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Abstract 

Power systems are rapidly evolving, particularly in terms of electricity generation technologies, 

diverse commercial relationships among various agents, and the increasing empowerment of con-

sumers. This has led to the emergence of Renewable Energy Communities, encouraged by new leg-

islation in many countries. This new paradigm enables citizens to take on roles as energy producers, 

consumers, or prosumers, thereby increasing choices and flexibility at the household level. Because 

of all these aspects, Local Energy Markets are emerging to enable local energy trading mechanisms 

in Renewable Energy Communities. As also supported by the European Directives, Energy Commu-

nities business models can include, not local generation, trading, and aggregation, but also storage 

systems. It is another flexibility option, that has the advantage of being able to act on both demand 

and supply sides as well as providing a wide range of system services. Integrated in Renewable 

Energy Communities, and during periods with surplus generation from renewable resources, namely 

Photovoltaic generation, excess of energy supply can be absorbed by storage systems. Contrary, dur-

ing times with low contribution from renewable generation, the deficit can be compensated by dis-

charging the storage devices.  

However, the requirements, limitations, and opportunities under these new frameworks require 

much more than analysing only technical and economic aspects. Incorporating new actors and man-

aging coordination among stakeholders requires innovative or adaptive approaches to handle the 

complexity. This thesis proposes the use of Agent-Based Modelling, employing a Machine Learning 

procedure - Q-Learning - as a decision support tool for energy transactions between the Local Energy 

Market and Wholesale Market in the day-ahead electricity market. This research also analyses dif-

ferent storage system architectures' integration within Renewable Energy Communities. The ob-

tained results confirm that modelling the agents with learning capabilities leads to more profits results 

when compared with the ones without learning strategy. For that reason, we consider that the devel-

oped Agent-Based Model can be used as a valuable simulation tool namely for complex systems 

when compared with other traditional optimization models. Furthermore, an economic assessment is 

also included, in order to get insights if some level of exemption, for instance associated with some 

components of the Access Tariffs, have to be considered in order to induce the massification of 

Renewable Energy Communities. 

 

Keywords: Renewable Energy Communities, Agent-Based Models, Local Energy Markets, Q-

Learning, Storage Systems. 



 

 

 



 

xi 

 

Resumo 

Os sistemas de energia estão evoluindo rapidamente, nomeadamente através das diferentes tec-

nologias de geração de eletricidade, das diferentes relações comerciais entre diferentes agentes e pelo 

crescente empoderamento dos consumidores. Este facto, incentivado também pelo aparecimento de 

nova legislação que induz esta mudança, levou ao aparecimento das Comunidades de Energia Reno-

vável. Esse novo paradigma permite que os cidadãos assumam papéis como produtores de energia, 

consumidores ou produtores-consumidores. Desta forma, os Mercados Locais de Energia estão a 

emergir e a possibilitar mecanismos de negociação de energia em Comunidades de Energia Renová-

vel. Também apoiado pelas Diretivas Europeias, os modelos de negócios das Comunidades de Ener-

gia podem incluir, não só a geração local, a negociação e a agregação, mas também sistemas de 

armazenamento. Este facto representa uma outra opção de flexibilidade, que tem a vantagem de atuar 

tanto na procura como na geração de energia. Durante períodos em que há excedente de enegia elé-

trica, nomeadamente de origem renovável, como por exemplo a geração fotovoltaica, este excesso 

pode ser absorvido pelos sistemas de armazenamento. Por outro lado, durante períodos com pouca 

geração renovável, o consumo pode ser garantido pela descarga das baterias. 

No entanto, os requisitos, as limitações e as oportunidades destes modelos, exigem muito mais 

do que analisar apenas aspectos técnicos e económicos. É necessário também considerar a participa-

ção de novos atores bem como gerir e coordenar a interação entre os demais envolvidos. E este facto, 

considerando a sua complexidade, requer abordagens inovadoras ou adaptativas. Assim, esta tese 

propõe o uso de agentes (Agent-Based Model) utilizando um procedimento de aprendizagem, Q-

Learning, como ferramenta de apoio à decisão para transações de energia entre os Mercados Locais 

de Energia e o Mercado Grossista. Este trabalho analisa também a integração de diferentes arquite-

turas de sistemas de armazenamento incorporadas dentro das Comunidades de Energia Renovável. 

Os resultados obtidos confirmam que a modelização dos agentes com capacidades de aprendizagem, 

permitem melhores resultados económicos quando comparado com sistemas sem estratégia de apren-

dizagem automática dos agentes. Neste trabalho também é apresentado um estudo económico com o 

propósito de avaliar o impacto da consideração de isenções, nomeadamente aplicadas a regimes ta-

rifários e que podem contribuir para a massificação das Comunidades de Energia Renovável. 

Palavras-chave: Comunidades de Energia Renovável, Agent-Based Model, Q-Learning, Merca-

dos Locais de Energia, Sistemas de Armazenamento. 
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Chapter 1 

1. Introduction 

 

1.1. Energy Transition – Opportunities and challenges 

 In the last decades, the share of renewable sources in the energy mix has considerably increased. 

Since 1990, their share in the primary energy supply has more than tripled and its contribution for 

electricity generation has more than doubled [1]. All global and European decarbonization scenarios 

agree that these shares will continue to increase rapidly. With these changes and developments, elec-

tricity becomes an important actor towards a carbon-neutral economy. 

The rapid improvements of renewable technologies and distributed energy resources, as well as 

climate change initiatives and policies to promote clean energy, are now prompting the reconfigura-

tion of participant roles in the energy supply chain. In particular, the industry´s traditional centralized 

electricity supply structure and utility-dominated decision-making regime is being challenged by 

energy users [2]. In this sense, the European Union (EU) introduced new regulatory frameworks and 

requirements on the energy market design for new energy initiatives.  

The Clean Energy Package (CEP) for all Europeans [3] boosts this transition by acknowledging 

the role of consumers and citizens in this new energy paradigm. It aims at ensuring an unbiased 

energy transition at all levels of the economy – a wide transition from a top-down to a bottom-up 

perspective. It gives new roles and opportunities for citizens, acting as energy producers and con-

sumers, or prosumers [4]. It also gives consumers more choices in their homes and more flexibility 

to reduce their energy use when it is expensive and consume or store it when it is cheap [5].   

New provisions on the energy market design and frameworks for new energy initiatives were 

introduced with CEP, specifically the recasts of the Renewable Energy Directive EU 2018/2001 [6] 

and the Electricity Market Directive EU 2019/944 [7]. CEP opens the path for new types of energy 



2   Introduction 

 

 

 

initiatives aiming at increasing the empowerment of smaller actors in the energy market as well as 

an increased decentralized renewable energy production.  Some authors term this process as the “de-

mocratization of energy” where most of the energy needed to meet household consumption require-

ments will be produced at local level, with only backup needs to be supplied by the grid [8]. 

The collective self-consumption, renewable energy communities and citizens energy communi-

ties are now new concepts introduced in the energy regulatory frameworks. They are fostering the 

progressive migration of current centralized market models to new concepts and business models, 

such as Virtual Power Plants, Microgrids, Smartgrids and Peer-to-Peer trading mechanisms. In this 

context, Local Energy Markets (LEM) become appropriate for the development of Energy Commu-

nities as they allow end users and producers to participate in the electricity trading systems. They 

can also help the increase of the penetration of renewable energy sources into the energy matrixes.  

The main objectives of LEMs are to provide a platform for the local economy and to reduce electric-

ity costs since supply fees and grid tariffs are excluded or strongly reduced [9]. This type of market 

also contributes to the appearance of new agents, although that leads to a new operational paradigm 

since they should not only interact locally but also be integrated with conventional markets. How-

ever, while it is increasing the participation of these new actors, consumers and small-scale produc-

ers, the complexity and the uncertainty of the electricity markets has been rising. This is why it is 

important that electricity markets have the necessary tools and resources to support decision-making 

processes. 

A wide range of research programs involving Artificial Intelligence (AI) tools are being con-

ducted in the field of Energy. These studies aim to develop systems that can perform various tasks 

such as analyzing and making decisions. One of the most common techniques used in the develop-

ment of AI systems is Machine Learning. This type of approach is commonly used to solve complex 

problems in real-world systems. One of the fields of Machine Learning refers to the concept of Re-

inforcement Learning. This method helps agents perform at their best in an unpredictable setting. It 

involves an agent interacting with its environment in order to learn the best action to take based on 

the given situation. In this scope, an Agent Based-Model (ABM) using a Reinforcement Learning 

mechanism is a suitable approach to modeling and simulating complex systems, such as electricity 

markets. 

An ABM allows agents to make more informed decisions by taking into account their past expe-

riences and the environment. This allows them to improve their strategies and make better decisions. 

The goal of an ABM is to provide market participants with the opportunity to develop their own 

adaptive strategies and preferences. This process can be carried out either individually or in combi-

nation with other agents. Agents benefit from the learning process of an ABM since it allows them 
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to develop their own strategies and preferences. Since ABM can simulate actions and interactions of 

independent agents, they have been widely used in the simulation process of the electricity markets. 

They are a suitable approach to modeling and manage this kind of complex systems [10]. 

Accordingly, the main focus of this thesis is the development of a simulation architecture to sup-

port and validate energy transactions between Energy Communities and among their members. In 

order to achieve this goal, all the technical limitations, regulatory challenges and opportunities be-

hind Energy Communities will be assessed. The framework presented in this work and its strategy 

optimization is based on ABM using Artificial Intelligence.  

1.2. Motivation and Research Questions 

The electricity sector is constantly evolving due to the increasing number of factors that affect its 

design and operation, such as the technological advancements that are being made in the generation 

of electricity. Despite the political situation in Europe, which can affect the electricity sector, it is 

still expected that countries will continue to move toward the decarbonization of their power systems. 

This includes the reduction or even elimination of the use of coal units and the sharp increase of the 

installed capacity in PV and wind parks. The various technical and regulatory changes that are being 

implemented in the electricity sector impose various challenges to power systems. 

Several countries have recently enacted legislation aiming at promoting the installation of Re-

newable Energy Communities. These are designed to encourage the growth of distributed renewable 

energy sources and provide end consumers with more self-sufficiency. In this sense, new mecha-

nisms are emerging, such as LEM, that are enabling local energy trading in Renewable Energy Com-

munities. The requirements, limitations, and opportunities under these new frameworks require much 

more than analyzing only technical and economic aspects. Communities themselves, regarding their 

behaviors, interactions and organizational dimensions should also be exploited. From the point of 

view of electricity networks, a scenario of massification of Renewable Energy Communities can be 

translated technically as an increase in the penetration of distributed generation units, especially in 

low voltage levels, as well as other energy equipment such as Energy Storage Systems. 

The regulatory contexts, specifically incentive schemes, must be considered in investment deci-

sions. Besides the legal framework and the various incentives that are being implemented to encour-

age the deployment of Energy Communities, it is also important to analyze the impact of the different 

charges and exemptions on the financial viability of these projects. The economic viability of these 

investments (namely in Storage Systems) and the operation of RECs, specifically considering 



4   Introduction 

 

 

 

different tariff and charge exemption designs, should therefore be studied in order to get conclusions 

on the breakeven of the investments. 

The goal of this research is to develop a new approach to simulate the energy trading between the 

wholesale and local energy markets. In order to understand the dynamics of the electricity markets, 

it is necessary to first study the interaction between the conventional electricity markets and LEM. 

Besides this, it is also important to study the impact of the regulations on the participants' behavior. 

This means that the main research questions to be addressed in this work are as follows: 

 

1. Are the Agent-Based Models capable of handling Energy Communities’ main purposes? 

2. How should the Energy Communities’ actors be organized, regarding integration with con-

ventional electricity markets? 

3. What is the influence of including not only generation trading and aggregation in Energy 

Communities, but also storage systems? 

4. Can the regulatory context induce the massification of Energy Communities? 

1.3. Thesis Objectives 

The main goal of this work is to develop a computational tool, using an Agent-Based Model, as 

a decision tool to support energy transactions between the LEM and the Wholesale Market (WSM). 

In order to achieve this general objective, it is necessary to study the behavior of participants in local 

electricity markets, the energy policies in force and use adequate simulation tools considering com-

petition. The developed model will be applied to a realistic case study, in the context of the Portu-

guese regulatory framework. The proposed market design will be implemented considering a day-

ahead market on a one-hour basis.  

Research objective 1: To develop a new decision tool to support energy transactions among 

Energy Community agents and between the communities themselves and the WSM, using an Agent-

Based Model. 

Research objective 2: To assess the impact of different optimization parameters in the agents’ 

learning capabilities.  

Research objective 3: To analyze the impact of the integration of storage systems in Local En-

ergy Markets, with focus on different architectures, by comparing the obtained market strategy and 

the profits that can be obtained. 
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Research objective 4: To assess the economic feasibility of Energy Communities regarding 

Agents-Based models bidding strategies as well as different levels of exemptions regarding specific 

terms of the Access Tariffs. 

The scientific contributions of this thesis span the aspects of Energy communities, namely Regu-

latory contexts and optimization models considering the utilization of an Agent-Based Model. A 

literature review of the application of this kind of models applied to Power Systems is presented in 

[Paper A] included in Annex A. [Paper B] also available in Annex A, describes the strategy and the 

interactions between the LEM of a Renewable Energy Community and the WSM on an hourly basis.  

The energy trading between LEM and WSM was simulated with an ABM as a decision tool. 

[Paper C] (available in Annex A) extends the decision tool considering an Energy Storage System. 

Specifically, [Paper C] investigates the Energy Communities’ self-consumption profile considering 

different storage system architectures. This work proposes two types of storage architectures. The 

first one is a decentralized architecture, where storage, constituted by batteries, is located at the build-

ing level, while the second one is centralized within the community. To understand the value of local 

markets and battery flexibility, [Paper C] compares the outcomes of the two proposed market de-

signs, against a reference case, that was described in [Paper B].  

Besides the implemented legal framework and the incentives for the deployment of Energy Com-

munities and Local Energy Markets, the economic viability of the investments, namely in Storage 

Systems, should be studied. For that purpose, [Paper D] (accessible in Annex A) presents a design 

and an optimization model to increase the self-sufficiency level, and to better manage the energy 

produced locally, also admitting the installation of battery storage systems. This paper also includes 

an economic assessment, considering different tariff and charge exemptions designs, namely the 

payment of grid tariffs. This allows us to draw conclusions on the breakeven of the investments. 

1.4. Structure of the Thesis 

This thesis is structured in seven chapters covering the Literature Review, the models that were 

developed and the adopted solution approaches and their assessment using a realistic case study.  

Chapter 2 provides a general overview of electricity markets, considering nowadays legislation 

frameworks. Section 2.1. presents the electricity market evolution and its classification. A review on 

European Climate and Energy policies is provided in Section 2.2. and Section 2.3. includes an 
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overview of different national frameworks. Section 2.4 presents an overview on Peer-to-Peer mar-

kets. Finally, Section 2.5. introduces the concepts of Microgrids and Virtual Power Plants (VPP). 

Chapter 3 presents a Literature review on Electricity Market Simulation. Section 3.1 presents 

several modelling methods to simulate electricity markets. Section 3.2 introduces the concept of 

Agent Based Models and provides a review of the various development steps involved in its imple-

mentation. Section 3.3 provides a categorization of Machine Learning techniques and finally, Section 

3.4 details some ABM electricity markets simulators. 

Chapter 4 details Energy Communities business models and presents the structure of the model 

that will be simulated in this thesis. Section 4.1 details Energy Communities’ business models. Its 

main ideas will be replicated in the proposed market design, which will be presented in Section 4.2. 

The developed ABM, which incorporates the LEM concept is detailed in Section 4.3. The interac-

tions between the community aggregator and the WSM are exposed in Section 4.4. Hereafter, the 

defined environment, as the part of the system within which the agents operate, is presented in Sec-

tion 4.5. followed by the Utility Function considered in this work and detailed in Section 4.6. The Q-

Learning procedure used in the proposed model as well as the modelization considered using this 

optimization strategy, are presented, respectively in Sections 4.7. and 4.8.   

Chapter 5 details other models that are integrated in the developed Agent-Based Model, namely 

the incorporation of Energy Storage Systems. In this purpose, Section 5.1 provides a framework with 

Energy Community Business Models followed by Section 5.2., where the enhanced market design 

considering storage systems is explained. Regarding general considerations and Energy Storage Sys-

tems’ modelization and bidding strategies, Section 5.3. details its main considerations. Following the 

previous approaches, the modelization of the operation of ESS in the LEM and WSM, using an ABM, 

is detailed in Section 5.4. This chapter ends in Section 5.5, with the main considerations regarding 

the economic viability analysis of Energy Communities business models, namely the economic value 

of the investments and operation of Renewable Energy Communities. 

Chapter 6 presents the results obtained using the developed models to a set of scenarios. Section 

6.1 presents a general consideration about the Chapter while Section 6.2 details the global character-

ization of the system that is studied in this work and termed as Reference Case. Section 6.3. describes 

a scenario only considering a PV system, without storage and which is addressed using the Q-Learn-

ing strategy. In this section, it is also assessed the impact on the global results of using different 

learning parameters. The results, using decentralized and centralized storage systems are detailed in 

Sections 6.4. and 6.5. The final comparisons and sensitivity analysis for different input data are de-

tailed in Section 6.6. 
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Finally, Chapter 7 summarizes the contributions of this research and presents the most relevant 

conclusions. This document ends with a discussion and an outlook about future work and other re-

lated research opportunities. 

1.5. List of Publications 

 

The next paragraphs present the published and submitted papers that are related to this work. 

Papers A and B are associated with the model presented in Section 4.2. Papers C and D are related 

to the model described in Section 5.2., and include a modification on the previous model, now con-

sidering the impact of different storage architectures. Paper B was presented to an audience through 

oral presentation in the 18th European Energy Markets Conference, that was held in Ljubljana, Slo-

venia 13-15 September 2022. Papers D and C were submitted, accepted and presented to an audience 

through oral presentation, respectively in the 19th International Conference on the European Energy 

Market (EEM), Lappeenranta and in the IEEE Belgrade PowerTech, Belgrade, both in June 2023. 

[Paper A] A. Ferreira dos Santos, J. T. Saraiva, "Agent Based Models in Power Systems – A 

Literature Review," in University of Porto Journal of Engineering, vol. 7, no. 3, April 2021. 

[Paper B] A. Ferreira dos Santos, J. T. Saraiva, "An Agent Based Model to Simulate Local Elec-

tricity Markets, LEM, and their Interaction with the Wholesale Market, WSM,” in Proceedings of 

the 18th International Conference on the European Energy Market (EEM), Ljubljana, September 

2022, pp. 1-5. 

[Paper C] A. Ferreira dos Santos, J. T. Saraiva, "Decentralized and Centralized Storage Archi-

tectures in Local Energy Markets (LEM) and their interaction with the Wholesale Market (WSM)," 

in Proceedings of the IEEE Belgrade PowerTech, Belgrade, June 2023, pp. 1-6. 

[Paper D] A. Ferreira dos Santos, J. T. Saraiva, "Simulation of the Operation of Renewable En-

ergy Communities Considering Storage Units and Different Levels of Access Tariffs Exemptions,” 

in Proceedings of the 19th International Conference on the European Energy Market (EEM), Lap-

peenranta, June 2023, pp. 1-6.  

All these papers are available in Annex A. 
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Chapter 2  

2. Background and State of the Art 

This chapter presents a background and the state of the art about the main topics approached in 

this thesis. The electricity market evolution and its classification, according to the type of good and 

service that is traded and according to its temporal basis, is presented in Section 2.1. A review on 

European Climate and Energy policies is provided in Section 2.2. The Clean Energy Package (CEP) 

is described and contextualized with new rules and models for citizens. An overview of some of the 

national frameworks for Energy Communities in the European Union (EU) is provided in Section 

2.3. The advent of the CEP opens the path for new types of energy initiatives and provides new roles 

and opportunities for citizens, which can act as energy producers and consumers, or prosumers. 

Within this context, Peer-to-Peer (P2P) models are considered as one of the key elements of the next 

generation of power systems market and will be described in Section 2.4. Finally, in Section 2.5. the 

concepts of Microgrids, Smart Grids and Virtual Power Plants (VPP) will be introduced since they 

allow to manage and coordinate the aforementioned decentralized and distributed new energy busi-

ness models.  

2.1. Electricity Markets  

2.1.1. Restructuring of power systems 

The electricity sector restructuring originated the unbundling of the traditional vertically inte-

grated companies and lead to the separation of generation property from transmission, distribution 

and retailing activities. This new desegregated model, presented in Figure 2.1., includes several com-

petitive activities namely, Generation (G), Financial Intermediation (FI) and Retailing (R). The Dis-

tribution Network (DN) operates as a regulated monopoly since it is not economically feasible to 

duplicate the distribution networks in the same geographical area. A similar regulated monopoly 

approach applies to the Transmission Network (TN) activity. Bilateral Contracts (BC) and Organized 

Markets (OM) represent the mechanisms available to trade electricity. The Independent System 
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Operator (ISO) stands for the operation and real time monitoring of the systems and finally Ancillary 

Services (AS) correspond to a number of products usually bought or contracted by the ISO to ensure 

the secure operation of the system. 

 

Figure 2.1. Electricity model sector (Source [11]) 

 

The central part of this figure corresponds to a set of functions that were usually assigned to the 

transmission entities in terms of operating and managing power systems. They are: 

a) Bilateral contracts are a type of contractual arrangement that involves the establishment of 

physical or financial relations between electricity generation entities and retailers or large 

consumers. These contracts cover various aspects, such as the price and energy required to 

be supplied and produced.  

b) An Organized Market is a type of financial transaction that involves the execution of various 

activities, such as day-ahead and intraday market activities. If these activities and bilateral 

contracts come together, then a mixed model might be presented [12]. The operation of orga-

nized markets is usually carried out through the purchase and sale of electricity. Market op-

erators receive bids from different entities for every hour or half hour of the next day. These 

bids are usually accompanied by energy and price values. These markets then build a supply 

and a demand curve for each trading period, which is used to provide a complete economic 

dispatch. The market design can also include complex bids that have additional information, 

such as minimum profit requirements, ramps and hours of operation [11]. Another type of 

market is the forward markets which involve the trading of electricity blocks to be delivered 

in future periods. 

c) The System Operator, ISO, is an organization that has the technical capabilities to manage 

the power system operation. It is also responsible for collecting information related to the 

economic activity generated by the bids that are submitted in the organized markets. The ISO 

should also perform a technical evaluation of the dispatch for each period of the next day, to 

ensure that it is feasible, namely, to evaluate the network constraints and the potential impact 

of congestion on the system. If there are no limitations, the ISO sets the amount of ancillary 
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services that are required and contracts the providers of these services. In some cases, the ISO 

and the Transmission Network (TN) functions are under the responsibility of the same entity, 

taking the name of Transmission System Operator (TSO). This is the case of REN, Redes 

Energéticas Nacionais, in Portugal and REE, Red Eléctrica de España, in Spain. 

d) The Transmission Network company which is an entity that owns or has the concession of 

the assets of the electricity transmission system. It operates in a monopoly position in the 

geographical area where it is located. Like other companies, it is regulated by the Regulatory 

Authorities. 

e) Besides the primary, secondary and tertiary reserves, it is also necessary to contract other 

Ancillary Services such as reactive power and voltage control, black start and the solution 

of violated network constraints. These services are provided by different entities, such as 

network or generation companies. In most systems, the amount of ancillary services that are 

required are determined by the System Operator. The System Operator then accepts bids for 

the provision of some of these services. The primary reserve is composed of the Frequency 

Containment Reserve, which is a type of reserve that is designed to maintain a steady power 

balance in the system. The secondary reserve, which is denominated as Frequency Restora-

tion Reserve, is designed to restore the frequency to its nominal level. Finally, the tertiary 

reserve, called Replacement Reserve, includes reserves with activation time from 15 minutes 

up to some hours in order to replace secondary reserve generators if that becomes necessary 

[13]. In several systems some of these services are mandatory and not paid (as it is the case 

of primary reserve in Portugal) while others are contracted in specific markets (as it occurs 

with secondary and tertiary reserves in Portugal). 

2.1.2. Market Types 

Considering the organization previously detailed, markets can be classified according to the type 

of good and service that is traded and according their temporal basis [14]. In this scope, the Electricity 

Market is where electricity is traded between sellers and buyers, through a centralized mechanism, 

operating as a spot market (usually known as Pool markets) and/or through contracts established 

directly between buyers and sellers (Bilateral Contracts). These are different types of trading mech-

anisms that are designed to provide a central and transparent platform for the trading of electricity. 

In addition to these, some ancillary services are also traded in specific markets to ensure that the 

power system operates in a secure and reliable way. 

The different types of electricity markets can be classified as: 
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-  Spot market, which is a daily market that aims to negotiate the energy supply typically for 

each hour of the next day (also known as Day-Ahead Market); 

- Intraday Markets, that can be used by market agents to purchase or sell usually small quanti-

ties of electricity. This type of market is designed to address the potential imbalance between 

the supply and demand of electricity; 

- The Derivatives and Forwards market is composed of future contracts and options. It is de-

signed to address the volatility of the daily electricity price by providing financial instruments 

that are designed to protect investors from the effects of the short-term market; 

- Long-term Investment market, which is focused on investing in new infrastructure projects. 

If retail agents, eligible consumers and generation agents submit their bids in an anonymous way 

to a Market Operator, it corresponds to a centralized spot market, commonly referred to as Pool 

market. It features short-term mechanisms designed to balance the demand and supply of electricity. 

These markets are usually referred to as Day-ahead markets and are designed to work for the next 

day. They can be symmetrical or asymmetrical, voluntary, or mandatory. 

The implementation of this dispatch design must deal with the physical properties of power sys-

tem networks (Figure 2.2.). The Market Operator matches the bids from an economic point of view 

and the System Operator verifies if transmission grid limits are not surpassed. If congestion occurs 

on the transmission grid both the System and Market Operators need to work together in order to 

solve the problem. If it cannot be resolved, for any kind of reason, the System Operator has the 

authority to change the initial dispatch in order to regain feasibility.  

 

Figure 2.2. Poll based Electricity Market Model (Source [11]) 

The Symmetrical markets allow market participants to make buying and selling bids. After the 

bids have been received, the Market Operator builds the aggregated curves according to the 
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increasing and decreasing bid prices. The demand bids are ordered by descending price order and 

cumulative quantity, and they form the aggregated demand curve. The supply bids are ordered by 

the ascending price order and cumulative quantity, and they form the aggregated supply curve. The 

point of intersection between the supply and demand curves defines the clearing price and quantity. 

All the market agents buy and sell energy at the clearing price. These markets are also known as 

Uniform Price Auctions. After the bid process has ended, the Market Operator uses the Market Clear-

ing Price to settle the traded electricity quantities. The power plants that bid above the market price 

and the demand that bids below it will not be cleared in the market. The symmetrical model is illus-

trated in Figure 2.3. 

The Asymmetrical model is another type of market that can be designed to operate on a day-

ahead basis. It allows the generation agents to participate in the market and the demand is normally 

modelled by forecasts for each trading period. In practice, this model assumes that the demand is 

inelastic and ready to pay the market price. The selling bids are then used to determine the final 

prices. Figure 2.4. illustrates this market mechanism, in which selling bids are organized in ascending 

order of the bid price together with the forecasted demand levels. In this case, three demand levels 

(Q1, Q2 and Q3) determine three distinct market price levels (MP1, MP2 and MP3) [11].  

 

 

Figure 2.3. Symmetrical Poll Spot Market (Source [11]) 
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Figure 2.4. Asymmetrical Poll Spot Market (Source [11]) 

 

Another type of relationship between market agents is the Bilateral Contracts. The previous 

Pool Model is based in short term marginal costs which are very volatile, being influenced by the 

demand, generators, and their operation costs and the transmission grid line capacity. To overcome 

the usual pool model price volatility, in the Bilateral Contracts model the generation and retailing 

companies, as well as eligible consumers, are free to establish between themselves contracts to buy 

and sell electricity. Duration, amount of generation and demand as well as their agreed price, are 

freely negotiated in these kinds of contracts. The responsibility of technically validate these bilateral 

agreements is done by the System Operator. If they originate unfeasibilities regarding the operation 

of the network, the ISO/TSO must activate mechanisms in order to introduce changes and conse-

quently make the system feasible.  

In most countries in which there was a reorganization of the electricity sector, a mixed structure 

(Mixed Models) was adopted allowing market agents, producers, consumers and retailers to partic-

ipate in the day ahead market or to establish bilateral contracts. The technical validation of the global 

dispatch will be carried out by the ISO or TSO for each period of the next day. This process will 

gather information about the various bilateral agreements and the bids that have been cleared by the 

Market Operator [11]. Figure 2.5. illustrates this type of mixed structure.  
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Figure 2.5. Mixed Model including a Spot Market and Bilateral Contracts (Source [11]) 

 

System Operators use a set of operational services to control the power system and to balance 

supply and demand. They are usually termed as Ancillary Services and aim to stabilize the system 

and to maintain security of supply and system reliability. As mentioned in Section 2.1 these include 

the frequency control and active power reserves, voltage control and reactive power, black start ca-

pability, emergency control actions, and grid loss compensation. 

The frequency control service is designed to maintain the system's frequency within a certain 

interval. It can also be used to control the active power to ensure that the system is balanced. The 

voltage control service manages the reactive power to maintain the voltage level within the specific 

ranges. When there are contingencies and unpredictable deficits caused by factors such as the failure 

of generators and transmission lines, different types of reserve services are utilized. These include 

primary reserve which is an on-line resource that can be immediately available. On the other hand, 

secondary and tertiary reserves have longer activation times and can be used to supplement the pri-

mary reserve. The black start service is an emergency response that can be utilized by a generating 

unit to restore power supply after a large blackout has occurred. Other services that can be obtained 

by the ISO include remote generation, emergency control actions, and grid loss compensation [15]. 

