IBPORTO

FEU FACULDADE DE ENGENHARIA
UNIVERSIDADE DO PORTO

MIT

Operation Strategies for Energy Communities
and Evaluation of their Impacts on Power Systems
Using an ABM Model

Anténio José Valente Ferreira dos Santos

Dissertation submitted in partial fulfilment of the requirement for the Degree of
Doctor of Science
In the specialization area of

Sustainable Energy Systems

Written under the supervision of
Professor Doctor Jodo Paulo Tomé Saraiva
Professor at the Department of Electrical and Computer Engineering
Faculty of Engineering, University of Porto

December 2023






© Anténio José Valente Ferreira dos Santos, 2023






To My Wonderful Wife






Acknowledgments

I would like to express my heartfelt gratitude to be writing these words. This achievement was
only possible through meticulous organization, time management, and unwavering focus. Balancing

a professional career while pursuing a doctorate is no easy feat.

I would like to extend my sincere appreciation to my beloved wife Carla, who has been a steadfast
pillar of support throughout this process. Her selflessness and sacrifices, often unseen but deeply felt,
have allowed me the space and time to dedicate myself fully to my research and studies. Her unwa-
vering belief and encouragement have been a constant source of strength, motivating me to persevere
through challenges and celebrate achievements. This PhD thesis is, without a doubt, a testament to
our shared dedication.

To all my PhD colleagues, namely Manuel Costeira da Rocha and Miguel Moreira da Silva, who
have consistently encouraged me with their experiences as former PhD students. Special thanks to

Claudio Monteiro for providing me with the motivation to embark on my PhD thesis journey.

To my friends as their steadfast support and willingness to accommodate my demanding schedule

have been pivotal in allowing me the necessary focus to pursue my academic aspirations.

The rigor, critical spirit, support, guidance, and knowledge of my supervisor were fundamental
to this journey. He consistently kept me on track and provided the guidance to stay on the right

coordinates. Thank you Professor Jodo Paulo Tomé Saraiva.

To all those who have supported me along this journey, including those who, perhaps unfairly,

have not been explicitly mentioned in these acknowledgements.

Anténio Ferreira dos Santos

Vil






Abstract

Power systems are rapidly evolving, particularly in terms of electricity generation technologies,
diverse commercial relationships among various agents, and the increasing empowerment of con-
sumers. This has led to the emergence of Renewable Energy Communities, encouraged by new leg-
islation in many countries. This new paradigm enables citizens to take on roles as energy producers,
consumers, or prosumers, thereby increasing choices and flexibility at the household level. Because
of all these aspects, Local Energy Markets are emerging to enable local energy trading mechanisms
in Renewable Energy Communities. As also supported by the European Directives, Energy Commu-
nities business models can include, not local generation, trading, and aggregation, but also storage
systems. It is another flexibility option, that has the advantage of being able to act on both demand
and supply sides as well as providing a wide range of system services. Integrated in Renewable
Energy Communities, and during periods with surplus generation from renewable resources, namely
Photovoltaic generation, excess of energy supply can be absorbed by storage systems. Contrary, dur-
ing times with low contribution from renewable generation, the deficit can be compensated by dis-

charging the storage devices.

However, the requirements, limitations, and opportunities under these new frameworks require
much more than analysing only technical and economic aspects. Incorporating new actors and man-
aging coordination among stakeholders requires innovative or adaptive approaches to handle the
complexity. This thesis proposes the use of Agent-Based Modelling, employing a Machine Learning
procedure - Q-Learning - as a decision support tool for energy transactions between the Local Energy
Market and Wholesale Market in the day-ahead electricity market. This research also analyses dif-
ferent storage system architectures' integration within Renewable Energy Communities. The ob-
tained results confirm that modelling the agents with learning capabilities leads to more profits results
when compared with the ones without learning strategy. For that reason, we consider that the devel-
oped Agent-Based Model can be used as a valuable simulation tool namely for complex systems
when compared with other traditional optimization models. Furthermore, an economic assessment is
also included, in order to get insights if some level of exemption, for instance associated with some
components of the Access Tariffs, have to be considered in order to induce the massification of

Renewable Energy Communities.

Keywords: Renewable Energy Communities, Agent-Based Models, Local Energy Markets, Q-

Learning, Storage Systems.






Resumo

Os sistemas de energia estdo evoluindo rapidamente, nomeadamente através das diferentes tec-
nologias de geracdo de eletricidade, das diferentes relacGes comerciais entre diferentes agentes e pelo
crescente empoderamento dos consumidores. Este facto, incentivado também pelo aparecimento de
nova legislacdo que induz esta mudanca, levou ao aparecimento das Comunidades de Energia Reno-
vavel. Esse novo paradigma permite que os cidadaos assumam papéis como produtores de energia,
consumidores ou produtores-consumidores. Desta forma, os Mercados Locais de Energia estdo a
emergir e a possibilitar mecanismos de negociagdo de energia em Comunidades de Energia Renova-
vel. Também apoiado pelas Diretivas Europeias, os modelos de negdcios das Comunidades de Ener-
gia podem incluir, ndo sé a geracdo local, a negociacdo e a agregacdao, mas também sistemas de
armazenamento. Este facto representa uma outra op¢éo de flexibilidade, que tem a vantagem de atuar
tanto na procura como na geragao de energia. Durante periodos em que ha excedente de enegia elé-
trica, nomeadamente de origem renovavel, como por exemplo a geracdo fotovoltaica, este excesso
pode ser absorvido pelos sistemas de armazenamento. Por outro lado, durante periodos com pouca

geragdo renovavel, o consumo pode ser garantido pela descarga das baterias.

No entanto, os requisitos, as limitacfes e as oportunidades destes modelos, exigem muito mais
do que analisar apenas aspectos técnicos e econdmicos. E necessario também considerar a participa-
cao de novos atores bem como gerir e coordenar a interagdo entre os demais envolvidos. E este facto,
considerando a sua complexidade, requer abordagens inovadoras ou adaptativas. Assim, esta tese
propde o uso de agentes (Agent-Based Model) utilizando um procedimento de aprendizagem, Q-
Learning, como ferramenta de apoio a deciséo para transa¢des de energia entre os Mercados Locais
de Energia e 0 Mercado Grossista. Este trabalho analisa também a integracdo de diferentes arquite-
turas de sistemas de armazenamento incorporadas dentro das Comunidades de Energia Renovavel.
Os resultados obtidos confirmam que a modelizagdo dos agentes com capacidades de aprendizagem,
permitem melhores resultados econémicos quando comparado com sistemas sem estratégia de apren-
dizagem automatica dos agentes. Neste trabalho também é apresentado um estudo econémico com o
proposito de avaliar o impacto da consideracao de isengdes, nomeadamente aplicadas a regimes ta-

rifarios e que podem contribuir para a massificacdo das Comunidades de Energia Renovavel.

Palavras-chave: Comunidades de Energia Renovavel, Agent-Based Model, Q-Learning, Merca-

dos Locais de Energia, Sistemas de Armazenamento.
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Chapter 1

1.Introduction

1.1. Energy Transition — Opportunities and challenges

In the last decades, the share of renewable sources in the energy mix has considerably increased.
Since 1990, their share in the primary energy supply has more than tripled and its contribution for
electricity generation has more than doubled [1]. All global and European decarbonization scenarios
agree that these shares will continue to increase rapidly. With these changes and developments, elec-

tricity becomes an important actor towards a carbon-neutral economy.

The rapid improvements of renewable technologies and distributed energy resources, as well as
climate change initiatives and policies to promote clean energy, are now prompting the reconfigura-
tion of participant roles in the energy supply chain. In particular, the industry’s traditional centralized
electricity supply structure and utility-dominated decision-making regime is being challenged by
energy users [2]. In this sense, the European Union (EU) introduced new regulatory frameworks and

requirements on the energy market design for new energy initiatives.

The Clean Energy Package (CEP) for all Europeans [3] boosts this transition by acknowledging
the role of consumers and citizens in this new energy paradigm. It aims at ensuring an unbiased
energy transition at all levels of the economy — a wide transition from a top-down to a bottom-up
perspective. It gives new roles and opportunities for citizens, acting as energy producers and con-
sumers, or prosumers [4]. It also gives consumers more choices in their homes and more flexibility

to reduce their energy use when it is expensive and consume or store it when it is cheap [5].

New provisions on the energy market design and frameworks for new energy initiatives were
introduced with CEP, specifically the recasts of the Renewable Energy Directive EU 2018/2001 [6]
and the Electricity Market Directive EU 2019/944 [7]. CEP opens the path for new types of energy
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initiatives aiming at increasing the empowerment of smaller actors in the energy market as well as
an increased decentralized renewable energy production. Some authors term this process as the “de-
mocratization of energy” where most of the energy needed to meet household consumption require-
ments will be produced at local level, with only backup needs to be supplied by the grid [8].

The collective self-consumption, renewable energy communities and citizens energy communi-
ties are now new concepts introduced in the energy regulatory frameworks. They are fostering the
progressive migration of current centralized market models to new concepts and business models,
such as Virtual Power Plants, Microgrids, Smartgrids and Peer-to-Peer trading mechanisms. In this
context, Local Energy Markets (LEM) become appropriate for the development of Energy Commu-
nities as they allow end users and producers to participate in the electricity trading systems. They
can also help the increase of the penetration of renewable energy sources into the energy matrixes.
The main objectives of LEMSs are to provide a platform for the local economy and to reduce electric-
ity costs since supply fees and grid tariffs are excluded or strongly reduced [9]. This type of market
also contributes to the appearance of new agents, although that leads to a new operational paradigm
since they should not only interact locally but also be integrated with conventional markets. How-
ever, while it is increasing the participation of these new actors, consumers and small-scale produc-
ers, the complexity and the uncertainty of the electricity markets has been rising. This is why it is
important that electricity markets have the necessary tools and resources to support decision-making

processes.

A wide range of research programs involving Artificial Intelligence (Al) tools are being con-
ducted in the field of Energy. These studies aim to develop systems that can perform various tasks
such as analyzing and making decisions. One of the most common techniques used in the develop-
ment of Al systems is Machine Learning. This type of approach is commonly used to solve complex
problems in real-world systems. One of the fields of Machine Learning refers to the concept of Re-
inforcement Learning. This method helps agents perform at their best in an unpredictable setting. It
involves an agent interacting with its environment in order to learn the best action to take based on
the given situation. In this scope, an Agent Based-Model (ABM) using a Reinforcement Learning
mechanism is a suitable approach to modeling and simulating complex systems, such as electricity

markets.

An ABM allows agents to make more informed decisions by taking into account their past expe-
riences and the environment. This allows them to improve their strategies and make better decisions.
The goal of an ABM is to provide market participants with the opportunity to develop their own
adaptive strategies and preferences. This process can be carried out either individually or in combi-

nation with other agents. Agents benefit from the learning process of an ABM since it allows them
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to develop their own strategies and preferences. Since ABM can simulate actions and interactions of
independent agents, they have been widely used in the simulation process of the electricity markets.
They are a suitable approach to modeling and manage this kind of complex systems [10].

Accordingly, the main focus of this thesis is the development of a simulation architecture to sup-
port and validate energy transactions between Energy Communities and among their members. In
order to achieve this goal, all the technical limitations, regulatory challenges and opportunities be-
hind Energy Communities will be assessed. The framework presented in this work and its strategy
optimization is based on ABM using Artificial Intelligence.

1.2. Motivation and Research Questions

The electricity sector is constantly evolving due to the increasing number of factors that affect its
design and operation, such as the technological advancements that are being made in the generation
of electricity. Despite the political situation in Europe, which can affect the electricity sector, it is
still expected that countries will continue to move toward the decarbonization of their power systems.
This includes the reduction or even elimination of the use of coal units and the sharp increase of the
installed capacity in PV and wind parks. The various technical and regulatory changes that are being

implemented in the electricity sector impose various challenges to power systems.

Several countries have recently enacted legislation aiming at promoting the installation of Re-
newable Energy Communities. These are designed to encourage the growth of distributed renewable
energy sources and provide end consumers with more self-sufficiency. In this sense, new mecha-
nisms are emerging, such as LEM, that are enabling local energy trading in Renewable Energy Com-
munities. The requirements, limitations, and opportunities under these new frameworks require much
more than analyzing only technical and economic aspects. Communities themselves, regarding their
behaviors, interactions and organizational dimensions should also be exploited. From the point of
view of electricity networks, a scenario of massification of Renewable Energy Communities can be
translated technically as an increase in the penetration of distributed generation units, especially in

low voltage levels, as well as other energy equipment such as Energy Storage Systems.

The regulatory contexts, specifically incentive schemes, must be considered in investment deci-
sions. Besides the legal framework and the various incentives that are being implemented to encour-
age the deployment of Energy Communities, it is also important to analyze the impact of the different
charges and exemptions on the financial viability of these projects. The economic viability of these

investments (namely in Storage Systems) and the operation of RECs, specifically considering
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different tariff and charge exemption designs, should therefore be studied in order to get conclusions
on the breakeven of the investments.

The goal of this research is to develop a new approach to simulate the energy trading between the
wholesale and local energy markets. In order to understand the dynamics of the electricity markets,
it is necessary to first study the interaction between the conventional electricity markets and LEM.
Besides this, it is also important to study the impact of the regulations on the participants' behavior.
This means that the main research questions to be addressed in this work are as follows:

1. Are the Agent-Based Models capable of handling Energy Communities’ main purposes?

2. How should the Energy Communities’ actors be organized, regarding integration with con-
ventional electricity markets?

3. What is the influence of including not only generation trading and aggregation in Energy
Communities, but also storage systems?

4. Can the regulatory context induce the massification of Energy Communities?

1.3. Thesis Objectives

The main goal of this work is to develop a computational tool, using an Agent-Based Model, as
a decision tool to support energy transactions between the LEM and the Wholesale Market (WSM).
In order to achieve this general objective, it is necessary to study the behavior of participants in local
electricity markets, the energy policies in force and use adequate simulation tools considering com-
petition. The developed model will be applied to a realistic case study, in the context of the Portu-
guese regulatory framework. The proposed market design will be implemented considering a day-

ahead market on a one-hour basis.

Research objective 1: To develop a new decision tool to support energy transactions among
Energy Community agents and between the communities themselves and the WSM, using an Agent-
Based Model.

Research objective 2: To assess the impact of different optimization parameters in the agents’

learning capabilities.

Research objective 3: To analyze the impact of the integration of storage systems in Local En-
ergy Markets, with focus on different architectures, by comparing the obtained market strategy and

the profits that can be obtained.
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Research objective 4: To assess the economic feasibility of Energy Communities regarding
Agents-Based models bidding strategies as well as different levels of exemptions regarding specific
terms of the Access Tariffs.

The scientific contributions of this thesis span the aspects of Energy communities, namely Regu-
latory contexts and optimization models considering the utilization of an Agent-Based Model. A
literature review of the application of this kind of models applied to Power Systems is presented in
[Paper A] included in Annex A. [Paper B] also available in Annex A, describes the strategy and the

interactions between the LEM of a Renewable Energy Community and the WSM on an hourly basis.

The energy trading between LEM and WSM was simulated with an ABM as a decision tool.
[Paper C] (available in Annex A) extends the decision tool considering an Energy Storage System.
Specifically, [Paper C] investigates the Energy Communities’ self-consumption profile considering
different storage system architectures. This work proposes two types of storage architectures. The
first one is a decentralized architecture, where storage, constituted by batteries, is located at the build-
ing level, while the second one is centralized within the community. To understand the value of local
markets and battery flexibility, [Paper C] compares the outcomes of the two proposed market de-

signs, against a reference case, that was described in [Paper B].

Besides the implemented legal framework and the incentives for the deployment of Energy Com-
munities and Local Energy Markets, the economic viability of the investments, namely in Storage
Systems, should be studied. For that purpose, [Paper D] (accessible in Annex A) presents a design
and an optimization model to increase the self-sufficiency level, and to better manage the energy
produced locally, also admitting the installation of battery storage systems. This paper also includes
an economic assessment, considering different tariff and charge exemptions designs, namely the

payment of grid tariffs. This allows us to draw conclusions on the breakeven of the investments.

1.4, Structure of the Thesis

This thesis is structured in seven chapters covering the Literature Review, the models that were

developed and the adopted solution approaches and their assessment using a realistic case study.

Chapter 2 provides a general overview of electricity markets, considering nowadays legislation
frameworks. Section 2.1. presents the electricity market evolution and its classification. A review on

European Climate and Energy policies is provided in Section 2.2. and Section 2.3. includes an
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overview of different national frameworks. Section 2.4 presents an overview on Peer-to-Peer mar-

kets. Finally, Section 2.5. introduces the concepts of Microgrids and Virtual Power Plants (\VPP).

Chapter 3 presents a Literature review on Electricity Market Simulation. Section 3.1 presents
several modelling methods to simulate electricity markets. Section 3.2 introduces the concept of
Agent Based Models and provides a review of the various development steps involved in its imple-
mentation. Section 3.3 provides a categorization of Machine Learning techniques and finally, Section
3.4 details some ABM electricity markets simulators.

Chapter 4 details Energy Communities business models and presents the structure of the model
that will be simulated in this thesis. Section 4.1 details Energy Communities’ business models. Its
main ideas will be replicated in the proposed market design, which will be presented in Section 4.2.
The developed ABM, which incorporates the LEM concept is detailed in Section 4.3. The interac-
tions between the community aggregator and the WSM are exposed in Section 4.4. Hereafter, the
defined environment, as the part of the system within which the agents operate, is presented in Sec-
tion 4.5. followed by the Utility Function considered in this work and detailed in Section 4.6. The Q-
Learning procedure used in the proposed model as well as the modelization considered using this

optimization strategy, are presented, respectively in Sections 4.7. and 4.8.

Chapter 5 details other models that are integrated in the developed Agent-Based Model, namely
the incorporation of Energy Storage Systems. In this purpose, Section 5.1 provides a framework with
Energy Community Business Models followed by Section 5.2., where the enhanced market design
considering storage systems is explained. Regarding general considerations and Energy Storage Sys-
tems’ modelization and bidding strategies, Section 5.3. details its main considerations. Following the
previous approaches, the modelization of the operation of ESS in the LEM and WSM, using an ABM,
is detailed in Section 5.4. This chapter ends in Section 5.5, with the main considerations regarding
the economic viability analysis of Energy Communities business models, namely the economic value

of the investments and operation of Renewable Energy Communities.

Chapter 6 presents the results obtained using the developed models to a set of scenarios. Section
6.1 presents a general consideration about the Chapter while Section 6.2 details the global character-
ization of the system that is studied in this work and termed as Reference Case. Section 6.3. describes
a scenario only considering a PV system, without storage and which is addressed using the Q-Learn-
ing strategy. In this section, it is also assessed the impact on the global results of using different
learning parameters. The results, using decentralized and centralized storage systems are detailed in
Sections 6.4. and 6.5. The final comparisons and sensitivity analysis for different input data are de-

tailed in Section 6.6.
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Finally, Chapter 7 summarizes the contributions of this research and presents the most relevant
conclusions. This document ends with a discussion and an outlook about future work and other re-

lated research opportunities.

1.5. List of Publications

The next paragraphs present the published and submitted papers that are related to this work.
Papers A and B are associated with the model presented in Section 4.2. Papers C and D are related
to the model described in Section 5.2., and include a modification on the previous model, now con-
sidering the impact of different storage architectures. Paper B was presented to an audience through
oral presentation in the 18t" European Energy Markets Conference, that was held in Ljubljana, Slo-
venia 13-15 September 2022. Papers D and C were submitted, accepted and presented to an audience
through oral presentation, respectively in the 19" International Conference on the European Energy
Market (EEM), Lappeenranta and in the IEEE Belgrade PowerTech, Belgrade, both in June 2023.

[Paper A] A. Ferreira dos Santos, J. T. Saraiva, "Agent Based Models in Power Systems — A

Literature Review," in University of Porto Journal of Engineering, vol. 7, no. 3, April 2021.

[Paper B] A. Ferreira dos Santos, J. T. Saraiva, "An Agent Based Model to Simulate Local Elec-
tricity Markets, LEM, and their Interaction with the Wholesale Market, WSM,” in Proceedings of
the 18™ International Conference on the European Energy Market (EEM), Ljubljana, September
2022, pp. 1-5.

[Paper C] A. Ferreira dos Santos, J. T. Saraiva, "Decentralized and Centralized Storage Archi-
tectures in Local Energy Markets (LEM) and their interaction with the Wholesale Market (WSM),"
in Proceedings of the IEEE Belgrade PowerTech, Belgrade, June 2023, pp. 1-6.

[Paper D] A. Ferreira dos Santos, J. T. Saraiva, "Simulation of the Operation of Renewable En-
ergy Communities Considering Storage Units and Different Levels of Access Tariffs Exemptions,”
in Proceedings of the 19" International Conference on the European Energy Market (EEM), Lap-
peenranta, June 2023, pp. 1-6.

All these papers are available in Annex A.






Chapter 2

2.Background and State of the Art

This chapter presents a background and the state of the art about the main topics approached in
this thesis. The electricity market evolution and its classification, according to the type of good and
service that is traded and according to its temporal basis, is presented in Section 2.1. A review on
European Climate and Energy policies is provided in Section 2.2. The Clean Energy Package (CEP)
is described and contextualized with new rules and models for citizens. An overview of some of the
national frameworks for Energy Communities in the European Union (EU) is provided in Section
2.3. The advent of the CEP opens the path for new types of energy initiatives and provides new roles
and opportunities for citizens, which can act as energy producers and consumers, or prosumers.
Within this context, Peer-to-Peer (P2P) models are considered as one of the key elements of the next
generation of power systems market and will be described in Section 2.4. Finally, in Section 2.5. the
concepts of Microgrids, Smart Grids and Virtual Power Plants (VPP) will be introduced since they
allow to manage and coordinate the aforementioned decentralized and distributed new energy busi-

ness models.
2.1. Electricity Markets

2.1.1. Restructuring of power systems

The electricity sector restructuring originated the unbundling of the traditional vertically inte-
grated companies and lead to the separation of generation property from transmission, distribution
and retailing activities. This new desegregated model, presented in Figure 2.1., includes several com-
petitive activities namely, Generation (G), Financial Intermediation (FI) and Retailing (R). The Dis-
tribution Network (DN) operates as a regulated monopoly since it is not economically feasible to
duplicate the distribution networks in the same geographical area. A similar regulated monopoly
approach applies to the Transmission Network (TN) activity. Bilateral Contracts (BC) and Organized

Markets (OM) represent the mechanisms available to trade electricity. The Independent System
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Operator (ISO) stands for the operation and real time monitoring of the systems and finally Ancillary

Services (AS) correspond to a number of products usually bought or contracted by the 1SO to ensure

the secure operation of the system.

Figure 2.1. Electricity model sector (Source [11])

The central part of this figure corresponds to a set of functions that were usually assigned to the

transmission entities in terms of operating and managing power systems. They are:

a)

b)

Bilateral contracts are a type of contractual arrangement that involves the establishment of
physical or financial relations between electricity generation entities and retailers or large
consumers. These contracts cover various aspects, such as the price and energy required to
be supplied and produced.

An Organized Market is a type of financial transaction that involves the execution of various
activities, such as day-ahead and intraday market activities. If these activities and bilateral
contracts come together, then a mixed model might be presented [12]. The operation of orga-
nized markets is usually carried out through the purchase and sale of electricity. Market op-
erators receive bids from different entities for every hour or half hour of the next day. These
bids are usually accompanied by energy and price values. These markets then build a supply
and a demand curve for each trading period, which is used to provide a complete economic
dispatch. The market design can also include complex bids that have additional information,
such as minimum profit requirements, ramps and hours of operation [11]. Another type of
market is the forward markets which involve the trading of electricity blocks to be delivered
in future periods.

The System Operator, 1SO, is an organization that has the technical capabilities to manage
the power system operation. It is also responsible for collecting information related to the
economic activity generated by the bids that are submitted in the organized markets. The ISO
should also perform a technical evaluation of the dispatch for each period of the next day, to
ensure that it is feasible, namely, to evaluate the network constraints and the potential impact

of congestion on the system. If there are no limitations, the 1SO sets the amount of ancillary
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d)

services that are required and contracts the providers of these services. In some cases, the ISO
and the Transmission Network (TN) functions are under the responsibility of the same entity,
taking the name of Transmission System Operator (TSO). This is the case of REN, Redes
Energéticas Nacionais, in Portugal and REE, Red Eléctrica de Espafa, in Spain.

The Transmission Network company which is an entity that owns or has the concession of
the assets of the electricity transmission system. It operates in a monopoly position in the
geographical area where it is located. Like other companies, it is regulated by the Regulatory
Authorities.

Besides the primary, secondary and tertiary reserves, it is also necessary to contract other
Ancillary Services such as reactive power and voltage control, black start and the solution
of violated network constraints. These services are provided by different entities, such as
network or generation companies. In most systems, the amount of ancillary services that are
required are determined by the System Operator. The System Operator then accepts bids for
the provision of some of these services. The primary reserve is composed of the Frequency
Containment Reserve, which is a type of reserve that is designed to maintain a steady power
balance in the system. The secondary reserve, which is denominated as Frequency Restora-
tion Reserve, is designed to restore the frequency to its nominal level. Finally, the tertiary
reserve, called Replacement Reserve, includes reserves with activation time from 15 minutes
up to some hours in order to replace secondary reserve generators if that becomes necessary
[13]. In several systems some of these services are mandatory and not paid (as it is the case
of primary reserve in Portugal) while others are contracted in specific markets (as it occurs

with secondary and tertiary reserves in Portugal).

2.1.2. Market Types

Considering the organization previously detailed, markets can be classified according to the type

of good and service that is traded and according their temporal basis [14]. In this scope, the Electricity
Market is where electricity is traded between sellers and buyers, through a centralized mechanism,
operating as a spot market (usually known as Pool markets) and/or through contracts established
directly between buyers and sellers (Bilateral Contracts). These are different types of trading mech-
anisms that are designed to provide a central and transparent platform for the trading of electricity.
In addition to these, some ancillary services are also traded in specific markets to ensure that the

power system operates in a secure and reliable way.

The different types of electricity markets can be classified as:
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Spot market, which is a daily market that aims to negotiate the energy supply typically for
each hour of the next day (also known as Day-Ahead Market);

- Intraday Markets, that can be used by market agents to purchase or sell usually small quanti-
ties of electricity. This type of market is designed to address the potential imbalance between
the supply and demand of electricity;

- The Derivatives and Forwards market is composed of future contracts and options. It is de-

signed to address the volatility of the daily electricity price by providing financial instruments

that are designed to protect investors from the effects of the short-term market;

- Long-term Investment market, which is focused on investing in new infrastructure projects.

If retail agents, eligible consumers and generation agents submit their bids in an anonymous way
to a Market Operator, it corresponds to a centralized spot market, commonly referred to as Pool
market. It features short-term mechanisms designed to balance the demand and supply of electricity.
These markets are usually referred to as Day-ahead markets and are designed to work for the next

day. They can be symmetrical or asymmetrical, voluntary, or mandatory.

The implementation of this dispatch design must deal with the physical properties of power sys-
tem networks (Figure 2.2.). The Market Operator matches the bids from an economic point of view
and the System Operator verifies if transmission grid limits are not surpassed. If congestion occurs
on the transmission grid both the System and Market Operators need to work together in order to
solve the problem. If it cannot be resolved, for any kind of reason, the System Operator has the
authority to change the initial dispatch in order to regain feasibility.

(Generator
schedules
Producers Congestion
Market [* System Ancillarv
Retailers | Operator Operator Ancillary
Pool Power and 1S0 services
nodes. |
Eligible e
CONSUIMErs > Info to
Bids: Transmission
e networks
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Figure 2.2. Poll based Electricity Market Model (Source [11])

The Symmetrical markets allow market participants to make buying and selling bids. After the

bids have been received, the Market Operator builds the aggregated curves according to the
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increasing and decreasing bid prices. The demand bids are ordered by descending price order and
cumulative quantity, and they form the aggregated demand curve. The supply bids are ordered by
the ascending price order and cumulative quantity, and they form the aggregated supply curve. The
point of intersection between the supply and demand curves defines the clearing price and quantity.
All the market agents buy and sell energy at the clearing price. These markets are also known as
Uniform Price Auctions. After the bid process has ended, the Market Operator uses the Market Clear-
ing Price to settle the traded electricity quantities. The power plants that bid above the market price
and the demand that bids below it will not be cleared in the market. The symmetrical model is illus-
trated in Figure 2.3.

The Asymmetrical model is another type of market that can be designed to operate on a day-
ahead basis. It allows the generation agents to participate in the market and the demand is hormally
modelled by forecasts for each trading period. In practice, this model assumes that the demand is
inelastic and ready to pay the market price. The selling bids are then used to determine the final
prices. Figure 2.4. illustrates this market mechanism, in which selling bids are organized in ascending
order of the bid price together with the forecasted demand levels. In this case, three demand levels
(Q1, Q2 and Q3) determine three distinct market price levels (MP1, MP2 and MP3) [11].

Price
(€/MWh)

Selling Offers

Market
Clearing Price

Buyimng Offers

Market Quantity
Clearing Quantity (MWh)

Figure 2.3. Symmetrical Poll Spot Market (Source [11])
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Figure 2.4. Asymmetrical Poll Spot Market (Source [11])

Another type of relationship between market agents is the Bilateral Contracts. The previous
Pool Model is based in short term marginal costs which are very volatile, being influenced by the
demand, generators, and their operation costs and the transmission grid line capacity. To overcome
the usual pool model price volatility, in the Bilateral Contracts model the generation and retailing
companies, as well as eligible consumers, are free to establish between themselves contracts to buy
and sell electricity. Duration, amount of generation and demand as well as their agreed price, are
freely negotiated in these kinds of contracts. The responsibility of technically validate these bilateral
agreements is done by the System Operator. If they originate unfeasibilities regarding the operation
of the network, the 1ISO/TSO must activate mechanisms in order to introduce changes and conse-

guently make the system feasible.

In most countries in which there was a reorganization of the electricity sector, a mixed structure
(Mixed Models) was adopted allowing market agents, producers, consumers and retailers to partic-
ipate in the day ahead market or to establish bilateral contracts. The technical validation of the global
dispatch will be carried out by the ISO or TSO for each period of the next day. This process will
gather information about the various bilateral agreements and the bids that have been cleared by the

Market Operator [11]. Figure 2.5. illustrates this type of mixed structure.
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Figure 2.5. Mixed Model including a Spot Market and Bilateral Contracts (Source [11])

System Operators use a set of operational services to control the power system and to balance
supply and demand. They are usually termed as Ancillary Services and aim to stabilize the system
and to maintain security of supply and system reliability. As mentioned in Section 2.1 these include
the frequency control and active power reserves, voltage control and reactive power, black start ca-
pability, emergency control actions, and grid loss compensation.

The frequency control service is designed to maintain the system's frequency within a certain
interval. It can also be used to control the active power to ensure that the system is balanced. The
voltage control service manages the reactive power to maintain the voltage level within the specific
ranges. When there are contingencies and unpredictable deficits caused by factors such as the failure
of generators and transmission lines, different types of reserve services are utilized. These include
primary reserve which is an on-line resource that can be immediately available. On the other hand,
secondary and tertiary reserves have longer activation times and can be used to supplement the pri-
mary reserve. The black start service is an emergency response that can be utilized by a generating
unit to restore power supply after a large blackout has occurred. Other services that can be obtained

by the ISO include remote generation, emergency control actions, and grid loss compensation [15].

The different approaches to procuring ancillary services can be determined depending on the type
of power system and the country where they are located. The first one involves requiring the TSO to
set a mandatory provision, for instance for primary reserve. Other services, as secondary and tertiary
reserves can be contracted by the I1SO in specific daily markets or using long term contracting estab-

lished with generation agents.
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In a recent report [16], the European Network of Transmission System Operators for Electricity
(ENTSO-E) presents a vision of what would be necessary to achieve a Power System fit for a Carbon
Neutral Europe. Regarding the increasing operational challenges and the rapidly changing of market
actors, ENTSO-E refers that new products for both balancing and non-frequency ancillary services
are required, to support for example, voltage control, inertia and fast frequency response. In this
scope, the demand response namely using electrical vehicles and distributed resources will have an
important role, as well as the presence of fast service providers.

The intraday markets are similar to day-ahead energy markets and the main difference is the
gate closure. They follow the day-ahead session and work as adjustment markets, i.e. the market
agents can correct accepted bids from the day-ahead market or from previous intraday sessions. The
rapid emergence and evolution of smart grids and renewable sources are expected to have a huge

impact given the variability if several primary resources.
Two structures of intraday energy markets can be found [17]:

- Discrete: fixed number of trading sessions with a pre-defined period and with a gate closure
of one hour before the physical delivery;
- Continuous: the trading is continuous and starts after the day-ahead market with a gate closure

of one hour before physical delivery.

The Iberian Electricity market, MIBEL, comprises a day-ahead and an intraday market. The latter
was initially characterized by 6 consecutive auctions, to take adjusted network constraints and un-
foreseen events into account. Currently, MIBEL also includes a continuous Intraday Market mecha-

nism.

The European Commission has set out its objectives for the development of continuous energy
trading in Europe. This is done through the allocation of transmission capacity between different
zones. The XBID, or Cross-border Intraday Coupling, is a project that was launched in 2012 to create
solutions for intraday continuous trading across Europe and to increase overall trading efficiency
within a single intraday EU electricity market. The goal of the system is to link the orders placed by
electricity market participants in different countries using a central IT system. This system also al-
lows the exchange of information between different sectoral trading platforms and the transmission

capacity of the participating regions.
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2.2. Clean Energy Package for all Europeans

2.2.1. Legal documents

In May 2019, EU institutions concluded the final legislative files for the Clean Energy for All
Europeans Legislative Package (CEP) [3]. It is a legal framework that defines European climate and
energy policy and sets the EU ambitions on this topic for the 2030 horizon. It is composed of eight
different pieces of legislation aimed at accelerating the energy transition in Europe. The CEP for
Europe introduces three new concepts that are designed to help consumers and the public to partici-
pate in the development of a new energy paradigm. These include the Collective Self-Consumption,
the Renewable Energy Communities, and the Energy Communities of Citizens. The objective of the
package is to ensure that the transition to a decarbonized and decentralized energy system is carried
out in an unbiased manner. The main objective of this new energy paradigm is referred to as the
democratization of energy so that most of the energy that households need to meet their consumption

requirements is produced at a local level [8].

Several new frameworks and provisions for the design and implementation of new energy pro-
grams were also introduced. These include updated versions of the Electricity Market Directive EU
2019/944 [7] and Renewable Energy Directive EU 2018/2001 [6]. The updated Electricity Regula-
tion 2019/943 [18] provides a framework for addressing the various changes that are happening in
the electricity market. These include cross-border flows, customer participation, and market-based

pricing.

All the documents under the CEP are available in [19] and will be summarized in the following

paragraphs:
e Energy Performance of Buildings Directive (EU) 2018/844 [20]

The Energy Performance of Buildings Directive [20] aims at achieving a highly energy efficient
and decarbonized building stock by 2050 and to create stable investment conditions to foster invest-
ments into the renovation of buildings. This Directive encourages the deployment of automation and
control systems in buildings for a more efficient operation as well as the rollout of charging points

for electric vehicles (EVs).


https://eur-lex.europa.eu/legal-content/EN/TXT/?qid=1529483556082&uri=CELEX:32018L0844
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o Renewable Energy Directive (EU) 2018/2001[6]

The original Renewable Energy Directive [21] already set the basis for the promotion of energy
from renewable sources. As the use of renewables has significantly increased and new technologies
allow for a more flexible integration into the grid, the new Renewable Energy Directive [6] was
recast as part of the CEP. The Renewable Energy Directive was also updated to provide a binding
target of 32 percent of the energy from renewable sources that the European Union will require by
2030. The updated regulations also provide targets for renewable energy in the transportation and

heating sectors.

One of the key objectives of the CEP is to put consumers at the heart of the energy transition. To
facilitate achieving this goal, the new Renewable Energy Directive [6] gives citizens, who produce
their own energy from renewable sources, a clear right to consume, store and sell their generated
energy, including through power purchase agreements. In addition, this Directive enables the partic-
ipation of consumers in the so called 'Renewable Energy Communities'. These communities are au-
tonomous legal entities based on the open and voluntary participation with the purpose of providing
environmental, economic or social community benefits for its shareholders or members rather than

financial profits.

Like individual citizens, such communities are entitled to generate, consume, store and sell energy
from renewable sources. Member States can allow Renewable Energy Communities to be open for

cross-border participation.
e Energy Efficiency Directive (EU) 2018/2002 [22]

Putting energy efficiency first was one of the main objectives of the CEP. The updated Energy
Efficiency Directive [22] provides a target of 32,5 percent of Energy Efficiency by 2030. It extends
the obligation of Member States to reduce their energy consumption by 0,8 percent annually until
2030. Metering and billing rules, especially for multi-apartment and multi-purpose buildings, have

been amended to provide clearer rights for consumers on their billing information.
e Governance of the Energy Union and Climate Action Regulation (EU) 2018/1999 [23]

The Governance of the Energy Union Regulation [23] establishes a transparent and predictable
governance mechanism to ensure that EU meets its 2030 climate targets as well as international
climate commitments. The Governance Regulation of the Energy Union applies to the different di-
mensions of the organization, such as the internal market, decarbonization, innovation, and compet-

itiveness. Member states can contribute to the overall goals of the Union in different ways.


https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=uriserv:OJ.L_.2018.328.01.0001.01.ENG&toc=OJ:L:2018:328:TOC
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e Electricity Regulation (EU) 2019/943 [18]

One of the main components of the CEP is the updated electricity market rules, which are de-
signed to reflect the new market realities. They are also designed to ensure that the security of supply
is not compromised. The increasing role of consumers in the clean energy transition is also high-

lighted by enabling their active participation in the electricity markets.

The recast Electricity Regulation [18] sets out general principles for the operation of the electric-
ity markets, including market-based prices, more flexibility, customer participation and cross-border

electricity flows. Several specific topics regarding the redesign of electricity markets are:
- Balancing

The Regulation establishes that generally all market participants are responsible for imbal-
ances in the system. Balancing capacity must be procured separately from balancing energy.
Transmission System Operators (TSO) have to procure balancing capacity based on market-
based principles. Balancing energy has to be settled at marginal pricing and must reflect the

real-time value of energy.
- Short-term and long-term markets

The new rules also harmonize trade intervals and gate closure times for day-ahead and intra-
day markets. In order to enable the participation of all market participants, minimum bids of
500 kWh or less are allowed. In forward markets, TSOs shall issue long-term transmission

rights to incentivize cross-border trading.
- Dispatch and redispatch

The new Electricity Regulation establishes that dispatching priority is given to renewable
energy sources and high-efficiency cogeneration facilities with an installed capacity of less
than 400 kW or demonstration projects using innovative technologies subject to approval by
the regulatory authority, provided that such priority is limited to the time and extent necessary
for achieving the demonstration purposes. From 2026, dispatching priority shall apply only
to power-generating facilities that use renewable energy sources and have an installed elec-
tricity capacity lower than 200 kW. Sources that were subject to priority dispatch before the
entry into force of the new Regulation continue to benefit from priority dispatch until there is
a new connection agreement or an increase in generating capacity or any other substantial

modification.


https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=uriserv:OJ.L_.2019.158.01.0054.01.ENG&toc=OJ:L:2019:158:TOC
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Congestion management and capacity allocation

The revised Electricity Regulation reinforces rules on capacity allocation and congestion
management, including through a review of bidding zones. Member States must put in
place action plans to remedy congestions based on non-discriminatory and market-based
solutions. Transactions may only be curtailed in emergency situations. Revenues gener-
ated from congestion management can be used to maintain the availability of allocated

capacity or to optimize and develop new interconnections.
Capacity mechanisms

The recast Electricity Regulation establishes new rules on capacity mechanisms to ensure
resource adequacy by remunerating resources for their availability. Member States shall
only use capacity mechanisms as a last resort while implementing measures such as re-
moving regulatory distortions and price caps, enabling scarcity pricing, energy storage or
demand side measures. Before introducing a capacity mechanism, Member States also
have to coordinate with other directly interconnected Member States. Capacity mecha-
nisms shall be temporary, non-distortive, and non-discriminatory and opened to all types

of resources, including storage and demand side management.

European Network of Transmission System Operators for Electricity, Transmission Sys-

tem Operators and Distribution System Operators

The roles of TSOs and the ENTSO-E are strengthened and clarified. In addition to their
already existing tasks, TSOs established regional coordination centers since 1 July 2022.
The regional coordination centers are responsible for the coordination of capacity calcu-
lation, security analysis, restoration support, adequacy forecasts or for facilitating the re-

gional procurement of balancing capacity.

The recast Electricity Regulation also establishes new tasks for Distribution System Op-
erators (DSOs), including the creation of a European entity for EU DSO. The EU DSO
will promote operation and planning of distribution networks, facilitate the integration of
renewables, distributed generation and storage resources and increase the presence of
flexibility resources. Further tasks include the support of the development of data man-
agement, cyber security, and data protection. The EU DSO shall also cooperate with the
ENTSO-E on the development and implementation of network codes as well as in iden-

tifying best practices relevant for the distribution networks.
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Network codes and guidelines

The revised Electricity Regulation refines the rules for developing network codes and
guidelines and extends the areas for which the European Commission can require the
preparation of network codes. In this regard, new network codes can be established for
non-frequency ancillary services, demand response, storage, curtailment, data manage-

ment and cybersecurity.

Electricity Directive (EU) 2019/944 [7]

The recast Electricity Directive of the CEP aims at developing and completing the internal elec-

tricity market and to address new market challenges. To facilitate the completion of the internal

electricity market, Member States have to remove barriers to cross-border electricity trade and con-

sumer participation. Prices will be set using market-based criteria and Member States shall facilitate

flexibility and ensure third-party access in a non-discriminatory manner. In this scope this Directive

addresses the following issues:

Empowerment of consumers

One of the main features of the new electricity system design is the ability of consumers
to actively participate in the markets. Member states are required to implement measures
that allow them to participate in the electricity market through aggregation or direct par-
ticipation. Customers can also sell their own electricity and participate in energy effi-
ciency programs. In addition, active consumers are required to pay the network charges
and accept responsibility for any imbalances that they may cause. Customers who own

energy storage facilities are not required to pay double charges or license fees.

The revised Electricity Directive further provides the possibility to establish Citizen En-
ergy Communities (CEC). They are based on the open and voluntary participation. Mem-
ber States must enable CEC to access electricity markets without discrimination and
DSOs have to cooperate with CEC to facilitate electricity transfers within the CEC. Mem-
ber States can also grant CECs the right to manage distribution networks in their area of
operation. CECs are also subject to network charges and costs for the imbalances they

cause.
Demand response

The new Electricity Directive indicates that Member States may allow and facilitate the
use of demand-side management measures through Aggregation. This aggregation allows

customers to purchase and sell electricity as well as provide and trade flexibility products.


https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=uriserv:OJ.L_.2019.158.01.0125.01.ENG&toc=OJ:L:2019:158:TOC
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Market access for all participants must not be discriminatory. Aggregation participants
are responsible for the various imbalances that they cause in the electricity market. They
are also liable for the costs that other market participants incur due to the demand re-

sponse activities.
- Dynamic electricity pricing, metering, and billing

The updated electricity directive requires Member States to carry out cost-benefit anal-
yses on the implementation of smart meters. They should also allow customers to request
their devices' installation. These devices should be able to provide consumers with relia-
ble and accurate readings on their electricity usage. Customers who have installed smart

meters are entitled to request a dynamic electricity pricing contract.
- DSO, TSO, and National authorities

The recast Electricity Directive establishes new tasks for DSOs, in particular in what
concerns the procurement of non-frequency ancillary services, flexibility, data manage-
ment and the integration of electromobility. Procurement of ancillary services shall be
market-based, transparent and non-discriminatory. For the procurement of other relevant
services effective participation of all market agents shall be made possible, including for
those participants engaged in storage, demand response or aggregation. Member States
shall incentivize DSOs to procure flexibility services, including the procurement of dis-
tributed generation, demand response or energy storage. Regarding the integration of
electromobility, DSOs shall facilitate grid connection and can only own, develop, man-

age, or operate recharging points for EVs subject to strict conditions.

The tasks of TSOs have been slightly extended to include the procurement of ancillary

services, the digitalization of transmission systems and data management.
e Regulation on Risk-Preparedness in the Electricity Sector (EU) 2019/941 [24]

The Risk-Preparedness Regulation aims to establish a framework to prevent, prepare for and
manage electricity crises. In order to achieve these objectives, Member States are required to coop-
erate. The Regulation also aims at establishing an effective monitoring system for the security of

supply in the Union.


https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=uriserv:OJ.L_.2019.158.01.0001.01.ENG&toc=OJ:L:2019:158:TOC
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e Regulation on the European Union Agency for the Cooperation of Energy Regulators
(EU) 2019/942 [25]

The Agency for the Cooperation of Energy Regulators (ACER) was established through the Third
Energy Package passed in 2009 [26]. Originally, ACER's role was limited to coordination, advising
and monitoring. With the increase in cross-border cooperation under the new electricity market de-
sign of the CEP, ACER has been given additional responsibilities in the areas where uncoordinated
national decisions with cross-border relevance could impact the functioning of the internal electricity
market. The new ACER Regulation [25] establishes ACER's responsibility to supervise the ENTSOs
for electricity and gas, the regional coordination centers, the EU DSO, TSO and Nominated Electric-
ity Market Operators (NEMOSs) and it assists the competent national regulatory authorities in per-
forming their tasks. ACER will also be involved in the development of network codes, guidelines

and methodologies and in monitoring their implementation.

2.2.2. Self-Consumption, Collective Self-Consumption and Energy Communi-

ties

The CEP aims to place consumers at the center of the energy transition by including the definition
of new models and rules for citizens. This will help for the definition of new rules and models for
citizens, which could act as energy consumers or producers, or prosumers [4]. The definitions of
Self-Consumption, Collective Self-Consumption and Energy Communities are based on the legal
framework set by CEP. Their legal concepts and main regulatory characteristics are defined in a
report provided by the Council of European Energy Regulators [27]. A diagram showing their char-
acteristics is provided in Figure 2.6 and their definitions and features are detailed in the next para-

graphs.

Self-consumption Collective self-consumption Energy Community

Community owned
| generation assets (may
include energy sharing,
Sharing of operation of microgrid
generation among < or other activities and
several local cover a larger
consumers geographic scope

Final customer who
generates renewable
electricity for self-
consumption

Figure 2.6. Diagram illustrating self-consumption, collective self-consumption and energy commu-
nity.(Source: [27])
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Individual Self-Consumption

Self-Consumption stands for final customers that consume the energy they produce on site. Both,

the recast Renewable Energy Directive [6] and Electricity Market Directive [7], introduce new defi-

nitions formally recognizing self-consumers:

Electricity Market Directive (2019) Article 2/8 [7]

“Active customer means a final customer, or a group of jointly acting final customers,
who consumes, or stores electricity generated within its premises located within confined
boundaries or, where permitted by a Member State, within other premises, or who sells
self-generated electricity or participates in flexibility or energy efficiency schemes, pro-

vided that those activities do not constitute its primary commercial or professional activ-

. t3

1ty .
Renewable Energy Directive (2018) Article 2/14 [6]

“Renewable self-consumer means a final customer operating within its premises located
within confined boundaries or, where permitted by a Member State, within other prem-
ises, who generates renewable electricity for its own consumption, and who may store or
sell self-generated renewable electricity, provided that, for a non-household renewables
self-consumer, those activities do not constitute its primary commercial or professional

activity”.

Final consumers, who are the ones who produce and consume electricity, are allowed to
store and sell the electricity they have used within their installations. Member States may
also extend this scope beyond the consumers' own premises. However, these activities
are not allowed in cases in which these are the actors' primary professional or commercial

activities.

Although the definition of renewable self-consumers is different from that of active cus-
tomers, the CEP also allows them to participate in various energy efficiency schemes and

flexibility programs.

Collective Self-Consumption

The increasing financial viability of installing small renewable generation units and the emer-

gence of a sharing economy have led to an increase in the number of people who are interested in

directly sharing their electricity with other consumers. This concept is now formally recognized at

the EU level legislation.



2.2 Clean Energy Package for all Europeans 25

In the Electricity Market Directive [7], the concept of active customers includes groups of jointly

acting customers, whereas the Renewable Energy Directive [6] defines jointly acting renewable self-

consumers in a separate definition:

Renewable Energy Directive (2018) Article 2/15 [6]

“Jointly acting renewable self-consumers means a group at least two jointly acting re-
newable self-consumers (...) who are located in the same building or multi-apartment
block”.

This definition only applies to renewable self-consumer groups that are located in multi-
unit residential buildings. Member States can't extend this concept beyond these buildings
[27].

The primary difference between the two definitions of renewable self-consumers (Table
2.1) is that renewable self-consumption is about a single consumer generating renewable
electricity on its premises for its own individual consumption, while jointly acting renew-
able self-consumers implies that multiple consumers come together to generate renewa-
ble energy on their same building or multi-apartment to meet their collective consumption

needs.

Table 2.1. Renewables self-consumption definitions under the Renewable Energy Directive (Adapted

from [28])

Article 2(14) REDII: 'renewables self-consumer' Article 2(15) REDII: 'jointly acting renewables self-consumer"

A final customer operating within its permises A group of at least two jontly acting renewables self-consumers in
located within confined boundaries or, where accordance with point (14) who are located in the same building or
permitted by a Member State, within other multi-apartment block.

premises who generates renewable electricity for
its own consumption and who may store or sell
self-generated renewable electricity, provided that
for a non-household renewables self-consumer,
those activities do not constitute its primary
commercial or professional activity.

Energy Communities

The Clean Energy Package contains two definitions for Energy Communities: CEC which is con-

tained in the recast Electricity Market Directive [7], and Renewable Energy Communities (REC),

which is included in the recast Renewable Energy Directive [6].

The concept of CEC is defined in the Electricity Market Directive (2019) Article 2/11 [7]:
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“Citizen Energy Community means a legal entity that: (a) is based on the voluntary and open
participation and is effectively controlled by members or shareholders that are natural persons, local
authorities, including municipalities, or small enterprises; (b) has for its primary purpose to provide
environmental, economic or social community benefits to its members or shareholders or to the local
areas where it operates rather than to generate financial profits; and (c) may engage in generation,
including from renewable sources, distribution, supply, consumption, aggregation, energy storage,
energy efficiency services or charging services for EVs or provide other energy services to its mem-

bers or shareholders*;
The Renewable Energy Directive (2018) Article 2/16 [6] states the REC model:

“Renewable Energy Community means a legal entity: (a) which, in accordance with the applica-
ble national law, is based on open and voluntary participation, is autonomous, and is effectively
controlled by shareholders or members that are located in the proximity of the renewable energy
projects that are owned and developed by that legal entity; (b) the shareholders or members of which
are natural persons, Small and Medium-sized Enterprises (SMES) or local authorities, including mu-
nicipalities; (c) the primary purpose of which is to provide environmental, economic or social com-
munity benefits for its shareholders or members or for the local areas where it operates, rather than

financial profits”;

Table 2.2. The Energy Communities definitions in the CEP (Adapted from [28])

Article 2(16) Recast Renewable Energy Directive

Article 2(11) Recast Electricity Directive

Renewable Energy Community' Citizen Energy Community'

A legal entity: A legal entity:

which in accordance with the applicable national
law; is based on open and voluntary participation;
is autonomous; and is effectively controlled by
shareholders or members that are located in the
proximity of the renewable energy projects that are
owned and developed by that legal entity;

the shareholders or members of which are natural
persons. SMEs or local authorities, including
municipalities.

the primary purpose of which is to provide
environmental, economic or social community
benefits for its shareholders or members or for the
local areas where it operates, rather than financial
profits.

is based on voluntary and opne participation and is effectively
controlled by members, local authorities, including municipalities, or
small entreprises.

has for its primary purpose to provide environmental, economic or
social community benefits to its members or shareholders or to the
local areas where it operates rather than to generate financial profits,
and

may engage in generation, including from renewable sources,
distribution, supply, cinsumption, aggregation, energy storage, energy
efficiency services or charging services for electric vehicles or provide
other energy services to its members or shareholders.
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The two definitions are based on principles-based elements that must be met in order for a set of
installations to be considered an energy community. This first criterion requires the creation of a
legal entity that is organized around certain governance and ownership principles. Both definitions
imply that collective ownership can be organized around a specific energy-related activity. This is
because some of the elements of the CEC and REC definitions are similar.

In CEC, no proximity or geographic limitation to the energy project is required. According to
Electricity Directive (Art. 16.2a) [7], Member States may provide in the enabling regulatory frame-
work that CEC “are open to cross-border participation”. Accordingly, this type of community can
correspond to a virtual network since participation is not restricted to a specific location. The primary
resource that is used is not necessarily renewable energy, however it is limited to activities in the

energy sector.

On the other hand, a proximity requirement needs to be defined for REC and shareholders or
members do not include large companies. The activity is open to all sources of renewable energy

(e.g., also heat), but it is restricted to renewable energy technologies.

Both concepts are summarized in Table 2.3, where EMD is the acronym for Electricity Market

Directive and RED stands for Renewable Energy Directive.

Table 2.3. Overview of conceptual dimensions regarding the Citizen and the Renewable Energy Com-
munities (Adapted from [29])

EMD RED Il
Electricity market (technology-neutral) Renewable energy market (heat and electricity based on renewable
Energy Sector energy)
Legal form Any Any
Structure Actors Structure Actors
Open and voluntary  [Any Open and voluntary  [Natural persons, local authorities and SMEs
Participation whose participation does not constitute their

primary economic activity

Structure Actors Structure Actors
Control Effective control Natural persons, local authorities and |Effective control Natural persons, local authorities and SMEs
smal and micro-sized enterprises whose participation does not constitute their
primary economic activity
Large energy companies cannot exercise any decision-making |Explicitly mentioned
Autonomy power
Geographical [No Those in control need to be located proximity of projects owned and
limitation developed by the community
Generation, distribution, supply, consumption, sharing, Generation, distribution, consumption, storage, sale, aggregation,
aggregation and storage of electricity. supply and sharing of renewable energy.
Activities

Energy-efficiency services, EV charging-services, other energy- |Energy-related services (commercial)
related services (commercial)

Social, economic and environmental benefits for Social, economic and environmental benefits for members/shareholders
Purpose members/shareholders or the local area in which it operates |or the local area in which it operates




28 Background and State of the Art

2.3. Overview of National frameworks for Energy Com-

munities in the EU

Since a few years ago, the discussion and the initial implementation of Collective Self-Consump-
tion (CSC) schemes has been ongoing in some EU Member States while the legislative processes on
Energy Communities is in its early stage in most countries. A working paper developed in 2019 [30]
provides an overview of the status quo of national approaches for CSC and Energy Communities and
assesses their relation to the EU directives. A cooperation group of Smart Grids and Energy Storage
H2020 projects (BRIDGE — horizon 2020) also developed a report whose main objectives were to
provide an overview of the existing legal developments regarding energy communities in the EU and
to build recommendations for the European Commission [29]. This section provides an overview of

different European countries’ frameworks based on the previously mentioned documents.

For CSC, the national approaches mostly refer to multi-family houses and mixed use with offices
and-or Small and Medium-sized Enterprises (SMEs). Partly, CSC is also enabled between different
buildings. In this context, storage is also an important element to maximize the self-consumption rate
of locally produced electricity and is partly specifically considered in the legislation e.g., through
incentive schemes. In some countries, CSC is currently allowed only in a limited way (e.g., via pri-
vate grids) or tolerated within a regulatory grey zone. In the field of Energy Communities legislation
is much less advanced. The heterogeneity of national legislation in the analyzed countries is very

large apart from being continuously changing.

In 2016 and 2017 important legal changes were introduced in Austria [31], France [32] and Ger-
many [33], related to the direct use of locally generated electricity by the tenants in multi-family
houses or commercial buildings via a private grid. In 2016, Greece passed a law on virtual net me-
tering which was complemented by a law on energy communities in 2018 [34]. Slovenia [35] and
the Wallonia region of Belgium [36] adopted laws on CSC and Energy Communities, while Luxem-
bourg has drafted a law in 2018 [37].

Table 2.4 gives an overview of CSC and Energy Community schemes in the EU Member States
[30]. In the case of Energy Communities, full transposition of the EU provisions is not yet the case
in EU Member States. However, specific elements or framework legislation with further need for
specification are in place in some cases. Because legislation on energy communities is not clearly
attributed to either REC or CEC, Table 2.4 makes no distinction regarding this point.
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Table 2.4. Collective self-consumption and energy community frameworks in selected EU MS and

Switzerland (June 2019) (Source: [30])

29

Country Collective Self-consumption Energy Communities
AT v EIWOG 2017 Legislative process started (Renewables expansion law)
BE v Wallonia, decrees in 2018, 2019 ¥ Wallonia, framework legislation; decree in 2019
DE v Tenant power model 2017
DK PG only
EE PG only, Electricity Market Act -
ES ¥ Royal Decree 244/19 - (multi-building CSC)
Fl PG only -
FR v Law 2017-227, decree 2017-676 Legislative process started
GR ¥ 2016 law on virtual net metering v Law N4513/2018 on energy communities 2018
LU Draft electricity market bill 2018 Draft electricity market bill 2018
NL PG only
PT Legislative process started
Sl ¥ Regulation on self-supply 2019 ¥ Framework within regulation on self-supply 2019
SE PG only
UK PG only -
CH ¥ Energy law and decree 2016/2017 v Energy law and decree 2016/2017

The next paragraphs detail the situation on CSC and Energy Communities in some EU countries.

Austria’s amendment of the Electricity Act in 2017 [31] supports private and commercial CSC
(in e.g., multi-apartment buildings) which previously was hardly possible. This amendment defined
specific aspects of these models on building scale such as the role of the different involved actors
and the required contractual relationships between them. Neighboring buildings so far are not cov-

ered.

The renewable energy legislation extends the scope of the CSC framework to energy communi-
ties. This includes REC according to the Renewable Energy Directive [6] that may have cooperative
structures for generating, storing and delivering renewable electricity across different real estate
boundaries. Current discussions on local grid tariffs between the regulator and market agents include
the idea that consumers only using the Low Voltage (LV) grid also only pay the LV grid related term
of the grid tariff. The spatial and regulatory boundary of an energy community would be MV/LV

substation.

