authentication = OAuth2AuthenticationToken(

5 sc.authentication.principal as OAuth2User,

6 updatedAuthorities,

7 (sc.authentication as OAuth2AuthenticationToken).authorizedClientRegistrationId)

8 ReactiveSecurityContextHolder.withSecurityContext(Mono.just(sc!!))

Listing 9.3: Adding OAuth IdP roles to the updatedAuthorities set.

As for the database roles, there is a complication which makes the process undesirably, but

unavoidably, blocking. For some reason internal to Spring Webflux, — which we have not in-

vestigated — Spring WebFilters, the way used to do the aforementioned process of reassigning

roles, cannot run on a suspending function. This means that there is no way for Kotlin Corou-

tines to be used in its context. Because konkconsulting is using Hibernate JPA, a blocking way

of doing database calls, there can be problems when authenticating many users simultaneously.

Nevertheless, Listing 9.4 shows the code used.

1 val roles = rolesRepository.findUserRoles(userId)

2 roles.forEach{updatedAuthorities.add(SimpleGrantedAuthority("ROLE_$it"))}

3 sc.authentication = OAuth2AuthenticationToken(

4 sc.authentication.principal as OAuth2User,

5 updatedAuthorities,

6 (sc.authentication as OAuth2AuthenticationToken).authorizedClientRegistrationId)

7 ReactiveSecurityContextHolder.withSecurityContext(Mono.just(sc!!))

Listing 9.4: Adding database roles to the updatedAuthorities set.

Both code snippets can be combined. The full code is shown in Appendix B.2.

Regarding the database access, we believe it should be possible to use a reactive solution, such

as R2DBC (vide section 6.2), which could use the reactive pipeline to make the SQL call non-

blocking. However, this should only be equated if the workload reaches a level in which making

this call in a blocking manner starts to noticeably degrade the user experience.

9.10 Task Scheduling

konkconsulting makes extensive use of Task Scheduling. Scheduled tasks are used to maintain

business constraints, keep databases clean and sync with external systems. konkconsulting uses

9.10 Task Scheduling 69

the Quartz library15 to manage tasks, which they originally selected as it supports multi-triggered

tasks, and they felt it was a robust solution. Moreover, Quartz has a special integration with Spring

provided by the Spring team.

This special integration is something that we believed to be a good sign because it should

imply that it would be supported when using Spring Webflux. In truth, this was not the case.

Trials to integrate this library were unfruitful. Our sole attempt was to use the Spring integration

— not the native library — as we believed it to be the best course of action. Baeldung features a

blog post16 explaining how this should be done, which we followed — without success.

We should note that Quartz uses a thread-pool to accommodate Jobs. While this is the standard

way of dealing with tasks, it is contrary to the reactive form. Having realised this and faced with

difficulties integrating Quartz, we decided to move on and look for alternatives.

Spring natively provides a framework for Task Execution and Scheduling17 (TES). Naturally,

this is available when using Spring Webflux. However, we should note that, like with Quartz,

support for reactive execution is lacking, with the framework being entirely based on a thread pool

that can accommodate tasks. We looked into the possibility of using this with Kotlin Coroutines,

with no success. The foundation for Kotlin CR — having a function defined as suspending —

is not supported by TES. Execution of these functions fails silently, resulting in Spring crashing.

This means that previous efforts regarding cancellation while using Kotlin CR cannot be reused in

this scenario (using TES, that is).

Regardless of these complications, we were still able to achieve some cancellation using TES.

StackOverflow user Krishna Prasad explains that cancelling TES tasks can be done using Spring’s

ScheduledAnnotationBeanPostProcessor18. This cancellation is done internally by in-

terrupting the running thread (via Java Thread.interrupt()). In Java, interrupts19 are a sign sent to a

thread signalling that it should stop its current execution. Threads receiving an interrupt are not im-

mediately stopped. Functions which throw InterruptedExceptions, such as Thread.sleep(),

will throw this exception which, if uncaught, terminates the Thread’s execution — exceptions can

be caught using a try/catch block. If a thread does not call such functions regularly, it should

(manually) verify if the Thread has not been cancelled by checking if Thread.interrupted()

is false.

An example of a scheduled function in TES supporting cancellation is shown in Listing 9.5.

1 // every 5 seconds, starting 0.5s after scheduler is launched

2 @Scheduled(fixedDelay = 5000, initialDelay = 500)

3 fun deleteFamousPosts() {

4 var canceled = false // initialize cancelled as false.

5 val famous = postRepository.findFamous(5) // get famous posts to be deleted

15http://www.quartz-scheduler.org/
16https://www.baeldung.com/spring-quartz-schedule
17https://docs.spring.io/spring-framework/docs/4.2.x/spring-framework-reference/

html/scheduling.html
18https://stackoverflow.com/a/50216003/1469991
19https://docs.oracle.com/javase/tutorial/essential/concurrency/interrupt.html

http://www.quartz-scheduler.org/
https://www.baeldung.com/spring-quartz-schedule
https://docs.spring.io/spring-framework/docs/4.2.x/spring-framework-reference/html/scheduling.html
https://docs.spring.io/spring-framework/docs/4.2.x/spring-framework-reference/html/scheduling.html
https://stackoverflow.com/a/50216003/1469991
https://docs.oracle.com/javase/tutorial/essential/concurrency/interrupt.html

70 Spring MVC to Spring Webflux: An attempt at a smooth transition

6

7 // check if thread was cancelled in the mean time.

8 if(Thread.currentThread().isInterrupted)

9 canceled=true

10

11 // perhaps do something else regardless

12

13 if (canceled) {

14 println("Cancelled.") // not continuing

15 // roll back changes if necessary

16 return

17 }

18 // not cancelled. Continuing

19 postRepository.deleteAll(famous)

20 }

Listing 9.5: TES function supporting cancellation mid-execution. The function fetches posts from

the database using a specific criteria. After selecting them, it checks the cancellation status (at a

safe-point). If it has not been cancelled, it proceeds with the deletion. Note that no roll-back is

necessary, so the function can simply return. It could do some rollback on line 15 if necessary.

9.11 Summary

Migrating a real application from Spring MVC to Spring Webflux is a complex process. Mi-

grating a simple chat application is not. People from Kotlin, Spring, and other Webflux-friendly

projects have not been totally clear about this in the past years, as they have pushed for a narrative

of simplicity and ease regarding this subject, with total disregard for the fact that applications done

in Spring — used mostly in companies — are done in that manner due to the ease of integration

with other Java solutions (or simply because the company is familiar with basic Java libraries/-

standards such as JPA). Considering that these other solutions probably do not follow a reactive

approach, which makes integration complicated, if not impossible, it is our conviction that those

reports of simplicity are exaggerated.

Due to the radical changes between the Imperative and the Reactive model, migration is proba-

bly not the answer to most problems. A new implementation will undoubtedly yield much cleaner

results, both in terms of code and functionality. However, this makes migration a much grimmer

outlook and a not-so-attractive prospect, and we understand that. We merely do not believe that

the present narrative can produce any long-lasting fruits. Instead, it makes people curious about

the new thing — Webflux —, but they soon give up after a while, which is probably why these

webinars are so similar every time and most questions avoided. It is our opinion that the first thing

one should do, before even thinking of migrating an application to Spring Webflux, is deeply and

fully assimilate the underlying knowledge required to build a robust reactive application — and

do it. Only after being well versed in this technology does it make sense to continue the effort.

9.11 Summary 71

Nevertheless, this exercise has allowed us to understand and document many aspects, from

limitations of mixing reactive and blocking code to things that had to be changed or even con-

structions that can work "as is". This is the final exercise, the place where we transition from PoCs

to an actual implementation (or try, at least). The place where we can obtain a real, concrete con-

clusion about what has become the most resounding question in this dissertation: – How reactive

can konkconsulting go? The answer: – up to the database.