The different approaches to procuring ancillary services can be determined depending on the type 

of power system and the country where they are located. The first one involves requiring the TSO to 

set a mandatory provision, for instance for primary reserve. Other services, as secondary and tertiary 

reserves can be contracted by the ISO in specific daily markets or using long term contracting estab-

lished with generation agents. 
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In a recent report [16], the European Network of Transmission System Operators for Electricity 

(ENTSO-E) presents a vision of what would be necessary to achieve a Power System fit for a Carbon 

Neutral Europe.  Regarding the increasing operational challenges and the rapidly changing of market 

actors, ENTSO-E refers that new products for both balancing and non-frequency ancillary services 

are required, to support for example, voltage control, inertia and fast frequency response. In this 

scope, the demand response namely using electrical vehicles and distributed resources will have an 

important role, as well as the presence of fast service providers. 

The intraday markets are similar to day-ahead energy markets and the main difference is the 

gate closure. They follow the day-ahead session and work as adjustment markets, i.e. the market 

agents can correct accepted bids from the day-ahead market or from previous intraday sessions. The 

rapid emergence and evolution of smart grids and renewable sources are expected to have a huge 

impact given the variability if several primary resources. 

Two structures of intraday energy markets can be found [17]: 

- Discrete: fixed number of trading sessions with a pre-defined period and with a gate closure 

of one hour before the physical delivery; 

- Continuous: the trading is continuous and starts after the day-ahead market with a gate closure 

of one hour before physical delivery. 

The Iberian Electricity market, MIBEL, comprises a day-ahead and an intraday market. The latter 

was initially characterized by 6 consecutive auctions, to take adjusted network constraints and un-

foreseen events into account. Currently, MIBEL also includes a continuous Intraday Market mecha-

nism. 

The European Commission has set out its objectives for the development of continuous energy 

trading in Europe. This is done through the allocation of transmission capacity between different 

zones. The XBID, or Cross-border Intraday Coupling, is a project that was launched in 2012 to create 

solutions for intraday continuous trading across Europe and to increase overall trading efficiency 

within a single intraday EU electricity market. The goal of the system is to link the orders placed by 

electricity market participants in different countries using a central IT system. This system also al-

lows the exchange of information between different sectoral trading platforms and the transmission 

capacity of the participating regions. 
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2.2. Clean Energy Package for all Europeans  

2.2.1. Legal documents 

In May 2019, EU institutions concluded the final legislative files for the Clean Energy for All 

Europeans Legislative Package (CEP) [3]. It is a legal framework that defines European climate and 

energy policy and sets the EU ambitions on this topic for the 2030 horizon. It is composed of eight 

different pieces of legislation aimed at accelerating the energy transition in Europe. The CEP for 

Europe introduces three new concepts that are designed to help consumers and the public to partici-

pate in the development of a new energy paradigm. These include the Collective Self-Consumption, 

the Renewable Energy Communities, and the Energy Communities of Citizens. The objective of the 

package is to ensure that the transition to a decarbonized and decentralized energy system is carried 

out in an unbiased manner. The main objective of this new energy paradigm is referred to as the 

democratization of energy so that most of the energy that households need to meet their consumption 

requirements is produced at a local level [8]. 

Several new frameworks and provisions for the design and implementation of new energy pro-

grams were also introduced. These include updated versions of the Electricity Market Directive EU 

2019/944 [7] and Renewable Energy Directive EU 2018/2001 [6]. The updated Electricity Regula-

tion 2019/943 [18] provides a framework for addressing the various changes that are happening in 

the electricity market. These include cross-border flows, customer participation, and market-based 

pricing. 

 

All the documents under the CEP are available in [19] and will be summarized in the following 

paragraphs: 

• Energy Performance of Buildings Directive (EU) 2018/844 [20] 

The Energy Performance of Buildings Directive [20] aims at achieving a highly energy efficient 

and decarbonized building stock by 2050 and to create stable investment conditions to foster invest-

ments into the renovation of buildings. This Directive encourages the deployment of automation and 

control systems in buildings for a more efficient operation as well as the rollout of charging points 

for electric vehicles (EVs). 

 

 

https://eur-lex.europa.eu/legal-content/EN/TXT/?qid=1529483556082&uri=CELEX:32018L0844
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• Renewable Energy Directive (EU) 2018/2001[6] 

The original Renewable Energy Directive [21] already set the basis for the promotion of energy 

from renewable sources. As the use of renewables has significantly increased and new technologies 

allow for a more flexible integration into the grid, the new Renewable Energy Directive [6] was 

recast as part of the CEP. The Renewable Energy Directive was also updated to provide a binding 

target of 32 percent of the energy from renewable sources that the European Union will require by 

2030. The updated regulations also provide targets for renewable energy in the transportation and 

heating sectors. 

One of the key objectives of the CEP is to put consumers at the heart of the energy transition. To 

facilitate achieving this goal, the new Renewable Energy Directive [6] gives citizens, who produce 

their own energy from renewable sources, a clear right to consume, store and sell their generated 

energy, including through power purchase agreements. In addition, this Directive enables the partic-

ipation of consumers in the so called 'Renewable Energy Communities'. These communities are au-

tonomous legal entities based on the open and voluntary participation with the purpose of providing 

environmental, economic or social community benefits for its shareholders or members rather than 

financial profits.  

Like individual citizens, such communities are entitled to generate, consume, store and sell energy 

from renewable sources. Member States can allow Renewable Energy Communities to be open for 

cross-border participation. 

• Energy Efficiency Directive (EU) 2018/2002 [22] 

Putting energy efficiency first was one of the main objectives of the CEP. The updated Energy 

Efficiency Directive [22] provides a target of 32,5 percent of Energy Efficiency by 2030. It extends 

the obligation of Member States to reduce their energy consumption by 0,8 percent annually until 

2030. Metering and billing rules, especially for multi-apartment and multi-purpose buildings, have 

been amended to provide clearer rights for consumers on their billing information.  

• Governance of the Energy Union and Climate Action Regulation (EU) 2018/1999 [23] 

The Governance of the Energy Union Regulation [23] establishes a transparent and predictable 

governance mechanism to ensure that EU meets its 2030 climate targets as well as international 

climate commitments. The Governance Regulation of the Energy Union applies to the different di-

mensions of the organization, such as the internal market, decarbonization, innovation, and compet-

itiveness. Member states can contribute to the overall goals of the Union in different ways.  

 

https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=uriserv:OJ.L_.2018.328.01.0001.01.ENG&toc=OJ:L:2018:328:TOC
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• Electricity Regulation (EU) 2019/943 [18] 

One of the main components of the CEP is the updated electricity market rules, which are de-

signed to reflect the new market realities. They are also designed to ensure that the security of supply 

is not compromised. The increasing role of consumers in the clean energy transition is also high-

lighted by enabling their active participation in the electricity markets. 

The recast Electricity Regulation [18] sets out general principles for the operation of the electric-

ity markets, including market-based prices, more flexibility, customer participation and cross-border 

electricity flows. Several specific topics regarding the redesign of electricity markets are: 

- Balancing 

The Regulation establishes that generally all market participants are responsible for imbal-

ances in the system. Balancing capacity must be procured separately from balancing energy. 

Transmission System Operators (TSO) have to procure balancing capacity based on market-

based principles. Balancing energy has to be settled at marginal pricing and must reflect the 

real-time value of energy.  

- Short-term and long-term markets 

The new rules also harmonize trade intervals and gate closure times for day-ahead and intra-

day markets. In order to enable the participation of all market participants, minimum bids of 

500 kWh or less are allowed. In forward markets, TSOs shall issue long-term transmission 

rights to incentivize cross-border trading. 

- Dispatch and redispatch 

The new Electricity Regulation establishes that dispatching priority is given to renewable 

energy sources and high-efficiency cogeneration facilities with an installed capacity of less 

than 400 kW or demonstration projects using innovative technologies subject to approval by 

the regulatory authority, provided that such priority is limited to the time and extent necessary 

for achieving the demonstration purposes. From 2026, dispatching priority shall apply only 

to power-generating facilities that use renewable energy sources and have an installed elec-

tricity capacity lower than 200 kW. Sources that were subject to priority dispatch before the 

entry into force of the new Regulation continue to benefit from priority dispatch until there is 

a new connection agreement or an increase in generating capacity or any other substantial 

modification. 

 

https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=uriserv:OJ.L_.2019.158.01.0054.01.ENG&toc=OJ:L:2019:158:TOC
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- Congestion management and capacity allocation  

The revised Electricity Regulation reinforces rules on capacity allocation and congestion 

management, including through a review of bidding zones. Member States must put in 

place action plans to remedy congestions based on non-discriminatory and market-based 

solutions. Transactions may only be curtailed in emergency situations. Revenues gener-

ated from congestion management can be used to maintain the availability of allocated 

capacity or to optimize and develop new interconnections. 

- Capacity mechanisms 

The recast Electricity Regulation establishes new rules on capacity mechanisms to ensure 

resource adequacy by remunerating resources for their availability. Member States shall 

only use capacity mechanisms as a last resort while implementing measures such as re-

moving regulatory distortions and price caps, enabling scarcity pricing, energy storage or 

demand side measures. Before introducing a capacity mechanism, Member States also 

have to coordinate with other directly interconnected Member States. Capacity mecha-

nisms shall be temporary, non-distortive, and non-discriminatory and opened to all types 

of resources, including storage and demand side management. 

- European Network of Transmission System Operators for Electricity, Transmission Sys-

tem Operators and Distribution System Operators 

The roles of TSOs and the ENTSO-E are strengthened and clarified. In addition to their 

already existing tasks, TSOs established regional coordination centers since 1 July 2022. 

The regional coordination centers are responsible for the coordination of capacity calcu-

lation, security analysis, restoration support, adequacy forecasts or for facilitating the re-

gional procurement of balancing capacity. 

The recast Electricity Regulation also establishes new tasks for Distribution System Op-

erators (DSOs), including the creation of a European entity for EU DSO. The EU DSO 

will promote operation and planning of distribution networks, facilitate the integration of 

renewables, distributed generation and storage resources and increase the presence of 

flexibility resources. Further tasks include the support of the development of data man-

agement, cyber security, and data protection. The EU DSO shall also cooperate with the 

ENTSO-E on the development and implementation of network codes as well as in iden-

tifying best practices relevant for the distribution networks. 
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- Network codes and guidelines 

The revised Electricity Regulation refines the rules for developing network codes and 

guidelines and extends the areas for which the European Commission can require the 

preparation of network codes. In this regard, new network codes can be established for 

non-frequency ancillary services, demand response, storage, curtailment, data manage-

ment and cybersecurity. 

• Electricity Directive (EU) 2019/944 [7] 

The recast Electricity Directive of the CEP aims at developing and completing the internal elec-

tricity market and to address new market challenges. To facilitate the completion of the internal 

electricity market, Member States have to remove barriers to cross-border electricity trade and con-

sumer participation. Prices will be set using market-based criteria and Member States shall facilitate 

flexibility and ensure third-party access in a non-discriminatory manner. In this scope this Directive 

addresses the following issues: 

- Empowerment of consumers 

One of the main features of the new electricity system design is the ability of consumers 

to actively participate in the markets. Member states are required to implement measures 

that allow them to participate in the electricity market through aggregation or direct par-

ticipation. Customers can also sell their own electricity and participate in energy effi-

ciency programs. In addition, active consumers are required to pay the network charges 

and accept responsibility for any imbalances that they may cause. Customers who own 

energy storage facilities are not required to pay double charges or license fees. 

The revised Electricity Directive further provides the possibility to establish Citizen En-

ergy Communities (CEC). They are based on the open and voluntary participation. Mem-

ber States must enable CEC to access electricity markets without discrimination and 

DSOs have to cooperate with CEC to facilitate electricity transfers within the CEC. Mem-

ber States can also grant CECs the right to manage distribution networks in their area of 

operation. CECs are also subject to network charges and costs for the imbalances they 

cause. 

- Demand response 

The new Electricity Directive indicates that Member States may allow and facilitate the 

use of demand-side management measures through Aggregation. This aggregation allows 

customers to purchase and sell electricity as well as provide and trade flexibility products. 

https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=uriserv:OJ.L_.2019.158.01.0125.01.ENG&toc=OJ:L:2019:158:TOC
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Market access for all participants must not be discriminatory. Aggregation participants 

are responsible for the various imbalances that they cause in the electricity market. They 

are also liable for the costs that other market participants incur due to the demand re-

sponse activities. 

- Dynamic electricity pricing, metering, and billing 

The updated electricity directive requires Member States to carry out cost-benefit anal-

yses on the implementation of smart meters. They should also allow customers to request 

their devices' installation. These devices should be able to provide consumers with relia-

ble and accurate readings on their electricity usage. Customers who have installed smart 

meters are entitled to request a dynamic electricity pricing contract. 

- DSO, TSO, and National authorities 

The recast Electricity Directive establishes new tasks for DSOs, in particular in what 

concerns the procurement of non-frequency ancillary services, flexibility, data manage-

ment and the integration of electromobility. Procurement of ancillary services shall be 

market-based, transparent and non-discriminatory. For the procurement of other relevant 

services effective participation of all market agents shall be made possible, including for 

those participants engaged in storage, demand response or aggregation. Member States 

shall incentivize DSOs to procure flexibility services, including the procurement of dis-

tributed generation, demand response or energy storage. Regarding the integration of 

electromobility, DSOs shall facilitate grid connection and can only own, develop, man-

age, or operate recharging points for EVs subject to strict conditions. 

The tasks of TSOs have been slightly extended to include the procurement of ancillary 

services, the digitalization of transmission systems and data management.  

• Regulation on Risk-Preparedness in the Electricity Sector (EU) 2019/941 [24] 

The Risk-Preparedness Regulation aims to establish a framework to prevent, prepare for and 

manage electricity crises. In order to achieve these objectives, Member States are required to coop-

erate. The Regulation also aims at establishing an effective monitoring system for the security of 

supply in the Union. 

 

 

https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=uriserv:OJ.L_.2019.158.01.0001.01.ENG&toc=OJ:L:2019:158:TOC
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• Regulation on the European Union Agency for the Cooperation of Energy Regulators 

(EU) 2019/942 [25] 

The Agency for the Cooperation of Energy Regulators (ACER) was established through the Third 

Energy Package passed in 2009 [26]. Originally, ACER's role was limited to coordination, advising 

and monitoring. With the increase in cross-border cooperation under the new electricity market de-

sign of the CEP, ACER has been given additional responsibilities in the areas where uncoordinated 

national decisions with cross-border relevance could impact the functioning of the internal electricity 

market. The new ACER Regulation [25] establishes ACER's responsibility to supervise the ENTSOs 

for electricity and gas, the regional coordination centers, the EU DSO, TSO and Nominated Electric-

ity Market Operators (NEMOs) and it assists the competent national regulatory authorities in per-

forming their tasks. ACER will also be involved in the development of network codes, guidelines 

and methodologies and in monitoring their implementation. 

2.2.2. Self-Consumption, Collective Self-Consumption and Energy Communi-

ties 

The CEP aims to place consumers at the center of the energy transition by including the definition 

of new models and rules for citizens. This will help for the definition of new rules and models for 

citizens, which could act as energy consumers or producers, or prosumers [4]. The definitions of 

Self-Consumption, Collective Self-Consumption and Energy Communities are based on the legal 

framework set by CEP. Their legal concepts and main regulatory characteristics are defined in a 

report provided by the Council of European Energy Regulators [27]. A diagram showing their char-

acteristics is provided in Figure 2.6 and their definitions and features are detailed in the next para-

graphs. 

 

Figure 2.6. Diagram illustrating self-consumption, collective self-consumption and energy commu-

nity.(Source: [27]) 

 

https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=uriserv:OJ.L_.2019.158.01.0022.01.ENG&toc=OJ:L:2019:158:TOC
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• Individual Self-Consumption 

Self-Consumption stands for final customers that consume the energy they produce on site. Both, 

the recast Renewable Energy Directive [6] and Electricity Market Directive [7], introduce new defi-

nitions formally recognizing self-consumers: 

- Electricity Market Directive (2019) Article 2/8 [7]  

“Active customer means a final customer, or a group of jointly acting final customers, 

who consumes, or stores electricity generated within its premises located within confined 

boundaries or, where permitted by a Member State, within other premises, or who sells 

self-generated electricity or participates in flexibility or energy efficiency schemes, pro-

vided that those activities do not constitute its primary commercial or professional activ-

ity”. 

- Renewable Energy Directive (2018) Article 2/14 [6] 

“Renewable self-consumer means a final customer operating within its premises located 

within confined boundaries or, where permitted by a Member State, within other prem-

ises, who generates renewable electricity for its own consumption, and who may store or 

sell self-generated renewable electricity, provided that, for a non-household renewables 

self-consumer, those activities do not constitute its primary commercial or professional 

activity”. 

Final consumers, who are the ones who produce and consume electricity, are allowed to 

store and sell the electricity they have used within their installations. Member States may 

also extend this scope beyond the consumers' own premises. However, these activities 

are not allowed in cases in which these are the actors' primary professional or commercial 

activities. 

Although the definition of renewable self-consumers is different from that of active cus-

tomers, the CEP also allows them to participate in various energy efficiency schemes and 

flexibility programs. 

• Collective Self-Consumption 

The increasing financial viability of installing small renewable generation units and the emer-

gence of a sharing economy have led to an increase in the number of people who are interested in 

directly sharing their electricity with other consumers. This concept is now formally recognized at 

the EU level legislation. 
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In the Electricity Market Directive [7], the concept of active customers includes groups of jointly 

acting customers, whereas the Renewable Energy Directive [6] defines jointly acting renewable self-

consumers in a separate definition: 

- Renewable Energy Directive (2018) Article 2/15 [6] 

“Jointly acting renewable self-consumers means a group at least two jointly acting re-

newable self-consumers (…) who are located in the same building or multi-apartment 

block”. 

This definition only applies to renewable self-consumer groups that are located in multi-

unit residential buildings. Member States can't extend this concept beyond these buildings 

[27]. 

The primary difference between the two definitions of renewable self-consumers (Table 

2.1) is that renewable self-consumption is about a single consumer generating renewable 

electricity on its premises for its own individual consumption, while jointly acting renew-

able self-consumers implies that multiple consumers come together to generate renewa-

ble energy on their same building or multi-apartment to meet their collective consumption 

needs.  

Table 2.1. Renewables self-consumption definitions under the Renewable Energy Directive (Adapted 

from [28]) 

 

 

• Energy Communities 

The Clean Energy Package contains two definitions for Energy Communities: CEC which is con-

tained in the recast Electricity Market Directive [7], and Renewable Energy Communities (REC), 

which is included in the recast Renewable Energy Directive [6].  

The concept of CEC is defined in the Electricity Market Directive (2019) Article 2/11 [7]: 

Article 2(14) REDII: 'renewables self-consumer' Article 2(15) REDII: 'jointly acting renewables self-consumer'

A final customer operating within its permises 

located within confined boundaries or, where 

permitted by a Member State, within other 

premises who generates renewable electricity for 

its own consumption and who may store or sell 

self-generated renewable electricity, provided that 

for a non-household renewables self-consumer, 

those activities do not constitute its primary 

commercial or professional activity.

A group of at least two jontly acting renewables self-consumers in 

accordance with point (14) who are located in the same building or 

multi-apartment block.
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“Citizen Energy Community means a legal entity that: (a) is based on the voluntary and open 

participation and is effectively controlled by members or shareholders that are natural persons, local 

authorities, including municipalities, or small enterprises; (b) has for its primary purpose to provide 

environmental, economic or social community benefits to its members or shareholders or to the local 

areas where it operates rather than to generate financial profits; and (c) may engage in generation, 

including from renewable sources, distribution, supply, consumption, aggregation, energy storage, 

energy efficiency services or charging services for EVs or provide other energy services to its mem-

bers or shareholders“; 

The Renewable Energy Directive (2018) Article 2/16 [6] states the REC model: 

“Renewable Energy Community means a legal entity: (a) which, in accordance with the applica-

ble national law, is based on open and voluntary participation, is autonomous, and is effectively 

controlled by shareholders or members that are located in the proximity of the renewable energy 

projects that are owned and developed by that legal entity; (b) the shareholders or members of which 

are natural persons, Small and Medium-sized Enterprises (SMEs) or local authorities, including mu-

nicipalities; (c) the primary purpose of which is to provide environmental, economic or social com-

munity benefits for its shareholders or members or for the local areas where it operates, rather than 

financial profits”;  

 

Table 2.2. The Energy Communities definitions in the CEP (Adapted from [28]) 

 

 

Article 2(16) Recast Renewable Energy Directive Article 2(11) Recast Electricity Directive

Renewable Energy Community' Citizen Energy Community'

A legal entity: A legal entity:

which in accordance with the applicable national 

law; is based on open and voluntary participation; 

is autonomous; and is effectively controlled by 

shareholders or members that are located in the 

proximity of the renewable energy projects that are 

owned and developed by that legal entity;

is based on voluntary and opne participation and is effectively 

controlled by members, local authorities, including municipalities, or 

small entreprises.

the shareholders or members of which are natural 

persons. SMEs or local authorities, including 

municipalities.

has for its primary purpose to provide environmental, economic or 

social community benefits to its members or shareholders or to the 

local areas where it operates rather than to generate financial profits, 

and

the primary purpose of which is to provide 

environmental, economic or social community 

benefits for its shareholders or members or for the 

local areas where it operates, rather than financial 

profits.

may engage in generation, including from renewable sources, 

distribution, supply, cinsumption, aggregation, energy storage, energy 

efficiency services or charging services for electric vehicles or provide 

other energy services to its members or shareholders.
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The two definitions are based on principles-based elements that must be met in order for a set of 

installations to be considered an energy community. This first criterion requires the creation of a 

legal entity that is organized around certain governance and ownership principles. Both definitions 

imply that collective ownership can be organized around a specific energy-related activity. This is 

because some of the elements of the CEC and REC definitions are similar. 

In CEC, no proximity or geographic limitation to the energy project is required. According to 

Electricity Directive (Art. 16.2a) [7], Member States may provide in the enabling regulatory frame-

work that CEC “are open to cross-border participation”. Accordingly, this type of community can 

correspond to a virtual network since participation is not restricted to a specific location. The primary 

resource that is used is not necessarily renewable energy, however it is limited to activities in the 

energy sector. 

On the other hand, a proximity requirement needs to be defined for REC and shareholders or 

members do not include large companies. The activity is open to all sources of renewable energy 

(e.g., also heat), but it is restricted to renewable energy technologies.   

Both concepts are summarized in Table 2.3, where EMD is the acronym for Electricity Market 

Directive and RED stands for Renewable Energy Directive. 

 

Table 2.3. Overview of conceptual dimensions regarding the Citizen and the Renewable Energy Com-

munities (Adapted from [29]) 

 

 

Energy Sector

Legal form

Structure Actors Structure Actors

Open and voluntary Any Open and voluntary Natural persons, local authorities and SMEs 

whose participation does not constitute their 

primary economic activity

Structure Actors Structure Actors

Effective control Natural persons, local authorities and 

smal and micro-sized enterprises

Effective control Natural persons, local authorities and SMEs 

whose participation does not constitute their 

primary economic activity

Autonomy

Geographical 

limitation

Activities

Purpose

Social, economic and environmental benefits for 

members/shareholders or the local area in which it operates

Social, economic and environmental benefits for members/shareholders 

or the local area in which it operates

RED IIEMD

Large energy companies cannot exercise any decision-making 

power

Explicitly mentioned

No Those in control need to be located proximity of projects owned and 

developed by the community

Generation, distribution, supply, consumption, sharing, 

aggregation and storage of electricity.

Energy-efficiency services, EV charging-services, other energy-

related services (commercial)

Generation, distribution, consumption, storage, sale, aggregation, 

supply and sharing of renewable energy.

Energy-related services (commercial)

Participation

Control

Any Any

Renewable energy market (heat and electricity based on renewable 

energy)

Electricity market (technology-neutral)
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2.3. Overview of National frameworks for Energy Com-

munities in the EU 

Since a few years ago, the discussion and the initial implementation of Collective Self-Consump-

tion (CSC) schemes has been ongoing in some EU Member States while the legislative processes on 

Energy Communities is in its early stage in most countries. A working paper developed in 2019 [30] 

provides an overview of the status quo of national approaches for CSC and Energy Communities and 

assesses their relation to the EU directives. A cooperation group of Smart Grids and Energy Storage 

H2020 projects (BRIDGE – horizon 2020) also developed a report whose main objectives were to 

provide an overview of the existing legal developments regarding energy communities in the EU and 

to build recommendations for the European Commission [29]. This section provides an overview of 

different European countries’ frameworks based on the previously mentioned documents. 

For CSC, the national approaches mostly refer to multi-family houses and mixed use with offices 

and-or Small and Medium-sized Enterprises (SMEs). Partly, CSC is also enabled between different 

buildings. In this context, storage is also an important element to maximize the self-consumption rate 

of locally produced electricity and is partly specifically considered in the legislation e.g., through 

incentive schemes. In some countries, CSC is currently allowed only in a limited way (e.g., via pri-

vate grids) or tolerated within a regulatory grey zone. In the field of Energy Communities legislation 

is much less advanced. The heterogeneity of national legislation in the analyzed countries is very 

large apart from being continuously changing.  

In 2016 and 2017 important legal changes were introduced in Austria [31], France [32] and Ger-

many [33], related to the direct use of locally generated electricity by the tenants in multi-family 

houses or commercial buildings via a private grid. In 2016, Greece passed a law on virtual net me-

tering which was complemented by a law on energy communities in 2018 [34]. Slovenia [35] and 

the Wallonia region of Belgium [36] adopted laws on CSC and Energy Communities, while Luxem-

bourg has drafted a law in 2018 [37]. 

Table 2.4 gives an overview of CSC and Energy Community schemes in the EU Member States 

[30]. In the case of Energy Communities, full transposition of the EU provisions is not yet the case 

in EU Member States. However, specific elements or framework legislation with further need for 

specification are in place in some cases. Because legislation on energy communities is not clearly 

attributed to either REC or CEC, Table 2.4 makes no distinction regarding this point.  
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Table 2.4. Collective self-consumption and energy community frameworks in selected EU MS and 

Switzerland (June 2019) (Source: [30]) 

 

 

The next paragraphs detail the situation on CSC and Energy Communities in some EU countries. 

Austria’s amendment of the Electricity Act in 2017 [31] supports private and commercial CSC 

(in e.g., multi-apartment buildings) which previously was hardly possible. This amendment defined 

specific aspects of these models on building scale such as the role of the different involved actors 

and the required contractual relationships between them. Neighboring buildings so far are not cov-

ered. 

The renewable energy legislation extends the scope of the CSC framework to energy communi-

ties. This includes REC according to the Renewable Energy Directive [6] that may have cooperative 

structures for generating, storing and delivering renewable electricity across different real estate 

boundaries. Current discussions on local grid tariffs between the regulator and market agents include 

the idea that consumers only using the Low Voltage (LV) grid also only pay the LV grid related term 

of the grid tariff. The spatial and regulatory boundary of an energy community would be MV/LV 

substation. 

On April 5th 2019, the Spanish government approved the Royal Decree 244/19 [38] that regulates 

the administrative, technical and economic conditions of self-consumption in Spain. This Decree 

completes the regulatory framework on this issue, driven by Royal Decree-Law 15/2018 [39], which 

repealed the so-called sun tax (the term solar tax or “impuesto al sol” was a toll or tax that Spanish 

authorities asked to be paid for the costs of distribution and maintenance of the electricity network 

in Spain [40]), and provides increased certainty and security to users. Among other measures, the 

royal Decree – Law 15/2018 [39] enables CSC by groups of apartment owners or in industrial estates; 

it reduces administrative procedures, especially in the case of small self-consumers, and establishes 
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a simplified mechanism for compensation of energy fed into the public grid. Self-consumption was 

previously allowed with generation facilities located in the same dwelling only. According to the 

new rules, power surpluses may be shared with nearby consumers also in other buildings or fed to 

the grid. The generation facilities are connected to the internal network of associated consumers 

(direct lines) or to the LV network derived from the same MV/LV substation. Self-consumed energy 

from renewable sources, cogeneration or waste will be exempted from all kinds of charges and taxes. 

The law distinguishes between: 

a) Modalities for self-consumption without surpluses. In these cases, an antifouling mecha-

nism must be installed to prevent the injection of surplus energy into the distribution 

network. In this case there will be a single type of subject, who will be the consumer; 

b) Modalities of supply with self-consumption and surpluses. In these cases, production fa-

cilities that are close to and associated with consumption facilities may, in addition to 

supplying energy for self-consumption, inject excess energy into the distribution net-

works; 

c) Production facilities not exceeding 100 kW associated with surpluses will be exempted 

from the obligation to register as an electricity production unit and will be subject only 

to technical regulations; 

d) Regulations may be developed for production facilities below 100 kW for a simplified 

compensation mechanism between deficits of self-consumers and surpluses from its as-

sociated production facilities. For installations above 100 kW, surplus energy is sold on 

the electricity market. 

In Wallonia/Belgium in May 2019 a legislative framework promoting CSC and REC was 

adopted [36]. According to this framework, the specific purpose of a REC is to produce, consume, 

store, and sell renewable electricity for the benefit of participants at the local level using the public 

network or a private grid. Several entities (natural or legal persons) within a “local perimeter” can 

agree to share and store their production and electricity consumption based on electricity exclusively 

produced from renewable sources or high-quality cogeneration (cogeneration with a specific effi-

ciency). The law defines such a local perimeter as a grid segment whose connection points are located 

downstream of one or more MV/LV substation units. Thus, as opposed to proximity definitions using 

a predefined distance, local perimeters can have different extents, taking into account in particular 

the technical characteristics of the network.  