On April 5th 2019, the Spanish government approved the Royal Decree 244/19 [38] that regulates
the administrative, technical and economic conditions of self-consumption in Spain. This Decree
completes the regulatory framework on this issue, driven by Royal Decree-Law 15/2018 [39], which
repealed the so-called sun tax (the term solar tax or “impuesto al sol” was a toll or tax that Spanish
authorities asked to be paid for the costs of distribution and maintenance of the electricity network
in Spain [40]), and provides increased certainty and security to users. Among other measures, the
royal Decree — Law 15/2018 [39] enables CSC by groups of apartment owners or in industrial estates;

it reduces administrative procedures, especially in the case of small self-consumers, and establishes
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a simplified mechanism for compensation of energy fed into the public grid. Self-consumption was
previously allowed with generation facilities located in the same dwelling only. According to the
new rules, power surpluses may be shared with nearby consumers also in other buildings or fed to
the grid. The generation facilities are connected to the internal network of associated consumers
(direct lines) or to the LV network derived from the same MV/LV substation. Self-consumed energy

from renewable sources, cogeneration or waste will be exempted from all kinds of charges and taxes.
The law distinguishes between:

a) Modalities for self-consumption without surpluses. In these cases, an antifouling mecha-
nism must be installed to prevent the injection of surplus energy into the distribution
network. In this case there will be a single type of subject, who will be the consumer;

b) Modalities of supply with self-consumption and surpluses. In these cases, production fa-
cilities that are close to and associated with consumption facilities may, in addition to
supplying energy for self-consumption, inject excess energy into the distribution net-
works;

c) Production facilities not exceeding 100 kW associated with surpluses will be exempted
from the obligation to register as an electricity production unit and will be subject only
to technical regulations;

d) Regulations may be developed for production facilities below 100 kW for a simplified
compensation mechanism between deficits of self-consumers and surpluses from its as-
sociated production facilities. For installations above 100 kW, surplus energy is sold on

the electricity market.

In Wallonia/Belgium in May 2019 a legislative framework promoting CSC and REC was
adopted [36]. According to this framework, the specific purpose of a REC is to produce, consume,
store, and sell renewable electricity for the benefit of participants at the local level using the public
network or a private grid. Several entities (natural or legal persons) within a “local perimeter” can
agree to share and store their production and electricity consumption based on electricity exclusively
produced from renewable sources or high-quality cogeneration (cogeneration with a specific effi-
ciency). The law defines such a local perimeter as a grid segment whose connection points are located
downstream of one or more MV/LV substation units. Thus, as opposed to proximity definitions using
a predefined distance, local perimeters can have different extents, taking into account in particular

the technical characteristics of the network.

Citizen participation in the energy transition has a strong tradition in Germany. Ownership of

renewable energy units by single owners or communities dates back to the early 70s. A survey
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developed on March 2020 [41], refers that exist over 800 energy cooperatives operational in Ger-
many (e.g EWS Schsdnau eG [42], Isarwatt eG [43] and UrStrom eG [44]). The legal concept of
CSC was introduced in Germany in 2017 [33] and it allows the plant operator in a multifamily house
to sell locally produced electricity to the tenants in direct proximity. However, it has an unclear
definition of proximity [45]. Citizen Energy Companies should contain at least ten natural persons
who are members eligible to vote, in which at least 51 per cent of the voting rights are held by natural
persons with a permanent residency in the administrative district of the project location. Further, no
member or shareholder of the undertaking shall hold more than 10 per cent of the voting rights.

Self-consumption in France is detailed in the Law 2017-227 [46] and in the Decree 2017-676
[32] which contain provisions for individual and collective self-consumption. These provisions are
included in the French Energy Code. The definition of the two forms of self-consumption includes
that individual self-consumption does not involve the public grid for sharing the produced electricity
while collective self-consumption does. CSC is allowed if electricity is produced and consumed by
several consumers and producers linked together through a legal entity. According to the French
PACTE law adopted in April 2019 [47], the geographical scope no longer relates to a transformer
MV/LV but refers to proximity within the LV grid.

A law on energy communities was introduced in Greece in 2018 [34] and expanded the scope of
virtual net metering to energy communities. This law defines energy communities as civil law part-
nerships with the exclusive aim of promoting the social economy, encouraging solidarity and inno-
vation in energy, responding to energy needs, promoting energy sustainability in the production,
storage, self-consumption, distribution and supply of energy and increasing energy efficiency in final
consumption on the local and regional level. The proximity requirement is transposed through the
requirement that 50% plus one of the members need to be located in the same District as the head-

quarters of an Energy Community.

A regulation on self-supply with electricity from renewable energy sources was adopted in Slo-
venia on May 1% 2019 [35]. It allows two forms of CSC:

- CSC in multi-apartment buildings, where the inhabitants can share energy from a renewable
energy source generation unit connected to the LV network of the building. The renewable
energy source production unit is located on the building and is connected through its own
metering point to the point of common coupling of the building network with the LV distri-
bution grid;

- CSC in renewable energy source communities that can be formed by customers in various

types of dwellings. The renewable energy source production unit can be located at a separate
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building and is connected to a dedicated production metering point on the LV distribution
grid. The consumers participating in the renewable energy source community can consume
electricity through two or more consumption metering points that are connected to the LV
distribution grid of the same LV transformer station as the metering point of the renewable

energy source production unit.

Inn Portugal the 2014 Decree-Law [48] introduced the definition of Small Production Units for
Self-consumption (in Portuguese termed as UPACs), which were limited to individual or collective
persons, with each production unit being associated only to one single meter, thus rendering impos-

sible any form of collective renewable Energy prosumer initiative.

As a response to the recast of Renewable Energy Directive [6], a new Decree-Law was issued on
the 25th of October 2019 (DL 162/2019) [49]. This Decree-Law came into force on January 1%, 2020
for self-consumption and Renewable Energy Communities with intelligent metering system and in-
stalled at the same voltage level, and in 2021 for other self-consumption activities. This Decree-law
allows self-consumers to group together, and the same unit of energy production may have several
self-consumers (collective self-consumption). This new regime allows direct exchange between two
or more prosumers and sets the ground for the development of various collective self-consumption
business models (including P2P schemes). It is also allowed that self-consumers and other partici-
pants in renewable energy projects constitute legal entities (the Energy Communities) for the pro-

duction, consumption, sharing, storing and selling of renewable energy.

The main objective of this Decree-Law is to create the conditions for Portugal to achieve the goals
defined within the scope of the National Energy-Climate Plan for 2021-2030 [50], namely to achieve
a share of 47% regarding the energy from renewable sources in the gross final consumption in 2030,

as well as to reduce the price of electricity for those who adhere to self-consumption.

This legal text aims at inducting greater efficiency from an energy and environmental point of
view and ensures that the benefits from energy transition (e.g., costs of the national electricity sys-
tem) are shared in a fair and impartial way, both by companies and by citizens interested in partici-

pating, without public subsidies.

For the first time, there was a legal framework for jointly acting self-consumers and REC, which
is a copy of the recast of the Renewable Energy Directive definition. The mentioned legal framework
does not clearly set spatial limits for the proximity between prosumers (i.e. in km), although DL
162/2019 Art.5 states that members of the community should be located within the proximity of the
renewable energy installation. For each case, neighborhood relation or project proximity should be

assessed by the National Directorate for Energy and Geology (DGEG) considering the project
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physical and geographic continuity, and jointly acting self-consumers and REC. The definition of
the proximity criterion can also consider the project connected substation, different voltage levels or
other legal and technical issues.

There were no legal provisions for CEC. However, DL 162/2019 offers equally a legal basis for
aggregators and the use of Guarantees of Origin (producers and energy suppliers may use this mech-
anism), allowing the setting up of new business models and new networks and social innovations

that may further develop CEC in Portugal.

Administrative procedures for UPACs registration and licensing are also simplified by the DL
162/2019:

- Capacity equal or under 350 W: no previous control was required;

- Capacity between 350 W and 30 kW: it was required a previous communication to
DGEG;

- Capacity between 30 kW and 1 MW: they needed a previous registration and an opera-
tion certificate;

- Capacity higher than 1 MW: it was required to have a production and operation licenses.

Concerning the remuneration, DL 162/2019 stated that collective self-consumption and REC
should receive a remuneration for surplus energy supplied to the grid that reflected the market value
of that electricity and which can be commercialized by an independent aggregator or utility company.
It also recognized a new actor, Entidade Gestora do Autoconsumo (EGAC), which is a legal entity

that represents collective self-consumption participants.

It was also stated in Decree Law 162/2019 Art. 18 (n. 4), that charges associated with CIEG
(Custos de Interesse Econémico Geral), a subsidiary tariff named Costs of General Economic Inter-
est, could be totally or partially deducted from the grid access tariffs. In 19" June 2020, a government
dispatch, n.° 6453/2020 [51], stated that self-consumption and CER projects, starting operation till
the end of the calendar year 2021, benefited from an exemption from charges corresponding to

CIEGs network access charges for seven years.

On 20th March 2020, the Portuguese regulatory agency Entidade Reguladora dos Servigos Ener-
géticos (ERSE) approved the Regulation for implementing the new self-consumption regime, n.
266/2020 [52]. In May 2021, ERSE replace the former Regulation 266/2020 with new regulation
regime, n. 373/2021, that includes storage pilot projects [53]. Specifically, the designation of con-
sumption, production or storage facility is adopted. On the other hand, EGAC is the entity that must
interact with the DSO, so that energy sharing by collective self-consumption communities can be

managed. It also needs to cooperate with aggregators for selling exceeding energy purposes.
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In 14™ January 2022 it was published in Diario da Republica the Decree-Law n. 15/2022 [54],
that establishes the organization and functioning rules of the National Electric Systems, incorporating
in a single legislative instrument a wide range of diplomas. It revokes and refreshes Decree Law
162/2019 and details the scope for control procedures for electricity production and storage. The
main amendments introduced details for Self- Consumption, the concept of proximity between the
UPACs and the utilization installations, with the law establishing the maximum distance between
them (Art. 81-90) [54]. In Art. 187-191 it is also included the concept of CEC and REC (art. 187-
191) [54]. Overpowering and Repowering (Art. 62-73) [54] are considered non-substantial changes
and can be requested after the production license is issued and shall not lead to autonomous procedure
of modification title and, in the case of wind or solar plants, no new environmental impact evaluation
will be required. In wind farms already in operation, it is accepted that they may inject into the grid
the additional energy resulting from prior control titles (operating licenses), maintaining the connec-
tion power unchanged, with the energy being remunerated in accordance with the remuneration sys-
tem in force and for the applicable period. For all generating plants, with the exception of hydroe-
lectric projects with a connection capacity exceeding 10 MVA, it is accepted that they may increase
the installed power up to a limit of 20% of the connection power, with the connection power remain-
ing unchanged. In this Decree Law, it is also defined the concept of hybridization (Art. 74-78) [54]
corresponding to the inclusion of a new renewable energy plant into an existent generation plant.
Unlike overpowering, it may be granted to a different owner of the generating plant or UPAC without

the need for a dominance relationship.

It is foreseen the exemption from the RESP operator's intervention, provided the requirements
laid down by law are met, being applicable until the injection capacity of the RESP, established by

an annual quota set by the Government member responsible for the energy sector, is reached.

2.4. Peer-to-Peer markets

The Clean Energy Package provides a framework for new energy initiatives that are aimed at
increasing the participation of small and medium-sized energy producers in the energy market. It
also allows consumers to play a more prominent role in the energy transition. Through the CEP,
consumers can now have more options when it comes to their energy consumption and their choice
of home appliances. It allows them to take informed decisions regarding the use of their electricity.
Passive energy consumers can also become prosumers by actively investing in and participating in
renewable energy initiatives [5]. This new framework, called by some authors as the democratization
of energy, aims to provide a more decentralized and open energy market. This new approach also

paves the way for the establishment of new electricity markets. One of these is the P2P mechanisms,
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which are designed to provide a more direct and transparent connection between small consumers
and energy producers. Consequently, P2P electricity trading has become the next generation of smart
grid energy management schemes that allows prosumers to participate in electricity trading activities
[55].

The Renewable Energy Directive [6] recognizes prosumers as entities which have the right to

consume, store or sell renewable energy generated on their premises:

- individually, that is, households and non-energy SMEs and collectively, for example in
tenant electricity projects ([6], Art. 21), or

- as part of Renewable Energy Communities organized as independent legal entities ([6],
Art. 22)

On the other hand, the 2019 Electricity Directive (recast) of the European Commission [7], de-
scribed in Section 2.2.2, is aligned with the concept of P2P since it allows prosumers to participate
in electricity trading activities.

So, both directives expressly place the consumer at the heart of the energy markets [56], where
they have the right to consume, to generate renewable energy, including for their own consumption
and to store or sell excess electricity production. This could be done via bilateral trading, aggregators
and P2P trading, receiving a market-based remuneration and guarantying the access to all suitable

energy markets directly or via aggregation.

The electricity market was typically settled in a unidirectional way, where generation companies
sell large amounts of electricity to retailers in the wholesale market, and retailers then sell electricity
in smaller amounts to end users in the retail market. However, the P2P energy trading encourages
multidirectional trading within a local geographical area. To address some of these challenges, P2P
electricity trading emerged as a new alternative to foster the deployment of distributed generation
technologies. It allows a direct interaction between market participants without considering a third
party involvement [57]. Through P2P, customers can benefit from lower energy costs by sharing
their surplus generation with other people in need. This provides both the consumer and the energy

producers with a win-win situation [58].

An overview of key aspects of P2P energy trading was made by Zhou el al [58]. It includes a
description of market designs, different trading platforms, physical and information and communi-
cation technology (ICT) infrastructures. These aspects are illustrated in Figure 2.7 and summarized

in the following sections.
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Figure 2.7. Overview of key aspects in P2P energy trading (Source: [58])

2.4.1. Market Design

The decentralization of energy markets, taking into account the increase of DER units, led to

innovative market arrangements in P2P energy trading:

a) Centralized, decentralized and distributed
Based on the level of centralization, market design models for P2P energy trading can be
organized into 3 categories: centralized, decentralized and distributed markets as illustrated

in Figure 2.8.
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Figure 2.8. Categorization of markets for P2P energy trading. (a) Centralized markets; (b) Decentral-
ized markets; (c) Distributed markets (Source: [58])

In a centralized market, a coordinator communicates with each peer and collects information
from them. With the obtained information, the coordinator directly decides the energy transactions
of the peers or the operational status of the devices among the peers. The revenue generated by the
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P2P community is then distributed to the members by the coordinator according to predefined prin-
ciples.

One of the main advantages of a centralized market is its ability to maximize the social welfare
of the whole P2P community. It allows the coordinator to set the goals of the community and ensure
that the members are satisfied with the services that they receive. [59]. One of the main disadvantages
of this type of market is its complexity due to the amount of computational work involved in man-
aging the various Distributed Energy Resources (DER) units. This kind of markets are vulnerable to
single-point failures at the coordinators.

A number of studies have been conducted on the potential advantages and disadvantages of cen-
tralized markets for P2P electricity trading [59-62].

Unlike a centralized market, decentralized P2P trading platforms do not have centralized coor-
dinators. Instead, they allow peer-to-peer transactions. This type of market does not explicitly max-
imize the social welfare of the whole P2P community [63]. The advantages of a decentralized market

are its scalability and ability to allow its members to easily plug-in and out.

However, one of the biggest issues of decentralized markets is their lack of predictability, which
can impact the operation of electricity distribution systems [64]. Thus, it becomes more complex to
manage network constraints and more difficult to improve the operational efficiency of the power

systems [64].

In decentralized markets, peers are exposed to significant uncertainties, which can affect the in-
terests of their vulnerable customers. For instance, load and generation curtailments can occur under
the continuous double auction mechanism described in [65]. A more detailed overview on decentral-

ized P2P energy markets is provided in [64, 66-69].

Distributed energy markets are a type of design where the coordinator influences the other par-
ticipants in the market by sending price signals. This type of system does not directly instruct the
other participants on the status of their devices [70-72]. Unlike a fully decentralized market, a dis-
tributed market still has a coordinator to ensure that the other participants' behavior is coordinated.
This type of market does require some information from its peers, but it does not directly control the
devices of its participants. Due to the decentralized nature of its design, distributed markets provide
a higher level of autonomy and privacy for their participants. They also combine the features of a
central and a decentralized market [58]. A number of studies have proposed distributed markets for

P2P energy trading as the ones described in [73-79].
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Electricity products are typically differentiated from one another due to how they have varying
prices and values. The wholesale market typically has different prices for electricity delivered over
different time periods. Retail markets also utilize various pricing mechanisms such as time-of-use
tariffs, real-time pricing and critical peak pricing [80]. In addition to these, electricity also has dif-
ferent pricing mechanisms based on the accumulated consumption. For instance, in some countries,
such as China [81], Canada, and South Africa [82], it is adopted the incline block tariffs where elec-
tricity prices are divided into several levels based on the accumulated electricity consumption in a

month.

Through P2P energy trading platforms, electricity products can also be differentiated from one
another. This is because these markets operate in local energy systems that have specific character-

istics. They are more flexible when it comes to implementing their settings.

A number of studies have been conducted on the potential of electricity products to be differenti-
ated from one another in P2P energy trading platforms. For instance, in a study conducted by Morstyn
et al. [77], it is proposed a multi-class management framework for electricity trading. This type of
system would allow users to choose which type of electricity product they want to use (green energy,
subsidized energy, and grid energy) which are preferred by different types of prosumers. These re-
searchers proposed a consensus-based approach that would allow electricity products to be differen-
tiated from their peers. For instance, in a case study, they noted that certain costs would be imposed

on trades involving a different distance between the peers.

In the future, different designs for electricity trading will be developed and adopted. These will
allow for the development of products that can be differentiated based on supply reliability or power

quality. The differentiation of electricity products is summarized and illustrated in Figure 2.9.
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Figure 2.9. Differentiation of electricity products (Source: [58])
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The stability in P2P energy trading markets can be defined as the ability to keep peers within the
market. Zhou et al. [58] mentioned several studies, such as the ones presented in [57, 61, 62, 64, 66-
68, 70, 71, 73-79, 83], which assumed that there was only one uniform P2P energy trading market
for the considered area. Nevertheless, it is possible to have several P2P market service providers in
an area, which compete with each other to recruit peers for the markets they have established. In such
cases, the stability would become an important dimension for evaluating a P2P energy trading market
design. In order to access the impact of P2P energy trading, on both individual peers and wider
society, Zhou et al. [58] proposed an evaluation on how peers will be grouped for a certain area when

they are free to form P2P coalitions.

Despite the various opinions about the potential of electricity trading, the evolution of power
system markets is still not clear. As indicated in [84-86] the conventional wholesale and retail mar-
kets will continue to exist for a long time. This is why it is important that the studies on the relation-
ship between the emerging P2P and existing energy trading platforms are conducted. Detailed dis-
cussions on the relationship between the retail and P2P markets can be found in [59, 61, 68, 75, 76,
78, 87]. Although the relationship between the two is examined in detail in [57, 77, 83], in most
studies peers are assumed to first trade with each other, and then trade with the wholesale [60, 77,
83] or retail market [59, 61, 87] individually or in aggregate (depending on the scale of the peers and
the design of the market for P2P energy trading) in order to deal with the energy imbalance. In other
words, the conventional wholesale or retail market acts as the “residual balancer" for the peers in
P2P energy trading. This allows the P2P trading system to maintain a steady supply of electricity
while ensuring that the consumers are satisfied with the overall performance of the market. The
“community-based market”, presented in [88], is an example of this type of relationship as illustrated
in Figure 2.10.

........................

........................

Figure 2.10. Community-Based P2P structure (Source:[88])
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Another type of market design that is proposed for electricity trading is the direct energy trading
between retailers and small producers. This type of system can be used to allow both the retailers
and the generators to participate in the market. Sousa et al. [89] presents an example of this type of
market design. Moreover, the proposed bilateral contract arrangements could be applied to enable
direct energy trading among prosumers, retailers, and generation units as well [64].

The modeling of decision-making processes of entities with conflicting interests can be done with
game-theoretic approaches. It can also motivate entities to compete or cooperate in order to achieve
certain goals. Thus, game-based models have a large potential for application in P2P energy trading
[90].

Simulations of the potential outcome of P2P markets have been conducted through non-coopera-
tive game frameworks. The Nash equilibrium? of a microgrid, in which prosumers with onsite PV
systems and flexible demand trade with each other, was calculated in order to assess the outcome of
P2P energy trading [91]. Non-cooperative game-based approaches were also used in [78] to model
the behavior of the peers. Furthermore, non-cooperative auction-based approaches have been used

as the core mechanisms of distributed P2P energy trading markets.

Stackelberg game-based? approaches have been used in some studies for establishing pricing
mechanisms in distributed P2P energy trading markets. In [74], the coordinator acted as the “leader”
and the peers acted as the “followers” while in [78], the sellers acted as the “leaders” and the buyers

acted as the “followers”.

A variety of game-theoretic approaches have been proposed, as summarized in [90], although
only a few have been used for P2P energy trading in existing studies. Game-theoretic approaches are
valuable models and techniques to be utilized in the future for modeling the trading behavior of peers

and for designing and assessing P2P energy trading markets.

2.4.2. Trading platforms

Through P2P platforms, electricity users can easily trade their energy supply while following the
market rules. Moreover, they can monitor the energy consumption of their peers. Its underlying tech-

nology can be distributed across decentralized or centralized platforms.

L In game theory, the Nash equilibrium is a solution concept of a non-cooperative game involving two or more players, in
which each player is assumed to know the equilibrium strategies of the other players, and no player has anything to gain
by changing only its own strategy.

2 The Stackelberg model is a strategic game in economics in which the leader firm moves first and then the follower firms
move sequentially.


https://en.wikipedia.org/wiki/Economics
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Regarding the centralized trading platforms Long et al. [75] developed a microgrid-based P2P
energy trading system. It allows electricity producers to list their products and consumers to place
orders. Each order includes when and how much electricity needs to be supplied between the pro-
ducers and consumers. The DSO and the electricity suppliers also share information with the plat-
form to balance electricity excess/deficit and determine whether the P2P trading would violate the
network limits. In reference [92] it is also proposed an electricity trading system which enables
prosumers to sell electricity to peer.

Due to the increasing number of concerns about the security and reliability of P2P platform trans-
actions, more emphasis is being placed on the use of blockchain technology. This type of technology
is a cutting-edge innovation that can help decentralize electricity trading. A comprehensive review
on this topic is provided in [93], which establishes an analytical framework for blockchain-based
microgrids. The decentralization feature of blockchain is considered to be well matched with the
decentralized characteristic of P2P energy trading, where electricity supply is no longer provided by

centralized large generators, but rather by small prosumers with DERs.

Blockchain is an emerging technology that has the potential to fulfill security, privacy and pay-
ment transaction requirements in distributed energy trading. Blockchain technology was proposed in
2008 and began with cryptocurrencies like bitcoin but since then it has expanded beyond the world
of finance and banking. Its application in the energy field refers to the energy blockchain and it
combines conventional and renewable energy sources based on blockchain technology. Moreover,
apart from promoting a more efficient use of traditional energy, it also accelerates the widespread
use of new energy sources as addressed in [94, 95]. In this setting, [74] and [76] utilized blockchain
technology to develop platforms for P2P electricity trading based on the industrial Internet of Things
(1o0T) concept.

Compared with traditional energy technologies, applying blockchain into the energy field has the
following technical advantages [96, 97]:

- ability to create a simplified and efficient multi-layer trading system. It eliminates the
need for third parties to coordinate the activities of the electricity supply chain. Through
its decentralized network, producers and consumers can easily connect and conduct
transactions;

- allows consumers and energy traders to perform electronic contracts through a consen-
sus mechanism. This ensures that the transactions are secure, tamper-proof and robust

to single point failure;
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- ability to create smart contracts, which are easy to execute and can be used to reduce the
costs of compliance and contracting. This is particularly beneficial for P2P transactions,

which involve low-value transactions between small-scale customers with DERSs.

The blockchain technology will not be detailed in this work. However, some details and discus-
sions about blockchain technology are available in [98].

The application of blockchain in the energy field is mainly concentrated on energy trading, EVs
charging, security of power information, carbon trading, demand side response, distributed and
multi-complementary energy systems (as shown in Figure 2.11). The next paragraphs provide further

information on these application areas.
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Figure 2.11. Applications of blockchain in energy sector (Source: [94])

a) P2P energy trading

The blockchain based P2P energy trading model can provide an efficient, inexpensive, open
and trustworthy trading platform in decentralized energy systems. The power trading process based

on blockchain has great potential in decentralized energy systems (Figure 2.12).
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Figure 2.12 Blockchain-based power trading process (Source: [94])

A number of studies have shown how blockchain technology can be used to facilitate P2P energy
trading, particularly using loT. For instance, a blockchain was used to develop platforms for the
exchange of energy between producers and consumers [74, 76]. A consortium blockchain was pro-
posed in [74] for supporting P2P energy trading in microgrids, energy harvesting networks, and ve-
hicle-to-grid applications. In [76], a local electricity storage solution was proposed to address the
issue of a long chain maintaining many blocks possibly being created during P2P energy trading, and
thus reducing the operational overhead. Kang et al. [73] designed a consortium blockchain for P2P
energy trading between plug-in hybrid EVs, which could improve transaction security and privacy
protection level. Aitzhan et al. [99] developed a blockchain-based platform that allows energy traders

and producers to conduct secure and private transactions.
b) Electrical Vehicles, EVs

The rapid emergence and growth of EVs is expected to be induced by various factors such as
lower costs, faster charging, and better vehicle performance. However, the lack of charging infra-
structure is still a major issue that is preventing many car owners from fully embracing the technol-

ogy.

Currently, there are a number of electric vehicles charging providers and payment platform oper-
ators. Unfortunately, the standards for electric vehicle charging aren't uniform, which makes it very

inconvenient for car owners. With blockchain technology being used in these operation platforms,
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the management of electric vehicle charging will be streamlined, and the security of their system will
be improved [100].

¢) Physical information security

One of the most common security measures that electricity distribution companies use to prevent
unauthorized access to their networks is by building communication lines. However, this method can
be costly and can be vulnerable. Instead, they can use the data collected by their equipment in the
line transmission system. According to a study conducted by Ding et al. [101], blockchain technology
can help addressing some of the security issues that information and physical systems face. These
authors discussed about the various factors that can affect the operations of blockchains, such as the
loss of private keys and privacy leaks. In the mentioned paper, it is discussed the multiple security
measures that can be implemented to protect energy blockchains. These include structural, manage-

ment, and ontological security.
d) Carbon trading

Due to the complexity of the carbon emission market, it is currently difficult to track and manage
multiple transactions in its trading and certification system. Blockchain technology can be used to
help solving this issue by providing a central management platform for the trading of carbon rights
[102]. On the other hand, consumers can use tokens representing energy production or tradable dig-
ital assets to buy, sell or exchange renewable energy with each other. So, the development of P2P
financial transactions through blockchain technology can help strengthen the climate financing

flows.
e) Virtual Power Plants

VPPs can also benefit from blockchain technology by establishing a central management platform
that can operate the distributed generation and energy storage systems. These facilities can then par-

ticipate in the development of virtual power transactions.

Blockchain technology has the characteristics of decentralization and mutual complementarity,
which is aligned with the geographical dispersion and scheduling of VVPPs. It also has advantages in
transaction applications because of its own characteristics, and can provide a transparent, fair, relia-

ble, and low-cost trading platform for VPPs [103].

Wei and Yue [104] introduced the blockchain technology into VVPP. The proposed model pro-

posed an improved VPP operation and scheduling model.
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f) Demand side response

One of the most important factors that can be considered when it comes to the development of
demand side response services is the availability of a central management platform and the scalability
of the solution. The use of blockchain technology in energy management of residential buildings, for
instance, is an important option since it will allow to implement a more efficient and cost-effective
solution. The use of blockchain technology for the accounting of general ledgers can also help pre-
vent the transmission of false information. This can be done through the establishment of a compre-
hensive set of traceability systems.

g) Multi energy systems

In a study conducted by Mihaylov et al. [105], it was noticed that blockchain technology could
be used to settle the transactions in multi-energy systems. This method allows the recording of real-
time production and costs of different energy systems. These authors concluded that this approach
could help improving the efficiency of various energy systems by allowing them to monitor and
manage the prices of different energy sources in real time. For instance, by implementing automatic

scheduling and settling transactions, multiple energy systems can improve their efficiency.

2.4.3. Physical and Information and Communications Technology infrastruc-

ture

After reaching trading agreements on P2P energy trading platforms, the agreed amounts of elec-
tricity need to be delivered from one peer to another at an agreed period through the electric power
networks. To do so, physical and Information and Communications Technology (ICT) infrastructures

are essential for energy trading.

The physical distribution of electricity between its peers is necessary in order to deliver the agreed
amount of power. There are two types of solution for this purpose: private wire networks or public

networks:
- Private electric power networks and associated control strategies

One way to improve the efficiency of electric power systems is by building private networks
between different peer-to-peer entities. Despite the various advantages of this type of ap-
proach, it still has a high cost of construction and a low operating margin [106]. Despite the
advantages of this approach, building private networks for the trading of energy is not an
attractive solution due to the various factors that affect the development and operation of

such systems. For instance, the lack of regulation and the uncertainty regarding the future
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security of supply of energy are still major factors that prevent the private networks from
operating successfully [107]. According to Werth et al. [108], a DC nanogrid could be used
to connect the houses in a community. These structures are equipped with various compo-
nents such as a network controller, an external power bus, and photovoltaic panels. These
components can be used to exchange power between the houses. However, and despite the
technical potential of private networks, they are not expected to expand significantly in the

near future.

- Public electric power networks and associated technical arrangements

A public power network can be used to deliver the agreed amount of electricity to its peer
groups. Unlike private networks, the efficiency of the pool allows the consumers and pro-
ducers to benefit from the same energy. The development of new power routing devices and
algorithms could potentially change the way energy trading is conducted in public power
networks. Instead of traditional physical energy exchanges, this type of system is designed
as a virtual one [109, 110]. Zhou et al. [58] noted that in order to ensure that the physical
laws and limits of the equipment’s in public power networks are enforced properly, a tech-
nical evaluation is needed. In this scope, through a sensitivity analysis, Guerrero et al. [65]
were able to determine if a trade could be approved or denied. Aside from this, other factors
such as the incentives for the trading of energy have also been taken into account to improve
the efficiency of the power networks.

Nikolaidis et al. [111] proposed a loss allocation framework that would allow the power
networks to efficiently manage their financial transactions. This method was able to fit into
the financial features of P2P trading. This paper proposed various charging methods that are
adequate for P2P energy trading including uniform charging, zone-based charging, and elec-
tronic distance charging. Since these methods are all external, they can fit seamlessly into

the regulatory and physical configurations of most of the grids.

2.4.4. Peer-to-Peer Trading Projects

As exposed before, the implementation of P2P models will have some impacts and advantages in
communities. Because of these benefits, several projects worldwide have focused on P2P energy
trading. Notable examples are Piclo in the UK, VVandebron in the Netherlands, sonnenCommunity in
Germany, and Yeloha, Mosaic and TransActive Grid in the United States [112].

Piclo was launched in the UK to help electricity consumers find the best possible price for their

energy supply. Through its platform users can easily compare multiple generators' prices and monitor
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their energy consumption. It also allows them to receive premium rates and discounts from the pro-
viders. Its main objective is to help consumers reducing their energy demand, and supply cost by
increasing the use of renewable energy sources [113].

Vandebron, a company located in the Netherlands, is able to provide its consumers with a way to
purchase electricity from independent producers. Like Piclo, this platform acts as a bridge between
the generators and their customers [91]. In Germany, a project known as PeerEnergyCloud was
launched to develop a technology that would allow generators and retailers to monitor and manage
their excessive production. It was established in order to create a virtual marketplace for power trad-
ing within a microgrid [114].

In Germany, a company known as sonnenCommunity launched a project that allows individuals
to voluntarily share their solar panels' surplus with other people. This project allows them to receive
the benefit of the surplus energy they produce. Through its software platform, the company was able
to monitor the energy consumption of their members. Like other similar projects, this project high-

lights the need for storage systems [75].

In the US, projects known as Yeloha and Mosaic allowed people who don't own a solar system
to pay a small portion of the electricity generated by the hosts' panels. While these projects are similar

to others, they mainly focus on solar energy.
2.5. Virtual Power Plants and Microgrids

2.5.1. Concept, purposes and benefits

The traditional approach to power generation was to have centralized generation in large units
with unidirectional power flows. However, with the emergence of DER, power systems now have
bidirectional power flows. This means that communities and citizens can act as energy consumers or
producers or prosumers. This transition presents various new challenges and opportunities. Some of
these include the emergence of smart grids and the increasing number of flexible loads, such as heat
pumps and storage systems. The development of Microgrids and Virtual Power Plants can be seen

as paving the way to smart grids.

A microgrid is defined as “a group of interconnected loads and DER with clearly defined electri-
cal boundaries that acts as a single controllable entity with respect to the grid and can connect and
disconnected from the grid to enable it to operate in both grid-connected or island modes [115]. It

can be connected to the DSO through a central management entity [116]. By managing and deploying
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distributed energy resources the system's reliability can be improved. Figure 2.13 presents the archi-

tecture of a grid-connected Microgrid.
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Figure 2.13. lllustration of the grid-connected microgrid architecture (Source: [117])

According to Sabry, a microgrid can be classified into two categories: a pool of distributed gen-
eration resources that can be dispersed across different points of the distribution network, or a net-
work of decentralized power generating units [118]. From a market perspective, a microgrid can be
viewed as an aggregator of DER and consumers installations operated by a microgrid central con-

troller.

A VPP is a type of DER that can be aggregated and operated as a single flexible structure. It can
provide services to the grid and participate in the energy trading market [119]. This concept emerged
during the 1990s as a way to address the challenges and issues related to the connection of renewable
energy units in the electricity grid [56]. Its main objective is to maximize its profitability through the
development of a framework that enables it to make informed bidding decisions. It can also trade

energy in the wholesale market and provide services to consumers and to the system operator [120].
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As previously referred, a microgrid is an integrated system that can operate connected to the elec-
tricity grid or islanded away from it. On the other hand, a virtual power plant is a structure that uses
software systems to coordinate the various components of its DER. Although both types of architec-
tures have similar features, they have varying capabilities when it comes to integrating renewable
energy and demand response programs. Asmus [116] summarized the main ones as follows:

- microgrids can be connected to the electricity grid or be independent whereas virtual
power plants are always in the grid-tied mode;

- microgrids typically require additional storage, however virtual power plants can provide
their own storage;

- unlike VPPs, microgrids rely on certain hardware innovations, such as switches and smart
inverters. VPPs are heavily dependent on smart metering and information technology;

- unlike a microgrid, a virtual power plant can operate in large geographic areas. This al-
lows it to combine different resources and provide consistent and coordinated operation;

- microgrids are normally used to trade only in the form of retail distribution, while the

VPPs can build a bridge to the wholesale market;

According to Ullah et al. [121], the main purposes of VVPPs are to provide the following opportu-
nities to the participating partners:

- energy trading: to provide opportunities to their owners in the electricity trading market.
Through energy trading, the participantes can benefit from the different opportunities
offered by the electricity market;

- network services: to offer system support services to transmission and distribution sys-
tem operators;

- balancing services: to balance production and consumption demand, utilizing multiple
markets simultaneously in real time. This can help improving the efficiency of their op-
erations and provide their partners with environmental and economic benefits;

- optimizing: to optimize the production and consumption of the members of the VPP
itself.

A structure of a VPP is presented in Figure 2.14.
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Figure 2.14. VPP structure (Adapted from [121])

According to the VPP concept a set of conventional generating units, renewable energy units and
storage systems are managed by a central entity. The demand side management and market operators

complete and perform the structure of VPP,
A VPP architecture can be implemented in four steps [121]:

- Forecasting for renewable energy generation and for demand,;

- Running of stochastic optimization models to determine market bids;

- On the basis of commitments and updated forecasts, unit commitment optimization ad-
justs DER operation;

- Acontroller is used to reach commitment targets.

The concept of VPPs brings benefits which could be identified and grouped among different
stakeholders. Othman et al. [122] and Braun [123] organized them considering the point of view of

different entities:

- policymakers can benefit from the various advantages of VPPs, such as their ability to
contribute to the reduction of global warming and their ability to provide additional
choices to consumers. They can also improve the wide deployment of DER units and
can open new opportunities for small-scale energy producers;

- benefits to suppliers and aggregators in sense that VPPs can minimize the economic risk
of both suppliers and aggregators, by creating new offers and reducing the investment
in the electricity distribution grid. They can also increase energy efficiency due to loss
reduction on transmission networks;

- benefits to energy consumers such as the ability to improve the reliability of the electric-

ity supply and provide resiliency services during times of outages;
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- benefits to DSO and TSO since VPPs can help creating a better coordination between
the DSO and the TSO. They can help improving the visibility of the DER units in the
network operations;

- benefits to DER owners due to their ability to participate in the energy market. This can
help lowering the costs of operation and provide them with a financial support. In addi-

tion, they can help minimizing the risk of financial loss for small producers.

One of the main activities of a virtual power plant is providing real-time balanced services. This
is done through two different entities that are known as Technical Virtual Power Plant and Commer-
cial Virtual Power Plant. Both operate together in order to achieve the VPP functions detailed in
Figure 2.15.

The Technical Virtual Power Plant ensures that the various systems that are part of a facility's
operation are completed properly. These include the distribution of energy and storage units, as well
as controllable loads. It also collects data about the consumption and supply of electricity from Com-
mercial Virtual Power Plant. This information is then used to develop a comprehensive analysis of
the plant's operations and provide its partners with the necessary information to make informed de-
cisions [124]. The Technical Virtual Power Plant ensures the correct and secure operation of the
power system considering the physical constraints and system support facilitation services offered
by the VPP.

- CVPP services include optimisation
of contracts

- Wholesale trading in markets

- Management of trade portfolio

- System balancing services

Technical VPP - TVPP services include voltage profile
control

- Management of local network
system

- Realisation of ancilliary services
- Asset monitoring
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Figure 2.15. Classification of the VPP (Adapted from [121])
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The functionalities provided by Technical Virtual Power Plant are [125]:

- to determine fault location;

- to provide maintenance facilitation services;

- to continuously monitor assets;

- to offer balancing services, management of local network and implementation of ancil-
lary services;

- to offer visibility to DER units in energy markets;

- toensure that the power system is operating in an optimal safe way.

The Commercial Virtual Power Plant is primarily focused on providing the required energy to the
electricity markets. It engages in daily market activities through the transmission of bid information
and the clearing of the market. The bilateral contract information as well as the clearing of the daily
market should be sent to Technical Virtual Power Plants to ensure that the contracted power is gen-
erated in each time period. Due to the nature of Commercial Virtual Power Plants, small producers
can now participate in the energy markets, thus eliminating a regulatory barrier that existed in many
systems [123].

The functionalities of the Commercial Virtual Power Plant can be summarized as:

- totrade in the wholesale electricity markets;
- to prepare DER bids and their submission to the electricity markets;
- to optimize the daily schedule production consumption forecasts of the VPP units;

- to balance trading portfolios;

Trading with VVPPs can pose various technical challenges. These include system capacity, voltage
drop, and unplanned outages. To minimize these issues, the distribution and transmission network
operators should focus on optimizing the power network system. Doing so they can help ensuring

that the electricity supply is continuously delivered to the users without interruption [126].

New incentive programs and management methods can help small producers overcoming their
commercial challenges. These programs can assist in developing new energy sources and reducing
the costs associated with maintaining the distribution network. Incentive strategies need to be imple-

mented in order to rewards, in an adequate way renewable distributed producers [121].
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2.5.2. Planning, optimization and operation of VPP

The characterization and technical planning of VPPs are carried out to evaluate their operation
and maximize their commercial potential. Optimal planning mainly depends on two aspects: the
technical aspects and the commercial objectives. The former involves analyzing the plant's capacity,
line loading, voltage profile, and asset monitoring. The commercial objectives of VPPs are usually
focused on optimizing the total cost of operation. These processes can be carried out through the

implementation of various optimization models [121].

Optimizing VPP operation is a process that aims to reduce the total cost of production. It can be
divided into two categories: structural and operational optimization [122]. The optimization of the
VPP structure includes the optimal sizing and siting of Distributed Generation units and the energy

storage devices, the optimal load control and the optimal measurement device’s location.

On the other hand, if the power system already exists, then this process can be limited. If the
power grid is already set up with the necessary parameters, such as the number of storage devices
and the production of distributed generation units, then operational optimization can be carried out
by determining the production of DG units, energy storage system rate of charge and discharge and
how much energy is purchased from the wholesale energy market.

The success of VPP operation depends on various factors such as the stability of the power sys-
tem, the security of supply, and the cost competitiveness of participating in the market. A customized
characterization strategy is then developed to address the varying economic objectives of the VPP
[122].

A distributed level VPP can also be equipped with an operational framework that includes the
forecast of solar and wind generation, and thermal generators. This framework can be used to deter-
mine the optimal strategy for the plant's dispatchable participation in the market. In both real-time
and day-ahead periods, an internal market can also be established between the DERs and the VPP
[127].

Baringo et. al [128] presented a novel model for the day ahead market trading of a VPP. The
model was able to take into account the various uncertainties associated with the plant's operation.
As a result, it can be used to predict the reserve requirements of the system operator. In addition,
uncertainty in available wind power generation and requests for reserve deployment were modeled
using confidence bounds and intervals, respectively, while uncertainty in market prices was modeled
using scenarios. The resulting model is formulated as a stochastic Adaptive Robust Optimization
problem, which was solved using a Column-and-Constraint Generation Algorithm. The main con-

clusions of this work [128] were as follows:
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- the stochastic Adaptive Robust Optimization approach was used to self-scheduling a VPP
trading in the energy and the reserve electricity markets;

- amodel relying on intervals was provided to characterize the uncertainty in the requests for
reserve deployment;

- the resulting trilevel optimization problem was effectively solved using an enhanced Col-

umn-and-Constraint Generation Algorithm. Duality theory was applied in this problem;

- the uncertainty in market prices, available wind power generation, and requests for reserve
deployment are key factors in the decision-making problem faced by a VPP trading in energy

and reserve electricity markets.
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Chapter 3

3. Literature review on Electricity Market

Simulation

Since 1980s, power systems have been gradually evolving from monopoly structures into liber-
alized structures. This brings the opportunity for generation companies to make more profits while
embracing more risks of not being dispatched. On the other hand, this “democratization of energy”
has created new actors and structures in power systems. Thus, it has become a core interest for all
the participants in electricity markets to develop new simulation models in a variety of areas from
planning to operation problems. Since Agent Based Models are able to simulate the interactions and
actions of autonomous agents, they are widely used in the electricity market simulations field.

Machine Learning Techniques, namely the Reinforcement Learning, are a computational ap-
proach to get agents to perform their best actions in an uncertain environment. They are especially
suited to model systems influenced by social interactions between flexible, autonomous, and proac-
tive agents. They also allow dealing with Markov Decision Processes where the probabilities and

rewards of Markov transition matrix are unknown.

Therefore, Section 3.1. presents some modelling methods to simulate electricity markets. Section
3.2. introduces the concepts of Agent Based Models and provides a review of the various develop-
ment steps involved in implementing them. A categorization of Machine Learning techniques is pre-
sented in Section 3.3, detailing a description of Q-Learning methodology. Finally Section 3.4, details

some ABM electricity markets simulators.
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3.1. Modeling methods to simulate electricity markets

With the restructuring of the power systems, where new actors and models were introduced to
foster competition, better allocation of the resources, cost minimization, and profit maximization

become some of the major goals of all the participants.

In terms of electricity market simulation, liberalized electricity markets are generally considered
to be imperfect competition and oligopoly mechanisms due to their unique characteristics. In certain
cases, market agents can manipulate the price of electricity by conducting strategic bidding behav-
iors. For instance, generation companies that have different generation mixes, such as wind, hydro,
and nuclear power plants, can bid on the electricity market including a number of blocks of energy
price together with the corresponding quantity of electricity [129]. On other hand, and with the in-
crease of small-scale producers, prosumers and consumers involved in the electricity market, the
need for an intelligent bidding/offering agent, responsible for making all the dynamic decisions in-
volved in this trading paradigm, turns the electricity markets very complex and very specific to sim-

ulate.

Various research works have been conducted on the development and simulation of electricity
markets. They use different methods and models to get the most realistic and efficient results. This
section covers the main areas of research that are related to the electricity market simulation and are

summarized in [130]:

e Optimization problems, addressing a single company assuming no market reactions;

e Equilibrium Models from Game Theory economics, considering a larger number of com-
petitors;

e Agent-Based Models (ABM) that simulate the behaviour of the companies and the inter-
actions between autonomous agents;

e Hybrid solutions.

An optimization model focuses on finding the best price for a single firm in the market, often
considered as a price-maker, while an equilibrium model considers the market behavior of all partic-
ipants. ABM are becoming more prevalent when a complex problem cannot be addressed in a tradi-
tional framework. Li et al.[130] resume and detail a complete classification of some of the modelling

approaches to simulate electricity markets (Figure 3.1).
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Figure 3.1. Modelling methods to simulate electricity markets (Source: [130])

The main characteristics of these modeling approaches are provided in Table 3.1.

Table 3.1 Characteristics of modelling methods to simulate electricity markets (Source [130])

Models

Characteristics

Single Generation < Developing optimization models to describe the entities in the electricity market
Company optimi- with the objective of finding an optimal solution:

zation

* Well-established and solid mathematical foundation;

* Generally focusing on one specific player in the system by simplifying the rest
of the system as a set of exogenous variables;

* Usually modeling no aspects of players’ intelligent behaviors;

* Difficult to model the complex, uncertain and dynamic systems or analytically
derive the optimal bidding strategy for the Generation Companies in the deregu-
lated electricity markets;

Game theory

» Modeling the electricity market as a game and mathematically capturing the play-

ers’ behavior in the game where one player’s success in making choices depends on
the others’ choices:

* Usually mathematically well-defined, involving a set of game players, a set of
bidding strategies, and a specification of payoffs for each possible combination
of bidding strategies;

* Analyzing the economic equilibria of the electricity market by focusing on the
players’ interactions;

* Capable of providing analytical rationale and explanation on how strategic bid-
ding behaviors affect the Generation Companies market power and profits;

« All players are assumed to be rational, which does not generally hold in reality;

» Multiple equilibria often occur in solving realistic problems;

59
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Models Characteristics

Agent-based » Modeling the complex electricity market as collections of rule-based agents inter-
acting with one another dynamically and intelligently, simulating human beings’
behavior to make optimal bidding strategies:

* Only a few simple rules are specified for and followed by various agents that
are situated in the network and behave intelligently in the system;

* Agents usually have and only require imperfect, local information and visibility;

* No centralized control or planning is required although random elements often
exist either among variable agents or in the system;

» Agents can interact with each other directly or through the environment, result-
ing in complex emergent global behavior of dynamic-equilibrium and adaptation;

* More flexible, robust, and easily implemented compared with analytical ap-
proaches;

* Capable of capturing the details about agents’ behaviors, which is helpful in
figuring out the relationships between individual decisions and system behavior;

* Capable of modeling the dynamics of systems that are not in equilibrium as
well;

* Usually they require computation-intensive procedures.

The traditional methods for optimizing the bidding process of a generation company were usually
used to address the issue of cost minimization [131]. The minimum revenue condition and the use of
indivisibility bids can also be considered as viable alternatives to turn the solution more realistic.
They can be integrated into the simple quantity-price pool designs to accommodate thermal plants

requirements that need to meet a minimum revenue condition.

The goal of a Single Generation Company Optimization Model is to find the best price for its
single player. Other factors that influence the market are also simplified in this model. Since the
market clearing price is considered as an external variable, many programming technigues have been
utilized to solve the optimal bidding strategy issue. Some of these include the use of traditional
Linear Programming (LP), Mixed Integer Linear Programming (MILP), Mixed Integer Programming
(MIP), Nonlinear Programming (NLP), Dynamic Programming (DP) and Markov Decision Process
(MDP). Although an optimization model can represent the markets in a quasi-perfect manner, it fails

to take into account the firm's decisions regarding the Market Clearing Price (MCP) [130].

A price-maker Generation Company can use a MILP model to solve the issue of self-scheduling
and maximize the profit of a pool-based electric market. These models provide the capability of

altering the market's prices to their own benefit [132].
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A NLP is proposed in [133] to optimize the bids of a Generation Company during a multi-year
auction market. It is proposed the use of a Lagrangian relaxation method to deal with the other aspects
of the bidding optimization problem.

A self-commitment problem for a generation firm that is affected by the exogenous price uncer-
tainty is presented in [134]. The different generator models take into account the minimum and max-
imum output energy levels, as well as various other factors such as the ramp rate limits, start-up and
shutdown costs, and incremental energy costs. The objective function of the optimization problem is
to maximize the firm's profit by taking into account the prices of energy of the different generation

units.

Paper [135] presents a stochastic NLP model that takes into account the optimal strategies for
power suppliers in an auction-based market. This model assumes that the supplier's bid is accepted
at the market's price and that the system's dispatch levels are set by a market operator to minimize
customers’ payments. The authors show that the competitive levels of power suppliers can be sub-

stantially higher than those of the other players if they strategically bid.

The optimal bidding strategies in the context of the generation limits and the market share of the
power suppliers are analysed in [136]. The authors of this paper concluded that the MDP framework
can effectively optimize the decision over time. However, it does not allow the use of risk attitudes

and makes a few strong assumptions such as ignoring the power system operational constraints.

The authors of [137] present a framework that allows generation companies to develop optimal
strategies at an annual level in uncertain and competitive markets. They then use a stochastic MILP,
combining optimization techniques with the Monte Carlo method to analyze the effects of uncer-
tainty on the decisions. The proposed framework is focused on developing a dynamic strategy that

is followed by all participants in the market.

Game theory models, also called equilibrium models, can be used to improve the bidding process
by analyzing the interactions between the players and analyzing economic equilibria of the system.
It can then reach an optimal solution through the Nash equilibrium. Different game theory models
can be adopted for competition rules such as the Bertrand competition, Supply Function Equilibrium

and the Cournot competition.

The most common type of competition rule utilized in this framework is the Bertrand competition.
It allows the generation company to compete with its counterpart by using prices and ignoring their
capacity constraints. In the Cournot model, similar to the Bertrand competition, the participating
generation companies use quantities as their strategy choices. The MCP is determined by the inter-

section of the aggregated supply and market demand curves.
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The quantity-setting equilibrium in the electricity market is more realistic than the Bertrand price-
setting strategies. For instance, in the Bertrand equilibrium, a firm can capture the entire market by
providing a low-price. However, this assumption is not tenable due to the increasing marginal cost
of generation and the capacity constraints [130].

The goal of the Cournot model is to maximize the output of each generation company while en-
suring that the remaining firms can no longer improve their profitability. The advantage of this model
over the price-setting strategy is that it allows the generation companies to make strategic decisions
based on the quantity-setting behavior of their units. An empirical simulation framework that calcu-
lates the Cournot equilibrium iteratively was developed in [138]. Several models based on the
Cournot competition can be found in [139]. This paper summarizes models applied in the analysis

of different deregulated markets such as New Zealand, California, and England.

Klemperer and Meyer [140] introduced the concept of the Supply Function Equilibrium, which
is a type of competition rule that allows firms to maximize their profits in a competitive market.
Instead of competing with each other, the participants choose to set their supply functions instead.
The advantages of the Supply Function Equilibrium model are widely debated. It is a better compro-
mise between the Bertrand and Cournot models, and it allows the users to get a more accurate depic-
tion of the behavior of the market participants. A number of studies on the strategic bidding market
have also been published using this model [141-144].

Agent Based Models are commonly used in market analysis to complement traditional models
and provide a deeper understanding of the energy transition. They were also reported as a potential
alternative to the traditional equilibrium models due to their complexity. The main issues with the
traditional equilibrium models are that they do not incorporate strategic behavior of market partici-
pants and have unrealistic design when assuming that market participants have all relevant infor-
mation about the characteristics and behavior of competitors. In addition, the traditional equilibrium
models neglect the consequences of the knowledge that a participant could get through the daily
operation on the electricity market. On other hand, Game Theory is largely limited to specific situa-

tions in the markets and which depend on some few factors [145].

ABMs work by allowing the agents to make their own decisions based on their experiences with
other agents and through interaction with the environment. The agents usually have local and imper-
fect information which, combined with their past experiences, help them improving their decisions
by modifying their strategies. This type of model allows the market participants to develop their own

strategies and preferences as adaptive agents. They can then learn from their past experiences to
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improve their performance. There are also artifacts, which are components that are passive and are
modified or shared by the market participants in order to carry out their operations in a cooperative
or competitive manner. For instance, in electricity markets, the Market Operator is involved in the
process of receiving bids from the market participants and then setting up a schedule for each trading
period. The concept of workspace as a conceptual container for artifacts and agents is useful in de-
fining the environment's topology. It can also help in establishing a locality concept.

Generally, the agent-based modeling procedure can be described as follows [146]:
» define the research questions to be resolved;
» construct a model comprising an initial population of agents;

» specify the initial model state by defining the agents’ attributes and the structural and insti-

tutional framework of the electricity market within which the agents operate;
« allow the model to evolve over time without further intervention;
« analyze simulation results and evaluate the regularities observed in the data.

The ABM can be categorized in terms of different learning algorithms such as Model-Based Ad-
aptation Algorithms, Genetic Algorithms, Q-Learning, Computational Learning, and Ant Colony

Optimization.

The development of agent-based methods of optimization and simulation began with techniques
that mimic aspects of natural selection. Holland’s Genetic Algorithm (GA) [147, 148] was used as a
new kind of optimizing tool for problems intractable by traditional calculus-based tools. The goal of
the GA is to test and score the various possible solutions in a population and, based on the “fitness”
score of each of them, select pairs of “parents” for a new “offspring” generation of possible solutions.
This artificial reproduction uses the genetic operations of “crossover” and “mutation” on the parents.
The selection and testing of new populations lead to the improvement of the quality of the population.
The process is commonly referred to as an optimization technique, which eliminates the need for
exhaustive testing of all possibilities. Since the process is carried out through the genetic operations
(selection, crossover, and mutation), the players are able to learn from each other. The goal of the
process is to test and score the various possible solutions in a population and improve the adaptation

of the population as the simulation evolves.

The populations in the first applications of GAs were seen as trial solutions that would optimize
the function under analysis (usually highly non-linear and discontinuous). Later applications, how-
ever, treated the populations as comprising agents rather than numbers. Individual agents were im-

mutable, but in each generation the population of agents would change, under selective pressure.
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This learning and adaptation process can be performed either within one single agent or in coopera-
tion with two or more agents. In a competitive market environment, agents naturally learn isolated
and use the learned knowledge for their own advantage. This modelling process corresponds to an
explicit learning procedure.

The probability of choosing a particular action again in the future increases if the feedback is
positive and decreases if negative feedback is received. This effect is called reinforcement and it is
advantageous in machine learning environments, where it is impossible for the agents to compare
the action’s result with a specified goal. Instead, the agent receives feedback for a performed action
and deduces the coherence of the action and its performance. Generally, a given feedback is assigned
not only to one action, but to the action of other agents or earlier performed actions. Q-Learning is
one type of reinforcement learning that was originally developed to handle the temporal credit as-

signment problem.

Since it will be the methodology considered in this work, the Q-Learning approach will be ana-

lyzed with more detail in Section 3.3 of this chapter.

Hybrid models combine various modeling methods available in the literature. For instance, a
model that combines the Lagrangian relaxation algorithm with the GA for generation companies to
build a proper unit commitment scheduling and derive the optimal supply curves to set up a proper
schedule for their units was developed by Yamin and Shahidehpour [149]. In another study, Sueyoshi
proposed an ABM equipped with Game Theory to analyze the interaction between learning agents
and the market participants during the electricity crisis in California (2000-2001) [150].

In 2019, Wang et al. [151] proposed a hybrid model (Figure 3.2) that combines the multiple mod-
eling problems and platforms used in the market. It uses a system dynamic simulation and agent-
based approach to analyze the operations of the electricity market, by which the operation of the
electricity market is modeled holistically to observe the overall changes of the system. In order to
better simulate the trading conditions of the real time electricity market, ABM is applied to the bid-
ding transactions. With the real-time feedback changes of relevant variables, the results are presented
accordingly, thus simulating the multilateral bidding process of the electricity market. The agents
(Figure 3.2) are classified into five categories: trading agents, government agent, grid company
agent, power plants (two thermal power plant agents, a hydro-power plant agent and a wind power

plant agent) and consumer agents.
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Figure 3.2. Organization of the multilateral bidding model of the electricity market proposed in [151].

The trading center is responsible for the functions typically associated to a Market Operator and
separately reports the results of the clearing activity to the power plants. The power plants then adjust
their bidding strategy using a learning algorithm. The government agent then monitors the effects of
the learning on the social welfare. It takes into account the varying contract power ratios and the
supply and demand balance. The grid company agent formulates a power purchase plan for each
clearing round according to its own demand function after each clearing. Some consumer agents can
purchase electricity directly from the trading center, or purchase electricity from the grid company

subsequently.

3.2 Agent Based Models

In a context of new business models such as energy communities, where several challenges for
both technical and regulatory issues are addressed, ABM are especially suited to model them. ABM
are especially appropriate to model systems influenced by social interactions between agents that are
flexible, autonomous, and proactive. In these models, agents are able to collaborate, compete and
exchange information with other agents, which gives them a social capacity and are important fea-

tures to fully address communal potentialities. Moreover, the agent paradigm can be a powerful
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computational tool that can be used to examine socio-technical system performance over time,

wherein system behavior is subject to complex and dynamic individual and social interactions.

A didactic review about agents and Agent Based Models is detailed in Section 3.2.1. Agent ar-
chitectures and communication are analyzed in Sections 3.2.2 and 3.2.3. Finally, Section 3.2.4 pro-
vides information on building and designing ABMs.

3.2.1. Basic Concepts and Definitions

As long as systems are becoming more complex, new tools, simulation and modeling approaches
are needed. An alternative to typical simulation techniques (such as traditional optimization tech-

niques, discrete-event simulation and differential equations) are ABM.