72 Spring MVC to Spring Webflux: An attempt at a smooth transition

Chapter 10

Results

In this chapter, we present the scientific and analytic side of the tests that we ran on several ap-

proaches, namely SQL and Third-party HTTP Requests, in terms of performance and band-

width. Alongside with the results, other observations and the results’ interpretation are presented

for easier reading and understanding.

We consider studying these results highly important for two main reasons: firstly, to select

between alternatives which seem to be equivalent in theory or which, despite not being equivalent,

arose our interest for some specific reason, and secondly, to validate our choices, i.e., to ensure

that empirical choices regarding what is the best solution do hold when tested in a real scenario —

and understand why other solutions should not be selected.

Results are mainly based on two metrics, run time (for a batch of repetitions of the same task),

and thread usage.

We used ab - Apache HTTP server benchmarking tool1 for launching the requests and col-

lecting the run time, in a detailed way which shows the evolution of the completion of jobs with

respect to time.

Considering that we are dealing with JVM applications, all thread-usage readings were taken

using VisualVM2, which can show the CPU time for each thread, among other features. Having

exported each run report as CSV, we treated those files using a spreadsheet application, which

rendered the descriptive statistics that we present.

Naturally, all tests were run in the same environment. Node.JS and Java/Kotlin solutions ran

on machine 1, and the PostgreSQL server ran on machine 2. These machines are part of the same

LAN (Local Area Network), with an average ping of 0.27ms, and a Gigabit connection. Machine

specifications are listed in Table 10.1.

1https://httpd.apache.org/docs/2.4/programs/ab.html
2https://visualvm.github.io/

73

https://httpd.apache.org/docs/2.4/programs/ab.html
https://visualvm.github.io/

74 Results

Machine Type CPUs/Cores RAM Disk
1 Desktop/Work PC 1x AMD RyzenTM 7 3700X@3.6GHz (8

cores/16 threads)
32GB SSD

2 HPE ProLiant
DL360p Gen8

2x Intel® Xeon® Processor E5-2650 v2 @
2.60GHz (8 cores/16 threads each)

64GB SSD

Table 10.1: Machine specifications for tests run.

10.1 SQL

Comparing loading times in SQL seems unnecessary. The reactive solution (R2DBC) cannot be

fairly compared because it offers no support for relations — something we will not let go of — and

JPA is our choice. Regardless, we feel it necessary to understand why JPA yielded such terrible

results when compared to Ebean, and also to explain how we ended up making JPA better than

Ebean in terms of performance.

10.1.1 Ebean

We ran some tests (shown in Figure 10.1) regarding the performance of the Ebean solution when

fetching data from a database. Test Data A.1 was used. No JPA tweaking annotations (@Fetch,

@Cacheable, FetchType) were used. No special wrappers were used, as shown in Listing 10.1.

Results were consistent throughout several runs. The connection pool size was 16 as Spring is not

offloading the requests to another thread, meaning that the reactor-http-nio-* threads, also

called the event-loop threads, did the requests to the database.

1 @GetMapping("/", produces = [MediaType.APPLICATION_JSON_VALUE])

2 suspend fun getAllPosts(): List<Post> {

3 return QPost().findList()

4 }

Listing 10.1: Simple Eben Query

10.1 SQL 75

Concurrency Level: 600
Time taken for tests: 5.061 seconds
Complete requests: 600
Failed requests: 0
Total transferred: 37956000 bytes
HTML transferred: 37911600 bytes
Requests per second: 118.55 [#/sec] (mean)
Time per request: 5061.276 [ms] (mean)
Time per request: 8.435 [ms] (mean, across all concurrent requests)
Transfer rate: 7323.53 [Kbytes/sec] received

Connection Times (ms)
min mean[+/-sd] median max

Connect: 13 38 14.5 38 63
Processing: 144 2522 1470.1 2522 4985
Waiting: 144 2521 1470.1 2522 4985
Total: 207 2560 1457.7 2561 5000

0

1000

2000

3000

4000

5000

6000

0 100 200 300 400 500 600

re
sp

on
se

tim
e

(m
s)

request

ab -r -n 600 -c 600 http://localhost:8080/posts/

time

Figure 10.1: AB performance tests of the Ebean solution using Test Data A.1 and no wrapping.

76 Results

An attentive reader knows that blocking the event-loop threads is the mistake that Reactive

aficionados warn us about. Let us thus undo that mistake. Listing 10.2 shows an implementation

using Kotlin Coroutines which enables the usage of a manually-defined thread-pool. This thread

pool has 64 threads, the same as in JPA, which ensures a fair comparison. Figure 10.2 and Table

10.2 show the results of this execution.

1 val dispatcher = Executors.newFixedThreadPool(64).asCoroutineDispatcher()

2

3 @GetMapping("/v2", produces = [MediaType.APPLICATION_JSON_VALUE])

4 suspend fun getAllPostsV2(): List<Post> {

5 val deferred = GlobalScope.async (dispatcher) {

6 return@async QPost().orderBy("id").findList()

7 }

8 try {

9 val n = deferred.await()

10 return n

11 } catch (e: Exception) {

12 deferred.cancel()

13 }

14 return emptyList()

15 }

Listing 10.2: Simple Eben Query inside Async block

10.1 SQL 77

Concurrency Level: 600
Time taken for tests: 3.348 seconds
Complete requests: 600
Failed requests: 0
Total transferred: 37956000 bytes
HTML transferred: 37911600 bytes
Requests per second: 179.19 [#/sec] (mean)
Time per request: 3348.452 [ms] (mean)
Time per request: 5.581 [ms] (mean, across all concurrent requests)
Transfer rate: 11069.71 [Kbytes/sec] received

Connection Times (ms)
min mean[+/-sd] median max

Connect: 18 44 15.1 45 70
Processing: 433 1795 907.0 1722 3262
Waiting: 432 1794 907.8 1721 3262
Total: 503 1839 892.9 1765 3292

0
500

1000
1500
2000
2500
3000
3500

0 100 200 300 400 500 600

re
sp

on
se

tim
e

(m
s)

request

ab -r -n 600 -c 600 http://localhost:8080/posts/v2

time

Figure 10.2: AB performance tests of the Ebean solution using Test Data A.1 and wrapping with
async.

Summary reactor-http pool-1-thread
Mean 19.775 3092.21875
Standard Error 8.843648851 14.73479962
Median 0 3137
Mode 0 3152
Standard Deviation 35.3745954 117.878397
Range 79.1 698
Minimum 0 2544
Maximum 79.1 3242
Sum 316.4 197902
Count 16 64

Table 10.2: Threads CPU time (ms) statistical analysis grouped by thread type — Ebean SQL
requests inside async block

78 Results

Notice the sum of time used by the reactor-http-* threads. Considering we responded to

600 requests, this means each request took approximately 316.4/600 = 0.527 ms from the event-

loop, which is understandable considering that only the query is done in the thread pool, i.e., the

event-loop threads are responsible for assigning those jobs to the thread pool and for collecting the

result when it is available. Only 4 (four) of the available 16 event-loop threads ran, as they were

more than enough to handle this load.

In total, our 64 threads in pool-1-thread ran for 197.902 seconds, which makes sense

considering the running time was approximately 3.3 seconds (3.348∗64 = 214 < 197.902).

Recapping, using Ebean we did 600 requests to the database, using two different scenarios:

• using the event-loop threads. This took us 5s.

• using a 64-thread thread-pool. This took us 3.3s.

Clearly using the thread-pool yielded better results, but possibly at too high a cost. Perhaps the

database resources were maxed out because of the way Ebean is querying it. In the next section,

we will focus on how queries can be tweaked so that relations, for instance, can be fetched in a

different, quicker way.

10.1 SQL 79

10.1.2 JPA

Preliminary tests with spring-data-jpa yielded terrible results in terms of fetch time, when

compared with other solutions, as shown in Figure 10.3.