Citizen participation in the energy transition has a strong tradition in Germany. Ownership of 

renewable energy units by single owners or communities dates back to the early 70s. A survey 
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developed on March 2020 [41], refers that exist over 800 energy cooperatives operational in Ger-

many (e.g EWS Schsönau eG [42], Isarwatt eG [43] and UrStrom eG [44]). The legal concept of 

CSC was introduced in Germany in 2017 [33] and it allows the plant operator in a multifamily house 

to sell locally produced electricity to the tenants in direct proximity. However, it has an unclear 

definition of proximity [45]. Citizen Energy Companies should contain at least ten natural persons 

who are members eligible to vote, in which at least 51 per cent of the voting rights are held by natural 

persons with a permanent residency in the administrative district of the project location. Further, no 

member or shareholder of the undertaking shall hold more than 10 per cent of the voting rights.  

Self-consumption in France is detailed in the Law 2017-227 [46] and in the Decree 2017-676 

[32] which contain provisions for individual and collective self-consumption. These provisions are 

included in the French Energy Code. The definition of the two forms of self-consumption includes 

that individual self-consumption does not involve the public grid for sharing the produced electricity 

while collective self-consumption does. CSC is allowed if electricity is produced and consumed by 

several consumers and producers linked together through a legal entity. According to the French 

PACTE law adopted in April 2019 [47], the geographical scope no longer relates to a transformer 

MV/LV but refers to proximity within the LV grid.  

A law on energy communities was introduced in Greece in 2018 [34] and expanded the scope of 

virtual net metering to energy communities. This law defines energy communities as civil law part-

nerships with the exclusive aim of promoting the social economy, encouraging solidarity and inno-

vation in energy, responding to energy needs, promoting energy sustainability in the production, 

storage, self-consumption, distribution and supply of energy and increasing energy efficiency in final 

consumption on the local and regional level. The proximity requirement is transposed through the 

requirement that 50% plus one of the members need to be located in the same District as the head-

quarters of an Energy Community. 

A regulation on self-supply with electricity from renewable energy sources was adopted in Slo-

venia on May 1st 2019 [35]. It allows two forms of CSC: 

- CSC in multi-apartment buildings, where the inhabitants can share energy from a renewable 

energy source generation unit connected to the LV network of the building. The renewable 

energy source production unit is located on the building and is connected through its own 

metering point to the point of common coupling of the building network with the LV distri-

bution grid;  

- CSC in renewable energy source communities that can be formed by customers in various 

types of dwellings. The renewable energy source production unit can be located at a separate 
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building and is connected to a dedicated production metering point on the LV distribution 

grid. The consumers participating in the renewable energy source community can consume 

electricity through two or more consumption metering points that are connected to the LV 

distribution grid of the same LV transformer station as the metering point of the renewable 

energy source production unit.  

Inn Portugal the 2014 Decree-Law [48] introduced the definition of Small Production Units for 

Self-consumption (in Portuguese termed as UPACs), which were limited to individual or collective 

persons, with each production unit being associated only to one single meter, thus rendering impos-

sible any form of collective renewable Energy prosumer initiative.  

As a response to the recast of Renewable Energy Directive [6], a new Decree-Law was issued on 

the 25th of October 2019 (DL 162/2019) [49]. This Decree-Law came into force on January 1st, 2020 

for self-consumption and Renewable Energy Communities with intelligent metering system and in-

stalled at the same voltage level, and in 2021 for other self-consumption activities. This Decree-law 

allows self-consumers to group together, and the same unit of energy production may have several 

self-consumers (collective self-consumption). This new regime allows direct exchange between two 

or more prosumers and sets the ground for the development of various collective self-consumption 

business models (including P2P schemes). It is also allowed that self-consumers and other partici-

pants in renewable energy projects constitute legal entities (the Energy Communities) for the pro-

duction, consumption, sharing, storing and selling of renewable energy. 

The main objective of this Decree-Law is to create the conditions for Portugal to achieve the goals 

defined within the scope of the National Energy-Climate Plan for 2021-2030 [50], namely to achieve 

a share of 47% regarding the energy from renewable sources in the gross final consumption in 2030, 

as well as to reduce the price of electricity for those who adhere to self-consumption. 

This legal text aims at inducting greater efficiency from an energy and environmental point of 

view and ensures that the benefits from energy transition (e.g., costs of the national electricity sys-

tem) are shared in a fair and impartial way, both by companies and by citizens interested in partici-

pating, without public subsidies. 

For the first time, there was a legal framework for jointly acting self-consumers and REC, which 

is a copy of the recast of the Renewable Energy Directive definition. The mentioned legal framework 

does not clearly set spatial limits for the proximity between prosumers (i.e. in km), although DL 

162/2019 Art.5 states that members of the community should be located within the proximity of the 

renewable energy installation. For each case, neighborhood relation or project proximity should be 

assessed by the National Directorate for Energy and Geology (DGEG) considering the project 
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physical and geographic continuity, and jointly acting self-consumers and REC. The definition of 

the proximity criterion can also consider the project connected substation, different voltage levels or 

other legal and technical issues. 

There were no legal provisions for CEC. However, DL 162/2019 offers equally a legal basis for 

aggregators and the use of Guarantees of Origin (producers and energy suppliers may use this mech-

anism), allowing the setting up of new business models and new networks and social innovations 

that may further develop CEC in Portugal. 

Administrative procedures for UPACs registration and licensing are also simplified by the DL 

162/2019: 

- Capacity equal or under 350 W: no previous control was required; 

- Capacity between 350 W and 30 kW: it was required a previous communication to 

DGEG; 

- Capacity between 30 kW and 1 MW: they needed a previous registration and an opera-

tion certificate; 

- Capacity higher than 1 MW: it was required to have a production and operation licenses. 

Concerning the remuneration, DL 162/2019 stated that collective self-consumption and REC 

should receive a remuneration for surplus energy supplied to the grid that reflected the market value 

of that electricity and which can be commercialized by an independent aggregator or utility company. 

It also recognized a new actor, Entidade Gestora do Autoconsumo (EGAC), which is a legal entity 

that represents collective self-consumption participants. 

It was also stated in Decree Law 162/2019 Art. 18 (n. 4), that charges associated with CIEG 

(Custos de Interesse Económico Geral), a subsidiary tariff named Costs of General Economic Inter-

est, could be totally or partially deducted from the grid access tariffs. In 19th June 2020, a government 

dispatch, n.º 6453/2020 [51], stated that self-consumption and CER projects, starting operation till 

the end of the calendar year 2021, benefited from an exemption from charges corresponding to 

CIEGs network access charges for seven years. 

On 20th March 2020, the Portuguese regulatory agency Entidade Reguladora dos Serviços Ener-

géticos (ERSE)  approved the Regulation for implementing the new self-consumption regime, n. 

266/2020 [52].  In May 2021, ERSE replace the former Regulation 266/2020 with new regulation 

regime, n. 373/2021, that includes storage pilot projects [53]. Specifically, the designation of con-

sumption, production or storage facility is adopted. On the other hand, EGAC is the entity that must 

interact with the DSO, so that energy sharing by collective self-consumption communities can be 

managed. It also needs to cooperate with aggregators for selling exceeding energy purposes. 
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In 14th January 2022 it was published in Diário da República the Decree-Law n. 15/2022 [54], 

that establishes the organization and functioning rules of the National Electric Systems, incorporating 

in a single legislative instrument a wide range of diplomas. It revokes and refreshes Decree Law 

162/2019 and details the scope for control procedures for electricity production and storage. The 

main amendments introduced details for Self- Consumption, the concept of proximity between the 

UPACs and the utilization installations, with the law establishing the maximum distance between 

them (Art. 81-90) [54]. In Art. 187-191 it is also included the concept of CEC and REC (art. 187-

191) [54]. Overpowering and Repowering (Art. 62-73) [54] are considered non-substantial changes 

and can be requested after the production license is issued and shall not lead to autonomous procedure 

of modification title and, in the case of wind or solar plants, no new environmental impact evaluation 

will be required. In wind farms already in operation, it is accepted that they may inject into the grid 

the additional energy resulting from prior control titles (operating licenses), maintaining the connec-

tion power unchanged, with the energy being remunerated in accordance with the remuneration sys-

tem in force and for the applicable period. For all generating plants, with the exception of hydroe-

lectric projects with a connection capacity exceeding 10 MVA, it is accepted that they may increase 

the installed power up to a limit of 20% of the connection power, with the connection power remain-

ing unchanged. In this Decree Law, it is also defined the concept of hybridization (Art. 74-78) [54] 

corresponding to the inclusion of a new renewable energy plant into an existent generation plant. 

Unlike overpowering, it may be granted to a different owner of the generating plant or UPAC without 

the need for a dominance relationship. 

It is foreseen the exemption from the RESP operator's intervention, provided the requirements 

laid down by law are met, being applicable until the injection capacity of the RESP, established by 

an annual quota set by the Government member responsible for the energy sector, is reached.  

2.4. Peer-to-Peer markets  

The Clean Energy Package provides a framework for new energy initiatives that are aimed at 

increasing the participation of small and medium-sized energy producers in the energy market. It 

also allows consumers to play a more prominent role in the energy transition. Through the CEP, 

consumers can now have more options when it comes to their energy consumption and their choice 

of home appliances. It allows them to take informed decisions regarding the use of their electricity. 

Passive energy consumers can also become prosumers by actively investing in and participating in 

renewable energy initiatives [5]. This new framework, called by some authors as the democratization 

of energy, aims to provide a more decentralized and open energy market. This new approach also 

paves the way for the establishment of new electricity markets. One of these is the P2P mechanisms, 
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which are designed to provide a more direct and transparent connection between small consumers 

and energy producers. Consequently, P2P electricity trading has become the next generation of smart 

grid energy management schemes that allows prosumers to participate in electricity trading activities 

[55]. 

The Renewable Energy Directive [6] recognizes prosumers as entities which have the right to 

consume, store or sell renewable energy generated on their premises: 

- individually, that is, households and non-energy SMEs and collectively, for example in 

tenant electricity projects ([6], Art. 21), or 

- as part of Renewable Energy Communities organized as independent legal entities ([6], 

Art. 22) 

On the other hand, the 2019 Electricity Directive (recast) of the European Commission [7], de-

scribed in Section 2.2.2, is aligned with the concept of P2P since it allows prosumers to participate 

in electricity trading activities. 

So, both directives expressly place the consumer at the heart of the energy markets [56], where 

they have the right to consume, to generate renewable energy, including for their own consumption 

and to store or sell excess electricity production. This could be done via bilateral trading, aggregators 

and P2P trading, receiving a market-based remuneration and guarantying the access to all suitable 

energy markets directly or via aggregation.  

The electricity market was typically settled in a unidirectional way, where generation companies 

sell large amounts of electricity to retailers in the wholesale market, and retailers then sell electricity 

in smaller amounts to end users in the retail market. However, the P2P energy trading encourages 

multidirectional trading within a local geographical area. To address some of these challenges, P2P 

electricity trading emerged as a new alternative to foster the deployment of distributed generation 

technologies. It allows a direct interaction between market participants without considering a third 

party involvement [57]. Through P2P, customers can benefit from lower energy costs by sharing 

their surplus generation with other people in need. This provides both the consumer and the energy 

producers with a win-win situation [58]. 

An overview of key aspects of P2P energy trading was made by Zhou el al  [58].  It includes a 

description of market designs, different trading platforms, physical and information and communi-

cation technology (ICT) infrastructures. These aspects are illustrated in Figure 2.7 and summarized 

in the following sections.  
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Figure 2.7. Overview of key aspects in P2P energy trading (Source: [58]) 

 

2.4.1. Market Design  

 

The decentralization of energy markets, taking into account the increase of DER units, led to 

innovative market arrangements in P2P energy trading: 

a) Centralized, decentralized and distributed 

Based on the level of centralization, market design models for P2P energy trading can be 

organized into 3 categories: centralized, decentralized and distributed markets as illustrated 

in Figure 2.8. 
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Figure 2.8. Categorization of markets for P2P energy trading. (a) Centralized markets; (b) Decentral-

ized markets; (c) Distributed markets (Source: [58]) 

 

In a centralized market, a coordinator communicates with each peer and collects information 

from them. With the obtained information, the coordinator directly decides the energy transactions 

of the peers or the operational status of the devices among the peers. The revenue generated by the 
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P2P community is then distributed to the members by the coordinator according to predefined prin-

ciples. 

One of the main advantages of a centralized market is its ability to maximize the social welfare 

of the whole P2P community. It allows the coordinator to set the goals of the community and ensure 

that the members are satisfied with the services that they receive. [59]. One of the main disadvantages 

of this type of market is its complexity due to the amount of computational work involved in man-

aging the various Distributed Energy Resources (DER) units. This kind of markets are vulnerable to 

single-point failures at the coordinators.  

A number of studies have been conducted on the potential advantages and disadvantages of cen-

tralized markets for P2P electricity trading [59-62]. 

Unlike a centralized market, decentralized P2P trading platforms do not have centralized coor-

dinators. Instead, they allow peer-to-peer transactions. This type of market does not explicitly max-

imize the social welfare of the whole P2P community [63]. The advantages of a decentralized market 

are its scalability and ability to allow its members to easily plug-in and out.  

However, one of the biggest issues of decentralized markets is their lack of predictability, which 

can impact the operation of electricity distribution systems [64]. Thus, it becomes more complex to 

manage network constraints and more difficult to improve the operational efficiency of the power 

systems [64].  

In decentralized markets, peers are exposed to significant uncertainties, which can affect the in-

terests of their vulnerable customers. For instance, load and generation curtailments can occur under 

the continuous double auction mechanism described in [65]. A more detailed overview on decentral-

ized P2P energy markets is provided in [64, 66-69].  

Distributed energy markets are a type of design where the coordinator influences the other par-

ticipants in the market by sending price signals. This type of system does not directly instruct the 

other participants on the status of their devices [70-72]. Unlike a fully decentralized market, a dis-

tributed market still has a coordinator to ensure that the other participants' behavior is coordinated. 

This type of market does require some information from its peers, but it does not directly control the 

devices of its participants. Due to the decentralized nature of its design, distributed markets provide 

a higher level of autonomy and privacy for their participants. They also combine the features of a 

central and a decentralized market [58]. A number of studies have proposed distributed markets for 

P2P energy trading as the ones described in [73-79]. 
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Electricity products are typically differentiated from one another due to how they have varying 

prices and values. The wholesale market typically has different prices for electricity delivered over 

different time periods. Retail markets also utilize various pricing mechanisms such as time-of-use 

tariffs, real-time pricing and critical peak pricing [80]. In addition to these, electricity also has dif-

ferent pricing mechanisms based on the accumulated consumption. For instance, in some countries, 

such as China [81], Canada, and South Africa [82], it is adopted the incline block tariffs where elec-

tricity prices are divided into several levels based on the accumulated electricity consumption in a 

month. 

Through P2P energy trading platforms, electricity products can also be differentiated from one 

another. This is because these markets operate in local energy systems that have specific character-

istics. They are more flexible when it comes to implementing their settings. 

A number of studies have been conducted on the potential of electricity products to be differenti-

ated from one another in P2P energy trading platforms. For instance, in a study conducted by Morstyn 

et al. [77], it is proposed a multi-class management framework for electricity trading. This type of 

system would allow users to choose which type of electricity product they want to use (green energy, 

subsidized energy, and grid energy) which are preferred by different types of prosumers. These re-

searchers proposed a consensus-based approach that would allow electricity products to be differen-

tiated from their peers. For instance, in a case study, they noted that certain costs would be imposed 

on trades involving a different distance between the peers. 

In the future, different designs for electricity trading will be developed and adopted. These will 

allow for the development of products that can be differentiated based on supply reliability or power 

quality. The differentiation of electricity products is summarized and illustrated in Figure 2.9. 

 

 

Figure 2.9. Differentiation of electricity products (Source: [58]) 
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The stability in P2P energy trading markets can be defined as the ability to keep peers within the 

market. Zhou et al. [58] mentioned several studies, such as the ones presented in [57, 61, 62, 64, 66-

68, 70, 71, 73-79, 83], which assumed that there was only one uniform P2P energy trading market 

for the considered area. Nevertheless, it is possible to have several P2P market service providers in 

an area, which compete with each other to recruit peers for the markets they have established. In such 

cases, the stability would become an important dimension for evaluating a P2P energy trading market 

design. In order to access the impact of P2P energy trading, on both individual peers and wider 

society, Zhou et al. [58] proposed an evaluation on how peers will be grouped for a certain area when 

they are free to form P2P coalitions. 

Despite the various opinions about the potential of electricity trading, the evolution of power 

system markets is still not clear. As indicated in [84-86] the conventional wholesale and retail mar-

kets will continue to exist for a long time. This is why it is important that the studies on the relation-

ship between the emerging P2P and existing energy trading platforms are conducted. Detailed dis-

cussions on the relationship between the retail and P2P markets can be found in [59, 61, 68, 75, 76, 

78, 87]. Although the relationship between the two is examined in detail in [57, 77, 83], in most 

studies peers are assumed to first trade with each other, and then trade with the wholesale [60, 77, 

83] or retail market [59, 61, 87] individually or in aggregate (depending on the scale of the peers and 

the design of the market for P2P energy trading) in order to deal with the energy imbalance. In other 

words, the conventional wholesale or retail market acts as the "residual balancer" for the peers in 

P2P energy trading. This allows the P2P trading system to maintain a steady supply of electricity 

while ensuring that the consumers are satisfied with the overall performance of the market. The 

“community-based market”, presented in [88], is an example of this type of relationship as illustrated 

in Figure 2.10. 

 

 

Figure 2.10. Community-Based P2P structure (Source:[88]) 
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Another type of market design that is proposed for electricity trading is the direct energy trading 

between retailers and small producers. This type of system can be used to allow both the retailers 

and the generators to participate in the market. Sousa et al. [89] presents an example of this type of 

market design. Moreover, the proposed bilateral contract arrangements could be applied to enable 

direct energy trading among prosumers, retailers, and generation units as well [64].  

The modeling of decision-making processes of entities with conflicting interests can be done with 

game-theoretic approaches. It can also motivate entities to compete or cooperate in order to achieve 

certain goals. Thus, game-based models have a large potential for application in P2P energy trading 

[90]. 

Simulations of the potential outcome of P2P markets have been conducted through non-coopera-

tive game frameworks. The Nash equilibrium1 of a microgrid, in which prosumers with onsite PV 

systems and flexible demand trade with each other, was calculated in order to assess the outcome of 

P2P energy trading [91]. Non-cooperative game-based approaches were also used in [78] to model 

the behavior of the peers. Furthermore, non-cooperative auction-based approaches have been used 

as the core mechanisms of distributed P2P energy trading markets. 

Stackelberg game-based2 approaches have been used in some studies for establishing pricing 

mechanisms in distributed P2P energy trading markets. In [74], the coordinator acted as the “leader” 

and the peers acted as the “followers” while in [78], the sellers acted as the “leaders” and the buyers 

acted as the “followers”.  

A variety of game-theoretic approaches have been proposed, as summarized in [90], although 

only a few have been used for P2P energy trading in existing studies. Game-theoretic approaches are 

valuable models and techniques to be utilized in the future for modeling the trading behavior of peers 

and for designing and assessing P2P energy trading markets. 

2.4.2. Trading platforms 

Through P2P platforms, electricity users can easily trade their energy supply while following the 

market rules. Moreover, they can monitor the energy consumption of their peers. Its underlying tech-

nology can be distributed across decentralized or centralized platforms. 

 

1 In game theory, the Nash equilibrium is a solution concept of a non-cooperative game involving two or more players, in 

which each player is assumed to know the equilibrium strategies of the other players, and no player has anything to gain 

by changing only its own strategy.  
2 The Stackelberg model is a strategic game in economics in which the leader firm moves first and then the follower firms 

move sequentially. 

https://en.wikipedia.org/wiki/Economics
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Regarding the centralized trading platforms Long et al. [75] developed a microgrid-based P2P 

energy trading system. It allows electricity producers to list their products and consumers to place 

orders. Each order includes when and how much electricity needs to be supplied between the pro-

ducers and consumers. The DSO and the electricity suppliers also share information with the plat-

form to balance electricity excess/deficit and determine whether the P2P trading would violate the 

network limits. In reference [92] it is also proposed an electricity trading system which enables 

prosumers to sell electricity to peer.  

Due to the increasing number of concerns about the security and reliability of P2P platform trans-

actions, more emphasis is being placed on the use of blockchain technology. This type of technology 

is a cutting-edge innovation that can help decentralize electricity trading. A comprehensive review 

on this topic is provided in [93], which establishes an analytical framework for blockchain-based 

microgrids. The decentralization feature of blockchain is considered to be well matched with the 

decentralized characteristic of P2P energy trading, where electricity supply is no longer provided by 

centralized large generators, but rather by small prosumers with DERs.  

Blockchain is an emerging technology that has the potential to fulfill security, privacy and pay-

ment transaction requirements in distributed energy trading. Blockchain technology was proposed in 

2008 and began with cryptocurrencies like bitcoin but since then it has expanded beyond the world 

of finance and banking. Its application in the energy field refers to the energy blockchain and it 

combines conventional and renewable energy sources based on blockchain technology. Moreover, 

apart from promoting a more efficient use of traditional energy, it also accelerates the widespread 

use of new energy sources as addressed in  [94, 95].  In this setting, [74] and [76] utilized blockchain 

technology to develop platforms for P2P electricity trading based on the industrial Internet of Things 

(IoT) concept. 

Compared with traditional energy technologies, applying blockchain into the energy field has the 

following technical advantages [96, 97]: 

- ability to create a simplified and efficient multi-layer trading system. It eliminates the 

need for third parties to coordinate the activities of the electricity supply chain. Through 

its decentralized network, producers and consumers can easily connect and conduct 

transactions; 

- allows consumers and energy traders to perform electronic contracts through a consen-

sus mechanism. This ensures that the transactions are secure, tamper-proof and robust 

to single point failure; 
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- ability to create smart contracts, which are easy to execute and can be used to reduce the 

costs of compliance and contracting. This is particularly beneficial for P2P transactions, 

which involve low-value transactions between small-scale customers with DERs. 

The blockchain technology will not be detailed in this work. However, some details and discus-

sions about blockchain technology are available in [98]. 

The application of blockchain in the energy field is mainly concentrated on energy trading, EVs 

charging, security of power information, carbon trading, demand side response, distributed and 

multi-complementary energy systems (as shown in Figure 2.11). The next paragraphs provide further 

information on these application areas. 

 

Figure 2.11. Applications of blockchain in energy sector (Source: [94]) 

 

a) P2P energy trading 

The blockchain based P2P energy trading model can provide an efficient, inexpensive, open 

and trustworthy trading platform in decentralized energy systems. The power trading process based 

on blockchain has great potential in decentralized energy systems (Figure 2.12). 
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Figure 2.12 Blockchain-based power trading process (Source: [94]) 

 

A number of studies have shown how blockchain technology can be used to facilitate P2P energy 

trading, particularly using IoT. For instance, a blockchain was used to develop platforms for the 

exchange of energy between producers and consumers [74, 76]. A consortium blockchain was pro-

posed in [74] for supporting P2P energy trading in microgrids, energy harvesting networks, and ve-

hicle-to-grid applications. In [76], a local electricity storage solution was proposed to address the 

issue of a long chain maintaining many blocks possibly being created during P2P energy trading, and 

thus reducing the operational overhead. Kang et al. [73] designed a consortium blockchain for P2P 

energy trading between plug-in hybrid EVs, which could improve transaction security and privacy 

protection level. Aitzhan et al. [99] developed a blockchain-based platform that allows energy traders 

and producers to conduct secure and private transactions.  

b) Electrical Vehicles, EVs 

The rapid emergence and growth of EVs is expected to be induced by various factors such as 

lower costs, faster charging, and better vehicle performance. However, the lack of charging infra-

structure is still a major issue that is preventing many car owners from fully embracing the technol-

ogy.  

Currently, there are a number of electric vehicles charging providers and payment platform oper-

ators. Unfortunately, the standards for electric vehicle charging aren't uniform, which makes it very 

inconvenient for car owners. With blockchain technology being used in these operation platforms, 
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the management of electric vehicle charging will be streamlined, and the security of their system will 

be improved [100]. 

c) Physical information security 

One of the most common security measures that electricity distribution companies use to prevent 

unauthorized access to their networks is by building communication lines. However, this method can 

be costly and can be vulnerable. Instead, they can use the data collected by their equipment in the 

line transmission system. According to a study conducted by Ding et al. [101], blockchain technology 

can help addressing some of the security issues that information and physical systems face. These 

authors discussed about the various factors that can affect the operations of blockchains, such as the 

loss of private keys and privacy leaks. In the mentioned paper, it is discussed the multiple security 

measures that can be implemented to protect energy blockchains. These include structural, manage-

ment, and ontological security. 

d) Carbon trading 

Due to the complexity of the carbon emission market, it is currently difficult to track and manage 

multiple transactions in its trading and certification system. Blockchain technology can be used to 

help solving this issue by providing a central management platform for the trading of carbon rights 

[102]. On the other hand, consumers can use tokens representing energy production or tradable dig-

ital assets to buy, sell or exchange renewable energy with each other. So, the development of P2P 

financial transactions through blockchain technology can help strengthen the climate financing 

flows.  

e) Virtual Power Plants 

VPPs can also benefit from blockchain technology by establishing a central management platform 

that can operate the distributed generation and energy storage systems. These facilities can then par-

ticipate in the development of virtual power transactions. 

Blockchain technology has the characteristics of decentralization and mutual complementarity, 

which is aligned with the geographical dispersion and scheduling of VPPs. It also has advantages in 

transaction applications because of its own characteristics, and can provide a transparent, fair, relia-

ble, and low-cost trading platform for VPPs [103]. 

Wei and Yue [104] introduced the blockchain technology into VPP. The proposed model pro-

posed an improved VPP operation and scheduling model. 
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f) Demand side response 

One of the most important factors that can be considered when it comes to the development of 

demand side response services is the availability of a central management platform and the scalability 

of the solution. The use of blockchain technology in energy management of residential buildings, for 

instance, is an important option since it will allow to implement a more efficient and cost-effective 

solution. The use of blockchain technology for the accounting of general ledgers can also help pre-

vent the transmission of false information. This can be done through the establishment of a compre-

hensive set of traceability systems. 

g) Multi energy systems 

In a study conducted by Mihaylov et al. [105], it was noticed that blockchain technology could 

be used to settle the transactions in multi-energy systems. This method allows the recording of real-

time production and costs of different energy systems. These authors concluded that this approach 

could help improving the efficiency of various energy systems by allowing them to monitor and 

manage the prices of different energy sources in real time. For instance, by implementing automatic 

scheduling and settling transactions, multiple energy systems can improve their efficiency. 

2.4.3. Physical and Information and Communications Technology infrastruc-

ture 

After reaching trading agreements on P2P energy trading platforms, the agreed amounts of elec-

tricity need to be delivered from one peer to another at an agreed period through the electric power 

networks. To do so, physical and Information and Communications Technology (ICT) infrastructures 

are essential for energy trading. 

The physical distribution of electricity between its peers is necessary in order to deliver the agreed 

amount of power. There are two types of solution for this purpose: private wire networks or public 

networks: 

- Private electric power networks and associated control strategies 

One way to improve the efficiency of electric power systems is by building private networks 

between different peer-to-peer entities. Despite the various advantages of this type of ap-

proach, it still has a high cost of construction and a low operating margin [106]. Despite the 

advantages of this approach, building private networks for the trading of energy is not an 

attractive solution due to the various factors that affect the development and operation of 

such systems. For instance, the lack of regulation and the uncertainty regarding the future 
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security of supply of energy are still major factors that prevent the private networks from 

operating successfully [107]. According to Werth et al. [108], a DC nanogrid could be used 

to connect the houses in a community. These structures are equipped with various compo-

nents such as a network controller, an external power bus, and photovoltaic panels. These 

components can be used to exchange power between the houses. However, and despite the 

technical potential of private networks, they are not expected to expand significantly in the 

near future. 

 

- Public electric power networks and associated technical arrangements 

A public power network can be used to deliver the agreed amount of electricity to its peer 

groups. Unlike private networks, the efficiency of the pool allows the consumers and pro-

ducers to benefit from the same energy. The development of new power routing devices and 

algorithms could potentially change the way energy trading is conducted in public power 

networks. Instead of traditional physical energy exchanges, this type of system is designed 

as a virtual one [109, 110]. Zhou et al. [58] noted that in order to ensure that the physical 

laws and limits of the equipment’s in public power networks are enforced properly, a tech-

nical evaluation is needed. In this scope, through a sensitivity analysis, Guerrero et al. [65] 

were able to determine if a trade could be approved or denied. Aside from this, other factors 

such as the incentives for the trading of energy have also been taken into account to improve 

the efficiency of the power networks. 

Nikolaidis et al. [111] proposed a loss allocation framework that would allow the power 

networks to efficiently manage their financial transactions. This method was able to fit into 

the financial features of P2P trading. This paper proposed various charging methods that are 

adequate for P2P energy trading including uniform charging, zone-based charging, and elec-

tronic distance charging. Since these methods are all external, they can fit seamlessly into 

the regulatory and physical configurations of most of the grids. 