The concept of agent-based techniques for optimization and simulation emerged from the study
of natural selection. One particular technique that became popular during the 1970s was the GA. It
was presented in John Holland's book Adaptation in Natural and Artificial Systems [147]. In late
1990’s, ABM emerged and started being used to explain interactive system dynamics [152]. More
recently, ABM has received increasing attention since it has advantages in modeling complex sys-
tems. It was reported as a better approach to complement equilibrium models when the problem is
too complex to be analyzed, as for instance dynamic problems with several parameters and random-
ness. ABM refers to a category of computational models that invoke dynamic action, reaction and
intercommunication protocols amongst the agents in their shared environment [153]. ABM is con-
sidered a computational framework for simulating processes that involve autonomous agents. An
autonomous agent acts on its own without external direction in response to situations the agent en-

counters during the simulation.
The following definitions of ABM are provided in [154-156]:

e “Agent-based modeling is a way to model the dynamics of complex systems and complex
adaptive systems. Such systems often self-organize themselves and create emergent order.
ABM also include models of behavior (human or otherwise) and are used to observe the
collective effects of agent behaviors and interactions. The development of agent modeling
tools, the availability of microdata, and advances in computation have made possible a grow-
ing number of agent-based applications across a variety of domains and disciplines.” [156].

e “The ABM approach consists of a decentralized collection of agents acting autonomously in
various contexts. The massively parallel and local interactions can give rise to path depend-

encies, dynamic returns and their interaction. In such an environment global phenomenon
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such as the development and diffusion of technologies, the emergence of networks, herd-
behavior etc. which cause the transformation of the observed system can be modeled ade-
quately. This modeling approach focuses on depicting the agents, their relationships and the
processes governing the transformation.” [154].

e “Formally, agent-based modeling is a computational method that enables a researcher to
create, analyze, and experiment with models composed of agents that interact within an en-

vironment.” [155].

Basically, ABM focuses on modeling and to simulating complex systems, at a local level through
the definition of their elementary units and at a high level, suited to model adaptive heterogeneous

actors — agents.

There is not a universal consensus about the definition of an agent. However, Wooldridge and

Jennings’ definition [157] is increasingly adopted:

“An agent is a computer system that is situated in some environment, and that is capable of au-

tonomous action in this environment in order to meet its design objectives” [157].

As referred in [158], Wooldridge’s classical definition of an agent does not clearly distinguish
agents from a few existing software’s and hardware systems. There are several points to note about
this definition. First, this definition implies that agents have sensors to sense the environment and
effectors/actuators to modify and act over the environment. Second, autonomy is not defined. Third,

the above definition does not say anything about what type of environment is occupied by an agent.

A top-level view of an agent is provided in Figure 3.3. An agent has well-defined boundaries and
interfaces and can monitor the environment through sensors or data access from other sources and
modify it by reacting autonomously to changes that occur in it. The two concepts that capture the
interface between an agent and its environment are the percept, an item of information received by
some sensor, and the action, which is something that the agent does. We can see the action output
generated by the agent as an event that affects its environment. In most domains of reasonable com-
plexity, an agent will not have complete control over its environment. It will have at best partial
control, in that it can influence it. Hence, the key issue lies in between the sensing and acting activi-

ties, where the agent decides how to proceed based on the percepts collected via input sensors [159].
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Figure 3.3. Agents and environment (adapted from [160])

Macal [156] listed some criteria, which need to be accomplished in order to think in terms of

agents:

When the problem has a natural representation as being comprised of agents;
When there are decisions and behaviors that can be well-defined,;

When it is important that agents have behaviors that reflect how individuals behave (if

known);

When it is important that agents adapt and change their behaviors;

When it is important that agents learn and engage in dynamic strategic interactions;
When it is important that agents have dynamic relationships with other agents, and agent
relationships form, change, and decay;

When it is important to model the processes by which agents form organizations, and adap-

tation and learning are important at the organization level;

When it is important that agents have a spatial component to their behaviors and interactions;
When the structure of the system does not depend entirely on the past, and new dynamic
mechanisms may be invoked or emerge that govern how the system will evolve in the future;
When arbitrarily large numbers of agents, agent interactions and agent states are important;

When process structural change needs to be an endogenous result of the model, rather than

an input to the model.
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The complexity of the decision-making process can be affected by a number of different environ-
mental properties as detailed in [160]:

Fully Observable or Partially Observable: If an agent’s sensor gives access to the complete
state of the environment at each point of time, then the environment is considered fully observable.
Otherwise, it is considered partially observable.

Deterministic or Stochastic: If the next state of the environment is completely determined by
the current state and the action executed by the agent, then the environment is considered determin-
istic. Otherwise, it is considered stochastic.

Episodic or Sequential: In an episodic environment, the agent’s experiences are split into atomic
episodes, each consisting of the agent perceiving and then performing a single action. The next epi-
sode does not depend on the actions taken in the previous ones, and the choice of actions in each
episode depends only on the episode itself. On the other hand, in sequential environments, current

actions may affect all further decisions.

Static or Dynamic: A static environment is one that can be assumed to remain unchanged except
by the performance of the actions taken by the agent. A dynamic environment is one that has other

processes operating on it, and which hence changes in ways beyond the agent’s control.

Discrete or Continuous: The distinction between discrete and continuous environments can be
applied to the state of the environment, to the way the time is handled, and to the perceptions and
actions of the agent. All these features can be either discrete or continuous in the environment mod-

eling.

Single agent or Multi-agent: Single agent environments are those where only one agent is situ-

ated. Multi-agent environments are those where more than one agent is situated.

The most complex environments are those that are partially observable, stochastic, sequential,
dynamic, continuous and multi-agent. In real world applications, agents have at best partial under-
standing and control the environment. Furthermore, multiple agents can interact with each other, as

illustrated in Figure 3.4.
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environment

Figure 3.4. Typical structure of a multi-agent system (adapted from [161])

The environment is defined as the part of the system within which the agent operates. It is not the
agent itself nor it is any of the other agents, but rather it is everything that has an (external) influence
upon it. As visualized in Figure 3.5, environments can be simple, multi-layered, or even change over

time.
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Figure 3.5. Different environments: E1: single layer, E2: multi-layer, E3: continuous changing envi-
ronment (adapted from [161])

An agent can be interpreted as a computer system that can perform autonomous actions in an
environment in order to meet its design objectives. It can sense its surroundings using various sen-
sors, such as software devices and physical ones, and can then provide a variety of actions to modify

the environment. However, its actions may not always respond in a predictable manner.
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Autonomous agents can also be defined as intelligent agents since the concept of intelligence is
often specified in terms of its phenomenological functions as a capacity or ability to solve problems
autonomously. Whenever an agent, biological or artificial, possesses this ability, it is considered
intelligent, otherwise not [162]. There is an approach to the Artificial Intelligence (Al) where any
intelligent system is considered as an intelligent agent or a collection of them [160]. This leads to a
very broad definition of an intelligent agent. However, in the field of engineering and computation,
intelligent agents typically correspond to software components.

So, when do we consider an agent to be intelligent?

An intelligent agent is one that is capable of flexible autonomous actions in order to meet its

design objectives. In line with [157], flexibility means three things:
*  Proactiveness

The goal-directed behavior of an agent is shown through its proactive approach, which
means that it tries to achieve its goals. If a specific goal is given to it, then the agent should at least

try to accomplish it.
*  Reactivity

The ability to react to changes in the environment allows agents to perform different tasks

in a more efficient manner.
+  Social ability

The ability of agents to interact with other agents or entities in order to meet their design
goals is known as social ability. This is different from the way they interact with hardware and soft-
ware entities. Usually, interactions are defined as those that are carried out in terms of verbal com-
munication. They can also be categorized into different types of human interaction such as coopera-

tion, negotiation, and coordination [163].
Other more general attributes of agents have been described in [164] and include:
«  Accuracy
An agent's accuracy is determined by its ability to perform the tasks that it is asked to do.
+  Adaptivity

Its adaptivity is also evidenced by its ability to improve its performance through experience.
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Adaptability

An agent can adapt to the changes in the environment by providing various actions to modify
it.

Mobility

Agents can also move between different host platforms.

Temporal continuity

An agent's temporal continuity is also evidenced by its continuous running processes. It can

maintain its identity and state over a long time.

Reliability

The reliability of an agent is also determined by its refusal to pass false information.
Inferential capability

An agent can act on task specifications that are based on its knowledge of general goals with

an inferential capability.

The concept of an intelligent agent is a natural development of other trends of Al, which has

relations and differences between agents and other computer science concepts and approaches:

Agents and Al

The intelligence requirements of Al and agents are usually met by following a certain set of
rules. This includes making a reasonable decision regarding their environment when it comes
to taking an action. An agent can also interact with other individuals through their interac-
tions within the environment. This is the main mode of interaction that computer science

usually focuses on.
Agents and Objects

Both agents and objects are similar in their capabilities when it comes to performing various
actions. An object, on the other hand, is a computational entity which can perform methods
and actions on a certain state. The main advantage of an object over an agent is that it has a
single thread that can control everything. An agent, on the other hand, is a process-like entity

which can simultaneously execute various types of tasks.
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*  Agents and Expert Systems

During the 1980s, Al was heavily focused on the development of expert systems, which are
capable of providing advice in certain knowledge domains [165]. These systems are not di-
rectly related to the environment they interact in, and they do not require to interact with
other agents in order to perform their tasks.

Some examples of the various applications that can be made using intelligent agents, are:

e An intelligent agent can perform various tasks such as searching the internet for a specific
guery and gathering information about its users. It can then provide the users with the nec-
essary information on a regular basis.

e Examples of such systems include Amazon's Alexa and Apple's Siri. These assistants use
sensors to analyze the data collected by the users after they have made a request. They can
then use this information to gather data about their users' perceived environment, such as
weather and time [166].

e Autonomous vehicles can also be considered intelligent agents due to the use of cameras,

sensors, and GPS to make informed decisions when it comes to navigating through traffic.

A single agent system refers to an agent-based system with only one agent, then comprising a
single agent environment. Similarly, a Multi Agent System is used to denote the combination of one
or more agents capable of exhibiting their attributes within a co-operative system [167]. Each agent
has internal sets of structures and mechanisms which allow them to reason about itself and the envi-

ronment [159]. These set of structures and mechanisms define the agent’s architecture.

3.2.2. Architectures for Intelligent Agents

An agent decision making function is an abstract function that can be used to determine which
actions to perform. It can be implemented in four different architectures: logic-based, reactive, belief-

desire-intentions and layered-based agent architectures [168] that are briefly described below:
»  Logic-based agents — in which decision making is performed through logical deduction;

» Reactive agents — in which decision making is implemented in some form of direct

mapping from situation to action;

»  Belief-desire-intentions agents — in which decision making depends upon the manipu-

lation of data structures representing the beliefs, desires, and intentions of the agent;
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»  Layered architectures — in which decision making is conducted via various software
layers, each of which is more-or-less explicitly reasoning about the environment at dif-
ferent levels of abstraction.

In this thesis, we will not make a specific commitment of each kind of agent architecture that is
used. However, the Belief-Desire-Intentions model and its associated Procedural Reasoning System,
according to [169] is the best known and best studied model.

In the Belief-Desire-Intentions model, the Beliefs of an agent represent the informational states
of the agent environment. In its logic, Beli(a) expresses the fact that the agent i believes a. In this
proposition, the belief is directly associated with the agent, so the agent i is omitted from the descrip-
tion of a belief. The content of the belief expresses a state or an activity concerning the agent or its
world. For example: Bel(helicopterl, takeCare, treel2) expresses that the agent has a belief that
agent helicopterl will take care of the agent tree12. While the expression Bel(X, burning, null) means
that the agent believes that agent X is burning (i.e. in the state burning), the Bel(X, Bel(treel12, burn-
ing, null), null) declares that the agent believes that the agent X believes that the agent treel2 is
burning [170].

The Desires (options) represent the motivational states of the agent. As desires are also mental
states like beliefs, a desire shares with a belief the same content format. Considering that an agent
cannot simultaneously pursuit competing desires, two additional attributes to describe a desire were
proposed [170]:

+  Competing category: each desire belongs to a competing category. Two desires of the

same category cannot be considered at the same time;

»  Priority: the priority is the degree of importance of a desire. The higher the priority, the
more important the desire is. Among the desires of a competing category, the agent

chooses the desire with the highest priority.

Events trigger the reactive activity of the agent. In the AgentSpeak architecture [171], an agent
begins reacting when its mental state changes. In this architecture, events are described as a creation
or a deletion of a mental state. It means that when an agent acquires a new belief or a new desire,

this agent creates an event.

Rules are what an agent uses to make the logic deduction creating new beliefs and new desires

from current beliefs and desires. The modifications of mental states come not only from what the
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agent perceives but also from its internal reasoning process. That means that an intelligent agent is
also capable to reason in order to update its beliefs and desires according to its current mental states.

A Plan is a sequence of declared actions that the agent has to apply to reach one (or many) goals.
This means that a plan describes the fact that the agent has to execute some particular actions once
it gets a specific condition on mental states (beliefs, desires). A plan is composed of goals (desires
of the agent), context (conditions on mental states), trigger (events that trigger the plan) and actions
(actions to execute).

An Intention represents the deliberative state of the agent, i.e. what the agent has chosen to do.
According to [172], “intending to do something (or having an intention) and doing something inten-

tionally are not the same phenomenon”. Thus, intentions are classified into two types:
» A Future-oriented intention is a specific instance of an applicable plan;

» A Present-oriented intention is the future-oriented intention that the agent has chosen to

pursuit.

In terms of implementation, intentions are manifested by means of executing one or more plans,
which are developments of actions. So, Actions are one of the components of an intention. An in-
tention may contain several actions that will be performed sequentially. Each action describes the
agent’s behavior and the action conditions. An action is composed of three components correspond-

ing to three situations:

* Normal - it is a situation where the mental condition of the agent meets the intention
condition that is inherited from the plan context. At this moment, the action is normally

performed,;

» Success - it is a situation where the agent’s mental condition allows the agent to decide
that certain goals are achieved (for example, the agent acquires new desires that allow

the agent to satisfy the desires of its intention goals);

»  Failure - it is a situation where the agent considers that the action failed and where it
decides to stop following the action goal. In this case, the agent removes the correspond-

ing desires or creates new events that trigger the backup plans.

Using these concepts, the key data restrictions in our agents will be beliefs, desires and intentions.
How does an agent with beliefs, desires and intentions go from these to actions? The particular model
of decision-making underlying the Belief-Desire-Intentions model involves two important processes:
deciding what goal we want to achieve, and how we are going to achieve these goals and this process

is known as Practical Reasoning System.
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From the architecture point of view, the associated Practical Reasoning System, originally devel-
oped at the Stanford Research Institute, is a generic architecture to represent and reason about actions
and procedures in a dynamic domain [173]. It was perhaps the first agent architecture to explicitly
embody the Belief-Desire-Intentions model and has proved to be one of the most durable approaches
to develop agents to date [171]. This architecture is shown in Figure 3.6.
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Figure 3.6. The Practical Reasoning System architecture (adapted from [174])

The agent interpreter manages the beliefs, goals, plans and intentions in the Practical Reasoning
System agent architecture. It is responsible for updating the beliefs from observations made from the
environment, generating new desires (tasks) on the basis of new beliefs, and selecting from the set
of currently active desires some subset to act as intentions. Hence, the interpreter must select an

action to perform on the basis of the agent’s current intentions and knowledge [159].

A Practical Reasoning System agent starts with a set of plans and top-level goals and initial be-
liefs. These beliefs are then represented by atomic formulas of first-order logic. The goal is then put
into an intention stack, and the agent can look through the stack to see what goals are still outstanding.
Some of these will have their conditions satisfied according to the agent's current beliefs. This means
that the plans that achieve these goals can become the agent's options. The process of selecting a plan
can then be carried out through utility ordering or meta-level plans [171].

The Practical Reasoning System architecture only addresses the internal reasoning of agents.
However, this has been extended to allow other agents to interact with each other, for example, com-

munication and interaction with each other in order to conceive some social ability.
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3.2.3. Agent communication and interaction

One of the most important factors that an agent should consider when it comes to achieving its
goals is the availability of communication. This will allow them to perform their duties in a more
efficient manner. In this sense, one should have a standardization related with agent communication.
The Foundation of Intelligent Physical Agents (FIPA) [175] is an Institute of Electrical and Elec-
tronic Engineers Computer Society that promotes agent-based technology and the interoperability of

its standards with other technologies.

The ability of agents to communicate with one another has been a central theme in the develop-
ment of their conceptual frameworks. This allows them to tackle problems that no single individual
can solve alone. The concept of agent communication is based on the speech-act theory, which states
that language is action. This distinction between actions that are non-speech acts and those that are
speech acts is important. Thus, examples of speech acts might be to change your beliefs, desires or

intentions. Various types of speech acts were identified by Searle [176].

A speech act's content is different from a Java method's list of parameters. Instead of just having
a set of arguments, the content of a speech act is a proposition, which means that it can either be true
or false. This is very different from method invocation, as it allows a knowledge-level communica-
tion to be carried out. The Knowledge Query and Manipulation Language (KQML), developed in
the context of the ‘Knowledge Sharing Effort’ project [177], was the first attempt to define a practical
agent communication language that included high-level (speech act based) communication as con-
sidered in the distributed artificial intelligence literature. It defines a number of performatives, which
make explicit an agent’s intentions in sending a message. For example, the KQML performative tell
is used with the intention of changing the receiver’s beliefs, whereas achieve is used with the inten-
tion of changing the receiver’s goals. Thus, the performative label of a KQML message explicitly
identifies the intent of the message sender. The KQML language has reserved parameter keywords
as detailed in Table 3.2.

The FIPA standard for agent communication is closely based on KQML, differing in its performa-
tive set and semantics. The main goal was to simplify and rationalize the performative set as much
as possible, and to address the issue of semantics, a somewhat problematic issue for agent commu-

nication languages.
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Table 3.2 KQML reserved parameter keywords (Source: [177])

Keyword Meaning
:content Information about which the performative expresses na attitude
force Whether the sender will ever deny the meaning of the performaive

sin-reply-to Expected lable in a reply

:language Name of the representation language of the content parameter
:ontology Name of the ontology, e.g. set of term definitions, used in the content parameter
‘receiver Actual receiver of the message

reply-with Whether the sender expects a reply, and if so, a label for the reply
:'sender Actual sender of the message

3.2.4. Building and designing Agent-Based Systems

Developing agent-based model requires specific steps and agent-related tasks that are indicated
in Figure 3.7. Several of agent-specific questions before developing an agent-based model should be
done. Table 3.3 presents some of them. The answers to these questions help defining the scope, level
of detail and granularity that are appropriate to model the system. They imply the resources required
for successfully completing the project and can be used to help identifying likely bottlenecks to the

development [156].

ABM Development

Prototyping

1 1

Model Architecture Design

Legend:

Agent and Agent Rule Design

General madeling
tasks

Agent Environment Design

Implementation
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Verification and Validation

Figure 3.7. Agent-Based Model development process (adapted from [156])
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The agent-based modelling follows some steps which are similar to the standard computer simu-
lation procedure. Following [178] these steps are enumerated below.

Formulation of objectives and questions

The formulation of objectives of a simulation or model is first established during the initial step
of the process. This step should be carried out in order to ensure that the results of the study are
focused on the correct objective.

Design of the model

The design phase is also a crucial part of the development of agent-based models. It involves
deciding the level of detail that the system should be built with, as well as the type of cognitive

activity that it should perform. The shared environment of the agents should also be addressed.

Table 3.3 Questions to ask before developing an ABM (Adapted from [156])

Model Purpose and Value-added of Agent-based Modeling:
What specific problem is the model being developed to address?
What specific questions should the model answer?
What kind of information should the model provide to help make or support a decision?
Why might agent-based modeling be a desirable approach?

What value-added does agent-based modeling bring to the problem that other modeling approaches cannot bring?

All About Agents:
Who should be the agents in the model?
Who are the decision makers in the system?
What are the entities that have behaviours?

Where might the data come from, especially for agent behaviours?

Agent Data:
What agent behaviour are of interest?
What decisions do the agents make and what information is required to make such decisions?
What are being acted upon?
What actions are being taken by the agents?
How would we represent the agent behaviours? By If-Then rules? By adaptive probabilties, such as in reinforcement

learning? By explicit heuristics? By regression models or neural networks?

Agent Interactions:
How do the agents interact with each other?
How do the agents interact with environment?

How expansive or focused are agent interactions?

Agent Recap:

How do design a set of experiments to explore the importance of uncertain behaviours, data and parameters?

How might we validate the model, especially the agent behaviours and the agent interaction mechanisms?
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A large number of methodologies have been proposed to design agent-based systems. They can
be broadly divided into two groups [167]:

- those that take their inspiration from Object-Oriented (OO) development, and either
existing OO methodologies or adapting OO methodologies to the purpose of agent-ori-
ented software engineering (AOSE);

- those that adapt knowledge engineering or other techniques;

The methodologies AAII [179], GAIA [180], Tropos [181], Prometheus [182], MaSE [183] and
PASSI [184] have been proposed to design agent-based systems and are described in detail in the
above references.

Justification of assumptions

The various assumptions that are built into the model should also be supported by empirical data.

This ensures that they are coherent.
Choice of measurements

Once the model has been designed, it is also important that the measurements that are used are

defined. These measures will allow the system to evaluate the model's performance.

Choice of software

Developers can create agent-based models using various software components. These include
libraries, toolkits, and programming languages. These are commonly used in the development of

models and simulations.

In terms of the scale of the software, there are several approaches to build Agent applications
[156] as follows:

Desktop Computing for Agent Based Simulations Application Development:
Spreadsheets: Excel using the macro programming language VBA
Dedicated Agent-based Prototyping Environments: NetLogo, Repast Simphony

General Computational Mathematics Systems: MATLAB, Mathematica
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Large-Scale (Scalable) Agent Development Environments:
Repast, Swarm, MASON, AnyLogic, Simio
General (Object-Oriented) Programming Languages:

Java, C++, Python

A learning agent model can be created using Desktop Agent Based Simulation, which is a simple
and flexible software. It can be used to perform various tasks such as modeling and performing lim-
ited analyses. Although spreadsheets are a simple way to create agent models, they generally do not
allow a lot of diversity, have poor scalability, and restrict the behaviors of the agents. This is why it
is important to use a macro-programming language such as Visual Basic for Applications [156].
Developers can use general purpose mathematical systems such as MatLab and Mathematica to cre-
ate agent models. However, since there is no dedicated library or module for this type of modeling,

the developer should create the model from scratch.

Swarm was the first Agent Based Simulation software development environment, launched in
1994 at the Santa Fe Institute. Swarm was originally written in Objective C and was later fitted with
a Java interface [156]. A multi-agent programmable modeling environment is provided by Netlogo

and is particularly well suited for modeling complex systems developing over time [156, 185].

Following the original Swarm innovation, the Repast (REcursive Porous Agent Simulation
Toolkit) toolkit was developed as a pure Java implementation [186], and Repast Simphony (Repast
S) is the latest version of Repast, designed to provide visual point-and-click tools for agent model
design, agent behavior specification, model execution, and results examination. Repast Simphony
2.0 also includes ReLogo, a new Logo-like interface for specifying agent models [187]. They are

freely available and/or open source.

Anylogic has the capabilities to structure models that combine agent-based, system dynamics and
discrete events [188].

As computational capabilities continue to advance in both hardware and software, new capabili-
ties are continuously being incorporated into the latest versions of Agent Based Simulation toolkits.
This field is advancing rapidly toward highly scalable, high productivity agent development envi-

ronments that are easy to learn and use.
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Implementation, verification and validation of the model within the selected software

After the model has been designed, it should be implemented in a certain software platform. This
step involves ensuring that the model is correct. Doing so can help certify its accuracy. Another step
that should be taken is the validation test, which is usually carried out on the model's observed be-
havior. This validation step is carried out to ensure that the model is accurate. This step should be
performed on the individual and systemic scales since ABM can be distributed across different plat-
forms. For instance, in energy systems, the consumer or power plant can be parameterized and eval-

uated. This step can confirm the validity of the model.

In the case of a population of replicated agents, once having calibrated the individual agents, a
calibration of the model at an aggregated level should take place. This is usually possible through
the available macro-data (in the case of energy systems, measurements at an aggregated scale such

as a transformer or substation) [154].
Sensitivity analysis and results interpretation

A sensitivity analysis is also usually performed after the model has been established as valid. This
step involves identifying and avoiding false or local optima. This step can help the developer deter-

mining the optimal outcome for the model [178].

3.3. Machine Learning Methodologies

There are several fields of Machine Learning that address the purpose of agents since it is possible
to learn from data and to ensure that the knowledge over the problem is constantly updated. Figure

3.8. illustrates a categorization of Machine Learning fields and sub-fields.

The first category belonging to the family of Machine Learning techniques and algorithms is
called Supervised Learning. It is probably the most well-known branch of Machine Learning and
is intended to find patterns in data that can be applied to an analytic process. It refers to situations
where the target variable is known and, in this case, the target variable is present in the dataset. The
goal of supervised learning is to provide a better understanding of a target variable by learning from

its value. Unfortunately, this type of learning is not ideal for developing interactive problems.

This category of Machine Learning is mainly focused on the use of classification and regression

techniques. One of the main applications of supervised learning is in forecasting analyses. This type
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of learning is commonly used in the development of procedures related to medical diagnostics
and process optimization [189].

Unsupervised learning is another type of machine learning that is commonly used in developing
applications that involve large amounts of unlabeled data. This approach is best suited for problems
that require a lot of data to be analyzed. Most of the time, this approach is performed in an iterative
manner. The main difference between unsupervised and supervised learning is that the model should
learn without having a specific target as a purpose. The most common examples of this category of
problems include clustering and dimensionality reduction: detecting potentially useful clusters of
input examples [160].

The third and last type of Machine Learning techniques is called Reinforcement Learning (RL).
This method involves an agent interacting with its environment in order to learn the best action to
take based on the given situation. Unlike other techniques, this method does not provide the agent
with an advice. Instead, the agent explores the environment to maximize its future rewards. In gen-
eral, in this type of learning, the objective of the agent is to achieve the highest reward, due to adopt-
ing the optimal policy, in the long term. The applications of Reinforcement Learning nowadays are
abundant given the data-centric era that is approaching and the number of processes requiring accu-

rate and optimal decision-making [190].

MACHINE LEARNING

SUPERVISED UNSUPERVISED REINFORCEMENT
LEARNING LEARNING LEARNING
The algorithm learns the The algorithm analyzes the The algorithm learns over
relationship between specific data for trends and patterns time to maximize returns
inputs and outputs based on without being given a specific based on the rewards it
training data and human output variable or human receives for performing
feedback feedback certain actions
DIMENSION
REGRESSION CLASSIFICATION CLUSTERING REDUCTION MODEL-FREE MODEL-BASED

Figure 3.8. Categorization of Machine Learning techniques (source [189]).
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There are two main criteria that can be used to classify different RL approaches:

- The first criterion is whether or not there is a perfect model for the environmental behav-
ior. A model-based method can learn how an environment works and predict the out-
comes of its actions, allowing agents to anticipate the rewards that will be received. How-
ever, most model-based methods are impractical when dealing with large state-action
space constraints. On the contrary, model-free approaches do not require knowledge of
the environment to perform well. They can learn an optimal policy by repeatedly experi-
encing the various rewards and states of the environment;

- The second criterion that can be used to classify RL algorithms is whether the algorithms
“learn” off-policy or on-policy. On-policy takes into account the expected rewards that
will be received by the system based on the current policy. On the other hand, off-policy
assumes that the agent follows a greedy strategy.

Learning from interaction and achieving a goal is the main purpose of RL. The process of an
agent observing the environment output and taking an action, which is interpreted into a reward in
order to select the next state, which is fed back into the agent, is the typical framework of a RL. A
Markov Decision Process can be defined as a framework under which an agent observes the envi-
ronment characterized by a state s, selects an action among the ones available at that state and then
the process responds at the next time step by moving the system to a new state and by allocating the
agent with the corresponding reward. This reward can be interpreted as the motivation the agent has

in choosing a specific action given that he is in a given state.

The agent corresponds to the decision-maker of the problem and is the one who is responsible
for learning. The environment includes all aspects with which the agent should interact with, in
order to get information. The agent and the environment are interacting continuously: the agent se-
lects and implements actions and the environment, based on these actions, gives feedback to the

agent, which corresponds to the mentioned reward. This mechanism is illustrated in Figure 3.9.
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Figure 3.9. Agent-environment interactions in reinforcement learning (source [191]).

Regarding Figure 3.9, the agent and the environment interact at specific discrete time steps, t =0,
1, 2, 3..., n. At each time step t, the agent receives a representative description of the environment’s
state S; € S, where S is the set of all possible states of the environment. Then, given that he is in
state S;, the agent selects an action A; € A(S;), where A(S;) is the set of possible actions that are

available in state S;.

Consecutively, the environment sends back a signal (for instance, under the form of a numerical
value) to the agent, which is usually influenced or determined by the agent’s chosen action. This
signal is called a reward in this context, and it is denoted as R;,; € R. Then, the agent is responsible
for doing a mapping at each time step from states to actions. This mapping is called the agent’s policy
and it is denoted by 7, and basically ;(«|s) represents the probability that A; = «a, given that S, =
s. Finally, the system transits to a new state S;..;and this procedure should continue iteratively until

convergence is reached [191].

Q-Learning (QL) is one of the most well-known RL algorithms. It was originally proposed in
[192] and it is fully detailed in [191]. It is a useful algorithm for solving MDP, and its implementation
involves the evaluation of the payoff for a given state-action pair. This leads to the QL matrix that is
composed by cells known as Q-values. Thus, Q-values are calculated for each pair of state (s) and
action (a), and therefore they can also be described as q(s,a). As the Q-Learning focuses on the
impacts of rewards (r) and on the choices of actions in each state, the Q-values are obtained by a
function that provides the utility of taking a given action in a given state. This function corresponds

to the Bellman equation, and it is given by (3.1.).

q(s,a) « q(s,a) + A[r(s,a) + ymax,q(s',a) — q(s,a)] (3.1.)
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In this equation A is the learning rate, which reflects the degree to which recently learned infor-
mation will override the oldest one (when A equal to O originates that the agent does not learn, while
when equal to 1 it induces the agent to consider only the most recent information). The parameter y
is the discount factor that determines the importance of future reinforcements in the learning process
(if y equal to O the agent is myopic by only considering current rewards, while values closer to 1 turn
distant rewards more important). The expression max,q(s’, a) represents the best the agent thinks
it can do in state s’. Finally, in this equation r(s,a) represents the reward that is associated to the pair
state s and action a.

The classical structure of the QL algorithm used by an agent is presented in Table 3.4.

Table 3.4. Q-Learning algorithm

Algorithm: Q-learning

1: initialization: Q table
2: for every training episode do:
3: initialization: starting state s
4: for every decision period do:
3 select action « based on Q and &-greedy policy
6: observe reward r and next state s'
7: O(s,a) < O(s,a)+\ [r +ymax, Qs '.a)—Q(S.a)]
8: s<s'
9: end for
10: end for

In line 1, the QL matrix is initialized. Different states are represented along different rows and
actions are in different columns, which defines the Q-table. For every training episode of the algo-
rithm, the state of the environment is initialized and then for every decision period, an action is
chosen based on the Q-table and following a e-greedy policy. The e-greedy policy refers to the ex-
ploration/exploitation tradeoff. Initially, the agent chooses actions almost randomly (which means
that € should be high) but as the simulation evolves and the convergence is approaching, the agent is
induced to choose actions mostly based on the maximum Q-values of the Q-table, depending on the
specific state (row) where he is located at any time (which means that € should be low). After that,
the agent observes the reward that he received and the next state to where he will move. Finally, it
updates the corresponding element of the Q-table based on the QL update rule and also updates its
next state. The QL has been proven to converge to the optimal solution, given Markov properties in

the state-to-state transitions and admitting an infinite number of visits to each state-action pair [189].
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Despite its simplicity and the fact that it is widely used in many MDP settings, in stochastic MDP
the performance of the QL algorithm is affected by a large overestimation of action values [193].
This overestimation comes from the fact that positive bias is inherent to the QL algorithm from using
the maximum action value as an approximation of the maximum expected action value. Van Hasselt
[193] proved that this estimator is biased in highly stochastic environments because instead of the
expectation over the next state, only the average over all possible results of the experiment is com-
puted.

In order to solve the aforementioned problem, Van Hasselt proposed a Double Q-Learning al-
gorithm [193]. The intuition behind this approach is that the selection of the best action should be
de-correlated with the evaluation of this action. The classical structure of the Double QL algorithm

used by an agent is presented in Table 3.5.

In the Double Q-Learning algorithm, there are two Q-tables, Q”* and Q&, instead of one. Each of
these is randomly selected to be updated during each iteration of the program. The main difference
between this algorithm and the original QL is that the former's selection is based on one of the Q-
tables, while the latter's evaluation is based on the other Q-table. So, it is possible to avoid the pitfall

of overestimation bias that is associated with the classical QL.

Although the algorithms presented up to now display very good performance, there are still some
limitations when it comes to generalization. Most of them use two-dimensional arrays for their Q-
values, which is similar to how dynamic programming is done [189]. In higher dimensions, this issue
can be considered a threat. Since the agent doesn't have the necessary knowledge about the unseen
states or the less-seen ones, the performance of the simulation can be affected. The use of the Deep

Q-Learning algorithm can help solve this issue.

Deep Q-Learning combines the perception function of deep learning with the decision-making
ability of RL. It is an artificial intelligence approach closer to human thinking and it is often classified
as an Atrtificial Intelligence procedure. Deep Reinforcement Learning gets the target observation
information from the environment and provides the state information in the current environment as

illustrated in Figure 3.10.
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Table 3.5. Double Q-Learning algorithm

Algorithm: Double Q-learning

11 initialization: Q" table and Q” table
2: for every training episode do:
3: initialization: starting state s
4 for every decision period do:
5 select action & based on Q*, Q” and &-greedy policy
6: observe reward 7 and next state s'
7 generate d ~ U (0.1)
8: if d <0.5do:
9: Q' (s,a) « Q" (s,a)+ \ [r +y0° (s ', argmax, Q" (s ',a)) -0 (s,a)]
'10: else do:
I 0’ (s,a) « Q% (s,a)+ A [r +y0" (s ', argmax,, Q° (s',a)) -0° (s,a)]
12: end if
13: s<s'
14: end for
15: end for
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Figure 3.10. Schematic structure of Deep Reinforcement Learning agent (source [194]).

The two main aspects related to Deep Q-Learning are target network and experience replay. The
first one is the selection of data for training the deep neural network. The second one is the method
for storing the agent's experiences. One of the main concepts in deep neural network training is the
selection of a random sample of experiences. This approach ensures that the correlation between
training samples is low. It should be mentioned that the experiences are defined as a set of values

that includes the state, action, reward, and the next state.
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When it comes to training the target network, one should keep in mind that there might be signif-
icant differences between the predicted and the actual target value if a single network is used. A good
analogy that is often given is that this process looks like someone who is trying to hit a moving target.
Therefore, a separate target network can then be used to estimate the predicted values. The main
network parameters can also be copied to this target network at predetermined intervals. This method
can help improving the training process [194]. Overall, a visualization of how Deep Q-Learning
relates to tabular Q-Learning can be seen in Figure 3.11.
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Figure 3.11. Relationship between Q-Learning and Deep Q-Learning (source [194]).

3.4. Agent Based Models in Power Systems

Power systems have experienced several changes, mainly related to organizational and opera-
tional restructuring. The transition from vertically integrated utilities to an electricity market envi-
ronment and the appearance of new actors and rules, increased the complexity of power systems
modeling. Smart grids and microgrids [195-199], Electrical Vehicles [200], consumption flexibility

and demand response mechanisms [201, 202], bid based electricity market [203], energy efficiency
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measures [204], building energy management and energy modelling in general [205-209], among
many others, contribute to the mentioned increasing complexity.

As a direct result, there is a need for new simulation and management control solutions and strat-
egies that enable integrating these different actors. So, considering the operation of power systems
with the participation of these new players, rather than just looking at the overall picture, this makes
the problem solving in this domain an increasingly complex task. ABM can be considered as a suit-
able tool to address this complexity.

There are also many other applications for which ABM models are beneficial to power engineer-
ing, such as electrical grid diagnostics [210], assets condition monitoring [211], power system resto-
ration [212], market simulation [213-219], network control [220, 221], automation [222] and trans-
portation [223, 224].

Notwithstanding becoming a powerful tool to be used in power systems, ABM has been applied
in different areas, including marketing [225, 226], diseases [227], biology [228], economics [229,
230], financial economics [231], urban planning [232], social sciences [233], transportation [234],
geographical information systems [235], pandemics [236], etc. This development has been high-
lighted with several conferences and publications. The Multi-Agent-Based Simulation International
Workshop series started in 1998 and aims to bring together researchers from artificial intelligence,
computer science and social sciences interested in using multi-agent models and technology in social
simulation [237]. The annual Computational Social Science Society of the Americas Conference fo-
cuses on Computational Social Science, a scientific discipline where computational methods and
simulation models of social dynamics are employed to offer new insights into social phenomena
beyond what is available with traditional social science methods [238]. Other conferences such as
the annual INFORMS meeting [239] and the annual Military Operations Research Society Sympo-
sium [240] often have significant numbers of presentations involving ABM based models. COMSES
Net, the Network for Computational Modeling in Social and Ecological Sciences, is an open com-
munity of researchers, educators, and professionals with a common goal - improving the way agent
based and computational models are developed, shared, used, and re-used for the study of social and

ecological systems [241].

Considering the definitions of agents and the operation of power systems, we can list a number

of requisites to use ABM in power systems:

e The rules of business and social interaction are at least as important as the rules of phys-

ics when it comes to the generation, sale, and delivery of electrical power;
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e Agents operating within an agent framework can be used to model decentralized com-
petitive decision-making;

e Agent frameworks allow groups of agents to interact in complex dynamic ways;

e Learning and adaptation of agent behavior can be modeled;

e Transient conditions of the system can be studied in addition to the equilibrium condi-
tions;

e Alternative market rules can be tested.

The following sections provide some details regarding ABM tools applied to power systems,
namely approaches applied to electricity markets, smart grids, energy storage systems and energy

communities.

3.4.1. Applications of Agent Based Models to Power Systems

Considering the evolution of power markets, with the aforementioned restructuring and with new
kinds of customer service requirements (ancillary service markets, advanced metering, etc.), it was
fundamental to develop open-source code access software to model multiple market participants. In
this sense, in June 2007 the IEEE officially recognized the newly created Task Force on Open Source
Software (OSS) for Power Systems [242]. The mission of this task force is to promote the diffusion
of the philosophy of OSS in the power systems community and the promotion of OSS for the benefit
of the Power Engineering Society, from pedagogical to commercial purposes. Also, it was developed
a special website [243], titled Open Source Software for Electricity Market Research, Teaching, and
Training, that focuses more specifically to OSS electricity market applications. Some specified elec-

tricity markets modeled with ABM are presented in this section.

Bunn and Oliveira [244] use agent-based simulation in a coordination game to analyze the possi-
bility of market power abuse in a competitive electricity market. Agents were modeled as having the
capacity to learn. They use an RL algorithm to improve the performance of the participants: each
agent evaluates the profit earned, and then derives new policies to bid or offer, given its strategic
objectives of profit maximization and market exposure. They used the largest generation companies
in England and Wales electricity market in 2000, splitting each generator’s capacity into three cate-
gories, based on the degree of flexibility and running times of each technology (nuclear, large coal
and combined-cycle gas turbines, and the rest). They concluded that the agent-based simulation tech-
nique enabled the modelling of complex adaptive behavior in an environment with possible multiple

equilibria, with heterogeneous agents and price uncertainty. This shows that models capable of
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learning in complex electricity market environments can be utilized to model the behavior coordina-

tion in complex electricity markets and equilibrium selection processes.

In [245], different congestion management schemes in liberalized electricity markets were com-
pared using an agent-based simulator. By modelling market participants as adaptive agents in oli-
gopolistic structures, it considers the possibility of strategic behavior and the existence/exercise of
market power. The simulator evaluates locational marginal pricing and zonal pricing (market split-
ting and flow-based market coupling), where congestion management schemes were assessed with
regard to the distribution of producer and consumer surplus in the network while aiming at maxim-

izing the overall social welfare.

In [217] itis described an agent-based conceptual model to simulate the Portuguese/Spanish Elec-
tricity Market (MIBEL) and to study the behavior of the involved agents, focusing on the represen-
tation of hydro power plants with pumping capability. The model simulates the Energy Market and

the Ancillary Services Market as illustrated in Figure 3.12.
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Figure 3.12. Structure of the proposed agent model to represent the MIBEL (source [217]).

In this structure, retailers are entities that buy energy in the Energy Market and negotiate it with
the consumers. They have to bid in the energy market to supply the energy to the consumers who are
not able to buy it directly in the market. The model includes commercial, industrial, and residential
customers. They also have to negotiate with different retailers that act as aggregators of individual

demands and operate as market agents. In the consumers group, there are also large consumers which
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can purchase energy directly from the market. These are referred to as Eligible Consumers. Genera-
tion companies, which own and operate power plants, submit selling bids to the Market Operator.
They can also establish Bilateral Contracts with the Retailers or Eligible Consumers.

Regarding the Ancillary Services Market, the System Operator is responsible for ensuring that
the power system operates safely and efficiently. It contracts reserves with different time durations
and activation periods. It accepts offers for secondary and tertiary reserves from generation compa-
nies, and it selects the most cost-effective ones depending on the technical requirements.

The proposed ABM model used six types of agents and two artifacts:

o Inelastic Demand Agent — it corresponds to the individual clients (residential, commercial
or industrial consumers) which are insensitive to the electricity price. Typically, they do not
buy electricity in the market and have to negotiate with the Retailer Agents;

¢ Eligible Demand Agent — it corresponds to large consumers that can directly participate in
markets (large factories or hydro pumping power stations). They can also establish bilateral
contracts with Generation Companies;

¢ Retailer Agent — it corresponds to an aggregator entity that has a portfolio of contracts with
individual clients, that is, with Inelastic Demand Agents. This agent can buy electricity in
the market or establish bilateral contracts with Generation Companies;

e Physical Generator Artifact — it is related to individual power plants that have specific char-
acteristics; it will be an artifact agent because it does not take any decision and it has a pas-
sive role in the market with no goal or autonomous activity. It will be used by Generation
Company Agents;

e Generation Company Agent — it corresponds to the utilities that own a portfolio of generation
assets, comprising different generation technologies, each one characterized by its genera-
tion operation and maintenance costs. These agents will have to decide whether they use
their resources (hydro, gas, coal, wind) in the day-ahead market, in the ancillary services
markets, or store some resources to be used in the future, when possible. It can also establish
bilateral contracts with retailers;

e TSO Agent — it represents an entity that gathers the functions of an 1SO with the ownership
or the concession of a transmission network. It is also the ancillary services market operator
thus being responsible for procuring and contracting reserves for frequency control;

¢ Organized Market Artifact — it is a process that models the energy market operator as a cen-

tral entity that receives selling and buying bids for each trading hour of the next day and
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organizes these bids to get generation/demand schedules. It is considered as an artifact be-
cause it presents neither internal goals nor any kind of autonomous activity;

o Regulatory Agent —this agent is in charge of evaluating the behavior of the agents according
to the market regulation and eventually promoting regulatory changes or imposing penalties

if market rules are violated.

Each of the mentioned agents assumes a role (i.e., sells, buys or regulates) according to the group
it belongs to. Their decisions are essentially associated with the market type (energy or ancillary
services), the player type (traders that operate in markets or individual inelastic demand) and about
physical constraints, from grid and from generators. Their decisions will be supported by learning
processes, such as QL and genetic algorithm based learning, and also by decision-support models
[217].

Following the previous work, [246] describes an agent-based approach to model the day-ahead
electricity market having a particular emphasis on hydro generation. The developed model considers
four types of hydro agents (run of river, pure pumping, storage and storage with pumping), which
bid their energy in the market and their strategy depends on the type of hydro. The bidding strategies
are determined by the water value on the reservoir, by a learning parameter a in the scope of a QL
approach, and by a decision supporting tool. It also includes thermal and renewable generation
agents. The Market Operator agent is an artifact agent because it doesn’t have a decision-making
process. It performs the market clearing operation determining the market price and the cleared en-
ergy and communicating the market results to all market agents. Regarding demand agents, two types
of agents were considered: inelastic agents that buy energy at the maximum value allowed by the
MIBEL rules and elastic agents that are designed to model the behavior of consumers that can di-
rectly participate in the market, typically large industries, or hydro pumping stations. A Regulator
agent is also used to monitor the generator bids and penalize the generation agents if the bid prices
are very different from the marginal cost of thermal stations or from the water value for hydro sta-

tions.

The results reported by the authors confirm that the agents have learning capabilities (learning by

experience) and are maximizing their profit using the reinforcement QL strategy.

With the increase in the number of EVs and Demand Response (DR) customers, ABMs can be a
potential solution to model challenging problems in smart grids. In [247] a payment scheme has been
designed to compensate EV customers for participating in the VPP. In this publication, the VPPs are

considered as coalitions of wind generators and EVs, where wind generators seek to use EVs as a
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storage device to deal with the variations of generation. EVs provide an interesting potential to
control electricity generation and demand in an intelligent way given their possible use for load-
shifting. In this context, a combination of a stochastic model for mobility behavior and ABM simu-
lation tool is presented in [248].

The effect of the participation of commercial buildings in DR programs has been studied in [249].
It was concluded that using DR programs in commercial buildings reduce electricity prices and vol-
atility when there are more buildings. It was also concluded that DR actions by commercial buildings
shave the load profile at the peak hours and reduce the volatility of electricity demand. In [250] a
learning approach for strategic consumers in smart electricity markets was designed using a machine
learning algorithm to smarten the customers. A business idea associated to the DR potential of house-
holds through aggregators is exploited in [251]. The authors of this publication detail that using this

approach it will be possible to reduce the peak load.

An ABM architecture for coordinating locally-connected microgrids, thereby supporting more
cost-effective integration into the main power grid, is detailed in [252]. The interconnected mi-
crogrids, with renewable energy sources and energy storage devices, employ agents so that each
microgrid can choose to save or resell its stored energy in an open market in order to optimize its

revenues.

A detailed review of the literature using ABM techniques for modeling smart grids from a system
perspective is provided in [253]. For that purpose, it is provided a general classification regarding

the application of ABM and simulation techniques to electricity systems.

A prototype ABM to examine the effects of the individual behaviour and social learning on pat-
terns of electricity use is presented in [254]. This paper provides a holistic view on the electricity
system considering technical aspects, human interaction, and framework policies. A flexible power
system modelling tool using an agent-based approach to simulate smart grid paradigms, such as de-
mand response, energy storage, retail markets, electric vehicles, and new automated distribution sys-

tems is present in [255].

An agent based approach to model zero energy communities is described in [209]. This paper
details a conceptual ABM for an urban neighborhood to predict the behavior of households regarding
the level of renewable energy usage in presence of multiple options. In this scope, an energy-efficient
community where, on a source energy basis, the actual annual delivered energy is less than or equal

to the on-site renewable exported energy, is called zero energy community [256].



96 Literature review on Electricity Market Simulation

In [257] it is modelled a community of residential prosumer agents that individually optimize the
energy use to minimize energy costs and dissatisfaction. Each residential prosumer is modeled as an
individual agent, with specific energy needs and preferences.

ABMs are well suited to study different investment decisions in electricity markets like genera-
tion, transmission and distribution level investments. In this scope, [258, 259] propose an ABM to
identify strategic developments regarding investment amongst different players in the market based
on the benefit that each player gets by setting up the assets in the system. The long-term impact of
DR on generation adequacy in an energy market has been addressed in [260] with the help of an
ABM. This work considers only the German electricity market and the estimated generation ade-
guacy levels can drive new generation investments. However, with the expansion of interconnections
and European electricity market coupling, the role of cross border exchange of electricity needs to

be accounted for in the model.

3.4.2. Electricity market simulators using ABM

Electricity market simulators are used to model and simulate electricity markets. They are mostly
agent-based, and they differ in the level of complexity and in the scenarios they are able to analyze.
The following sub-sections presents some of the most known electricity market simulating models
that use ABM.

3.4.2.1.  Agent-Based Modeling of Electricity Systems, AMES

AMES is the acronym for Agent-Based Modeling of Electricity Systems, and it is an open-source
agent based computational laboratory for the experimental study of wholesale power markets. It was
originally developed in 2007 and it was specifically designed for the systematic exploration of stra-
tegic trading in restructured wholesale power markets operating AC transmission grids. The whole-
sale power market includes an 1SO, load-serving entities, and generation companies, distributed
across the nodes of the transmission grid. Each generation company agent uses stochastic RL to
update the action choice probabilities currently assigned to the supply offers in its action domain. In
addition, AMES facilitates augmenting the empirical input data with simulated input data to permit
the study of a broader array of scenarios. Downloads, manuals, and tutorial information for all AMES

version releases to date are accessible at the AMES homepage [261].

In [262], it is described the AMES framework, that models a wholesale power market which

operated in accordance with Wholesale Power Market Platform features over a realistically reduced
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transmission grid subject to congestion effects. The traders within this market model a.re strategic
profit-seeking agents whose learning behaviors are based on data from human-subject experiments.

3.4.2.2.  Simulator for Electric Power Industry Agents, SEPIA

The Simulator for Electric Power Industry Agents (SEPIA) was developed in 2002 aiming at
contributing to improve the efficiency of North American power network [263]. It was developed a
bottom-up model and simulator which uses autonomous, adaptive agents to represent possible indus-
trial components (e.g., generation units, transmission system, load) and the corporate entities that

own these com ponents.

According to the survey provided by Zhou et al. [264], SEPIA and its architecture display good
results for electricity market systems. Its distinct features, which consist of its capability of adapta-
tion, provided by both QL and genetic classifier learning modules, are highlighted as an advantage.
Related with limitations, the survey mentioned the absence of an 1SO agent. Also, the adaptation
mechanism is restricted to generation companies and focuses on the bidding strategies although it

could be extended to other decision-making levels.
The physical system structure is presented in Figure 3.13. and considers four assumptions:

a) Each defined zone represents a local region of the power system under analysis and each
of them is modeled by a single bus;

b) Each Generation Company, with its loads, are limited to a specific local region;

c) Each zone has a Generator of Last Resort, which has unlimited power capacity. However,
its generation cost will be much higher than that of the other generators;

d) Itisassumed that the transmission capacity inside each zone is unlimited (within the same

zone from a Generation Company to any Individual Consumer).
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Figure 3.13. The Physical System Structures of SEPIA (source [265]).

All major markets participants in SEPIA are modeled as agents and interact with each other, such
as Generation Companies (along with its generators), Generation of Last Resort, Consumer Loads,
Consumer Companies (retailers including its consumers loads), and Transmission Operators. As pre-
viously mentioned, SEPIA does not include an 1SO, which is an independent non-profit organization

for coordinating, controlling and monitoring the regular operation of the power system.

Regarding the adaptation mechanism in SEPIA, both a QL module with Boltzmann selection and
a genetic classifier learning module are designed to guide the Generation Company agents in making
decisions [266]. These adaptation components are two complete and independent modules in SEPIA.

The QL module in SEPIA tries to identify a promising action with the most rewarding result [264].

Figure 3.14. outlines the structure of the QL module in SEPIA, which uses the stochastic Boltz-

mann selection procedure in selecting possible actions for each state.
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Figure 3.14. The Structure of the Q-Learning Module in SEPIA (source [264]).

The reward of action a as a function Q(a) is evaluated. Then, a stochastic selector based on the
Boltzmann selection mechanism is used to choose a promising action. Usually, the higher the Q(a)
value, the better is the chance that action a will be selected for a given state. However, because the
learning algorithm also employs the annealing mechanism, as the process develops and the temper-
ature decreases, it will tend to choose the action that has the highest Q value [264] thus progressively
reducing the chances of selecting more diverse actions. Moreover, the QL module in SEPIA has a

self-learning capability.

SEPIA also includes a Genetic Classifier-based Learning Module which includes three data sets
(Rule Set, Match Set and Action Set) and four independent sub-modules (Genetic Algorithm,

Matcher, Action Selector and Credit Assignment) as illustrated in Figure 3.15.
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Figure 3.15. The Genetic Classifier Learning Module in SEPIA (source [264]).
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The set of rules determines the knowledge base where each rule has a condition part that specifies
an agent’s current state, and an action part that specifies the consequent action the agent would take.
Then, the rules with certain conditions satisfied are placed into a match set by the matcher. The
action selector uses a stochastic selector based on the Boltzmann selection mechanism to choose a
rule in the match set and then it implements the selected action. After the effects resulting from
taking that action are cumulated and measured, a credit is assigned to the implemented rule in the
action set. Finally, a Genetic Algorithm is used to optimize and update the rule set and the fitness of

each rule is evaluated by its assigned credit.

According to the survey provided by Zhou et al. [264], SEPIA and its architecture display good
results for electricity market simulation. Its distinct features correspond to its capability of adaptation
provided by both the QL and the genetic classifier learning modules and are highlighted as relevant
advantages. Related with limitations, the survey mentions the absence of an ISO agent. Also, the
adaptation mechanism is restricted to generation companies and focuses on the bidding strategies

although it could be extended to other decision-making levels.

3.4.2.3.  Electricity Market Complex Adaptive Systems, EMCAS

The Electricity Market Complex Adaptive Systems (EMCAS) is a commercial tool developed by
the Center for Energy, Environmental and Economic Systems Analysis at the Argonne National Lab
Laboratory [267], which includes decentralized agent decision-making features along with learning
and adaptation capabilities. This feature allows agents to learn from their previous experiences and
change their behavior as future opportunities arise. That is, as the simulation progresses, agents can
adapt their strategies based on the success or failure of previous efforts. This approach is especially

suited to analyze electricity markets with many participants, each with their own objectives.

The modeling framework can be described in terms of three main components: agents, interaction
layers, and planning periods. The agents represent the participants in the electricity market. The in-
teraction layers correspond to the environment in which the agents reside and interact with each
other. The planning periods correspond to the different time horizons for which the agents make

decisions regarding their participation in the market [268].

In the simulation, different agents are used to model the full range of time scales and the entire
value chain of restructured markets. EMCAS physical structure (Figure 3.16) is similar to SEPIA

and it includes physical generators and generation companies, transmission companies, distribution
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companies, 1SOs or Regional Transmission Operators when they exist, consumers, and regulators
[269].
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Figure 3.16. The Physical System Structures of EMCAS (source [264]).

Generators

The agents are specialized and perform diverse tasks using their own decision rules. A special
feature of the agents is that they can learn and adapt based on past performance and changing condi-
tions. Agents learn about the market and the actions of other agents using two forms of learning:

observation-based learning and exploration-based learning.

The observation-based learning (Figure 3.17) goes through a structured process that includes the
following steps:

- look back — to evaluate the past performance;
- look ahead — to project the future state of the electricity market;
- look sideways — to determine what others have done.

Look Ahead

" e Prices
L =« * Market Conditions

Look
Sideways
* Competitors
» Other Agents

Time

Look Back (Short- and
Long-Term Memory)

« Past Performance

« Retrospective Evaluation

Figure 3.17. EMCAS’ Agent observation-learning process (source [268]).
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As a result of these evaluations, an agent can choose to 1) maintain the current strategy, 2) adjust
the current strategy, or 3) switch to a new strategy.

EMCAS agents make informed decisions based on their past experiences and their expectations
- Look Back. Whenever they make a decision, they will analyze the previous ones and come up with
a better understanding of the factors that influenced their decisions. This method is also useful in
analyzing the various types of trades offs (bid acceptation or rejection, unit utilizations and profita-
bility, market versus bid price and weather versus load) that can be made in the market. It also takes
into account various factors such as the availability of units, prices, and the weather when forecasting
future results - Look Ahead. When it comes to analyzing the current conditions of the market, the
agent often takes a Look Sideways. This strategy allows them to make informed decisions based on

their own factors and the market's overall situation.

In the exploration-based learning scheme, the agent can identify various strategies that it can
implement in the market. After the strategy has been selected, it is adjusted to reflect the changes in
the market. If a strategy has failed, the agent may start to explore other options in an attempt to adapt
its behavior to the changes brought about by the market. Even though a strategy may continue to
perform well, the agent may still search for a better one. Through this process agents can identify

their own potential influence in the market and improve their utility functions [268].

When compared with SEPIA, which has a self-learning mechanism for decision rules, the adap-
tation process in EMCAS is supported by pre-specified decision rules. Thus, agents in EMCAS have
a lower adaptation capability than those in SEPIA. Moreover, the adaptation in EMCAS is restricted
to Generation Company agents and to a smaller extent to Consumer agents. The main difference
from SEPIA is the additional ISO/TSO agent. Bilateral contracts can be negotiated directly between
generation companies and retailors or large consumers, or the bids can be submitted to the pool
market managed by the 1ISO/TSO. All the transactions requiring the use of the transmission system
are as well scheduled and dispatched by the ISO/TSO. The regulator is a special agent in EMCAS
which has the responsibility for setting up market rules that should be obeyed by all participants in

the electricity market.

The agents interact on several layers, including a physical layer, several business layers (namely
related with the bilateral contract market, the pool market, and the transmission and retailers) and a

regulatory layer as illustrated in Figure 3.18.
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Information

Figure 3.18. EMCAS multi-layer architecture (source [267]).

The bottom layer consists of physical elements (generators, transmission systems, distribution
systems, and customer loads). In the physical layer, the ISO/TSO exercises its dispatch function to
operate the system to match generation and load and to adjust to changes in load, generator or trans-
mission outages, and other unplanned events. The ISO/TSO uses a transmission-constrained optimal
power flow methodology to dispatch generators to meet the load. This part of the simulation relies
on conventional power flow methods to ensure that the physical limitations of the system are ob-

served.

In the pool market layer, Generation Companies’ hourly offers are based on bidding strategies
that are formulated for the entire day. The offer prices may vary as a function of the time of the day.
Generation Companies use public information as well as private information to formulate their bid-
ding strategies. A unit commitment algorithm is employed by Generation Companies to determine if
units can be profitably operated at projected prices. Retailers also prepare bids into the pool energy
market. They specify how much energy they are willing to purchase at a given price. In effect, their
bids are formulated in terms of a demand curve. On the basis of bid prices, transmission constraints,
and energy security considerations, the ISO/TSO accepts or rejects the bids it receives and establishes

the schedule for the next day.

In the bilateral power market layer, bilateral contracts between Generation Companies and Re-

tailers or large consumers are established. This process is similar to that of SEPIA, however in this
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last one only bilateral contract as a market option are allowed because SEPIA does not include an
ISO or a pool market operator.

The third business layer, the transmission and distribution company layer, is designed to account
for the ownership of the transmission and distribution systems and for the fees charged by these
companies for the use of their assets.

The responsibility for preparing and monitoring bidding rules, bilateral contract rules, and settle-
ment rules in the electricity market is assigned to the Regulator, which is included in the top layer.
There is also an agent for special event generation, which allows EMCAS to become more realistic
and its role is to generate contingent events such as fuel price increases, the change of customer

loads, and generator or transmission outages.