Concurrency Level: 600
Time taken for tests: 40.308 seconds
Complete requests: 600
Failed requests: 0
Total transferred: 38083800 bytes
HTML transferred: 37911600 bytes
Requests per second: 14.89 [#/sec] (mean)
Time per request: 40308.062 [ms] (mean)
Time per request: 67.180 [ms] (mean, across all concurrent requests)
Transfer rate: 922.67 [Kbytes/sec] received

Connection Times (ms)
min mean[+/-sd] median max

Connect: 19 43 13.7 43 67
Processing: 847 19967 11306.0 19741 40225
Waiting: 846 19967 11306.2 19741 40224
Total: 910 20010 11293.9 19794 40248

0
5000

10000
15000
20000
25000
30000
35000
40000
45000

0 100 200 300 400 500 600

re
sp

on
se

tim
e

(m
s)

request

ab -r -n 600 -c 600 http://localhost:8080/db/posts/

time

Figure 10.3: AB performance tests of the JPA solution using Test Data A.1.

80 Results

We do not provide thread data because our collection tool seemed to be making execution

much slower. However, we can provide some information that is consistent regardless of execu-

tion time: boundedElastic threads are used for executing the requests, unlike when we used

Ebean. Moreover, CPU time was very low, which makes us believe there is some some mechanism

magically managing JPA queries under the hood, without any explicit user configuration.

First trials with @Cacheable rendered no result. This is probably because no caching mech-

anism was available.

In order to learn why Hibernate was taking so long to execute our requests, we tweaked the

application.yaml file and set the logging level to DEBUG.

The first thing noticed was the fact that for each findPost() request, 1000 queries were

being generated, individually fetching each Post’s tags. By comparison, Ebean was generating

100 queries.

@BatchSize was the first setting that yielded visible results. By setting @Batchsize to 10, for

example, only 100 extra queries were made, and by setting this to 500, only two were needed,

which remarkably cut load times.

Ultimately, it was setting @Fetch to FetchMode.SUBSELECT that reduced the execution of

the request to two SQL queries. This resulted in the loading times shown in Figure 10.4 (and

thread times shown in Table 10.3), as opposed to the previous results show in Figure 10.3.

Summary reactor-http boundedElastic
Mean 29 24.31
Standard Error 29 6.91236514
Median 0 0
Mode 0 0
Standard Deviation 116 87.43527144
Range 464 383
Minimum 0 0
Maximum 464 383
Sum 464 3889.6
Count 16 160

Table 10.3: Threads CPU time (ms) statistical analysis grouped by thread type — JPA SQL re-
quests with @Fetch Mode.

10.1 SQL 81

Concurrency Level: 600
Time taken for tests: 1.906 seconds
Complete requests: 600
Failed requests: 0
Total transferred: 38083800 bytes
HTML transferred: 37911600 bytes
Requests per second: 314.72 [#/sec] (mean)
Time per request: 1906.432 [ms] (mean)
Time per request: 3.177 [ms] (mean, across all concurrent requests)
Transfer rate: 19508.28 [Kbytes/sec] received

Connection Times (ms)
min mean[+/-sd] median max

Connect: 17 42 13.8 42 65
Processing: 26 919 535.5 879 1828
Waiting: 25 919 535.4 879 1828
Total: 89 961 522.6 931 1856

0
200
400
600
800

1000
1200
1400
1600
1800
2000

0 100 200 300 400 500 600

re
sp

on
se

tim
e

(m
s)

request

ab -r -n 600 -c 200 http://localhost:8080/posts/

time

Figure 10.4: AB performance tests of the JPA solution using Test Data A.1 and loading Tags with
special @Fetch.

82 Results

Summary

Table 10.4 shows a comparison between the three trials we ran, where we evidentiate the differ-

ence in terms of loading times and CPU times (when available). Notice the fact that Improved JPA

presents a very low CPU time, as previously explained. We are overall satisfied with our choice:

JPA did indeed yield the best results. Moreover, it is the most compatible solution with Spring

Webflux — even though it is not supposed to be used, a mitigation of its side-effects has been put

into place (which we have been unable to understand fully) and this solves the blocking problem.

We did not engage in tweak trials using Ebean considering that our core motivation for the current

trials was the huge performance difference between Ebean and untweaked JPA. As we have over-

come this difference — and even outperformed what was initially the best loading time — we see

little point in further exploring Ebean, especially considering that we have no intention of using it.

It is worth noting that Ebean is a great solution for those who are not interested in tweaking their

models, as Ebean does a decent job out of the box, and also for those who are using a blocking,

servlet API, and who are comfortable with its way of querying, or are willing to learn it.

Run Loading Time (s) CPU time (s) # requests
Ebean 3.348 197.902 600
Naive JPA 40.308 n/a 600
Improved JPA 1.906 3.889 600

Table 10.4: Comparison between SQL solutions. CPU time is the sum of the worker threads for
the requests.

10.2 Third-party HTTP Requests 83

10.2 Third-party HTTP Requests

Comparing loading times in HTTP third-party requests is paramount. We have the opportunity to

put a reactive solution and a blocking solution to the same test, and finally get values with which

we can compare both paradigms.

10.2.1 HttpURLConnection

This was the first method that we tried. We ran some tests using Apache Bench, shown in Figure

10.5 and VisualVM, shown in Table 10.5.

Concurrency Level: 1000
Time taken for tests: 7.246 seconds
Complete requests: 1000
Failed requests: 0
Total transferred: 25807000 bytes
HTML transferred: 25512000 bytes
Requests per second: 138.00 [#/sec] (mean)
Time per request: 7246.479 [ms] (mean)
Time per request: 7.246 [ms] (mean, across all concurrent requests)
Transfer rate: 3477.85 [Kbytes/sec] received

Connection Times (ms)
min mean[+/-sd] median max

Connect: 30 71 22.5 72 108
Processing: 1008 3690 1826.5 4024 7110
Waiting: 1005 3687 1828.6 4023 7109
Total: 1107 3760 1804.3 4092 7142

0
1000
2000
3000
4000
5000
6000
7000
8000

0 100 200 300 400 500 600 700 800 900 1000

re
sp

on
se

tim
e

(m
s)

request

ab -r -n 1000 -c 1000 http://localhost:8080/3prest/0

time

Figure 10.5: AB performance tests of the HttpURLConnection solution.

There is a lot of data to analyse. Let us start with the most obvious things:

• There are 16 reactor-http-nio-* threads, because our test environment has 16 cores.

84 Results

reactor-http-nio-* boundedElastic-*
Mean 287.5625 6043.275

Standard Error 53.77762614 26.77390478
Median 375 5828
Mode 375 5793

Standard Deviation 215.1105045 338.6660839
Range 613 1011

Minimum 0 5793
Maximum 613 6804

Sum 4601 966924
Count 16 160

Table 10.5: Threads CPU time (ms) statistical analysis grouped by thread type — HttpURLCon-
nection

• There are 160 boundedElastic-* threads. It is not clear why this is. The documentation

does not specify the maximum number of these threads.

• In the request chart, we can see steps, which correspond to each "wave" of requests being

handled by the thread pool. This happens because all requests take approximately the same

time.

• The sum of the execution time for boundedElastic-* threads is smaller than 1000000

ms (1000 requests * 1000 ms delay time for each response from the API). This should not

be, and we think that either VisualVM is not showing times correctly, or the requests are not

being delayed for 1000 ms at the NodeJS server, but less. Nevertheless, the error is under

5% (3.31%), which is admissible for us.

• Standard deviation for reactor-http-nio-* threads is high. Analysis of the original

data showed that five of threads did not run, which means the offloading to boundedElastic-*
threads or adding jobs to this queue is fast, and that is good.

Table 10.5 shows boundedElastic Threads. Their utility is documented in Chapter 2.4.

10.2 Third-party HTTP Requests 85

10.2.2 HttpURLConnection in a Kotlin async

As done in SQL, it is possible to use any standard library and make it run in a thread pool. Our first

attempt was running the call embedded in an async block, running on Dispatchers.Default.

However, the results obtained were poor because the number of threads was very limited — 16,

in our test environment. When compared with the 160 boundedElastic threads from the previous

trial (10 times more), it made sense that the execution time would also be approximately 10 times

higher.