2.4.4. Peer-to-Peer Trading Projects 

As exposed before, the implementation of P2P models will have some impacts and advantages in 

communities. Because of these benefits, several projects worldwide have focused on P2P energy 

trading. Notable examples are Piclo in the UK, Vandebron in the Netherlands, sonnenCommunity in 

Germany, and Yeloha, Mosaic and TransActive Grid in the United States [112]. 

Piclo was launched in the UK to help electricity consumers find the best possible price for their 

energy supply. Through its platform users can easily compare multiple generators' prices and monitor 
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their energy consumption. It also allows them to receive premium rates and discounts from the pro-

viders. Its main objective is to help consumers reducing their energy demand, and supply cost by 

increasing the use of renewable energy sources [113].  

Vandebron, a company located in the Netherlands, is able to provide its consumers with a way to 

purchase electricity from independent producers. Like Piclo, this platform acts as a bridge between 

the generators and their customers [91]. In Germany, a project known as PeerEnergyCloud was 

launched to develop a technology that would allow generators and retailers to monitor and manage 

their excessive production. It was established in order to create a virtual marketplace for power trad-

ing within a microgrid [114].  

In Germany, a company known as sonnenCommunity launched a project that allows individuals 

to voluntarily share their solar panels' surplus with other people. This project allows them to receive 

the benefit of the surplus energy they produce. Through its software platform, the company was able 

to monitor the energy consumption of their members. Like other similar projects, this project high-

lights the need for storage systems [75]. 

In the US, projects known as Yeloha and Mosaic allowed people who don't own a solar system 

to pay a small portion of the electricity generated by the hosts' panels. While these projects are similar 

to others, they mainly focus on solar energy. 

2.5. Virtual Power Plants and Microgrids 

2.5.1. Concept, purposes and benefits 

The traditional approach to power generation was to have centralized generation in large units 

with unidirectional power flows. However, with the emergence of DER, power systems now have 

bidirectional power flows. This means that communities and citizens can act as energy consumers or 

producers or prosumers. This transition presents various new challenges and opportunities. Some of 

these include the emergence of smart grids and the increasing number of flexible loads, such as heat 

pumps and storage systems. The development of Microgrids and Virtual Power Plants can be seen 

as paving the way to smart grids. 

A microgrid is defined as “a group of interconnected loads and DER with clearly defined electri-

cal boundaries that acts as a single controllable entity with respect to the grid and can connect and 

disconnected from the grid to enable it to operate in both grid-connected or island modes [115]. It 

can be connected to the DSO through a central management entity [116]. By managing and deploying 
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distributed energy resources the system's reliability can be improved. Figure 2.13 presents the archi-

tecture of a grid-connected Microgrid. 

 

 

Figure 2.13. Illustration of the grid-connected microgrid architecture (Source: [117]) 

 

According to Sabry, a microgrid can be classified into two categories: a pool of distributed gen-

eration resources that can be dispersed across different points of the distribution network, or a net-

work of decentralized power generating units [118]. From a market perspective, a microgrid can be 

viewed as an aggregator of DER and consumers installations operated by a microgrid central con-

troller. 

A VPP is a type of DER that can be aggregated and operated as a single flexible structure. It can 

provide services to the grid and participate in the energy trading market [119]. This concept emerged 

during the 1990s as a way to address the challenges and issues related to the connection of renewable 

energy units in the electricity grid [56]. Its main objective is to maximize its profitability through the 

development of a framework that enables it to make informed bidding decisions. It can also trade 

energy in the wholesale market and provide services to consumers and to the system operator [120]. 
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As previously referred, a microgrid is an integrated system that can operate connected to the elec-

tricity grid or islanded away from it. On the other hand, a virtual power plant is a structure that uses 

software systems to coordinate the various components of its DER. Although both types of architec-

tures have similar features, they have varying capabilities when it comes to integrating renewable 

energy and demand response programs. Asmus [116] summarized the main ones as follows: 

- microgrids can be connected to the electricity grid or be independent whereas virtual 

power plants are always in the grid-tied mode; 

- microgrids typically require additional storage, however virtual power plants can provide 

their own storage; 

- unlike VPPs, microgrids rely on certain hardware innovations, such as switches and smart 

inverters. VPPs are heavily dependent on smart metering and information technology; 

- unlike a microgrid, a virtual power plant can operate in large geographic areas. This al-

lows it to combine different resources and provide consistent and coordinated operation; 

- microgrids are normally used to trade only in the form of retail distribution, while the 

VPPs can build a bridge to the wholesale market; 

According to Ullah et al. [121], the main purposes of VPPs are to provide the following opportu-

nities to the participating partners: 

- energy trading: to provide opportunities to their owners in the electricity trading market. 

Through energy trading, the participantes can benefit from the different opportunities 

offered by the electricity market; 

- network services: to offer system support services to transmission and distribution sys-

tem operators; 

- balancing services: to balance production and consumption demand, utilizing multiple 

markets simultaneously in real time. This can help improving the efficiency of their op-

erations and provide their partners with environmental and economic benefits; 

- optimizing: to optimize the production and consumption of the members of the VPP 

itself. 

A structure of a VPP is presented in Figure 2.14. 
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Figure 2.14. VPP structure (Adapted from [121]) 

 

According to the VPP concept a set of conventional generating units, renewable energy units and 

storage systems are managed by a central entity. The demand side management and market operators 

complete and perform the structure of VPP. 

A VPP architecture can be implemented in four steps [121]:  

- Forecasting for renewable energy generation and for demand; 

- Running of stochastic optimization models to determine market bids; 

- On the basis of commitments and updated forecasts, unit commitment optimization ad-

justs DER operation;  

- A controller is used to reach commitment targets. 

The concept of VPPs brings benefits which could be identified and grouped among different 

stakeholders. Othman et al. [122] and Braun [123] organized them considering the point of view of 

different entities: 

- policymakers can benefit from the various advantages of VPPs, such as their ability to 

contribute to the reduction of global warming and their ability to provide additional 

choices to consumers. They can also improve the wide deployment of DER units and 

can open new opportunities for small-scale energy producers; 

- benefits to suppliers and aggregators in sense that VPPs can minimize the economic risk 

of both suppliers and aggregators, by creating new offers and reducing the investment 

in the electricity distribution grid. They can also increase energy efficiency due to loss 

reduction on transmission networks; 

- benefits to energy consumers such as the ability to improve the reliability of the electric-

ity supply and provide resiliency services during times of outages;  
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- benefits to DSO and TSO since VPPs can help creating a better coordination between 

the DSO and the TSO. They can help improving the visibility of the DER units in the 

network operations; 

- benefits to DER owners due to their ability to participate in the energy market. This can 

help lowering the costs of operation and provide them with a financial support. In addi-

tion, they can help minimizing the risk of financial loss for small producers. 

 

One of the main activities of a virtual power plant is providing real-time balanced services. This 

is done through two different entities that are known as Technical Virtual Power Plant and Commer-

cial Virtual Power Plant. Both operate together in order to achieve the VPP functions detailed in 

Figure 2.15. 

The Technical Virtual Power Plant ensures that the various systems that are part of a facility's 

operation are completed properly. These include the distribution of energy and storage units, as well 

as controllable loads. It also collects data about the consumption and supply of electricity from Com-

mercial Virtual Power Plant. This information is then used to develop a comprehensive analysis of 

the plant's operations and provide its partners with the necessary information to make informed de-

cisions [124]. The Technical Virtual Power Plant ensures the correct and secure operation of the 

power system considering the  physical  constraints  and  system  support facilitation services offered 

by the VPP. 

 

 

Figure 2.15. Classification of the VPP (Adapted from [121]) 
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The functionalities provided by Technical Virtual Power Plant are [125]: 

- to determine fault location; 

- to provide maintenance facilitation services; 

- to continuously monitor assets; 

- to offer balancing services, management of local network and implementation of ancil-

lary services; 

- to offer visibility to DER units in energy markets; 

- to ensure that the power system is operating in an optimal safe way. 

 

The Commercial Virtual Power Plant is primarily focused on providing the required energy to the 

electricity markets. It engages in daily market activities through the transmission of bid information 

and the clearing of the market. The bilateral contract information as well as the clearing of the daily 

market should be sent to Technical Virtual Power Plants to ensure that the contracted power is gen-

erated in each time period. Due to the nature of Commercial Virtual Power Plants, small producers 

can now participate in the energy markets, thus eliminating a regulatory barrier that existed in many 

systems [123].  

The functionalities of the Commercial Virtual Power Plant can be summarized as: 

- to trade in the wholesale electricity markets;  

- to prepare DER bids and their submission to the electricity markets;  

- to optimize the daily schedule production consumption forecasts of the VPP units;  

- to balance trading portfolios;  

Trading with VPPs can pose various technical challenges. These include system capacity, voltage 

drop, and unplanned outages. To minimize these issues, the distribution and transmission network 

operators should focus on optimizing the power network system. Doing so they can help ensuring 

that the electricity supply is continuously delivered to the users without interruption [126].  

New incentive programs and management methods can help small producers overcoming their 

commercial challenges. These programs can assist in developing new energy sources and reducing 

the costs associated with maintaining the distribution network. Incentive strategies need to be imple-

mented in order to rewards, in an adequate way renewable distributed  producers [121].  
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2.5.2. Planning, optimization and operation of VPP 

The characterization and technical planning of VPPs are carried out to evaluate their operation 

and maximize their commercial potential. Optimal planning mainly depends on two aspects: the 

technical aspects and the commercial objectives. The former involves analyzing the plant's capacity, 

line loading, voltage profile, and asset monitoring. The commercial objectives of VPPs are usually 

focused on optimizing the total cost of operation. These processes can be carried out through the 

implementation of various optimization models [121].  

Optimizing VPP operation is a process that aims to reduce the total cost of production. It can be 

divided into two categories: structural and operational optimization [122]. The optimization of the 

VPP structure includes the optimal sizing and siting of Distributed Generation units and the energy 

storage devices, the optimal load control and the optimal measurement device’s location.  

On the other hand, if the power system already exists, then this process can be limited. If the 

power grid is already set up with the necessary parameters, such as the number of storage devices 

and the production of distributed generation units, then operational optimization can be carried out 

by determining the production of DG units, energy storage system rate of charge and discharge and 

how much energy is purchased from the wholesale energy market. 

The success of VPP operation depends on various factors such as the stability of the power sys-

tem, the security of supply, and the cost competitiveness of participating in the market. A customized 

characterization strategy is then developed to address the varying economic objectives of the VPP 

[122]. 

A distributed level VPP can also be equipped with an operational framework that includes the 

forecast of solar and wind generation, and thermal generators. This framework can be used to deter-

mine the optimal strategy for the plant's dispatchable participation in the market. In both real-time 

and day-ahead periods, an internal market can also be established between the DERs and the VPP 

[127].  

Baringo et. al [128] presented a novel model for the day ahead market trading of a VPP. The 

model was able to take into account the various uncertainties associated with the plant's operation. 

As a result, it can be used to predict the reserve requirements of the system operator. In addition, 

uncertainty in available wind power generation and requests for reserve deployment were modeled 

using confidence bounds and intervals, respectively, while uncertainty in market prices was modeled 

using scenarios. The resulting model is formulated as a stochastic Adaptive Robust Optimization 

problem, which was solved using a Column-and-Constraint Generation Algorithm. The main con-

clusions of this work [128] were as follows: 
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- the stochastic Adaptive Robust Optimization approach was used to self-scheduling a VPP 

trading in the energy and the reserve electricity markets; 

- a model relying on intervals was provided to characterize the uncertainty in the requests for 

reserve deployment; 

- the resulting trilevel optimization problem was effectively solved using an enhanced Col-

umn-and-Constraint Generation Algorithm. Duality theory was applied in this problem;   

- the uncertainty in market prices, available wind power generation, and requests for reserve 

deployment are key factors in the decision-making problem faced by a VPP trading in energy 

and reserve electricity markets.  

  



56    

 

 

 

  



 

 

 

Chapter 3   

3.  Literature review on Electricity Market 

Simulation 

 

Since 1980s, power systems have been gradually evolving from monopoly structures into liber-

alized structures. This brings the opportunity for generation companies to make more profits while 

embracing more risks of not being dispatched. On the other hand, this “democratization of energy” 

has created new actors and structures in power systems. Thus, it has become a core interest for all 

the participants in electricity markets to develop new simulation models in a variety of areas from 

planning to operation problems. Since Agent Based Models are able to simulate the interactions and 

actions of autonomous agents, they are widely used in the electricity market simulations field.  

Machine Learning Techniques, namely the Reinforcement Learning, are a computational ap-

proach to get agents to perform their best actions in an uncertain environment. They are especially 

suited to model systems influenced by social interactions between flexible, autonomous, and proac-

tive agents. They also allow dealing with Markov Decision Processes where the probabilities and 

rewards of Markov transition matrix are unknown. 

Therefore, Section 3.1. presents some modelling methods to simulate electricity markets. Section 

3.2. introduces the concepts of Agent Based Models and provides a review of the various develop-

ment steps involved in implementing them. A categorization of Machine Learning techniques is pre-

sented in Section 3.3, detailing a description of Q-Learning methodology. Finally Section 3.4, details 

some ABM electricity markets simulators.  
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3.1. Modeling methods to simulate electricity markets  

 

With the restructuring of the power systems, where new actors and models were introduced to 

foster competition, better allocation of the resources, cost minimization, and profit maximization 

become some of the major goals of all the participants.  

In terms of electricity market simulation, liberalized electricity markets are generally considered 

to be imperfect competition and oligopoly mechanisms due to their unique characteristics. In certain 

cases, market agents can manipulate the price of electricity by conducting strategic bidding behav-

iors. For instance, generation companies that have different generation mixes, such as wind, hydro, 

and nuclear power plants, can bid on the electricity market including a number of blocks of energy 

price together with the corresponding quantity of electricity [129]. On other hand, and with the in-

crease of small-scale producers, prosumers and consumers involved in the electricity market, the 

need for an intelligent bidding/offering agent, responsible for making all the dynamic decisions in-

volved in this trading paradigm, turns the electricity markets very complex and very specific to sim-

ulate.  

Various research works have been conducted on the development and simulation of electricity 

markets. They use different methods and models to get the most realistic and efficient results. This 

section covers the main areas of research that are related to the electricity market simulation and are 

summarized in [130]: 

• Optimization problems, addressing a single company assuming no market reactions; 

• Equilibrium Models from Game Theory economics, considering a larger number of com-

petitors; 

• Agent-Based Models (ABM) that simulate the behaviour of the companies and the inter-

actions between autonomous agents; 

• Hybrid solutions. 

An optimization model focuses on finding the best price for a single firm in the market, often 

considered as a price-maker, while an equilibrium model considers the market behavior of all partic-

ipants. ABM are becoming more prevalent when a complex problem cannot be addressed in a tradi-

tional framework. Li et al.[130] resume and detail a complete classification of some of the modelling 

approaches to simulate electricity markets (Figure 3.1). 
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Figure 3.1. Modelling methods to simulate electricity markets (Source: [130]) 

 

The main characteristics of these modeling approaches are provided in Table 3.1. 

 

Table 3.1 Characteristics of modelling methods to simulate electricity markets (Source [130]) 

Models Characteristics 

Single Generation 

Company optimi-

zation 

• Developing optimization models to describe the entities in the electricity market 

with the objective of finding an optimal solution: 

• Well-established and solid mathematical foundation; 

• Generally focusing on one specific player in the system by simplifying the rest 

of the system as a set of exogenous variables; 

• Usually modeling no aspects of players’ intelligent behaviors; 

• Difficult to model the complex, uncertain and dynamic systems or analytically 

derive the optimal bidding strategy for the Generation Companies in the deregu-

lated electricity markets; 

Game theory • Modeling the electricity market as a game and mathematically capturing the play-

ers’ behavior in the game where one player’s success in making choices depends on 

the others’ choices: 

• Usually mathematically well-defined, involving a set of game players, a set of 

bidding strategies, and a specification of payoffs for each possible combination 

of bidding strategies; 

• Analyzing the economic equilibria of the electricity market by focusing on the 

players’ interactions; 

• Capable of providing analytical rationale and explanation on how strategic bid-

ding behaviors affect the Generation Companies market power and profits; 

• All players are assumed to be rational, which does not generally hold in reality; 

• Multiple equilibria often occur in solving realistic problems; 
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Models Characteristics 

Agent-based • Modeling the complex electricity market as collections of rule-based agents inter-

acting with one another dynamically and intelligently, simulating human beings’ 

behavior to make optimal bidding strategies: 

• Only a few simple rules are specified for and followed by various agents that 

are situated in the network and behave intelligently in the system; 

• Agents usually have and only require imperfect, local information and visibility; 

• No centralized control or planning is required although random elements often 

exist either among variable agents or in the system; 

• Agents can interact with each other directly or through the environment, result-

ing in complex emergent global behavior of dynamic-equilibrium and adaptation; 

• More flexible, robust, and easily implemented compared with analytical ap-

proaches; 

• Capable of capturing the details about agents’ behaviors, which is helpful in 

figuring out the relationships between individual decisions and system behavior; 

• Capable of modeling the dynamics of systems that are not in equilibrium as 

well;  

• Usually they require computation-intensive procedures. 

  

The traditional methods for optimizing the bidding process of a generation company were usually 

used to address the issue of cost minimization [131]. The minimum revenue condition and the use of 

indivisibility bids can also be considered as viable alternatives to turn the solution more realistic. 

They can be integrated into the simple quantity-price pool designs to accommodate thermal plants 

requirements that need to meet a minimum revenue condition. 

The goal of a Single Generation Company Optimization Model is to find the best price for its 

single player. Other factors that influence the market are also simplified in this model. Since the 

market clearing price is considered as an external variable, many programming techniques have been 

utilized to solve the optimal bidding strategy issue. Some of these include the use of  traditional 

Linear Programming (LP), Mixed Integer Linear Programming (MILP), Mixed Integer Programming 

(MIP), Nonlinear Programming (NLP), Dynamic Programming (DP) and Markov Decision Process 

(MDP).  Although an optimization model can represent the markets in a quasi-perfect manner, it fails 

to take into account the firm's decisions regarding the Market Clearing Price (MCP) [130]. 

A price-maker Generation Company can use a MILP model to solve the issue of self-scheduling 

and maximize the profit of a pool-based electric market. These models provide the capability of 

altering the market's prices to their own benefit [132]. 
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A NLP is proposed in [133] to optimize the bids of a Generation Company during a multi-year 

auction market. It is proposed the use of a Lagrangian relaxation method to deal with the other aspects 

of the bidding optimization problem. 

A self-commitment problem for a generation firm that is affected by the exogenous price uncer-

tainty is presented in [134]. The different generator models take into account the minimum and max-

imum output energy levels, as well as various other factors such as the ramp rate limits, start-up and 

shutdown costs, and incremental energy costs. The objective function of the optimization problem is 

to maximize the firm's profit by taking into account the prices of energy of the different generation 

units. 

Paper [135] presents a stochastic NLP model that takes into account the optimal strategies for 

power suppliers in an auction-based market. This model assumes that the supplier's bid is accepted 

at the market's price and that the system's dispatch levels are set by a market operator to minimize 

customers’ payments. The authors show that the competitive levels of power suppliers can be sub-

stantially higher than those of the other players if they strategically bid.  

The optimal bidding strategies in the context of the generation limits and the market share of the 

power suppliers are analysed in [136]. The authors of this paper concluded that the MDP framework 

can effectively optimize the decision over time. However, it does not allow the use of risk attitudes 

and makes a few strong assumptions such as ignoring the power system operational constraints. 

The authors of  [137] present a framework that allows generation companies to develop optimal 

strategies at an annual level in uncertain and competitive markets. They then use a stochastic MILP, 

combining optimization techniques with the Monte Carlo method to analyze the effects of uncer-

tainty on the decisions. The proposed framework is focused on developing a dynamic strategy that 

is followed by all participants in the market.  

Game theory models, also called equilibrium models, can be used to improve the bidding process 

by analyzing the interactions between the players and analyzing economic equilibria of the system. 

It can then reach an optimal solution through the Nash equilibrium. Different game theory models 

can be adopted for competition rules such as the Bertrand competition, Supply Function Equilibrium 

and the Cournot competition. 

The most common type of competition rule utilized in this framework is the Bertrand competition. 

It allows the generation company to compete with its counterpart by using prices and ignoring their 

capacity constraints. In the Cournot model, similar to the Bertrand competition, the participating 

generation companies use quantities as their strategy choices. The MCP is determined by the inter-

section of the aggregated supply and market demand curves.  
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The quantity-setting equilibrium in the electricity market is more realistic than the Bertrand price-

setting strategies. For instance, in the Bertrand equilibrium, a firm can capture the entire market by 

providing a low-price. However, this assumption is not tenable due to the increasing marginal cost 

of generation and the capacity constraints [130]. 

The goal of the Cournot model is to maximize the output of each generation company while en-

suring that the remaining firms can no longer improve their profitability. The advantage of this model 

over the price-setting strategy is that it allows the generation companies to make strategic decisions 

based on the quantity-setting behavior of their units. An empirical simulation framework that calcu-

lates the Cournot equilibrium iteratively was developed in [138]. Several models based on the 

Cournot competition can be found in [139]. This paper summarizes models applied in the analysis 

of different deregulated markets such as New Zealand, California, and England. 

Klemperer and Meyer [140] introduced the concept of the Supply Function Equilibrium, which 

is a type of competition rule that allows firms to maximize their profits in a competitive market. 

Instead of competing with each other, the participants choose to set their supply functions instead. 

The advantages of the Supply Function Equilibrium model are widely debated. It is a better compro-

mise between the Bertrand and Cournot models, and it allows the users to get a more accurate depic-

tion of the behavior of the market participants. A number of studies on the strategic bidding market 

have also been published using this model [141-144]. 

Agent Based Models are commonly used in market analysis to complement traditional models 

and provide a deeper understanding of the energy transition. They were also reported as a potential 

alternative to the traditional equilibrium models due to their complexity. The main issues with the 

traditional equilibrium models are that they do not incorporate strategic behavior of market partici-

pants and have unrealistic design when assuming that market participants have all relevant infor-

mation about the characteristics and behavior of competitors. In addition, the traditional equilibrium 

models neglect the consequences of the knowledge that a participant could get through the daily 

operation on the electricity market. On other hand, Game Theory is largely limited to specific situa-

tions in the markets and which depend on some few factors [145].  

ABMs work by allowing the agents to make their own decisions based on their experiences with 

other agents and through interaction with the environment. The agents usually have local and imper-

fect information which, combined with their past experiences, help them improving their decisions 

by modifying their strategies. This type of model allows the market participants to develop their own 

strategies and preferences as adaptive agents. They can then learn from their past experiences to 
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improve their performance. There are also artifacts, which are components that are passive and are 

modified or shared by the market participants in order to carry out their operations in a cooperative 

or competitive manner. For instance, in electricity markets, the Market Operator is involved in the 

process of receiving bids from the market participants and then setting up a schedule for each trading 

period. The concept of workspace as a conceptual container for artifacts and agents is useful in de-

fining the environment's topology. It can also help in establishing a locality concept. 

Generally, the agent-based modeling procedure can be described as follows [146]:  

• define the research questions to be resolved;  

• construct a model comprising an initial population of agents; 

• specify the initial model state by defining the agents’ attributes and the structural and insti-

tutional framework of the electricity market within which the agents operate; 

• allow the model to evolve over time without further intervention;  

• analyze simulation results and evaluate the regularities observed in the data. 

The ABM can be categorized in terms of different learning algorithms such as Model-Based Ad-

aptation Algorithms, Genetic Algorithms, Q-Learning, Computational Learning, and Ant Colony 

Optimization. 

The development of agent-based methods of optimization and simulation began with techniques 

that mimic aspects of natural selection. Holland’s Genetic Algorithm (GA) [147, 148] was used as a 

new kind of optimizing tool for problems intractable by traditional calculus-based tools. The goal of 

the GA is to test and score the various possible solutions in a population and, based on the “fitness” 

score of each of them, select pairs of “parents” for a new “offspring” generation of possible solutions. 

This artificial reproduction uses the genetic operations of “crossover” and “mutation” on the parents. 

The selection and testing of new populations lead to the improvement of the quality of the population. 

The process is commonly referred to as an optimization technique, which eliminates the need for 

exhaustive testing of all possibilities. Since the process is carried out through the genetic operations 

(selection, crossover, and mutation), the players are able to learn from each other. The goal of the 

process is to test and score the various possible solutions in a population and improve the adaptation 

of the population as the simulation evolves. 

The populations in the first applications of GAs were seen as trial solutions that would optimize 

the function under analysis (usually highly non-linear and discontinuous). Later applications, how-

ever, treated the populations as comprising agents rather than numbers. Individual agents were im-

mutable, but in each generation the population of agents would change, under selective pressure. 
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This learning and adaptation process can be performed either within one single agent or in coopera-

tion with two or more agents. In a competitive market environment, agents naturally learn isolated 

and use the learned knowledge for their own advantage. This modelling process corresponds to an 

explicit learning procedure.  

The probability of choosing a particular action again in the future increases if the feedback is 

positive and decreases if negative feedback is received. This effect is called reinforcement and it is 

advantageous in machine learning environments, where it is impossible for the agents to compare 

the action’s result with a specified goal. Instead, the agent receives feedback for a performed action 

and deduces the coherence of the action and its performance. Generally, a given feedback is assigned 

not only to one action, but to the action of other agents or earlier performed actions. Q-Learning is 

one type of reinforcement learning that was originally developed to handle the temporal credit as-

signment problem.  

Since it will be the methodology considered in this work, the Q-Learning approach will be ana-

lyzed with more detail in Section 3.3 of this chapter. 

Hybrid models combine various modeling methods available in the literature. For instance, a 

model that combines the Lagrangian relaxation algorithm with the GA for generation companies to 

build a proper unit commitment scheduling and derive the optimal supply curves to set up a proper 

schedule for their units was developed by Yamin and Shahidehpour [149]. In another study, Sueyoshi 

proposed an ABM equipped with Game Theory to analyze the interaction between learning agents 

and the market participants during the electricity crisis in California (2000-2001) [150].  

In 2019, Wang et al. [151] proposed a hybrid model (Figure 3.2) that combines the multiple mod-

eling problems and platforms used in the market. It uses a system dynamic simulation and agent-

based approach to analyze the operations of the electricity market, by which the operation of the 

electricity market is modeled holistically to observe the overall changes of the system. In order to 

better simulate the trading conditions of the real time electricity market, ABM is applied to the bid-

ding transactions. With the real-time feedback changes of relevant variables, the results are presented 

accordingly, thus simulating the multilateral bidding process of the electricity market. The agents 

(Figure 3.2) are classified into five categories: trading agents, government agent, grid company 

agent, power plants (two thermal power plant agents, a hydro-power plant agent and a wind power 

plant agent) and consumer agents.
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Figure 3.2. Organization of the multilateral bidding model of the electricity market proposed in [151]. 

 

The trading center is responsible for the functions typically associated to a Market Operator and 

separately reports the results of the clearing activity to the power plants. The power plants then adjust 

their bidding strategy using a learning algorithm. The government agent then monitors the effects of 

the learning on the social welfare. It takes into account the varying contract power ratios and the 

supply and demand balance. The grid company agent formulates a power purchase plan for each 

clearing round according to its own demand function after each clearing. Some consumer agents can 

purchase electricity directly from the trading center, or purchase electricity from the grid company 

subsequently. 

3.2. Agent Based Models  

In a context of new business models such as energy communities, where several challenges for 

both technical and regulatory issues are addressed, ABM are especially suited to model them. ABM 

are especially appropriate to model systems influenced by social interactions between agents that are 

flexible, autonomous, and proactive. In these models, agents are able to collaborate, compete and 

exchange information with other agents, which gives them a social capacity and are important fea-

tures to fully address communal potentialities. Moreover, the agent paradigm can be a powerful 
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computational tool that can be used to examine socio-technical system performance over time, 

wherein system behavior is subject to complex and dynamic individual and social interactions.  

A didactic review about agents and Agent Based Models is detailed in Section 3.2.1. Agent ar-

chitectures and communication are analyzed in Sections 3.2.2 and 3.2.3. Finally, Section 3.2.4 pro-

vides information on building and designing ABMs. 

3.2.1. Basic Concepts and Definitions 

As long as systems are becoming more complex, new tools, simulation and modeling approaches 

are needed. An alternative to typical simulation techniques (such as traditional optimization tech-

niques, discrete-event simulation and differential equations) are ABM.  

The concept of agent-based techniques for optimization and simulation emerged from the study 

of natural selection. One particular technique that became popular during the 1970s was the GA. It 

was presented in John Holland's book Adaptation in Natural and Artificial Systems [147]. In late 

1990’s, ABM emerged and started being used to explain interactive system dynamics [152]. More 

recently, ABM has received increasing attention since it has advantages in modeling complex sys-

tems. It was reported as a better approach to complement equilibrium models when the problem is 

too complex to be analyzed, as for instance dynamic problems with several parameters and random-

ness. ABM refers to a category of computational models that invoke dynamic action, reaction and 

intercommunication protocols amongst the agents in their shared environment [153]. ABM is con-

sidered a computational framework for simulating processes that involve autonomous agents. An 

autonomous agent acts on its own without external direction in response to situations the agent en-

counters during the simulation.  

The following definitions of ABM are provided in [154-156]: 

• “Agent-based modeling is a way to model the dynamics of complex systems and complex 

adaptive systems. Such systems often self-organize themselves and create emergent order. 

ABM also include models of behavior (human or otherwise) and are used to observe the 

collective effects of agent behaviors and interactions. The development of agent modeling 

tools, the availability of microdata, and advances in computation have made possible a grow-

ing number of agent-based applications across a variety of domains and disciplines.” [156]. 