Six distinct time scales or decision levels are considered in EMCAS, including hourly dispatch,

and day-ahead, week-ahead, month-ahead, year-ahead, and multi-year planning (Figure 3.19):

e Hourly/Real-Time Dispatch: the dispatch of power plants is carried out according to the
procedures established by the 1ISO/TSO. These procedures are carried out in line with
the previous market arrangements made under bilateral contracts and in energy and an-
cillary service markets;

e Day-Ahead Planning: it begins with the agents determining the market allocations for
their selling products. After the generation companies have prepared their unit commit-
ment schedules, the demand side begins accepting offers for bilateral contracts;

o Week-ahead Planning: it allows the demand agents to make bilateral contracts with in-
dividual generation agents. These contracts are then sent to the ISO/TSO for approval.
The day-ahead strategies can be modified in order to comply with the grid operation
constraints;

e Month-ahead Planning: it involves monthly bilateral contracts involving demand and
generation agents. These are sent to the ISO/TSO for approval. The week-ahead market-
ing strategy can be modified in this phase if necessary, in a similar way to what was
mentioned in the Weak-ahead Planning level,

e Year-ahead Planning: in this level, month-ahead marketing strategies can be adjusted. It
also allows the generation companies to plan their maintenance schedules;

e Multi-year-ahead-planning: in this level, year-ahead marketing strategies can be ad-
justed. System capacity expansion both at the generation and transmission levels or long-

term planning can be done at this level.
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Figure 3.19. Planning periods (source [267]).

At each decision level, agents make their own decisions regarding their future activities. For in-
stance, in the long-term planning stage, the generation companies commit to increase their capacity.
Similarly, in the year-ahead planning phase, they establish their maintenance schedules. At day
ahead, they bid into selected markets for each trading period of the next day. Each agent has their
own set of decisions that they can make at different planning levels. It is clear that their decisions

made at long time periods can have an impact on their shorter time horizons.

In spite of the existence of several references to ABM applied to power systems, the available
models do not adequately consider a number of features that are common in several power systems
such as the large presence of hydro stations and the possibility of pumping, as well as the large share
of zero or near zero marginal cost technologies using renewable primary resources as wind and solar.
In these cases, the short-term bidding decisions and strategies should coordinate with a longer-term
vision or plan. In this sense, in [270] it is described the integration of EMCAS, with a hydro-thermal
coordination model, VALORAGUA.

VALORAGUA has been in use for several decades as a hydro-thermal coordination model with
the objective of optimizing the overall system operation over a period of up to 1 year. It establishes
the optimal operation strategy for a given power system using the “value of water” concept, in each
power station, for each time interval (i.e., month/week) and for each hydrological condition. The
model optimizes the operation of hydro and pumped-storage power plants, computes thermal-based
power generation emissions, and optimizes the maintenance schedule of power plants. The objective
function minimizes the overall system operating cost based on the calculated expected value of the
water in each time period (52 weeks). This model takes into account the system configuration, pro-

jected loads, thermal and renewable capacity, reservoir characteristics, hydro cascading, and
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historical water in-flows and it generates weekly schedules for each of the hydro power plants based

on stochastic dynamic programming and non-linear programming-based algorithms.
VALORAGUA is often used to [271]:

e analyze energy import/export contracts;

e maximize power generation revenues;

e manage the long-term water stored in reservoirs with regulating capability;

e obtain a better use of the water in a multi-purpose scheme, considering its operation

constraints [271].

A comprehensive description of the main characteristics and capabilities of VALORAGUA is
provided in [272]. On the other hand, [270] provides a comprehensive overview about the integration
between EMCAS and VALORAGUA.

3.4.2.4.  Short-Term Electricity Market Simulator - Real Time, STEMS-
RT

The Short-Term Electricity Market Simulator - Real Time (STEMS-RT) was developed by the
Electric Power Research Institute. Each bidding process in STEMS-RT runs for several rounds. In
each round, an agent submits bids according to the public information from the Market and the bid-
ding results from previous rounds. Usually, the suppliers (Generation Companies) in STEMS-RT
use two bidding strategies. In the first strategy, generation companies bid all the production capacity
at the marginal cost (conservative approach). The other strategy tries to maximize the profit on a
short-term basis (ambitious approach). The consumers use only one strategy, which is to bid the

willing-to-pay price.

The STEMS-RT architecture consists of three layers: Application, Modeling, and Solvers as il-
lustrated in Figure 3.20.
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Figure 3.20. Three Layered STEMS-RT System Architecture (source [264]).

There are three types of applications in the Application Layer. The Market Application, which
handles the decisions related to accepting or rejecting the bids submitted by computer or human
agents. It allows the participants to submit their proposals and receive the results. The Client Appli-
cation provides interfaces for human participants to submit their bids to the market and to receive
the bidding acceptance results. The Agent Application helps the computer agent to make the best

decisions based on the previous results and the market clearing issues.

The Optimization Modeling Interface supports the modeling layer. It is in his layer where models
can be created in order to solve market clearing problems for market applications and problems on
bidding strategies for agent applications. The mathematical models built in the modeling layer can
be solved in the Solver Layer, which includes tools to solve LP problems, MIP problems, Quadratic
Programing problems, Linear Complementarity problems, and Mathematical Programs with Equi-

librium Constraints.

Agents in STEMS-RT utilize mathematical programming to solve bidding problems. New strat-
egies can also be added, and their effects analyzed, though it does not have an 1SO agent and demand
companies and transmission operators as agents. Another disadvantage of this system is that it does

not have an adaptation process that can be used by each agent.

3.4.25. National Electricity Market Simulator, NEMSIM

The National Electricity Market Simulator (NEMSIM) is an agent-based simulation model that
represents the Australia National Electricity Market, as an evolving system of complex interactions
between human behavior in markets, technical infrastructures and the natural environment. The
structure of NEMSIM is displayed in Figure 3.21. [273].



108 Literature review on Electricity Market Simulation

4 4 41 3

4

Daily Supely Spal Carract Y, Investmenty, GHG
Evolution Bidding / Evolution / Prices Prices / Decisions,/ Emissions
1
1
1

y [Beenario Evaluation
|5 Greers Simulatinn
B L Tables 4

Figure 3.21. NEMSIM overview structure (source [273]).

Its physical configuration (technical infrastructures) consists of generating plants, inter-connect-
ors, and transmission lines. Each physical element has its own technical or operational attributes.
The agents defined in NEMSIM include Generation Companies, Network Service Providers, Retail
Companies and a Market Operator, which buys and sells electricity in a simulation trading environ-
ment. The model is designed to examine scenarios using companies’ bidding practices, bilateral in-
puts of generator financial contracts, transmission network limitations and new investment in gener-
ating plants and transmission lines. Regional demand for electricity is based on historical demand
patterns and can be changed to accommodate growth forecasts and exceptional weather conditions.
A Market Operator agent clears the market to ensure that demand is always met within every 30
minutes (the market-clearing trading interval). In the short term, NEMSIM can solve problems to
help generation companies to improve their bidding strategies. Retailers can use NEMSIM to inform
their decisions on medium-term contracts with power generators. They can reduce their exposure to
short- term price volatility or wholesale price rises by signing contracts for fixed-price bulk power
allocations. NEMSIM s also a useful modelling tool for power-generation companies to schedule
investments in extra generation capacity or network upgrades to accommodate growing demand, or

changing demand patterns [273].
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Summarizing, NEMSIM considers all the important system participants in the Australian elec-
tricity market allowing each agent behavior to be modeled. Functions of the pool market in NEMSIM
can be extended to the bilateral contract market. It is also possible to investigate and compare the
operation of the system considering new scenarios such as the connection of new plants, the defini-
tion of maintenance schedules, the specification of new market rules, and the modelling of special
events. Short-term trading, medium-term contract market, long-term investment, environmental is-
sues such as the estimation of greenhouse gas emission, are also studied in NEMSIM. However, and
because NEMSIM is designed particularly for the Australia electricity market, its extensions to other

markets would require significant modifications.

3.4.2.6.  Multi Agent Simulator of Competitive Electricity Markets, MAS-
CEM

The Multi Agent Simulator of Competitive Electricity Markets (MASCEM) is multi-agent plat-
form, developed in the Polytechnic Institute of Porto, Portugal [274] to study competitive electricity
markets, that includes independent agents with their own ability to perceive the states and changes
in the world and to act accordingly. These agents are provided with bidding strategies, which must
be adequate and refined to let them gain the highest possible advantage from each market context.
So, they can adapt their strategies based on the success or failure of previous experiences and, in
each situation, they can adapt their behavior according to the present context and using the dynami-
cally updated detained knowledge. Figure 3.22 illustrates MASCEM's most important features, such
as the ability to simulate several types of negotiation platforms that exist in electricity markets, the
consideration of algorithms to define bid prices and the inclusion of distributed generation. Also,
important features such as power flow analysis and scenarios definition based on real data are also

available.

The Market Operator agent is responsible for managing the pool negotiations. It uses various
algorithms to determine the optimal conditions for the negotiation. It also handles other administra-
tion functions such as receiving selling and buying proposals from consumers and generators. It in-

forms the pool members about the market price and establishes an economical dispatch.
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Figure 3.22. MASCEM key features (source [274]).

The seller agents usually include generation and distribution companies. They compete with each
other in order to maximize their profits. On the other hand, buyer agents are usually composed of
electricity consumers or distribution companies, in cases where the unbundling between retailing and

distribution network activities was not implemented.

There are also agents that act as market independent entities. For instance, the System Operator
checks the economic dispatch through a power flow analysis to evaluate eventual technical problems
that can affect power system operation.

The MASCEM platform also allows considering VPP agents. They represent a set of producers,
mainly based on distributed generation and renewable sources. They can provide the means to ade-
quately support distributed generation increasing use and its participation in the context of competi-
tive electricity markets. Virtual Power Player agents are implemented as a coalition of agents, each

one acting as an independent multiagent system [275].



Chapter 4

4.Problem Description and Proposed Model

Energy Communities provide an emerging mode of negotiating and exchanging energy that defy
the traditional hierarchy based on vertical agreements involving energy providers, retailers and con-
sumers. Regarding the significant number of prosumers, the penetration of local energy generation,
and the concept associated to Energy Communities, it is becoming important to develop decision
tools to support energy transactions among Energy Community agents and between the communities
themselves and the Wholesale Market. Local Electricity Markets (LEM) associated with Energy
Communities and more specifically with RECs are fostering new optimization models to enable the

development of strategies regarding the increase of community energy savings and profits.

In this scope, this chapter details Energy Communities business models and presents the structure
of the model that was developed. It is presented an ABM as a decision tool to support energy trans-
actions between the LEM and the Wholesale Market (WSM). The proposed simulation model will
help community agents (consumers, prosumers and producers) to adequate their bids by running
several scenarios. In this chapter, the developed ABM will be fully described as well as the interac-

tion of the local community local market with the Wholesale Market.

4.1. Energy Community’s business models

As detailed in Section 2.2, REC and CEC definitions describe energy communities as non-com-
mercial legal entities, based on the open and voluntary participation of their members, which can be
householders, public authorities and small and medium-sized enterprises, provided that their main
activity is not energy-relate. Community members must be fully or partially involved in daily deci-
sion-making and operation control, and the potential revenues that will be attained must be used to
provide local services/benefits. However, these definitions diverge in what concerns the following
items [276]:
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- the geographical scope, since REC requires participants to be in the vicinity of renewable
projects, while CEC does not set physical boundaries or constraints;

- the activities performed, as CEC comprises generation even not from renewable sources,
distribution, supply, consumption, aggregation, energy storage, EV charging, energy ef-
ficiency and other energy services, while REC promotes the engagement into generation,
trading, storage and supply of energy from renewable sources;

- the generation technologies, since REC only allows the use of renewable technologies
whereas CEC are technology-neutral, meaning that both renewable and fossil-based tech-
nologies are acceptable under this concept.

Before the energy market liberalization, the monopolistic utilities’ value proposition was based
on providing an undifferentiated commodity to a broad segment of customers. The unbundling of
traditional vertically integrated utilities together with the increase of renewable-based decentralized
generation imposed changes on the Business Models of classical utilities, allowing smaller energy
retailers to develop and offer innovative electricity supply packages, making room for new Energy
Business Models to emerge. Reis et al. [276] addresses Energy Business Models over different per-

spectives:

e The Customer-side business models, which are based on the direct purchase of energy tech-
nologies by end-users, to become prosumers. The “all sold to the grid’ or ‘self-consumption
with surplus sold to the grid’ modes may be exploited, allowing the full injection of the
generated power into the grid or self-consumption and surplus injection, respectively. Also
Demand Side Management programs, eventually put in place by Distribution System Oper-
ators, DSO, or by retailers or eventually activated by these two types of agents in conjunc-
tion, could also be explored as a way to help managing and operating distribution networks;

e The Third-party-side business models, fully financed by third-party companies, generally
utilities, which keep the assets control and ownership and bear all the related costs and risks.
Renewable generation assets are installed either on customers’ roofs and backyards or in the
vicinity of consumption sites when space is constrained. This allows increasing the genera-
tion close to end consumers thus reducing the liquid demand seen by distribution networks
which would contribute to improve their operation performance in terms of reducing losses
and get a better voltage profile and also eventually reducing or postponing reinforcement
and expansion network requirements;

e The Energy Community business models, where all the members should be considered in
the overall arrangement design, implementation and operation. As advocated by the Euro-

pean Directives, Energy Community Business Models ‘key activities’ include local
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generation, supply, storage, consumption, trading, aggregation, e-mobility and energy re-

lated services, as well as system administration.

Most energy communities have been primarily involved in local generation and self-consumption
due to the longstanding tradition of these initiatives in Northern European countries [277]. However,
and regarding the evolution of technology and energy exchange platforms, the sharing and selling
activities in collective buildings were boosted, allowing to optimize the utilization of local energy
resources, to maximize the community members’ economic benefits and underpin the deployment
of LEM. In addition, the 2019 Electricity Market Directive [7] opened room for Member-States to
grant communities the right to own, establish, purchase or lease the distribution network in their area
of operation [7]. As stated by Reis et al. [276], Energy Communities may, therefore, become local
DSO, under the general or the “closed distribution system operator” regime, meaning that the com-
munity becomes responsible for “ensuring the long-term ability of the system to meet reasonable
demands for the distribution of electricity, for operating, maintaining and developing under economic
conditions a secure, reliable and efficient electricity distribution system in its area with due regard

for the environment and energy efficiency” [7].

In view of these ideas, this work is directed to an electricity market design and simulation tool
considering community energy sharing concepts where agents are responsible for the planning of the
energy transactions between consumers and prosumers. Any member of the community can buy and
sell its electricity within the community boundaries considering different regulatory and grid tariff
designs. The simulation of these different operation cases will enable getting insights on the eco-
nomic viability of this business model (as will be detailed in simulations to be described and dis-
cussed in Chapter 6). In fact, the developed model is flexible enough to accommodate different tariff
designs including the possible exemption of the Costs of General Economic Interest, (CIEG in Por-
tuguese) [278], that are included in the Access grid tariffs in force in Portugal or the non-payment of
HV and MV grid tariffs [49, 279]. This will allow running several simulations in order to get infor-
mation about the eventual need of some sort of support schemes in order to turn the energy commu-
nities viable. In order to complete this model and given that in some periods there may exist excess
or deficit of local generation over the community demand, the developed model also addresses the

interaction of the community with the centralized wholesale electricity market.
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4.2. Overview of the proposed market design

As reviewed in Chapter 3, in Agent-Based Modelling the system is modelled as collections of
rule-based agents interacting with one another dynamically and intelligently, simulating the behavior
of human beings in order to build optimal bidding strategies. Agents can interact with each other
directly or through the environment, resulting in a complex emergent global behavior of dynamic-
equilibrium and adaptation. Agents can also emulate the behavior of different entities as, for instance,

generation, demand, and retailing entities.

In this work, the market participants will be modeled as adaptive agents with different bidding
preferences and strategies. The optimal bidding strategy will be developed by each agent, by learning
from its past experiences obtained from the direct interaction with the environment. The market

mechanism design used in this work is illustrated in Figure 4.1.
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Figure 4.1. Energy Community market design

The proposed structure considers an Energy Community constituted by different types of agents,

such as consumers, or prosumers agents. Each of these agents, submit their bids (quantities g and
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price p) to a Market Community Agent which is in charge of maximizing the Energy Community
self-energy consumption and the profit in consequence of selling the energy surplus. This agent is
considered as an artifact, since it will be utilized to carry out Energy Community Agents’ activities
in a competitive or cooperative manner. It will receive bids from the Energy Community Agents and
perform a set of operations developed according to pre-defined rules along the simulation and aiming
at obtaining a schedule for each trading period. In more complex structures, several Market Commu-
nity Agents could be considered.

The developed framework considers that the Community energy deficit or surplus in each trading
period will be traded between the Market Community Agent and an Aggregator through a bilateral
contract. In the developed model real data of PV generation and demand profile will be considered
and detailed in Chapter 6.

The Aggregator operates as a traditional retailer regarding the market clearing mechanism in the
WSM. It will gather the information about the energy deficit or excess from the Market Community
Agent together with the estimates from demand and generation from entities not included in the
Community under analysis. After having the mentioned information for each trading period, the Ag-
gregator communicates the buying or selling bids to the Wholesale Market as a way to balance supply

and demand in the community.

Regarding the coordination mechanism to integrate the Local Energy Community Market, LEM,
into the existing Wholesale Market, Figure 4.2. presents the diagram, adapted from [280], that details
the sequence of activities developed by each entity. The initial trading is done locally followed by
the trading in the WSM. The Aggregator receives the quantities to buy and sell in the WSM and
sends back the cleared hourly prices to the Market Community Agent. The obtained values will be
considered in the optimization model of the community in an hourly basis. In order to encourage the
participation of local agents in the local trading at the LEM, the electricity price of LEM is deter-
mined by the energy sold by prosumer agents, the energy bought by all the community members,
and the electricity produced by PV panels installed in the community.
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Figure 4.2. Sequential diagram of Energy Community market with wholesale market integration

Figure 4.2. illustrates the sequential interactions between the LEM, the Aggregator and the WSM
in a day-ahead time horizon. The market agents will present buying and selling hourly bids that cover
all 24 hours of the next day. The market gate closure in the Day-ahead market will be before noon.

The initial trading is done locally, which results in a Local Market Clearing that jointly with the
energy traded outside the community, determines the quantities to buy and sell in the WSM. This is
done via the Aggregator which assumes the role of a retailer and that behaves as a price-taker, i.e.,
assuming that its bidding decisions do not affect the clearing prices of the WSM. After the submis-
sion of demand and supply bids by the Aggregator to the day-ahead energy market, the Wholesale
Market is cleared. The cleared hourly quantities and prices are sent back to the Market Community
Agent through the Aggregator Agent. The obtained values will be considered in the optimization

model of the community which will be detailed in the following sections.

In this sense, the problem formulation cannot be translated into a single mathematical global for-
mulation. The next sections will address the model construction and the agent’s definition used in

the scope of the electricity market model considered in this framework.
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4.3. Local Energy Market Agent-Based Model

4.3.1. General Aspects

The developed ABM incorporates the LEM concept since this is well suited to address the Energy
Communities main purposes. These mechanisms can induce investments in renewable energy
sources, can improve the integration of RES into the energy system, and can contribute to empower
local communities by increasing the participation of local agents as well as the awareness of local

consumers to the energy problems [281].

In this work, the Market Community Agent is in charge of guaranteeing the supply of the com-
munity demand, maximizing the profits resulting from the reduction of the generation cost, the in-
crease of self-consumption, and of selling the energy surplus in the Wholesale Market. The backup
energy will be provided by the Aggregator Agent through the WSM, if the energy traded in the
LEM is insufficient to satisfy the local demand of the Community. The players in the LEM will put
bids (CZ*) with a minimum guaranteed price defined according to a bilateral contract that includes
the price paid to the renewable PV generation (CP"). In order to guarantee that the LEM favors local
transactions rather than buying electricity from the grid, this price should be lower than the aggrega-
tor tariff (CPV < €%99).

The above indications mean that when there is energy deficit at the community, the community
buys electricity from the grid at the WSM price (C*99). When there is surplus of electricity in the
community and after considering self-consumption, the LEM has a minimum ensured price that cor-
responds to the CPV associated to the PV technology. However, in order to increase the revenues
from selling this excess, the ABM will try to increase the selling price as close as possible to the
WSM price. If the LEM price gets higher than the WSM, that would mean that the selling bid of this
excess would not be accepted at the WSM and therefore this amount is sold at the minimum ensured

price, that is, at the C*V value.
The following assumptions are also considered in this model:

a) Thereisageographically distinct and close community of residential prosumer and consumer

agents. It will be possible for them to trade their electricity within the community boundaries,
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eventually exempting them from paying some tariff components related with LV, MV or HV
access tariffs (admitting that all the participants are connected to the same private busbar and
don’t use the public electrical grid for self-consumption purposes), at least in some time pe-
riods namely when the generation in the community is enough to balance the local demand.
However, the developed model is flexible enough to consider other regulatory and tariff op-
tions, as detailed in Chapter 5 and Chapter 6, in order to get insights about the economic
feasibility of this business case;

b) It will be assumed that energy community agents are equipped with adequate infrastructure,
namely communications and home energy management devices;

c) Itisalso assumed that the aggregator operates under the power limits established by the DSO
which guarantees the operation of the grid, without violating network voltage limits and

branch flow constraints.

In order to simulate the proposed LEM, two types of agents are considered, namely consumers
and prosumers, in this case corresponding to consumers with PV generation or consumer installations
equipped with storage units, as it will be detailed in Chapter 5. As detailed in Figure 4.2, the initial
trading is done locally followed by an interaction with the WSM. The achieved results, namely the
combination of the marginal prices of the LEM and of the WSM will be considered in the decision-
making mechanism that will be implemented in the communities in order to plan the exchanges with
the WSM.

4.3.2. Community Agents

The Consumer Agents are those who do not have their own generation units and thus depend on

trading and on the grid for their electricity supply.

Prosumer Agents are always aiming at benefiting the community by making the best use of the
energy resources available. In this model, prosumers with a PV system will be considered. The mar-

ginal cost function of the PV generation (cp},) has a price paid to the renewable PV.

The Market Community Agent is responsible for the local electricity pool market clearing. It
receives bids and offers from community agents (prosumers and consumers agents) on a one-hour

time-slot and based on the local PV generation and expected demand.

To ensure the balance of the community system, constraint (4.1) must be held for every time slot.

(Plgv,t + P(i;rid,t) - (Plf,t + Pé,t) =0 (4-1)
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In the previous expression:

- incase the agent i is a prosumer, P/ . and P}, , are respectively its demand and PV gen-
eration at time slot t;

- incase the agent i is a consumer, Pé,t represents its demand at time slot t;

- P}md,t is the power exchanged with the grid at time slot t. This power is considered pos-

itive if it flows from the main grid in the local community. It is negative otherwise.

The representation of the net load of the community agent i either being a prosumer or a consumer

at time slot t is given by NP} (Equation 4.2.)
NPti = (PLi,t + Pci,t) - Plgv,t (4.2)

If YN, NP{ < 0, the community has a surplus of PV generation that will be used to trade between
the Market Community Agent and an Aggregator. If ¥, NP} > 0 the energy is insufficient to sat-
isfy the local demand of the Community and this deficit will be provided by the Aggregator Agent
through the WSM. So, the developed framework considers that the Community energy deficit or
surplus in each trading period will be traded between the Market Community Agent and an Aggre-
gator through a bilateral contract. Once this information is received, the pricing strategy is updated
for the next round. In this sense, the community optimization model is changed every hour and es-
tablished by local generation and demand profile. Its strategy is based on the comparison between
the WSM and the LEM prices (one hour time slot price). The iterative procedure will be detailed in
Section 4.6.

4.4, Aggregator Agent Based Model and Wholesale En-
ergy Market

As illustrated in Figures 4.1 and 4.2, the Aggregator Agent of the Community interacts with the
Market Community Agent and with traditional agents that participate in the WSM. It has the role of
a traditional retailer but also as an intermediary between Market Community Agents. As presented
in Figure 4.2, it is in charge of informing the agents about the bids that were accepted in the Whole-

sale Market and returning the cleared values to the local market.
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The retailer/aggregator price (C%99) obtained in the WSM day-ahead spot market, will be taken
in consideration in the optimization decision process of the community. The Aggregator Agent, after
having the market clearing price for each trading period of the next day, on a one-hour basis, interacts
with the market community agent and the optimization model starts. The community optimization

model is changed every hour considering the local generation and the local demand profile.

In this work, it will only be considered the day ahead market of the WSM that is the intraday
discrete and continuous markets were not considered. It is divided into the day-ahead, intraday and
continuous intraday market exchanges. Typically, the day-ahead energy market is a double-sided
Uniform Price Auction, where demand agents submit bids to buy energy and supply agents submit
bids to sell energy. An alternative auction design is a Pay-as-Bid framework, where generators sell
the cleared quantity at the offered bid price (the same is applicable to the demand-side). Once the
day-ahead energy market is cleared, the Market Operator adds the physical bilateral contracts to the
cleared offers. Afterwards, the Market Operator and/or the System Operator performs congestion
management to generate feasible daily schedules [282].

The discrete intraday markets are similar to the day-ahead energy markets and the main difference
is the gate closure. They follow the day-ahead session being usually activated at the end of day n-1
and continuing along day n, the delivery day, and work as adjustment markets, i.e., the market agents

can correct accepted bids from the day-ahead market.

The continuous intraday market has the purpose of facilitating energy trade between different
bidding zones of Europe in a continuous manner and increase the overall efficiency of transactions

in intraday markets throughout Europe.

In this work a day-ahead energy market model similar to the Iberian Electricity Market, MIBEL,
was considered. It is a double-sided auction, where market agents submit energy hourly bids for the
24 hours of the next day. Market participants submit energy bids to the power exchange until 12.00
hour. The bid prices can range from -500 €/ MWh to 3 000 € MWh, with minimum price increments
of 0.1 € MWh. The energy bids of MIBEL and other markets are collected and submitted to the
EUPHEMIA platform (European market solver [283]). The EUPHEMIA clears the offers (MWh)
and prices (€/MWh) such that the social welfare is maximized and the power flow limits between
the European bidding areas are not exceeded. The clearing prices and quantities are published at the
13.00 hour. Market-based or technical-based TSO mechanisms are also activated if network prob-

lems are detected inside each trading area.
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4.5, Agents Environment in the implemented model

The environment is defined as the part of the system within which the agents operate. As men-
tioned in Section 3.2.1, the complexity of an ABM can be driven by its environment and the most
complex ones are those that are partially observable, stochastic, sequential, dynamic, continuous and

multi-agent.

In this work, the day-ahead spot market is simulated in a way that the environment definition is
simplified. As mentioned in the previous sections, the prosumers (with PV systems) and consumer
agents will bid on their energy and price in the LEM and receive only information on the clearing
price and if their bids were cleared or not. The Market Community Agent purchases the energy to
balance the Energy Community electricity deficit from the Aggregator Agent and sells the excess
electricity considering specified price limits. The Aggregator receives all the bids (from Market
Community Agent and all other agents that participate in the WSM) and gets from the WSM the
market clearing price for each trading period of the next day. The decision process in this environ-

ment will be based on the WSM price and on the LEM price.
In terms of the classification of this environment, it can be considered as:

- Partially Observable, as the agents have access to a partial state of the environment at

each point of time, namely the market clearing price for each trading period;

- Stochastic, because the next state in which the environment will reside is not completely
determined by the current state. So, there is no certainty about the state that results after
performing a specific action. Agents don’t know if their actions will lead or not to a
clearing in the market;

- Sequential because current actions will affect future decisions. This means that the per-
formance of an agent depends on a number of discrete episodes, which are associated
with the several trading hours and days of the WSM day-ahead market and the trading
periods of the LEM;

- Static because the environment remains unchanged except by the performance of the ac-
tions taken by the agents;

- Continuous, because there is an infinite number of actions and percepts on the environ-
ment which are represented by the hourly decisions of the agents through the environ-
ment;

- Multi-agent because there is more than one agent operating in the environment.
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4.6. Utility Function

As mentioned in Chapter 3, in the ABM, market participants are modeled as adaptive agents with
different bidding preferences and strategies. On the other hand, they are enabled to utilize their past
experience to improve their behaviors. This implies that the tasks to be carried out must be specified
by the user in some way. One way of doing this is to select tasks indirectly via some kind of perfor-

mance measure.

A utility function is a numeric representation of how good some sort of possible residence state
of a system under analysis is. It is the main driver for decision making problems and it allows each
agent to rank its decisions and make choices. This function can therefore be used to determine if the
agent should continue in its current course of action or should seek to change its behavior and to
adapt. Each agent seeks to maximize its own utility function derived from the rewards he can obtain
from its possible actions and can combine multiple objectives. So, the Agent-Based modelization
allows each agent to have a set of personal objectives, such as profit, risk exposure, market share,
etc. [14].

In the proposed framework, the LEM could return surplus energy to their agents. It is also possible
to sell energy (CB'?) at a higher price than the bilateral contract price associated to the PV generation
(CP) but lower than the WSM price (C%99) (CPV < €8¢ < €%99), This means that it is defined
that CPV < €99 to guarantee that LEM favors local transactions rather than buying energy from the
grid. In order to encourage the participation of local agents in the local trading at the LEM, the
electricity price of LEM is determined by the energy sold by prosumer agents, the energy bought by

all the community members, and the electricity produced by the PV panels in the community.

After defining the Bid Price (C5'?), the Market Community Agent calculates the Utility Function,
that consists of the ratio between CZ*4 and C*V. The higher this ratio is, the higher will be the com-
munity profits by applying the optimization model. If the WSM price (C%99) is lower than C*V, the
Market Community Agent will receive the guaranteed reward defined by the bilateral contract, that
is CPV. Otherwise, and if the CZ™ is lower than the C%99 and higher than C*", the reward will be

equal to the difference between 2 and C?V.

The ratio presented in Equation 4.3 represents the Utility function of the Market Community

Agent.

_ CBid (L')
- CPV(t)

(4.3)
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The higher this ratio is, the higher will be community profits by application of the optimization
model. This formulation between two consecutive periods is related with the state’s definition of the

Markov Decision Process and with the Q-Learning procedure that will be detailed in the next section.

Regarding the previous explanation, the bidding strategy defined in this work follows the iterative
procedure illustrated in Figure 4.3.

The iterative procedure considers the community electricity balance, taking into account the de-
mand (if the agent is a consumer) and the demand and PV generation (if the agent is a prosumer). If
the community demand is higher than the local production, the Market Community Agent buys elec-
tricity at the WSM price (C%99). In other hand, and if the balance is negative (i.e., production higher
than consumption), the selling process starts with the definition of the Bid Price (CB!4Y) that the
Market Community Agent communicates to the Aggregator. At this moment, the Utility Function is
calculated using (4.3). As previously explained, the Bid Price (CF!4Y) is the Bid Price offer that the
Market Community Agent uses to sell the energy surplus in the WSM (through the Aggregator).

In order to get the reward that will be obtained during the surplus selling process, the following

considerations will be taken into account:

e If C%99 < CPV the energy surplus will be sold at the guarantee bilateral contract price (C*V).
In the same way, and if the Bid Price (CB*4) is lower than the bilateral contract price (C*V),
it will be sold at C*V price.

e If the Bid Price (CP'Y) is higher than the bilateral contract price (C*V) and lower than the
WSM price (C%99), the energy surplus will be sold at the defined Bid Price (CB!4Y). In this
case, the Market Community Agent will have a reward r;, that will be equal to the difference

between the Bid Price (CB'¥!) and the bilateral contract price (C?").

This is an iterative process and the Market Community Agent will try to increase the selling price
as close as possible to the WSM price and in this sense have a higher reward. This process, namely

the definition of the action and agent state’s definition will be detailed in the next sections.
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Figure 4.3. Iterative procedure included in the operation strategy
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4.7. Q-Learning procedure to be used in the proposed
model

Based on the indications above, the problem under analysis can be transformed in a decision
making with multiple coupled states. The MDP provides a mathematical framework for modeling
decision making in situations where outcomes are partially random and partially under the control of
the decision maker.

The decision-making process of an MDP agent is based on choosing the optimal action according
to a specific utility function. The decision maker could take any action from the set that is available
for each state and subsequently the process will move from state s into a new state s .

The characteristics of electricity markets contribute to create a complex dynamic and adaptive
system. In this circumstance, learning and construction the model of the economic system is a very
complicated task for market participants, and a model free learning can be an appropriate alternative
to build a desired bidding strategy. Agent Based Models have been reported as a complement to
traditional models when the problem is too complex. In this sense, this work uses an ABM associated
to the reinforcement Q-Learning approach to simulate the LEM market and its interactions namely
with the WSM. Reinforcement Learning is used when the probabilities or rewards in MDPs are un-
known and allows an agent to improve its behaviour and its decisions from experience in sequential

and uncertain environments.

Figure 4.4. illustrates the operation of the ABM.

{ agent 1

State s, J

reward Clearance
I'm Action
an
; Fme Ve
] Environment
E sm+1
5 .

Figure 4.4. Market model as an MDP with agent-environment interaction
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When using an Agent-Based Model to model a MDP, the agent first observes the current envi-
ronment state and then takes an action. Then, the agent receives an immediate reward from the envi-
ronment, and the environment moves to the next state based on the transition probability. This pro-
cess is repeated until termination. As mentioned in Section 3.3, an MDP is composed of four essential
elements (s, a, p, ), where s is the finite number of states, a represents the finite number of possible

actions, p is the state transition probability that falls within [0; 1], and r is the reward function.

The agent’s interaction with the environment consists of a sequence of different stages. We con-
sider S = s4, 55, ..., Sy as the set of possible states of the environment and the actions that agents can
take as A = ay, a,, ..., a, . In the n*" episode, the agent procedure using the QL methodology can
be defined as illustrated in Table 3.4. Following the Bellman equation (Eq. 3.1), the Q-value for the

pair Q (s,,, a,) is given by expression (4.4).

Q(sm, an)™™ = (1= 2) - Q(Sm, an) + A* [R(Spn, an) + v - MaxQ(sms1,an)]  (4.4)

Expression (4.4) gives the reward that the agent receives from state s. Only Q-values correspond-
ing to the current state and the last chosen action are updated. The learning rate A € (0,1) and it
reflects the degree to which estimated Q-values are updated by new data and can be different in each
episode. If A equals 0 then the agent does not learn, while if it equals to 1 it induces the agent to
consider only the most recent information. y is a discount factor € (0,1) that represents the weight
given to future reinforcements. A value of y equal to 0 makes the agent myopic by only considering
current rewards, while values closer to 1 turn more important distant rewards [284]. The expression
maxQ (s;m41, ay) represents the best the agent thinks it can do in state s,,,¢. In an initial phase, the
agents will randomly explore state to state until they learn and reach the end of simulation period.
Then, using these Q-values, the agents start their biddings taking into account the learned experience.
Typically, the learning process converges when the Q-values do not change more than a pre-deter-
minate convergence value regarding the values in the Q-matrix that was built in the previous itera-

tion.

One of the main challenges in RL is the trade-off between exploration and exploitation, which is
represented by the greedy policy €. Agents use the past information from exploitation, but they also
have to explore other actions. By following a greedy policy constantly (choosing always the action
with the higher reward value), the agents may not explore some states that could be more profitable
or that could lead to rewarding sequences of states in the future. On the other hand, if the agent

explores too much the environment, without exploring its knowledge, it will not actually learn. Thus,
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it is necessary to achieve a good balance between exploration and exploitation, to ensure that the

learning process evolves towards optimal solutions.

In this work, an e-greedy variation is applied. Instead of always taking the best action, that is the
one having the highest Q-value as in greedy policies, there is a small probability ¢ for the agent to
select randomly another action. This is similar to the strategies that exist in meta-heuristics to avoid
local optimal by increasing the diversity of the search procedure. As referred by [191], the e-greedy
policy is a good strategy that makes a balance between exploration and exploitation by attributing
and ¢ selection probability to other actions. It is expressed as follows:

_ { arg max Q(s, @) eqa With probability 1 — ¢
~ lany action selected uniformly and randondly in A with probabilty €

(4.5)

Initially, the agent chooses actions almost randomly but as the simulation evolves and the con-
vergence is approaching, the agent is forced to choose actions mostly based on the maximum of Q-
values, depending on the specific state where he is located at any time. After that, the agent observes
the reward that he received and the next state to where he will move. Finally, it updates the corre-
sponding value based on the QL update rule and also updates its next state.

Subsequently, the energy trading to be developed in this work will be modeled as a MDP. In Q-
Learning algorithms, agents can learn the best action by interacting with the environment through a
trial-and-error search and this approach doesn’t require having an explicit knowledge about the en-
vironment. Instead, the knowledge regarding the optimal strategy improves while the historic inter-

action with the environment is built by a trial-and-error process.

The Q-Learning algorithm is one of the most effective ways to solve MDP problems because it is
concerned with how agents should select actions in an environment [285], and therefore the cumu-
lative reward could be maximized. The agent’s interaction with the environment consists of a se-
quence of different states. Let us consider S = sy, S5, ..., S;, be the set of possible states of the envi-
ronment and A = a,, a,, ..., a,, be the set of actions that the agent can take. In the nt" episode, the agent

procedure using the Q-Learning methodology can be defined as illustrated in Figure 4.5. [191, 286].

As mentioned in Section 4.5, agents are autonomous entities and interact in an environment. In
this work, the day-ahead market is simulated, which simplifies the definition of the environment,

since we can now consider that the Agent’s environment just corresponds to the day-ahead market.
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Figure 4.5. Steps of the algorithm to model the LEM and the WSM as an ABM with Q-Learning

When there is surplus of electricity in the community and after considering self-consumption, the
LEM has a minimum ensured price that corresponds to a tariff associated to the PV technology.
However, in order to increase the revenues from selling this excess, the ABM tries to increase the
selling price as close as possible to the WSM price. If the LEM price exceeds the WSM, then the
selling bid for this excess will not be accepted using the auction mechanism. Instead, it will be sold

at the lowest price, which is the guaranteed tariff value.

The Q-Learning procedure evaluates the payoff that can be obtained for a given state-action pair
Q(s,a). In this sense, the state’s definition should be in line with energy communities’ perspective,

i.e., to enhance the self-supply capacity and to minimize the dependency of the grid.

As shown in Figure 4.5, the trading system involves a set of states and a set of possible actions
per state. It also contains a Q-value table which is used to record the Q(s,a) values for different
actions a € A when the agent is at state s € S. The core of the Q-Learning algorithm is the value

iteration update, using the weighted average of the old value and the new information as indicated
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by expression (4.4). In this way, the agent can select the most adequate action when being in a given
state using a Q-value according to the Q-value table.

In this problem, we considered the following 5 possible states (Table 4.1):

e State 1 - the agent has obtained a higher reward, compared to the previous episode, which
it is not possible to increase;

e State 2 - the agent has obtained a higher reward, compared to the previous episode, which
it is possible to increase;

e State 3 - the agent has not obtained any change on reward, compared to the previous
episode;

e State 4 - the agent has obtained a lower reward, compared to the previous episode, which
it is possible to increase;

e State 5 - the agent has obtained a lower reward, compared to the previous episode, which

it is not possible to increase.

This is based on the state’s definition used in [14] , which on the other hand corresponds to an
adaptation from [286]. This implementation is in line with the derivative-following strategy pre-
sented in [287]. A derivative follower does incremental increases (or decreases) in price, continuing
to move its price in the same direction until the observed profitability level falls. At this point, the

direction of the movement is reversed.

Table 4.1. Definition of the Q-Learning States

State Reward Reward (related with previous episode)
Si Increased Not possible to increase
S2 Increased Possible to increase
S3 Equal Indifferent
Ss Decreased Possible to increase
Ss Decreased Not possible to increase

The function represented in Figure 4.6. models the bidding strategy used in the learning approach,
where each agent increases or decreases its bid price in an attempt to increase reward. It is also an
adaptation of the derivative-following strategy discussed in [287]. It is considered a sigmoid function
that reflects the risk profile of an agent. If an agent has a higher risk profile, the bid range will be

larger (Figure 4.6.a). On other hand, a low risk profile leads to a narrow bid range (Figure 4.6.b).
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Figure 4.6. Bidding strategy taking into account the risk profile of each agent for large risk profile (a)
and for lower risk profile (b)

In the developed model, seven alternatives actions will be available for each agent when deciding

his bid price as indicated in Figure 4.7.

Max Bid Up

»

actions

Max Bid Down

Figure 4.7. Actions (a; to a7) used in the Q-Learning procedure

For example, action a; corresponds to a maximum bid down, as means that neither a bid up nor a
bid down is used and a7 represents a maximum bid up. Actions a,, as, as and as represent intermediate
values. The reward function r,,, corresponds to the profit that each agent obtains in the market if an
action a is adopted or selected for a given state. As referred in [14], where this kind of function was
also used, the main goal of choosing this type of functions is that it is possible to do an easy param-
eterization in the values of the bid up/bid down actions by changing the Bid Price, and at same time
have different gradients between the actions, where the actions near 0 bid up/down have higher gra-

dient, and actions near maximum values have lower gradient.



Chapter 5

5.Enhanced Model considering Energy Storage

Systems

5.1. Overview

The previous chapter presented a framework that considers market mechanisms to model the par-
ticipation of community agents in the LEM and then its relationship with the WSM. The proposed
market design was implemented considering the day-ahead market on a one-hour basis. It was pro-
posed an Agent-Based Model as a decision tool to support energy transactions among Energy Com-
munity agents and between the communities themselves and the wholesale market. The proposed
environment considers a LEM, established by Prosumers with PV systems and Consumer Agents.
As described in Section 4.3, the initial trading is done locally in the LEM followed by an interaction
with the WSM. The combination of the marginal prices of the LEM and of the WSM were considered
in the ABM decision tool.

As supported by the European Directives, Energy Community Business Models can include not
only local generation, trading and aggregation, but also storage systems. Following this definition,
this Chapter is directed to an electricity market design, similar to the previous one, but now consid-
ering prosumers and energy communities with Energy Storage Systems (ESS), namely batteries. The
operation strategy to be implemented aims at benefiting the community members by storing the ex-
cess of electricity for their internal consumption or to sell in the LEM. In periods in which local
generation is expected to be smaller than the local demand, it is also envisaged the acquisition of
electricity in the WSM in hours in which the market price is lower in order to supply the local de-
mand. It is also possible to benefit community agents by making price arbitrage over time, that is, by
moving the time intervals in which electricity would have to be bought to some other periods in
which the price of the underlying asset is lower or to store electricity when local generation is in

excess in order to sell it in periods in which the price is higher. However, the price arbitrage strategy
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will not be explored by our optimization tool and so it will not be considered in our simulation mod-

els.

The literature on Energy Communities, in general, and on Renewable Communities in particular,
also suggests that the economic feasibility of their operation highly depends on the tariffs eventually
applied to the electricity generated by some primary resources, on the electricity market prices and
on the Access Tariffs that have to be paid by the community agents. In Portugal the legislation admits
that Renewable Energy Communities are exempted from the payment of some tariffs [49, 279] or
tariff components as it is the case of the Costs of General Economic Interest, (CIEG in Portuguese)
[278]. In view of the relevance of this issue to create the conditions to the wide spread of RECs, this
chapter also describes the approach that will be implemented to test the economic viability of the
investments and operation of RECs, namely considering different tariff and charge exemption de-
signs, as a way to get meaningful conclusions on what is the required level of exemption that would

have to be implemented to achieve the breakeven of the investment.

5.2. Overview of the proposed market design

The main difference of the market design to be described in this Chapter regarding the one that
was considered in Section 4.2 (Figure 4.2), is the utilization of ESS devices, namely batteries. Re-
garding the system structure, ESS can be placed anywhere in the community, not only near the
prosumer installation but also on a centralized way in the community, as shown in Figure 5.1. Con-
sidering a decentralized structure, we can consider ESS devices placed behind the prosumer’s instal-
lation (Figure 5.1.a). In this case, the battery storage system is located at the building level and in
this way, the power flow between the batteries and the community doesn’t directly use the public
grid. In a centralized storage architecture, the location of the battery is not inside the community
itself, and in this sense, it is termed as a centralized one. This kind of architecture may allow having
higher volumes of stored energy since the battery will be located at a more central position in the
grid, eventually connected to the upstream voltage level. Figure 5.1.b illustrates an architecture with

a centralized storage system.
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Figure 5.1. Energy Community market design using: (a) a decentralized ESS (behind prosumer’s); (b)
a community centralized ESS

The optimal bidding strategy when considering battery operation will be developed by each agent,
by learning from its past experiences obtained from the direct interaction with the environment. In
the decentralized structure of this model, the prosumer agents will now have not only PV units as it
was considered in the model described in Chapter 4 but also an ESS. Regarding the structure of the
centralized EES model it considers not only local producers, prosumers and consumers, but also an
ESS located at a Low Voltage side of the MV/LV substation that feeds a set of buildings. In this
case, the location of this battery is not inside the community itself, and in this sense, it is termed as
a centralized one. The market design used in this work and the coordination mechanism to integrate

the Energy Community Market, LEM, into the existing WSM, is illustrated in Figure 5.2.

The proposed structure considers an Energy Community constituted by consumers and prosum-
ers, as agents. Each of these agents submit their bids to a Market Community Agent which oversees
maximizing the Energy Community self-energy consumption and the profit in consequence of selling
the energy surplus. This agent is considered an artifact since it will be utilized to carry out Energy
Community Agents’ activities in a competitive or cooperative manner. It will receive bids from the
Energy Community Agents and perform a set of operations developed according to pre-defined rules
in order to obtain a schedule for each trading period. The developed framework considers that the
Community energy deficit or surplus in each trading period will be traded between the Market Com-
munity Agent and an Aggregator through a bilateral contract. On other hand, the Aggregator operates
as a traditional retailer regarding the market clearing mechanism in the Wholesale Market. It will
gather information about the energy deficit or excess from the Market Community Agent and com-
municates the buying or selling bids to the Wholesale Market as a way to balance supply and demand

in the community.
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Figure 5.2. Sequential diagram of the integration of the Energy Community market with the wholesale
market considering ESS

The initial trading is done locally followed by the trading in the WSM. The Aggregator receives
the quantities to buy and sell in the WSM and sends back to the Market Community Agent the cleared
hourly prices. The Market Community Agent receives the quantities and the bids from the commu-
nity, considering the existing ESS, which performs its strategy based on energy deficit or surplus and

taking into account the technical characteristics of the batteries.

The batteries will be in the charging mode if there is any surplus of PV generation regarding the
local demand and in discharging mode if the community demand is higher than local generation.
However, and if the stored energy is sufficient to feed the demand, and it also has some surplus,
those additional quantities will be considered in the selling bids optimization strategy of the Market
Community Agent. So, the social welfare of the community members will increase by reducing the
cost of buying electricity from the grid, by increasing the self-consumption level of the community
and also by eventually selling stored electricity. The iterative process will be further detailed in this

section.

Before the local initial trading, it is solved an optimization problem to identify the most adequate
operation strategy of the ESS, taking into consideration the local energy demand and production, and
an estimate of the LEM prices. The bidding energy that the Market Community Agent trades will
consider the ESS strategy, namely if the batteries will be charging, discharging or in the idle mode.

Having in place the clearing of the LEM, jointly with the energy traded outside the community and

Wharket
clearing
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the ESS optimization, the quantities to buy and sell in the WSM are determined. Subsequently the
demand and supply bids are submitted to the WSM by the Aggregator and the Wholesale Market is
cleared. The cleared hourly quantities and prices are sent back to the Market Community Agent
through the Aggregator Agent.

5.3. Energy Storage Systems

5.3.1. General Aspects

Energy storage technologies are able to store energy under some form, such as mechanical, elec-
trical, chemical, thermal, potential, etc. In some cases, electricity is the original form of energy that
is converted in another form of energy and then, whenever necessary or more adequate, it is con-
verted back to electricity. In other cases, as for example in hydro units with large reservoirs, energy
is stored under the form of potential energy, and it is converted when necessary to electricity. In
addition, if hydro units are equipped with pumping devices, the electricity is used in some periods to
pump water to an upstream reservoir and then the potential energy of this water is converted back to
electricity in some later periods profiting, for instance, from the price spread thus adopting a price

arbitrage operation strategy.

Due to the increasing interest in renewable energy sources and distributed energy resources, the
attention to ESS has also increased. ESS is also regarded as a complementary technology that sup-
ports the development of renewable energy resources and the balance of power systems. It allows
for the increased flexibility of the electricity generation system by allowing it to meet the needs of
the demand while ensuring the security of supply [288]. The introduction of ESS in power systems
is also helping to manage the operation of wind and PV parks turning them more flexible and dis-

patchable and contributing to facilitate the control of the electricity that they can inject in the grids.

In addition, in small and isolated systems, as for instance in islands, the introduction of storage
can enable the increase and more efficient use of renewable units because local utilities frequently
adopt conservative dispatch policies in terms of always maintaining in operation a minimum number
of thermal groups for security of supply reasons. Since these groups typically have technical mini-
mum generation values, in periods in which these technical minimum values together with the ex-
pected renewable generation (from wind and/or PV units) exceeds the demand, wind or PV genera-
tion has to be curtailed. In these cases, introducing storage units will enable avoiding this generation
curtailment and can eventually enable or economically justify further increasing the wind and PV
installed capacity. For example, this is the case of the S&o Miguel Island in Azores where this prob-
lem is even more critic since geothermal units (which also use a renewable primary resource) have

priority in the dispatch policy.
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ESS can be classified according to the nature of the energy that is stored. In [289], the authors

differentiate among devices using mechanical, electrical, electro-chemical and chemical storage.

Concerning the energy transformation process, one can identify:

Mechanical storage: pumped hydro storage, compressed air energy storage, flywheel en-
ergy storage;

Electrochemical storage: conventional batteries storage (Lead acid, Li-ion), high-temper-
ature batteries (NaS, ZEBRA) and flow batteries (VRB, PSB, ZnBr);

Electromagnetic storage: superconducting magnetic energy storage, capacitors and su-

percapacitors;

When it comes to the time frame use, the ESS technologies can perform [290]:

Intertemporal shift of energy: capacity to transfer the energy over a variable length of
time (from some minutes to some hours or even some days or months);

Fast response: capacity to rapidly inject or absorb energy to/from the grid, within some
tens of milliseconds thus enabling improving quality of service and the provision of ser-

vices, namely frequency control services, requiring small time steps.

As a consequence of the surge of distributed generation, the increase of prosumers has brought

new challenges to the established supply-demand dynamics in electricity generation and increased

the need for on-site flexibility. In this sense, one can anticipate that ESS systems, for instance con-

stituted by

batteries, will play an important role on the development of RECs and of LEM. A thor-

ough analysis and research on ESS, namely the maturity of the different energy storage systems,

capacity, charging and discharging duration and response time is available in [289]. The main poten-

tial applications of ESS are listed in [289], and the majority of them fall into one of the following

categories:

Short-term power supply: during a power outtake or scheduled maintenance, storage can
act as uninterruptible power supply for short timeframes;

Integration of renewables into the grid: storage devices can help smoothing the delivery
of power and minimize the power curtailment, which can increase the value of renewable
resources or enable their growth in small isolated systems, in line with what was men-

tioned in the beginning of this section;
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e Transmission and distribution upgrade or expansion investment deferral: the installation
of storage devices, can help reducing the need for new infrastructure and extend the life
of existing equipment by reducing peak loads;

e Time shifting: the use of storage devices can help shifting the consumption patterns of
electricity from peak periods to cheaper off-peak times. This can contribute to lower the
electricity bill. From a tariff perspective, this can help reducing the energy taken from the
grid during more expensive periods. In addition, in some countries as in Portugal, the
average power in peak periods is one of the tariff variables used by the Regulatory
Agency to set regulated tariffs, namely the tariffs for the Use of Transmission and Distri-
bution Networks that integrate the Access Tariff. Therefore, shifting consumption from
peak periods will reduce the corresponding average power value and so it will reduce this
component of the bill;

e Peak shaving: storage can reduce the maximum instantaneous power consumption from
the grid. This reduction can be important because in some countries as in Portugal the
contracted power is another of the tariff variables used by the Regulatory Agency to re-
cover the regulated revenues of the Access Tariff components. This means that control-
ling or reducing the mentioned maximum instantaneous demand will contribute to reduce
or at least not to increase the contracted power term of the electricity bill;

¢ Ancillary services: some types of storage devices have shown to efficiently provide fast
response reserves and are already being used to improve power quality and to contribute
to frequency control. This is the case of Germany or the UK where there are some markets
specifically designed to enable the participation of some ESS technologies and to contract
frequency control products;

o Electric mobility: besides stationary usage, batteries can also be used as a distributed
storage system able to provide flexibility and frequency control services to network op-

erators provided that a Vehicle to Grid, V2G, approach is adopted and implemented.

5.3.2. Energy Storage Systems’ modelization and bidding strategies

ESS plays an important role in the supply and demand balance and therefore its operation will
potentially impact on market prices namely if the capacity of storage systems becomes relevant. By
performing energy arbitrage by shifting energy in time, ESS can take advantage of price differences.
Integrated with PV, ESS are estimated to be able to reduce the energy costs. In the case of decentral-
ized systems (ESS integrated at the consumer/prosumer level), [291] presents an aggregated man-

agement scheme of many small-scale batteries in a community with PV and batteries to carry out
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local energy sharing, where the self-consumption of the aggregated PV and storage units is opti-
mized. There are also benefits when ESSs are centralized, namely because their higher energy ca-

pacity of storage.

Two market designs taking into account totally different rules for the availability, capacity and
pricing of storage are presented in [57]. The results reported in this paper indicate that, in the case of
a decentralized storage system, the overall savings lead to an electricity bill reduction of 31% when
compared to a reference case (without storage neither P2P trading). The monetary savings in a cen-
tralized storage configuration are estimated at 24%, which is slightly lower than in the decentralized
storage system. According to [57], the main factors that impact on the previous results are the system

configuration and the different market designs.

The energy stored in the batteries can be modelled by a simplified linear expression taken from
[291]. Assuming that the charging and discharging power rate remain constant during a time slot, the

stored energy of a battery is described by:

. . . . . pL
Wg, = Wé,t—l(l - U§D,t) + (PILEC,tULBC,t - %) At (5.1)

In this expression:

W , is the stored energy at time slot t;

W ,_, is the stored energy at time slot t-1;

Usip,t is the self-discharge rate (number from 0,0 to 1,0);

PEc . is the battery charging power;

P,§D,t is the battery discharging power;

nfgc,t is the battery charging efficiency (humber from 0,0 to 1,0);
ngm is the battery discharging efficiency (number from 0,0 to 1,0).

Equation (5.1) presents the overall storage level for an ESS device over time. Its battery charging

and discharging levels are limited by o and 3 respectively originating constraints (5.2) and (5.3).
0<Pi;<a (5.2)

0<Pip, <8 (5.3)
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The State of Charge of the battery (SOC) is given by (5.4) in which WBf,N is the nominal capacity
of the battery (i.e., battery size).

(SOC) vf = 2L+ 100% (5.4)

B,N

To ensure the balance of the community system, constraint (5.5) must hold for every time slot.
Any power deviation can always be balanced by exchanging power with the grid. During each time
slot, the batteries can be charging or discharging or in the idle mode.

(Phvc + Php,t + Perig) = (PLe + Péy + Poce) = 0 (5.5)
In the previous expression:

- incase the agent i is a prosumer, P{ . and Pf, . are its demand and PV generation at time
slot t;

- incase the agent i is a consumer, Pé,t represents its demand at time slot t;
- Pk, is the power exchanged with the grid at time slot t;
- P};CI is the battery charging power;

- Pk, is the battery discharging power;

The representation of the net load of the community agent i either being a prosumer or a consumer

at time slot t is given by NP} (Equation 5.6.)
NP{ = (Pie + Py) = Povy (5.6)

Batteries are in the charging mode when ¥, NP{ < 0, and the surplus PV power is used to
charge the battery system, unless the SOC reaches the maximum. The charging power of a central-
ized system is calculated by (Equation 5.7):

N ypi ] N pi ) )
o= M Pl SR <1 and SOCE < SOChay
Zi:l PBC,max ’ Zi=1PBC,max
i _ i _yN i . .
Poce=7\pi. L=V 5 9 & and SOCE < SOCL,, (5.7)
’ Zi=1PBC,max
0 SOC} = SOCL .,

A battery is discharging when Y¥_, NP} > 0. In this case, the residual demand of the consumer
(prosumer or the community) is met by discharging the battery system, unless the SOC reaches the

minimum. The discharging power is calculated by (Equation 5.8):
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N pi _ N vpi . .
( NEL:liNPt * Pl;D,max I\IEI:;:# <1 and SOCLE > SOCrlnin
2i=1PBD,7rLax z:i=1 PBD,max
Pip, = ' 2N, NP ' - 5.8
BDt PéD,max m >1 and SOCtl > SOC:m'n ( )
0 50C} = SOC}in

The operation strategy of the ESS aims at reducing the energy costs of the community and to
increase the community self-consumption. The strategic participation of an ESS in the electricity
market is based on different bidding structures. A comparative analysis on bidding structures of ESS

systems is presented in [292] and consider four options:

a) A simple quantity bidding, where the ESS participates in the market by deciding availa-
bility offers (i.e., charging and discharging capacity) in the form of quantity bids;

b) A simple price bidding, that reflects the ESS willingness to charge and discharge at each
time step on a price-based approach;

c) A guantity-price pair bidding structure that represents a combination of the previous two
approaches. The strategic agent is able to withhold charging/discharging capacity and
express its willingness to charge/discharge in the form of price bids;

d) A complex bidding where the strategic agent discloses all its technical constraints to the
Market Operator and this one is responsible for fulfilling these constraints when clearing
the market. This implies that the Market Operator has knowledge on the ESS’s charac-

teristics, technical constraints and of the value of the stored energy.

The decision problem of the ESS owner presented in [292] is formulated as a bilevel programming
model, where the upper-level problem represents the profit maximization of the ESS and the lower-
level problem simulates possible market clearing outcomes. The presented bilevel models are refor-
mulated as an equivalent mixed-integer linear programming problems by means of the Karush-Kuhn-
Tucker optimality conditions, the strong duality theorem and the Big-M method. In [293] it is pro-
posed a different approach, less complex and time intensive and based on intelligent agents. With
the emergence of ESS, some operation strategies of the ESS regarding the maximization of their
overall profit by controlling the placement proportion of the ESS in different markets has been pro-
posed. The model presented in [294] details a Performance-Based Regulation optimal bidding model.
It addressed not only the optimal strategy for the ESS in different markets but also considered the
battery life time. In [295] it is proposed the integration of an energy storage system and solar power
plant. This publication details an optimal strategy for a Concentrating Solar Power plant, which con-

sidered the energy, the reserve and the regulation markets.
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However, with the increased penetration of storage systems and new market designs and agents
(e.g., RECs concepts), different approaches and bidding strategies within prosumers and retailers
(aggregators) are necessary. One of the major concerns is that traditional bidding strategies only
solve the allocation problem of a single ESS and neglect biddings from other actors and prosumers
[296]. During the process of bidding, the bidder does not know the rivals’ bidding price and bidding
quantity, which is hard to address by traditional optimization algorithms. Furthermore, since bidding
is a highly random and uncertain process, the bidders cannot know the specific revenue model during
bidding. Considering incomplete information of stochastic demand from the market and unknown
bids from rivals, some individual based approaches have been widely applied to develop bidding
strategies in electricity markets, where the individual agents learn to maximize their own profit based

on their past experiences [297-299] .