So, we created a custom thread pool with 160 threads and ran the same tests for this scenario.

The code is shown in Listing 10.3. Apache Bench results are shown in Figure 10.6 and VisualVM

results are shown in Table 10.6.

1 val dispatcher = Executors.newFixedThreadPool(160).asCoroutineDispatcher()

2

3 @GetMapping("/1")

4 suspend fun rest1(): String {

5 return GlobalScope.async(dispatcher) {

6 val url = URL(url)

7 try {

8 val con = url.openConnection() as HttpURLConnection

9 con.requestMethod = "GET"

10

11 val input = BufferedReader(InputStreamReader(con.inputStream))

12 var inputLine: String?

13 val content = StringBuffer()

14 while (input.readLine().also { inputLine = it } != null) {

15 content.append(inputLine)

16 }

17 input.close()

18 con.disconnect()

19 return@async content.toString()

20 }catch (e:Exception){

21 return@async e.message ?: "error not described"

22 }

23 }.await()

24 }

Listing 10.3: Example of simple HTTP GET request in an async block

86 Results

Concurrency Level: 1000
Time taken for tests: 7.633 seconds
Complete requests: 1000
Failed requests: 0
Total transferred: 25807000 bytes
HTML transferred: 25512000 bytes
Requests per second: 131.00 [#/sec] (mean)
Time per request: 7633.432 [ms] (mean)
Time per request: 7.633 [ms] (mean, across all concurrent requests)
Transfer rate: 3301.55 [Kbytes/sec] received

Connection Times (ms)
min mean[+/-sd] median max

Connect: 55 92 20.2 93 122
Processing: 1334 4064 1824.4 4394 7480
Waiting: 1325 4061 1825.3 4392 7480
Total: 1449 4156 1810.3 4483 7563

0
1000
2000
3000
4000
5000
6000
7000
8000

0 100 200 300 400 500 600 700 800 900 1000

re
sp

on
se

tim
e

(m
s)

request

ab -r -n 1000 -c 1000 http://localhost:8080/3prest/1

time

Figure 10.6: AB performance tests of the HttpURLConnection solution inside an async block.

Summary reactor-http-nio pool-1-thread boundedElastic
Mean 66.36875 6316.5 5.983050847
Standard Error 35.89252675 31.27487689 1.817781339
Median 0 6089 0
Mode 0 6089 0
Standard Deviation 143.570107 395.5993781 19.74615966
Range 584 994 70.6
Minimum 0 6089 0
Maximum 584 7083 70.6
Sum 1061.9 1010640 706
Count 16 160 118

Table 10.6: Threads CPU time (ms) statistical analysis grouped by thread type — HttpURLCon-
nection inside an async block.

10.2 Third-party HTTP Requests 87

As before, there are several possible observations to be done:

• There are 16 reactor-http-nio-* threads, because our test environment has 16 cores.

• There are 160 pool-1-thread-* threads, because that is the number of threads created

in our thread-pool.

• In the request chart, we can see the same steps as before.

• The sum of the execution time for pool-1-thread-* threads is greater than 1.000.000

ms (1000 requests * 1000 ms delay time for each response from the API), as expected.

• Standard deviation for reactor-http-nio-* threads is still high. Analysis of the origi-

nal data showed 9 of these threads did not run, which means the offloading to boundedElastic-*
threads or adding jobs to this queue is fast, and that is good.

• Despite there being a custom thread-pool, Spring Webflux still creates the boundedElastic-*
threads. This is not optimal as an increased number of threads means a bigger overhead for

launching and scheduling them. Whether this overhead is or not significant is debatable.

88 Results

10.2.3 WebClient

As explained in section 7.4, we proceded to try WebClient. Let us analyse the different results

obtained this way. Apache Bench results are shown in Figure 10.7 and VisualVM results are

shown in Table 10.7.

Concurrency Level: 1000
Time taken for tests: 2.554 seconds
Complete requests: 1000
Failed requests: 0
Total transferred: 18634000 bytes
HTML transferred: 18323000 bytes
Requests per second: 391.57 [#/sec] (mean)
Time per request: 2553.821 [ms] (mean)
Time per request: 2.554 [ms] (mean, across all concurrent requests)
Transfer rate: 7125.51 [Kbytes/sec] received

Connection Times (ms)
min mean[+/-sd] median max

Connect: 63 107 22.9 112 144
Processing: 1059 1809 495.1 2014 2393
Waiting: 1057 1797 500.6 2013 2393
Total: 1175 1916 484.8 2091 2527

0

500

1000

1500

2000

2500

3000

0 100 200 300 400 500 600 700 800 900 1000

re
sp

on
se

tim
e

(m
s)

request

ab -r -n 1000 -c 1000 http://localhost:8080/3prest/1

time

Figure 10.7: AB performance tests of the WebClient.

These results were surprising, let’s see what changed:

• There are 16 reactor-http-nio-* threads, because our test environment has 16 cores,

as before. They sum 3.85s of CPU Time.

• There are 94 boundedElastic threads, which sum 0.6s of CPU Time.

10.2 Third-party HTTP Requests 89

Summary reactor-http-nio boundedElastic
Mean 240.54375 6.404255319
Standard Error 25.3746231 1.587479549
Median 250 0
Mode 167 0
Standard Deviation 101.4984924 15.39118526
Range 400.3 43
Minimum 71.7 0
Maximum 472 43
Sum 3848.7 602
Count 16 94

Table 10.7: Threads CPU time (ms) statistical analysis grouped by thread type — WebClient http
requests

• Unlike in previous runs, despite our application having to wait 1000 ∗ 1s = 1000s for all

requests, the sum of the running threads CPU time is approximately 3.86+0.6 = 3.93s, i.e.,

250 times less than before.

• Most of the boundedElastic-* threads did not execute anything, and were needlessly

created.

• All requests were resolved in under 3 seconds, as opposed to approximately 8 seconds in

previous trials.

• There is a step at 500 because of the way that WebClient is configured in Spring Webflux,

which allows for a maximum of 500 connections per host, queuing additional requests.3

• Resolution of the first requests is not very quick, especially when compared with previous

trials, which suggests that while the reactive approach is better for higher volumes, requests

that should be as fast as possible and that are not done in volume would probably benefit

from using blocking code.

3https://stackoverflow.com/a/57688152

https://stackoverflow.com/a/57688152

90 Results

Summary

Table 10.8 shows a comparison between all three studied solutions, comparing the loading time

and the CPU time. Notice how Webclient presents radically different results as the waiting for

each response (each with a delay of at least 1 second) is not done by blocking the calling thread,

whereas in the blocking solutions (which use HttpURLConnection), the delay between the request

being emitted and the response arriving is all spent on one CPU thread per request. NIO libraries

use one thread to do all the waiting for several operations (HTTP requests, file access, etc.), but

we were unable to find such thread. Perhaps this work is jumping threads, as one would expect in

a reactive application. This is in line with the results we obtained, where several pipelines can run

on the same thread, and several threads can share the same pipeline as it can jump threads.

Nevertheless, we should note that for the blocking solutions, the size of the selected thread-

pool is paramount in affecting the results. For instance, a thread-pool consisting of 1000 threads

for HttpURLConnection w/ Async (section 10.2.2) can take a mere 1.69 seconds to complete 1000

requests (1 request per thread), effectively becoming faster than the WebClient alternative. Nat-

urally, the creation of many threads will become a slow operation, depending on the hardware

where the program is running. We did not study what that number would be, as that was not the

focus of our work, and also because it highly depends on the hardware.

Run Loading Time (s) CPU time (s) # requests
HttpURLConnection 7.246 966.924 1000
HttpURLConnection w/ Async 7.633 1010.640 1000
WebClient 2.554 4.450 1000

Table 10.8: Comparison between SQL solutions. CPU time is the sum of the worker threads time
for the requests, and does not mean that the CPU was doing intensive work.

Chapter 11

Conclusions & Future Work

We found it hard to dissociate these two subjects: future work is a direct consequence of our

conclusions. However, we understand the need to separate them and have thus created two main

sections, one for each.