• “The ABM approach consists of a decentralized collection of agents acting autonomously in 

various contexts. The massively parallel and local interactions can give rise to path depend-

encies, dynamic returns and their interaction. In such an environment global phenomenon 
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such as the development and diffusion of technologies, the emergence of networks, herd-

behavior etc. which cause the transformation of the observed system can be modeled ade-

quately. This modeling approach focuses on depicting the agents, their relationships and the 

processes governing the transformation.” [154]. 

• “Formally, agent-based modeling is a computational method that enables a researcher to 

create, analyze, and experiment with models composed of agents that interact within an en-

vironment.” [155]. 

Basically, ABM focuses on modeling and to simulating complex systems, at a local level through 

the definition of their elementary units and at a high level, suited to model adaptive heterogeneous 

actors – agents.  

There is not a universal consensus about the definition of an agent. However, Wooldridge and 

Jennings’ definition [157] is increasingly adopted: 

“An agent is a computer system that is situated in some environment, and that is capable of au-

tonomous action in this environment in order to meet its design objectives” [157]. 

As referred in [158], Wooldridge’s classical definition of an agent does not clearly distinguish 

agents from a few existing software’s and hardware systems. There are several points to note about 

this definition. First, this definition implies that agents have sensors to sense the environment and 

effectors/actuators to modify and act over the environment. Second, autonomy is not defined. Third, 

the above definition does not say anything about what type of environment is occupied by an agent.  

A top-level view of an agent is provided in Figure 3.3. An agent has well-defined boundaries and 

interfaces and can monitor the environment through sensors or data access from other sources and 

modify it by reacting autonomously to changes that occur in it. The two concepts that capture the 

interface between an agent and its environment are the percept, an item of information received by 

some sensor, and the action, which is something that the agent does. We can see the action output 

generated by the agent as an event that affects its environment. In most domains of reasonable com-

plexity, an agent will not have complete control over its environment. It will have at best partial 

control, in that it can influence it. Hence, the key issue lies in between the sensing and acting activi-

ties, where the agent decides how to proceed based on the percepts collected via input sensors  [159]. 
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Figure 3.3. Agents and environment (adapted from [160]) 

 

 

Macal  [156] listed some criteria, which need to be accomplished in order to think in terms of 

agents: 

• When the problem has a natural representation as being comprised of agents; 

• When there are decisions and behaviors that can be well-defined; 

• When it is important that agents have behaviors that reflect how individuals behave (if 

known);  

• When it is important that agents adapt and change their behaviors; 

• When it is important that agents learn and engage in dynamic strategic interactions; 

• When it is important that agents have dynamic relationships with other agents, and agent 

relationships form, change, and decay;  

• When it is important to model the processes by which agents form organizations, and adap-

tation and learning are important at the organization level; 

• When it is important that agents have a spatial component to their behaviors and interactions; 

• When the structure of the system does not depend entirely on the past, and new dynamic 

mechanisms may be invoked or emerge that govern how the system will evolve in the future; 

• When arbitrarily large numbers of agents, agent interactions and agent states are important; 

• When process structural change needs to be an endogenous result of the model, rather than 

an input to the model. 



3.2 Agent Based Models  69 

 

 

 

The complexity of the decision-making process can be affected by a number of different environ-

mental properties as detailed in [160]: 

Fully Observable or Partially Observable: If an agent’s sensor gives access to the complete 

state of the environment at each point of time, then the environment is considered fully observable. 

Otherwise, it is considered partially observable. 

Deterministic or Stochastic: If the next state of the environment is completely determined by 

the current state and the action executed by the agent, then the environment is considered determin-

istic. Otherwise, it is considered stochastic. 

Episodic or Sequential: In an episodic environment, the agent’s experiences are split into atomic 

episodes, each consisting of the agent perceiving and then performing a single action. The next epi-

sode does not depend on the actions taken in the previous ones, and the choice of actions in each 

episode depends only on the episode itself. On the other hand, in sequential environments, current 

actions may affect all further decisions. 

Static or Dynamic: A static environment is one that can be assumed to remain unchanged except 

by the performance of the actions taken by the agent. A dynamic environment is one that has other 

processes operating on it, and which hence changes in ways beyond the agent’s control. 

Discrete or Continuous: The distinction between discrete and continuous environments can be 

applied to the state of the environment, to the way the time is handled, and to the perceptions and 

actions of the agent. All these features can be either discrete or continuous in the environment mod-

eling. 

Single agent or Multi-agent: Single agent environments are those where only one agent is situ-

ated. Multi-agent environments are those where more than one agent is situated. 

The most complex environments are those that are partially observable, stochastic, sequential, 

dynamic, continuous and multi-agent. In real world applications, agents have at best partial under-

standing and control the environment. Furthermore, multiple agents can interact with each other, as 

illustrated in Figure 3.4. 
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Figure 3.4. Typical structure of a multi-agent system (adapted from [161]) 

 

The environment is defined as the part of the system within which the agent operates. It is not the 

agent itself nor it is any of the other agents, but rather it is everything that has an (external) influence 

upon it. As visualized in Figure 3.5, environments can be simple, multi-layered, or even change over 

time.  

 

Figure 3.5. Different environments: E1: single layer, E2: multi-layer, E3: continuous changing envi-

ronment (adapted from [161]) 

 

An agent can be interpreted as a computer system that can perform autonomous actions in an 

environment in order to meet its design objectives. It can sense its surroundings using various sen-

sors, such as software devices and physical ones, and can then provide a variety of actions to modify 

the environment. However, its actions may not always respond in a predictable manner. 
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Autonomous agents can also be defined as intelligent agents since the concept of intelligence is 

often specified in terms of its phenomenological functions as a capacity or ability to solve problems 

autonomously. Whenever an agent, biological or artificial, possesses this ability, it is considered 

intelligent, otherwise not [162]. There is an approach to the Artificial Intelligence (AI) where any 

intelligent system is considered as an intelligent agent or a collection of them [160]. This leads to a 

very broad definition of an intelligent agent. However, in the field of engineering and computation, 

intelligent agents typically correspond to software components.  

So, when do we consider an agent to be intelligent?  

An intelligent agent is one that is capable of flexible autonomous actions in order to meet its 

design objectives. In line with [157], flexibility means three things: 

• Proactiveness  

The goal-directed behavior of an agent is shown through its proactive approach, which 

means that it tries to achieve its goals. If a specific goal is given to it, then the agent should at least 

try to accomplish it. 

• Reactivity  

The ability to react to changes in the environment allows agents to perform different tasks 

in a more efficient manner. 

• Social ability  

The ability of agents to interact with other agents or entities in order to meet their design 

goals is known as social ability. This is different from the way they interact with hardware and soft-

ware entities. Usually, interactions are defined as those that are carried out in terms of verbal com-

munication. They can also be categorized into different types of human interaction such as coopera-

tion, negotiation, and coordination [163]. 

Other more general attributes of agents have been described in [164] and include: 

• Accuracy 

An agent's accuracy is determined by its ability to perform the tasks that it is asked to do. 

• Adaptivity 

 Its adaptivity is also evidenced by its ability to improve its performance through experience. 
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• Adaptability 

An agent can adapt to the changes in the environment by providing various actions to modify 

it.  

• Mobility 

 Agents can also move between different host platforms. 

• Temporal continuity 

An agent's temporal continuity is also evidenced by its continuous running processes. It can 

maintain its identity and state over a long time. 

• Reliability  

 The reliability of an agent is also determined by its refusal to pass false information. 

• Inferential capability 

An agent can act on task specifications that are based on its knowledge of general goals with 

an inferential capability. 

The concept of an intelligent agent is a natural development of other trends of AI, which has 

relations and differences between agents and other computer science concepts and approaches: 

• Agents and AI 

The intelligence requirements of AI and agents are usually met by following a certain set of 

rules. This includes making a reasonable decision regarding their environment when it comes 

to taking an action. An agent can also interact with other individuals through their interac-

tions within the environment. This is the main mode of interaction that computer science 

usually focuses on. 

• Agents and Objects 

Both agents and objects are similar in their capabilities when it comes to performing various 

actions. An object, on the other hand, is a computational entity which can perform methods 

and actions on a certain state. The main advantage of an object over an agent is that it has a 

single thread that can control everything. An agent, on the other hand, is a process-like entity 

which can simultaneously execute various types of tasks. 
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• Agents and Expert Systems 

During the 1980s, AI was heavily focused on the development of expert systems, which are 

capable of providing advice in certain knowledge domains [165]. These systems are not di-

rectly related to the environment they interact in, and they do not require to interact with 

other agents in order to perform their tasks. 

 

Some examples of the various applications that can be made using intelligent agents, are: 

• An intelligent agent can perform various tasks such as searching the internet for a specific 

query and gathering information about its users. It can then provide the users with the nec-

essary information on a regular basis. 

• Examples of such systems include Amazon's Alexa and Apple's Siri. These assistants use 

sensors to analyze the data collected by the users after they have made a request. They can 

then use this information to gather data about their users' perceived environment, such as 

weather and time [166].  

• Autonomous vehicles can also be considered intelligent agents due to the use of cameras, 

sensors, and GPS to make informed decisions when it comes to navigating through traffic. 

A single agent system refers to an agent-based system with only one agent, then comprising a 

single agent environment. Similarly, a Multi Agent System is used to denote the combination of one 

or more agents capable of exhibiting their attributes within a co-operative system [167]. Each agent 

has internal sets of structures and mechanisms which allow them to reason about itself and the envi-

ronment [159]. These set of structures and mechanisms define the agent´s architecture. 

3.2.2. Architectures for Intelligent Agents 

An agent decision making function is an abstract function that can be used to determine which 

actions to perform. It can be implemented in four different architectures: logic-based, reactive, belief-

desire-intentions and layered-based agent architectures [168] that are briefly described below: 

• Logic-based agents – in which decision making is performed through logical deduction; 

• Reactive agents – in which decision making is implemented in some form of direct 

mapping from situation to action; 

• Belief-desire-intentions agents – in which decision making depends upon the manipu-

lation of data structures representing the beliefs, desires, and intentions of the agent; 
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• Layered architectures – in which decision making is conducted via various software 

layers, each of which is more-or-less explicitly reasoning about the environment at dif-

ferent levels of abstraction. 

In this thesis, we will not make a specific commitment of each kind of agent architecture that is 

used.  However, the Belief-Desire-Intentions model and its associated Procedural Reasoning System, 

according to [169] is the best known and best studied model.    

In the Belief-Desire-Intentions model, the Beliefs of an agent represent the informational states 

of the agent environment. In its logic, Beli(α) expresses the fact that the agent i believes α. In this 

proposition, the belief is directly associated with the agent, so the agent i is omitted from the descrip-

tion of a belief. The content of the belief expresses a state or an activity concerning the agent or its 

world. For example: Bel(helicopter1, takeCare, tree12) expresses that the agent has a belief that 

agent helicopter1 will take care of the agent tree12. While the expression Bel(X, burning, null) means 

that the agent believes that agent X is burning (i.e. in the state burning), the Bel(X, Bel(tree12, burn-

ing, null), null) declares that the agent believes that the agent X believes that the agent tree12 is 

burning [170].   

The Desires (options) represent the motivational states of the agent. As desires are also mental 

states like beliefs, a desire shares with a belief the same content format. Considering that an agent 

cannot simultaneously pursuit competing desires, two additional attributes to describe a desire were 

proposed [170]:  

• Competing category: each desire belongs to a competing category. Two desires of the 

same category cannot be considered at the same time; 

• Priority: the priority is the degree of importance of a desire. The higher the priority, the 

more important the desire is. Among the desires of a competing category, the agent 

chooses the desire with the highest priority. 

Events trigger the reactive activity of the agent. In the AgentSpeak architecture [171], an agent 

begins reacting when its mental state changes. In this architecture, events are described as a creation 

or a deletion of a mental state. It means that when an agent acquires a new belief or a new desire, 

this agent creates an event. 

Rules are what an agent uses to make the logic deduction creating new beliefs and new desires 

from current beliefs and desires. The modifications of mental states come not only from what the 
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agent perceives but also from its internal reasoning process. That means that an intelligent agent is 

also capable to reason in order to update its beliefs and desires according to its current mental states.  

 A Plan is a sequence of declared actions that the agent has to apply to reach one (or many) goals. 

This means that a plan describes the fact that the agent has to execute some particular actions once 

it gets a specific condition on mental states (beliefs, desires). A plan is composed of goals (desires 

of the agent), context (conditions on mental states), trigger (events that trigger the plan) and actions 

(actions to execute). 

An Intention represents the deliberative state of the agent, i.e. what the agent has chosen to do. 

According to [172], “intending to do something (or having an intention) and doing something inten-

tionally are not the same phenomenon”. Thus, intentions are classified into two types:  

• A Future-oriented intention is a specific instance of an applicable plan;  

• A Present-oriented intention is the future-oriented intention that the agent has chosen to 

pursuit. 

In terms of implementation, intentions are manifested by means of executing one or more plans, 

which are developments of actions. So, Actions are one of the components of an intention. An in-

tention may contain several actions that will be performed sequentially. Each action describes the 

agent’s behavior and the action conditions.  An action is composed of three components correspond-

ing to three situations:  

• Normal - it is a situation where the mental condition of the agent meets the intention 

condition that is inherited from the plan context. At this moment, the action is normally 

performed; 

• Success - it is a situation where the agent’s mental condition allows the agent to decide 

that certain goals are achieved (for example, the agent acquires new desires that allow 

the agent to satisfy the desires of its intention goals);  

• Failure - it is a situation where the agent considers that the action failed and where it 

decides to stop following the action goal. In this case, the agent removes the correspond-

ing desires or creates new events that trigger the backup plans. 

Using these concepts, the key data restrictions in our agents will be beliefs, desires and intentions. 

How does an agent with beliefs, desires and intentions go from these to actions? The particular model 

of decision-making underlying the Belief-Desire-Intentions model involves two important processes: 

deciding what goal we want to achieve, and how we are going to achieve these goals and this process 

is known as Practical Reasoning System. 
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From the architecture point of view, the associated Practical Reasoning System, originally devel-

oped at the Stanford Research Institute, is a generic architecture to represent and reason about actions 

and procedures in a dynamic domain [173]. It was perhaps the first agent architecture to explicitly 

embody the Belief-Desire-Intentions model and has proved to be one of the most durable approaches 

to develop agents to date [171]. This architecture is shown in Figure 3.6. 

 

Figure 3.6. The Practical Reasoning System architecture (adapted from [174]) 

The agent interpreter manages the beliefs, goals, plans and intentions in the Practical Reasoning 

System agent architecture. It is responsible for updating the beliefs from observations made from the 

environment, generating new desires (tasks) on the basis of new beliefs, and selecting from the set 

of currently active desires some subset to act as intentions. Hence, the interpreter must select an 

action to perform on the basis of the agent’s current intentions and knowledge [159]. 

A Practical Reasoning System agent starts with a set of plans and top-level goals and initial be-

liefs. These beliefs are then represented by atomic formulas of first-order logic. The goal is then put 

into an intention stack, and the agent can look through the stack to see what goals are still outstanding. 

Some of these will have their conditions satisfied according to the agent's current beliefs. This means 

that the plans that achieve these goals can become the agent's options. The process of selecting a plan 

can then be carried out through utility ordering or meta-level plans [171]. 

The Practical Reasoning System architecture only addresses the internal reasoning of agents. 

However, this has been extended to allow other agents to interact with each other, for example, com-

munication and interaction with each other in order to conceive some social ability. 

 



3.2 Agent Based Models  77 

 

 

 

3.2.3. Agent communication and interaction 

One of the most important factors that an agent should consider when it comes to achieving its 

goals is the availability of communication. This will allow them to perform their duties in a more 

efficient manner. In this sense, one should have a standardization related with agent communication. 

The Foundation of Intelligent Physical Agents (FIPA) [175] is an Institute of Electrical and Elec-

tronic Engineers Computer Society that promotes agent-based technology and the interoperability of 

its standards with other technologies. 

The ability of agents to communicate with one another has been a central theme in the develop-

ment of their conceptual frameworks. This allows them to tackle problems that no single individual 

can solve alone. The concept of agent communication is based on the speech-act theory, which states 

that language is action. This distinction between actions that are non-speech acts and those that are 

speech acts is important. Thus, examples of speech acts might be to change your beliefs, desires or 

intentions. Various types of speech acts were identified by Searle [176]. 

A speech act's content is different from a Java method's list of parameters. Instead of just having 

a set of arguments, the content of a speech act is a proposition, which means that it can either be true 

or false. This is very different from method invocation, as it allows a knowledge-level communica-

tion to be carried out. The Knowledge Query and Manipulation Language (KQML), developed in 

the context of the ‘Knowledge Sharing Effort’ project [177], was the first attempt to define a practical 

agent communication language that included high-level (speech act based) communication as con-

sidered in the distributed artificial intelligence literature. It defines a number of performatives, which 

make explicit an agent’s intentions in sending a message. For example, the KQML performative tell 

is used with the intention of changing the receiver’s beliefs, whereas achieve is used with the inten-

tion of changing the receiver’s goals. Thus, the performative label of a KQML message explicitly 

identifies the intent of the message sender. The KQML language has reserved parameter keywords 

as detailed in Table 3.2. 

The FIPA standard for agent communication is closely based on KQML, differing in its performa-

tive set and semantics. The main goal was to simplify and rationalize the performative set as much 

as possible, and to address the issue of semantics, a somewhat problematic issue for agent commu-

nication languages.  
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Table 3.2 KQML reserved parameter keywords (Source: [177]) 

 

 

3.2.4. Building and designing Agent-Based Systems 

Developing agent-based model requires specific steps and agent-related tasks that are indicated 

in Figure 3.7. Several of agent-specific questions before developing an agent-based model should be 

done. Table 3.3 presents some of them. The answers to these questions help defining the scope, level 

of detail and granularity that are appropriate to model the system. They imply the resources required 

for successfully completing the project and can be used to help identifying likely bottlenecks to the 

development [156]. 

 

 

Figure 3.7. Agent-Based Model development process (adapted from [156]) 
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The agent-based modelling follows some steps which are similar to the standard computer simu-

lation procedure. Following [178] these steps are enumerated below. 

Formulation of objectives and questions 

The formulation of objectives of a simulation or model is first established during the initial step 

of the process. This step should be carried out in order to ensure that the results of the study are 

focused on the correct objective. 

Design of the model 

The design phase is also a crucial part of the development of agent-based models. It involves 

deciding the level of detail that the system should be built with, as well as the type of cognitive 

activity that it should perform. The shared environment of the agents should also be addressed. 

 

Table 3.3 Questions to ask before developing an ABM (Adapted from [156]) 
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A large number of methodologies have been proposed to design agent-based systems.  They can 

be broadly divided into two groups [167]: 

- those that take their inspiration from Object-Oriented (OO) development, and either 

existing OO methodologies or adapting OO methodologies to the purpose of agent-ori-

ented software engineering (AOSE); 

- those that adapt knowledge engineering or other techniques;  

The methodologies AAII [179], GAIA [180], Tropos [181], Prometheus [182], MaSE [183] and 

PASSI [184] have been proposed to design agent-based systems and are described in detail in the 

above references.  

 

Justification of assumptions 

The various assumptions that are built into the model should also be supported by empirical data. 

This ensures that they are coherent. 

Choice of measurements 

Once the model has been designed, it is also important that the measurements that are used are 

defined. These measures will allow the system to evaluate the model's performance. 

Choice of software 

Developers can create agent-based models using various software components. These include 

libraries, toolkits, and programming languages. These are commonly used in the development of 

models and simulations. 

In terms of the scale of the software, there are several approaches to build Agent applications 

[156] as follows: 

 

Desktop Computing for Agent Based Simulations Application Development: 

Spreadsheets: Excel using the macro programming language VBA 

Dedicated Agent-based Prototyping Environments: NetLogo, Repast Simphony 

General Computational Mathematics Systems: MATLAB, Mathematica  
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Large-Scale (Scalable) Agent Development Environments:  

Repast, Swarm, MASON, AnyLogic, Simio  

General (Object-Oriented) Programming Languages:  

Java, C++, Python 

 

A learning agent model can be created using Desktop Agent Based Simulation, which is a simple 

and flexible software. It can be used to perform various tasks such as modeling and performing lim-

ited analyses. Although spreadsheets are a simple way to create agent models, they generally do not 

allow a lot of diversity, have poor scalability, and restrict the behaviors of the agents. This is why it 

is important to use a macro-programming language such as Visual Basic for Applications [156]. 

Developers can use general purpose mathematical systems such as MatLab and Mathematica to cre-

ate agent models. However, since there is no dedicated library or module for this type of modeling, 

the developer should create the model from scratch. 

Swarm was the first Agent Based Simulation software development environment, launched in 

1994 at the Santa Fe Institute. Swarm was originally written in Objective C and was later fitted with 

a Java interface [156]. A multi-agent programmable modeling environment is provided by Netlogo 

and is particularly well suited for modeling complex systems developing over time [156, 185].  

Following the original Swarm innovation, the Repast (REcursive Porous Agent Simulation 

Toolkit) toolkit was developed as a pure Java implementation [186], and Repast Simphony (Repast 

S) is the latest version of Repast, designed to provide visual point-and-click tools for agent model 

design, agent behavior specification, model execution, and results examination. Repast Simphony 

2.0 also includes ReLogo, a new Logo-like interface for specifying agent models [187]. They are 

freely available and/or open source. 

Anylogic has the capabilities to structure models that combine agent-based, system dynamics and 

discrete events [188].  

As computational capabilities continue to advance in both hardware and software, new capabili-

ties are continuously being incorporated into the latest versions of Agent Based Simulation toolkits. 

This field is advancing rapidly toward highly scalable, high productivity agent development envi-

ronments that are easy to learn and use. 
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Implementation, verification and validation of the model within the selected software 

After the model has been designed, it should be implemented in a certain software platform. This 

step involves ensuring that the model is correct. Doing so can help certify its accuracy. Another step 

that should be taken is the validation test, which is usually carried out on the model's observed be-

havior. This validation step is carried out to ensure that the model is accurate. This step should be 

performed on the individual and systemic scales since ABM can be distributed across different plat-

forms. For instance, in energy systems, the consumer or power plant can be parameterized and eval-

uated. This step can confirm the validity of the model. 

In the case of a population of replicated agents, once having calibrated the individual agents, a 

calibration of the model at an aggregated level should take place. This is usually possible through 

the available macro-data (in the case of energy systems, measurements at an aggregated scale such 

as a transformer or substation) [154]. 

Sensitivity analysis and results interpretation 

A sensitivity analysis is also usually performed after the model has been established as valid. This 

step involves identifying and avoiding false or local optima. This step can help the developer deter-

mining the optimal outcome for the model [178].   

3.3. Machine Learning Methodologies  

 

There are several fields of Machine Learning that address the purpose of agents since it is possible 

to learn from data and to ensure that the knowledge over the problem is constantly updated. Figure 

3.8. illustrates a categorization of Machine Learning fields and sub-fields.  

The first category belonging to the family of Machine Learning techniques and algorithms is 

called Supervised Learning. It is probably the most well-known branch of Machine Learning and 

is intended to find patterns in data that can be applied to an analytic process. It refers to situations 

where the target variable is known and, in this case, the target variable is present in the dataset. The 

goal of supervised learning is to provide a better understanding of a target variable by learning from 

its value. Unfortunately, this type of learning is not ideal for developing interactive problems. 

This category of Machine Learning is mainly focused on the use of classification and regression 

techniques. One of the main applications of supervised learning is in forecasting analyses. This type 
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of learning is commonly used in the development of procedures related to medical diagnostics 

and process optimization [189].  

Unsupervised learning is another type of machine learning that is commonly used in developing 

applications that involve large amounts of unlabeled data. This approach is best suited for problems 

that require a lot of data to be analyzed. Most of the time, this approach is performed in an iterative 

manner. The main difference between unsupervised and supervised learning is that the model should 

learn without having a specific target as a purpose. The most common examples of this category of 

problems include clustering and dimensionality reduction: detecting potentially useful clusters of 

input examples [160].  

The third and last type of Machine Learning techniques is called Reinforcement Learning (RL). 

This method involves an agent interacting with its environment in order to learn the best action to 

take based on the given situation. Unlike other techniques, this method does not provide the agent 

with an advice. Instead, the agent explores the environment to maximize its future rewards. In gen-

eral, in this type of learning, the objective of the agent is to achieve the highest reward, due to adopt-

ing the optimal policy, in the long term. The applications of Reinforcement Learning nowadays are 

abundant given the data-centric era that is approaching and the number of processes requiring accu-

rate and optimal decision-making [190]. 

 

 

Figure 3.8. Categorization of Machine Learning techniques (source [189]). 
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There are two main criteria that can be used to classify different RL approaches: 

- The first criterion is whether or not there is a perfect model for the environmental behav-

ior. A model-based method can learn how an environment works and predict the out-

comes of its actions, allowing agents to anticipate the rewards that will be received. How-

ever, most model-based methods are impractical when dealing with large state-action 

space constraints. On the contrary, model-free approaches do not require knowledge of 

the environment to perform well. They can learn an optimal policy by repeatedly experi-

encing the various rewards and states of the environment; 

- The second criterion that can be used to classify RL algorithms is whether the algorithms 

“learn” off-policy or on-policy. On-policy takes into account the expected rewards that 

will be received by the system based on the current policy. On the other hand, off-policy 

assumes that the agent follows a greedy strategy. 

Learning from interaction and achieving a goal is the main purpose of RL. The process of an 

agent observing the environment output and taking an action, which is interpreted into a reward in 

order to select the next state, which is fed back into the agent, is the typical framework of a RL. A 

Markov Decision Process can be defined as a framework under which an agent observes the envi-

ronment characterized by a state s, selects an action among the ones available at that state and then 

the process responds at the next time step by moving the system to a new state and by allocating the 

agent with the corresponding reward. This reward can be interpreted as the motivation the agent has 

in choosing a specific action given that he is in a given state.  

The agent corresponds to the decision-maker of the problem and is the one who is responsible 

for learning. The environment includes all aspects with which the agent should interact with, in 

order to get information. The agent and the environment are interacting continuously: the agent se-

lects and implements actions and the environment, based on these actions, gives feedback to the 

agent, which corresponds to the mentioned reward. This mechanism is illustrated in Figure 3.9. 
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Figure 3.9. Agent-environment interactions in reinforcement learning (source [191]).  

 

Regarding Figure 3.9, the agent and the environment interact at specific discrete time steps, t = 0, 

1, 2, 3..., n. At each time step t, the agent receives a representative description of the environment’s 

state 𝑆𝑡 ∈ S, where S is the set of all possible states of the environment. Then, given that he is in 

state 𝑆𝑡, the agent selects an action 𝐴𝑡 ∈ 𝐴(𝑆𝑡), where 𝐴(𝑆𝑡) is the set of possible actions that are 

available in state 𝑆𝑡. 

Consecutively, the environment sends back a signal (for instance, under the form of a numerical 

value) to the agent, which is usually influenced or determined by the agent’s chosen action. This 

signal is called a reward in this context, and it is denoted as 𝑅𝑡+1 ∈ 𝑅. Then, the agent is responsible 

for doing a mapping at each time step from states to actions. This mapping is called the agent’s policy 

and it is denoted by 𝜋𝑡 and basically 𝜋𝑡(𝛼|𝑠) represents the probability that 𝐴𝑡 = 𝛼, given that 𝑆𝑡 =

𝑠. Finally, the system transits to a new state 𝑆𝑡+1and this procedure should continue iteratively until 

convergence is reached [191]. 

Q-Learning (QL) is one of the most well-known RL algorithms. It was originally proposed in 

[192] and it is fully detailed in [191]. It is a useful algorithm for solving MDP, and its implementation 

involves the evaluation of the payoff for a given state-action pair. This leads to the QL matrix that is 

composed by cells known as Q-values. Thus, Q-values are calculated for each pair of state (s) and 

action (a), and therefore they can also be described as 𝑞(𝑠, 𝑎). As the Q-Learning focuses on the 

impacts of rewards (r) and on the choices of actions in each state, the Q-values are obtained by a 

function that provides the utility of taking a given action in a given state. This function corresponds 

to the Bellman equation, and it is given by (3.1.). 

 

𝑞(𝑠, 𝑎) ← 𝑞(𝑠, 𝑎) + 𝜆[𝑟(𝑠, 𝑎) + 𝛾𝑚𝑎𝑥𝑎𝑞(𝑠
′, 𝑎) − 𝑞(𝑠, 𝑎)]  (3.1.) 
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In this equation 𝜆 is the learning rate, which reflects the degree to which recently learned infor-

mation will override the oldest one (when 𝜆 equal to 0 originates that the agent does not learn, while 

when equal to 1 it induces the agent to consider only the most recent information). The parameter 𝛾 

is the discount factor that determines the importance of future reinforcements in the learning process 

(if 𝛾 equal to 0 the agent is myopic by only considering current rewards, while values closer to 1 turn 

distant rewards more important). The expression 𝑚𝑎𝑥𝑎𝑞(𝑠
′, 𝑎) represents the best the agent thinks 

it can do in state s’. Finally, in this equation r(s,a) represents the reward that is associated to the pair 

state s and action a. 

The classical structure of the QL algorithm used by an agent is presented in Table 3.4. 