Therefore, the model developed in this work is based on the methodology proposed in [296] which
presents a Markovian based bidding model that is used to build the optimized bidding strategy of
ESS in day-ahead energy and regulation markets, considering the charging/discharging losses, the

SOC and the deficit or surplus in the community.

Similar to the proposed strategy used in Chapter 4, each ESS will have an associated Agent that
will submit the day-ahead bids to the Market Community Agent, including bidding energies and
bidding prices. The electricity will be allocated according to market requirements. However, and
during the bidding process, the ESS agents cannot know the bidding data of their rivals (in case of
decentralized ESS, for instance), but the MCP and offers from the Market Community Agent are
public. The ESS agents are supposed to be price-takers, since they will not affect the energy price in
the LEM. They submit their bids to the Market Community Agent, considering that their energy will
be firstly self-consumed in the community or sold into the WSM if there exists any remaining sur-

plus.

The objective function of the proposed bidding model is to maximize the total profit of the ESS

considering its operational constraints, costs, and the allowed bid structures (Equation 5.9).
Maxproric = Nrer(Profitf — Costforet) (5.9)

In this expression Profit¢ is the hourly revenue from the LEM and Costf°*® is the hourly cost,
which includes operation and maintenance cost, and loss costs (related with batteries charging/dis-

charging efficiency). The hour index is t.

As referred in Section 5.2, the energy deficit or surplus in each trading period will be traded by

the Market Community Agent via the Aggregator in the WSM. In this framework, the ESS owners
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(both centralized and decentralized) submit their bids to the Market Community Agent. Since ESS
are price-takers, the revenue of an ESS in the LEM, Profitf , can be calculated by Equation (5.10.)
[296].

Profitf = pg - Pey - he (5.10)

In this expression, p{is the LEM electricity price, P, ; is the power of the ESS and h, is the trading
period of the energy market, set at 1 hour in this work. The subscript t is the index of the hours in

each day since the bidding strategy is day-ahead with hourly bids in the wholesale electricity market.

The power of the ESS, P, ;, depends on the charging or discharging requirements of the ESS, b, ;,
which can be positive or negative (equation 5.11.). In this expression b, . is assumed positive when

the battery is discharging and is taken as negative when it is charging.

1 .
bet' ) lfb3t>0
’" MBD !

P, = ' (5.11)
bet ey Uf ber <0
The total cost is calculated using (5.12):
COStEOtal = Cogm,t T Cioss,t (5.12)

Where Cogn ¢, Cross,¢ are the operation and maintenance cost, and the charging and discharging

costs, respectively.

The operation and maintenance cost of an ESS is usually a variable term proportional to the size

of the ESS, which can be calculated as:
CO&M,t = Cq X Epax (5-13)
where C, is the annual maintenance cost of ESS [300].

The charging and discharging efficiencies can be different [301] and the corresponding losses can

be represented as:

Ccloss = De,t * PBC(l - nBC) *AT (5-14)
1

CBploss = Pe,t * Prp (71 - 1) AT (5.15)
BD

An analysis of the effect of the SOC and battery wear cost can be found in [302] which will be

considered in the batteries’ economic assessment (detailed in Section 5.5).
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The energy balance model of the ESS is based on the physical constraints and the market require-
ment. The SOC of the ESS in each time slot t can be calculated as:

soc; = soci_q + Agoct (5.16)

Where Agoc: indicates the amount of energy change from time slot t — 1 to ¢, which is usually
expressed in %. According to the energy selling and buying, the value of Agy; can be negative and

positive. Therefore, the charging/discharging rate of the ESS (Agoc:) is expressed as:

Asoct= (AEf)/Emax (5-17)

In this expression, AE£represents the amount of energy change in the battery. The SOC; is used
to calculate the next state of the reinforcement learning algorithm (to be detailed in Section 5.4),
which is the actual state of the ESS.

The ESS must keep its SOC within its energy capacity limits. According to [303], the ESS per-
forms better if the SOC lies in the range 20% - 80% of its capacity. To get the best performance of
the ESS the capacity limits are set as:

Pmin " Em < SOCt " Evpax < Pmax " Em VEET (5.18)

Where ppinand pi,q, are the minimum and maximum operation limits. E,,, is the rated energy

capacity of the battery storage.

The initial and final SOC are usually set to be same during the optimization period, as described

below. t,and t,, represent the initial and the final periods of the day.
S0C,, = SOCy,, (5.19)

Regarding the previous explanation, the ESS operation strategy defined in this work follows the
iterative procedure illustrated in Figure 5.3. It considers that the battery discharging is in operation
mode (until the pre-defined SOC minimum limits) if the demand is higher than the community pro-
duction (until the minimum SOC level is reached, (5.3)). On other hand, and if the PV production is
higher than the demand, the surplus will charge the batteries (until the predefined maximum level of
SOC; Equation 5.2.). If there is still an energy surplus, this energy will be traded between LEM and
the WSM followed by the optimization model using the reinforcement learning approach, which will
be detailed in the next section. If the energy stored is insufficient to feed the demand, then the market

community agent has to buy the required energy at the WSM.



144 Enhanced Model considering Energy Storage Systems

NPL=z0 =

(Pie+PL.) = Phy, N
v
Discharging Mode Charging Mode
i i
{Update SOC}) (Update SOC})

l

soct = soc

i =
mint~

20%

Buy @WSM Optimization Decision
Process

Figure 5.3. Iterative procedure included in the operation strategy of the ESS
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5.4. Modelling the ESS, the LEM and the WSM as an ABM
with Q-Learning

The optimization of the operation strategy of the ESS in the scope of the operation of the Energy
Community can be transformed into an optimization decision making problem with multiple coupled
states. The developed model is similar to the model detailed in Section 4.7 to simulate the Consumer
and Prosumer (in that case without considering the ESS) Agents.

Considering the stochastic environment of power markets, the optimal bidding problem of an ESS
in a stochastic environment is reformulated based in equation (5.20). This is formulated as a MDP,
which is defined as a five-element tuple and includes the state space §, the action space A, the tran-

sition probability function P, the reward function R and the discount factor y.
M ={S,APR,v} (5.20)

At each time slot the ESS owner has its observation of the bidding market, namely state s,. Con-
sidering that the bidding quantity and bidding price of rivals are uncertain, the state of the ESS owner

is set as:
se = (wital_,,50C, )T (5.21)

Where s.e S presents the observable information and v; 1 is the clearing price of the previous day
at time slot t and al_;is the last decided bidding action, including bidding quantities and bidding

prices.

Having the quantities to buy or to sell between the LEM and the WSM, the reinforcement learning
starts regarding the strategy to be performed. The state’s definition is in line with the energy com-
munities’ perspective, i.e., to enhance the self-supply capacity and to minimize the dependency of
the grid. This is similar to the strategy presented in Chapter 4 and based on the state’s definition

adopted in [14] where the following 5 states were considered:

e State 1 - the agent has obtained a higher reward, compared to the previous episode, which
it is not possible to increase;

e State 2 - the agent has obtained a higher reward, compared to the previous episode, which
it is possible to increase;

e State 3 - the agent has not obtained any change on reward, compared to the previous

episode;
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e State 4 - the agent has obtained a lower reward, compared to the previous episode, which
it is possible to increase;
e State 5 - the agent has obtained a lower reward, compared to the previous episode, which

it is not possible to increase.

This strategy is in line with the derivative-following strategy presented in the last chapter and
based in [287]. However, this strategy has in consideration the ESS characteristics (Equations 5.1-
5.4). Each action taken by the Market Community Agent will increase or decrease its bid price in an
attempt to increase the profit. However, the quantities to be submitted in the bidding process are
limited by the state of the batteries (charging, discharging or idle mode) and SOC. As previously
mentioned, the SOC of a ESS should be kept between 20% to 80% to obtain the best efficiency
operation [304].

Remembering that when using an Agent Based Model to model a MDP, the agent firstly observes
the current environment state and then takes an action, then the agent receives an immediate reward
from the environment, and moves to the next state based on the transition probability. So, according
to this modelling approach, the objective of the reinforcement learning is to obtain the best 24-hour
reward, now considering the storage system and its technical characteristics as part of the environ-
ment. The Q-function can be defined by (5.22) in a similar way to the one defined in Section 4.7.

(Expression 4.4).

Q(Sm' an)new =1- /1) ' Q(Sm: an) +A- [R(Sm: ap)+v: maxQ(5m+1' an)] (5-22)

In this expression A is the learning rate and y is the discount factor. It gives the utility function
that the agent receives from state s. It is also used a greedy police & to keep the exploration of the

behavior, so that all exploratory actions have probability to be chosen during the training period.

So, considering that the energy produced will be firstly self-consumed, the remaining surplus (if
there exists) will be sold in the WSM following the derivative strategy already described in Chapter
4. Remember that these quantities depend on the battery’s state, charging, discharging or idle and on
the SOC. A derivative follower does incremental increases (or decreases) in price, continuing to
move its price in the same direction until the observed profitability level falls. At this point, the
direction of the movement is reversed. As illustrated in Figure 5.4, action al corresponds to a maxi-
mum bid down (in which the bid price is decreased as much as possible), a4 means that neither a bid
up nor a bid down is adopted and a7 represents a maximum bid up action (in which the bid price is

increased as much as possible).
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In order to get the reward that will be obtained during the surplus selling process, the same as-
sumptions referred to in Section 4.6. will be considered, namely that the Market Community Agent
will try to increase the selling price as close as possible to the WSM price and in this sense have a
higher reward. However, it will be considered the state of the batteries (charging, discharging or idle
mode) and the SOC.

'y

Max Bid up o

0 -
actions

Max bid down ——-—f/

a a,dz;dydsdg as

Figure 5.4. Actions (al to a7) used in the Q-Learning procedure

5.5. Economic viability of Energy Communities business

models

5.5.1. Overview

Besides the implemented legal framework and the incentives for the deployment of Energy Com-
munities, it should be assessed the impact of different levels of charges and exemptions as a way of
getting insights on the economic feasibility of the Energy Communities. The economic viability of
the investments (namely in Storage Systems) and operation of RECs, specifically considering differ-
ent tariff and charge exemption designs, should therefore be studied in order to get conclusions on

the breakeven of the investments.

In Portugal, the DL 162/2019 Art. 18 (n. 4) [49], stated that the charges associated with the Costs

of General Economic Interest, CIEG (Custos de Interesse Econdmico Geral, in Portuguese), that are
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internalized in the regulated revenues associated to Tariff for the Global Use of the System, can be
totally or partially deducted from grid Access Tariffs to be paid by community members. In the 19*
June 2020, a government dispatch [279] also stated that self-consumption and REC projects, starting
operation till the end of the calendar year of 2021, benefit from an exemption of the CIEG charges
included in the network Access Tariffs for seven years. This provision is intended to induce the wider
deployment of self-consumption and of Energy Communities. Although this dispatch was associated
to projects that started operation till the end of 2021, it is expected that similar decisions are published
in the coming years. Nevertheless, the impact of this kind of exemptions should be evaluated namely
to conclude if they are needed to ensure the economic feasibility of this kind of business model
because in fact exempting some consumers from paying some costs does not eliminate these costs
but it will rather contribute to increase the amounts to be paid by agents not profiting from these

exemptions.

Recently, the mentioned DL 162/2019 was revoked by the publication of the new electricity law
corresponding to the DL 15/2022 of January 14 [54]. This new Decree includes definitions and pro-
visions for Renewable Energy Communities similar to the ones included in the DL 162/2019 and, in
particular, the number 4 of article 212 states the CIEG can be totally or partially deduced from the
Access Tariffs to be paid by the members of the communities and by self-consumption agents de-
pending on a decision of the government till the 15" of September each year.

The legal framework also considers the definition of proximity among the members, devices and
equipment that integrate a community. As detailed in Section 2.2.1., the definition of proximity pro-
vided in the DL 162/2019 and now included on the DL 15/2022 does not clearly set spatial limits for
the location of prosumers and can consider that they are connected to the LV side of a MV/LV

substation, to different voltage levels or considering other legal and technical issues.

Some of the simulations that will be detailed in Chapter 6, will consider the impact of having or
not exemptions on the Access Tariffs, namely for the CIEG component of the tariffs. These scenarios
will take into account the utilization of the public grid for self-consumption purpose, when the stor-
age system will be located outside the electrical network of the buildings where the consumers are
installed. A variety of studies will be developed to achieve a broad selection of results which consider
different grid charges and tariffs. Once again, the main objective is to get insights related with the
payment of grid tariffs and in particular with the CIEG component applied to self-consumption that

uses the public grid.
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In a different but complementary and also relevant way, admitting that the payment by the com-
munity members of all the Access Tariffs as define in the Tariff Code including the mentioned CIEG
originates their economic unfeasibility, these simulations can also be used to identify the minimum
level of charge reductions or exemptions to ensure the break even. From a regulatory point of view,
enlarging the charge reductions or exemptions so that more and more network users benefit from
them, originates an important regulatory problem. In fact, the Access Tariffs are designed to provide
the amount of regulated revenues defined in the Tariff Code and required to finance several regulated
activities as network distribution and transmission and the system control and management as well
as a number of public policies that are designed to benefit all the society on the long term. As the
number of consumers or network users benefiting from charge reductions or exemptions increases,
the consumers that at the end will pay the complete regulated Access Tariffs reflecting the mentioned
regulated revenues gets more and more reduced which means that each of them would pay more for
the access to the system. This is a major concern as the number of RECs increase and clearly shows
that these charge reductions or exemptions should be cautiously set and should only be accepted as

a transitory provision to help inducing the development this new business case.

5.5.2. Economic Evaluation Methodology

The economic value of the investments and operation of RECs should offer a financially valued
proposition to let communities to be viable under this new paradigm. One of the initial factors for
consumers and prosumers to form and participate in an Energy Community is the willingness to
lower the investment risk in renewable energy generation and storage equipment. For this reason,

the investments in PVs and storage systems are relevant for the economic evaluation of RECs.

The decision on whether a project should be carried out or abandoned is commonly made relying
on an “investment criterion”. The most commonly applied approaches found in the literature for
storage and PV systems are based on the Net Present Value (NPV) and on the Internal Rate of Return
(IRR). Less often, the Benefit-Cost Ratio and the Payback Period are also calculated [288].

Regarding the energy communities’ frameworks and strategies, it is also expected that the excess
energy can be sold and therefore the community members should experience a profit from it, unless
the payments from network operators charging energy communities to connect and use the grid as
well as taxes charged by governments are not going to break an economic business case. The finan-
cial gains associated with different system configurations and interactions among LEM and the WSM

should also be evaluated.
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On this sense, the economic viability of the investments and operation of RECs depend on several
factors listed below:

a) The tariffs and prices used to remunerate some primary resources, as for instance the
energy from PV systems;

b) Electricity Prices;
c) Access Tariffs;

d) Investment Costs of ESS and PV systems.

5.5.2.1. Storage and PV systems economic analysis

The values of the investment and replacement costs, IRR, NPV and payback period are considered
to access the economic viability of the PV and storage systems. These elements depend on the cost
associated with the installation and on the Operation and Maintenance (O&M) of the systems, their

lifetime and the interest rate.

Economic profitability of an investment project is commonly measured by its NPV, which is the
difference between a project’s present value and its cost. The present value of a forecasted cash flow
is a measure of today’s value of future cash streams. The sum of all discounted cash flows — both
revenues and costs — corresponds to the Net Present Value. Economic theory dictates that an invest-
ment should only be undertaken if the NPV is positive, which is the case if future revenues exceed

all costs under consideration considering the time value of the money [288].

Related to the calculation of the NPV is the determination of the IRR. This concept corresponds
to the projects discount rate for which the present value of all cash flows equals zero. The resulting
rate is typically compared to the required return on capital or to alternative projects having a similar
risk level to determine if an investment is sufficiently profitable and should be pursued. However,
IRR can be ambiguous if cash flows have a reversal of sign during lifetime [305, 306]. Furthermore,
IRR oftentimes provides a too optimistic view as it inherently assumes that interim cash flows are
reinvested at the IRR [288].

Related to the concept of NPV, the benefit-cost ratio is the ratio of the present values of benefits
and cost, with numbers greater than one representing projects with a positive NPV. This figure is

commonly used in project evaluations in the public sector [288].
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The Payback period is another popular evaluation criterion. It measures “[...] the number of
years necessary to recover the project cost of an investment under consideration” [307]. Therefore,

projects should only be accepted if their payback period falls below some defined threshold.

Specific to the evaluation of energy related projects is the concept of Levelized Cost of Electric-
ity (LCOE) or Levelized Cost of Storage (LCOS), which is an estimate of the value at which a unit
of energy that is produced or stored should be sold. It is calculated by determining all expenses during
the lifetime, discounting them to the base year and setting them in relation to the associated quantity
of energy. LCOS / LCOE can also be interpreted as the revenue requirement to break-even [308].

Considering a battery as a storage system, the lifetime of the battery is restricted by two limits:
the battery technology’s degradation over time as well as its usage-based wear down. Once one of
these limits is reached, the storage system is considered at the end of its usable life. The average
price required over the lifetime of a storage device to break even the full costs of its operation is
known as the LCOS. Alternatively, the LCOS can be viewed as the electricity price that makes the
net present value of all storage cash flows over its lifetime equal to zero. Therefore, it gives an insight
into the cost of storing and providing a unit of energy. This levelized cost can be determined using

equation (5.23).
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As a normalized figure independent of storage dimensions, this levelized cost then allows for a
comparison of system configurations and between technologies. It also could be interpreted as a

depreciation charge or as an average revenue hurdle.

The lifetime cost of electricity storage technologies (Pumped Hydro; Compressed air; Flywheel,
Lithium-ion; Sodium-Sulphur; Lead-acid; Vanadium redox-flow; Hydrogen; Supercapacitor) in 12
power system applications (Energy Arbitrage; Primary Response; Secondary Response; Tertiary Re-
sponse; Peaker Replacement; Black Start; Seasonal Storage; Transmission and Distribution Invest-
ment Deferral; Congestion Management; Bill Management; Power Quality; Power Reliability), from
2015 to 2050, was studied in [309]. Figure 5.5. shows an overview of the probability each technology
has to exhibit the lowest LCOS, and the mean value of LCOS of the most cost-efficient technology

for all 12 investigated electricity storage applications. The left-hand axis of each graph displays the
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probability that a technology will exhibit the lowest LCOS in a specific application. The right-hand
axis displays the expected evolution of the LCOS of the technology that will most probably display
the lowest LCOS for each application. Note there are different scales on the graphs in this figure.
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Figure 5.5. Lowest LCOS probabilities for 9 Electricity Storage Technologies in 12 applications from
2015 to 2050 (source [309]).

In 2015, pumped hydro and compressed air dominated most applications except for bill manage-
ment, power quality and reliability, and primary response, where size and response time requirements
made these technologies unsuitable for these applications. For these exceptions, battery systems such
as lead acid, sodium sulphur, lithium ion, and vanadium redox flow compete for the least-cost, while
primary response is dominated by flywheels. Projected cost reductions for battery technologies limit
the competitiveness of pumped hydro and compressed air. Battery technologies exhibit the highest
probability of getting the lowest LCOS for most applications beyond 2025. By 2030, lithium ion
appears to be the most cost efficient in most applications, with <4 h discharge and <300 annual cycles
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such as power quality and black start. For applications with greater duration and cycle requirements,
vanadium redox flow stays competitive, albeit never being the most likely to offer the minimum
LCOS value. These applications are power reliability (>4 h) or secondary response and bill manage-
ment (>300 cycles). For seasonal storage with more than 700 h discharge, hydrogen storage is likely
to become the most cost-efficient technology. Primary response with 5.000 full equivalent charge-
discharge cycles sees the dominance of flywheels contested by lithium ion. This report [309] con-
cludes that the values of the LCOS will get reduced by one-third to one-half from 2030 and 2050,
respectively, across the modeled applications, with lithium ion batteries likely to become the most

cost efficient storage technology for nearly all stationary applications from 2030 onwards.

Regarding solar PV systems, the rapid technological evolution of these systems has made future-
cost assumptions cheaper than average spot market electricity all over Europe. For instance, in 2030,
utility-scale PV LCOE will range from 14 € MWh to 24 €/ MWh, making PV clearly one of the
cheapest forms of electricity generation [310]. Solar PV modules have maintained a learning rate of
23% since 1976, i.e., their cost reduces by 23% every time the capacity doubles [311]. The main
drivers for PV systems cost reductions include technological improvements, such as efficiency in-
crease and high-level mechanisms, including economies of scale, automation, and standardization in

manufacturing.

The LCOE for solar PV systems is calculated by dividing the sum of costs of the PV system over
its lifetime by the electricity produced over its lifetime, as presented in equation (5.24).

N It+M¢

t= T
LCOE = =10 (5.24)

N
t=1(1+n)t

In this expression I; and M; are the O&M expenditure in year t. E; stands for the electricity gener-
ated in year t, r is the discount rate, and N the lifetime of the PV system.

Since most of the investment expenditures are allocated in the initial year, lifetime extension can
significantly reduce the LCOE for solar systems. Solar cells with low degradation rates, such as
silicon solar cells (~0.5 %/year) [312], have an impact on the lifetime extension and consequently on
the reduction of the LCOE.

The investment cost of a PV system (Cyy) includes the price of the photovoltaic modules (Cwod),

the inverter (Cinv) and installation (Cins) as given in equation (5.25).

Cpy = Cpmoa + Cinp + Cins (5-25)
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On a PV-storage system, the battery cost (Cgatery) represents a considerable portion of the invest-
ment. The total cost of a PV-storage system, equation (5.26), depends on the sizing of the photovol-
taic itself and the associated storage device.

Crotar = Cpy + CBattery (5.26)

A PV-storage project is considered to have a lifetime equal to the lifetime of the PV modules,
which is around 20 years. The warranty of the battery and the inverter is approximately 10 to 15
years, consequently they will have to be replaced after that time [313]. Therefore, the costs presented

in Equation (5.27) must be taken into consideration when doing an economic analysis.

Creplace =Crmy + CBattery (5.27)

The IRR, defined by Equation (5.28), assesses the profitability of the PV-storage system. It rep-
resents the discount rate of the project considering the NPV (difference between the present value of
cash inflows and the present value of cash outflows) equals to zero. IRR (%) considers the cash flows

(CF) of each year of the project (t) and the lifetime (n) in years [314].

CF,
0= Xioqn (5.28)

+IRR)t

The NPV, defined by Equation (5.29), reflects the difference between benefits and costs of a
project, considering the yield expectation of the investor and therefore its time value of money. It is
obtained by discounting all cash flows with the cost of capital 74y, -

CF;

NPV =3T_
’ 0(1+7Equity)

Ga: (5.29)

55.2.2.  Electricity Prices and Access Tariffs

As previously mentioned, the impact of having or not exemptions on network tariffs, namely for
the CIEG component of the Access Tariffs will be considered in order to access the economic feasi-
bility of Energy Communities. In addition, it should also be mentioned that the DL 15/2022 of Jan-
uary 14%" [54] states in number 3 of article 213, that storage systems are also exempted of paying the

charges associated with the CIEG that are typically included in the Global Use of the System Tariff.

In order to better understand the different components that constitute the final price paid by con-
sumers, a structure of the price of electricity supply in Portugal is presented in Figure 5.6. The elec-
tricity price paid by the final consumers can be grouped in three clusters: payment for use of networks

(distribution and transmission), payment for purchased energy and taxes.
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Access Tariffs reflect the cost of infrastructures and all services used by the consumers in a col-
lective manner. It is composed by the Global System Usage Tariff, the Transmission System Use
Tariff, the Distribution System Use Tariff and the Logistics Operator for Switching Electricity and
Gas Supplier (OLMC) Tariff. These tariffs are typically paid by retailers on behalf of their consumers
and the corresponding values are incorporated in the final energy bill to be paid by the end consum-
ers. On the other hand, each supplier defines freely the corresponding value of the Energy and Re-
tailing Tariffs, being in competition with other suppliers. The government is responsible for the def-
inition and setting the taxes. All the regulated price components, namely the components of the Ac-

cess Tariff, are annually published by ERSE [315].
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Figure 5.6. Structure of the price of liberalized electricity market supply in Portugal, adapted from
[315]

The electricity tariffs and prices set by ERSE for 2022 were approved by the ERSE Directive n°
3/2022 on January 7%, and published in the Diario da Republica [316]. This Directive also approves
the network Access Tariffs for electric mobility, the tariffs applicable to self-consumption, and the

network access tariffs for autonomous storage facilities.

However, the Directive no. 8/2022, of 11 April [317] approved an extraordinary revision of the
Energy Tariff applicable by the Last Resource Retailer, with effects on the transitory End-User Tar-
iffs and End-User Social Tariff, in mainland Portugal and in the Autonomous Regions of the Azores
and Madeira, on the End-User Tariffs to be applied in the context of supplementary supply and on

the Energy and Supply Tariff for electric mobility.

The Access Tariffs that must be paid by the community agents regarding the utilization of public
networks for energy transactions are presented in Annex B1. The charges associated with CIEG,

without exemption, with 50% exemption and with 100% exemption, are provided respectively in
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Annexes B2.1, B2.2 and B2.3. These correspond to values of the tariffs in force in 2020 and will be
considered in the Simulations to be described in Chapter 6. We decided to use the tariffs applied to
the year 2020, because the economic and market context (pandemic and Russian-Ukrainian war) in
2021 and 2022 had impact on the stability of these tariffs (e.g., negative values on the CIEG compo-
nent).



Chapter 6

6.Simulations, Results and Discussion

6.1. Overview of the simulations to be described

As mentioned in previous chapters, the energy community proposed in this work considers a LEM
constituted by prosumers with PV generation that can integrate, or not, storage systems. To under-
stand how ESS systems can add value to a LEM, we propose two different architectures regarding
their integration. In the first one, storage, constituted by batteries, is located at the building level.
This architecture is termed as decentralized in the sense that each building has its own battery equip-
ment. In the second one, termed as centralized, the batteries will be located at the LV side of the
MV/LV substation that supplies a set of buildings that constitute the community. Specifically, the
value of battery storage and the associated architectures in combination with LEM are examined. To
understand the value of local markets and battery flexibility, we compared the outcomes of the two

proposed designs against a reference case that does not incorporate storage systems.

As a reference case, designated as Ref-Case, we considered a Portuguese collective building with
electricity demand distributed by the common services and by 15 flats. All the apartments are orga-
nized as an energy community considering a collective self-consumption scheme. It has a renewable
generation unit constituted by PV systems without storage systems and the operation of the LEM is
simulated not using the Q-Learning approach. The same as in the previous scenario but considering
the optimization approach with the Q-Learning strategy will be named as scenario SC_PV. The ar-

chitecture for these scenarios (without storage) is illustrated in (Figure 6.1).
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Figure 6.1. lllustration of the collective self-consumption design (scenario SC_PV) (adapted from
DGEG [318])

As scenario for SC_ST45, it was considered a community that has a battery storage system lo-
cated at the building level. The power flow between the batteries and the community doesn’t use the
public grid because they are located inside the building. This will be named as Decentralized Storage
System as mentioned above and it is illustrated in (Figure 6.2) namely because there is a storage unit
for each building that could be considered. It should be recognized that this does not correspond to
a fully decentralized approach in which each consumer/prosumer would have its own small storage
unit. Such a level of decentralization was not considered in this study because the current investment
cost in storage systems is still large enough to prevent this type of dissemination. In other words,
currently it is more feasible to adopt some level of decentralization involving sets of consumers rather

than a fully decentralized design.

It was also studied a centralized storage architecture in which the storage system is located at a
Low Voltage side of the MV/LV substation that feeds a set of buildings. This scenario is termed as
SC_ST300. The location of this battery is not inside the community itself, and it is termed as a cen-
tralized one given that a set of buildings share the same storage unit (Figure 6.3). In order to get
insights related with the payment of grid tariffs and in particular with the CIEG component applied
to self-consumption that uses the public grid, its economic impact will be assessed in scenario

SC_ST300. This evaluation will be done by considering different exemption conditions.
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Figure 6.2. lllustration of the collective self-consumption installation with a decentralized storage sys-
tem (scenario SC_ST45) (adapted from DGEG [318])
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Figure 6.3. lllustration of the collective self-consumption installation with a centralized storage system
(scenario SC_ST300) located at the LV side of the MV/LV substation (adapted from DGEG [318])

To assess the impact of the different parameters used in the developed Q-Learning methodology,
i.e., the learning rate, the discount factor and greedy police parameters, several simulations will also

be developed considering the scenario SC_PV.

To validate the previous results from an economic point of view, a long-term economic assess-
ment will be presented considering the equipment live-cycle, CAPEX and OPEX expenditures. A
sensitivity analysis will also be performed in order to assess the behavior of the Net Present Value

considering the change of some parameters.



160 Simulations, Results and Discussion

Table 6.1 summarizes the different scenarios that will be analyzed.

Table 6.1. REC configurations and scenarios to be analyzed

Scenario name Description

Ref-Case With PV, without storage and without Q-Learning strategy

SC_PV With PV, without storage and with Q-Learning strategy

SC_ST45 With PV, with storage (decentralized) and with Q-Learning strategy

SC_ST300_A With PV, with storage (centralized) and with Q-Learning strategy (without CIEG ex-
emptions)

SC_ST300 B With PV, with storage (centralized) and with Q-Learning strategy (with 50% CIEG

exemptions)
SC_ST300_C With PV, with storage (centralized) and with Q-Learning strategy (with 100% CIEG
exemptions)

6.2. Global characterization and Reference Case descrip-
tion

The simulations to be described use real data from a Portuguese collective building with electric-
ity demand distributed by the common services and by 15 flats. All the apartments and common
services are organized as an energy community considering a collective self-consumption scheme.
The installation includes a renewable generation unit constituted by PV systems with overall 45 kWp
and 70,2 MWh of annual generation. The sample power profiles for the demand and the PV systems
were built using open datasets available at [319] and with sampling periods of 15 minutes, starting
on 1st January 2019 until the 1st January 2020. Table 6.2 presents the annual energy demand of the

consumers and their contracted power.

As illustrated in (Figure 6.1) the PV systems are integrated at the building level and in this sense
the electrical public grid is not used for self-consumption purposes, i.e., for physical exchanges of
energy between the PV systems and the community consumers. The public grid is only used to inject

eventual electricity surplus in some periods and to get electricity from the grid in other periods.
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Table 6.2. Annual Energy demand

Annual Demand Contracted Power

kK¥Wh kvA
Commaon Services 40205 13,8
consumer 1 3175 3,45
consumer 2 2250 3,45
consumer 3 2621 3,45
consumer 4 5309 3,45
consumer 5 3735 3,45
consumer & 4372 3,45
consumer 7 3365 3,45
consumer 3 3393 3,45
consumer 9 5552 3,45
consumer 10 16376 6,9
consumer 11 9933 3,45
consumer 12 4249 3,45
consumer 13 15106 6,9
consumer 14 15351 6,9
consumer 15 2755 3,45

The annual hourly energy demand profile for all the apartments and common services are pre-
sented in Figure 6.4. These load profiles show that between 23.00 and 6.00 the demand is lower,
which is related to hours with less activity. After 07.00 the demand starts to increase, having a rela-
tively constant profile in the common services until 22.00. On the other hand, the demand of the
apartments increases after 18.00 achieving the peak power by 21.00.
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Figure 6.4.Global hourly energy consumption profile.
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Regarding the photovoltaic generation, Figure 6.5. shows the corresponding hourly average gen-

eration.

Hourly average PV generation profile

123 456 7 8 9101112131415161718 192021222324
hour

Figure 6.5. Average hourly PV generation

Considering the 15 min values of the demand of the 15 flats plus the common services and the
generation of the PV systems, it was possible to estimate the demand supplied by the public grid, the
demand supplied by the self-consumption and the electricity injected back to the grid. Table 6.3.
presents the corresponding aggregated results.

Considering the community energy demand and production, Figure 6.6. presents the annual elec-
trical energy balance. For a global energy demand of 145,4 MWh, 68% (98,6 MWh) are provided by
the electrical supplier which means that the remaining 32% (46,8 MWh) are provided by self-con-
sumption (left bar on Figure 6.6.). However, it is also possible to observe that the community pro-
duced more energy than the 46,8 MWh, corresponding to 70,2 MWh (right bar on Figure 6.6). This
means that, 33% (23,4 MWh) of the community production was injected back into the grid and the

remaining 67% (46,8 MWh) that was produced in the community was self-consumed.

Table 6.3.Annual Energy Community balance

MWh
Global Energy demand 145,4
Demand supplied by the public grid 98,6
Demand supplied by self-consumption 46,8

Electricity injected back in the public grid 23,4
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Figure 6.6. Community annual electricity demand and production

Figure 6.7 presents the monthly electrical energy balance. In this graph all the values are read in
the left-hand side (LHS) vertical axis, except the energy injected back to the public network that is
read in the right-hand side (RHS) vertical axis. It is possible to observe that the summer months
(July, August, and September) are the periods when more electricity is injected back into the public
grid. This is coincident with the months in which more energy is produced in the community, and

this is obviously related with the higher PV output.
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Figure 6.7. Monthly electrical energy balance

As mentioned before, this is the Reference Scenario, which doesn’t consider storage systems
(neither decentralized or centralized) and consists only of a PV system used for self-consumption

purposes. In the case of any surplus, it will be injected back into the main public grid and will be
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remunerated by a bilateral contract established by the community and a traditional retailer which
means that the Q-Learning approach is not used to optimize this remuneration.

The remuneration established for this bilateral contract (CV) was set at 50 €/ MWh. The value
established for C?V had a relevant impact on the renewable energy promotion and on its penetration
on the electric systems, namely electricity produced by PV systems. Since 2022, the Portuguese leg-
islation [54] allows establishing bilateral contracts between producers (integrated in renewable en-
ergy communities) and retailers. The value defined for C?V is somehow related but distant from the
initial Feed In Tariffs supported by the Portuguese Legislation namely by the DL n.215-B/2012 [320]
and the DL n.35/2013 [321]. In fact, the mentioned value adopted for C*V in this work is much lower
than the original Feed In Tariffs applied to PV generation units and this reduction is suggested by
the values currently offered by retailers that accept buying the excess of electricity from self-con-

sumption units.

In what concerns to the cost of electricity acquisition, all the demand supplied by the public grid
will be paid at the WSM prices. In this work, and for all the scenarios considered, we used real
electricity market prices for 2019 publicly available at the webpage of the Iberian Market Operator,
OMIE, in [322].

Table 6.4. presents the energy annual costs for this Reference Case scenario. It presents the
amounts associated with the Access Tariffs, the energy acquisition costs, and the remuneration ob-

tained from selling the energy surplus generated by the PV generation regarding the demand.

Table 6.4. Energy annual costs (Ref-Case)

Costs Ref-Case
Access Tariffs 5.171,07 €
Electricity acquisition 6.899,66 €
Selling energy -1.167,18 €
Total 10.903,55 €

Analyzing the previous table, it is possible to observe that the total energy annual cost is reduced
by almost 11% given the remuneration obtained by selling the electricity surplus (-1.167,18 €). Re-
call that this remuneration is obtained by selling the energy surplus at the C?V price and without
considering the Q-Learning process. The impact of using Q-Learning will be assessed and analyzed

in the next sections.
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6.3. Scenario SC_PV description and simulation results

6.3.1. Optimization model analysis and results

As it was explained in Chapters 4 and 5, the utility function used in the developed model corre-
sponds to the ratio between the CB@ and CFV. The higher this ratio is, the higher will be the commu-
nity profits by applying the optimization model. After defining the Bid Price (C?‘4), the Market
Community Agent calculates the Utility Function. If the WSM price (C*99) is lower than CFY, the
Market Community Agent will receive the guaranteed reward defined by the bilateral contract, that
is CPV. Otherwise, and if the €5 is lower than the €99 and higher than C*V, the reward will be
equal to the difference between CZ and CPV. This reward will be a consequence of the defined
bidding strategy of the developed Q-Learning methodology. In case of energy deficit, and because
we assume that consumers have no elasticity regarding the price, the bids in the LEM will correspond
to the required energy paid at the WSM market price.

The LEM and the WSM markets are cleared individually, and their coordination is done as fol-

lows:

a) the local energy deficit is bought at the WSM price C*%;

b) the local generated electricity is firstly self-consumed and then the remaining energy will
be traded in the WSM considering the price obtained after the optimization strategy pro-
cess, i.e., due to the application of the Q-Learning methodology. If the LEM prices C®"
are lower than the WSM prices C?%, the community has a potential profit that is associ-
ated to the difference between both prices. Otherwise, if the WSM prices are lower than

the LEM prices, the surplus energy will be sold at C™Y as previously referred.

The developed ABM model was applied to real data of consumption, PV generation and WSM
prices. As mentioned in Sections 4.7 and 4.8, the definition of the Q-Learning procedure is based on

a pair state-action Q(s,,, a,)-

The learning rate A reflects the degree to which estimated Q-values are updated by new data. If
A=0 the agent doesn’t learn. If A=1 then the agent is induced to consider only the most recent infor-
mation. The discount factor y represents the weight given to future reinforcements. If y = 0 the agent
considers only current rewards, otherwise if y = 1 distant rewards become more important. The
greedy policy parameter ¢ is related with the probability for the agent to select an action rather than

the best one, that is, the one associated with the largest Q-value.
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In this Case Study, we used the following 3 actions:

- as represents Action 1 corresponding to a bid down of -1 €/ MWh regarding the bid price
of the previous iteration;

- a represents Action 2 corresponding to no bid up nor bid down regarding the bid price
of the last iteration (0 €/MWh);

- agrepresents Action 3 corresponding to a bid up of +1 €/ MWh regarding the bid price of
the last iteration.

As mentioned in Section 4.8, the state’s definition considers five states that are related with the
reward associated with the previous episode and with the obtained profit. These states are detailed in
Table 6.5.

Table 6.5. Definition of the Q-Learning States

State Reward Reward (related with previous episode)
S Increased Not possible to increase
Sz Increased Possible to increase
S3 Equal Indifferent
Ss Decreased Possible to increase
Ss Decreased Not possible to increase

The structure of the Q-matrix Q (s, a,), as well as the values of the parameters A, y and € used to

obtain this matrix are presented in Table 6.6.

Table 6.6. Q-matrix for the Scenario SC_PV

State/Action al a2 a3 Parameter
S1 Q1,1 Q1,2 Q1,3 A 0,8
S2 Q2,1 Q2,2 Q2,3 y 0,8
S3 Q3,1 Q3,2 Q3,3 g 0,1
S4 Q4,1 Q4,2 Q4,3
S5 Q5,1 Q5,2 Q5,3

The learning rate A was set at 0,8, as well as the discount factor y. The greedy policy parameter €
was set at 0,1, which means that the agent has 90% probability of choosing the action with higher Q-

value (greedy selection).
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After describing the simulation conditions and having enumerated the values that were adopted
for several parameters, we will now present and analyze the results that were obtained for Scenario

SC_PV. Figure 6.8 presents the results for one year (52 weeks) simulation.

Average_WSM_price, Average_BID_price and C_PV by Week

® Average_WSM price @Average_BID_price @C PV

Average_WSM_price, Average_BID_...
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Figure 6.8. Bidding results for the SC_PV scenario.

In Figure 6.8., the light blue line corresponds to the WSM price C*%, the orange line represents
the C™ specific value, and the dark blue line represents the LEM price C®' taking in consideration
the bid strategy of the Market Community Agent. It is possible to verify that the community agent
was exploring the environment by doing bid up and bid downs always above 50,00 €/ MWh. This
situation is explained by the learning experience that our agent has during the bidding process. The
agent adapted his behavior considering the pre-defined strategy and learns with past experiences.

Figure 6.9 presents the WSM and LEM average prices observed in the month of January, as a
consequence of the bidding strategy adopted by the Market Community Agent. In addition, Figure
6.10. includes a more detailed overview of the impact of the defined strategy. On January 27" the
bid strategy of the agent reaches an average value little higher than the WSM price, where the WSM
price was 69,46 €/ MWh and the bid price was set as 69,71 €/ MWh. In this case, the selling price will
be equal to C™ (50 € MWh). In these cases, there will be no additional profit and the reward will be
equal to 0 €/MWh. If the bid price was a little lower than the WSM price, the reward was equal to
difference between those Bid Price and the bilateral contract price CP". This was a consequence of
the fact that the agent explores the environment by doing bid up/downs between C™ and the WSM
price.
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Figure 6.9. January average prices results for SC_PV
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Figure 6.10. January average prices results for SC_PV highlighting the results for day 27.

Analyzing now in more detail the behavior of the Market Community Agent, regarding the actions
and the states that were considered, Table 6.7. shows the Q-matrix on January 4th between hour 11
and 15. Given there is energy surplus at this period (after being self-consumed), the remaining energy
will be traded considering the defined coordination between the WSM and LEM. The agent has 90%
of probability (¢=0,1) of choosing the action which corresponds to the maximum value of the Q-
matrix. At hour 12, the action that was chosen was as, that corresponds to a bid up of +1 €MWh
regarding the bid price of the last iteration. So, at this hour the bid was 58,00 € MWh (the previous
bid was 57,00 € MWh at hour 11). Considering that there is an increase on the reward regarding the
previous one (difference between C® and C™ changes from 7 to 8 €/ MWh, and it is possible to get

more profit (increase until WSM price), state s, was therefore obtained.
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Table 6.7. Q-matrix for SC_PV (considering no storage) — January 4

hour BID_price  WSM price Reward Q(s,1) Q(s,2) Q(s,3) Action State
10 | 68,44
ki 57,00 69,30 7,00 15,46 27,79 0,56 2 3
12 ‘ 58,00 68,72 8,00 -25,86 -11,63 17,87 3 2
13 59,00 70,65 9,00 -25,86 -11,63 22,21 3 2
14 ‘ 58,00 72,05 8,00 -43,50 21,76 -39,69 1 4
15 | 58,00 7143 8,00 15,46 27,79 17,95 2 3
16 | 67,50
17 67,78

At day 4 hour 13, the agent chooses the action with higher Q-value (greedy selection), which was
action as. This represents a bid up of 1 € MWh which means a change of bid price from 58,00 € MWh
to 59,00 €/MWh. The agent state keeps in Sz, which means that the agent has obtained more profit,
compared with the previous episode and it is possible to get more profit because the WSM price was
68,72 €/ MWh and the LEM was 59,00 €/ MWh. So, the LEM price still has margin to increase in
order to get closer to the WSM price.

At hour 14, the chosen action is not the one having the maximum Q-value (there is 10% proba-
bility of the agent not choosing the action with maximum Q-value) and in this sense the agent didn’t
chose action a; and chose action ai. This represented a bid of 58,00 € MWh (change of -1 € MWh
regarding the previous bid). Since the reward decreases (regarding the previous episode) and it is
possible to get more profit (the difference between the BID price and WSM price is not equal to zero)

the agent assumes that the state is now sa.

The Q-matrix is again updated and at day 4 hour 15 the agent choses the maximum value of Q-
matrix (with 90% of probability) which originates the selection of action a,. This means not to bid
up nor bid down regarding the bid price of the last iteration (change of 0 € MWh regarding the
previous bid). Since the reward remains the same regarding the previous episode, the agent is in state

Sa.

Analyzing with more detail the behavior of the Market Community Agent at day 27, Table 6.8.
presents the corresponding Q-matrix results. At hour 12 the WSM price was higher than the LEM
price. However, and since there was a bid up of 1 € MWh (as consequence the agent takes the action
azat hour 13) the bid price became higher than the WSM price at hour 13. In this case, the revenue
will be equal to the C?Y which was defined at 50,00 € MWh. The potential reward corresponds to the
difference between the C™ (50,00 € MWh) and the WSM price (69,82 €/MWh) and this explains
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why the corresponding reward value in Table 6.8 is negative meaning that it was lost the opportunity
of having a reward of 19,82 €/ MWh.

Table 6.8. Q-matrix for SC_PV (considering no storage) — January 27

hour BID_price WSM price Reward Q(s,1) Q(s.2) Q(s.3) Action State
10 68,00 71,23 18,00 3016 6120 2077 3 2
1 68,00 72,37 18,00 3539 3106 6381 2 3
12 69,00 7018 19,00 30,16 6748 2077 3 2
13 70,00 6982 -1982 -4350 2977 6221 3 4
14 71,00 68,72 -1872 30,16 6748 281N 3 2
16 71,00 66,59 -16,59 30,16 2269 2811 2 2

Now let us analyze the economical results for Scenario SC_PV considering a period of 12 months.
Figure 6.11. presents the results obtained monthly as well as the accumulated results along the year.
In this Figure, blue bars correspond to the monthly calculated rewards (values in the left vertical
axis) whereas the dark blue line represents the cumulative reward (values in the right-hand side ver-
tical axis).

lculated_4_3

Reward_aceumulated 4 3

Sum of Reward_cal

Month_é_3

Figure 6.11. Scenario SC_PV - calculated reward by month and accumulated reward (€) for 2=0,8,
v=0,8 and £=0,1
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As can be observed, the accumulated reward at the end of the year is approximately 1463,33 €.
As defined in our bidding strategy, when the bid price is higher than the WSM price, the bid price is
not cleared and it is assumed a value equal to the C™, i.e., 50,00 €/ MWh. When the bid price is lower
than the WSM price, the assumed price is the bid price. It is also possible to observe that the months
in which the rewards are larger correspond to July, August, and September. These are the months in
which PV generation is larger (sunny months in Portugal). Month 8, August, has the highest calcu-
lated reward (163,96 €) and this value is 61% higher than the value obtained for November, which
had the lowest calculated reward at 99,83 €. The exception is related to March. As it was possible to
observe in the dataset, the consumption was lower in this month. Therefore, the energy surplus is
larger and so this allows having more transactions in the LEM thus contributing to an increase in the

reward.

6.3.2. Impact of the learning rate, discount factor and greedy policy

Let us now analyze the impact of the learning rate A, the discount factor y and the greedy policy
€ parameters in the Q-matrix and on the results obtained in scenario SC_PV. This means that new
simulations were run considering changes on each of these parameters, one at a time, so that they
correspond to variations of SC_PV termed as SC_ PV_A, SC PV _B and SC_PV_C regarding the

base case that is associated to scenario SC_PV that was previously described.

We will start by changing the greedy police parameter from 0,1 to 0,0 (Table 6.9.). This means
that the agent will always choose the action with the higher Q-value which corresponds to a greedy

selection strategy.

Table 6.9. Scenario SC_PV_A — changing the greedy police parameterg

Parameter

A 0,8

Y 0,8
€ 0,1—>0,0

As we can observe in Table 6.10, for the same day that was analyzed previously (January 27
between hours 11 and 13), the agent always choses the action with higher Q value. In this case, at
hour 13, it was chosen action a, which keeps the bid equal to the previous one at 55,00 €/ MWh. This
situation occurs because the agent always chooses the action with the highest Q-value (with 0% of

probability of choosing a worse one). This behavior doesn’t let the agent choose another action than
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the one associated with the highest Q-value which eventually means that the agent loses the oppor-

tunity of increasing its reward. For instance, if the agent increased its bid after taking action az (which
has not the highest matrix Q-value) the reward was higher because the bid instead of 55,00 € MWh

would be 56,00 €/ MWh.

Table 6.10. Scenario SC_PV_A - Q-matrix — January 27; — 2=0,8, y =0,8 and £=0,0

% hour BID_price WSM price Reward Q{s.1) Q(s2) Q(s.3) Action State
10 | 55,00 7123 5 812 2201 1480 2 3
Tni| 55,00 7237 S 812 2249 14,80 2GS
12 55,00 70,18 5 812 2289 1480 2 3
13| 55,00 69,82 5 812 2323 1480 Y
14 55,00 68,72 5 812 2351 1480 2 3
15 | 55,00 67,34 5 812 2375 1480 2 3
16 55,00 66,59 5 812 2395 1480 2. -3
17 | 67.85

Figure 6.12. presents the values of the rewards for 12 months

greedy police parameter from 0,1 to 0,0.
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Figure 6.12. Scenario SC_PV_A - calculated reward by month and accumulated reward (€) for 2=0,8,

The values of the rewards per month and the corresponding accumulated value are depicted in
Figure 6.12. The accumulated reward at the end of the year decreases from 1.463,33 € to 1.372,98 €

Month_4_2 Reward_calculated 4.2 Reward_accumulated 4.2
1 87.80 87.80
2 17,79 205,59
3 145,47 351,06
4 90,93 442,00
5 107,77 549,77
6 9232 642,09
7 127,18 769,27
8 157,56 926,82
9 141,90 1.068.73
10 94.26 1.162,98
il 98,21 1.261,19
12 111,79 137298

Y =0,8 and €=0,0
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when compared with the result obtained using the greedy policy parameter equal to 0,1 (Figure 6.11).
As observed for day 27, this “greedy” convergence doesn’t allow the exploration process to be more
effective by experimenting all the actions even if they are worse at a given step of the learning pro-
cess.

Now, we will analyze the behavior of the results of scenario SC_PV by changing the value of the
y parameter, that represents the weight given to future reinforcements, as indicated in Table 6.11.

that is reducing its value from 0,8 to 0,1.

Table 6.11. Scenario SC_PV_B - changing the discount factor parameter y

Parameter
A 0,8
4 08->0,1
€ 0,1

The same day that was previously analyzed (January 27) is now also considered. It is possible to
observe that the bid price was lower than the WSM price only at hour 11 (Table. 6.12.) and conse-
quently a positive reward was achieved. This is justified by the fact that in the other hours of this
day, the agent uses bid prices higher than the WSM price. So, these bids were not cleared, and the
agent sold the electricity at the bilateral contract price C*Y (and the reward obtained, i.e., the differ-
ence between CPVand C®was negative). At hour 11, the agent selected action a; (decrease the bid
value by 1 €/MWh, from 72,00 to 71,00 €MWh). Given that the reward increased, and it is not

possible to get a larger profit, the state was s:.

Table 6.12. Scenario SC_PV_B - Q-matrix — January 27; — 2=0,8, Y=0,1 and £=0,1

hour Bl _price WM price eward Qs As<) 2053 Action State
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Figure 6.13. presents the results for the 12 months simulation, after changing the value of the y
parameter from 0,8 to 0,1.
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Figure 6.13. Scenario SC_PV_B - calculated reward by month and accumulated reward (€) for 2=0,8,
Y =0,1 and &=0,1.

By decreasing the value of the y parameter, and in this way the weight given to future reinforce-
ments decreases, the agent finds new strategies in each hour and doesn’t have in consideration the
impact of its decisions in future rewards. Due to this consideration, we choose to use a higher value

for y in our model. The accumulated reward at the end of the year is now 1.345,11 €.

Let us now analyse the behaviour of the developed model by changing the learning rate parameter
L. This parameter reflects the degree to which estimated Q-values are updated by new data. Table
6.13. presents the new parameters that will now be used. In this new simulation we only changed the

value of the learning rate, while the values of the other two parameters remained unchanged regard-
ing the original values that were used.

Table 6.13. Scenario SC_PV_C — changing the learning rate parameter A

Parameter
A 08->0,1
y 0,8

€ 0,1
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As observed in Table 6.14., at hour 13, the bid price was higher than the WSM and so the reward
was negative. At hour 14, and after the agent performs action a3, the bid price increases by 1 €/ MWh,
from 70,00 €MWh to 71,00 € MWh. Since this bid continues to be higher than the WSM, the reward
remains negative. At hours 15 and 16 the bid price maintains the value of 71,00 €/ MWh followed by
performing action a2 and the bid price continues higher than the WSM price. These results reveal
that the agent doesn’t “want to learn” using fresh information, namely the obtained negative rewards,
and doesn’t change its actions in order to decrease the bid price until achieving a lower value when
compared with the WSM price. This situation happens because of the low value of the learning rate

that was used in this simulation.

Table 6.14. Scenario SC_PV_C - Q-matrix — January 27; — 2=0,1, y =0,8 and £=0,1

hour BID_price WSM price Reward Q(s,1) Q(s.2) Qfs3) Action State
-
10 68,00 7123 18,00 30,16 61,20 2077 3 2
1 68,00 72,37 18,00 3539 3106 6381 2 3
12 69,00 70.18 19,00 30,16 6748 2077 3 2
13 70,00 6982 -1982 -4350 2977 6221 3 4
14 71.00 68.72 -1872 30,16 6748 2811 3 2
15 71,00 6734 -17.34 30,16 4281 2811 2 2
16 71.00 66,59 16,59 3016 2269 2811 2 2
67.85

~J

The analysis of the rewards obtained for the entire year indicates that they are lower than the
ones obtained on the simulation with A equal to 0,8. In this case the annual reward is 1335,98 €
(Figure 6.14). When using A equal to 0,1, the agent does not completely explore its bid ups and bid
downs taking in consideration its experience. Since the market dynamics are continuously changing,
it is most desirable that agents can rapidly adapt to new situations so in this sense a value of 0,8 will

be adopted for the learning rate.
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Month Reward_calculated Reward_accumulated

1 96,20 96,20
2 96.28 192,48
3 128,50 320,98
4 99,74 420,72
5 1235 533,06
6 9997 633,04
7 136,29 769,32
8 150,10 919,42
9 124,28 1.043,70
10 98,01 1141
1 92,57 1.234,28
12 101,70 1.335,98

Figure 6.14. Scenario SC_PV_C - calculated reward by month and accumulated reward (€) for A=0,1,
Y =0,8 and £=0,1.

Table 6.15. presents an overview of the different parameters that were analyzed and the respective
model annual reward of the selling bids. The adoption of the values used for A, Y and ¢ will be
justified below.

Table 6.15. Parameters data - summary table

Parameter SC PV SCPVA SCPVB SC PV C

A 0,8 0,8 0,8 01

Y 0,8 0,8 0,1 0,8

g 0,1 0,0 0,1 01
Annual reward (€)  1463,33  1372,98 1345,11 1335,98

By changing the greedy policy parameter (¢) to 0,0, the agent will always choose the action with
higher Q-value (greedy selection) and has 0% probability of choosing a worse action. However, this
greedy strategy doesn’t allow the exploration process to be more effective by experimenting with all
actions even if they are worse at a given step of the learning process. So, in our work we will adopt
a value to the parameter ¢ equal to 0,1.

The y parameter represents the weight given to future reinforcements and when it decreases the

agent finds new strategies in each hour and doesn’t have in consideration the impact of its decisions
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in future rewards. Due to this consideration, the value assumed to y will be 0,8 to give importance

to possible future rewards.

Analyzing now the impact of the learning rate parameter A that reflects the degree in which esti-
mated Q-values are updated by new data, a low value means that the agent doesn’t want to learn
using “fresh” information”. In this case, the Q-values are updated with very small increments of new
information and for that reason the new information is not valued, meaning that the agent has a very
slow learning rate. Considering that electricity market dynamics are continuously changing, it is most
desirable to have agents that can adapt their behavior with a very high capability of learning. For this
reason, we chose to use in our work a value of the learning rate A of 0,8.

There are different approaches to model the evolution of the learning rate, like for instance dy-
namic ones that evolve during the simulation process. However, the simulations done along this work
do not use such a dynamic approach but in fact the value of the learning rate remains constant along
the simulations. As a reference, the simulations developed in [14] present also good results using a
similar environment with values of the parameters that will be considered in the simulations reported
in this work (i.e., €=0,1, y =0,8 and A=0,8).

6.3.3. Economic assessment of the scenario SC_PV

As previously indicated, we considered a Portuguese collective building with electricity demand
distributed by the common services and by 15 flats. All the apartments are organized as an energy
community considering a collective self-consumption scheme. It has a renewable generation unit
constituted by PV systems without storage systems and the operation of the LEM is simulated not
using the Q-Learning approach. The public grid is only used to inject eventual electricity excesses in
some periods and to get electricity from the grid in other periods. Regarding the applicable tariffs,

the access and energy tariffs (see Annex B1) [323] are applied to the energy imported from the grid.

For comparison purposes, we considered a Normal Exploration situation that has the same de-
mand profile but without self-consumption, that is without the PV units. This means that all the
electricity is taken from the grid, and so the annual energy costs (including the applicable Access
Tariffs and electricity acquisition), as indicated in Table 6.16, will be larger than 18.000 €. When
compared with Scenario SC_PV, the cost associated with access tariffs and electricity acquisition
will be reduced to a value of approximately 12.000 €. Therefore, it is possible to observe a significant

reduction in the global annual cost resulting in a total saving of 34,23%.
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Table 6.16. Comparison of access tariffs and electricity acquisition cost— Scenario SC_PV with Normal

Exploration
Costs Scenario SC PV Normal Exploration Savings
Access Tariffs 5.171,07 € 8.135,26 € 2.964,20 € 36,44%
Electricity acquisition 6.899,66 € 10.218,71 € 3.319,05 € 32,48%
Total 12.070,73 € 18.353,97 € 6.283,25 € 34,23%

Figure 6.15 and 6.16 present the related costs and their distribution in both cases, scenario SC_PV

versus normal exploration. It is possible to observe a reduction of more than 30% on the Energy

Costs and on the Access Tariff using the self-consumption scheme associated with SC_PV, when

compared with the Normal Exploration mode.
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Figure 6.15. Comparison of costs between scenario SC_PV and normal exploration

SC_PV vs Normal exploration

100%
80%
60%

40%
0%

Electricity aquisition

- B Access Tariffs

Self-consumption Normal exploration

Figure 6.16. Breakdown of costs for scenario SC_PV versus normal exploration

Regarding now the total costs, considering the profits of selling the electricity surplus, and in

order to assess the impact of the applied learning strategy, Table 6.17 presents the results that were

obtained with and without the application of the optimization model, that is for the scenarios SC_PV
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and Ref-Case. For this, the right column considers the Ref-Case scenario in which the surplus energy
generated by the PV regarding the demand is paid at the bilateral contract price, C?, set at 50,00
€/MWh and the energy supplied by the public network is paid at the market price so that no optimi-
zation strategy is used. On the central column, the energy is sold using the bids prices followed by
the applied learning strategy. As it is possible to observe, the increase of the revenues by selling the
electricity surplus has an important impact on the reduction of the total energy annual costs. When
applying the optimization strategy, the revenue by selling the electricity surplus is 25% higher than
in the Ref-Case.