11.1 Conclusions

Because this dissertation focuses on several subjects, it is hard to draw an overall conclusion, es-

pecially with such dissonant results. An excellent place to start may be analysing the Expected

Results (section 4.3), our most naive expectations regarding this dissertation’s progress and out-

come.

Our Expected Results are simple: the cancellation of requests to the server, with subsequent

cancellation of requests to the actions that may have launched. Optionally, but ultimately, we

would like to implement these things in a real application. We had moderate success.

Our first effort, regarding cancellation of requests to the web server, was successful. It could

have been better, however. We are not fully satisfied as only one solution was found — a solution

with one string attached which is quite relevant: we should use reactive programming.

Trials with SQL were mixed. The reactive solution, using R2DBC, did support the cancella-

tion of database requests, despite it not being clear how the safety (as introduced in section 2.6) of

the requests was handled. However, as we did not stick with the reactive solution and preferred to

keep JPA — with no support for cancellation and no support for context handling —, we consider

our endeavours were unsuccessful.

Trials regarding requests to third-party APIs, i.e., from the server (as an HTTP client) to

another server, were successful. The selected solution was well studied and yielded solid results.

We only found one solution, but considering it is a consequence of a previous choice (Spring

Webflux), this makes sense. Its reactive nature makes it easily cancelable, which is in line with

our desire.

91

92 Conclusions & Future Work

Trials regarding Websocket were somewhat successful. Due to time constraints, lack of

documentation and lack of examples, we could not fully implement the functionality requested by

konkconsulting. However, we could do part of it, which is positive.

All these results culminate in the ultimate objective of this dissertation: the migration of the

application provided by konkconsulting. Considering the varying degrees of success, we could

think that success on this matter was attainable: especially considering that the WebSocket func-

tionality was dropped (which means our lack of complete success would not be a problem). This

only left SQL as a problem. Unfortunately, our difficulties with SQL are a showstopper. It was

not until nearing the end of this dissertation that we found a late 2018 session of Oracle Code by

Ben Hale1 where he says this:

There are still some barriers to using reactive everywhere. (...) What we see is that

for reactive programming, there are certain places where it is a really really obvious

programming model to adopt: a place like anytime you’re to do coordination between

multiple micro-services. This is a really obvious thing because today we have huge

problems: you’re running Tomcat, you have 200 threads, (...), you’ve just sort of oc-

cupied those threads making some sort of outbound calls to other microservices and

now all of you sudden you’ve got a service that’s got (...) 1% or 5% CPU usage and

yet no more connections can be served. So reactive programming is a real obvious

win here because now all of a sudden if we give up those threads while we’re waiting

for microservices to respond, we can do some more things, right? We can handle

more, tens of thousands of simultaneous connections potentially. But if we take a look

at some of those barriers, one of the first big ones is data access, so, right now, if you

want to access a data store in some sort of asynchronous way we have MongoDB,

Apache Cassandra, Redis, sort of the noSQL databases. We don’t yet have (...) rela-

tional databases although there is this R2DBC project that is also one of my projects

that is aiming to rectify that (...).

If, for one, we would have liked to have found this earlier, it is also worth noting that the fact

that we reached the same conclusions as Mr Hale, who has much experience in the field, hints

toward the correctness of our discoveries and the worth of our efforts.

Further analysis of what was and what was not successful indicates what the strengths of

Spring Webflux are. Mr Hale said that it is adequate for a microservices reality where no relational

database access is required, or is available as one of many microservices. It is possible to use

Spring Webflux without going fully reactive. However, the usage of regular (blocking) libraries

must always have two aspects under consideration: how one must be careful not to block the

event-loop and how the impossibility of passing context to those libraries will affect their usability.

However, keeping these constraints in mind around the clock is so cumbersome that it becomes

unfeasible to use anything that is not reactive. We believe the reactive model is highly exclusive.

1https://www.youtube.com/watch?v=WVnAbv65uCU

https://www.youtube.com/watch?v=WVnAbv65uCU

11.2 Future Work 93

Ultimately, one may say that the problem with this dissertation is that it was proposed too

early. Should we have waited a while longer, we might had gotten utilities such as Java Fibers,

or a more complete R2DBC. Perhaps an easier-to-learn version of reactive programming as a

paradigm, or even a complex example that could be used to extract methodologies and kickstart

the development/migration that we expected. For this reason, it makes sense to expand on these

thoughts in the next section, which covers the Future Work.

11.2 Future Work

Even if we had fully achieved the proposed outcome, there would still be something more to add.

Considering we have not, there are many things to do. We also collected many insights that we

believe are important for those who may have the audacity of retrying what we attempted. We

shall split these into two sections.

11.2.1 Community Efforts

There are obvious things that should be finished. For example, the Java Loom Project, with its Java

Fibers, would have allegedly changed this dissertation if completed. Experts say Java Fibers will

make blocking code non-blocking, which would allow for "dirtier" code to produce good results.

This should resolve the problem of thread pools.

Alternatively to Java Loom, having ABDA in working condition would greatly help access

relational databases. This, however, is not likely to happen: a company — Oracle — was behind

it and shut it down. Unless the community or some other company resumes the effort to develop

it, it will not become a reality.

Lastly, on the subject of SQL, there is R2DBC. Suppose it does evolve to a point where it

supports the features that have made JPA a significant cornerstone of relational access in Java.

In that case, it would become more than the de facto solution for relational database access in

reactive: it would become the best solution for it. Not because it is the only solution — be it or

not — but because it follows a specification, it is complete and presents an advantage. However,

seeing as its development is lead by a few companies, we can expect it to grow as they see fit.

Regarding the cancellation subject, we believe it would be interesting — and it could have

been one of our approaches in the early stages of this dissertation — to investigate the possibility

of cancellation while using Spring MVC. It should be possible, using the servlet API, to pass

cancellation information to the request handler. We believe that would be a major gamechanger

for Spring MVC.

Another thing that should be further studied, both academically and in the enterprise context,

is cancellation in SQL queries. We have not found any studies trying to classify the different types

of queries as cancellable, not cancellable, or others. We realise that transactions are helpful in the

context of rolling back changes, but the overhead of embedding every query in a transaction in

order to support cancellation is a complication that should be avoidable.

94 Conclusions & Future Work

Regarding Kotlin, there is something that could be improved as well. Right now, it is hard to

use it outside the JetBrains Intellij IDEA IDE. The platform that developers use to code should not

affect the technologies available to them, and so we believe there should be an easing of the setup

for users using other tools, such as Visual Studio Code, Eclipse, etc. Moreover, it would be good

to see more documentation about how Spring interacts with suspending functions. Considering

the odd behaviour observed when one of these functions returns a Publisher, and how Spring is all

about reactive programming, it becomes confusing that both things are supported, but not together,

effectively inviting developers to use non-reactive, suspending algorithms.

11.2.2 Redoing this Exercise

To all those who may reattempt what we did, we believe it is possible to attain different results

by changing the way the research is done. First and foremost, a good background of Reactive

Programming is advised.

This is an advanced feature that is more targeted at library developers. It requires

good understanding of the lifecycle of a Subscription and is intended for libraries

that are responsible for the subscriptions.2

This is the way the documentation of Project Reactor labels some functionalities, such as

Context. It is also the level of proficiency that one should have if to delve into this subject. The

Context feature is particularly paramount in these efforts as it is what makes reactive a viable

alternative to the current models.

Secondly, assuming the focus on Reactive – as opposed to the previously suggested focus

on implementing cancellation on Spring MVC —, we think it is relevant to watch Webinars, be

present at Spring Conferences, try to mingle with the community, exchange viewpoints, experi-

ences and ambitions. A conversation with the right person can unlock a lot in an environment

where these social gatherings trump documentation.