Table 3.4. Q-Learning algorithm 

 

 

In line 1, the QL matrix is initialized. Different states are represented along different rows and 

actions are in different columns, which defines the Q-table. For every training episode of the algo-

rithm, the state of the environment is initialized and then for every decision period, an action is 

chosen based on the Q-table and following a ε-greedy policy. The ε-greedy policy refers to the ex-

ploration/exploitation tradeoff. Initially, the agent chooses actions almost randomly (which means 

that ε should be high) but as the simulation evolves and the convergence is approaching, the agent is 

induced to choose actions mostly based on the maximum Q-values of the Q-table, depending on the 

specific state (row) where he is located at any time (which means that ε should be low). After that, 

the agent observes the reward that he received and the next state to where he will move. Finally, it 

updates the corresponding element of the Q-table based on the QL update rule and also updates its 

next state. The QL has been proven to converge to the optimal solution, given Markov properties in 

the state-to-state transitions and admitting an infinite number of visits to each state-action pair [189]. 
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Despite its simplicity and the fact that it is widely used in many MDP settings, in stochastic MDP 

the performance of the QL algorithm is affected by a large overestimation of action values [193]. 

This overestimation comes from the fact that positive bias is inherent to the QL algorithm from using 

the maximum action value as an approximation of the maximum expected action value. Van Hasselt 

[193] proved that this estimator is biased in highly stochastic environments because instead of the 

expectation over the next state, only the average over all possible results of the experiment is com-

puted. 

In order to solve the aforementioned problem, Van Hasselt proposed a Double Q-Learning al-

gorithm [193]. The intuition behind this approach is that the selection of the best action should be 

de-correlated with the evaluation of this action. The classical structure of the Double QL algorithm 

used by an agent is presented in Table 3.5. 

In the Double Q-Learning algorithm, there are two Q-tables, QA and QB, instead of one.  Each of 

these is randomly selected to be updated during each iteration of the program. The main difference 

between this algorithm and the original QL is that the former's selection is based on one of the Q-

tables, while the latter's evaluation is based on the other Q-table. So, it is possible to avoid the pitfall 

of overestimation bias that is associated with the classical QL. 

Although the algorithms presented up to now display very good performance, there are still some 

limitations when it comes to generalization. Most of them use two-dimensional arrays for their Q-

values, which is similar to how dynamic programming is done [189]. In higher dimensions, this issue 

can be considered a threat. Since the agent doesn't have the necessary knowledge about the unseen 

states or the less-seen ones, the performance of the simulation can be affected. The use of the Deep 

Q-Learning algorithm can help solve this issue. 

Deep Q-Learning combines the perception function of deep learning with the decision-making 

ability of RL. It is an artificial intelligence approach closer to human thinking and it is often classified 

as an Artificial Intelligence procedure. Deep Reinforcement Learning gets the target observation 

information from the environment and provides the state information in the current environment as 

illustrated in Figure 3.10. 
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Table 3.5. Double Q-Learning algorithm 

 

 

 

Figure 3.10. Schematic structure of Deep Reinforcement Learning agent (source [194]). 

 

The two main aspects related to Deep Q-Learning are target network and experience replay. The 

first one is the selection of data for training the deep neural network. The second one is the method 

for storing the agent's experiences. One of the main concepts in deep neural network training is the 

selection of a random sample of experiences. This approach ensures that the correlation between 

training samples is low. It should be mentioned that the experiences are defined as a set of values 

that includes the state, action, reward, and the next state.
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When it comes to training the target network, one should keep in mind that there might be signif-

icant differences between the predicted and the actual target value if a single network is used. A good 

analogy that is often given is that this process looks like someone who is trying to hit a moving target. 

Therefore, a separate target network can then be used to estimate the predicted values. The main 

network parameters can also be copied to this target network at predetermined intervals. This method 

can help improving the training process [194]. Overall, a visualization of how Deep Q-Learning 

relates to tabular Q-Learning can be seen in Figure 3.11. 

 

 

Figure 3.11. Relationship between Q-Learning and Deep Q-Learning (source [194]). 

 

3.4. Agent Based Models in Power Systems 

 

Power systems have experienced several changes, mainly related to organizational and opera-

tional restructuring. The transition from vertically integrated utilities to an electricity market envi-

ronment and the appearance of new actors and rules, increased the complexity of power systems 

modeling. Smart grids and microgrids [195-199], Electrical Vehicles [200], consumption flexibility 

and demand response mechanisms [201, 202], bid based electricity market [203], energy efficiency 
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measures [204], building energy management and energy modelling in general [205-209], among 

many others, contribute to the mentioned increasing complexity.  

As a direct result, there is a need for new simulation and management control solutions and strat-

egies that enable integrating these different actors. So, considering the operation of power systems 

with the participation of these new players, rather than just looking at the overall picture, this makes 

the problem solving in this domain an increasingly complex task. ABM can be considered as a suit-

able tool to address this complexity. 

There are also many other applications for which ABM models are beneficial to power engineer-

ing, such as electrical grid diagnostics [210], assets condition monitoring [211], power system resto-

ration [212], market simulation [213-219], network control [220, 221], automation [222] and trans-

portation [223, 224]. 

Notwithstanding becoming a powerful tool to be used in power systems, ABM has been applied 

in different areas, including marketing [225, 226], diseases [227], biology [228], economics [229, 

230], financial economics [231], urban planning [232], social sciences [233], transportation  [234], 

geographical information systems [235], pandemics [236], etc. This development has been high-

lighted with several conferences and publications. The Multi-Agent-Based Simulation International 

Workshop series started in 1998 and aims to bring together researchers from artificial intelligence, 

computer science and social sciences interested in using multi-agent models and technology in social 

simulation [237]. The annual Computational Social Science Society of the Americas Conference fo-

cuses on Computational Social Science, a scientific discipline where computational methods and 

simulation models of social dynamics are employed to offer new insights into social phenomena 

beyond what is available with traditional social science methods [238]. Other conferences such as 

the annual INFORMS meeting [239] and the annual Military Operations Research Society Sympo-

sium [240] often have significant numbers of presentations involving ABM based models. CoMSES 

Net, the Network for Computational Modeling in Social and Ecological Sciences, is an open com-

munity of researchers, educators, and professionals with a common goal - improving the way agent 

based and computational models are developed, shared, used, and re-used for the study of social and 

ecological systems [241].  

Considering the definitions of agents and the operation of power systems, we can list a number 

of requisites to use ABM in power systems: 

• The rules of business and social interaction are at least as important as the rules of phys-

ics when it comes to the generation, sale, and delivery of electrical power; 
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• Agents operating within an agent framework can be used to model decentralized com-

petitive decision-making; 

• Agent frameworks allow groups of agents to interact in complex dynamic ways; 

• Learning and adaptation of agent behavior can be modeled; 

• Transient conditions of the system can be studied in addition to the equilibrium condi-

tions; 

• Alternative market rules can be tested. 

The following sections provide some details regarding ABM tools applied to power systems, 

namely approaches applied to electricity markets, smart grids, energy storage systems and energy 

communities. 

3.4.1. Applications of Agent Based Models to Power Systems 

Considering the evolution of power markets, with the aforementioned restructuring and with new 

kinds of customer service requirements (ancillary service markets, advanced metering, etc.), it was 

fundamental to develop open-source code access software to model multiple market participants. In 

this sense, in June 2007 the IEEE officially recognized the newly created Task Force on Open Source 

Software (OSS) for Power Systems [242]. The mission of this task force is to promote the diffusion 

of the philosophy of OSS in the power systems community and the promotion of OSS for the benefit 

of the Power Engineering Society, from pedagogical to commercial purposes. Also, it was developed 

a special website [243], titled Open Source Software for Electricity Market Research, Teaching, and 

Training, that focuses more specifically to OSS electricity market applications. Some specified elec-

tricity markets modeled with ABM are presented in this section. 

Bunn and Oliveira [244] use agent-based simulation in a coordination game to analyze the possi-

bility of market power abuse in a competitive electricity market. Agents were modeled as having the 

capacity to learn. They use an RL algorithm to improve the performance of the participants: each 

agent evaluates the profit earned, and then derives new policies to bid or offer, given its strategic 

objectives of profit maximization and market exposure. They used the largest generation companies 

in England and Wales electricity market in 2000, splitting each generator’s capacity into three cate-

gories, based on the degree of flexibility and running times of each technology (nuclear, large coal 

and combined-cycle gas turbines, and the rest). They concluded that the agent-based simulation tech-

nique enabled the modelling of complex adaptive behavior in an environment with possible multiple 

equilibria, with heterogeneous agents and price uncertainty. This shows that models capable of 
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learning in complex electricity market environments can be utilized to model the behavior coordina-

tion in complex electricity markets and equilibrium selection processes. 

In [245], different congestion management schemes in liberalized electricity markets were com-

pared using an agent-based simulator. By modelling market participants as adaptive agents in oli-

gopolistic structures, it considers the possibility of strategic behavior and the existence/exercise of 

market power. The simulator evaluates locational marginal pricing and zonal pricing (market split-

ting and flow-based market coupling), where congestion management schemes were assessed with 

regard to the distribution of producer and consumer surplus in the network while aiming at maxim-

izing the overall social welfare.  

In [217] it is described an agent-based conceptual model to simulate the Portuguese/Spanish Elec-

tricity Market (MIBEL) and to study the behavior of the involved agents, focusing on the represen-

tation of hydro power plants with pumping capability. The model simulates the Energy Market and 

the Ancillary Services Market as illustrated in Figure 3.12. 

 

 

Figure 3.12. Structure of the proposed agent model to represent the MIBEL (source [217]). 

 

In this structure, retailers are entities that buy energy in the Energy Market and negotiate it with 

the consumers. They have to bid in the energy market to supply the energy to the consumers who are 

not able to buy it directly in the market. The model includes commercial, industrial, and residential 

customers. They also have to negotiate with different retailers that act as aggregators of individual 

demands and operate as market agents. In the consumers group, there are also large consumers which 
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can purchase energy directly from the market. These are referred to as Eligible Consumers. Genera-

tion companies, which own and operate power plants, submit selling bids to the Market Operator. 

They can also establish Bilateral Contracts with the Retailers or Eligible Consumers.  

Regarding the Ancillary Services Market, the System Operator is responsible for ensuring that 

the power system operates safely and efficiently. It contracts reserves with different time durations 

and activation periods. It accepts offers for secondary and tertiary reserves from generation compa-

nies, and it selects the most cost-effective ones depending on the technical requirements. 

The proposed ABM model used six types of agents and two artifacts: 

• Inelastic Demand Agent – it corresponds to the individual clients (residential, commercial 

or industrial consumers) which are insensitive to the electricity price. Typically, they do not 

buy electricity in the market and have to negotiate with the Retailer Agents; 

• Eligible Demand Agent – it corresponds to large consumers that can directly participate in 

markets (large factories or hydro pumping power stations). They can also establish bilateral 

contracts with Generation Companies; 

• Retailer Agent – it corresponds to an aggregator entity that has a portfolio of contracts with 

individual clients, that is, with Inelastic Demand Agents. This agent can buy electricity in 

the market or establish bilateral contracts with Generation Companies; 

• Physical Generator Artifact – it is related to individual power plants that have specific char-

acteristics; it will be an artifact agent because it does not take any decision and it has a pas-

sive role in the market with no goal or autonomous activity. It will be used by Generation 

Company Agents; 

• Generation Company Agent – it corresponds to the utilities that own a portfolio of generation 

assets, comprising different generation technologies, each one characterized by its genera-

tion operation and maintenance costs. These agents will have to decide whether they use 

their resources (hydro, gas, coal, wind) in the day-ahead market, in the ancillary services 

markets, or store some resources to be used in the future, when possible. It can also establish 

bilateral contracts with retailers; 

• TSO Agent – it represents an entity that gathers the functions of an ISO with the ownership 

or the concession of a transmission network. It is also the ancillary services market operator 

thus being responsible for procuring and contracting reserves for frequency control; 

• Organized Market Artifact – it is a process that models the energy market operator as a cen-

tral entity that receives selling and buying bids for each trading hour of the next day and 
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organizes these bids to get generation/demand schedules. It is considered as an artifact be-

cause it presents neither internal goals nor any kind of autonomous activity; 

• Regulatory Agent – this agent is in charge of evaluating the behavior of the agents according 

to the market regulation and eventually promoting regulatory changes or imposing penalties 

if market rules are violated. 

Each of the mentioned agents assumes a role (i.e., sells, buys or regulates) according to the group 

it belongs to. Their decisions are essentially associated with the market type (energy or ancillary 

services), the player type (traders that operate in markets or individual inelastic demand) and about 

physical constraints, from grid and from generators. Their decisions will be supported by learning 

processes, such as QL and genetic algorithm based learning, and also by decision-support models 

[217]. 

Following the previous work, [246] describes an agent-based approach to model the day-ahead 

electricity market having a particular emphasis on hydro generation. The developed model considers 

four types of hydro agents (run of river, pure pumping, storage and storage with pumping), which 

bid their energy in the market and their strategy depends on the type of hydro. The bidding strategies 

are determined by the water value on the reservoir, by a learning parameter α in the scope of a QL 

approach, and by a decision supporting tool. It also includes thermal and renewable generation 

agents. The Market Operator agent is an artifact agent because it doesn’t have a decision-making 

process. It performs the market clearing operation determining the market price and the cleared en-

ergy and communicating the market results to all market agents. Regarding demand agents, two types 

of agents were considered: inelastic agents that buy energy at the maximum value allowed by the 

MIBEL rules and elastic agents that are designed to model the behavior of consumers that can di-

rectly participate in the market, typically large industries, or hydro pumping stations. A Regulator 

agent is also used to monitor the generator bids and penalize the generation agents if the bid prices 

are very different from the marginal cost of thermal stations or from the water value for hydro sta-

tions. 

The results reported by the authors confirm that the agents have learning capabilities (learning by 

experience) and are maximizing their profit using the reinforcement QL strategy.  

With the increase in the number of EVs and Demand Response (DR) customers, ABMs can be a 

potential solution to model challenging problems in smart grids. In [247] a payment scheme has been 

designed to compensate EV customers for participating in the VPP. In this publication, the VPPs are 

considered as coalitions of wind generators and EVs, where wind generators seek to use EVs as a 
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storage device to deal with the variations of generation.  EVs provide an interesting potential to 

control electricity generation and demand in an intelligent way given their possible use for load-

shifting. In this context, a combination of a stochastic model for mobility behavior and ABM simu-

lation tool is presented in [248]. 

The effect of the participation of commercial buildings in DR programs has been studied in [249]. 

It was concluded that using DR programs in commercial buildings reduce electricity prices and vol-

atility when there are more buildings. It was also concluded that DR actions by commercial buildings 

shave the load profile at the peak hours and reduce the volatility of electricity demand. In [250] a 

learning approach for strategic consumers in smart electricity markets was designed using a machine 

learning algorithm to smarten the customers. A business idea associated to the DR potential of house-

holds through aggregators is exploited in [251]. The authors of this publication detail that using this 

approach it will be possible to reduce the peak load. 

An ABM architecture for coordinating locally-connected microgrids, thereby supporting more 

cost-effective integration into the main power grid, is detailed in [252]. The interconnected mi-

crogrids, with renewable energy sources and energy storage devices, employ agents so that each 

microgrid can choose to save or resell its stored energy in an open market in order to optimize its 

revenues. 

A detailed review of the literature using ABM techniques for modeling smart grids from a system 

perspective is provided in [253]. For that purpose, it is provided a general classification regarding 

the application of ABM and simulation techniques to electricity systems. 

A prototype ABM to examine the effects of the individual behaviour and social learning on pat-

terns of electricity use is presented in [254]. This paper provides a holistic view on the electricity 

system considering technical aspects, human interaction, and framework policies. A flexible power 

system modelling tool using an agent-based approach to simulate smart grid paradigms, such as de-

mand response, energy storage, retail markets, electric vehicles, and new automated distribution sys-

tems is present in [255]. 

An agent based approach to model zero energy communities is described in [209]. This paper 

details a conceptual ABM for an urban neighborhood to predict the behavior of households regarding 

the level of renewable energy usage in presence of multiple options. In this scope, an energy-efficient 

community where, on a source energy basis, the actual annual delivered energy is less than or equal 

to the on-site renewable exported energy, is called zero energy community [256]. 
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In [257] it is modelled a community of residential prosumer agents that individually optimize the 

energy use to minimize energy costs and dissatisfaction. Each residential prosumer is modeled as an 

individual agent, with specific energy needs and preferences. 

ABMs are well suited to study different investment decisions in electricity markets like genera-

tion, transmission and distribution level investments. In this scope, [258, 259] propose an ABM to 

identify strategic developments regarding investment amongst different players in the market based 

on the benefit that each player gets by setting up the assets in the system. The long-term impact of 

DR on generation adequacy in an energy market has been addressed in [260] with the help of an 

ABM. This work considers only the German electricity market and the estimated generation ade-

quacy levels can drive new generation investments. However, with the expansion of interconnections 

and European electricity market coupling, the role of cross border exchange of electricity needs to 

be accounted for in the model.  

3.4.2. Electricity market simulators using ABM 

Electricity market simulators are used to model and simulate electricity markets. They are mostly 

agent-based, and they differ in the level of complexity and in the scenarios they are able to analyze. 

The following sub-sections presents some of the most known electricity market simulating models 

that use ABM. 

3.4.2.1. Agent-Based Modeling of Electricity Systems, AMES 

AMES is the acronym for Agent-Based Modeling of Electricity Systems, and it is an open-source 

agent based computational laboratory for the experimental study of wholesale power markets. It was 

originally developed in 2007 and it was specifically designed for the systematic exploration of stra-

tegic trading in restructured wholesale power markets operating AC transmission grids. The whole-

sale power market includes an ISO, load-serving entities, and generation companies, distributed 

across the nodes of the transmission grid. Each generation company agent uses stochastic RL to 

update the action choice probabilities currently assigned to the supply offers in its action domain. In 

addition, AMES facilitates augmenting the empirical input data with simulated input data to permit 

the study of a broader array of scenarios. Downloads, manuals, and tutorial information for all AMES 

version releases to date are accessible at the AMES homepage [261]. 

In [262], it is described the AMES framework, that models a wholesale power market which 

operated in accordance with Wholesale Power Market Platform features over a realistically reduced 
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transmission grid subject to congestion effects. The traders within this market model a.re strategic 

profit-seeking agents whose learning behaviors are based on data from human-subject experiments. 

 

3.4.2.2. Simulator for Electric Power Industry Agents, SEPIA 

The Simulator for Electric Power Industry Agents (SEPIA) was developed in 2002 aiming at 

contributing to improve the efficiency of North American power network [263]. It was developed a 

bottom-up model and simulator which uses autonomous, adaptive agents to represent possible indus-

trial components (e.g., generation units, transmission system, load) and the corporate entities that 

own these components.  

According to the survey provided by Zhou et al. [264], SEPIA and its architecture display good 

results for electricity market systems. Its distinct features, which consist of its capability of adapta-

tion, provided by both QL and genetic classifier learning modules, are highlighted as an advantage. 

Related with limitations, the survey mentioned the absence of an ISO agent. Also, the adaptation 

mechanism is restricted to generation companies and focuses on the bidding strategies although it 

could be extended to other decision-making levels. 

The physical system structure is presented in Figure 3.13. and considers four assumptions: 

a) Each defined zone represents a local region of the power system under analysis and each 

of them is modeled by a single bus; 

b) Each Generation Company, with its loads, are limited to a specific local region; 

c) Each zone has a Generator of Last Resort, which has unlimited power capacity. However, 

its generation cost will be much higher than that of the other generators; 

d) It is assumed that the transmission capacity inside each zone is unlimited (within the same 

zone from a Generation Company to any Individual Consumer). 
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Figure 3.13. The Physical System Structures of SEPIA (source [265]).  

 

All major markets participants in SEPIA are modeled as agents and interact with each other, such 

as Generation Companies (along with its generators), Generation of Last Resort, Consumer Loads, 

Consumer Companies (retailers including its consumers loads), and Transmission Operators. As pre-

viously mentioned, SEPIA does not include an ISO, which is an independent non-profit organization 

for coordinating, controlling and monitoring the regular operation of the power system. 

Regarding the adaptation mechanism in SEPIA, both a QL module with Boltzmann selection and 

a genetic classifier learning module are designed to guide the Generation Company agents in making 

decisions [266]. These adaptation components are two complete and independent modules in SEPIA. 

The QL module in SEPIA tries to identify a promising action with the most rewarding result [264]. 

Figure 3.14. outlines the structure of the QL module in SEPIA, which uses the stochastic Boltz-

mann selection procedure in selecting possible actions for each state. 
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Figure 3.14. The Structure of the Q-Learning Module in SEPIA (source [264]). 

 

The reward of action a as a function Q(a) is evaluated. Then, a stochastic selector based on the 

Boltzmann selection mechanism is used to choose a promising action. Usually, the higher the Q(a) 

value, the better is the chance that action a will be selected for a given state. However, because the 

learning algorithm also employs the annealing mechanism, as the process develops and the temper-

ature decreases, it will tend to choose the action that has the highest Q value [264] thus progressively 

reducing the chances of selecting more diverse actions. Moreover, the QL module in SEPIA has a 

self-learning capability. 

SEPIA also includes a Genetic Classifier-based Learning Module which includes three data sets 

(Rule Set, Match Set and Action Set) and four independent sub-modules (Genetic Algorithm, 

Matcher, Action Selector and Credit Assignment) as illustrated in Figure 3.15. 

 

Figure 3.15. The Genetic Classifier Learning Module in SEPIA (source [264]). 
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The set of rules determines the knowledge base where each rule has a condition part that specifies 

an agent’s current state, and an action part that specifies the consequent action the agent would take. 

Then, the rules with certain conditions satisfied are placed into a match set by the matcher.  The 

action selector uses a stochastic selector based on the Boltzmann selection mechanism to choose a 

rule in the match set and then it implements the selected action. After the effects resulting from 

taking that action are cumulated and measured, a credit is assigned to the implemented rule in the 

action set. Finally, a Genetic Algorithm is used to optimize and update the rule set and the fitness of 

each rule is evaluated by its assigned credit. 

According to the survey provided by Zhou et al. [264], SEPIA and its architecture display good 

results for electricity market simulation. Its distinct features correspond to its capability of adaptation 

provided by both the QL and the genetic classifier learning modules and are highlighted as relevant 

advantages. Related with limitations, the survey mentions the absence of an ISO agent. Also, the 

adaptation mechanism is restricted to generation companies and focuses on the bidding strategies 

although it could be extended to other decision-making levels. 

 

3.4.2.3. Electricity Market Complex Adaptive Systems, EMCAS 

The Electricity Market Complex Adaptive Systems (EMCAS) is a commercial tool developed by 

the Center for Energy, Environmental and Economic Systems Analysis at the Argonne National Lab 

Laboratory [267], which includes decentralized agent decision-making features along with learning 

and adaptation capabilities. This feature allows agents to learn from their previous experiences and 

change their behavior as future opportunities arise. That is, as the simulation progresses, agents can 

adapt their strategies based on the success or failure of previous efforts. This approach is especially 

suited to analyze electricity markets with many participants, each with their own objectives.  

The modeling framework can be described in terms of three main components: agents, interaction 

layers, and planning periods. The agents represent the participants in the electricity market. The in-

teraction layers correspond to the environment in which the agents reside and interact with each 

other. The planning periods correspond to the different time horizons for which the agents make 

decisions regarding their participation in the market [268].  

In the simulation, different agents are used to model the full range of time scales and the entire 

value chain of restructured markets. EMCAS physical structure (Figure 3.16) is similar to SEPIA 

and it includes physical generators and generation companies, transmission companies, distribution 
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companies, ISOs or Regional Transmission Operators when they exist, consumers, and regulators 

[269].  

 

Figure 3.16. The Physical System Structures of EMCAS (source [264]). 

 

The agents are specialized and perform diverse tasks using their own decision rules. A special 

feature of the agents is that they can learn and adapt based on past performance and changing condi-

tions. Agents learn about the market and the actions of other agents using two forms of learning: 

observation-based learning and exploration-based learning.  

The observation-based learning (Figure 3.17) goes through a structured process that includes the 

following steps: 

- look back — to evaluate the past performance; 

- look ahead — to project the future state of the electricity market; 

- look sideways — to determine what others have done. 

 

 

Figure 3.17. EMCAS’ Agent observation-learning process (source [268]). 
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As a result of these evaluations, an agent can choose to 1) maintain the current strategy, 2) adjust 

the current strategy, or 3) switch to a new strategy. 

EMCAS agents make informed decisions based on their past experiences and their expectations 

- Look Back. Whenever they make a decision, they will analyze the previous ones and come up with 

a better understanding of the factors that influenced their decisions. This method is also useful in 

analyzing the various types of trades offs (bid acceptation or rejection, unit utilizations and profita-

bility, market versus bid price and weather versus load) that can be made in the market. It also takes 

into account various factors such as the availability of units, prices, and the weather when forecasting 

future results - Look Ahead.  When it comes to analyzing the current conditions of the market, the 

agent often takes a Look Sideways. This strategy allows them to make informed decisions based on 

their own factors and the market's overall situation. 

In the exploration-based learning scheme, the agent can identify various strategies that it can 

implement in the market. After the strategy has been selected, it is adjusted to reflect the changes in 

the market. If a strategy has failed, the agent may start to explore other options in an attempt to adapt 

its behavior to the changes brought about by the market. Even though a strategy may continue to 

perform well, the agent may still search for a better one. Through this process agents can identify 

their own potential influence in the market and improve their utility functions [268]. 

When compared with SEPIA, which has a self-learning mechanism for decision rules, the adap-

tation process in EMCAS is supported by pre-specified decision rules. Thus, agents in EMCAS have 

a lower adaptation capability than those in SEPIA. Moreover, the adaptation in EMCAS is restricted 

to Generation Company agents and to a smaller extent to Consumer agents. The main difference 

from SEPIA is the additional ISO/TSO agent. Bilateral contracts can be negotiated directly between 

generation companies and retailors or large consumers, or the bids can be submitted to the pool 

market managed by the ISO/TSO. All the transactions requiring the use of the transmission system 

are as well scheduled and dispatched by the ISO/TSO. The regulator is a special agent in EMCAS 

which has the responsibility for setting up market rules that should be obeyed by all participants in 

the electricity market.  

The agents interact on several layers, including a physical layer, several business layers (namely 

related with the bilateral contract market, the pool market, and the transmission and retailers) and a 

regulatory layer as illustrated in Figure 3.18. 
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Figure 3.18. EMCAS multi-layer architecture (source [267]). 

 

The bottom layer consists of physical elements (generators, transmission systems, distribution 

systems, and customer loads).  In the physical layer, the ISO/TSO exercises its dispatch function to 

operate the system to match generation and load and to adjust to changes in load, generator or trans-

mission outages, and other unplanned events. The ISO/TSO uses a transmission-constrained optimal 

power flow methodology to dispatch generators to meet the load. This part of the simulation relies 

on conventional power flow methods to ensure that the physical limitations of the system are ob-

served. 

In the pool market layer, Generation Companies’ hourly offers are based on bidding strategies 

that are formulated for the entire day. The offer prices may vary as a function of the time of the day. 

Generation Companies use public information as well as private information to formulate their bid-

ding strategies. A unit commitment algorithm is employed by Generation Companies to determine if 

units can be profitably operated at projected prices. Retailers also prepare bids into the pool energy 

market. They specify how much energy they are willing to purchase at a given price. In effect, their 

bids are formulated in terms of a demand curve. On the basis of bid prices, transmission constraints, 

and energy security considerations, the ISO/TSO accepts or rejects the bids it receives and establishes 

the schedule for the next day. 

In the bilateral power market layer, bilateral contracts between Generation Companies and Re-

tailers or large consumers are established. This process is similar to that of SEPIA, however in this 
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last one only bilateral contract as a market option are allowed because SEPIA does not include an 

ISO or a pool market operator.  

The third business layer, the transmission and distribution company layer, is designed to account 

for the ownership of the transmission and distribution systems and for the fees charged by these 

companies for the use of their assets.  

The responsibility for preparing and monitoring bidding rules, bilateral contract rules, and settle-

ment rules in the electricity market is assigned to the Regulator, which is included in the top layer. 

There is also an agent for special event generation, which allows EMCAS to become more realistic 

and its role is to generate contingent events such as fuel price increases, the change of customer 

loads, and generator or transmission outages. 

Six distinct time scales or decision levels are considered in EMCAS, including hourly dispatch, 

and day-ahead, week-ahead, month-ahead, year-ahead, and multi-year planning (Figure 3.19): 

• Hourly/Real-Time Dispatch: the dispatch of power plants is carried out according to the 

procedures established by the ISO/TSO. These procedures are carried out in line with 

the previous market arrangements made under bilateral contracts and in energy and an-

cillary service markets; 

• Day-Ahead Planning: it begins with the agents determining the market allocations for 

their selling products. After the generation companies have prepared their unit commit-

ment schedules, the demand side begins accepting offers for bilateral contracts; 

• Week-ahead Planning: it allows the demand agents to make bilateral contracts with in-

dividual generation agents. These contracts are then sent to the ISO/TSO for approval. 

The day-ahead strategies can be modified in order to comply with the grid operation 

constraints;  

• Month-ahead Planning: it involves monthly bilateral contracts involving demand and 

generation agents. These are sent to the ISO/TSO for approval. The week-ahead market-

ing strategy can be modified in this phase if necessary, in a similar way to what was 

mentioned in the Weak-ahead Planning level; 

• Year-ahead Planning: in this level, month-ahead marketing strategies can be adjusted. It 

also allows the generation companies to plan their maintenance schedules; 

• Multi-year-ahead-planning: in this level, year-ahead marketing strategies can be ad-

justed. System capacity expansion both at the generation and transmission levels or long-

term planning can be done at this level. 
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Figure 3.19. Planning periods (source [267]). 

At each decision level, agents make their own decisions regarding their future activities. For in-

stance, in the long-term planning stage, the generation companies commit to increase their capacity. 