Table 6.17. Energy annual costs (optimization and non-optimization models) (Scenario SC_PV and

Ref-Case)
Costs SC PV Ref-Case
Access Tariffs 5.171,07 € 5.171,07 €
Electricity acquisition 6.899,66 € 6.899,66 €
Selling energy -1.460,66 € -1.167,18 €
Total 10.610,06 € 10.903,55 €

To access the economic value associated with the scenario SC_PV, the NPV methodology will
now be used. As mentioned in Section 5.5.2, the NPV is the sum of the present value of a series of
present and future cash flows, considering a discount rate. Because NPV accounts for the time value
of money, it provides a way to evaluate and compare products with cash flows spread over many

years, as in loans, investments, payouts from insurance contracts and so on.

The NPV methodology, which will be calculated for all scenarios, will reflect the total costs,
namely the operational and investment costs, and will consider the expected economic benefits of

selling the surplus of energy with the grid.

To establish a baseline for further comparison, the reference case will be considered (Ref-Case).
Recall that in this scenario the community to be assessed considers a collective self-consumption
scheme with PV generation, where the surplus of energy generated by the PV regarding the demand
is paid at a C™" and the energy supplied by the public grid is paid at the market price. So, in the Ref-

Case the Q-Learning strategy is not considered.

The dimensioned photovoltaic unit consists of PV systems with a total of 45 kWp peak power.
This capacity is aligned with the peak power of the installation and in a way that self-consumption
is privileged while reducing the excesses the energy injected into the grid. This self-consumption
scheme is supported by D.L 15/2022 (Article 88 — 2 e) [54].
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The estimation of the installation costs is based on the fact that economies of scale can originate
benefits. Solar PV is already the cheapest form of electricity generation in many countries and market
segments. Market prices of PV modules are evolving so fast that it is difficult to find reliable up to
date public data on real PV capital (CAPEX) and operational expenditures (OPEX) on which to base
the economic calculations. The report presented in [310] projects the PV LCOE until 2050. In this
work, the assumptions for PV investment costs were made based on the previous report considering
the year 2020. Table 6.18 presents the PV installations reference costs for CAPEX and OPEX.

Table 6.18. PV installations reference costs and economic parameters used for economic performance
calculation

Reference Cost

CAPEX 0,384 €/Wp
OPEX 8,1 €/kWp/year

Considering the investment in PV, for a 45 kWp system, the following data will also be consid-

ered:

- Lifetime of the panels: 20 years;

- Lifetime of the inverters: 10 years [324];

- 20% of the investment with equity interest rate, and the remaining by a financial loan;
for 20 years with an interest rate of 2,5% [324];

In this sense, the expenses needed to do the investment on the PV system, considering 20% with
equity for CAPEX and OPEX, are 17.280 € and 364,5 €/year, respectively. All the tariffs and elec-
tricity acquisition costs that were considered were the same throughout the years under analysis. The
NPV of this scenario, Ref-Case that considers the PV system but does not use the optimization strat-
egy, is —210.085,00 €.

Let us now consider the SC_PV scenario in which the energy in excess is injected in the public
network using selling bids optimized according to the Q-Learning strategy. In this case, the revenue
obtained from selling the energy excess is 1460,66 € per year as indicated in Table 6.17. Considering
the same investment costs in the PV systems, the NPV is now —205.510,00 €.

It should be clarified that this negative value directly results from the investment cost, the acqui-
sition of electricity from the grid and the associated access tariffs. Although the PV installation,
operation and maintenance costs are considered in both cases, the NPV becomes less negative indi-

cating that there is a decrease of the total cost to be paid by the consumers over the simulated period.



6.4 Decentralized storage — scenario SC_ST45 description and results 181

Comparing with the reference case, Ref-Case, the NPV decreases by 4575 € (Table 6.19.) which
reveals that the optimization strategy that was used impacts on the final NPV namely because in
several periods it allows selling the excess of local generation regarding the local demand at a price
higher than the value adopted for CP". This result also means that, although investment, operation
and maintenance costs of the PV systems are internalized in the calculation, the NPV evolves in the
positive direction, meaning that it gets less negative and so the consumers obtain important savings.

Table 6.19. Net present values for the Ref-case and for the SC_PV scenario

Ref-Case Scenario SC_PV
without optimization strategy with optimization strategy
NPV -210.085,00 € -205.510,00 €
6.4. Decentralized storage — scenario SC_ST45 description

and results

6.4.1. Scenario description and energy balance

In this simulation, the installation to be analyzed differs from the previous one because we now
consider an energy storage system (Figure 6.17.) located at the building level. As explained in Sec-
tion 6.1 if a set of similar buildings was studied, then each of them would have its own storage unit
and this sense this architecture is termed as decentralized. As explained before, this does not corre-
spond to a fully decentralized installation in which each consumer/prosumer would have its own
storage unit. This kind of fully decentralized architecture was not considered and tested since the
investment cost of the storage equipment is still too large to justify such an approach. On the other
hand, installing a storage system at each building level will turn the definition of its operation strategy
less complex. As much as possible, the energy produced in the community is self-consumed and
stored without any tariff payment. This is supported by the number 2 of article 212 of DL 15/22
[54], since the energy is self-consumed and stored using the building busbar and not using the elec-

trical public grid.
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Figure 6.17. lllustration of the collective self-consumption installation with decentralized storage sys-
tem (scenario SC_ST45) (adapted from DGEG [318])

As mentioned in Chapter 5.3.2., in this simulation the bidding strategy of the Market Community
Agent considers the storage system. The objective of the community is to minimize the electricity
consumption cost by prioritizing self-sufficiency and to sell any surplus to the WSM through the
Market Community Agent. However, the quantities and the bids to be considered by the Market
Community Agent will now take into account the existence of the ESS and depend on its technical
characteristics, namely on the SOC of the batteries and if they are charging, discharging or in idle
mode. They will be in the charging mode if there is surplus of PV generation regarding the local
demand and in the discharging mode if the community demand is higher than the local PV genera-
tion. However, and if the stored energy is sufficient to feed the demand, and it also has some surplus,
the energy in excess will be sold to the market following the optimization strategy defined in this
work. Using this strategy, the social welfare of the community members will increase because the
cost of buying electricity from the grid is reduced and it is increased the self-consumption level of

the community.

In this simulation, three 15 kWh modules of sonnenBatterie [325] (leading to a total of 45 kWh),
each one with an efficiency up to 98%, were considered. The charge and discharge rates depend on
the performance of the inverters with a nominal power of 3,3 kW and a maximal efficiency of 96%.
The SOC of individual batteries was restricted to a range between 20 and 80% of the nominal capac-
ity [326]. We assume no degradation processes and do not consider lifetime expansion by smart

charging control devices.
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The demand and PV renewable generation profiles were built using the same dataset already used
in Section 6.2. [319]. The annual energy community balance, considering now the ESS system, is
presented in Table 6.20. This table includes the global energy demand (equal to the value in the
previous simulation since the dataset used was the same), the demand supplied by the grid and by
self- consumption, as well as the electricity injected back in the public grid.

Table 6.20. Annual Energy Community balance (with decentralized ESS)

MWh
Global Energy demand 145,4
Demand supplied by the public grid 78,6
Demand supplied by self-consumption 66,8
Electricity injected back in the public grid 13,9

Comparing this balance with the one from the SC_PV scenario in which there is no storage unit
(Table 6.3), the demand supplied by the public grid decreases 21% (from 98,6 to 78,6 MWh). This
is due to the additional energy provided by the storage system. The demand supplied by self-con-
sumption increases 30% (from 46,8 to 66,8 MWh) which is in line with the strategy defined in our
simulation model. This means that the energy produced by the PV system and the additional one
provided by the storage system follows the Energy community philosophy which aims at incentiviz-
ing self-consumption. In what concerns the electricity injected back to the public grid, it is now more
reduced than the one that was injected in the grid without storage, and it decreases by almost 41%
(from 23,4 to 13,9 MWHh). This reduction is explained by the fact that the adopted strategy prioritizes
the self-consumption, and the presence of the storage unit allows storing energy generated by the PV
systems when it is in excess regarding the local demand instead of immediately injecting these ex-

cesses back to the public grid.

Figure 6.18 shows the annual energy balance for the architectures with storage (SC_ST45) and
without storage (SC_PV), considering the community energy demand and generation. It is possible
to observe the increase of the community self-consumed energy in the simulation with storage system
(SC_ST45). In what concerns the electricity injected back into the grid, it is lower in the scenario
SC_ST45 as indicated above. As previously highlighted, in the overall energy generation, using the
SC_ST45 architecture it is possible to have a better management of the energy generated by the PV
panels. This means that the generation profile is more “aligned” with the demand profile than what
occurs in the system without storage meaning that the self-consuming level is leveraged by the in-

stallation of the storage unit.
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Figure 6.18. Community annual electricity demand and production (with and without storage)
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Figure 6.19 presents the monthly distribution of the electrical energy for scenario SC_ST45.

When compared with the monthly analyses for the architecture without storage, SC_PV, in Figure

6.7, it is possible to observe that the demand supplied by the public grid is lower in every month.

Conversely, there is an increase in each month of the demand supplied by self-consumption. In this

graph all the values are read in the left-hand side (LHS) vertical axis except for the electricity injected

back in the public grid that is read in the right-hand side (RHS) vertical axis.
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6.4.2. Optimization model analysis and results

The analysis to be presented in this section follows the structure of the one presented in Section
6.3.1. The developed model is based on the same strategy defined for the Q-Learning procedure, i.e.,
it was created based on identical pairs state-action behavior analysis. So, the Q-Learning states and
actions are the same. The parameters A, y and & to compute the Q-values will also be the same as the

ones presented in Table 6.56. and are indicated in Table 6.21.

Table 6.21. Structure of the Q-matrix for Scenario SC_ST45

State/Action al a2 a3 Parameter
S1 Q11 Q1,2 Q1,3 A 0,8
S2 Q2,1 Q2,2 Q2,3 Y 0,8
S3 Q3,1 Q3,2 Q3,3 € 0,1
S4 Q4,1 Q4,2 Q4,3
S5 Q5,1 Q5,2 Q5,3

In order to facilitate the comparison with the analysis performed in Section 6.3.1, similar graphs
will now be detailed. In this sense, Figure 6.20. presents the results for one year (52 weeks) simula-
tion. When compared with the analysis with the architecture without storage (SC_PV) in Figure 6.8,
one can observe that the submitted bids show a different trend regarding the ones that are presented
in Figure 6.20. Nevertheless, the defined strategy is similar, and it contributes to increase the social
welfare of the community members by reducing the cost of buying electricity from the grid and to

increase the self-consumption level, considering now the storage equipment.

In Figure 6.20, the dark blue line represents the average bid price, and it is also possible to observe
that the community agent was also exploring the environment by doing bid up and bid downs always
above the CPV. It is also interesting to observe that the agent has a different behavior regarding the
results obtained for the SC_PV scenario. In fact, the submitted average bid price is often closer and
more stable regarding the WSM price than the results presented for the SC_PV case. This means that

the agent is responding in a more dynamic way to different environments.
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Figure 6.20. Bidding results for Case Study SC_ST45 (considering decentralized storage)

Figure 6.21 presents the WSM and the LEM average prices that were observed in the month of
January. In this simulation, the bid strategy of the Market Community Agent reaches the WSM bid
price at days 17 and 27. As comparison, in scenario SC_PV for the same month, the bid price only
reached the WSM price on day 27. Notwithstanding the learning parameters are the same, this occurs
because the agent was doing different explorations of the environment, which is different in this

scenario, and consequently originated different behaviors although the same overall strategy was
used.

Average_WSM_price_vf, C_PV and
Average_BID_price_vf by Day
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Figure 6.21. January average prices results for the Case Study SC_ST45

As shown in Figure 6.212, on January 27 the bid strategy of the agent reaches a value higher than
the WSM price (@27/Jan 13h00). In this simulation, the WSM price was 69,46 € MWh (obviously
the same as in the simulation for SC_PV) and the bid price was set as 69,57 €/ MWh. In this case, the
revenue will be equal to the C?Y which was defined as 50,00 €/MWh and there is no additional profit.

Figure 6.22 details the abovementioned results.
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Figure 6.22. January average prices results for the Case Study SC_ST45 (highlight day 27)

By doing the same analysis of the behavior of the Market Community Agent regarding the actions
and states that were selected, Table 6.22. shows the Q-matrix for the same day and period that was
addressed in Table 6.7. for the Scenario SC_PV. As the Q-Learning parameters are the same, the
agent has 90% probability (¢ =0,1) of choosing the action which corresponds to maximum value of
the Q-matrix. However, at hour 12, the action chosen was a,, which doesn’t correspond to the max-
imum value of the Q-matrix. Nevertheless, at hour 13 the performed action corresponds to the max-
imum value of the Q-matrix and in this way action az was selected, which led to a bid up of +1
€/MWh regarding the bid price of the last iteration. So, at this hour the bid was 61,00 €/ MWh (the
previous bid at hour 12 was 60,00 €/ MWh). Considering that there is an increase on the reward
regarding the previous one (the difference between 61,00 €/ MWh and 50,00 €/ MWh - C™ - is higher
when compared with the difference between 60,00 € MWh and 50 €/MWh), and it is possible to get

more profit (increase until the WSM price, i.e., from 61,00 € MWh until 70,65 €/ MWh), state s, was
therefore selected.

Table 6.22. Q-matrix for the scenario SC_ST45 - January 4

hour BID price v WSM price Reward Q(s.1 Qis.2) Qs.3 Action State
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On hour 14 of January 4™, the agent keeps choosing the highest Q-matrix value, which corre-
sponds to action as, leading to a bid up of +1 €/ MWh regarding the previous value. In this way, the
Market Community Agent performs a bid up to 62,00 €/MWh. As the agent obtained more profit and
it continues to be possible to increase the profit, the Q-Learning state keeps in s,. As it is possible to
observe, the reward per MWh is the difference between the cleared bid price and the C™ (e.g., at
hour 14, the average bid price is 62,00 € MWh and the reward is equal to the difference between
62,00 €/MWh and the C?Y, 50,00 €/ MWHh, i.e., 12,00 € MWh).

Analyzing the behavior of the Market Community Agent on January 27, Table 6.23 presents the
corresponding Q-matrix results. It is possible to observe that at hour 12 the agent chooses the action
that corresponds to the higher Q-matrix value, action as. As a consequence, the bid price will increase
by 1 € MWh from 70,00 € MWh till 71,00 € MWh, which is higher than the WSM price (which is
69,72 €/ MWh). In this sense, the reward at hour 13 is negative, i.e., the agent lost the opportunity of
having a reward of 19,82 € MWh (difference between WSM price and the C™ price).

Table 6.23. Q-matrix for Case Study SC_ST45 - Day 27

hour BID price vi WSM price Reward Qfs,1) Q(s,2) Q(s,3) Action State
12 70.00 70,18 20,00 25,44 20,97 41,75 3 1
1 71,00 69,82 19.82 38,17 26,21 35,86 ] 5
14 70,00 08,/2 18,72 25,44 20,97 16,92 1 1

15 69.00 67.34 17.34 750 2097 16,92 1
16 69,00 6659 -16,59 7.50 434 16,92 2 1

67,85

Analyzing the economical results for the scenario SC_ST45, considering a period of 12 months,
Figure Table 6.23. presents the monthly reward values and the accumulated value throughout the
year.
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Figure 6.23. Scenario SC_ST45 - calculate reward by month and accumulated reward (€)

Similarly, to the analysis for the scenario SC_PV, this graph shows the calculated rewards per
month and the accumulated reward. In this case, the accumulated reward corresponds to almost 830
€. When compared to the accumulated reward assessed for Scenario SC_PV (Figure 6.1Figure
6.141), it is possible to verify a significant reduction. This is justified by the strategy that was per-
formed, which prioritizes self-consumption and storage, instead of selling energy in the market which
in the end reduces the revenues from selling electricity in the WSM. This allows storing a larger
volume of energy coming from the PV panels in the periods in which the demand is more reduced
than the PV generation. However, the months in which the rewards are higher, are the same than the
presented in Scenario SC_PV and corresponds to July, August and September. This is justified by
that fact that these months are the months with more irradiation in Portugal and so the PV generation

is higher and consequently more energy is sell into the WSM.

6.4.3. Economic assessment of the scenario SC_ST45

In a similar way regarding what was done for the Case Study SC_PV, the results for the economic
evaluation for this architecture will now be analyzed. The same comparison with the system without
self-consumption, termed Normal Exploration, will also be made. For the Normal Exploration situ-
ation, the values obtained for the energy cost and access tariff are the same as the ones indicated in
Section 6.3.3.
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As previously mentioned, the SC_ST45 architecture considers a system with three 15 kWh son-
nenBatterie modules [325] and the same analysis will be done.

The tariffs considered in this work are detailed in Annexes B1, B2.1, B2.2 and B2.3. They were
published by ERSE in Portuguese Diério da Republica (Diretiva n.° 5/2020, of March 20 and Diretiva
n.2 15/2020, of October 7) [323].

Table 6.24 presents a comparison of the energy acquisition costs and the access tariffs between
the Normal Exploration (without self-consumption and all the electricity to supply demand is taken
from the grid) and considering this decentralize storage architecture, SC_ST45. The overall costs
reduced by 39,2%, with a reduction on the access tariffs of 41,3%, which is aligned with the increase

of the self-consumption level of the installation.

Table 6.24. Comparison of access tariffs and electricity acquisition for SC_ST45 and Normal Explora-
tion

Costs

Scenario SC ST45

Normal exploration

Savings

Access Tariffs
Electricity acquisition
Total

4.770,47 €
6.385,94 €
11.156,41 €

8.135,26 €
10.218,71 €
18.353,97 €

3.364,79€ 41,36%
3.832,77€ 37,51%
7.197,56 € 39,22%

Figure 6.24 and 6.25 present the related costs and their distribution in both cases, i.e., Normal
Exploration and self-consumption exploration for a decentralized storage architecture system,

SC_ST45. Itis possible to observe that access tariff in the Normal Exploration case represents almost

50% of the total.
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Figure 6.24. Self-consumption SC_ST45 and Normal Exploration costs
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Figure 6.25. Breakdown of self-consumption SC_ST45and Normal exploration costs

In order to access the behavior of the developed optimization model and the applied learning
strategy, Table 6.25. presents the global annual energy costs considering the revenues obtained from
selling energy in the WSM, admitting that the Q-Learning approach was used and not used. For this,
the right column considers the SC_ST45 scenario where the surplus energy generated by the PV,
regarding the demand and the stored energy is paid at the bilateral contract price, C", set at 50,00
€/MWh and the energy supplied by the public network is paid at the market price so that no optimi-
zation strategy is used. In this case, the energy sold in the market leads to a revenue of 695,03 €/year.
On the central column, the selling bids consider the values followed by the applied learning strategy,
i.e., if the storage energy plus the PV generation is sufficient to feed the demand, and there is still
some surplus, the energy in excess will be sold to the market following the optimization strategy.
The application of the optimization model enables increasing the annual revenues to 936,61 €/year.
As it is possible to observe, the application of the developed optimization methodology originates an
increase on the selling energy revenues by 26%, which has a significant impact in the overall energy

annual costs.

Table 6.25. Energy annual costs for SC_ST45 using and not using the Q-Learning approach

Costs Optimization model | Without optimization
Access Tariffs 4.770,47 € 4.770,47 €
Electricity acquisition 6.385,94 € 6.385,94 €
Selling energy -936,61 € -695,03 €
Total 10.219,81 € 10.461,38 €

To access the economic value of this architecture, the NPV methodology will also be used, con-

sidering the same assumptions as detailed in Section 6.3.3.
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The initial investment cost will now consider a configuration with self-consumption with PV
units, and with the already mentioned storage system. The selected photovoltaic system is the same
as the one used in Section 6.3.3. which corresponds to 17.280 € of CAPEX and 364,5 €/year of
OPEX investment and considers 20% with equity.

Considering current battery cost and its breakdown, the data to be used follows the same reference
that was considered for the PV investment analysis [310]. The assumptions for the storage system
investment analysis consider data for 2020. Table 6.26 presents the reference costs considered for
the storage system investment analysis [310].

Table 6.26. Battery reference costs used for the economic assessment calculation

Reference Cost

CAPEX 0,209 €/Wp
OPEX 6,0 €/kWp/year

In this sense, for a storage system with a capacity of 45 kWh, the cost is about 9405 € for CAPEX
and 270 €/year for OPEX. So, the overall investment associated to SC_ST45 (PV and storage system)
for 20 years is 26.685 € for CAPEX and 634,5 €/year for OPEX.

In order to access the impact of the optimization strategy in this scenario, the NPV calculation is
now provided in Table 6.27. It considers the results provided in Table 6.25, i.e., the different annual
energy costs regarding the application or not of the optimization model. In this sense, for a 20-year
analysis, the NPV will be -211.198,00 € without considering the application of the optimization
strategy and -207.432,00 € regarding the application of the optimization strategy.

Table 6.27. Comparison of the Net Present Value for the SC_ST45 scenario, using and not using the Q-
Learning approach

Scenario SC_ST45 Scenario SC_ST45
without optimization strategy with optimization strategy
NPV -211.198,00 € -207.432,00 €

For an architecture which considers a PV and a decentralized storage system (scenario SC_ST45),
the NPV increases by 3766 € to -207.432,00 €, i.e., it gets less negative, when following the imple-
mentation of the optimization Q-Learning strategy. This means a reduction of 2% which is consid-

erable in an investment decision analysis. It should be again mentioned that without the application
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of the optimization strategy, the surplus of energy is paid at the defined C?¥ and the energy supplied
by the grid is paid at the WSM price. When the optimization strategy is applied, the surplus of energy
is paid at the submitted bid price (if the bid price is lower than the WSM price) or at C*V (if the bid
price is higher than the WSM price).

The presented analysis shows the benefits of investing in storage systems. When integrated in
communities with its own PV generation, not only the dependence on the electrical grid decreases,
but also the benefits from selling eventual surplus of electricity became important in terms of taking
a decision on this type of investment.

6.5. Centralized storage — scenario SC_ST300 description

and results

6.5.1. Scenario description and energy balance

In this section, a new architecture of an energy community will be simulated. It consists of an
architecture with a storage system located at the Low Voltage side of the MV/LV substation that
supplies a set of buildings. This architecture is termed Centralized Storage and it is illustrated in
Figure 6.26. In stand of having one storage system per building as in the previous situation, we will
now have just one storage equipment at the LV busbar of the MV/LV substation and with a larger
storage capacity. The dataset used in this simulation is the same as in the previous one but it is
replicated to a combination of 3 collective buildings with the same demand and PV generation pro-

files [319]. That is, the demand and the PV generation have an increase of 3 times.

Considering the usage of the public grid for self-consumption purposes, different simulations will
be performed taking into consideration the impact of having or not exemptions on network tariffs,
namely regarding the CIEG component of the Access Tariffs. The corresponding simulations allow
getting insights about the impact of paying the grid tariffs considering the utilization of the public
grid [305] and, in this sense, assess the economic performance of the entire installation, namely con-

sidering the storage system, in this architecture.

The bidding strategy of the Market Community Agent will be the same and we will also consider
the same range of SOC values already defined for the batteries used in the previous scenario
(SC_ST45) and their three possible operation modes, charging, discharging or idle. They will be in
the charging mode if there is a surplus of PV generation regarding the demand and in the discharging
mode if the community demand is higher than the local PV generation. However, and if the stored
energy is sufficient to supply the demand, and if there is still some surplus, the remaining energy will

be sold to the market following the optimization strategy defined in this work.
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Figure 6.26. lllustration of the collective self-consumption installation with centralized storage system
(scenario SC_ST300) located at the same voltage level (adapted from DGEG [318])

The PV generation is constituted by a system 3 times larger than the one that was used in previous
scenarios, i.e., it has a peak power of 135 kWp. A 300 kWh storage system was considered in this
simulation. Yet, the chosen system can be paralleled with other modules for scalability of power and
capacity [327, 328]. The SOC limits are the same as for the 45 kWh batteries used in the previous

simulation, that is a range from 20 to 80% of the nominal capacity.

The demand and PV renewable generation profiles were built using the same dataset mentioned
in Section 6.2. The annual energy community balance, considering now the centralized ESS system,
is presented in Table 6.28. This table includes the global energy demand (which corresponds to three
times the one in the previous simulation since in this case we considered three collective buildings,
each one equal to the one used previously), the demand supplied by the grid and by self-consumption,
as well as the electricity injected back to the public grid.

Table 6.28. Annual Energy Community balance (with centralized ESS)

MWh
Global Energy demand 436,2
Demand supplied by the public grid 212,1
Demand supplied by self-consumption 224,1
Electricity injected back in the public grid 4,9

The demand supplied by the public grid represents 212,1 MWh for a global energy demand of
436,2 MWh which means that 49% of the demand is supplied by the public grid. On the other hand,
the demand supplied by self-consumption is 224,1 MWh which is 51% of the global energy demand.
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Comparing with the simulation without storage (SC_PV, Table 6.3), the demand supplied by the grid
represented 68% of the global energy demand (i.e., 98,6 MWh out of 145,4 MWh), whereas the
demand supplied by self-consuming accounted for 32% of the global energy demand (i.e., 46,8 MWh
out of 145,4 MWh). When compared with the decentralized storage system (SC_ST45, Table 6.20),
the demand supplied by the public grid represented 54% of the global energy demand (i.e., 78,6
MWh of 145,4 MWh) and the demand supplied by self-consumption represented 46% of the global
energy demand (i.e., 66,8 MWh of 145,4 MWh).

The results also show that the energy injected back into the grid decreases when going from
SC_ST45 to SC_ST300, where the share of energy injected back into the grid decreases almost to
zero in SC_ST300. This is related with the capacity of the storage equipment used in this case that
is more than 6 times larger than the one that was used in case SC_ST45. This allows storing a larger
volume of energy coming from the PV panels in the periods in which the demand is more reduced
than the PV generation. These excesses can how be stored rather than being injected back in the grid
as it occurred more frequently in scenario SC_ST45. Table 6.29 makes a resume of the aggregated

results for comparison purposes.

Table 6.29. Relative global Energy Community demand and electricity injected back in the public grid
(scenarios SC_PV, SC_ST45 and SC_ST300)

SC_PV SC_ST45 SC_ST300
Demand supplied by the public grid 68% 54% 49%
Demand supplied by self-consumption 32% 46% 51%
Electricity injected back in the public grid 23,4 MWh/year 13,9 MWh/year 4,9 MWh/year

Figure 6.27 presents the annual energy balance for the architectures with Centralized (SC_ST300)
and Decentralized Storage (SC_ST45) and without Storage (SC_PV), considering the community

energy demand and production.
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Figure 6.27. Community annual electricity demand and production (for Decentralized SC_ST45, Cen-

tralized Storage SC_ST300 and without Storage SC_PV scenarios)

Figure 6.28. presents the monthly distribution of electrical energy. In this graph all the values are

read in the left-hand side (LHS) vertical axis, except the values of the energy injected back to the

public grid that are read in the right-hand side (RHS) vertical axis. When compared with the same

monthly analyses for the architecture with decentralized storage, SC_ST45, in Figure 6.19, it is pos-

sible to observe that the demand supplied by the public grid is proportionally lower in every month.

On the other hand, the demand supplied by self-consumption has larger shares in every month. The

electricity injected back into the public grid has a behavior in line with the philosophy and strategy

previously mentioned, that is, the energy is firstly self-consumed, followed by charging the storage

system and the remaining will be considered as a surplus. Because the storage capacity is higher in

this scenario, the electricity injected back into the public grid achieves much lower values as previ-

ously explained.
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Monthly electrical energy balance - Centralized Storage System SC_ST300
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Figure 6.28. Monthly electrical energy balance for scenario SC_ST300

6.5.2. Optimization model analysis and results

The analysis to be presented in this section is similar to the one presented in Sections 6.3.1 and
6.4.2. The developed model is based on the same strategy defined for the Q-Learning procedure, i.e.,
it was created based on identical pairs state-action used in the previous analysis. So, the Q-Learning
states and actions are the same as the ones used previously. The learning rate, A, discount factor, y,
and greedy police, €, parameters used to obtain the Q-values are also the same as the ones presented
in Table 6.6. and Table 6.21., which were used for the simulation of scenarios SC_PV and SC_ST45.
They are now replicated in Table 6.30.

Table 6.30. Structure of the Q-matrix for the Scenario SC_ST300

State/Action al a2 a3 Parameter
S1 Q11 Q1,2 Q13 Iy 0,8
S2 Q2,1 Q2,2 Q2,3 y 0,8
S3 Q3,1 Q3,2 Q3,3 € 0,1
S4 Q4,1 Q4,2 Q4,3
S5 Q5,1 Q5,2 Q5,3

Figure 6.29 presents the results for one year (52 weeks) simulation. When compared with the
same analysis done for the architecture without storage (SC_PV) in Figure 6.8. and with decentral-
ized storage (SC_ST45) in Figure 6.20, we observe that the average bid price is different. In this
case, the fact of having larger capacity of stored energy conjugated with the defined strategy, where
the agents prioritize the self-consumption instead of selling the surplus into the market, the electricity

injected back into the public grid achieves much lower values. This fact explains the agent behavior,
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namely the fact of the bid price that is much closer to C* value when compared with Scenarios
SC_PV and SC_ST45. However, the strategy behind this behavior is the same since the agent is
always trying to increase its bid prices in order to get closer to the WSM prices. This observation
highlights the previous conclusion, indicating that the Market Community Agent is responding in a
dynamic way to different environments.

Average_WSM_price_vf,
Average_BID_price_vf and C_PV by Week

® Average_WSM_price_vf @ Average_BID_price_vf @C_PV

i

Average_WSM_...

o
(=]

50
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Figure 6.29. Bidding results for Scenario SC_ST300 (considering centralized storage)

Figure 6.30 presents the WSM and the LEM average prices that were observed in the month of
January. In this simulation, the bid strategy of the Market Community Agent doesn’t reach the WSM
bid price in January, as it occurred in SC_PV and SC_ST45. Although the Q-Learning parameters
are the same, this difference occurs because the Market Community Agent is doing different explo-
rations of the environment which originate different behaviors but keeping the same philosophy. In
this sense, Figures 6.31 and 6.32 extend the analysis until February so that it is possible to see that
the agent reaches the WSM bid price on day 59. In this day, the WSM price was 72,38 € MWh
(defined by 2019 WSM price dataset) and the bid price was set as 73,00 € MWh. In the same way,
in this case the revenue will be equal to the C™V value which was defined as 50,00 €/ MWh and there

is no additional profit.
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Figure 6.30. January average price results for the scenario SC_ST300
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Figure 6.31. January and February average price results for the scenario SC_ST300
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Figure 6.32. January and February average prices results for the scenario SC_ST300 highlighting the
values obtained for day 59
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Analyzing now in more detail the behavior of the Market Community Agent regarding the actions
and the states that were considered, Table 6.31 shows the Q-matrix for day 54 between hours 14 and
16. We will now make an analysis similar to the ones in Sections 6.3. and 6.4. Given there is an
energy surplus in this period (after supplying the local demand and charging the storage system, that
is after self-consuming), the surplus will be traded considering the defined coordination between the
WSM and LEM. The agent has 90% probability (¢=0,1) of choosing the action which corresponds
to the maximum value in the Q-matrix. At hour 14 the action that is chosen corresponds to the Q-
matrix highest value and so it was performed action as which corresponds to a bid up of 1 € MWh
(from 70,00 € MWh to 71,00 €/ MWh). However, at hour 15 the chosen action doesn’t correspond to
the highest value of the Q-matrix and the agent doesn’t select action az but in fact action as is used.
This behavior originates that the agent decreases the bid from 71,00 €/ MWh to 70,00 €/ MWh. Con-
sequently, and because the reward decreases from 21,00 €/ MWh to 20,00 €/ MWh, the state obtained
was sa. In hour 16, the agent chooses action as and the bid price increases 1 € MWh to 71,00 €/ MWh.
As the reward also increases and it is possible to get more profit, since the WSM price is 73,28
€/MWh, the state that was obtained was s.

Table 6.31. Q-matrix for Case Study SC_ST300 — Day 54

hour BID_price vf WSM price Reward Qfs,1) Q(s.2) Q(s.3) Action State
J LACA LY rJ.7o [AVAVLY Lren 2,00 N0 J <
14 71,00 7195 21,00 21.21 1968 8021 3 2
15 70,00 7238 20,00 1641 16,14 20,24 1 4
16 71,00 73,28 21,00 33,20 19,68 80,21 3 2
17 74,23

Analyzing the behavior of the Market Community Agent at day 62, Table 6.32 presents the cor-
responding Q-matrix results. At hour 14 of day 62, the agent doesn’t choose the highest Q-matrix
value, which corresponds to the action a;, but chooses and performs action as which led to a bid up
of +1 €/ MWh regarding the previous one. In this way, the Market Community Agent performs a bid
up to 73,00 €/MWh. As the agent obtained a bid with a value higher than the WSM price, which was
71,95 €/MWh, the reward was negative, and the profit decreased. In this way it wasn’t possible to
get more profit and the Q-Learning state changes to ss. In hour 15 the agent selects again action as
and increases its bid price from 73,00 € MWh to 74,00 €/ MWh. As this bid price continues higher
than the WSM price, the reward remains negative, and the state continues in ss. In hour 16, the agent
chooses the Q-matrix highest value and performs action a; which originates a bid decrease from
74,00/MWh to 73,00 €/MWh. As the bid price reached a value lower than the WSM price, the reward
changed to positive. The state of the Q-Learning at hour 16 is now the state s;. This means that the
reward increased regarding the previous bid (from -22,38 €/ MWh to +23,00 €/ MWh), but it isn’t
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possible to get more profit because the WSM price is 73,28 €/ MWh and the bid price of 73,00 € MWh

is very close.
Table 6.32. Q-matrix for Case Study SC_ST300 - Day 62

hour BID_price.vf WSM price Reward Q(s,1) Q{s.2) Q(s.3) Action State
13 72,00 7376 2200 1641 16,14 7218 1 4
14 73,00 7195 -21,95 3142 -2491 7.68 3
15 74,00 7238 -2238 3142 -2491 3,74 3 5
16 73,00 7328 2300 6503 -2529 -25,31 1
17 74,23
18 76,89

Figure 6.33. presents the monthly rewards and its accumulate values for the Case Study
SC_ST300, considering a period of 12 months. It is possible to observe the calculated rewards per
month and the accumulated reward. As it is possible to see, the accumulated reward is close to 300
€. Since the quantity of energy traded in the market in this scenario is lower than in the previous
scenarios, the accumulated reward also decreases. This was expected to occur because the adopted
strategy prioritizes self-consumption instead of selling energy in the market an also because of the
capacity of the storage system.

It is also possible to observe that the months in which the rewards are larger correspond to July,
August, and September. These are the months in which PV generation is larger (sunny months in
Portugal) and the quantity of generated electricity is sufficient to supply de demand, charge the stor-
age equipment and injected the surplus back to the network.
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Figure 6.33. Scenario SC_ST300 - calculate reward by month and accumulated reward (€)

6.5.3. Economic assessment of the scenarios SC_ST300 A, Band C

Similarly, to what was done for scenarios SC_PV and SC_ST45, the economic results for the
simulation for SC_ST300 will now be analyzed. However, and since the storage system is connected
to the public grid, the network tariffs applied for self-consumption will now be considered. There-
fore, these simulations were done considering the impact of having or not exemptions on network

tariffs, namely for the CIEG component of the Access Tariffs.

Table 6.33. presents the annual energy costs, the Access Tariffs and the self-consumption tariff.
For a system without self-consumption (Normal Exploration), the costs to supply the demand, which
includes the applicable Access Tariffs and electricity acquisition costs, are higher than 55.000 € as
indicated in Regarding SC_ST300_A, Table 6.33 presents the annual energy costs, the access tariffs,
and the self-consumption tariff. It should be notice that the self-consumption tariff is related to the
fact that in this scenario, the location of the battery it is not inside the community itself and it is
located at a Low Voltage side of the MV/LV substation that feeds the set of buildings. In this sense,
it is applied the related tariffs (see Annex B2.1 — without CIEG exemption). In other hand and con-
sidering that the battery storage system used in scenario SC_ST45, is located at the building level,
and the community does not use the public grid, these tariffs are not applied in this scenario.
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Regarding SC_ST300 we considered three variations as follows:

- SC_ST300_A with no CIEG exemption, that is, the full Access Tariffs are considered,;
- SC_ST300_B with 50% of CIEG exemption;
- SC_ST300_C with full CIEG exemption.

Regarding SC_ST300_A, Table 6.33 presents the annual energy costs, the access tariffs, and the
self-consumption tariff. It should be notice that the self-consumption tariff is related to the fact that
in this scenario, the location of the battery it is not inside the community itself and it is located at a
Low Voltage side of the MV/LV substation that feeds the set of buildings. In this sense, it is applied
the related tariffs (see Annex B2.1 — without CIEG exemption). In other hand and considering that
the battery storage system used in scenario SC_ST45, is located at the building level, and the com-

munity does not use the public grid, these tariffs are not applied in this scenario.

Table 6.33. Comparison of access tariffs and electricity acquisition, for scenario SC_ST300_A and for
Normal Exploration

Costs Without CIEG exemption

SC_ST300_A Normal Exploration Savings
Access Tariffs 12.818,43 € 24.404,29 € 11.585,86 € 47,47%
Self-Consumption Tariff 10.819,64 €
Electricity acquisition 17.410,63 € 30.650,76 € 13.240,13 € 43,20%
Total 41.048,70 € 55.055,05 € 14.006,35 € 25,44%

The implemented architecture is designed to prioritize self-consumption in such a way that the
demand supplied by self-consumption is higher than the one supplied by the public grid as indicated
in Table 6.28. So, notwithstanding the costs related with the utilization of the public grid for self-
consumption purposes (self-consumption tariff - DL 15/22 Art. 212 1) [54], which doesn’t exist in
the Normal Exploration mode, the overall savings are almost 26%. This is also an expected result
since we have less electricity acquisition from the grid and lower access tariffs in the SC_ST300_A

when compared with the Normal exploration mode.

Figures 6.34. and 6.35. presents the related costs and their distribution in both cases, i.e., Normal
Exploration and self-consumption exploration without exemption of the CIEG for a centralized stor-
age architecture system, SC_ST300_A.
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Figure 6.34. Comparison of costs for SC_ST300_A versus Normal exploration
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Figure 6.35. Breakdown of costs for SC_ST300_A versus Normal exploration cost

In Normal Exploration the access tariffs represent 44% of the total costs. When the exploration is

in the self-consumption mode, these costs only represent 31% of the total.

Table 6.34. presents the global annual energy costs considering the revenues of selling energy in

the WSM, for a simulation with and without using the optimization Q-Learning model. It is possible

to observe that the application of the developed optimization methodology originates a residual var-

iation of the selling energy profits. This is in line with the lower quantity of electricity injected back

into the grid and sold in the WSM.

Table 6.34. Scenario SC_ST300_A - energy annual costs using and not using the optimization ap-

proach

Costs

Optimization model

Without optimization

Access Tariffs; Self consumption Tariffs
Electricity acquisition

Selling energy

Total

23.638,07 €
17.410,63 €
299,93 €
40.748,78 €

23.638,07 €
17.410,63 €
-246,17 €
40.802,53 €
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Let now us analyze the impact of introducing an exemption of 50% of the CIEG component for
an architecture with centralized storage system, that is, scenario SC_ST300_B. The community un-
der analysis now saves almost 34% of the total cost when compared with the same scenario with
Normal exploration as indicated Table 6.35. Making a similar comparison with the centralized ar-
chitecture without exemption CIEG, that is for SC_ST300_A (Table 6.33) the savings correspond to
8,5%.

Table 6.35. Comparison of access tariffs and electricity acquisition costs for scenario SC_ST300_B and
for Normal Exploration

Costs With 50% CIEG exemption

SC_ST300_B Normal Exploration Savings
Access Tariffs 12.818,43 € 24.404,29 € 11.585,86 € 47,47%
Self-Consumption Tariff 6.154,57 €
Electricity acquisition 17.410,63 € 30.650,76 € 13.240,13 € 43,20%
Total 36.383,64 € 55.055,05 € 18.671,41 € 33,91%

Figures 6.36 and 6.37 present distribution of the costs for the centralized system with an exemp-
tion of 50% in the CIEG component, ST_SC300_B, versus the Normal Exploration mode. It is veri-
fied a very significant reduction of the total cost, despite the presence of the self-consumption tariff

in the architecture with the centralized storage system.

SC_ST300_B vs Normal exploration
with 50% exemption CIEG
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Figure 6.36. Comparison of costs for SC_ST300_B versus Normal Exploration
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Figure 6.37. Breakdown of costs for SC_ST300_B versus Normal Exploration

Table 6.36 presents the global annual energy costs which includes the revenues of selling energy

in the WSM, for a simulation with and without using the Q-Learning optimization model.

Table 6.36. Scenario SC_ST300_B - energy annual costs using and not using the optimization approach

Costs

Optimization model

Without optimization

Access Tariffs; Self consumption Tariffs
Electricity acquisition

Selling energy

Total

18.973,00 €
17.410,63 €
-299.93 €
36.083,71 €

18.973,00 €
17.410,63 €
-246,17 €
36.137,47 €

Finally, we will now analyze the impact of introducing an exemption of 100% of the CIEG com-

ponent for an architecture with centralized storage system, that is, scenario SC_ST300_C. Table 6.37

presents the comparation of the total costs of SC_ST300_C regarding the Normal Exploration mode.

In this case, the total savings almost reach 42% when comparing the centralized storage system with

the Normal Exploration mode. As it is possible to observe, the cost associated with the Self Con-

sumption Tariff is approximately 1500 €/year, which is less than 5% of the total costs.

When compared with scenarios SC_ST300_A and SC_ST300_B, the savings in the total costs in

scenario SC_ST300_C are, respectively, of 23% and 13%. These numbers highlight the impact that

the exemption levels in the access tariffs can reach, namely in architectures with storge systems.
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Table 6.37. Comparison of access tariffs and electricity acquisition costs for scenario SC_ST300_C and

Costs

With 100% CIEG exemption

Access Tariffs
Self-Consumption Tariff
Electricity acquisition
Total

SC_ST300_C
12.818,43 €
1.475,98 €
17.410,63 €
31.705,04 €

Normal Exploration
24.404,29 €
30.650,76 €
55.055,05 €

Savings
11.585,86 €  47,47%
13.240,13€  43,20%
23.350,01 €  42,41%

Figures 6.38 and 6.39 present the related costs and their distribution for Normal exploration mode

and for SC_ST300 _C.
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Figure 6.38. Comparison of costs for SC_ST300_C versus Normal Exploration
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Figure 6.39. Breakdown of costs for SC_ST300_C versus Normal Exploration
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Table 6.38. presents the global annual energy costs which includes the revenues of selling energy
in the WSM, for a simulation with and without using the Q-Learning optimization model.

Table 6.38. Energy annual costs (optimization and non-optimization models scenario SC_ST300_C)

Costs Optimization model | Without optimization
Access Tariffs; Self consumption Tariffs 14.294,41 € 14.294,41 €
Electricity aquisition 17.410,63 € 17.410,63 €
Selling energy -299,93 € -246,17 €
Total 31.405,12 € 31.458,87 €

Similarly, to what was done for scenarios SC_PV and SC_ST45, we will now access the economic
value of this architecture. Accordingly, a 20-year cash flow analysis was developed considering the
demand equal for all the years along the period under analysis. The discount rate was set at 2,5%.
The same CAPEX and OPEX costs will be considered, which are detailed in Table 6.18 for the PV
system and in Table 6.26 for the storage system. However, the capacity of the storage energy con-
sidered in this scenario is 300 kWh and for the PV system is 135 kWp peak power. So, the total costs
for a centralized storage architecture with a battery of 300 kWh and a PV system with 135 kWp, will
be 114.540 € for CAPEX and 2.893,50 €/year for OPEX costs. Reference [310] contains the values

that are used in this economic analysis as for the analysis of scenarios SC_PV and SC_ST45.

The Net Present Values for the different CIEG exemptions levels are now presented in Table 6.39.
Considering a scenario without CIEG exemption and without the application of the optimization
strategy, the NPV is -794.702,00 €. On the other hand, when applied the optimization strategy, the
NPV is -793.864,00 €. For the scenarios with optimization strategy and with 50% and with 100% of
CIEG exemptions the NPV is -726.670,00 € and -653.735,00 €. This means an increase of the NPV
by 8,4% and 17,7% respectively compared in scenario with optimization strategy and without CIEG
exemption. Notwithstanding the residual profit of selling energy in all of these scenarios with cen-
tralized storage, the impact of the exemption level of the CIEG component on the overall NPV is
very significative. This impact is very relevant when investors have to assess their final investment

decisions processes.
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Table 6.39. Net present value for scenarios SC_ST300_A (with and without optimization strategy),
SC_ST300_B and SC_ST300_C (PV and Centralized Storage system)

Scenario SC_ST300_A (without CIEG exemption)

without optimization strategy with optimization strategy
NPV -794.702,00 € -793.864,00 €
Scenario SC_ST300 B Scenario SC_ST300 C
with optimization strategy (50% with optimization strategy (100% CIEG
CIEG exemption) exemption)
NPV -726.670,00 € -653.735,00 €

The exemptions on the CIEG component have a significant impact in the improvement of the
NPV. By adopting this incentive policy associated with exemptions of the CIEG component of the
Access Tariff, and considering investments in PV and storage systems, the improvement of the NPV
is large. The NPV remains negative (due to the initial investment cost in new equipment and also
due to the acquisition energy costs and the remaining access tariff components) but it moves towards
the positive direction meaning that there is a reduction of the costs to be incurred by the consumers

during the entire horizon.

6.6. Final comparisons and sensitivity analysis

As mentioned, the developed ABM model was applied to real data of consumption, PV generation
and 2019 WSM nprices of the Iberian Electricity Market. The demand data considers 16 consumers
for each collective building (15 apartments plus common services) and the simulations also consider
generation using PV systems, and storage units (decentralized with 45 kwWh and centralized with 300
kWh capacities). In the centralized storage scenario, the dataset used was the same, however repli-

cated to a combination of 3 collective buildings.

Table 6.40. presents the global energy demand, the demand supplied by the public grid, the de-
mand supplied by the self-consumption and the electricity injected back to the grid for the three
analyzed cases using the Q-Learning approach, that is for the scenarios SC_PV, SC_ST45 and
SC_ST300.
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Table 6.40. Annual Energy Community balance for the three analyzed scenarios

MWh SC_PV SC_ST45 SC_ST300
Global Energy demand 145,4 145,4 436,2
Demand supplied by public grid 98,6 78,6 212,1
Demand supplied by self-consumption 46,8 66,8 224,1
Electricity injected back into the grid 23,4 13,9 4,9

When compared with the SC_PV, these results show that the SC_ST45 case has a lower amount
of energy injected back into the grid namely due to the installation of batteries. This is line with the
fact that the demand supplied by the public grid decreases and the demand supplied by self-consump-
tion increases in case SC_ST45. These results also show that the operation strategy that was used is
successful in terms of maximizing the energy community self-energy consumption. Case SC_ST300
is also designed to prioritize self-consumption in such a way that the demand supplied by self-con-

sumption is higher than the one supplied by the public grid.

Figure 6.40 presents the distribution of the energy demand for these 3 scenarios. It is possible to
observe that in scenarios SC_ST45 and SC_ST300 there is an increase of the demand that is fed by
self-consumption, due to the existence of the storage system. This difference is more relevant in
scenario SC_ST300, since it has a larger storage capacity and consequently it can store more energy
surplus. Apart from the increase of the capacity of the storage units, this evolution is a consequence
of the maximization of the self-consumed energy by the optimization of the use of the storage equip-
ment through the adequate selection of its charging and discharging periods. However, and if the
stored energy is sufficient to feed the demand, and there is still some surplus, these additional quan-
tities will be injected back into the grid and will be used in the selling bids strategy of the Market
Community Agent.

In Figure 6.41 we can observe the increase of the percentage of energy that is self-consumed
regarding the energy that is locally generated as well as the percentage of energy that is injected back
to the grid regarding the local generation (in SC_ST45 and in SC_ST300, when compared with
SC_PV in which there is no storage systems). It should also be noted that the energy surplus injected
back into the grid decreases when going from SC_ST45 to SC_ST300. When comparing SC_ST45
with SC_ST300, the share of energy injected into the grid decreases almost to zero in SC_ST300.
This is related with the capacity of the storage system that, in this case, has a capacity larger than 6
times the one that was used in SC_ST45. This allows storing a larger volume of energy coming from
the PV panels in periods in which the demand is more reduced than the PV generation. These ex-
cesses can now be stored in SC_ST300 rather than being injected back in the grid as it occurred more
frequently in SC_ST45.



6.6 Final comparisons and sensitivity analysis 211

Share of Energy Demand
100%

80%
60%

40%

- n AN 1§
0%

SC_PV SC_ST45 SC_ST300

B Supplied by public grid ~ m self-consumed

Figure 6.40. Share of Community Energy Demand

Share of Community Energy Production

100%

80%
60%
40%
20% .
0% [ ] .

SC_PV SC_ST45 SC_ST300

B Self.-consumption M Injected back into the grid

Figure 6.41. Percentage of self-consumed and injected back energy regarding local generation

The overall results of these simulations show a very good performance of the proposed Agent-
Based Model. Table 6.41 presents the results for the real WSM annual average price for 2019, the
selling value of the PV generation excess without using the bidding strategy, that is the C*" value,
and the average values using the LEM strategies for SC_PV, SC_ST45 and SC_ST300. Despite the
annual average price in the WSM is 71,1 €/ MWh, these results show that if the LEM strategy is
applied, the LEM average market price gets closer to the WSM price. This improvement regarding
the initial C*Y value (50,00 €/ MWh) is explained because of the use of the ABM model incorporating
the Q-Learning approach with bid up/bid-down strategy. In all the scenarios, the improvement

achieves values higher than 15% of the selling bilateral contract price that was defined.
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Table 6.41. Results for the annual average selling price

Scenario Annual average selling price € MWh
Real WSM price data 71,1
Selling price without LEM strategies (C"Y) 50,0
Selling price with LEM strategies SC PV 62,04
Selling price with LEM strategies SC ST45 59,20
Selling price with LEM strategies SC_ST300 59,35

Figure 6.42 shows the average weekly prices of the WSM and of the LEM after using the bidding
strategy, as well as the bilateral contract price C*Y. As we can see, when using the bidding strategy,
independently of the simulated case, the agent in LEM tries to increase its prices in order to get closer
to the WSM prices (curves BID Strategy SC PV, BID Strategy SC ST45 and BID Strategy
SC_ST300). This reflects the learning capability that the agents have since the start of the process.

Regarding the impact of the application of the optimization model, the profits by selling the elec-
tricity surplus using the learning approach, presents an improvement of 25% in scenario SC_PV
(Table 6.17), 34% in scenario SC_ST_45 (Table 6.25) and 22% in scenario SC_ST_300 (Table 6.34).
Notwithstanding the difference verified, due to different behaviors of agents, the impact is significa-
tive in the overall profits. Recall that the excess of generated electricity regarding the demand is paid
at a minimum of CPV price or at a LEM price as a consequence of the bidding strategy. So, the reward
will be higher as lower is the difference between the WSM and the LEM price (considering a mini-

mum value for C?V).

To access the economic value of the different scenarios, the NPV methodology was used. As
mentioned in Section 5.5.2, the NPV is the sum of the present value of a series of present and future
cash flows, considering a discount rate. Because NPV accounts for the time value of money, it pro-
vides a way to evaluate and compare products with cash flows spread over many years, as in loans,
investments, payouts from insurance contracts and so on. Figures 6.43, 6.44 and 6.45 present the
resulting accumulated cash flows for scenarios SC_PV, SC_ST45 and SC_ST300, considering the
application of the optimization strategy and the initial investment costs. The expected economic ben-
efits are constant along the years and depend on the energy that is sold to the market. The NPV
reflects the total operating costs, exchanges with the grid as well as the attributable investment costs
for a 20-year analysis. The updated accumulated cash flow represents the discount rate of the project

considering the NPV (see equation 5.29).
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Figure 6.45. Cash flow over 20 years — Scenario SC_ST300

Analyzing now the impact of the CIEG exemptions on the NPV, Figure 6.46 presents the NPV
for scenarios SC_ST300_A, SC_ST300_B and SC_ST300_C. It is possible to observe that as the
exemption level increases, from a scenario without exemption till a scenario with 100% of exemp-
tion, the NPV evolves in the positive direction, meaning that it gets less negative and so the consum-
ers obtain important savings. The results that were obtained indicate that a 50% exemption increases
the NPV by 10% while a scenario with total exemption increases it by 20%, when compared with

scenario without CIEG exemptions.
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Figure 6.46. Impact of the CIEG exemptions on scenarios SC_ST300_A, SC_ST300 B and SC_ST300_C

To better understand the impact of several factors on the overall value of the installation of PV
and storage units for self-consumption purposes, a sensitivity analysis is now conducted. We consid-
ered different changes affecting different parameters used in the simulations:

e Investment cost of the PV units and storage devices:

o Based on the forecasted values for the CAPEX and OPEX of PV units and batteries,
[310] presents the expected evolution until 2050. For instance, regarding the prices
in 2022, the cost of PV units is expected to be reduced by 28% for the CAPEX and
by 21% for the OPEX in the year 2030. For 2050, these reductions are respectively
of 57% and 48% when compared with 2022. In what concerns storage, the expected
reductions are 44% and 25% for CAPEX and OPEX for the year 2030 and 69% and
44% for the year 2050. So, regarding the cost reduction forecasts, we analyzed the
impact of 25%, 50% and 75% reductions on investment costs in PV and storage
systems. All scenarios, Ref-Case, SC_PV, SC_ST45 (Figure 6.47) and
SC_ST300_A, SC_ST300_B and SC_ST300_C (Figure 6.48), were assessed,;

e Electricity acquisition costs:

o Figure 6.49. presents the impact of the variation on the electricity acquisition cost
which is related to possible changes in the WSM prices. It was analyzed the impact
of both the increase and the decrease of the cost of electricity acquisition (in steps of
25%).
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On the right side of Figure 6.47 the NPV values for 0% cost reduction were obtained using the
reference prices in Tables 6.19. and 6.27, that is no reduction of the investment cost are used. It is
possible to observe, when we consider the reference prices, the scenario Reference Case presents the
lower NPV. When comparing the scenario SC-ST45 with the scenario SC_PV, this last presents a
less negative NPV which is related to the investment in the storage systems in scenario SC_ST45.

Analyzing now the impact of reductions of 25% of the investment cost, it is observed a change in
the relative position between the SC_ST45 and the SC_PV scenario, which presents in this case a
less negative value. It is interesting to observe that with a reduction of 75% on the investment costs,
scenario SC_ST45 presents a less negative NPV than the Ref-Case and SC_PV scenarios. This
change highlights the relevance of the investment costs in PV and storage systems so that a reduction
of these costs will certainly be important when selecting an investment decision. So, we can conclude
that reductions of 50% and 75% on CAPEX and OPEX for PV and storage systems make investments
in PV and storage systems more competitive, namely when compared with the Ref-Case in which no

such equipment is considered.

So, despite the appearance of battery costs in the SC_ST45 scenario, the NPV value does not
degrade. And this fact is related to the increase in self-consumption in SC_ST45 and, consequently,

a reduction in network tariff payments.

NPV versus Investment Costs Reduction
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Figure 6.47. NPV versus investment costs reduction for scenarios Ref-Case, SC_PV and SC_ST45
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In Figure 6.48 the same analysis is done now for scenarios SC_ST300_A, SC_ST300_B and
SC_ST300_C. These results show that the NPV increases, or gets less negative, by approximately
4%, 8% and 11% as the investment cost is reduced respectively by 25%, 50% and 75%.

NPV versus Investment Costs Reduction
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Figure 6.48. NPV versus investment costs reduction for scenarios SC_ST300_A, SC_ST300_B and
SC_ST300_C

Figures 6.49 and 6.50 present the impact on the NPV of the scenarios Ref-Case, SC-PV,
SC_ST45, SC_ST300_A, SC_ST300 B and SC_ST300_C, if the electricity acquisition cost
changes. By observing Figure 6.49, it is possible to observe that NPV changes by approximately
30% if the energy acquisition costs change by 50%. When considering a larger storage system, i.e.,
in scenarios SC_ST300_A, SC_ST300_B and SC_ST300_C, the variation of 50% on the energy
acquisition costs has an impact on 22% on the NPV (Figure 6.50). This is explained by the fact that
in these scenarios, the storage allows having higher quantities of self-consumed energy and conse-

guently lower energy imported from the grid.
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NPV versus Electricity Acquisition Costs Variation
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Figure 6.49. NPV versus variation of the energy acquisition cost for (scenarios Ref-Case, SC_PV and
SC_ST45
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Figure 6.50. NPV versus energy acquisition cost variation for scenarios SC_ST300_A, SC_ST300_B,
and SC_ST300_C

Analyzing the overall results, it is possible to conclude that the investment in PV systems, allow-
ing to inject in the public grid an eventual surplus of generated electricity, has an impact of 2% on
the NPV when compared to a system without PV. So, although investment, operation and mainte-
nance costs of the PV systems are internalized in the calculation, the NPV evolves in the positive

direction, meaning that it gets less negative and so the consumers obtain important savings.

The same analysis and the same impact are verified when the architecture considers a PV and a
storage system. When compared with the same reference case (architecture without PV), the NPV

continues to get less negative which reveals that exists benefits in investing in both PV and storage
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systems. In this case, the impact on the NPV is lower, around 1,3%, which is obviously related to the
investment in both technologies (PV and storage) (Table 6.42).

Table 6.42 Net present values for the Ref-case, SC_PV and SC_ST45 scenarios

Ref-Case sC_PV SC_ST45
NPV -210.085,00 € -205.510,00 € -207.432,00 €

When integrated in communities, not only does the dependence of the electrical grid decreases,
but also the benefits from selling surplus of electricity become important in terms of investment
decisions. As bigger is the dimension of the storage systems, lower will be the demand supplied by
the public grid and higher the demand supplied by self-consumption. Considering the architecture
with a centralized storage system (where the location of the battery is not inside the community itself
and itis located at the Low Voltage side of the MV/LV substation), the self-consumption tariff should
be applied. However, the cost savings in tariffs are almost of 26% when compared to the same ar-
chitecture but with batteries located at the electrical building level (Table 6.33). If it is considered an
exemption of 50% and 100% of this component of self-consumption tariffs (CIEG), the savings will
be respectively almost 34% and 43%. (Tables 6.35. and 6.37). These exemptions are significative
and have an important impact in the improvement of the NPV, that is it increases by 10% and 20%
for respectively 50% and 100% of CIEG exemptions. It was possible to conclude that a reduction of,
at least 50% on CAPEX and OPEX for PV and storage systems, turns these architectures more com-

petitive when compared for architectures only with PV systems.