Despite the norm in the Spring world being the migration of an application from Spring MVC

to Spring Webflux, we consider that migrating a complex application is a cruel mission that sane

developers should avoid. Spring MVC applications can become overly intertwined with the under-

lying APIs, and migration becomes unfeasible. An approach considering a new implementation

may fare better. Ultimately, one should consider changing more than the code: replacing the

database technology, the Websockets communication middleware and other parts should be stud-

ied. When going reactive, there is no place for maintenance of old dogmas regarding the tech

stack.

2https://projectreactor.io/docs/core/release/reference/#context

https://projectreactor.io/docs/core/release/reference/#context

11.3 Note from the author 95

11.3 Note from the author

There must be something wrong when one’s developing model is copying from examples on

GitHub or StackOverflow. On one side, copying means that work is being redone, many times

needlessly. On the other hand, it is the failure of the creative process as it exists: humans think of

something and create it, or implement it. I understand copying as a learning mechanism — I have

done it countless times — but it has to be limited to the learning process. Either I am still learning

— a possibility that I do not discard — or there is something missing here. What is missing, in

my opinion, is good documentation, good tutorials, real examples. Repeating the same PoCs ad

nauseum in Webinars does not help the community get any more instructed. Repositories filled

with test code that does not apply to a production environment are not a great help. I realise that

the Spring ecosystem has the problem of being too Enterprise-oriented, making it hard to find real

examples in public repositories. However, Spring MVC is also predominantly used in Enterprise

environments, yet there are many examples, excellent documentation, and a strong community. I

feel that the Reactive paradigm, which first appeared at the hands of Netflix, Pivotal and Light-

bend3, would have fared better if its development was at the hands of the academy, or agenda-free

open-source communities. More people might be interested in further developing it, documenting

it, finding new ways to use it, ultimately making it more engaging in an agnostic way. Instead, we

have a few companies leading the development in the direction that they wish. Spring Webflux has

significant contributions from Pivotal (R2DBC4), VMWare (Training & Certification5), JetBrains

(Kotlin push6) and Oracle (Webinars7). A different — but conceivable — model would be hav-

ing a company developing it, like Microsoft develops C#. Developing it as a product, and not a

mere helper for some internal business logic. However, this might not be as cheap for developers

wishing to use it.

3https://blog.redelastic.com/a-5ee2a9cd7e29
4https://spring.io/blog/2018/12/07/reactive-programming-and-relational-databases
5https://spring.io/training
6https://www.youtube.com/c/intellijidea/videos
7https://www.youtube.com/watch?v=WVnAbv65uCU

https://blog.redelastic.com/a-5ee2a9cd7e29
https://spring.io/blog/2018/12/07/reactive-programming-and-relational-databases
https://spring.io/training
https://www.youtube.com/c/intellijidea/videos
https://www.youtube.com/watch?v=WVnAbv65uCU

96 Conclusions & Future Work

Appendix A

TestData

A.1 Posts

* *

Post

id : long
title : String

Tag

id : long
name : String

PostTag

post_id : long
tag_id : long

Where there are:

• 1000 Posts

• 1000 Tags

• 1000 Post <-> Tag relations

A.1.1 Ebean Model

:

1 @Entity

2 @Table

3 class Post (var title:String) : Model() {

4 @Id

5 @GeneratedValue

6 var id: Long? = 0

7

8 @JsonIgnore

9 @JsonManagedReference

10 @ManyToMany

97

98 TestData

11 @JoinTable(

12 name = "post_tag",

13 joinColumns = [JoinColumn(name = "post_id")],

14 inverseJoinColumns = [JoinColumn(name = "tag_id")]

15)

16 var tags: MutableSet<Tag>? = null

17 }

18

19 @Entity

20 @Table

21

22 class Tag(name:String) : Model() {

23 @Id

24 @GeneratedValue

25 var id: Long? = 0

26 var name: String? = null

27

28 @ManyToMany(mappedBy = "tags")

29 @JsonBackReference

30 var posts: MutableSet<Post> = HashSet()

31

32 }

33

34 @Entity

35 @Table

36 class PostTag () : Model() {

37 var post_id: Long? = 0

38 var tag_id: Long? = 0

39

40 @JsonIgnore

41 @JsonManagedReference

42 @OneToOne(cascade = [CascadeType.ALL])

43 @JoinTable(name = "post_tag",

44 inversejoinColumns = [JoinColumn(name = "id", referencedColumnName = "id")

],

45 JoinColumns = [JoinColumn(name = "post_id", referencedColumnName = "post_id

")])

46 var post: Post? = null

47

48 @Aggregation("count(*)") var totalCount: Long? = null

49 }

Listing A.1: Model defined in Kotlin for Ebean.

A.1.2 Queries:

A.1.2.1 Famous posts

A.1 Posts 99

1 SELECT id, title FROM(

2 SELECT post_id, COUNT(*) AS c FROM post_tag

3 LEFT JOIN post ON post.id = post_tag.post_id

4 GROUP BY post_id

5 HAVING count(*) > 5

6) AS a LEFT JOIN post ON post.id=a.post_id

Listing A.2: Select the posts with at least five tags.

100 TestData

Appendix B

Code examples

1 import org.jetbrains.kotlin.gradle.tasks.KotlinCompile

2

3 plugins {

4 id("org.springframework.boot") version "2.4.4-SNAPSHOT"

5 id("io.spring.dependency-management") version "1.0.11.RELEASE"

6 kotlin("jvm") version "1.4.30"

7 kotlin("plugin.spring") version "1.4.30"

8

9 //custom

10 id("org.jetbrains.kotlin.kapt") version "1.4.30"

11 }

12

13 group = "com.example"

14 version = "0.0.1-SNAPSHOT"

15 java.sourceCompatibility = JavaVersion.VERSION_15

16

17 repositories {

18 mavenCentral()

19 maven { url = uri("https://repo.spring.io/milestone") }

20 maven { url = uri("https://repo.spring.io/snapshot") }

21 }

22

23 dependencies {

24 implementation("org.springframework.boot:spring-boot-starter-webflux")

25 implementation("com.fasterxml.jackson.module:jackson-module-kotlin")

26 implementation("io.projectreactor.kotlin:reactor-kotlin-extensions")

27 implementation("org.jetbrains.kotlin:kotlin-reflect")

28 implementation("org.jetbrains.kotlin:kotlin-stdlib-jdk8")

29 implementation("org.jetbrains.kotlinx:kotlinx-coroutines-reactor")

30 implementation("org.jetbrains.kotlinx:kotlinx-coroutines-core")

31

32 runtimeOnly("org.postgresql:postgresql")

33

101

102 Code examples

34 testImplementation("org.springframework.boot:spring-boot-starter-test")

35 testImplementation("io.projectreactor:reactor-test")

36

37 // custom

38 implementation("io.ebean:ebean:12.6.2")

39 kapt("io.ebean:kotlin-querybean-generator:12.6.2")

40 }

41

42 tasks.withType<KotlinCompile> {

43 kotlinOptions {

44 freeCompilerArgs = listOf("-Xjsr305=strict")

45 jvmTarget = "14"

46 }

47 }

48

49 tasks.withType<Test> {

50 useJUnitPlatform()

51 }

Listing B.1: Gradle basic configuration for using Ebean with Kapt and Kotlin QueryBean

Generator.

1 http.addFilterAt(WebFilter { exchange, chain ->

2 val roles = rolesRepository.findUserRoles(userId)

3

4 return@WebFilter chain.filter(exchange).subscriberContext { it ->

5 var osc: SecurityContext? = null // outer security context

6

7 // create new holder for Authorities

8 val updatedAuthorities: MutableCollection<GrantedAuthority> = mutableListOf

()

9

10 roles.forEach{

11 // Add previously fetched database Authorities with the ‘ROLE_‘ prefix

12 updatedAuthorities.add(SimpleGrantedAuthority("ROLE_$it"))

13 }

14

15 it.get<Mono<SecurityContext>>(SecurityContext::class.java).subscribe { sc

->

16 // update the Authorities with previously loaded ones.

17 sc.authentication.authorities.forEach {

18 if(!updatedAuthorities.contains(it))

19 updatedAuthorities.add(it)

20 }

21

22 // also add keycloak claims to the GrantedAuthorities Collection.