Similarly, in the year-ahead planning phase, they establish their maintenance schedules. At day 

ahead, they bid into selected markets for each trading period of the next day. Each agent has their 

own set of decisions that they can make at different planning levels. It is clear that their decisions 

made at long time periods can have an impact on their shorter time horizons. 

In spite of the existence of several references to ABM applied to power systems, the available 

models do not adequately consider a number of features that are common in several power systems 

such as the large presence of hydro stations and the possibility of pumping, as well as the large share 

of zero or near zero marginal cost technologies using renewable primary resources as wind and solar. 

In these cases, the short-term bidding decisions and strategies should coordinate with a longer-term 

vision or plan. In this sense, in [270] it is described the integration of EMCAS, with a hydro-thermal 

coordination model, VALORAGUA.  

VALORAGUA has been in use for several decades as a hydro-thermal coordination model with 

the objective of optimizing the overall system operation over a period of up to 1 year. It establishes 

the optimal operation strategy for a given power system using the “value of water” concept, in each 

power station, for each time interval (i.e., month/week) and for each hydrological condition. The 

model optimizes the operation of hydro and pumped-storage power plants, computes thermal-based 

power generation emissions, and optimizes the maintenance schedule of power plants. The objective 

function minimizes the overall system operating cost based on the calculated expected value of the 

water in each time period (52 weeks). This model takes into account the system configuration, pro-

jected loads, thermal and renewable capacity, reservoir characteristics, hydro cascading, and 
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historical water in-flows and it generates weekly schedules for each of the hydro power plants based 

on stochastic dynamic programming and non-linear programming-based algorithms. 

VALORAGUA is often used to [271]: 

• analyze energy import/export contracts; 

• maximize power generation revenues;  

• manage the long-term water stored in reservoirs with regulating capability; 

• obtain a better use of the water in a multi-purpose scheme, considering its operation 

constraints [271].  

A comprehensive description of the main characteristics and capabilities of VALORAGUA is 

provided in [272]. On the other hand, [270] provides a comprehensive overview about the integration 

between EMCAS and VALORAGUA. 

 

3.4.2.4. Short-Term Electricity Market Simulator - Real Time, STEMS-

RT 

The Short-Term Electricity Market Simulator - Real Time (STEMS-RT) was developed by the 

Electric Power Research Institute. Each bidding process in STEMS-RT runs for several rounds. In 

each round, an agent submits bids according to the public information from the Market and the bid-

ding results from previous rounds. Usually, the suppliers (Generation Companies) in STEMS-RT 

use two bidding strategies. In the first strategy, generation companies bid all the production capacity 

at the marginal cost (conservative approach). The other strategy tries to maximize the profit on a 

short-term basis (ambitious approach). The consumers use only one strategy, which is to bid the 

willing-to-pay price.  

The STEMS-RT architecture consists of three layers: Application, Modeling, and Solvers as il-

lustrated in Figure 3.20.  
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Figure 3.20. Three Layered STEMS-RT System Architecture (source [264]). 

 

There are three types of applications in the Application Layer. The Market Application, which 

handles the decisions related to accepting or rejecting the bids submitted by computer or human 

agents. It allows the participants to submit their proposals and receive the results. The Client Appli-

cation provides interfaces for human participants to submit their bids to the market and to receive 

the bidding acceptance results. The Agent Application helps the computer agent to make the best 

decisions based on the previous results and the market clearing issues. 

The Optimization Modeling Interface supports the modeling layer. It is in his layer where models 

can be created in order to solve market clearing problems for market applications and problems on 

bidding strategies for agent applications. The mathematical models built in the modeling layer can 

be solved in the Solver Layer, which includes tools to solve LP problems, MIP problems, Quadratic 

Programing problems, Linear Complementarity problems, and Mathematical Programs with Equi-

librium Constraints.  

Agents in STEMS-RT utilize mathematical programming to solve bidding problems. New strat-

egies can also be added, and their effects analyzed, though it does not have an ISO agent and demand 

companies and transmission operators as agents. Another disadvantage of this system is that it does 

not have an adaptation process that can be used by each agent. 

3.4.2.5. National Electricity Market Simulator, NEMSIM 

The National Electricity Market Simulator (NEMSIM) is an agent-based simulation model that 

represents the Australia National Electricity Market, as an evolving system of complex interactions 

between human behavior in markets, technical infrastructures and the natural environment. The 

structure of NEMSIM is displayed in Figure 3.21. [273]. 
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Figure 3.21. NEMSIM overview structure (source [273]). 

 

Its physical configuration (technical infrastructures) consists of generating plants, inter-connect-

ors, and transmission lines. Each physical element has its own technical or operational attributes. 

The agents defined in NEMSIM include Generation Companies, Network Service Providers, Retail 

Companies and a Market Operator, which buys and sells electricity in a simulation trading environ-

ment. The model is designed to examine scenarios using companies’ bidding practices, bilateral in-

puts of generator financial contracts, transmission network limitations and new investment in gener-

ating plants and transmission lines. Regional demand for electricity is based on historical demand 

patterns and can be changed to accommodate growth forecasts and exceptional weather conditions. 

A Market Operator agent clears the market to ensure that demand is always met within every 30 

minutes (the market-clearing trading interval). In the short term, NEMSIM can solve problems to 

help generation companies to improve their bidding strategies. Retailers can use NEMSIM to inform 

their decisions on medium-term contracts with power generators. They can reduce their exposure to 

short- term price volatility or wholesale price rises by signing contracts for fixed-price bulk power 

allocations. NEMSIM is also a useful modelling tool for power-generation companies to schedule 

investments in extra generation capacity or network upgrades to accommodate growing demand, or 

changing demand patterns [273]. 
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Summarizing, NEMSIM considers all the important system participants in the Australian elec-

tricity market allowing each agent behavior to be modeled. Functions of the pool market in NEMSIM 

can be extended to the bilateral contract market. It is also possible to investigate and compare the 

operation of the system considering new scenarios such as the connection of new plants, the defini-

tion of maintenance schedules, the specification of new market rules, and the modelling of special 

events. Short-term trading, medium-term contract market, long-term investment, environmental is-

sues such as the estimation of greenhouse gas emission, are also studied in NEMSIM. However, and 

because NEMSIM is designed particularly for the Australia electricity market, its extensions to other 

markets would require significant modifications. 

3.4.2.6. Multi Agent Simulator of Competitive Electricity Markets, MAS-

CEM 

 

The Multi Agent Simulator of Competitive Electricity Markets (MASCEM) is multi-agent plat-

form, developed in the Polytechnic Institute of Porto, Portugal [274] to study competitive electricity 

markets, that includes independent agents with their own ability to perceive the states and changes 

in the world and to act accordingly. These agents are provided with bidding strategies, which must 

be adequate and refined to let them gain the highest possible advantage from each market context. 

So, they can adapt their strategies based on the success or failure of previous experiences and, in 

each situation, they can adapt their behavior according to the present context and using the dynami-

cally updated detained knowledge. Figure 3.22 illustrates MASCEM's most important features, such 

as the ability to simulate several types of negotiation platforms that exist in electricity markets, the 

consideration of algorithms to define bid prices and the inclusion of distributed generation. Also, 

important features such as power flow analysis and scenarios definition based on real data are also 

available. 

The Market Operator agent is responsible for managing the pool negotiations. It uses various 

algorithms to determine the optimal conditions for the negotiation. It also handles other administra-

tion functions such as receiving selling and buying proposals from consumers and generators. It in-

forms the pool members about the market price and establishes an economical dispatch.  
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Figure 3.22. MASCEM key features (source [274]). 

 

The seller agents usually include generation and distribution companies. They compete with each 

other in order to maximize their profits. On the other hand, buyer agents are usually composed of 

electricity consumers or distribution companies, in cases where the unbundling between retailing and 

distribution network activities was not implemented.  

There are also agents that act as market independent entities. For instance, the System Operator 

checks the economic dispatch through a power flow analysis to evaluate eventual technical problems 

that can affect power system operation. 

The MASCEM platform also allows considering VPP agents. They represent a set of producers, 

mainly based on distributed generation and renewable sources. They can provide the means to ade-

quately support distributed generation increasing use and its participation in the context of competi-

tive electricity markets. Virtual Power Player agents are implemented as a coalition of agents, each 

one acting as an independent multiagent system [275]. 

 



 

 

 

Chapter 4  

4. Problem Description and Proposed Model 

 

Energy Communities provide an emerging mode of negotiating and exchanging energy that defy 

the traditional hierarchy based on vertical agreements involving energy providers, retailers and con-

sumers. Regarding the significant number of prosumers, the penetration of local energy generation, 

and the concept associated to Energy Communities, it is becoming important to develop decision 

tools to support energy transactions among Energy Community agents and between the communities 

themselves and the Wholesale Market. Local Electricity Markets (LEM) associated with Energy 

Communities and more specifically with RECs are fostering new optimization models to enable the 

development of strategies regarding the increase of community energy savings and profits. 

In this scope, this chapter details Energy Communities business models and presents the structure 

of the model that was developed. It is presented an ABM as a decision tool to support energy trans-

actions between the LEM and the Wholesale Market (WSM). The proposed simulation model will 

help community agents (consumers, prosumers and producers) to adequate their bids by running 

several scenarios. In this chapter, the developed ABM will be fully described as well as the interac-

tion of the local community local market with the Wholesale Market.  

4.1. Energy Community’s business models  

As detailed in Section 2.2, REC and CEC definitions describe energy communities as non-com-

mercial legal entities, based on the open and voluntary participation of their members, which can be 

householders, public authorities and small and medium-sized enterprises, provided that their main 

activity is not energy-relate. Community members must be fully or partially involved in daily deci-

sion-making and operation control, and the potential revenues that will be attained must be used to 

provide local services/benefits. However, these definitions diverge in what concerns the following 

items [276]:  
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- the geographical scope, since REC requires participants to be in the vicinity of renewable 

projects, while CEC does not set physical boundaries or constraints; 

- the activities performed, as CEC comprises generation even not from renewable sources, 

distribution, supply, consumption, aggregation, energy storage, EV charging, energy ef-

ficiency and other energy services, while REC promotes the engagement into generation, 

trading, storage and supply of energy from renewable sources; 

- the generation technologies, since REC only allows the use of renewable technologies 

whereas CEC are technology-neutral, meaning that both renewable and fossil-based tech-

nologies are acceptable under this concept. 

Before the energy market liberalization, the monopolistic utilities’ value proposition was based 

on providing an undifferentiated commodity to a broad segment of customers. The unbundling of 

traditional vertically integrated utilities together with the increase of renewable-based decentralized 

generation imposed changes on the Business Models of classical utilities, allowing smaller energy 

retailers to develop and offer innovative electricity supply packages, making room for new Energy 

Business Models to emerge. Reis et al. [276] addresses Energy Business Models over different per-

spectives: 

• The Customer-side business models, which are based on the direct purchase of energy tech-

nologies by end-users, to become prosumers. The ‘all sold to the grid’ or ‘self-consumption 

with surplus sold to the grid’ modes may be exploited, allowing the full injection of the 

generated power into the grid or self-consumption and surplus injection, respectively. Also 

Demand Side Management programs, eventually put in place by Distribution System Oper-

ators, DSO, or by retailers or eventually activated by these two types of agents in conjunc-

tion, could also be explored as a way to help managing and operating distribution networks; 

• The Third-party-side business models, fully financed by third-party companies, generally 

utilities, which keep the assets control and ownership and bear all the related costs and risks. 

Renewable generation assets are installed either on customers’ roofs and backyards or in the 

vicinity of consumption sites when space is constrained. This allows increasing the genera-

tion close to end consumers thus reducing the liquid demand seen by distribution networks 

which would contribute to improve their operation performance in terms of reducing losses 

and get a better voltage profile and also eventually reducing or postponing reinforcement 

and expansion network requirements; 

• The Energy Community business models, where all the members should be considered in 

the overall arrangement design, implementation and operation. As advocated by the Euro-

pean Directives, Energy Community Business Models ‘key activities’ include local 
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generation, supply, storage, consumption, trading, aggregation, e-mobility and energy re-

lated services, as well as system administration.  

Most energy communities have been primarily involved in local generation and self-consumption 

due to the longstanding tradition of these initiatives in Northern European countries [277]. However, 

and regarding the evolution of technology and energy exchange platforms, the sharing and selling 

activities in collective buildings were boosted, allowing to optimize the utilization of local energy 

resources, to maximize the community members’ economic benefits and underpin the deployment 

of LEM. In addition, the 2019 Electricity Market Directive [7] opened room for Member-States to 

grant communities the right to own, establish, purchase or lease the distribution network in their area 

of operation [7]. As stated by Reis et al. [276], Energy Communities may, therefore, become local 

DSO, under the general or the “closed distribution system operator” regime, meaning that the com-

munity becomes responsible for “ensuring the long-term ability of the system to meet reasonable 

demands for the distribution of electricity, for operating, maintaining and developing under economic 

conditions a secure, reliable and efficient electricity distribution system in its area with due regard 

for the environment and energy efficiency” [7]. 

In view of these ideas, this work is directed to an electricity market design and simulation tool 

considering community energy sharing concepts where agents are responsible for the planning of the 

energy transactions between consumers and prosumers. Any member of the community can buy and 

sell its electricity within the community boundaries considering different regulatory and grid tariff 

designs. The simulation of these different operation cases will enable getting insights on the eco-

nomic viability of this business model (as will be detailed in simulations to be described and dis-

cussed in Chapter 6). In fact, the developed model is flexible enough to accommodate different tariff 

designs including the possible exemption of the Costs of General Economic Interest, (CIEG in Por-

tuguese) [278], that are included in the Access grid tariffs in force in Portugal or the non-payment of 

HV and MV grid tariffs [49, 279]. This will allow running several simulations in order to get infor-

mation about the eventual need of some sort of support schemes in order to turn the energy commu-

nities viable. In order to complete this model and given that in some periods there may exist excess 

or deficit of local generation over the community demand, the developed model also addresses the 

interaction of the community with the centralized wholesale electricity market.
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4.2. Overview of the proposed market design  

 

As reviewed in Chapter 3, in Agent-Based Modelling the system is modelled as collections of 

rule-based agents interacting with one another dynamically and intelligently, simulating the behavior 

of human beings in order to build optimal bidding strategies. Agents can interact with each other 

directly or through the environment, resulting in a complex emergent global behavior of dynamic-

equilibrium and adaptation. Agents can also emulate the behavior of different entities as, for instance, 

generation, demand, and retailing entities. 

In this work, the market participants will be modeled as adaptive agents with different bidding 

preferences and strategies. The optimal bidding strategy will be developed by each agent, by learning 

from its past experiences obtained from the direct interaction with the environment. The market 

mechanism design used in this work is illustrated in Figure 4.1. 

 

Figure 4.1. Energy Community market design 

 

The proposed structure considers an Energy Community constituted by different types of agents, 

such as consumers, or prosumers agents. Each of these agents, submit their bids (quantities q and 
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price p) to a Market Community Agent which is in charge of maximizing the Energy Community 

self-energy consumption and the profit in consequence of selling the energy surplus. This agent is 

considered as an artifact, since it will be utilized to carry out Energy Community Agents’ activities 

in a competitive or cooperative manner. It will receive bids from the Energy Community Agents and 

perform a set of operations developed according to pre-defined rules along the simulation and aiming 

at obtaining a schedule for each trading period. In more complex structures, several Market Commu-

nity Agents could be considered. 

The developed framework considers that the Community energy deficit or surplus in each trading 

period will be traded between the Market Community Agent and an Aggregator through a bilateral 

contract. In the developed model real data of PV generation and demand profile will be considered 

and detailed in Chapter 6.  

The Aggregator operates as a traditional retailer regarding the market clearing mechanism in the 

WSM. It will gather the information about the energy deficit or excess from the Market Community 

Agent together with the estimates from demand and generation from entities not included in the 

Community under analysis. After having the mentioned information for each trading period, the Ag-

gregator communicates the buying or selling bids to the Wholesale Market as a way to balance supply 

and demand in the community. 

Regarding the coordination mechanism to integrate the Local Energy Community Market, LEM, 

into the existing Wholesale Market, Figure 4.2. presents the diagram, adapted from [280], that details 

the sequence of activities developed by each entity. The initial trading is done locally followed by 

the trading in the WSM. The Aggregator receives the quantities to buy and sell in the WSM and 

sends back the cleared hourly prices to the Market Community Agent. The obtained values will be 

considered in the optimization model of the community in an hourly basis. In order to encourage the 

participation of local agents in the local trading at the LEM, the electricity price of LEM is deter-

mined by the energy sold by prosumer agents, the energy bought by all the community members, 

and the electricity produced by PV panels installed in the community.  
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Figure 4.2. Sequential diagram of Energy Community market with wholesale market integration 

 

Figure 4.2. illustrates the sequential interactions between the LEM, the Aggregator and the WSM 

in a day-ahead time horizon. The market agents will present buying and selling hourly bids that cover 

all 24 hours of the next day. The market gate closure in the Day-ahead market will be before noon. 

The initial trading is done locally, which results in a Local Market Clearing that jointly with the 

energy traded outside the community, determines the quantities to buy and sell in the WSM. This is 

done via the Aggregator which assumes the role of a retailer and that behaves as a price-taker, i.e., 

assuming that its bidding decisions do not affect the clearing prices of the WSM. After the submis-

sion of demand and supply bids by the Aggregator to the day-ahead energy market, the Wholesale 

Market is cleared. The cleared hourly quantities and prices are sent back to the Market Community 

Agent through the Aggregator Agent. The obtained values will be considered in the optimization 

model of the community which will be detailed in the following sections.  

In this sense, the problem formulation cannot be translated into a single mathematical global for-

mulation. The next sections will address the model construction and the agent’s definition used in 

the scope of the electricity market model considered in this framework.
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4.3. Local Energy Market Agent-Based Model 

4.3.1. General Aspects 

 

The developed ABM incorporates the LEM concept since this is well suited to address the Energy 

Communities main purposes. These mechanisms can induce investments in renewable energy 

sources, can improve the integration of RES into the energy system, and can contribute to empower 

local communities by increasing the participation of local agents as well as the awareness of local 

consumers to the energy problems [281].  

In this work, the Market Community Agent is in charge of guaranteeing the supply of the com-

munity demand, maximizing the profits resulting from the reduction of the generation cost, the in-

crease of self-consumption, and of selling the energy surplus in the Wholesale Market. The backup 

energy will be provided by the Aggregator Agent through the WSM, if the energy traded in the 

LEM is insufficient to satisfy the local demand of the Community. The players in the LEM will put 

bids (𝐶𝐵𝑖𝑑) with a minimum guaranteed price defined according to a bilateral contract that includes 

the price paid to the renewable PV generation (𝐶𝑃𝑉). In order to guarantee that the LEM favors local 

transactions rather than buying electricity from the grid, this price should be lower than the aggrega-

tor tariff (𝐶𝑃𝑉 < 𝐶𝑎𝑔𝑔).  

The above indications mean that when there is energy deficit at the community, the community 

buys electricity from the grid at the WSM price (𝐶𝑎𝑔𝑔). When there is surplus of electricity in the 

community and after considering self-consumption, the LEM has a minimum ensured price that cor-

responds to the 𝐶𝑃𝑉 associated to the PV technology. However, in order to increase the revenues 

from selling this excess, the ABM will try to increase the selling price as close as possible to the 

WSM price. If the LEM price gets higher than the WSM, that would mean that the selling bid of this 

excess would not be accepted at the WSM and therefore this amount is sold at the minimum ensured 

price, that is, at the 𝐶𝑃𝑉 value. 

The following assumptions are also considered in this model: 

a) There is a geographically distinct and close community of residential prosumer and consumer 

agents. It will be possible for them to trade their electricity within the community boundaries, 
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eventually exempting them from paying some tariff components related with LV, MV or HV 

access tariffs (admitting that all the participants are connected to the same private busbar and 

don’t use the public electrical grid for self-consumption purposes), at least in some time pe-

riods namely when the generation in the community is enough to balance the local demand. 

However, the developed model is flexible enough to consider other regulatory and tariff op-

tions, as detailed in Chapter 5 and Chapter 6, in order to get insights about the economic 

feasibility of this business case;  

b) It will be assumed that energy community agents are equipped with adequate infrastructure, 

namely communications and home energy management devices; 

c) It is also assumed that the aggregator operates under the power limits established by the DSO 

which guarantees the operation of the grid, without violating network voltage limits and 

branch flow constraints.  

In order to simulate the proposed LEM, two types of agents are considered, namely consumers 

and prosumers, in this case corresponding to consumers with PV generation or consumer installations 

equipped with storage units, as it will be detailed in Chapter 5. As detailed in Figure 4.2, the initial 

trading is done locally followed by an interaction with the WSM. The achieved results, namely the 

combination of the marginal prices of the LEM and of the WSM will be considered in the decision-

making mechanism that will be implemented in the communities in order to plan the exchanges with 

the WSM.  

4.3.2. Community Agents 

The Consumer Agents are those who do not have their own generation units and thus depend on 

trading and on the grid for their electricity supply.   

Prosumer Agents are always aiming at benefiting the community by making the best use of the 

energy resources available. In this model, prosumers with a PV system will be considered. The mar-

ginal cost function of the PV generation (𝑐𝑃𝑉
𝑚 ) has a price paid to the renewable PV. 

The Market Community Agent is responsible for the local electricity pool market clearing. It 

receives bids and offers from community agents (prosumers and consumers agents) on a one-hour 

time-slot and based on the local PV generation and expected demand.  

To ensure the balance of the community system, constraint (4.1) must be held for every time slot. 

(𝑃𝑃𝑉,𝑡
𝑖 + 𝑃𝐺𝑟𝑖𝑑,𝑡

𝑖 ) − (𝑃𝐿,𝑡
𝑖 + 𝑃𝐶,𝑡

𝑖 ) = 0    (4.1)
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In the previous expression: 

- in case the agent i is a prosumer, 𝑃𝐿,𝑡
𝑖  and 𝑃𝑃𝑉,𝑡

𝑖  are respectively its demand and PV gen-

eration at time slot t; 

- in case the agent i is a consumer, 𝑃𝐶,𝑡
𝑖  represents its demand at time slot t; 

- 𝑃𝐺𝑟𝑖𝑑,𝑡
𝑖  is the power exchanged with the grid at time slot t. This power is considered pos-

itive if it flows from the main grid in the local community. It is negative otherwise. 

 

The representation of the net load of the community agent i either being a prosumer or a consumer 

at time slot t is given by 𝑁𝑃𝑡
𝑖 (Equation 4.2.)  

𝑁𝑃𝑡
𝑖 = (𝑃𝐿,𝑡

𝑖 + 𝑃𝐶,𝑡
𝑖 ) − 𝑃𝑃𝑉,𝑡

𝑖       (4.2) 

If ∑ 𝑁𝑃𝑡
𝑖 < 0𝑁

𝑖=1 , the community has a surplus of PV generation that will be used to trade between 

the Market Community Agent and an Aggregator. If ∑ 𝑁𝑃𝑡
𝑖 ≥ 0𝑁

𝑖=1  the energy is insufficient to sat-

isfy the local demand of the Community and this deficit will be provided by the Aggregator Agent 

through the WSM. So, the developed framework considers that the Community energy deficit or 

surplus in each trading period will be traded between the Market Community Agent and an Aggre-

gator through a bilateral contract. Once this information is received, the pricing strategy is updated 

for the next round. In this sense, the community optimization model is changed every hour and es-

tablished by local generation and demand profile. Its strategy is based on the comparison between 

the WSM and the LEM prices (one hour time slot price). The iterative procedure will be detailed in 

Section 4.6. 

4.4. Aggregator Agent Based Model and Wholesale En-

ergy Market  

As illustrated in Figures 4.1 and 4.2, the Aggregator Agent of the Community interacts with the 

Market Community Agent and with traditional agents that participate in the WSM. It has the role of 

a traditional retailer but also as an intermediary between Market Community Agents. As presented 

in Figure 4.2, it is in charge of informing the agents about the bids that were accepted in the Whole-

sale Market and returning the cleared values to the local market. 
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The retailer/aggregator price (𝐶𝑎𝑔𝑔) obtained in the WSM day-ahead spot market, will be taken 

in consideration in the optimization decision process of the community. The Aggregator Agent, after 

having the market clearing price for each trading period of the next day, on a one-hour basis, interacts 

with the market community agent and the optimization model starts. The community optimization 

model is changed every hour considering the local generation and the local demand profile. 

In this work, it will only be considered the day ahead market of the WSM that is the intraday 

discrete and continuous markets were not considered. It is divided into the day-ahead, intraday and 

continuous intraday market exchanges. Typically, the day-ahead energy market is a double-sided 

Uniform Price Auction, where demand agents submit bids to buy energy and supply agents submit 

bids to sell energy. An alternative auction design is a Pay-as-Bid framework, where generators sell 

the cleared quantity at the offered bid price (the same is applicable to the demand-side). Once the 

day-ahead energy market is cleared, the Market Operator adds the physical bilateral contracts to the 

cleared offers. Afterwards, the Market Operator and/or the System Operator performs congestion 

management to generate feasible daily schedules [282].  

The discrete intraday markets are similar to the day-ahead energy markets and the main difference 

is the gate closure. They follow the day-ahead session being usually activated at the end of day n-1 

and continuing along day n, the delivery day, and work as adjustment markets, i.e., the market agents 

can correct accepted bids from the day-ahead market. 

The continuous intraday market has the purpose of facilitating energy trade between different 

bidding zones of Europe in a continuous manner and increase the overall efficiency of transactions 

in intraday markets throughout Europe. 

In this work a day-ahead energy market model similar to the Iberian Electricity Market, MIBEL, 

was considered. It is a double-sided auction, where market agents submit energy hourly bids for the 

24 hours of the next day. Market participants submit energy bids to the power exchange until 12.00 

hour. The bid prices can range from -500 €/MWh to 3 000 €/MWh, with minimum price increments 

of 0.1 €/MWh. The energy bids of MIBEL and other markets are collected and submitted to the 

EUPHEMIA platform (European market solver [283]). The EUPHEMIA clears the offers (MWh) 

and prices (€/MWh) such that the social welfare is maximized and the power flow limits between 

the European bidding areas are not exceeded. The clearing prices and quantities are published at the 

13.00 hour. Market-based or technical-based TSO mechanisms are also activated if network prob-

lems are detected inside each trading area. 
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4.5. Agents Environment in the implemented model 

The environment is defined as the part of the system within which the agents operate. As men-

tioned in Section 3.2.1, the complexity of an ABM can be driven by its environment and the most 

complex ones are those that are partially observable, stochastic, sequential, dynamic, continuous and 

multi-agent. 

In this work, the day-ahead spot market is simulated in a way that the environment definition is 

simplified. As mentioned in the previous sections, the prosumers (with PV systems) and consumer 

agents will bid on their energy and price in the LEM and receive only information on the clearing 

price and if their bids were cleared or not. The Market Community Agent purchases the energy to 

balance the Energy Community electricity deficit from the Aggregator Agent and sells the excess 

electricity considering specified price limits. The Aggregator receives all the bids (from Market 

Community Agent and all other agents that participate in the WSM) and gets from the WSM the 

market clearing price for each trading period of the next day. The decision process in this environ-

ment will be based on the WSM price and on the LEM price. 

In terms of the classification of this environment, it can be considered as: 

- Partially Observable, as the agents have access to a partial state of the environment at 

each point of time, namely the market clearing price for each trading period; 

- Stochastic, because the next state in which the environment will reside is not completely 

determined by the current state. So, there is no certainty about the state that results after 

performing a specific action. Agents don´t know if their actions will lead or not to a 

clearing in the market; 

- Sequential because current actions will affect future decisions. This means that the per-

formance of an agent depends on a number of discrete episodes, which are associated 

with the several trading hours and days of the WSM day-ahead market and the trading 

periods of the LEM; 

- Static because the environment remains unchanged except by the performance of the ac-

tions taken by the agents; 

- Continuous, because there is an infinite number of actions and percepts on the environ-

ment which are represented by the hourly decisions of the agents through the environ-

ment; 

- Multi-agent because there is more than one agent operating in the environment. 
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4.6. Utility Function 

As mentioned in Chapter 3, in the ABM, market participants are modeled as adaptive agents with 

different bidding preferences and strategies. On the other hand, they are enabled to utilize their past 

experience to improve their behaviors. This implies that the tasks to be carried out must be specified 

by the user in some way. One way of doing this is to select tasks indirectly via some kind of perfor-

mance measure. 

A utility function is a numeric representation of how good some sort of possible residence state 

of a system under analysis is. It is the main driver for decision making problems and it allows each 

agent to rank its decisions and make choices. This function can therefore be used to determine if the 

agent should continue in its current course of action or should seek to change its behavior and to 

adapt. Each agent seeks to maximize its own utility function derived from the rewards he can obtain 

from its possible actions and can combine multiple objectives. So, the Agent-Based modelization 

allows each agent to have a set of personal objectives, such as profit, risk exposure, market share, 

etc. [14]. 

In the proposed framework, the LEM could return surplus energy to their agents. It is also possible 

to sell energy (𝐶𝐵𝑖𝑑) at a higher price than the bilateral contract price associated to the PV generation 

(𝐶𝑃𝑉) but lower than the WSM price (𝐶𝑎𝑔𝑔) (𝐶𝑃𝑉 < 𝐶𝐵𝑖𝑑 < 𝐶𝑎𝑔𝑔). This means that it is defined 

that 𝐶𝑃𝑉 < 𝐶𝑎𝑔𝑔 to guarantee that LEM favors local transactions rather than buying energy from the 

grid. In order to encourage the participation of local agents in the local trading at the LEM, the 

electricity price of LEM is determined by the energy sold by prosumer agents, the energy bought by 

all the community members, and the electricity produced by the PV panels in the community. 