By observing Figures 6.49 and 6.50, it is possible to conclude that electricity acquisition cost is
the parameter that has a larger impact on the NPV. However, this conclusion doesn’t underestimate
the overall impact of the other parameters, namely investment costs and the CIEG component, which
obviously have also a significant influence. Furthermore, if several of these parameters are reduced
in a simultaneous way, the NPV would become less negative turning the investments more econom-

ically attractive.

Finally, let us discuss the computational performance of the developed model. To emulate the
optimization problem, the Spyder Integrated Development Environment © [329] was used. For one
year simulation and using a computer having 16 GB of RAM and with a processor of 3.0 GHz, the
simulation for scenario SC_ST300 runs in approximately 39,3 seconds. As a final indication, the
results of the Q-Learning model were treated using the Power Bl © namely to build the graphs pre-

sented along this chapter [330].
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Chapter 7

7.Conclusions and Future Work

7.1. Main conclusions

Power systems are evolving very rapidly namely in what concerns the technologies used to gen-
erate electricity, the diversification of commercial relationships which involves different agents and
more specifically the empowerment of consumers. Otherwise, regarding the new paradigm with bi-
directional power flow between production and demand prosumers and producers, as well as with
the increasing of renewable energy penetration, several countries have enacted new legislation. These
acts are aimed at promoting the establishment of renewable energy communities and increasing the
self-sufficiency of end-users. In this sense, new players and architectures, such as LEM, are gradually
entering into the electricity markets. However, the way these new frameworks interacts with the

conventional ones, such as the integration of LEM into WSM, is not yet fully established.

To this end, the present PhD thesis addresses a design and an optimization model to increase the
mentioned self-sufficiency level, to better manage the energy produced locally, also admitting the
installation of battery storage units, and to profit as much as possible of them. It is proposed a new
Agent-Based modelling with a special focus on the Energy Communities purposes. The general over-
view presented in Chapter 2, allowed to describe the electricity market in the past till nowadays and
link it to the State of The Art of Legislation that support European Climate and Energy policies,
namely in what concerns Energy Communities. The electricity sector is characterized by multiple
and interconnected markets: day-ahead and intraday markets, bilateral trading, ancillary services
markets, emissions allowances, and fuel (namely Natural Gas) markets. In this sense, with the in-
crease of the participation of new actors in the electricity markets, the identification of the most
adequate trading strategies turns it more complex. Considering this complexity, and to complement
this decentralized and open energy market, Agent-Based Models are being used as a new research
paradigm that allows adaptive approaches to provide adequate decisions to support in view of the

complexity of the problems to handle.
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Thus, it has become a core interest for all the participants in electricity markets, to develop new
simulation models that takes into account this “democratization of energy”. Since Agent Based Mod-
els simulate the interactions and actions of autonomous agents, it is widely used in the electricity
market simulations field. In line with that, the main goal of this work was to develop a computational
tool, using an Agent-Based Model, to help Energy Communities participants to build an optimal
trading strategy, taking into account the regulations and limitations behind these local architectures.
The developed model was based on an Energy Community constituted by different type of agents,
such as consumers or prosumers, focused mainly of maximizing its self-energy consumption and
profit in consequence of selling at the best price the energy surplus. The developed framework con-
siders that the Energy Community deficit or surplus in each trading period will be traded between a

Market Community agent and Aggregator through a bilateral contract.

The concept of an Agent-Based Model allows agents to take their decisions based on their past
experiences with other agents and through the interaction with the environment. This type of model
allows the market participants to develop their own strategies and preferences as adaptive agents.
The electricity markets complexity contributes to create dynamic and adaptive systems. In this cir-
cumstance, the Q-Learning strategy was used in this work. However, and to assess the impact of the
different parameters used in the developed Q-Learning methodology, several simulations were done
considering different learning parameters. When was changed the greedy police parameter, ¢, it was
possible to verify that the “greedy” selection strategy had impact on the exploration strategy since
with lower values didn’t allow the process to be more effective by experimenting all the actions even
if they were worse at a given step of the learning process. By decreasing the discount factor, Y, i.e.,
the weight given to future reinforcements, we conclude that the agent finds new strategies in each
hour and did not have in consideration the impact of its decisions in future rewards. Otherwise, when
was changed the learning rate parameter A, to lower values, the agent did not completely explore its
bid ups and bid downs considering its experience. In this sense, and since the markets dynamics are

continuously changing, it was considered a higher value for the learning rate.

The results that were obtained in this work indicates that the proposed Agent-Based model can
be a very important tool to help LEM participants to follow the best strategy regarding self-consump-
tion purposes and to increase the revenues that are coming from selling energy surplus into WSM.
The simulation results, considering a Community with PV generation, reveals that when it was ap-
plied the optimization strategy, the revenues by selling the electricity surplus, was 25% higher than

in the case that wasn’t consider any optimization strategy.

When the developed model simulates energy trading between LEM and WSM, but also consid-

ering storage systems, two architectures were proposed. As established by the European Directives,
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Energy Community business models can include not only local generation trading and aggregation,
but also storage. To understand how Energy Storage Systems can add value to a LEM, the two de-
veloped architectures were located at different Community locations — a decentralized located at the
community building level and a centralized located at the substation near the community. It was also
possible to observe that the application of the optimization model enables increasing the annual prof-
its. The application of the optimization methodology originates an increase on the selling profits by
26% in both scenarios.

Besides the design and the optimization model developed, which aimed to increase the commu-
nity self-sufficiency level and the revenues that are coming from selling energy surplus, the Energy
Storage Systems had impact in the Energy Communities business models and in its investment de-
cisions. Considering the usage of the public grid for self-consumption purposes, different simulations
were performed taking into account the consideration the impact of having or not exemptions on
network tariffs. These allows to getting insights about the impact of paying grid tariffs considering
the utilization of the public grid and, in this sense, was assessed the economic performance of the
entire installation, namely considering the storage systems. The results that were obtained reveals
that the exemption in some elements of the Access Tariffs, namely in the CIEG component, had a
significant impact in the improvement of the Net Present Values. For scenarios with 50% and 100%
of exemption on CIEG components, the NPV increased, respectively, by nearly 10% and 20% when

compared with a scenario without exemption.

The level of exemptions of the access tariffs, as well as the electricity purchase costs and the
investment costs of PV and storage systems, are among the factors that will determine the massifi-
cation of RECs. A sensitivity analysis performed in this work concludes that reductions on CAPEX
and OPEX for PV and storage systems, turn investments more attractive. For instance, if investment
costs are reduced by 25%, 50% and 75%, the NPV increases by 4%, 8% and 11%, respectively. In
what concerns electricity acquisition costs, we concluded that this parameter had a larger impact on
the NPV. If the electricity costs decrease by 50%, the NPV was reduced by approximately 30%. So,
we concluded that the overall impact of tariffs exemptions, electricity acquisition costs and invest-

ment costs will induce the penetration and massification on electric power systems.

The main contributions of this work will be presented in Section 7.2. Then Section 7.3 aims to
answering to the Research Questions presented in Chapter 1 and finally, Section 7.4 includes sug-

gestions for future work.



224 Conclusions and Future Work

71.2. Contributions

The following paragraphs presents the major contributions of this PhD Thesis, specifically what
covers each chapter.

Chapter 2 presents a background and the state of the art about the main topics approached n this
thesis, namely an overview of electricity markets, different national frameworks for Energy Com-
munities and P2P and VPPs models. Regarding the development of this work, with Agent Based
Models, some modelling methods to simulate electricity markets, Machine Learning Methodologies
and ABM in Power systems simulators, were presented in Chapter 3.

Considering the operations strategies under Energy Communities, Chapter 4 presents the structure
of the model that was developed. It was presented an ABM as a decision tool to support energy
transactions between the LEM and the WSM. In the developed ABM model, the market participants
were modeled as adaptive agents with main purpose of maximizing the profits resulting from the
reduction of the generation cost, the increase of self-consumption, and of selling the energy surplus
in the Wholesale Market. The Market Community Agent purchased the energy to balance the Energy
Community electricity deficit from the Aggregator Agent and sell the excess electricity considering
specified price limits. In order to evaluate the performance of the optimization tool, it was defined a
utility function as a numeric representation of how good some sort of possible residence state of a
system under analysis was. It consists of the ratio between the Market Community Agent Bid (CZi4)
and a bilateral contract predefined (C*V). The higher this ratio is, the higher will be the community
profits by applying the optimization model. If the WSM price (C%99) is lower than CPV, the Market
Community Agent will receive the guaranteed reward defined by the bilateral contract, that is C*V.
Otherwise, and if the CB* is lower than the C*99and higher than C*V, the reward will be equal to
the difference between CB*and CPY. Regarding the strategy adaptation tool, it was developed an
ABM associated to the reinforcement Q-Learning approach to simulate the LEM market and its in-
teractions namely with the WSM. The Q-Learning procedure, evaluates the payoff that can be ob-
tained for a given state-action pair Q(s,a). In this sense, the state’s definition developed was in line
with energy communities’ perspective, i.e., to enhance the self-supply capacity and to minimize the
dependency of the grid. In the learning approach it was considered 5 states and an adaptation of the
derivative-following strategy, where the Market Community Agent increases or decreases its bid

price in an attempt to increase the overall profit.

Chapter 5 was directed to an electricity market design, similar to the previous one, but now con-
sidering prosumers and energy communities with ESS, namely batteries. The operation strategy im-

plemented was similar than the previous one, however it aimed at benefiting the community members
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by storing the excess of electricity for their internal consumption or to sell in the LEM. Regarding
the system structure, two architectures were presented. One, where ESS was placed anywhere in the
community (named as decentralized) and located not inside the community (termed as centralized).
The operation strategy of the batteries, consider charging and discharging mode operation. The first
one, was if there was any surplus of PV generation regarding the local demand and in discharging
mode if the community demand was higher than local generation. However, and if the stored energy
was sufficient to feed the demand, and it also had some surplus, those additional quantities was con-
sidered in the selling bids optimization strategy of the Market Community Agent. This Chapter also
presented an overview of different energy storage technologies and explained how the proposed ESS
was modelized. However, it was similar to the model developed in the previous Chapter but consid-
ered its technical characteristics. Besides the implemented legal framework and the incentives for
the deployment of Energy Communities, in this Chapter, it was also detailed the legal frameworks
that impacted in the economic viability of the investments and operation of Renewable Energy Com-

munities, namely tariffs, charges and some kind of exemptions.

Chapter 6 presents the simulations, the results, and discussions regarding the main outcomes. The
first simulation considers a collective self-consumption with PV system integrated into a Portuguese
collective building. All the data used were real data. The second scenario consider the same commu-
nity, however with a decentralized storage system (not a fully decentralized approach in which each
consumer/prosumer would have its own small storage unit). Such level of decentralization was not
considered in this study because the current investment cost in storage systems is still large enough
to prevent this type of dissemination. The third architecture simulated, consider a storage system
located not inside the community, but located at a Low Voltage side of the MV/LV substation that
feeds the set of the buildings. In this last architecture, it was possible to get insights related with the
payment of grid tariffs and in particular with the CIEG component applied to self-consumption that
used the public grid. Other contribution of this Chapter was to access the dependence of the external
grid in systems with its own generation but also, the benefits of the developed optimization tool
regarding the application of its bidding strategy. An economic assessment was made, for all the pro-
posed scenarios, using the NPV methodology. It reveals that the optimization strategy that was used,
the levels of exemptions on the CIEG component, and the CAPEX, OPEX and electricity costs ac-
quisition impact on the NPV. The final contribution was related to sensitivity analysis made consid-

ering changes on the investment and electricity acquisition costs.
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7.3. Answering the Research Questions

In this section, the research questions raised in Chapter 1 are answered.

Research Question 1:
Are the Agent-Based Models capable of handling Energy Communities’ main purposes?

Energy Communities and Renewable Energy Communities introduce new concepts and
business models, where small scale producers and end users can participate in the electricity
trading systems. This new energy paradigm gives new roles and opportunities for citizens,
having more choices in their homes as well as flexibility to reduce their energy use when it
is expensive and consume or store it when it is cheap. This type of framework also contrib-
utes to the appearance of markets, such as LEM, where new agents can interact, not only
locally, but also be integrated with conventional markets.

As referred in Chapter 3, the traditional market analysis models, such as equilibrium models,
do not incorporate strategic behavior of market participants and have unrealistic design when
assuming that market participants have all relevant information about the characteristics and
behavior of competitors. The answer to this research question may rely, among other issues,
on the development of new computational tool based on Artificial Intelligence to deal with
the increase complexity of the participation of new actor in local energy markets. With new
computing technologies, those new actors can use Artificial intelligence models with learn-
ing capabilities to solve more complex problems. In this sense, Agent Based Models are a
new paradigm that allows the developing of tools that can represent and model, in a more

realistic way, Energy Communities frameworks and Local Energy Markets.

Research Question 2:

How should the Energy Communities’ actors be organized, regarding integration with con-

ventional electricity markets?

This framework behind Energy Communities aims at increasing the renewable-based decen-
tralized generation and empowering consumers as important decision makers in the energy
markets. It is also designed to allow smaller energy retailers to develop and offer innovative

electricity supply packages, making room for new Energy Business Models to emerge. One
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of these standpoints is the Energy Community business models, where all the members
should be considered in the overall arrangement design, implementation, and operation. As
advocated by the European Directives, Energy Community Business Models ‘key activities’
include local generation, supply, storage, consumption, trading, aggregation, e-mobility, and
energy related services, as well as system administration. To address some of these chal-
lenges, LEM emerges as a new energy business model where consumers have access to a
joint market platform to trade locally produced electricity among each other.

So, considering the appearance of new agents and new energy business models, Energy
Communities actors should be organized in LEM in order to consider the community agents
participation and their interaction with the conventional electricity market design, namely
WSM.

As mentioned in Chapter 4, the energy sharing concept is at the root definition of Energy
Communities where any member of the community can buy and sell its electricity within the
community boundaries. In this sense, LEM are emerging mechanisms to enable local energy
trading in Energy Communities regarding its integration with conventional markets. The de-
veloped LEM presented in Chapter 4, describes different types of agents and a Market Com-
munity Agent which was in charge of maximizing self-energy consumption and the profit in
consequence of selling the energy surplus. To balance supply and demand in the community,
it communicates with an aggregator, who operates as a traditional retailer regarding the mar-

ket clearing mechanism in the WSM.
Research Question 3:

3. What is the influence of including not only generation trading and aggregation in Energy

Communities, but also storage systems?

As established by the European Directives, Energy Community business models can include
not only local generation trading and aggregation, but also storage. To understand how ESS
can add value to a LEM, in Chapter 5 was proposed an electricity market design which con-
siders two different architectures regarding the integration of storage systems. The first one
was a decentralized architecture, where storage was located at the building level, while the
second one was a centralized architecture within the community. Specifically, the value of
battery storage and associated architectures in combination with LEM were examined. To
understand the value of local markets and battery flexibility, we compared the outcomes of
the two proposed market designs against a reference case that did not incorporate storage

systems.
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The results show that when compared with a scenario without storage, the decentralized
architecture had a lower amount of energy injected back into the grid. This is in line with the
fact that the demand supplied by the public grid decreases and the demand supplied by self-
consumption increases due to integration of the storage systems. In the case of the centralized
architecture where self-consumption was also prioritized, the demand supplied by self-con-
sumption was also higher than the one supplied by the public grid. When comparing both
storage scenarios, the centralized architecture, since it had a larger storage capacity of the
storage units, stored more energy than the decentralized architecture. Apart from the increase
of the capacity of the storage units, this evolution was consequence of the maximization of
the self-consumed energy by the optimization of the use of the storage equipment through
the adequate selection of its charging and discharging periods. However, and if the stored
energy was sufficient to feed the demand, and there was still some surplus, those additional
guantities were injected back into the grid and used in the adopted selling bids strategy. In

this sense, it could increase the community profits.

Research Question 4:

Can the regulatory context induce the massification of Energy Communities?

Besides the implemented legal framework and the incentives for the deployment of RECs,
the economic viability of the investments (namely in storage systems) and operation of
RECs, specifically considering different tariff and charge exemption designs, can induce the
massification of Energy Communities.

The legislation stated that CSC and REC should receive a remuneration for the surplus en-
ergy injected back into the grid and which can be commercialized by an independent aggre-
gator or utility company. However, and in the case of Portugal, it is also stated that the
charges associated with CIEG (Costs of General Economic Interest), a component of the grid
tariffs paid by end consumers, could be totally or partially deducted from the grid access
tariffs. On 19th June 2020, a Portuguese government dispatch, n. © 6453/2020, stated that
CSC and REC projects, starting operation till the end of the calendar year 2021, benefit from
an exemption regarding the payment of the CIEG component of the access network tariffs
for seven years. More recently, it was passed the DL 15/2022 of January 14 corresponding

to new Portuguese electricity law.
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This provision is intended to induce the wider deployment of self-consumption and of En-
ergy Communities. When the public grid is used for self-consumption purposes, namely
when storage systems are located outside the electrical network of the buildings where the
consumers are installed, the exemptions of grid tariffs have impacts on the final investment
decisions processes. In this work, it was possible to observe in Chapter 6, that as the exemp-
tion level increases, from a scenario without exemption till a scenario with 100% exemption,
the NPV evolves in the positive direction, meaning that it gets less negative and so the in-
vestors obtain important savings.

However, and as stated in Chapter 5, from a regulatory point of view, enlarging the charge
reductions or exemptions so that more and more network users benefit from them, originates
an important regulatory problem. In fact, the Access Tariffs are designed to provide the
amount of regulated revenues defined in the Tariff Code and required to finance several
regulated activities as network distribution and transmission and the system control and man-
agement as well as several public policies that are designed to benefit all the society on the
long term. As the number of consumers or network users benefiting from charge reductions
or exemptions increases, the consumers that at the end will pay the complete regulated Ac-
cess Tariffs reflecting the mentioned regulated revenues gets more and more reduced which
means that each of them would pay more for the access to the system. This is a major concern
as the number of RECs increases and clearly shows that these charge reductions or exemp-
tions should be cautiously set and should only be accepted as a transitory provision to help

induce the development of this new business case.

7.4. Future work and Research Opportunities

Power systems are an area that has been and will be in continuously development. Consequently,
its optimization will remain to be a concern for all the actors enrolled in this sector, namely electrical
companies as well as researchers dedicated to this topic. In this section, we identify further research

areas related to the work developed in this PhD Thesis.

Chapter 3 presents some modelling methods to simulate electricity markets. In this work a Q-
Learning procedure was developed and showed to be as an efficient approach to perform the bidding
strategy behind local energy markets. Nevertheless, because of the increasing complexity of power
systems, for instance by considering an aggregation of several energy communities, the Q-Learning

strategy can lead to a slow convergence of the Q-values. For this reason, hybrid methodologies and
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techniques using Deep Learning should be considered. However, another modelling methods for
optimizing the bidding process, namely traditional methods and another agent-based method of op-
timization could be developed for further comparison with the develop model presented in this work.

The models proposed in Chapters 4 and 5, presents a structure considering an energy community
constituted by consumers and prosumers. In these models there are some improvements that can be
considered and implemented. The first one is related with the potential of Energy Communities by
demand-side solutions to reduce energy demand and foster demand-side flexibility. Demand re-
sponse will be an opportunity for consumers to play a more significant role in the operation of the
power systems by reducing or shifting their electricity consumption during peak periods in response
to price variations or other forms of financial incentives (e.g., capacity markets). Other research area
to explore is the storage arbitrage price strategy, that is, by moving the time intervals in which elec-
tricity would have to be bought to some other periods in which the price is lower or to store electricity
when local generation is in excess in order to sell it in periods in which the price is higher. These
improvements can have a significant impact in the local energy market prices, meaning that these

agents should have a bidding strategy that consider these issues.

As presented in this work, local electricity markets give end-users the ability to trade electricity
at different voltage levels, namely at the distribution level. However, distributed energy transactions
can threaten the correct operation and stability of the grid since it impacts on the control, operation,
and planning of electricity distribution systems. For this reason, a power flow assessment should be
developed considering the presence of new consumers and prosumers (electric vehicles, heat pumps,
rooftop photovoltaic panels, large scale, and local storage systems, etc). The co-optimization/simu-
lation of real-time intraday markets and ancillary services and capacity markets should be considered

in this assessment.
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Abstract

In the last two decades, power systems have experienced several changes, mainly
related to organizational and operational restructuring. The appearance of new
actors contributes to developing new business models and modifies its traditional
operation activities. As a direct result, there is a need for new control selutions and
strategies to integrate these different players. Agent-Based Models (ABM | have been
increasingly used to model complex systemns since they are especially suited to
model systems influenced by secial interactions between flexible, autonomous, and
proactive agents. This paper provides a review of the literature regarding ABM in
power systems followed by an analysis in more detail regarding specific applications
that are becoming relevant in this new paradigm.
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1. Introduction

The transition of power systems from vertically integrated structures to deregulated markets
and the implementation of new rules and business models originated the need for new
operation and modeling strategy techniques. There are also under development new
processes, mechanisms and equipment, such as demand response (DR), smart grids, storage
systems, electrical vehicles (EV), energy communities, among others, which have been termed
by some authors as the “democratization of energy” (Reis, Lopes, and Antunes 2018).

With these new concepts, citizens can become producers and consumers (prosumers), so that
various technical, social, economic, and environmental challenges should now be addressed.
The complexity of incorporating new actors into the operation of power systems implies
greater coordination among all stakeholders and leads to a new operational paradigm that
requires innovative or adaptive methods to provide adequate decision support. This process
should start with the decomposition of each player into smaller components, represented by
individual agents, to perform actions to meet individual goals but also considering the
behavior of the other participants and their impact on the overall system {Macal and MNorth
2010). Thus, considering the operation of power systems with the participation of these new
players, rather than just looking at the overall picture, makes the problem-solving in this
domain an increasingly complex task. Agent-Based-Models [ABMs) can be considered a
suitable tool to address this complexity.
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ABM has besn proposed by many researchers as a proper modeling approach for complex,
socio-technical problems (Bonabeau 2002). Mainly, ABM technigues have been applied to
maodel and study electricity systems and markets and gained an increasing recognition
(Ventosa et al. 2005). According to the development of these applications, this paper presents
a literature review on ABM in Power Systems.

The basic principlas and a literature review of ABM in Power Systems is detailed in this work.
It includes a survey considering scientific research owver the last few years. Different
applications of ABM in power systems are presented as well as the main conclusions.

2. Basic Principle of Agent-Based Models

As systems are becoming more complex, new tools, simulation, and modeling approaches are

needad. An alternative to typical simulation techniques (such as traditional optimization

technigues, discrete-event simulation, and differential equations) are ABM. An ABM is a

computational model integrating individual and autonomous agents and their collective

behavior. An autonomous agent acts on its own without external direction in response to

situations the agent encounters during the simulation (Heath, Hill, and Ciarallo 2009).

The following definitions of ABM are provided by Macal and Morth (2010), Pyka and Grebel

(2006), and Gilbert (2008):
“Agent-based modeling is a way to model the dynamics of complex systems and
complex adaptive systems. Such systems often self-orgamnize and create emergent
order. ABM also includes models of behavior (human or otherwise) and is used to
observe agent behaviors and interactions’ collective effects. The development of agent
modeling tools, the availability of microdata and adwances in computation have made
possible a growing number of agent-based applications across a variety of domains
and disciplines” (Macal and Morth 2010).

- "The ABM approach consists of a decentralized collection of agents acting
autonomously in various contexts. The massively parallel and local interactions can
give rise to path dependencies, dynamic returns, and interaction. In an environment
global phenomena such as the development and diffusion of technologies, the
emergence of networks, herd-behavior, among others, which cause the
transformation of the observed system can be modeled adequately. This modeling
approach focuses on depicting the agents, their relationships and the processes
governing the transformation” {Pyka and Grebel 2008).

- “Formally, agent-based modeling is a computational method that enables a researcher
to create, analyze, and experiment with models composed of agents that interact
within an environment” (Gilbert 2008).

ABM focuses on the modeling and simulation of complex systems, at a local level through the
definition of their elementary units and, at a higher level, suited to model adaptive
heterogeneous actors — agents.

Shalizi (2006) defined an agent as a persistent thing that has some state worth representing
and interacts with other agents, mutually modifying each other's states. Another definition of
an agent was provided by Wooldridge and Jennings (1593) and indicates that an agent is a
computer system situated in some environment, and capable of autonomous action in this
environment in order to meet its design objectives.

5o, an agent is an entity situated in some environment that can autonomously react to
changes in that environment. Besides, the environment is everything external to the agent
and must be observable to or alterable by the agent (Wooldridge and Jennings 1935). Each

U Porto Jourral of Engineering. 7-3 (2021) 101-113
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agent chooses its strategy based on its previous experiences with other agents and through
interaction with the environment, which helps him improving its decisions by modifying their
strategies.

The three basic concepts of ABM are:

1) Agents: can be a computer code, which can perform some tasks autonomously in a
particular environment. The main features of an agent could include autonomy, reactivity,
social ability, and pro-activity. In power systems, generators, ancillary service providers,
protective devices, system operators, consumers, regulaters, and retailers could be the
agents;

2] Artifacts: are the components of the systems that are passive and are developed, shared,
modified, developed, modified and utilized by the agents to carry out their activities
competitively or cooperatively. Examples of artifacts in power systems could be transmission
and distribution lines;

3) Workspaces: accommodates the agents and artifacts. It helps to define the topology of the
environment and the idea of locality.

3. ABM in Power Systems — Literature Review

ABM has been applied in different scientific areas, including marketing (Xiac and Han 2016,
Rand and Rust 2011), treatment of diseases (Corti et al. 201%), biology (Athale, Mansury, and
Deisboeck 2005), economics (Khan and Yang 2020; Cristelli, Pietronero, and Zaccaria 2012),
financial economics (LeBaron 2006), urban planning (Capricli, Bottero, and Pellegrini 2019),
social sciences (Serrano and Satoh 2020), transportation (Hager, Rauh, and Rid 2015),
geographical information systems (el Raoui, Oudani, and Alacui 2018), pandemics {Jalayer,
Orsenigo, and Vercellis 2020}, among others.

With the transition from vertically integrated wutilities to deregulated electricity markets,
power systems’ complexity is increasing, namely because new rules and players are emerging
and being implemented. Distributed generation (smart grid and microgrids) (Farhangi 2010),
EV's (Tan, Ramachandaramurthy, and Yong 2016), consumption flexibility and DR processes
(Faria, Spinola, and Vale 2016), large penetration of renewable-based generation (Calabria,
Saraiva, and Rocha 2016), energy efficiency measures (Zhou et al. 2015), and building energy
management [(Mittal et al. 2019), among many others, contribute to the increasing
management and operation complexity, the transmission and distribution networks and the
interactions between traditional and new players. The uncertainties associated with the
renewable-based generation, electricity market prices, energy consumption, or EVs are just a
few examples of the increased sources of uncertainty and thus of complexity brought to the
power and the energy sector.

In the last years, research has been devoted to deal with this complexity and address the
challenges brought by this new paradigm. In this scope, we have looked at scientific research
reported in the Web of Science database [(Wo35, n.d.) using different search terms to analyze
the publications produced on this area and provide an overview of the recent research. Table
1 shows the owerview of research documents produced since 2010 that were analyzed by
different search terms. The search terms have been combined with similar variants within the
power systems field to observe the results as accurately as possible. We looked for each
search term in the abstract, title, and keywords of the papers. Also, we investigate the most
cited papers in each search criterion and the most noticeable research authors by the number
of articles produced.
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Search term Documents 3 most cited articles Top 3 authors with most
since 2010 Reference Citations articles
“ABMT AND "Agent 1304 Grimm et al. (2000) 1233 An, Gary [13)
Based Maodel*” raidller et al. (2013) 155 Dragicevic, Suzana (11)
valbuena et al. (2010]) 137 Polhill, ). Gareth (3]
“ABMT AND "Agent 59 Sornette |(2014) 11E Saraiva, Joao Tome (4]
Based Model*"aND Euznetsova et al. [2014) 117 calabria, Felipe Alves (3]
“Power System*” Richmond et al. (20100 76 Kuznetsova, Elizaveta [3)
“ABMT AMD “AgENt 19 Kuznetsova et al. [2015) 55 Saraiva, Joao Tome (4]
Based Model*"aND Hansan, Liu, and 16 calabria, Felipe alves (3]
"Power System*” AND Maorrison [2019) Rocha, Ana Paula (3]
(market* OR chaudhari et al. (2019) 15
electrical)

Table 1: Research documents produced since 2010 analyzed by search term
according to Web of Science
A total of 1304 documents between 2010 and 2020 were found in the Web of Sdence
database by using the search termn “ABM™ AND “ogent based model!*" in the abstract, title,
and keywords. The 3 most cited papers aren't related to power systems and electrical
engineering. This suggests the coverage of this topic in different fields and the innovative
character of applying such a paradigm in power systems. Figure 1 presents the distribution of
ABM among different scientific areas.
111

CL IRTE RIS FLI RARY LEEPUTLH STILHOL ARTIFICIAL IH TRALEAHLL

118

FHVIRNHMEYTRL SCITNCES

Gh

153 CIX ENVIRCIMNENTAL

ATUMES
TDMPUTER SCIENCE THEDAY METHODS

116

COEPUTER SCIENCE |MFORMATIOMN SYRTEMS

Figure 1: Web of Science applications distribution about results provided from
searching words ABM and Agent-Based Models [Wos, n.d.)

The search term “ABM™ AND “agent-based model” AND Power System* produced only 59
results. This suggests that the marriage between agent-based models and power systems is
far from being mature. This was expected given how ABM have been maturing conceptually
during the past few years.

The most cited paper (Sornette 2014), with 118 citations, is not directly associated with power
systems but with power-law distributions. It presents the different perspectives embraced in
theories developed in financial economics compared with physics. However, the second most
cited (Kuznetsova et al. 2014), with 117 citations, presents a microgrid energy management
framework to optimize the microgrid stakeholder's individual objectives. This framework is
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exemplified considering a microgrid connected to an external grid via a transformer and
includes a middle-size train station with an integrated photovoltaic power production system,
a small energy production plant composed of urban wind turbines, and a surrounding district
with residences and small businesses. The system is described by an ABM, in which each player
is modeled as an individuzl agent aiming at a particular goal, (i) decreasing its expenses for
power purchase or (ii) increasing its revenues from power selling (Kuznetsova et al. 2014).
The author with most papers published in this search field is Saraiva, Joao Tome, with 4 articles
(Sousa and Saraiva 2017, Calabria, Saraiva, and Rocha 2015a, 2015b, 2016].

In Sowusa and Saraiva (2017), an ABM model is described using Q-learning to provide
knowledge for the agents to select their decision. This model is designed to mimic the main
features of the common electricity market between Portugal and Spain, the MIBEL. Apart from
describing the developed model, this paper also includes preliminary results from its
application to the MIBEL case.

Calabria, Saraiva, and Rocha (2016) propose and test a bid based short-term market in order
to overcome difficulties identified in the Brazilian electricity market. To simulate the behavior
of the hydro units, it was implemented an ABM using the reinforcement O-Learning algorithm,
Simulated Annealing, and linear programming.

A market design based on virtual reservoirs was proposed in Calabria, Saraiva, and Rocha
(2015b). This model aims at enhancing the flexibility to enable market participants to comply
with their contracts while still ensuring the efficient use of the water and maintaining the
current security of supply.

Some of the problems related to the current Brazilian electricity market were analyzed in
Calabria, Saraiva, and Rocha (2015a).

This paper proposes a new market design to overcome these issues based on the concept of
virtual reservoirs and aims at enhancing the flexibility to enable market participants to comply
with their contracts while still ensuring the efficient use of the energy resources and
maintaining the current security supply level. ABM simulates the behavior of the market
participants in this new framewaork.

A more refined and focused search, based on search terms “ABM~ AND “agent-based model”
AMD Power System™ AND (market® OR electrical), produced only 19 results. However, a
refined search was done as the first two results weren't directly related with power systems,
which is the major topic. 5o, the search was done excluding the words “physics” and “tourism™
providing now 17 results.

The meost cited paper in these research areas (Kuznetsova et al. 2015), provides an extended
analysis of a microgrd energy management framework based on Robust Optimization (RO).
The system is described by an ABM where each stakeholder is modeled as an individual agent.
Each of these agents aim at optimizing a specific goal, either in terms of decreasing its
expenses from power purchasing or by increasing its revenues coming from selling power.

A systematic review of the potential of ABM to understand energy transactions from a social-
scientific perspective is described in Hansen, Liu, and Morrison [2019). Six topic areas were
identified, addressing different components of the energy system: Electricity Market,
Consumption Dynamics/Consumer Behavior, Policy and Planning, New
Technologies/Innovation, Energy System, Transitions.

Chaudhari et al. (2019) present an ABM approach that considers an optimal EV charging
infrastructure, taking into account several factors, such as the driver behavior, the location of
charging stations, the electricity pricing.

Lr.Porte Journal of Engineaning, 7:3 [2021) 201-212
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4. Different Applications of ABM in Power Systems

This section reports some relevant publications focusing on operating paradigms with ABM
modeling approach in smart grids and markets such as DR, distributed generation, energy
community, and their interactions.

4,1, Electricity market simulation

The application of ABM models to power systems and specifically to electricity markets
assumes an increased relevance since bottom-up approaches become crucial to understand
and model the energy transition. As previously mentioned, ABM can model complex aspects
in the electricity markets as they can represent the different system participants’ complex
behavior.

In this scope, AMES is the acronym for Agent-Based Modeling of Electricity Systems. It is an
open-source agent-based computational laboratory for the experimental study of wholesale
power markets, developed in 2007 specifically designed to systematically explore strategic
trading in restructured wholesale power markets operating AC transmission grids. The
wholesale power market includes an independent system operator, load-serving entities, and
generation companies, distributed across the transmission grid nodes. Each generation
company agent uses stochastic reinforcement learning to update the action choice
probabilities currently assigned to the supply offers in its action domain. Besides, AMES
facilitates augmenting the empirical input data with simulated input data to allow studying a
broader array of scenarios. Downloads, manuals, and tutorial information for all AMES version
releases to date are accessible at the AMES homepage (Tesfatsion, n.d.).

The Simulator for Electric Power Industry Agents (SEPIA) was developed in 2002 to improve
the efficiency of the Morth American power netwark (Amin 2002). itwas developed as bottom-
up model and simulator which uses autonomous, adaptive agents to represent possible
industrial components (e.g., genseration units, transmission system and load) and the
corporate entities that own these components. According to the survey provided by Zhou,
Chan, and Chow (2007), SEPIA and its architecture display good results for electricity market
systems. Its distinct features, which consist of its capability to adapt, provided by both Q-
learning and genetic classifier learning modules, are highlighted as an advantage. Related to
limitations, the survey mention the absence of an independent system operator agent. Also,
the adaptation mechanism is restricted to generation companies and focuses on the bidding
strategies. It could be extended to other decision making levels.

Electricity Market Complex Adaptive Systems (EMCAS) is a commercial tool developed by the
Center for Energy, Envircnmental and Economic Systems Analysis (CEEESA) at the Argonne
Nationzl Lab Laboratory (Center for Energy, n.d.). This model includes decentralized agent
decision-making features along with learning and adaptation capabilities. It is possible to
assess the behavior of the agents after changing market rules. EMCAS agents take decisions
based on past experiences and future expectations. Whenever an agent takes a decision, it
will consider the results of a similar decision made previously — Look Back. This mechanism
can be considered as a short and long-term memory and could consider trades between bid
acceptation or rejection, unit utilization, profitability, market versus price bid, and weather
versus load. It also considers results based on own unit availability, prices, weather, and loads
related to projection results - Look Ahead. When considering its current conditions, such as
competing unit availability, own cost structure, and market rules, agents take decisions
looking sideways — Look Sideways. Compared with SEPLA, which has a self-learning mechanism
for decision rules, the adaptation process in EMCAS is supported by pre-specified decision

L. Porto Journgi of Enginearing, 7:3 [7021) 203-222 16



Annex Al: Paper A 259

Azent-Based Models im Powear Systems — & Literature Beview
Antinin Ferreirs gos Santos, loka Tome Sarmive

rules and no adaptation exists. Thus, agents in EMCAS have a lower adaptation capability than
those im SEPIA. Moreover, the adaptation in EMCAS is restricted to generation company
agents.

Despite several references to ABM applied to power systems, the available models do not
adequately consider a number of relevant issues such as the large presence in some systems
of hydro stations and its reversal pumping feature and the large share of zero marginzl cost
intermittent technologies. In Sousa et al. (2013) it is discussed and proposed a conceptual
model following the agent paradigm that deals with the inherent complexity of electricity
markets such as, the Portuguese/Spanish Electricity Market [MIBEL).

One of the tools that can be used to perform the management of a hydrothermal electric
power system at a national level or with cross-border interconnections is VALORAGUA model.
This tool establishes the optimal operation strategy for a given power system by using the
“value of water” concept, in each power station, for each time interval {i.e. month/week) and
each hydrological scenaric. The model supplies detailed information on the technical,
economic, and environmental behavior of each generation centre and the system. This model
also computes thermal-based power generation emissions and optimizes the maintenance
schedule of power plants. VALORAGUA is often used to: analyze energy importfexport
contracts; maximize power generation revenues; manage on the long-term the stored water
in reservoirs with regulating capability; define the adeguate use of water in multi-purpose
units, considering its operation constraints (da Silva 2013).

Multi Agent-based Electricity Market (MASCEM) is a simulator developed at the Polytechnic
of Porto, Portugal (Praga et al. 2003) to study competitive electricity markets. The agents in
MASCEM include a market facilitator, generators, consumers, market operators, traders, and
a network operator. Their strategies are adeguate to gain the highest possible advantage from
each market context, acting in forward, day-ahead, and balancing markets and considering
both simple and complex bids.

4.2, Smart grids

With the increase in the number of EV's and DR customers, ABMs can be a potential framework
to challenging model problems in smart grids. Agents decide to buy, sell or store electricity
depending on their demand, generation, and storage capacity.

Zhou, Zhao, and Wang (2011) studied the impact of the level of participation of the
commercial building in DR programs. It alse examined how price-based DR can improve the
efficiency and reliability of electricity systems.

A prototype ABM to examine the effects of individual behavior and social learning on
electricity use patterns is presented in Snape, Irvine and Rynikiewicz (2011). This paper
provides a holistic view on the electricity system considering technical aspects, human
interaction, and framework policies. Chassin, Fuller, and Djilali (2014) present a flexible power
system modeling tool using an agent-based approach to simulate smart grid paradigms, such
as demand response, energy storage, retail markets, electric vehicles, and new automated
distribution systems. Dave, Sooriyabandara, and Yearworth (2013) present a business idea
where the DR potential of households through aggregators is exploited. These authors detail
that peak load reductions can be obtained using this approach.

The potential large-scale introduction of EVs is another relevant aspect of future smart grids.
EVs provide an interesting potential to control electricity demand in an intelligent way given
the significant load-shifting options. A stochastic model for mobility behavior and ABM
simulation tool is presented in Dallinger and Wietschel (2012).
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In Foti and Vavalis (2015), a learning approach for strategic consumers in smart electricity
markets has been designed. A machine learning approach and its integration with a widely
used energy simulation platform was proposed.

Yasir et al. (2015) present an ABM architecture for coordinating locally-connected microgrids,
thereby supporting more cost-effective integration into the main power grid. The
interconnected microgrids, with renewable energy sources and energy storage dewices,
employ agents so that each microgrid can choose to save or resell its stored energy in an open
market in order to optimize its utility and revenues.

4.3. Energy communities

An agent-based approach to model zero energy communities is described in Mittal et al.
(2019). This paper details a conceptual ABM for an urban neighborhood to predict the
houwsehold level of adopting renewable energy behaviors in the presence of multiple options.
Reis et al. (2019) model a community of residential prosumer agents that individually cptimize
the energy use to minimize energy costs and dissatisfaction. Each residential prosumer is
modeled as an individual agent with specific energy needs and preferences.

Reis, Lopes, and Antunes (2018) present a modeling approach to simulate energy trading
between two energy community members capable of exchanging information and energy
between them.

A community of residential prosumer agents is modelled in Reis et al. (2019). Each residential
prosumer is represented by an individual agent with specific energy needs and preferences.
The residential agents exchange information with a coordinator agent that provides
community resources or power purchased from the grid if needed. At the coordination level
several optimization processes are performed to optimize the community resources and at
each prosumer level to minimize agents’ costs and dissatisfaction.

4.4. Energy storoge

Energy storage is a premising technelogic development for many contemporary issues in
electricity markets and power systems operation. It could be configured in terms of Virtual
Power Plants (VPP) and enable energy interaction between multiple PV prosumers under the
form of direct sharing and buffered sharing (Liu et al. 2018). Meanwhile, as an intermediary
between PV prosumers and the wtility grid, VPP coordinates each prosumer's energy
consumption behavior by setting internal prices and conducts power transactions with the
utility grid. A payment scheme to compensate EVs customers that participate in a VPP is
presented in Vasirani et al. (2013). VPPs are considered as coalitions of wind generators and
EWs, where wind generators seek to use EVs as a storage devices to deal with the variations of
wind generation. The simulation model provided in Praga et al. (2003) introduced VPPs in
ABM. Anocther topic of interest is storage in the form of hydro reservoirs. This aspect is
detailed and discussed in Sousa and Saraiva (2015, 2017) in the context of MIBEL. This model
is used to define adequate generation/pumping schedules and to assess the impact of these
operation strategies in the market prices, therefore, passing from a simple price taker
approach to a more complex and realistic price maker model.

5. Conclusions

In recent years, power systems are moving to @ more complex operation paradigm with an
increasing number of players and more complex and participated processes. In this context,
the use of ABM to model and simulate these new problems and agents is becoming
increasingly attractive. However, such development is far from being mature due to the
innovative character of applying such a paradigm to power systems problems.
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This work presents and describes ABM characteristics supported with a literature review
addressing how and when ABM should be applied. A survey on the most recent papers
associated with ABM is provided, namely an in-depth overview on ABM applied to power
systems, where the most cited papers, as well as the most noticeable research authors, are
enumerated and presented. Finally, some relevant literature focusing on power system
operating paradigms with ABM modeling approach is detailed in this work, specifically smart
grids, electricity markets, energy communities, and energy storage systems.

In conclusion, the application of ABM to power systems is far from being mature, meaning
that the exploitation of common strategies developed with these tools regarding this new
paradigm is a topic to explore in a future ressarch.
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Absirace—Local Electricity Marketz: (LEM) aszseciated with
Energy Communitie: and more specifically with Renewable
Enersy Communities, REC, are fostering mew optimization
models to enable the development of strategies regarding the
increaze of community energy savings and profitz, In thiz scope,
thiz paper presents an Agent-Bazed Model (ABM) as a decision
tool to support energy tramsactions between the LEM and the
Wholesale Market (W5M) on an hourly bass. The developed
market environment was modelled as a Markov Decizion Process
(MDP). In thiz zcope, an Azent Based Model using the Q-
Learning mechanizm wasz uzed to implement it and to simulate
the local market model and itz interaction with the WSAL The
developed model was tested using an energy commmnity that
integrates a collective building with 15 apartments and FV
generation. The paper describes amd dizensses the obtained
market stratezy and the profits that can be obtaimed by the
Energy Community.

Index Terms- Enerzy Communities, Local Enersy Markets,

Agent Bazed AModel:, Reinforcement Learning

L INTRODUCTION

In Jume 2018, the European Union (EU) agreed on a legal
framework that mtroduces Citizens Energy Conmmmities and
Benewsble Energy Commumities [1. 2], This framework aims
at increasing the renewable-based decentralized zeneration and
empowenng consumers as important decision makers in the
energy markets. It also allows smaller energy retailers to
develop and offer innovative electricity supply packages,
making room for new Energy Business hodels to emerze. Beis
et al. [3] made an overview over different perspectives of this
new Energy Busimess Models. One of these standpomts 15 the
Energy Commmmity business models, where all the members
should be considered i the overall amangement design
implementation and operation. As advocated by the European
Directives, Energy Commmmity Business Models ‘key
activities” mclhade  local  generation.  supply.  storage.
constmption. tading, aggregation e-mobility and energy
related services, as well as system admmistration

078-1-6654-0896-7/22/$31.00 ©2022 IEEE

I.T. Saraiva
Faculty of Engineering of University of Porto and
INESC TEC
Faa Dr. Foberto Frias, 4200 465 Porto, Portugal
Jsaraivalafe up pt

COme example of this new energy business models 15 the
Local Energy Markets (LEM). ~Ien2e]lﬁm.p [4] defines the
LEM as a social commmmty of residential prosumers and
conswmers that have access to a joint market platform for
trading locally produced electricity among each other. The
progressive migration of current centrahzed market models to
this new electricity market design is contributing to the
appearance of new agents that should not only mteract locally.
but also consider the integration with conventional markets.
The difficulty of mcorporating new actors and to manage the
coordination between different stakeholders leads fo a mew
operational paradigm that requires mmovative or adaptive
approaches to provide adequate decision support in view of the
complexity of the problems to handle. In this scope. the use of
Agent-Based Modelling (ABM) can help addressing this
complexity. A literature review and a survey cn the most recent
papers associated with ABM are provided in [3].

Considering the appearance of new agents and energy
business models, we developed a model that integrates LEXs
and the cenfral Wholesale hMarket (W5M) using an ABM as a
decision tool. The developed model considers transactions
between both markets. on an hourly-basis. and are done via a
Market Commmmity Agent which interacts with the W5SM
through an Aggregator Agent. In order to simmlate the proposed
LEM. a collective hmld.mg which Lc-mams 15 apartments amd
PV generation was considered. Accordingly, and after this
infroduction. Section IT presents a ].ireramre review on the topics
addressed in this paper, Section [T describes the developed
ABM, Sections IV and V present the Case Smudy and the mam
results and finally Section VT draws the main conelusions.

The mam contributions of thus paper are:

- Development of an ABM model te sinmlate energy
trading between LEM and WS

- Getting nsights on the sconomic viability of this business
model.

Authornzed licensed use limited to: b-pn: UNIVERSIDADE DO PORTO. Downloaded on July 30,2023 at 16:00:36 UTC from IEEE Xplore. Restrictions apply.
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II. LITERATURE REVIEW
A Local Energy Markets

The definition of LEMs consider not only residential and
commercial consumers/prosumers but also renewable energy
producers that can participate in the trading of the local
electncity over LEMs. As stated m [6]. LEM ]J-rcmdes a market
platform to a commumity and empowers it to strengthen the
local economy by reducing electricity costs and keeping profits
within the commmity. LEMs can be seen as trading platforms
where electricity is sold and bought [7] within the scope of
market matching and pricing mechanisms. [2] refers that LEMs
empower electnicity end users and small-scale producers by
allowing them to directly participate in an electricity market. In
this sense, the concept of LEM is well suited to address the
Energy Commmmities main purposes, since it is a mechanism
that can induce investments m renewable energy sources. can
improve the integration of RES mto the energy system. and can
contribute to empower local commmities and end consumers.
It also promeotes the participation of local agents as well as the
awareness of local consummers to the energy problems.

B Tholesale Market

The common design of electrcity markets mvolves four
different types of frameworks: day-ahead and intra-day markets
{by sessions or confimmous). bilateral trading markets and
balancing markets.

Typically. the day-ahead enerzy market 15 orgamized n
terms of a double-sided Uniform Price Auction. where demand
agents submit bids to buy enerzy and supply agents subnut bids
to sell it. For a particular operation day d the Day-Ahead
Market clears typically at 12 noon of day (d-1). The prncmg
mechamsm 15 based on the margnal pnemg theory, where the
prices equal the short-nm ma:zmal cost [9]. Under system
marginal pricing.  generators submit bids to the market
{tj.picall}' mvelving a price and an energy quantity for every
hour of the day of operation). The Market Operator collects the
selling bids and serts them in an ascending order of the price.
leading to a supply curve. Buvers submit load purchase offers
for every hour, which are also collected by the harket Operator.
These bids are ranked by the decreasing order of their prices,
building the agzregated demand curve. The intersection of the
supply curve with the demand curve defines the market-
clearmg price for the hour under analysis.

The intraday markets are sinular to the Day-Ahead Markets
and the mam difference 15 the gate closure. They follow the day-
ahead session bemg usually activated at the end of day d-1 and
contiming aleng day d. the debvery day. In practice, they work
as adjustment markets, 1., closer to the delivery fime market
agents can adjust their buymg or sellmg positons regarding
what was cngmally cleared in the dayv-ahead market.

A bilateral market 15 a platform in which private pa.n'ies.
sellers and buyers. negotiate bilateral agreements for the
exchange of electricity under acceptable terms. Each confract
has its own price that depends only on the amangements
between the interested parties.

Balancing markets aim at comecting the imbalances
assoclated to the physical trade of energy, in order to maimtain
the equality between generation and demand, so that power

Annex A2: Paper B

frequency control 1s ensured. Balancing markets are operated
by Transmussion System Operators (T 50s), who should be non-
commercial orgamzations and nevtral regarding market agents.
Theyuse different types of balancing products such as. primary
reserve, secondary reserve or antomatic frequency restoration
reserve, and tertiary reserve or mamual frequency restoration
Teserve fo ensure mantaming the system frequency aroumd the
specified nommal value [10].

. Agent Based Models

As gystems are becoming more complex. new tools,
simulation. and mwoedeling  approaches are needed. An
altemative to typlcal simulation technigues (such as traditional
optimization techmgues. discrete-event simwlation and
differential equation-based models) are Agent Based Models
(ABMD. An ABM 15 a computational model integratng
individual and autonomous agents and their collective behavior.
An autonomous agent acts on its own without extemal direction
in respense to situations the agent encomnters during the
sinmilation [11]. More details and additional definitions on
ABM models are provided in [12]. [13] and [14].

ABM concepts and models have been applied in different
scientific areas. including marketing. eatment of diseases.
biology, ecompmics, wban planming, social sciemces,
pandemics, among others. With the transition from vertically
mtegrated utilities to competitive electricity markets. power
systemns” complexity is increasing. namely because new mles
and players are emerging and beng unplemeuted. Distributed
generation (namely using renswable primary resources),
Electric Velcles, Demand Flexibility and Demand Response
processes, energy efficiency measures, and the development of
microgrids and smart grids. among many others, contribute to
the increasing management and operation complexity, the
transmission and distibution networks and the inferactions
between taditional and new players. The uncertainties
assoclated with the renewable-based generation, electricity
market prices, energy consumpticn or EV behavior are just a
few examples of the mcreased sowrces of uncertamties and thns
of the complexity brought to the power sector and to the energy
system as a whole. In the last years. research has been dev oted
to deal with this complexity and to address the challenges
brought by this new paradigm. In this scope, Santos and Saralva
[3] pm‘ided a lterature survey on the most recent publications
assoctate with ABM focusing on the power systems area.

The application of ABM medels to power systems and
specifically to electricity markets assumes an mcreased
relevance since bottem-up approaches become crucial to
understand and model the ongoing energy transition. As
previously mentioned. ABM can mode] complex aspects in the
elecmicity markets as they can represent the complex behavior
of different system participants. Some energy management
tools using ABM for energy markets are pres.emed in [‘- 121.

D. Q Lzaming

The electrnicity markets complexity contributes to create
dynamuc and adaptive systems. In this circumstance, leaming
and constucting the model of an economic system is a very
complex task for market participants. and a model free leanung
approach can be an appropriate altemnative to build a desired
bidding strategy. Q leaming is a reinforcement leaming
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methodolegy [15] m which agents can leam a task by
interacting with the environment through a trial-and-emor
search The Q leaming algorithm was mitially proposed m [16].
and it can be classified as a free model because it doesn't need
an explicit knowledge about its enviromment. Instead. the
knowledge about the optimal strategy increases while the
historic interaction with the environment is being bt by tnal
and error [16]. Q leaming is a useful algorithm to solve Markov
decision problems. and this 13 done by evaluating the payoff for
a given state-action pair. When using an ABM. the agent firstly
observes the cument emvironment state and then selects am
action. Then the agent recelves an mmediate reward from the
environment, and the environment moves to the next state based
on the transition probability. This process 1s repeated until
termination.

The mplementation of the Q-leaming alzonthm typically
mvolves building the Q leammg matrix ‘that 15 composed by
cells knowm as Q values These Q— ralues are calculated for each
pair of state (s} and action (a). and therefore thev can also be
descrbed as Q{s_ a}. As the ( leammg focuses on the impacts
of rewards (F) on the choices of actions in each state. the Q
values are obtained by a finction that provides the expected
utility of taking a given action in each state. The Q(s, a) fimction
is typically given by (1).

Q5 85 )" = (1 = A) - (S 8y) +

A [R(Spe ) + 7 MOXQ(Spyy@)) (1)

In this expression. . in (0,1} denotes the leaming rate and it
reflects the degree to which estimated Q-values are 1q:|dat-ed by
new data and can be different in each episode. If L equals 0 then
the agent does not learm, while if it equals to 1 it nduces the
agent to consider only the most recent mformation. T 15 a
discoumt factor m (0. 1) that represents the weizht given to fufure
remforcements. A valne of T equal to 0 makes the agent myvopic
by only considenng current rewards. while values closer to 1
tum distant rewards more moportant [17]. The expression
maxg (Sm+1: 0 ) Tepresents the best the agent thinks it can do
m state Sp4q- In an mifial phase the agents will randomly
explare state to state until they leamn and reach the end of the
similation period. Then using these Q-values, the agents start
their biddings considering the leamed experience. Typically,
the leaming process converzes when the Q-values do not
change more than a pre-determinate tolerance value regarding
the values m the Q-matnx that was bwlt m the previous
Iteration.

Ome of the main challenges in Peinforcement Leaming is
related with the trade-off between exploration and expleitation
which is represented by the gready policy . It means that the
agent selects the action that has the ‘mazinmm O value with high
probabllm {1— €} and an arbitrary action from all admissible
actions with small probability £, regardless of the Q values.

III. DEVELOPED AGENT-BASED MODEL

As mentioned before, this work describes the developed
ABM model to simulate the energy trading between LEM and
WELL Section A addresses the overall approach and then
Section B described the implementation of the Q-leaming.
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A Methodelog

The developed structure considers an Energy Commumity
constituted by different types of agents. such as consumers and
prosumers. Each of these agents submit their bids to a Market
Commmmity Agent which is in charge of maximizing the
Energy Conmmmity self-energy consumption and the profit m
consequence of selling the energy surplus. The energy deficit
or surplus in each trading period will be traded between the
Market Commmmity Agent and an Agsresator, which operates
as a ftraditional retailer regarding the market clearing
mechanism of the WM. The Assr-esator will gather the
mformation about the energy deficit or excess from the Market
Commmnty Agent and commmmicates the buying or selling bids
to the WSM as a way to balance supply and “demand in the
COMImItY.

Begarding the coordination mechamsm to mfegrate the
Energy Conmmuaty LEM mte the exising WSML the nutial
trading 15 done locally followed by the trading in the W50 The
Aggregator receves the quantities to buy and sell in the W5M
and sent back to the Market Commmmty Agent the cleared
hourly prices. The obtamed values will be considered in the
optimization model of the commumity n an hourly basis. In
order to encourage the parficipation of local agents m the local
trading at the LEM. the elecmicity price of LEM is determined
by the energy sold by prosumer agents. the energy bought by
all the community members, and the electricity produced by PV
panels in the commumity. It is also defined that PV generation
hias a Feed in Tanff (FIT) that is set at a lower level than the
Aggregator tanff (€F < €99} to guarantee that LEM favours
local transactions rather than hmmﬂ energy from the mmd In
this work. the Aggregator tanff 15 u:omposed only by the WSM
price, that 1s Eﬂd u:u:cmpomant, are not considerad.

The above indications mean that when there is energy
deficit at the commumity, the commmmity buys electricity fom
the grid at the WSM price. When there 15 surplus of electricity
n the commmmity and after considermg self-consumption, the
LEM has a miminwm ensurad price that comresponds to the FIT
assoclated to the PV technology. However, m order to mcrease
the revenues from selling this excess, the ABM tries to mcrease
the selling price as close as possible to the WSM price. If the
LEM price gets higher than the WS, that would mean that the
selling bid of this excess would not be accepted at the W5M
and therefore this amount is sold at the mininmm ensured price,
that is. at the FIT value.

B. {-Learning procedure

As mentioned m Section IT we intreduced in the model the
Q-leamung procedure. which 1s a uwseful algonthm to solve
Markov decision based problems Q-leaming, evalnates the
payoff that can be obtained for a given state-action pair Qis.a).
The state’s definition is in line with the energzy commmmities’
perspective. ie. to enhance the selfsupply capacity and to
minmize the dependency of the grid. In this application. we
considered the following 5 possible states:

* State 1 - the agent has obtamed more profit compared to
the previeus episode. and all its energy that could be
dispatched in all the 24 trading howrs was clearad in the
local market.
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» State 2 - the agent has obtamed more profit compared to
the previous epl«.ode but not all its energy that could be
dispatched i all the 24 trading hours was cleared m the
local market.

* State 3 - the agent has not obtamed any profit or loss.
compared with the results of the previeus episode.

» State 4 - the agent has gamed less profit compared to the
PIEVIGNS eplsode but not all its energy that could be
dispatched m all the 24 trading hours was cleared m the
local market.

= State 5 - the agent gamed less profit compared to the
previcus episode. and all its energy that could be
dispatched in all the 24 trading hours was clearsd m the
market.

Tlis structure was based on the state’s defimtion adopted
m [18]. which on the other hand comresponds to an adaptation
from [19]. Thus strategy 15 m line with the denvative-following
strategy presented m [20). A denvatrve follower does
meremental increases {or decreases) In price, contmung to
move 1ts price m the same direction wntil the observed
profitability level falls. At this point. the direction of the
movement is reversed As illustrated in Figure 1. action al
corresponds to a maxinmm bid down. ad means that neither a
bid up nor a bid down is adopted and a7 represents a maxinmm
bid up action.

Pax Bid wp

mctions
Mz hid derweny | ————

' &y 0y 8,y By a;
Fizure 1 Actions (2l toa7) nsed in the (-Lesming procedurs.

Actions a2, a3, a3 and af represent mtetmediate values. The
reward fumction corresponds to the profit that each agent
obtams mn the market if an action a 1s adopted or selected for a
given state s.