23 ((sc.authentication.principal as OAuth2User).attributes["authorities"]

as JSONArray).forEach {

Code examples 103

24 updatedAuthorities.add(SimpleGrantedAuthority("ROLE_$it"))

25 }

26

27 // Create new Authentication object and store it in the sc.

28 val newAuthentication = OAuth2AuthenticationToken(

29 sc.authentication.principal as OAuth2User,

30 updatedAuthorities,

31 (sc.authentication as OAuth2AuthenticationToken).

authorizedClientRegistrationId

32)

33 sc.authentication = newAuthentication

34 osc = sc

35 }

36 ReactiveSecurityContextHolder.withSecurityContext(Mono.just(osc!!))

37 }

38 }, SecurityWebFiltersOrder.LAST)

Listing B.2: Adding database roles to the SecurityContext. To be added to Spring Webflux’s

springSecurityFilterChain.

1 @SpringBootApplication

2 class RsocketServerApplication {

3

4 @Bean

5 fun handlerMapping(): HandlerMapping? {

6 val map: MutableMap<String, WebSocketHandler?> = HashMap()

7 map["/"] = MainHandler()

8 val mapping = SimpleUrlHandlerMapping()

9 mapping.urlMap = map

10 mapping.order = Ordered.HIGHEST_PRECEDENCE

11 return mapping

12 }

13 }

Listing B.3: Setting up a Websocket handler using a HandlerMapping Bean.

1 static void Main(string[] args)

2 {

3 using (

4 CancellationTokenSource cancellationSource = new CancellationTokenSource()

5)

6 {

7 // Task-based Approach

8 Task t1 = Task.Factory.StartNew(Do, cancellationSource.Token);

9 Task t2 = Task.Factory.StartNew(Do, cancellationSource.Token);

10 Task t3 = Task.Factory.StartNew(() =>

104 Code examples

11 {

12 Console.WriteLine("Press any key to stop.");

13 Console.ReadKey();

14 cancellationSource.Cancel();

15 });

16

17 Task.WaitAll(t1, t2, t3);

18 }

19 }

Listing B.4: Main function for using CancellationToken

References

[1] Bruce Belson, Jason Holdsworth, Wei Xiang, and Bronson Philippa. A survey of asyn-
chronous programming using coroutines in the internet of things and embedded systems.
ACM Trans. Embed. Comput. Syst., 18(3), June 2019. doi:10.1145/3319618. (Cited on
page 14)

[2] R. Chakraborty. Reactive Programming in Kotlin: Design and build non-blocking, asyn-
chronous Kotlin applications with RXKotlin, Reactor-Kotlin, Android, and Spring. Packt
Publishing, 2017. URL: https://books.google.pt/books?id=ZMxPDwAAQBAJ.
(Cited on page 13)

[3] Roman Elizarov, Nov 2018. (Accessed on 03/04/2021). URL: https://elizarov.
medium.com/blocking-threads-suspending-coroutines-d33e11bf4761.
(Cited on page 7)

[4] Clement Escoffier. 5 things to know about reactive programming, Jun 2017. URL:
https://developers.redhat.com/blog/2017/06/30/5-things-to-know-
about-reactive-programming/. (Cited on pages 13 and 14)

[5] I. Fette, Google Inc., A. Melnikov, and Isode Ltd. The websocket protocol, December 2011.
URL: https://tools.ietf.org/html/rfc6455. (Cited on page 57)

[6] R. Fielding, UC Irvine, J. Gettys, J. Mogul, DEC, H. Frystyk, T. Berners-Lee, and MIT/LCS.
Hypertext transfer protocol version 1.1 (http/1.1), January 1997. URL: https://tools.
ietf.org/html/rfc2068. (Cited on page 10)

[7] Stylianos Gakis and Niclas Everlönn. Java and Kotlin, a performance comparison. PhD
thesis, Kristianstad University, Faculty of Natural Science., 2020. URL: http://urn.kb.
se/resolve?urn=urn:nbn:se:hkr:diva-20721. (Cited on pages 3, 4, and 6)

[8] D. Gotseva, Y. Tomov, and P. Danov. Comparative study java vs kotlin. In 2019 27th
National Conference with International Participation (TELECOM), pages 86–89, 2019.
doi:10.1109/TELECOM48729.2019.8994896. (Cited on pages 3 and 4)

[9] K. Guntupally, R. Devarakonda, and K. Kehoe. Spring boot based rest api to improve data
quality report generation for big scientific data: Arm data center example. In 2018 IEEE
International Conference on Big Data (Big Data), pages 5328–5329, 2018. doi:10.1109/
BigData.2018.8621924. (Cited on page 17)

[10] Kennedy Kambona, Elisa Gonzalez Boix, and Wolfgang De Meuter. An evaluation of re-
active programming and promises for structuring collaborative web applications. In Pro-
ceedings of the 7th Workshop on Dynamic Languages and Applications, DYLA ’13, New
York, NY, USA, 2013. Association for Computing Machinery. doi:10.1145/2489798.
2489802. (Cited on pages 13 and 14)

105

https://doi.org/10.1145/3319618
https://books.google.pt/books?id=ZMxPDwAAQBAJ
https://elizarov.medium.com/blocking-threads-suspending-coroutines-d33e11bf4761
https://elizarov.medium.com/blocking-threads-suspending-coroutines-d33e11bf4761
https://developers.redhat.com/blog/2017/06/30/5-things-to-know-about-reactive-programming/
https://developers.redhat.com/blog/2017/06/30/5-things-to-know-about-reactive-programming/
https://tools.ietf.org/html/rfc6455
https://tools.ietf.org/html/rfc2068
https://tools.ietf.org/html/rfc2068
http://urn.kb.se/resolve?urn=urn:nbn:se:hkr:diva-20721
http://urn.kb.se/resolve?urn=urn:nbn:se:hkr:diva-20721
https://doi.org/10.1109/TELECOM48729.2019.8994896
https://doi.org/10.1109/BigData.2018.8621924
https://doi.org/10.1109/BigData.2018.8621924
https://doi.org/10.1145/2489798.2489802
https://doi.org/10.1145/2489798.2489802

106 REFERENCES

[11] Petro Karabyn. Performance and scalability analysis of Java IO and NIO based
server models, their implementation and comparison. PhD thesis, Ukranian Catholic
University., 2019. URL: https://s3-eu-central-1.amazonaws.com/ucu.edu.
ua/wp-content/uploads/sites/8/2019/12/Petro-Karabyn.pdf. (Cited on
page 8)

[12] A. Kolesnichenko, S. Nanz, and B. Meyer. How to cancel a task, volume 8063 LNCS of Lec-
ture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence
and Lecture Notes in Bioinformatics), pages 61–72. LNCS, 2013. URL: www.scopus.com.
(Cited on pages 14, 15, 17, and 20)

[13] Vivek Kumar. Featherlight speculative task parallelism. In Ramin Yahyapour, editor, Euro-
Par 2019: Parallel Processing, pages 391–404, Cham, 2019. Springer International Publish-
ing. (Cited on page 15)

[14] K. Lee, R. Pedarsani, and K. Ramchandran. On scheduling redundant requests with can-
cellation overheads. IEEE/ACM Transactions on Networking, 25(2):1279–1290, 2017.
doi:10.1109/TNET.2016.2622248. (Cited on page 15)

[15] Paul Murley, Zane Ma, Joshua Mason, Michael Bailey, and Amin Kharraz. Websocket adop-
tion and the landscape of the real-time web, Apr 2021. URL: https://kharraz.org/
publications/www21.pdf. (Cited on page 57)

[16] A. Neumann, N. Laranjeiro, and J. Bernardino. An analysis of public rest web service apis.
IEEE Transactions on Services Computing, 2018. doi:10.1109/TSC.2018.2847344.
(Cited on page 7)

[17] Inc. Oracle America. Jsr-338 java persistence specification ("specification"), Jul
2017. URL: https://download.oracle.com/otn-pub/jcp/persistence-2_
2-mrel-spec/JavaPersistence.pdf. (Cited on page 43)

[18] Mark Paluch. Reactive programming and relational databases. https://spring.io/
blog/2018/12/07/reactive-programming-and-relational-databases,
Dec 2018. (Accessed on 03/04/2021). (Cited on page 39)

[19] Jay Phelps. Backpressure explained — the resisted flow of data through software
| by jay phelps | medium. https://medium.com/@jayphelps/backpressure-
explained-the-flow-of-data-through-software-2350b3e77ce7, Feb 2019.
(Accessed on 02/26/2021). (Cited on page 36)

[20] Mińkowski Piotr. A deep dive into spring webflux threading model, March
2020. URL: https://piotrminkowski.com/2020/03/30/a-deep-dive-into-
spring-webflux-threading-model/. (Cited on page 9)

[21] Nilasini Thirunavukkarasu. Java NIO(New I/O) Vs. IO, March 2018. URL:
https://medium.com/@nilasini/java-nio-non-blocking-io-vs-io-
1731caa910a2. (Cited on page 8)

[22] Information Sciences Institute University of Southern California. Transmission control pro-
tocol — darpa internet program — protocol specification — STD 7, Sep 1981. URL:
https://tools.ietf.org/html/std7. (Cited on pages 26 and 27)

https://s3-eu-central-1.amazonaws.com/ucu.edu.ua/wp-content/uploads/sites/8/2019/12/Petro-Karabyn.pdf
https://s3-eu-central-1.amazonaws.com/ucu.edu.ua/wp-content/uploads/sites/8/2019/12/Petro-Karabyn.pdf
www.scopus.com
https://doi.org/10.1109/TNET.2016.2622248
https://kharraz.org/publications/www21.pdf
https://kharraz.org/publications/www21.pdf
https://doi.org/10.1109/TSC.2018.2847344
https://download.oracle.com/otn-pub/jcp/persistence-2_2-mrel-spec/JavaPersistence.pdf
https://download.oracle.com/otn-pub/jcp/persistence-2_2-mrel-spec/JavaPersistence.pdf
https://spring.io/blog/2018/12/07/reactive-programming-and-relational-databases
https://spring.io/blog/2018/12/07/reactive-programming-and-relational-databases
https://medium.com/@jayphelps/backpressure-explained-the-flow-of-data-through-software-2350b3e77ce7
https://medium.com/@jayphelps/backpressure-explained-the-flow-of-data-through-software-2350b3e77ce7
https://piotrminkowski.com/2020/03/30/a-deep-dive-into-spring-webflux-threading-model/
https://piotrminkowski.com/2020/03/30/a-deep-dive-into-spring-webflux-threading-model/
https://medium.com/@nilasini/java-nio-non-blocking-io-vs-io-1731caa910a2
https://medium.com/@nilasini/java-nio-non-blocking-io-vs-io-1731caa910a2
https://tools.ietf.org/html/std7

REFERENCES 107

[23] Adam Warski. Will project loom obliterate java futures?, Jan 2020. URL:
https://blog.softwaremill.com/will-project-loom-obliterate-java-
futures-fb1a28508232. (Cited on page 6)

[24] Ting Yuan, Yiting Tang, Xi Wu, Yue Zhang, Huibiao Zhu, Jian Guo, and Weijun Qin.
Formalization and verification of rest on http using csp. Electronic Notes in Theoreti-
cal Computer Science, 309:75–93, 2014. Proceedings of the Sixth International Work-
shop on Harnessing Theories for Tool Support for Software (TTSS). URL: https://
www.sciencedirect.com/science/article/pii/S1571066114000917, doi:
https://doi.org/10.1016/j.entcs.2014.12.007. (Cited on page 9)

https://blog.softwaremill.com/will-project-loom-obliterate-java-futures-fb1a28508232
https://blog.softwaremill.com/will-project-loom-obliterate-java-futures-fb1a28508232
https://www.sciencedirect.com/science/article/pii/S1571066114000917
https://www.sciencedirect.com/science/article/pii/S1571066114000917
https://doi.org/https://doi.org/10.1016/j.entcs.2014.12.007
https://doi.org/https://doi.org/10.1016/j.entcs.2014.12.007

	Front Page
	Table of Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Context
	1.2 Motivation
	1.3 Report Structure

	2 Concepts
	2.1 Kotlin
	2.1.1 Data Classes
	2.1.2 Coroutine Context & Dispatchers
	2.1.3 Performance Analysis
	2.1.4 Java Fibers & Kotlin Coroutines

	2.2 REST APIs
	2.3 Blocking & Non-Blocking IO in the Java Environment
	2.4 Reactor Schedulers
	2.5 Webflux Threading Model
	2.6 Idempotence and Safety
	2.6.1 HTTP
	2.6.2 SQL

	2.7 SpEL
	2.8 Code sources
	2.9 Summary

	3 Related Work
	3.1 Literature Review
	3.1.1 Reactive Programming & Cancellation
	3.1.2 Cancellation

	3.2 Tools
	3.2.1 Helidon
	3.2.2 Ktor
	3.2.3 Micronaut
	3.2.4 Quarkus
	3.2.5 Spring Boot

	3.3 Summary

	4 Problem & Proposed Solution
	4.1 Problem Statement
	4.2 Proposed Solution
	4.3 Validation & Results Evaluation
	4.4 Expected Results
	4.5 Summary

	5 Cancellation of Requests to the Server
	5.1 Simple tasks cancelling
	5.1.1 C# Implementation
	5.1.2 Kotlin Implementation

	5.2 Cancellation in HTTP via underlying TCP layer
	5.2.1 Cancellation of requests in C# web App (with Kestrel)
	5.2.2 Failed attempt at cancellation of requests in Spring Boot with Netty and Kotlin regular functions
	5.2.3 Echo Service for Link Detection
	5.2.4 Successful cancellation of requests in Spring Boot with Netty and Kotlin suspend functions

	6 SQL, Cancellation & Reactive Streams
	6.1 Reactive Streams
	6.2 Reactive Streams in SQL: R2DBC
	6.2.1 Model Definition and Data Retrieval
	6.2.2 Constraints
	6.2.3 Craftiness

	6.3 JDBC: an old Cornerstone
	6.3.1 ADBA
	6.3.2 jOOQ
	6.3.3 Ebean

	6.4 Hibernate (via Spring-Data-JPA)
	6.4.1 Query Tweaking
	6.4.2 Threads & Blocking

	6.5 Summary

	7 Third-party HTTP Requests: Asynchronous & (sometimes) Cancellable
	7.1 Setting up an API
	7.2 The simplest HTTP request
	7.3 Netty as an HTTP Client
	7.4 Spring WebClient
	7.5 Cancelling HTTP requests
	7.6 Handling cancellation when using WebClient

	8 WebSockets
	8.1 Service processor setup
	8.2 Doing a request to another server

	9 Spring MVC to Spring Webflux: An attempt at a smooth transition
	9.1 Spring MVC
	9.2 Spring Webflux
	9.3 Co-existence: Spring MVC & Webflux
	9.4 konkconsulting's Dilemma
	9.5 Filtering
	9.6 Websockets via STOMP
	9.7 OAuth2
	9.8 CORS
	9.9 Spring-security
	9.9.1 SecurityContextHolder
	9.9.2 @Secured
	9.9.3 User Roles

	9.10 Task Scheduling
	9.11 Summary

	10 Results
	10.1 SQL
	10.1.1 Ebean
	10.1.2 JPA

	10.2 Third-party HTTP Requests
	10.2.1 HttpURLConnection
	10.2.2 HttpURLConnection in a Kotlin async
	10.2.3 WebClient

	11 Conclusions & Future Work
	11.1 Conclusions
	11.2 Future Work
	11.2.1 Community Efforts
	11.2.2 Redoing this Exercise

	11.3 Note from the author

	A TestData
	A.1 Posts
	A.1.1 Ebean Model
	A.1.2 Queries:

	B Code examples
	References