In the developed model the utility function comesponds to
the increase or decrease In revemes obtamned by each action in
the day-ahead market. In case of swrplns of energy, the revenues
will be given by the difference between W SM price and the
LEM price. If WSM price is lower than the defined FIT, extra
reward will not be paid since FIT is guaranteed. Otherwise, the
reward will be higher as lower is the difference between WSH
and LEM prce (considering a minimum of the defined FIT).
This reward will be consequence of the defined bidding strategy
of the developed Q-leaming methodology. In case of energy
deficit. and becanse we assume that consumers have no
elasticity for the price and demand. the bids i the TEM wall be
equal to the required energy at the market price.

V. CasESTUDy -Data

We consider a Case Study with a collective building with
elecmeity demand (distnbuted m common services and 13
apartments} and PV generaton. Sample power profiles for
demand and PV systems were wlt usmg open datasets
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avallable at [21] and considermg samplng penods of 13
minutes. staring on 1% Jamary 2010 until the 1% Janmary 2020
The Feed In Tariff ¢*used in this simmlation was set at 50,0
€MWh We assumed that the Energy Commumity is exempted
from paying grid tariffs. Regarding the WSM prices we used
the 2019 real prices published by the Ibenan nominated
electricity market operator — OMIE publicly available in [22].

In the proposed model, the LEM and the W5M markets are
cleared mdividually, and ther coordimation 15 done as follows:

a) the local energy deficit is bought at the WSM price:

b)) the local energy surplus will be firstly self-consumed and
then the remaining enerzy will be traded in the WSM
considering the price obtamed after the optimization strategy
process. If LEM prices are lower than the WSM prices. the
comnmmity has a profit potential comesponding to the
difference between both prices. Otherwise, if WS5M prices are
lower than the LEM prices. the surplus will be sold at FIT.

Asmentioned in Section IT, the definition of the Q-Leaming
procedure is based on a pair state-action Q¢s. a). In this Case
Study. we used the following 3 actions:

- al represents the Action 1 comresponding to a bid down
of -1 € WWh regarding the bid price of the previous
iteration;

- a2 represents the Action 2 comesponding to no bid up
nor bid down regarding the bid price of last iteration (0
£MWh;

- a3 represents the Action 3 corresponding to a bid up of
+1 €M Wh regarding the bid price of the last iteration.

The leaming rate & was set at 0.8, as well as the discount
factor 1. The Ereed\ policy parameter £ was set at (L1, which
means that the agent has 90% of probability of choosmg the
action with higher Q-value (greedy selection].

V. CASE STUDY - RESULTS

As mentioned the developed ABM model was applied to
real data of consumption. PV generation and WSMI prices.
Table I presents the results for the real WSM annual average
price for 2019, and the values obtained without the bidding
strategies (which 15 the FIT value} and considering the 1EM
strategies. Despite the anmual average prices in the WSM are

71.1 €MWh. these results show that if the TEM strategy is
applied. the LEM average market price gets close fo the real
one. This improvement regarding the mitial FIT value is
explained because of the use of the ABM model incorporating
the -Leaming approach with bid up/bid-dovwn strategy.

TABLE I- GLOBAL RESULTS FOR THE ANMNUAL AVFRAGE SFLIING PRICE

. Anmnmal average selling price
Scenarie é_;fah P
Feal Wi price data 71.1
Selling price withous LEM sirategies 200
FT) -
Selling price with [EM straemes 631

Figure 2 shows the average weekly prices of the W5M and
of the LEM after using the bidding strategy. as well as the FIT
fixed tariff. As we can see, nsing the bidding strategy originates
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that the TEM tries to increase its prices in order to get closer to
the WSM prices. However, between weeks 30 and 48, the LEM
prices are equal to the FIT value because in this period the
optimmzation process gets values for the LEM prices that are
Igher than the WSM price. As explained in Section IILA. in
these sinations. the reward 1s limuted fo the FIT value.

[EE————Y )

LEM Bl SITbigy  — FT

Fizwrs 2. Average weskly reslfs for the WShI and the LEM market prices.

Analyzing now the results with more detal Figure 3
presents the results for the first month of the smmlation
Considermg the howrly prices. we can observe that the LEM bad
prices have a continuous increase wmbl the end of the month.
This reflects the leaming capability that the agents have since
the start of the process.

e LA Bl s Wil P

« Linoar [LEM Bid |

Fimme 3. Howrly LEM and WM prices for the first months.

In what concems the overall supply cost of the comnwmity,
the use of the leaming approach leads to a reduction of 18. 7%
when compared with the base case in which the energy is
bought at the WS price when there is deficit in the conumumty
and 1t 15 sold at the fixed FIT m the peniods of excess.

VL ComcLusIonN:

This paper presents the results that were obtained with an
ABM model as a decision support tool to sinlate the energy
transactions between the LEM of a Fenewable Energy
Conmmmity and the WSh on an hourly basis. It considers real
data for a collective building. with 15 apartments and common
services, and PV generation. The simmlation used real WSM
prices for 2019. The results confirm that the agents ].m'e
leaming capabilities when using the Q—I_earmug strategy.
that the total supply cost was reduced by 18.7% since 1]1e
revennes associated to the sold enerzy are increased.

However, there are some limifations in the proposed
framework. Several combinations of the leaming parameters
should also be evaluated regarding the assessment of their
mpacts on the average LEM price. The test case used m this
simmilation assumed that all the energy in excess was sold in the
market. Futme developments should also consider the
mstallation of storage devices m the commmmity fo supply
demand when there 15 no PV generation.
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Finally, in this case we assumed that the conmmmity
members are exempted from paying grid tanffs. In future
works, it should be assessed the mnmpact of different levels of
exemptions as a way of gefing msights on the economic
feasibihity of the Energy Commumties.
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Absmacr—Energy storage systems, integrated in Renewable
Energy Communities (REC), are enabling the development of
operation strategies together with Photovoltaic (PV) systems.
Additionally, Local Energy Markets (LEM) are emerging
mechanisms to emable local energy trading in RECs, the
integration of storage systems can increase the community
energy savings and profits. In this context, a market
environment was modelled as a Markov Decision Process
(MDP). In thiz scope, an Agent Based Model (ABM) using the
(-Learning mechanizm was used to implement and to simulate
a LEM and its interaction with the Wholesale Market (WSM),
also considering an architecture with storage systems. The
developed model was tested considering real data rezarding
energy consumption and PV generation. The paper describes
and discusses the obtained market strategy and the profits that
can be obtained with this approach.

Keywords— Energy Communities, Local Energy Markers,
Srorage Systems, Agenr Based Models, Remforcemenr Learning

I INTRODUCTION

In June 2018, the European Union (EU) agreed on a legal
framework that mtroduces Citizens Energy Communities and
Renewable Energy Communities [1, 2]. This framework amms
at increasing the renewable-based decentralized generation
and empowering consumers as mmportant decision makers In
the energy markets. It also designed to allow smaller energy
retailers to develop and offer inmovative electricity supply
packages, making room for new Energy Business Models to
emerge. In this scope, [3] presents an overview of different
perspectives of this new Energy Business Models. One of
these standpoints 1s the Energy Commumnity business models,
where all the members should be considersd in the overall
arrangement design, implementation. and operation. As
advecated by the European Directives, Energy Commumity
Business Models “key activities” include local generation,
supply, storage. consumption, trading, aggregation, e-mobility
and energy related services, as well as system admmistration.

To address some of these challenges, LEM smerges as a
new energy business model where consumers have access to
a joint market platform to trade locally produced electricity
ameng ezch other [4]. The progressive migration of current
centralized market models to this new electricity market
design is coniributng to the appearance of new agents that
should not only imteract lecally, but also consider the
mtegration with conventional ceniralized markets. The
difficulty of incorporating new actors and of managing the
coordination between different stakeholders leads to a new
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operational paradigm that requires mnovative or adaptive
approaches to provide adequate decision support n view of
the complexity of the problems to handle. In this scope, the
use of ABM can help addressing this complexty. A literature
review and a survey on some papers associated with ABM are
provided im [5].

Considenng the appearance of new agents and energy
business models, m [6] it was described a model that mtegrates
LEMs and the central W3M using an ABM as a decision tool.
The developed model considers market mechanisms to model
the participation of community agents in the LEM and their
relationship with the WSM. The proposed market design was
implemented considering the day-ahead market on a one-hour
basis. The proposed environment censiders a LEM, m which
participates prosumers with PV systems and consumer agents.

As established by the European Directives, Energy
Community business models can inclnde not only local
generation trading and aggregation, but also storage. To
understand how Energy Storage Systems (ESS) can add value
to a LEM, we propose two different architectures regarding
the mmtegration of storage systems. The first one 1s
decentralized architecture, where storage. comstituted by
batteries, is located at the building level, while the second one
is centralized within the commumity. Specifically, the value of
battery storage and associated architecturss in combination
with LEM are examined. To understand the value of local
markets and battery flexibility, we compare the outcomes of
the two proposed market designs against a reference case that
does not meorporate storage systems.

Accordingly, and after this infroduction. Section II
presents a literature review on the topics addressed in this
paper, Section I describes the developed ABM, Sections IV
and V present the Case Study and the main results and fmally
Section VI draws the mam conclusions.

The main contributions of this paper are as follows:

- Development of an ABM medel to simulate ensrgy
trading between LEM and WSM, also considering
storage systems:

- Analysis of the communities” self-consumption profile
considering different storage system architectures;
- Assess and compare the economic impact of

communities” scenarios, with and without storage
architectures in LEM:
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II. LITERATURE REVIEW

The defimition of LEM: consider not only residential and
commercial consumers/prosumers but also renewable energy
producers that can participate in the trading of the local
electneity over LEMs. As stated m [7], LEM prowides a
market platform fo 2 commumty and empowers 1t to
strengthen the local economy by reducing electricity costs and
keeping profits within the cummunlt_v LEMz: can be seen as
trading platforms where electncity 15 sold and bought [8]
within the scope of market matchmg and pricing mechanisms.
Eeference [9] indicates that LEMs smpower electneity end
users and small-scale producers by allowing them to directly
participate m an electnicity market. LEM = are fostered by the
progress of Informahon and Communication Technologies
enablng consumers and prosumers to tade without
intermedianes and they contmbute to lower the electncity
pnce since supply fees and gnd tanffs are excluded or strongly
reduced The model developed m [10] helps local energy
suppliers fo obtain optimal confracts and trade the swplus
power with an aggregator m a hierarchical electncity trading
system. A day-ahead local epergy market model 15 developed

m [11] where residential consumers having battery storage
systems are the main participants. The results show that the
proposed market can also contnbute to provide gnd services,
while increasing the profits of the residential consumers.

Aligned with the growth of the use of distibuted energy
resources and renewable energy sources, Energy Storage
Systems, ESS, namely battenes, have recently expenenced a
strong mcrease m interest They are considered as a
complementary set of technologies to distributed generation
technologies and renewable energy resources, as they allow
increasing the flexibility of power systems in terms of
contributing to balance the demand and generation zrven the
rapid increase of vamable resowrces (a5 wind and PV
generation) while confnbuting to ensure the seewmty of supply
and the quality of service [12]. The merease of prosumers has
brought new challenges to the established supply-demand
dynamics in electricity generation and inereased the need for
on-site flembity. Consequently, one can anticipate that
storage systems will play an important role on the
development of Renewable Energy Communities, RECs, and
of Local Electnicity Markets, LEM=. A thorough analy=is and
research on ESS, namely the matunity of the different energy
storage systems, capacity, charging and discharging duration
and response time 15 available m [13] and a local electricity
market model 15 developed m [14]. This pabheation considers
that local market approaches can lead to more local use of the
distributed resources, reducing or slimmating the need to
curtailments and reducing feed-in payments.

The benefits of electnicity storage m the presence of peer-
to peer trade in local electricity markets with smart grid
features 15 analysed im [15]. Two market desizns for a
community of prosumers incorporabmg battery storage
systems are proposed. [t was mvestigated the role of battery
storage and how it 15 affected by market desizn rules. To thus
end, if was tested a commumity with prosumers and consumers
comnnected through a local elecmeaty disinbuion network.
Two different local electneity market designs mn different
sefups were proposed A decentralised market desigu, m
which prosumers and consumers within the communsty have
indrvidually owned battenes. And a centralised storage “where
only one large storage unit exists which 15 located centrally
and owned by the commmumty as a whole. The results
demonstrate a  very interestimg tade-off between
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independence of the main gnd and uthsabon of the two
features added — peer-to-peer trade and storage.

III. MODELING LOCAL ELECTRICITY MAREETS CONSIDERING
STORAGE SYSTEMS

4. Market Deszign

The proposed shuctare considers an Energy Commumity
constifuted by different types of agents, such as consamers
and prosumers. Each of these agents, submit their bads to a
Market Commumity Agent which oversess maximizing the
Erergy Community self-energy consumphon and the profit m
consequence of sellng the energy swplus This agent 15
considered as an arbifact since 1t will be whlized to camy out
Erergy Conumunity Agents’ activifies in a compefifive or
cooperative manmer. It will recemve bids from the Energy
Community Agents and perform a set of operations developed
according to pre-defined rules in order to obtamn a schedule for
each trading period. The developed framework considers that
the Commumnity energy deficit or mwplus i each trading
period will be traded between the Market Commumty Agent
and an Aggregator through a bilateral contract. Omn other hand,
the Agpregator operates as a tradihonal retanler regarding the
market clearing mechamism i the Whelesale Market. It will
gather the mformation about the energy deficit or excess from
the Market Commumity Agent and communicates the buying
or seling uds to the Wholesale Maket as a way to balance
supply and demand in the commumity.

Figures la) and 1b) schemateally show a commumty
constituted by consumers and prosumers that are connected
through a local elecmicity distribuhon network. Each
prosumer has an energy generation teclnology m its
installation, namely solar PV. The objective of the community
is to mmimise the electricity consumption cost by pricrifising
self-mufficiency and to sell any swplus to the WSM through
the Market Commumty Agent. The architecture presented m
Figure 1a) shows a commumity that has a battery storage
system located at the building level The power flow, between
battenes and the commmumity doesn’t use the public gnd
because they are located mto the buldng. This will be named
as Decentralized Storage System. Fizure 1b) illustrates a
Centralized Storage architecture in which the storage system
15 located at a Low Veltage side of the MV/LV substation that
feeds a set of buildings. The location of this battery 1s not
inside the community itself, and m this sense, it is termed asa
centralized one.

R—

N
£,

Carnirmr arans i

=5

o

Fig la. Epsrgy Commumity Markst Design using Decentralized ESS
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Fig. 1b. Energy Community Market Dezign using Centralized ES5

B. Modslling local snergy markets and stovage systems
using an ABM

As mentioned before, this work will be the developed
using an ABM model to simulate the energy trading between
the LEM and the W5SM. The electricity markets complexity
contributes to create dynamic and adaptive systems In this
circumstance, learmming and constructing the model of an
economic system 15 a very complex task for market
participants, and a model free leamning approach can be an
appropriate alternative to build a desired bidding strategy. In
this way, the () learmng methodology will be used m this
work. () leamning 15 a useful algorithm to sohre Markov
decision problems, and this is done by evaluating the payoff
for a grven state-action pair. When using an ABM, the agent
firstly observes the smrent environment state and then salects
an action Then, the agent receives an immediate reward from
the environment, and the environment moves to the next state
bazed on the transihon probabihty. Ths process 15 repeated

The implementation of the (}-learming algorithm typically
involves buildmg the () leaming matrix that 15 composed by
cells known as  values. These Q-values are caleulated for
each pair of state () and achion (3}, and therefore they can also
be described as s, a). As the () learming focuses on the
mmpacts of rewards () on the choices of achons m each state,
the (} values are obtained by a funchon that provides the
expected ubility of taking 3 given action 1n each state. Thas O,
a) fimchon 1s typically given by (1).

Qe )™™ = (1 - 1) - Qs a,) +
+1- [R(syyay) + 7 - maxQ(sgeyia,)] (1)

In thes expression, A m (0,1} denotes the learnng rate and
it reflects the degree to whach estimated (-values are updated
by new data and can be different m each episode. If & aquals
0 then the agent does not leamn, while 1fit equals to 1 1t mduces
the agent to consider only the most recent imformation. T 15 2
discount factor m (0,1} that represents the weight gZiven to
future reinforcements. A value of T equal to ) makes the agent
myopic by only considerng cwrent rewards, while wvalues
closer to 1 furn distant rewards more important [16].

In (1), the expression maxQ (£ 41, Gy ) represents the best
the agent thinks it can obtain m state Sy, ;- In an initial phase,
the agents will randomly explore state to state until they learm
and reach the end of the simmlation penod. Then, using these
Q-values, the agents start thew hiddmgs considering the
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learned expenence. Typically, the leaming process converges
when the Q-values do not change more than a pre-determumate
tolerance value regardmgtheﬁhlﬁ mn the Q-matrox that was
built in the previous iteration.
C. Modsl gf the REC with storages systems

Regarding the coordmation mechanism to integrate the
Energy Commumty LEM into the exishng W5M, namely the
market mechanisms to model the participation of community
agents in the LEM and then its relationship with the WSM, the
implemented market design considers the day-ahead market
on a one-howr basis. The mihal trading 1= done locally
followed by the trading in the W5SM of the commumty energy
excess or deficit in each trading period.

The Agpregator recerves the quantities to buy and sell in
the WS and sent back to the Market Commumnity Agent the
cleared howrly prices. The Market Compmunity Agent receives
the quantiies and the bids from the commumity, considenng
the exusting ESS, which performs its strategy based on energy
deficit or smplus and taking infe account the technical
charactenstics of the batteries. The batteries will be in the
charging mode if there are any swrplus of PV power regarding
the local demand and . discharging mode if the communty
demand is hagher than local generation However, and if the
stored energy 15 sufficient to feed the demand, and it also has
some awrplus, those addihonal quantities will be considered m
the sellmg bids optmization strategy of the Market
Community Agent. So, the social welfare of the commumity
members will merease by reducing the cost of buying
electncity from the gnd and by memeasing the self-
consumphon level of the community.

Equation (2) presents the overall storage level for the ESS
device over tme It is modelled by a sumplified hnear
expression [17] and 1 assumes that the charging and
dischargmg power rates remain constant dunng a tme slot.

Wé.r = Wé.t—: (1 - ﬂ':fo.r) + {Pét.tﬂf;c.r P;ﬂ L) At 2
M
In this expression:
— Wy is the stored energy at fume slot «;
— W,y isthe stored energy at time slot -1;
— Gy ¢ 15 the self-discharge rate (pumber from 0.0 to 1,0);
— Py, 15 the battery charge power;
— Fip is the battery discharge power;
— N 15 the battery charging efficiency (mumber from
0,0 te 1,00;
— Nip, is the battery discharging efficiency (number
from 0,0 to 1,00.

Batteries’ charging and discharging rates are limited by o
and f respectively onginating constramts (3) and (4).

0<Pis S @ 3)
0= Pipe < F @

The State of Charge of the battery (S0C) 15 given by (5) m
whaich W is the noounal capacity of the battery (1e. the
battery size).

(S0C) v! —f—: * 100% (3)
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As presented m Figures 1a) and 1b), our commmumity is
constituted by prosumers, consumers, and ESS (mstalled in a
decentralized or centralized way). To ensure the balance of the
electric system, constraint (6) must hold for every tune slot.
Any power deviation can always be balanced by exchanging
power with the pnd. In each time slot t the batteries of the
ES5 can be m the charging mode, m the discharging mode or
1dla.

Pt P;v.r +Pret Popge + P.:lc.t + Pgp: =0 (6)
In expression (6):

— P}, 15 the load of the 1th prosumer at time slot t;

— Pgy . 15 the PV generation of the 1th prosumer at fume

slott;

— Pf, is the Consumer Demand at time slot ;

— P} 4. 15 the power exchanged with the znd at time slot

t;

— Pgc+ 15 the battery charge power;
— Pgp 15 the battery discharge power;

Equation {7) represents the net load of the commmnity
(prosumer i and consumer i) at ime slot .

NP = (Pis + PEe) — Pl (N

Batteries are in the charging mode when iy NP < 0,
and the smplus PV power 15 used to charge the battery
systems, unless the SOC reaches its maxmmum value. The
charging power of a centralized system 15 caleulated by (8).

TN N

_ym
e ™ o ws0ef < OC
E Pl ot P
- - d
Foee=dpr _I"._._._m_;‘:“- =1k S0CF < S0k (&)
a soct = g0l o

Batteries will be in discharging mode, when T, NP =

0. In thes case, the residual demand of the commumity is met

by discharging the battery system, unless the SOC reaches its
minimum. The dischargmg power is caleulated by (9).
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D. Implememtarion of the Q-Learming approach

Having the quantities to buy or to sell between the LEM
and the WM, the reinforcement leaming starts regarding the
strategy to be performed. The state’s defimtion 15 m hine with
the energy communites’ perspective, 1.2, to enhance the salf-
supply capacity and to mimmaze the dependency of the grid.
In this application, we considered the following 5 possible
states:

» State 1 - the agent has mereased its profit compared to
the previous episode, and all its energy that could be
dispatched 1 all the 24 trading hours was cleared 1n the
local market.

» State D - the agent has mereased its profit compared to
the previous episode, but not all its energy that could
be dispatched m all the 24 tradmgz hours was cleared in
the local market.
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* State 3 - the agent hasn’t obtained any profit or loss,
compared with the results of the previous episode.

» State 4 - the agent has reduced 1ts profit compared to
the previous episode, but not all its energy that could
be dispatched in all the 24 trading howrs was cleared m
the local market.

*  State 5 - the agent reduced its profit compared to the
previcus episode, and all its energy that could be
dispatched 1n all the 24 tradmg hours was cleared m the

market.

This structure was based on the state’s defimbion adopted
in [18], which on the other hand comesponds to an adaptation
the one used in [19]. Thes strategy 15 m line with the
denvative-following strategy presented m [20]. A denvatrve
follower does meremental mereases (or decreases) mn price,
contrmumg to move s price m the same direction untl the
observed profitability level falls. At thiz point, the direction of
the movement 15 reversed. As illustrated m Fizure 2, action al
corresponds to 3 maximum bd down (i whch the bid price
is decreased as much as possible), a4 means that neither a bid
up nor a bid dewn is adopted and a7 represents a maximm
bid up action (in which the bid price 15 increased as much as
possible).

Max Bid ip

:.Il.lr\-
Ma hrid dareen

ay 0y i1, s i a
Fiz. 1. Actions used i the -Leaming procedure

Actons a2, a3, a5 and ab represent mtermediate possible
values of the bid prices. The reward function comesponds to
the profit that each agent obtains m the market1f an achon a 15
adopted or selected for a grven state 5.

In the developed model the whlity fimetion corresponds to
the mcrease or decrease of revemmes obtained by each achon
in the day-ahead market The LEM framewoik considers that
the Market Community Agent has access to a bilateral contract
with a Feed-in-Tanff (FIT), m case of swplus of exergy. In
this case, the revenues will be grven by the difference between
WEM price and the LEM price. If W5SM price is lower than
the defined FIT, extra reward will not be paid since FIT 15
gnaranteed. Otherwise, the reward will be lugher as lower 15
the difference between WSM and LEM pnee (conmidenng a
mmimum of the defined FIT). This reward will be
consequence of the defined bidding strategy of the developed
Q-learming methodology. In casze of energy deficit, and
because we assume that consumers have no elasteity for the
price and demand, the bids m the LEM wall be equal to the
required energy at the market price.

Iv. CASE STUDY - DATA
Az a reference case, designated as Ref-Case, we
considered a Portuguese collective buldmg with electricity
demand distrbuted by the commeon services and by 15 flats.
All the apartments are orgamized as an energy community
considenng a collective self-consumption scheme. It has a
renewable generafion unit constituted by PV systems with
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overall 45 kWp and 73.2 MWh of anmual generation. The
sample power profiles for the demand and the PV systems
were bwlt using open datasets awvailable at [21] and with
sampling pennods of 15 mmutes, starting on 15t January 2019
untl the st January 2020. For a global energy demand of
1454 MWL, 66% (95,6 MWL) is pcmnded by the electneal
supphier which means that the remaining 34% (49,8 MWk} 1=

produced by PV system and self-consumed. In this reference
situation, the swplus energy generated by the PV regarding
the demand is paid at a Feed-in Tanff FIT, set at 30.0 E€MWh
and the energy supplied by the public network 1= paid at the
market price. Regarding the market prices, we used real data
obtamed for 2019 from the Ibenian Electmoity Market [22],
that exists in common between Portuzal and Spam since 2007,

Thexn, based on the previous Ref-Case in which no storage
equipment exists, we simulated the operstion of the LEM
using the ()-Leamng approach This second situztion 1s
designated as Case-PV. Regarding the mtroduchion of storage,
we bumlt two more case stadies. The decentrahized storage
architecture, estabhizhed at the bmlding level has three
interconnected modules of 15 kWh each of Li-ion battenes,
given that this i one of the most widely used battery
technologies [23]. On the other hand, the centralized struchure
has a 300 kWh of siorage, located at the mearest MV/LV
substabon. In this case the dataset 15 replicated to a
combination of 3 collectve buwldings, with the same sample
profile demand and PV production of the reference case. Thas
means it has 3 demand three tumes the one of the reference
case, and three tmes 1tz PV generation wath the same profiles.
These two cases umng storage equipment are designated as
Caze-5T45 and Caze-5T300. In addition, we assumed that the
Energy Community 15 exempted from paymg gnd tanffs.

V. CASE STUDY — RESULTS

As mentioned, the developed ABM model was applied to
real data of consumpton, PV generation and 2019 WSM
prces of the Iberian Electneity Market. The demand data
considers 16 consumers for each collective bwlding (15
apartments and commen services), the generation of the PV
systems, and storage (decentralized with 45 kWh and
centralized with 300 kWh capacities).

Table I presents the global energy demand, the demand
supphied by the public gnd, the demand supphied by the salf-
consumphon and the electncity mjected back fo the znd for
the three analy=ed cases nsmg the (-Learmung approach, that
15 for the Casze-PV, the Case-5T45 and for Case-3T300.

The results show that when compared with the PV case the
5T45 case has a lower amount of energy mjected back mto the
gnd. This is ine with the fact that the demand supplied by the
public gnd decreases and the demand suppled by self-
consumphion increases in case 5T45. These results show that
the operaton strategy 15 successful in terms of imazmg the
energy community self-energy consumphon. Case ST300 15
alse designed to priontize self-conmumption in such a way that
the demand supplied by self-consumphtion 15 higher than the
one supphed by the public pnd.

Fizure 3 presents the distnbuton of the energy demand for
these 3 cazes. It 15 possible to observe that n cases 5T45 and
ST300 there 1= an increase of the demand that 15 fed by self-
consumption. This distribution 15 a consequence of the
maxmuzation of the self-consumed energy by the
optmization of the use of the energy storage (through the
adequate selection of its charzing and discharging periods).
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TABLEL AxnuaL Exercy Commaunary BALANCE
Case Studies
Enerzy (MWEH) Case-PV Case-STIS | Case-5T300
Glohal enerzy - -
d 1454 1454 4362
Demand supplied by R -
blic erid A58 0.6 3121
Demand snpph.ed by
selfig 408 6.8 1241
Electmicity  imjected B
back i the e 234 138 49
Shareof Encorgy Demand

r e

Fig. 3. Shars of Comrmmity Energy Demand

Share of Commanity Energy Production

w2 ¥

Fiz. 4. Share of Community Enersy Production

However, and if the stored energy 15 sufficient to feed the
demand, and there is shll seme swplus, these additional
quantities will be injected back mto the gnd and wall be used
m the selling bids strategy of the Market Commmmity Agent.
In Fizure 4 we can observe the increase of the rate of self-
consumption m cases 3T45 and ST300, when compared with
the Case-FV m which there 1= no storage systems.
Motwithstanding, the energy swphis injected back into the
mnd decreases when going from ST43 to ST300. When
comparmg 5T45 with ST300, the share DfEﬂ.&rgvm_]eched into
the z1id decreases almost to zero in ST300. Thas 15 related with
the capacity of the storage system in this case which has more
than & fimes the one that was used in case 5T435. Ths allows
stormng a larger volume of energy coming from the PV panels
in the periods m which the demand 15 more reduced than the
PV generation These excesses can now be stored m ST300
rather than being injected back in the g1id as it ocewred more
frequently m ST43.

Table II presents the results for the real WSM anomal
average price for 2019, the values obtained without usmg the
bidding strategy, that 1s the FIT value, and the values using the
LEM shategies (Caze-FV, Caze-5T45 and Caze-5T3I00).
Despite the annual average price m the WSM 15 71.1 €W,
these results show that if the LEM strategy is appljed. the
LEM average market price gets closer to the WSM price. This
improvement regardimg the imitial FIT value 15 explamed
because of the use of the ABM model meorporatng the Q-
Learning approach with id up/bid-down stategzy.
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TABLEDL RESULTS FOR THE ANNUAL AVERAGE SELLING PRICE
R Annual average selling
Scenaria bid price EAWE

Feal WM price 7L1

Sellins price without LEM strategiss 500
(FIT) :

Selling price with LEM PV smategies 62.0

Selling price with LEM 5T43 503

strategies -

Selling price with LEM 5T300 504
siratesies )

Fizure 5 shows the average weekly prices of the W5 and
of the LEM after using the brddng strategy, as well as the FIT
fixed tanff As we can see, using the dding stategy,
independently of the simulated case, origmates that the LEM
tnes to imerease its prices m order to get closer to the WSMM
prices. This reflects the learming capability that the agents
have since the start of the process.

Fiz. 5. Averaze weekly prices for the W5M and the LEM market:

In what concerns to the overall supply cost of the
commmmity, the use of the leaming approach leads to
reductions of 25%, 28% and 27%, respectrvely m the Case-
PV, in the Caze-5T45 and in Case-ST300 compared with the
results m the Case-Fef. Recall that n the Case-Fef there 15
PV zeneration, there 15 no storage equipment and the excess
of generated FV electricity regarding the demand 1= paid at
the FIT price and the deficit of elactneity (when the demand
15 larger than the PV generation) is paid at the W5M price.
The reduction of the above percentage when going from
5T45 to ST300 1z explamed because the adopted operation
strategy gives priornty to the merease of self-consumption. As
explained before, the self-consumption level is maximum in
S5T300 and conversely the amount of energy swplus to trade
in the market is much smaller. This ulhmately means that the
revenne obtzined from selling energy in the market iz smaller
which explains that the cost reduction 15 also smaller.

VI CONCLUSIONS

This paper presents the results that were obtained wath an
ABM model as a decision mapport tool to simulate the energy
transactions between the LEM of a Renewazble Energy
Comrmunity and the WSM on an howly basis. If 15 sinmlated
an energy commumity with PV generaton and storage
systems. The results confirm that the agents have leaming
capabilifies when using the (}-Leaming strategy, namely to
follow the strategy adopted regardmg sslf-consumphon and
storage interacton, and the reduchon of the total supply cost
since the revenues commg from sellng energy ncrease. In
what concerns fuhwe deplovments, it will be developed an
economic assessment to evaluate the feasihlity of investing
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storage systems. The inpact of different levels of exemptions
of gnd tanffs, should also be assessed as a way of getting
insights on 1]:|.e economics of Energy Commmunities.
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Abstrace— Powver systems are evelving very rapidly namely in
what concerns the technologies used to generate electricity, the
diverzification of commercial relationzhip: involving differemt
agents and more specifically the smpowerment of consumers. In
thiz scope, several countries passed new legizlation to induce the
installation of Renewable Energy Communities, REC:, to induce
new investments at a lecal level, to empower end conswmers and
to increase their self-sufficiency. However, the way Local Energy
Markets, LEMN:, will be intezrated into Whelesale Alarksts,
TWEML is mot yet fully established. To this end, this paper proposes
a dezizn and an optimization model to increaze the mentioned
self-sufficiency level, to better manage the energy produced
locally, also admitting the installation of battery storage umits,
and to profit as much a: poszible of them. LEM interaction with
TWEAL iz bazed on an Agent Based Alodel architecture equipped
with a Q-learning strategy. An econcmic asseszment iz also
included, in order to get insights if some level of exemption, for
imstance associated with some components of the Access Tariffs,
have to be considered in order to induce the massification of
REC:,

Keywords— Agent Based Models, Local Enerzy Alarksts,
Reinforcement Learming, Fenewable Enerzy Communities,
Storage Systems.

L INTRODUCTION

In May 2019, European Union (EUT) institutions concheded
the final legislative files for the Clean Energy for All Europeans
].em]atr'e Package (CEP) [1]. This is a ]ewzai framework that
defines the European climate and energy policies and sets the
EU ambitions on this topic for the 2030 horizen. The CEP for
Europe infroduces three new concepts that are designed to help
comsumers and the public to participate in the development of a
new energy paradizm - Collective Self-Consumption (CSC)
the BECs and the Energy Comnmmities (EC) of Citizens. The
objective of the package 1s to ensure that the transition to a
decarbomzed and decentralized energy system 1s camied out in
an unbiased manner. This new energy paradigm called by some
authors as the democratization of energy, aims to provide a
muore decentralized and open energy market. This new approach

979-8-3503-1258-4/23/531.00 ©@2023 IEEE

Jodo Tome Sararva
Faculty of Engineening of University of Porto
and INESC TEC
Fua Dir. Roberto Frias, 4200 465, Porto. Portugal
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also paves the way for the establishment of new electnicity
markets. namely Tocal Energy Markets. In this way, LEM:
associated with ECs and more specifically with RECs. ar=
fostering new optimization models to enable the development
of strategies regarding the increase of commmmities’ energy
savings and profits. The evolution of this approach. regarding
new electricity markets designs, has resulted in the emergence
of new agents that should not only mteract locally. but also
consider the mfegration with the comvenfional centrabzed
markets. Due to the complexty of this new structure. the need
for effective decision support has become more prevalent
Therefore, it is muportant that the various involved stakeholders
can adopt new strategies and adaptive approaches to provide
adequate decision support m view of the complexity of the
problems to handle. In this scope, the use of Agent-Based
Modelling (ABM)} can help addressing this complexity. A
literature review and a survey on the most recent papers
associated with ABM are prov vided in [2].

The model developed in this work considers a framework
that allows community agents (consumers and prosumers with
PV systems) to participate in the TEM and inferact with the
WSM by a Market Commmmity Azent. The rapid emergence
and evolution of prosimers also has created new Lha]kuges to
the established supply-demand dymamics in the electricity
generation. which mclude the need for more flexible and on-
site generation Because of this, storage systems are expectad
to pla\ a significant role m the dev elupmem of FECs and
LEMs. In this sense. and to maprove BECs self-sufficiency and
to better manage the energy produced locally. the de1'eloped
model also considers storage systems as participants in the
trading between LEM and W5k

Besides the implemented legal framework and the
incentives for the deployment of FECs. the economic viability
of the mvestments (namely in storage systems) and operation
of FECs, specifically considering different taniff and charge
exemption desizns. should be smdied m order to get
conclusions on the breakeven of the investments.
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Accordingly. and after this mtreduction. Section IT presents
a literature review on the topics addressed in this paper, Section
I describes the developed ABM. Section IV present the Case
Study and the mam results and finally Section V' draws the main
conclusions.

The mam contmbutions of this paper are as follows:

- Development of an ABM model to simulate energy
trading between LEM and WSAL considering storage systems;

- Getting msights related with the pavment of gmd
tariffs and in particular with the component applied to self-
consumption namely by companng different levels of
exemptions;

I LITERATURE REVIEW

4. Local Energy Markers

The LEM concept is ideal for the development of energy
communities as it allows end users and producers to participate
in the electricity trading system. It can also help moproving the
nfegration of renewable energy mto the energy svstem The
objective of these markets is to provide a platform for the local
econonry and reduce electncity costs since supply fees and gnd
taniffs are excluded or strongly reduced [3].

In this context, the model developed im [4] helps local
energy suppliers to obtam optimal contracts and trade the
surplus power with an aggregator in a hierarchical electricity
trading system. Considering the appearance of these new agents
and energy business models. in [3]itis developed a model that
integrates LEMs and the W5M using an ABM as a decision
tool. The developed model considers transactions between both
markets, on an howrly-basis. and are done wvia a MMarket
Commumty Agent which mteracts with the WM through an
Agzregator Azent. A dav-ahead local energy market medel is
developed in [6] where residential consumers having battery
storage systems are the main participants. The results show that
the proposed muarket can also contribute te provide gnd
services. while increasmg the revenues of the residential
consumers. In [7]. the advantages of elecmcity storage are
analvzed in the presence of smart grid features in the electricity
markets. Two market desigms for prosumers with mtegrated
battery storage systems were presented. This research
investigated the effcts of market design rules on the operation
of the commmmity and the role of storage systems. A
comprehensive amalysis of the varous aspects of Energy
Storage Systems {'ESSl is also available in [8] also pro"u:lmg a
framework for developing a LEM. According to [9]. the
emergence and evolution of local market models can help
improving the efficiency of the electricity system and reducing
the need for feed-in payments and curtailments.

B. Agenr Based Models

The concept of an ABM allows agents to take ther
decisions based on thelr past experiences with other agents and
through the mteraction with the environment. The agents
usually have local and imperfect information which, combined
with their past experiences. help them improving their decisions
by modifying their strategies. This tvpe of model allows the
market participants to develop therr own strategmies and
preferences as adaptive agents. They can then leam from ther
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past expenences to mmprove therr performance. This learmng
and adaptation process cam be performed either within one
single agent or based on the cooperation between two or more
agents. In a competitive market environment. agents naturally
leamn 1solated and use the leamed knowledge for ther own
advantage. This modelling process cormresponds to an explicit
leammg procedure. As previously mentioned. ABM can model
complex aspects m power systems and m the electmcity
markets, as they can represent and implicitly model the
complex behavior of different system participants. The
uncertainties associated with the renewable-based generation,
the electricity market prices, the energy consumption. or smart
grids behaviours. are just a few examples of the increased
sources of uncertainties and thus of the complexity brought to
the power sector and to the energy systems. Some energy
management tools using ABM applied and used for energy
markets are detailed in [‘ 10-14].

C. Q-Learning

The complexity of the electricity markets makes it very
challenging for market participants to develop a model based
ona traditional economic framework. Therefore, a free leaming
approach can be an appropriste altemative to build a desired
bidding strategy. Femnforcement Leaming (RL) is a machine
leammg approach that requures agents to mteract with their
environment to leam the best path to take based on the given
scenario. Unlike other methods, this approach does not provide
agents with advice. Instead. it allows them to explore the
environment in order to maximize their potential rewards [13].

Q-leaming (QL) is ome of the mest well-known EL
algorithms. If was originally proposed in [16] and it is fully
detailed n [15]. Tt is a nseful algorithm to solve Markov
decision problems (MDP). A MDP can be defined as a
framework under which an agent observes the emvironment
characterized by a state 5. selects an action among the ones
available at that state and then the process responds at the next
time step by moving the system to a new state and by allocating
the azent with the corresponding reward. This leads to the QL
matrix that is composed by cells known as Q-values. Thus, Q-
values are caleulated for each pair of state /) and action /a/.,
and therefore they can also be described as gis,ar. As the QL
focuses on the mopacts of rewards 1/ and on the choices of
actions in each state, the Q-values are obtained by a fimetion
that provides the utility of takmg a given action in a given state.
Thus Ofs, a) fimetion 1s typically given by (1).

Q{sm'ﬂnj“m = {l _"U -Q{gmr ﬁn:l +

+ 4 [R(Sm. 6n) + ¥ - MAXQ {51, )] (1)

In this expression. % i (0,1} denotes the leaming rate and it
reflects the degree to which estimated Q-values are updated by
new data and can be different in each episode. If  equals 0 then
the agent does not leam. while if it 1s equal to 1 1t mduces the
agent to consider only the most recent information. 1" is a
discount factor in (0.1 that represents the weight given to future
reinforcements. A value of T equal to () makes the agent myopic
by ouly considering cumrent rewards, while values closer to 1
tumn distant rewards more important [17].

In (1). the expression maxQ (S, . 0, ) Tepresents the best
the agent thinks it can obtaln In state £y . In an mitgal phase,
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the agents will randomly explore state fo state until they leam
and reach the end of the simmlation period. Then using these
Q-values. the agents start their biddings considenng the feamned
EXpeTience. T_\plcall} the Iea.m.mgpmce\,s comverges when the
Q-values do not change more than a pre-specified tolerance
value regarding the values in the (-matrix that was built in the
previous iteration.

D Regularory Context

The mentioned EU CEP aims to place consumers at the
centre of the energy transition by allowing the defimtion of new
models and miles for citizens [18]. The definitions of Self
Consumption. CSC and Energy Commimities are based on the
legal framework set by CEF. Their legal concepts and main
regulatory characteristics are defined in a report provided from
the Council of the European Energy Regulators [19]. For CSC,
the national approaches refer m geueml to nmlt-famuly houses
and'or Small and Medmm-sized Enterprises. SME. Storage 1s
also an important elemsnt to maximize the self-consumption
rate of locally produced electmcity and i several cases it is
specifically considered in the legislation e.g.. through incentive
schemes. In some countries. CSC 1s currently allowed only ma
limited way (e.g.. via private grids) or tolerated within a
regulatory grey zone. In most regulatory frameworks. a CSC
structure, includes prosumers that are geographically close and
that join to produce energy and share the surplus with the other
CSC members. The mentioned geographically close criterium
depends on how the EU directive 15 ransposed to each EU
member state and 1t 15 clearly an important aspect that may fum
into a barrier regarding the development of C5Cs and RECs.

In Pormgal. DL 1622019 [20] stated that CSC and REC
should receive a renmmeration for the swplus energy injectad
back into the grid and which can be commercialized by an
independent aggrezator or utility company. It is also stated that
the charges associated with CIEG (Costs of General Economic
Tnterest). a component of the grid tariffs paid by end consumers,
could be totally or partially deducted from the smd access
tariffs. In 19th Jume 2020, the govermment dlspatch n®
64332020 [21]. stated that CSC and REC projects, starting
operation till the end of the calendar vear 2021, benafit from an
exemption regarding the payment of the CIEG component of
the access network tanffs for seven years. More recently. it was
passed the DL 152022 of Jamary 14 comesponding to new
Portuguese electnicity law. This new legislation meorporated
the concepts and provisions already included in the DL of 2019
and clarified the proximity criterium mentioned in the previous

paragraph.

III. MoDELMG LoCAL ELECTRICITY MARKETS COMSIDERTNG
STORAGE SYSTEMS

A, Marker Design

The proposed structure comsiders an EC constituted by
different types of agents. such as consumers and prosumers.
Each of these agents s submit their bids to a Market Commmity
Agent which oversees maximizing the EC self-enersy
constumption and the profit in consequenceof selling the enerzy
surplus. This agent is considered as an artifact since it will be
utilized to carry out Energy Conmmmity Agents’ activities na
competitive or cooperative manmer, It will receive bids from the
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Energy Commmmity Agents and perform a set of operations
de el-:-ped according to pre-defined rules in order to obtain a
schedule for each tradmg peniod. The developed framework
considers that the EC deficit or smrplus m each trading penod
will be traded between the Market Community Agent and an
Aggregator through a bilateral contract. On other hand. the
Aggregator operates as a traditionmal retailer regarding the
market clearng mechanism m the WS, It will gather the
information about the energy deficit or excess from the Market
Comnmmaty Agent and conmmmicates the buying or selling bids
to the WS to balance supply and demand m the CODMMIUILY.

Fimure 1 schematically shows a commmmity constituted by
consumers and prosumers that are conmected through a local
electricity distmbution network. Each prosumer has an energy
generation unit in its installation. namely PV. The commumty
itself has an ESS and its objective is to minimise the electricity
taken from the zrid by prioritising self-sufficiency and to sell
surplus to the WSM through the Market Commumity Agent.
The storage system 1s located at the Low ¥ Toltage side of the
MV/LV substation that feeds a set of buildings.

== &

Fiz. 1. Energy Conmoumity Market Desimn
B. Mbodelling local energy markers and storage systems

As mentioned before, this work is developed using an ABM
model to simulate the energy trading between the LEM and the
WSM. In this madel. the inifial tmu:lu:uT 15 done locally followed
by the mteraction/trading n the W SM. The -kggregator TECEIVES
the quanfities to buy and sell in the WSM and sends back to the
Market Commumity Agent the cleared hourly prices. The
Market Conmmmity Agent receives the quantities and the bids
from the commmmity. considenng the emistms ESS. which
performs its strategy based on the energy deficit or surplus of
the commmmity and its technical characteristics. If there is a
surplus of PV power. the battenies will either be charging or
discharging depending on the commumnity’s demand. However,
if the energy 1s sufficient to meet the commmmity needs, the
additional surplus will be considersd in the selling bids
optimization strategy of the Market Commmmity Agent. So. the
comnmmity’s Social Welfare will be enhanced by lowenng the
cost of electricity purchased from the grid and increasing the
level of self-consumption.

Ecquation (2) presents the overall storage level for the ESS
device over time. It is modelled by a smoplified linear
expression [22] and it assumes that the charging and
discharging power rates remain constant during a time slot.
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In this expression:

— W, is the stored energy at time slot 17

— Wi ,_, 1s the stored energy af time slot r-1;

—alp, isthe self-discharge rate {mummber from 0.0 to 1.0);

— Pl is the battery charge power;

— Pty is the battery discharge power;

— ke ¢ is the battery charging efficiency (from 0.0 to 1.0);

— ki ¢ 15 the battery discharging efficiency (from 0.0 to 1.0).
Batteries™ charging and discharging rates are linmted by a

and P respectively onginating constramts (3) and (4).
0P, < a @
0=Phpe = 8 “

The State of Charge (SOC) of the battery is miven by (3) in
which W, is the nominal capacity of the battery (Le.. the
batterv size).

r i =
(50C); = :Tf; + 100% 5

To ensure the balance of the commumity system. constraint
{6} nmst hold for every time slot. Any power deviation can
always be balanced by exchanging power with the grid. During
each time slot the batteries can be charged or dl;c]w.rgeu:l

(Phve+ Phoe + Phuge) — (Ple + PEe + Phe) = 0(6)
In expression {§):

- in case the agent i is a proswmer. P{, and Pi,, are ifs
demand and PV generation at time slot 1

- mcase the agent i1s a consumer, P,f..r represents its demand
at time slot 1,

- Pl is the power exchanged with the grid at tme slot ¢

- P, is the battery charging power:

- Pi, . 1sthe battery discharging power;

Equation (7) represents the net load of the commmmity agent
i either being a prosumer or a consumer at time slot £

NP = (Ple +BL) — Ply, M

Batteries are in the charging mode when ¥, NP/ < 0.
and the surplus PV power 1s used to charge the batterj system
umless the SOC reaches its maxinmm value. Batteries will be in
discharging mode when TH, NPi =0 In this case, the
residual demand of the commmmity s met by discharging the
battery svstem. unless the 3O0C reaches its minimum.

The ESS operation strategy follows the iterative procedure
illustrated m Figure 2. It considers a battery discharzimg mods
operatmn{mml the pre-defined SOC muminmm limit of 70% is
reached) if the demand 15 higher than the commmmuty
production (as detalled m Equation 7). If the PV production 1s
higher than the demand. the surplns will charge the batteries
{umtil the predefined maximum level of 30C is reached. which
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was set at 80% 15 i this work). If there is still swplus, this
energy will be traded between the TEM and WSM following
the optinization model that will be detailed in the followed
section. If the energy stored is insufficient to feed the demand.

then the market commmmity agent must buy the energzy in
deficit at the WM.

=D

CE]

3 ¥
Chargird. Mede
(Uipdare S00C)

Dhichargnd Mads
Mipate 50T

Optimization Dechuon)
Prasina

H
¥
Bury BWEM

Fig 2. Iterative procedure mcluded in the operation strategy of the ESS
C. Implementation of the O-Leaming approach

The leamming process begins with the quantity to be sold or
bought between the WSM and the LTEM The state's defimtion
is in line with energy commmmities’ perspective. which s to
enhance the self-sufficiency and reduce the gnd's dependence.
In this work, we considered the followmng 5 possible states:

» State 1 - the agent has mereased its profit compared to the
previous episode, and all ifs enmerzy that could be
dispatched in the 14 trading hours was cleared in the local
market.

= State 2 - the agent has mereased its profit compared to the
previous episode. but not all its energy that could be
dispatched in the 24 trading hours was cleared in the local
miarket.

» State 3 - the agent hasn't obtamned any profit or loss,
compared with the results of the previous episods.

= State 4 - the agent has reduced its profit compared to the
PIEVICus eplsode but not all its energy that could be
dispatched in the 24 trading hours was cleared in the local
market.

 State 5 - the agent reduced its profit compared to the
previous episode, amd all its energy that could be
dispatched m all the 24 trading hours was cleared m the
market.
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This structure was based on the state’s definition adopted n
[11]. which on the other hand comresponds to an adaptation the
one nsed m [23]. This strategy is m line with the denvative-
followmg strategy presented i [24]. A demvatrve follower does
meremental Inereases (or decreases) in the price. contiming to
move its price m the same direction until the observed
profitability level falls. At this point. the direction of the
movement 1s reversed.

If there is any surplus. the playvers m the LEM wall put bids
{CBi) with 3 mininmm guaranteed price defined according to a
bilateral contract (that has a price paid to the renewable PV
generation CFV)

After defining the Bid Price (C52), the Market Community
Agent caleulates the Utility Function. that consists of the ratio
betwveen (5 and C™V. The higher this ratio is. the higher will
be the commmity prefits by applying the optimization model.
If the WSM price (aw_'ret'mor tariff C*) is lower than C*V, the
Market Commumity Agent will receive the guaranteed reward
defined by the bilateral contract, that is CPV. Otherwise, and if
the CB4 s lower than the C*%8 and higher than CFV._ the reward
will be equal fo the difference between 5 and CFV. The
process follows with the calenlation of the Utlity Fumction. and
considenng the states defined in the optimization model. The
Q-values are then calculated by selecting actions that are pre-
defined and shown in Figure 3. After submitting a new C52, he
Iterative process contimees. and the new Utlity Function ratio
15 calculated This formulation between two consecufive
periods is related with the state’s defimbion of the MDP and
with the )-Leamning procedure and after defined a new action.

In case of energy deficit. and because we assume that
constmers have no elasticity regarding the price, the bids in the
LEM will be equal to the required energy at the market price.

As illustrated im Figure 3. action a; comesponds to a
maxinnm bid down (in which the bid price is decreased as
nmich as possible). 4, means that neither a bid up nor a bid down
15 adopted and a; represents a maxinm bid up action {in which
the bid price 15 mncreased as mmich as possible). Actions a.. aa.
as and o Tepresent mtermediate possible values of the bud
prices.

MMax Bid up e

actions
Wik hid dicrem T

@ Byl @5 8 e

Fig. 3. Actions used in the (-Leaming procedure
IV. CASE STUDY - DATA AND RESULTS

As mentioned. the developed ABM model was applied to
real data for consumption, PV generation and W5M prices.
Regarding the electricity demand, we considered a Pormguese
collective building with 45 flats plus common services. All the
apartments are arganized as an EC considermg a CSC scheme.
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The building has a renewable zeneration unit constinuted by 3
PV systems with overall 27 K'Wp. A 300 kWh storage system
was considerad in this sinmlation with SOC limits ranging
from 20 to 80% of the nominal capacity. The sample power
profiles for the demand and the PV systems were bult nsing
open datasets available at [25] and with samp]mz periods of 15
minutes, starting on 1% Jammary 2019 ntil the 1% Tanuary 2020.
Fegarding the market prices. we used real data obtained for
2019 from the Therian Electrcity Market [16]. that exists
common between Portugal and Spain since 2007

The anmal EC balance is presented in Table I. These results
show that the operation strategy 1s successful in terms of
maximizing the EC self-energy consmmption. which represents
almast 51°% of the global enerzy demand. In 2 complementary
way, the amount of ENETEY l.me*red back to the grid is only 4.9
MWh, which Tepresents about 1% of the ﬂlohal ele’*tmm
demand through the vear.

TABLEL ANNUAL ENFRGY COMMUNITY BALANCE
Enerzy MWh
Global energy dernand 4362
Demand supphied by public arid 21
Demand supplied by self-consmmption 2241
Electricity injected back into the zrid 40

Figure 4 shows the average weekly prices of the W5MM and
of the LEM after using the bidding sirategy. as well as the
bilateral contract fixed price CFY. As we can see. the use the
developed bidding strategy origmates that the market
CcomImmity agent fries to mcrease its prices, followed by the bad
optimization strategy. i order to get closer to the WSM prices
and thus merease the revenues.

BN ECETETETR R
Tk

AN E S AT 2 AN 404 4P M B

— s o D

Figz. 4. Averzge weekly results for the Wi and the LEM market prices

Table I presents the results for the real WSM ammal
average pnee for 2019, the sellmg value of the PV generation
expess without using the hidding strategy. that is the C*Y value,
and the vahies nsimg the LEM strategies. Despite the anmmal
average price In the W5k is 71.1 € \IWh these results show
that if the LEM strategy is applied. the LTEM average market
prce (3933 € WWh) gets closer to the WSM price.

TABIED RESULTS FOR THE ANNUAL AVERAGE SELLING PRICE
Scenamio EMWh
Fleal WiM price 7L10
Selling price without LEM stratemies (™) 50,00
Selling price with LTEM stratesies 59.35
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This improvement regarding the initial €Y value (30,00
€MWh) 15 explamed because of the use of the ABM model
incorporating the Q-learning approach with bid up/bid-down
strategy.

Analyzing now the impact of the CIEG exemptions, Figure
3 presents the evolution of the Net Present Value (INPV) for
the PV and ESS. for a 20-vear cash flow analvsis. It 1s possible
to observe that as the exemption level mereases. from a
scemario without exemption €ll a scemamo with 100%:
exemption the NPV evolves in the positive direction. meaning
that it gets less negative and so the consumers obtain important
savings. The results that were obtained indicate that a 30% of
exemption increases the NPV by 10% while a scenario with
total ezempnnn increases it by 20%, when compared with a
scenario without CIEG exemptions.

NPY - CEG Exam

ki

5. Impact of the CIEG exemptions on overall investment costs
V. CoNCLUSIONS

This paper presented the results obtained using an ABM
model as a decision support tool to simulate the eNeTgy
transactions between the IEM of a REC and the WSM
considering a commumity having PV wmits and an ESS. The
results confirm that agents have leaming capabilities when
using the )-Leaming strategy. namely, to follow the strategy
adopted regarding self-consumption and storage imteraction.
and the reduction of the total supply cost since the revemues
coming from selling energy back to the zrid increase. It was
also possible to observe the impact that different levels of
exemptions of the CIEG component inclnded m the Portmguese
grid tariffs have in the total costs. namely in systems with ESS.
These results reveal that such exemptions could be a promoter
for the massification of RECs.
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Annex B

Annex B1: Access and Energy Tariffs
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TARIFA DE ACESSO AS REDES EM BTE

PRECOS

Poténcia
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{EUR/kW dia) *

Horas de ponta 12,875 04221
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Annex B2.1 Self-consumption network tariffs -Without CIEG exemption (2020)

TARIFA DE ACESSO AS REDES DO AUTOCONSUMO ATRAVES DA RESP EM MT

PRECOS

Poténcia (EUR/KW.més) (EUR/kW.dia) *
Horas de ponta 2,011 0,0660
Energia activa (EUR/kWh)
Horas de ponta 0,0548
Periodos I, IV Horas cheias 0,039
Horas de vazio normal 0,0134
Horas de super vazio 0,013
Horas de ponta 0,0546
Periodos I, lll Horas cheias 0,0389
Horas de vazio normal 0,0133
Horas de super vazio 0,013
*RRCart. 119.9,n.26
TARIFA DE ACESSO AS REDES DO AUTOCONSUMO ATRAVES DA RESP EM BTE PRECOS

Poténcia (EUR/KW.més) (EUR/kW.dia) *
Horas de ponta 6,613 0,2168
Energia activa (EUR/kWh)
Horas de ponta 0,0797
Periodos I, IV Horas cheias 0,051
Horas de vazio normal 0,018
Horas de super vazio 0,0165
Horas de ponta 0,0793
Periodos I, Il Horas cheias 0,0507
Horas de vazio normal 0,0178
Horas de super vazio 0,0165
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Annex B2.2 Self-consumption network tariffs -With 50% CIEG exemption (2020)

TARIFA DE ACESSO AS REDES DO AUTOCONSUMO ATRAVES DA RESP EM MT | PRECOS |
Poténcia (EUR/kW.més) (EUR/kW.dia) *
[Horas de ponta 2,011 0,0660
Energia activa (EUR/kWh)
Horas de ponta 0,0303
Periodos |, IV Horas cheias 0,0222
Horas de vazio normal 0,009
Horas de super vazio 0,0086
Horas de ponta 0,0301
Periodos I, Il Horas cheias 0,0221
Horas de vazio normal 0,0089
Horas de super vazio 0,0086

*RRCart. 119.9,n.26

TARIFA DE ACESSO AS REDES DO AUTOCONSUMO ATRAVES DA RESP EM BTE | PRECOS I
Poténcia (EUR/kW.més) (EUR/kW.dia) *
[Horas de ponta 6,613 0,2168
Energia activa (EUR/kWh)
Horas de ponta 0,0443
Periodos |, IV Horas cheias 0,0295
Horas de vazio normal 0,0123
Horas de super vazio 0,0108
Horas de ponta 0,0439
Periodos II, Il Horas cheias 0,0292
Horas de vazio normal 0,0121
Horas de super vazio 0,0108
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Annex B2.3 Self-consumption network tariffs -With 100% CIEG exemption (2020)

TARIFA DE ACESSO AS REDES DO AUTOCONSUMO ATRAVES DA RESP EM MT

PRECOS

Poténcia (EUR/kW.més) (EUR/kW.dia) *
[Horas de ponta 2,011 0,0660
Energia activa (EUR/kWh)
Horas de ponta 0,0058
Periodos I, IV Horas cheias 0,0054
Horas de vazio normal 0,0046
Horas de super vazio 0,0042
Horas de ponta 0,0056
Periodos II, IIl Horas cheias 0,0053
Horas de vazio normal 0,0045
Horas de super vazio 0,0042
*RRCart. 119.9,n.26
TARIFA DE ACESSO AS REDES DO AUTOCONSUMO ATRAVES DA RESP EM BTE PRECOS

Poténcia (EUR/kW.més) (EUR/kW.dia) *
[Horas de ponta 6,613 0,2168
Energia activa (EUR/kWh)
Horas de ponta 0,0089
Periodos I, IV Horas cheias 0,0079
Horas de vazio normal 0,0065
Horas de super vazio 0,005
Horas de ponta 0,0085
Periodos II, Il Horas cheias 0,0076
Horas de vazio normal 0,0063
Horas de super vazio 0,005