After defining the Bid Price (𝐶𝐵𝑖𝑑), the Market Community Agent calculates the Utility Function, 

that consists of the ratio between 𝐶𝐵𝑖𝑑 and 𝐶𝑃𝑉. The higher this ratio is, the higher will be the com-

munity profits by applying the optimization model. If the WSM price (𝐶𝑎𝑔𝑔) is lower than 𝐶𝑃𝑉, the 

Market Community Agent will receive the guaranteed reward defined by the bilateral contract, that 

is 𝐶𝑃𝑉. Otherwise, and if the 𝐶𝐵𝑖𝑑 is lower than the 𝐶𝑎𝑔𝑔 and higher than 𝐶𝑃𝑉, the reward will be 

equal to the difference between 𝐶𝐵𝑖𝑑 and 𝐶𝑃𝑉. 

The ratio presented in Equation 4.3 represents the Utility function of the Market Community 

Agent. 

𝑈 =
C𝐵𝑖𝑑 (𝑡)

C𝑃𝑉(𝑡)
      (4.3)
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The higher this ratio is, the higher will be community profits by application of the optimization 

model. This formulation between two consecutive periods is related with the state’s definition of the 

Markov Decision Process and with the Q-Learning procedure that will be detailed in the next section. 

Regarding the previous explanation, the bidding strategy defined in this work follows the iterative 

procedure illustrated in Figure 4.3.  

The iterative procedure considers the community electricity balance, taking into account the de-

mand (if the agent is a consumer) and the demand and PV generation (if the agent is a prosumer). If 

the community demand is higher than the local production, the Market Community Agent buys elec-

tricity at the WSM price (𝐶𝑎𝑔𝑔). In other hand, and if the balance is negative (i.e., production higher 

than consumption), the selling process starts with the definition of the Bid Price (𝐶𝐵𝑖𝑑,𝑖) that the 

Market Community Agent communicates to the Aggregator. At this moment, the Utility Function is 

calculated using (4.3). As previously explained, the Bid Price (𝐶𝐵𝑖𝑑,𝑖) is the Bid Price offer that the 

Market Community Agent uses to sell the energy surplus in the WSM (through the Aggregator).  

In order to get the reward that will be obtained during the surplus selling process, the following 

considerations will be taken into account: 

• If 𝐶𝑎𝑔𝑔 < 𝐶𝑃𝑉, the energy surplus will be sold at the guarantee bilateral contract price (𝐶𝑃𝑉).  

In the same way, and if the Bid Price (𝐶𝐵𝑖𝑑,𝑖) is lower than the bilateral contract price (𝐶𝑃𝑉), 

it will be sold at 𝐶𝑃𝑉 price. 

• If the Bid Price (𝐶𝐵𝑖𝑑,𝑖) is higher than the bilateral contract price (𝐶𝑃𝑉) and lower than the 

WSM price (𝐶𝑎𝑔𝑔), the energy surplus will be sold at the defined Bid Price (𝐶𝐵𝑖𝑑,𝑖). In this 

case, the Market Community Agent will have a reward 𝑟𝑚 that will be equal to the difference 

between the Bid Price (𝐶𝐵𝑖𝑑,𝑖) and the bilateral contract price (𝐶𝑃𝑉). 

This is an iterative process and the Market Community Agent will try to increase the selling price 

as close as possible to the WSM price and in this sense have a higher reward. This process, namely 

the definition of the action and agent state’s definition will be detailed in the next sections. 
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Figure 4.3. Iterative procedure included in the operation strategy
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4.7. Q-Learning procedure to be used in the proposed 

model 

Based on the indications above, the problem under analysis can be transformed in a decision 

making with multiple coupled states. The MDP provides a mathematical framework for modeling 

decision making in situations where outcomes are partially random and partially under the control of 

the decision maker.  

The decision-making process of an MDP agent is based on choosing the optimal action according 

to a specific utility function. The decision maker could take any action from the set that is available 

for each state and subsequently the process will move from state s into a new state s’.  

The characteristics of electricity markets contribute to create a complex dynamic and adaptive 

system. In this circumstance, learning and construction the model of the economic system is a very 

complicated task for market participants, and a model free learning can be an appropriate alternative 

to build a desired bidding strategy. Agent Based Models have been reported as a complement to 

traditional models when the problem is too complex. In this sense, this work uses an ABM associated 

to the reinforcement Q-Learning approach to simulate the LEM market and its interactions namely 

with the WSM. Reinforcement Learning is used when the probabilities or rewards in MDPs are un-

known and allows an agent to improve its behaviour and its decisions from experience in sequential 

and uncertain environments. 

Figure 4.4. illustrates the operation of the ABM. 

Figure 4.4. Market model as an MDP with agent-environment interaction 

Agent 

Environment

Clearance
Action

an

reward
rm

rm+1

State sm
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When using an Agent-Based Model to model a MDP, the agent first observes the current envi-

ronment state and then takes an action. Then, the agent receives an immediate reward from the envi-

ronment, and the environment moves to the next state based on the transition probability. This pro-

cess is repeated until termination. As mentioned in Section 3.3, an MDP is composed of four essential 

elements (𝑠, 𝑎, 𝑝, 𝑟), where s is the finite number of states, a represents the finite number of possible 

actions, p is the state transition probability that falls within [0; 1], and r is the reward function. 

The agent´s interaction with the environment consists of a sequence of different stages. We con-

sider 𝑆 = 𝑠1, 𝑠2, … , 𝑠n as the set of possible states of the environment and the actions that agents can 

take as 𝐴 = 𝑎1, 𝑎2, …., 𝑎n . In the  𝑡ℎ  episode, the agent procedure using the QL methodology can 

be defined as illustrated in Table 3.4. Following the Bellman equation (Eq. 3.1), the Q-value for the 

pair 𝑄(𝑠𝑚, 𝑎𝑛) is given by expression (4.4). 

𝑄(𝑠𝑚, 𝑎𝑛)
𝑛𝑒𝑤 = (1 − 𝜆) ∙ 𝑄(𝑠𝑚, 𝑎𝑛) + 𝜆 ∙ [𝑅(𝑠𝑚, 𝑎𝑛) + 𝛾 ∙ 𝑚𝑎𝑥𝑄(𝑠𝑚+1, 𝑎𝑛)]    (4.4) 

Expression (4.4) gives the reward that the agent receives from state s. Only Q-values correspond-

ing to the current state and the last chosen action are updated. The learning rate λ ∈ (0,1) and it 

reflects the degree to which estimated Q-values are updated by new data and can be different in each 

episode. If λ equals 0 then the agent does not learn, while if it equals to 1 it induces the agent to 

consider only the most recent information. 𝛾 is a discount factor ∈ (0,1) that represents the weight 

given to future reinforcements. A value of 𝛾 equal to 0 makes the agent myopic by only considering 

current rewards, while values closer to 1 turn more important distant rewards [284]. The expression 

𝑚𝑎𝑥𝑄(𝑠𝑚+1, 𝑎𝑛) represents the best the agent thinks it can do in state 𝑠𝑚+1. In an initial phase, the 

agents will randomly explore state to state until they learn and reach the end of simulation period. 

Then, using these Q-values, the agents start their biddings taking into account the learned experience. 

Typically, the learning process converges when the Q-values do not change more than a pre-deter-

minate convergence value regarding the values in the Q-matrix that was built in the previous itera-

tion. 

One of the main challenges in RL is the trade-off between exploration and exploitation, which is 

represented by the greedy policy ε. Agents use the past information from exploitation, but they also 

have to explore other actions. By following a greedy policy constantly (choosing always the action 

with the higher reward value), the agents may not explore some states that could be more profitable 

or that could lead to rewarding sequences of states in the future. On the other hand, if the agent 

explores too much the environment, without exploring its knowledge, it will not actually learn. Thus, 
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it is necessary to achieve a good balance between exploration and exploitation, to ensure that the 

learning process evolves towards optimal solutions.  

In this work, an ε-greedy variation is applied. Instead of always taking the best action, that is the 

one having the highest Q-value as in greedy policies, there is a small probability ε for the agent to 

select randomly another action. This is similar to the strategies that exist in meta-heuristics to avoid 

local optimal by increasing the diversity of the search procedure. As referred by [191], the ε-greedy 

policy is a good strategy that makes a balance between exploration and exploitation by attributing 

and ε selection probability to other actions. It is expressed as follows: 

 

𝑎 = {
argmax𝑄(𝑠, 𝑎)𝑎∈𝐴  𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 1 − ε

𝑎 𝑦 𝑎𝑐𝑡𝑖𝑜  𝑠 𝑙 𝑐𝑡 𝑑 𝑢 𝑖𝑓𝑜𝑟𝑚𝑙𝑦 𝑎 𝑑 𝑟𝑎 𝑑𝑜 𝑑𝑙𝑦 𝑖  𝐴 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑡𝑦 ε
 (4.5) 

 

Initially, the agent chooses actions almost randomly but as the simulation evolves and the con-

vergence is approaching, the agent is forced to choose actions mostly based on the maximum of Q-

values, depending on the specific state where he is located at any time. After that, the agent observes 

the reward that he received and the next state to where he will move. Finally, it updates the corre-

sponding value based on the QL update rule and also updates its next state. 

Subsequently, the energy trading to be developed in this work will be modeled as a MDP. In Q-

Learning algorithms, agents can learn the best action by interacting with the environment through a 

trial-and-error search and this approach doesn’t require having an explicit knowledge about the en-

vironment. Instead, the knowledge regarding the optimal strategy improves while the historic inter-

action with the environment is built by a trial-and-error process. 

The Q-Learning algorithm is one of the most effective ways to solve MDP problems because it is 

concerned with how agents should select actions in an environment [285], and therefore the cumu-

lative reward could be maximized.  The agent’s interaction with the environment consists of a se-

quence of different states. Let us consider 𝑆 = 𝑠1, 𝑠2, … , 𝑠𝑚 be the set of possible states of the envi-

ronment and 𝐴 = 𝑎1, 𝑎2, … , 𝑎𝑛 be the set of actions that the agent can take. In the  𝑡ℎ episode, the agent 

procedure using the Q-Learning methodology can be defined as illustrated in Figure 4.5. [191, 286]. 

As mentioned in Section 4.5, agents are autonomous entities and interact in an environment. In 

this work, the day-ahead market is simulated, which simplifies the definition of the environment, 

since we can now consider that the Agent’s environment just corresponds to the day-ahead market.  
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Figure 4.5. Steps of the algorithm to model the LEM and the WSM as an ABM with Q-Learning 

When there is surplus of electricity in the community and after considering self-consumption, the 

LEM has a minimum ensured price that corresponds to a tariff associated to the PV technology. 

However, in order to increase the revenues from selling this excess, the ABM tries to increase the 

selling price as close as possible to the WSM price. If the LEM price exceeds the WSM, then the 

selling bid for this excess will not be accepted using the auction mechanism. Instead, it will be sold 

at the lowest price, which is the guaranteed tariff value. 

The Q-Learning procedure evaluates the payoff that can be obtained for a given state-action pair 

Q(s,a). In this sense, the state’s definition should be in line with energy communities’ perspective, 

i.e., to enhance the self-supply capacity and to minimize the dependency of the grid. 

As shown in Figure 4.5, the trading system involves a set of states and a set of possible actions 

per state. It also contains a Q-value table which is used to record the Q(s,a) values for different 

actions 𝑎 𝜖 𝐴 when the agent is at state 𝑠 𝜖 𝑆. The core of the Q-Learning algorithm is the value 

iteration update, using the weighted average of the old value and the new information as indicated 
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by expression (4.4). In this way, the agent can select the most adequate action when being in a given 

state using a Q-value according to the Q-value table. 

In this problem, we considered the following 5 possible states (Table 4.1): 

• State 1 - the agent has obtained a higher reward, compared to the previous episode, which 

it is not possible to increase; 

• State 2 - the agent has obtained a higher reward, compared to the previous episode, which 

it is possible to increase;  

• State 3 - the agent has not obtained any change on reward, compared to the previous 

episode; 

• State 4 - the agent has obtained a lower reward, compared to the previous episode, which 

it is possible to increase;  

• State 5 - the agent has obtained a lower reward, compared to the previous episode, which 

it is not possible to increase. 

This is based on the state’s definition used in [14] , which on the other hand corresponds to an 

adaptation from [286]. This implementation is in line with the derivative-following strategy pre-

sented in [287]. A derivative follower does incremental increases (or decreases) in price, continuing 

to move its price in the same direction until the observed profitability level falls. At this point, the 

direction of the movement is reversed.  

Table 4.1. Definition of the Q-Learning States 

State Reward Reward (related with previous episode) 
        

S1 Increased Not possible to increase 

S2 Increased Possible to increase 

S3 Equal Indifferent 

S4 Decreased Possible to increase 

S5 Decreased Not possible to increase 

 

The function represented in Figure 4.6. models the bidding strategy used in the learning approach, 

where each agent increases or decreases its bid price in an attempt to increase reward. It is also an 

adaptation of the derivative-following strategy discussed in [287]. It is considered a sigmoid function 

that reflects the risk profile of an agent. If an agent has a higher risk profile, the bid range will be 

larger (Figure 4.6.a). On other hand, a low risk profile leads to a narrow bid range (Figure 4.6.b). 
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Figure 4.6. Bidding strategy taking into account the risk profile of each agent for large risk profile (a) 

and for lower risk profile (b) 

 

In the developed model, seven alternatives actions will be available for each agent when deciding 

his bid price as indicated in Figure 4.7.  

 

 

Figure 4.7. Actions (a1 to a7) used in the Q-Learning procedure 

 

For example, action a1 corresponds to a maximum bid down, a4 means that neither a bid up nor a 

bid down is used and a7 represents a maximum bid up. Actions a2, a3, a5 and a6 represent intermediate 

values. The reward function 𝑟𝑚  corresponds to the profit that each agent obtains in the market if an 

action a is adopted or selected for a given state.  As referred in [14] , where this kind of function was 

also used, the main goal of  choosing this type of functions is that it is possible to do an easy param-

eterization in the values of the bid up/bid down actions by changing the Bid Price, and at same time 

have different gradients between the actions, where the actions near 0 bid up/down have higher gra-

dient, and actions near maximum values have lower gradient. 



                                                                                

 

 

Chapter 5 

5. Enhanced Model considering Energy Storage 

Systems 

5.1. Overview 

 

The previous chapter presented a framework that considers market mechanisms to model the par-

ticipation of community agents in the LEM and then its relationship with the WSM. The proposed 

market design was implemented considering the day-ahead market on a one-hour basis. It was pro-

posed an Agent-Based Model as a decision tool to support energy transactions among Energy Com-

munity agents and between the communities themselves and the wholesale market. The proposed 

environment considers a LEM, established by Prosumers with PV systems and Consumer Agents. 

As described in Section 4.3, the initial trading is done locally in the LEM followed by an interaction 

with the WSM. The combination of the marginal prices of the LEM and of the WSM were considered 

in the ABM decision tool.  

As supported by the European Directives, Energy Community Business Models can include not 

only local generation, trading and aggregation, but also storage systems. Following this definition, 

this Chapter is directed to an electricity market design, similar to the previous one, but now consid-

ering prosumers and energy communities with Energy Storage Systems (ESS), namely batteries. The 

operation strategy to be implemented aims at benefiting the community members by storing the ex-

cess of electricity for their internal consumption or to sell in the LEM. In periods in which local 

generation is expected to be smaller than the local demand, it is also envisaged the acquisition of 

electricity in the WSM in hours in which the market price is lower in order to supply the local de-

mand. It is also possible to benefit community agents by making price arbitrage over time, that is, by 

moving the time intervals in which electricity would have to be bought to some other periods in 

which the price of the underlying asset is lower or to store electricity when local generation is in 

excess in order to sell it in periods in which the price is higher. However, the price arbitrage strategy 
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will not be explored by our optimization tool and so it will not be considered in our simulation mod-

els. 

The literature on Energy Communities, in general, and on Renewable Communities in particular, 

also suggests that the economic feasibility of their operation highly depends on the tariffs eventually 

applied to the electricity generated by some primary resources, on the electricity market prices and 

on the Access Tariffs that have to be paid by the community agents. In Portugal the legislation admits 

that Renewable Energy Communities are exempted from the payment of some tariffs [49, 279] or 

tariff components as it is the case of the Costs of General Economic Interest, (CIEG in Portuguese) 

[278]. In view of the relevance of this issue to create the conditions to the wide spread of RECs, this 

chapter also describes the approach that will be implemented to test the economic viability of the 

investments and operation of RECs, namely considering different tariff and charge exemption de-

signs, as a way to get meaningful conclusions on what is the required level of exemption that would 

have to be implemented to achieve the breakeven of the investment. 

5.2. Overview of the proposed market design 

The main difference of the market design to be described in this Chapter regarding the one that 

was considered in Section 4.2 (Figure 4.2), is the utilization of ESS devices, namely batteries. Re-

garding the system structure, ESS can be placed anywhere in the community, not only near the 

prosumer installation but also on a centralized way in the community, as shown in Figure 5.1. Con-

sidering a decentralized structure, we can consider ESS devices placed behind the prosumer’s instal-

lation (Figure 5.1.a). In this case, the battery storage system is located at the building level and in 

this way, the power flow between the batteries and the community doesn’t directly use the public 

grid. In a centralized storage architecture, the location of the battery is not inside the community 

itself, and in this sense, it is termed as a centralized one. This kind of architecture may allow having 

higher volumes of stored energy since the battery will be located at a more central position in the 

grid, eventually connected to the upstream voltage level. Figure 5.1.b illustrates an architecture with 

a centralized storage system. 



 5.2 Overview of the proposed market design   133 

 

 

 

 

Figure 5.1. Energy Community market design using: (a) a decentralized ESS (behind prosumer’s); (b) 

a community centralized ESS  

The optimal bidding strategy when considering battery operation will be developed by each agent, 

by learning from its past experiences obtained from the direct interaction with the environment. In 

the decentralized structure of this model, the prosumer agents will now have not only PV units as it 

was considered in the model described in Chapter 4 but also an ESS. Regarding the structure of the 

centralized EES model it considers not only local producers, prosumers and consumers, but also an 

ESS located at a Low Voltage side of the MV/LV substation that feeds a set of buildings. In this 

case, the location of this battery is not inside the community itself, and in this sense, it is termed as 

a centralized one. The market design used in this work and the coordination mechanism to integrate 

the Energy Community Market, LEM, into the existing WSM, is illustrated in Figure 5.2. 

The proposed structure considers an Energy Community constituted by consumers and prosum-

ers, as agents. Each of these agents submit their bids to a Market Community Agent which oversees 

maximizing the Energy Community self-energy consumption and the profit in consequence of selling 

the energy surplus. This agent is considered an artifact since it will be utilized to carry out Energy 

Community Agents’ activities in a competitive or cooperative manner. It will receive bids from the 

Energy Community Agents and perform a set of operations developed according to pre-defined rules 

in order to obtain a schedule for each trading period. The developed framework considers that the 

Community energy deficit or surplus in each trading period will be traded between the Market Com-

munity Agent and an Aggregator through a bilateral contract. On other hand, the Aggregator operates 

as a traditional retailer regarding the market clearing mechanism in the Wholesale Market. It will 

gather information about the energy deficit or excess from the Market Community Agent and com-

municates the buying or selling bids to the Wholesale Market as a way to balance supply and demand 

in the community. 
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Figure 5.2. Sequential diagram of the integration of the Energy Community market with the wholesale 

market considering ESS 

The initial trading is done locally followed by the trading in the WSM. The Aggregator receives 

the quantities to buy and sell in the WSM and sends back to the Market Community Agent the cleared 

hourly prices. The Market Community Agent receives the quantities and the bids from the commu-

nity, considering the existing ESS, which performs its strategy based on energy deficit or surplus and 

taking into account the technical characteristics of the batteries. 

The batteries will be in the charging mode if there is any surplus of PV generation regarding the 

local demand and in discharging mode if the community demand is higher than local generation. 

However, and if the stored energy is sufficient to feed the demand, and it also has some surplus, 

those additional quantities will be considered in the selling bids optimization strategy of the Market 

Community Agent. So, the social welfare of the community members will increase by reducing the 

cost of buying electricity from the grid, by increasing the self-consumption level of the community 

and also by eventually selling stored electricity. The iterative process will be further detailed in this 

section. 

Before the local initial trading, it is solved an optimization problem to identify the most adequate 

operation strategy of the ESS, taking into consideration the local energy demand and production, and 

an estimate of the LEM prices. The bidding energy that the Market Community Agent trades will 

consider the ESS strategy, namely if the batteries will be charging, discharging or in the idle mode. 

Having in place the clearing of the LEM, jointly with the energy traded outside the community and

ESS
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the ESS optimization, the quantities to buy and sell in the WSM are determined. Subsequently the 

demand and supply bids are submitted to the WSM by the Aggregator and the Wholesale Market is 

cleared. The cleared hourly quantities and prices are sent back to the Market Community Agent 

through the Aggregator Agent. 

5.3. Energy Storage Systems  

5.3.1. General Aspects 

Energy storage technologies are able to store energy under some form, such as mechanical, elec-

trical, chemical, thermal, potential, etc. In some cases, electricity is the original form of energy that 

is converted in another form of energy and then, whenever necessary or more adequate, it is con-

verted back to electricity. In other cases, as for example in hydro units with large reservoirs, energy 

is stored under the form of potential energy, and it is converted when necessary to electricity. In 

addition, if hydro units are equipped with pumping devices, the electricity is used in some periods to 

pump water to an upstream reservoir and then the potential energy of this water is converted back to 

electricity in some later periods profiting, for instance, from the price spread thus adopting a price 

arbitrage operation strategy. 

Due to the increasing interest in renewable energy sources and distributed energy resources, the 

attention to ESS has also increased. ESS is also regarded as a complementary technology that sup-

ports the development of renewable energy resources and the balance of power systems. It allows 

for the increased flexibility of the electricity generation system by allowing it to meet the needs of 

the demand while ensuring the security of supply [288]. The introduction of ESS in power systems 

is also helping to manage the operation of wind and PV parks turning them more flexible and dis-

patchable and contributing to facilitate the control of the electricity that they can inject in the grids. 

In addition, in small and isolated systems, as for instance in islands, the introduction of storage 

can enable the increase and more efficient use of renewable units because local utilities frequently 

adopt conservative dispatch policies in terms of always maintaining in operation a minimum number 

of thermal groups for security of supply reasons. Since these groups typically have technical mini-

mum generation values, in periods in which these technical minimum values together with the ex-

pected renewable generation (from wind and/or PV units) exceeds the demand, wind or PV genera-

tion has to be curtailed. In these cases, introducing storage units will enable avoiding this generation 

curtailment and can eventually enable or economically justify further increasing the wind and PV 

installed capacity. For example, this is the case of the São Miguel Island in Azores where this prob-

lem is even more critic since geothermal units (which also use a renewable primary resource) have 

priority in the dispatch policy. 
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ESS can be classified according to the nature of the energy that is stored. In [289], the authors 

differentiate among devices using mechanical, electrical, electro-chemical and chemical storage. 

Concerning the energy transformation process, one can identify: 

• Mechanical storage: pumped hydro storage, compressed air energy storage, flywheel en-

ergy storage; 

• Electrochemical storage: conventional batteries storage (Lead acid, Li-ion), high-temper-

ature batteries (NaS, ZEBRA) and flow batteries (VRB, PSB, ZnBr); 

• Electromagnetic storage: superconducting magnetic energy storage, capacitors and su-

percapacitors; 

When it comes to the time frame use, the ESS technologies can perform [290]: 

• Intertemporal shift of energy: capacity to transfer the energy over a variable length of 

time (from some minutes to some hours or even some days or months); 

• Fast response: capacity to rapidly inject or absorb energy to/from the grid, within some 

tens of milliseconds thus enabling improving quality of service and the provision of ser-

vices, namely frequency control services, requiring small time steps. 

As a consequence of the surge of distributed generation, the increase of prosumers has brought 

new challenges to the established supply-demand dynamics in electricity generation and increased 

the need for on-site flexibility. In this sense, one can anticipate that ESS systems, for instance con-

stituted by batteries, will play an important role on the development of RECs and of LEM. A thor-

ough analysis and research on ESS, namely the maturity of the different energy storage systems, 

capacity, charging and discharging duration and response time is available in [289]. The main poten-

tial applications of ESS are listed in [289], and the majority of them fall into one of the following 

categories: 

• Short-term power supply: during a power outtake or scheduled maintenance, storage can 

act as uninterruptible power supply for short timeframes; 

• Integration of renewables into the grid: storage devices can help smoothing the delivery 

of power and minimize the power curtailment, which can increase the value of renewable 

resources or enable their growth in small isolated systems, in line with what was men-

tioned in the beginning of this section; 
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• Transmission and distribution upgrade or expansion investment deferral: the installation 

of storage devices, can help reducing the need for new infrastructure and extend the life 

of existing equipment by reducing peak loads; 

• Time shifting: the use of storage devices can help shifting the consumption patterns of 

electricity from peak periods to cheaper off-peak times. This can contribute to lower the 

electricity bill. From a tariff perspective, this can help reducing the energy taken from the 

grid during more expensive periods. In addition, in some countries as in Portugal, the 

average power in peak periods is one of the tariff variables used by the Regulatory 

Agency to set regulated tariffs, namely the tariffs for the Use of Transmission and Distri-

bution Networks that integrate the Access Tariff. Therefore, shifting consumption from 

peak periods will reduce the corresponding average power value and so it will reduce this 

component of the bill; 

• Peak shaving: storage can reduce the maximum instantaneous power consumption from 

the grid. This reduction can be important because in some countries as in Portugal the 

contracted power is another of the tariff variables used by the Regulatory Agency to re-

cover the regulated revenues of the Access Tariff components. This means that control-

ling or reducing the mentioned maximum instantaneous demand will contribute to reduce 

or at least not to increase the contracted power term of the electricity bill; 

• Ancillary services: some types of storage devices have shown to efficiently provide fast 

response reserves and are already being used to improve power quality and to contribute 

to frequency control. This is the case of Germany or the UK where there are some markets 

specifically designed to enable the participation of some ESS technologies and to contract 

frequency control products; 

• Electric mobility: besides stationary usage, batteries can also be used as a distributed 

storage system able to provide flexibility and frequency control services to network op-

erators provided that a Vehicle to Grid, V2G, approach is adopted and implemented. 

5.3.2. Energy Storage Systems’ modelization and bidding strategies 

ESS plays an important role in the supply and demand balance and therefore its operation will 

potentially impact on market prices namely if the capacity of storage systems becomes relevant. By 

performing energy arbitrage by shifting energy in time, ESS can take advantage of price differences. 

Integrated with PV, ESS are estimated to be able to reduce the energy costs. In the case of decentral-

ized systems (ESS integrated at the consumer/prosumer level), [291] presents an aggregated man-

agement scheme of many small-scale batteries in a community with PV and batteries to carry out 
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local energy sharing, where the self-consumption of the aggregated PV and storage units is opti-

mized. There are also benefits when ESSs are centralized, namely because their higher energy ca-

pacity of storage.  

Two market designs taking into account totally different rules for the availability, capacity and 

pricing of storage are presented in [57]. The results reported in this paper indicate that, in the case of 

a decentralized storage system, the overall savings lead to an electricity bill reduction of 31% when 

compared to a reference case (without storage neither P2P trading). The monetary savings in a cen-

tralized storage configuration are estimated at 24%, which is slightly lower than in the decentralized 

storage system. According to [57], the main factors that impact on the previous results are the system 

configuration and the different market designs.  

The energy stored in the batteries can be modelled by a simplified linear expression taken from 

[291]. Assuming that the charging and discharging power rate remain constant during a time slot, the 

stored energy of a battery is described by: 

𝑊𝐵,𝑡
𝑖 = 𝑊𝐵,𝑡−1

𝑖 (1 − 𝜎𝑆𝐷,𝑡
𝑖 ) + (𝑃𝐵𝐶,𝑡

𝑖 𝜂𝐵𝐶,𝑡
𝑖 −

𝑃𝐵𝐷,𝑡
𝑖

𝜂𝐵𝐷,𝑡
𝑖 )Δ𝑡    (5.1) 

In this expression: 

𝑊𝐵,𝑡
𝑖  is the stored energy at time slot t; 

𝑊𝐵,𝑡−1
𝑖   is the stored energy at time slot t-1; 

𝜎𝑆𝐷,𝑡
𝑖  is the self-discharge rate (number from 0,0 to 1,0); 

𝑃𝐵𝐶,𝑡
𝑖  is the battery charging power; 

𝑃𝐵𝐷,𝑡
𝑖  is the battery discharging power; 

𝜂𝐵𝐶,𝑡
𝑖  is the battery charging efficiency (number from 0,0 to 1,0); 

𝜂𝐵𝐷,𝑡
𝑖  is the battery discharging efficiency (number from 0,0 to 1,0). 

Equation (5.1) presents the overall storage level for an ESS device over time. Its battery charging 

and discharging levels are limited by α and β respectively originating constraints (5.2) and (5.3).  

0 ≤ 𝑃𝐵𝐶,𝑡
𝑖  ≤  𝛼      (5.2) 

0 ≤ 𝑃𝐵𝐷,𝑡
𝑖  ≤  𝛽      (5.3) 
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The State of Charge of the battery (SOC) is given by (5.4) in which 𝑊𝐵,𝑁
𝑖  is the nominal capacity 

of the battery (i.e., battery size). 

(SOC) 𝑣𝑡
𝑖 =

𝑊𝐵,𝑡
𝑖

𝑊𝐵,𝑁
𝑖 ∗ 100%      (5.4) 

To ensure the balance of the community system, constraint (5.5) must hold for every time slot. 

Any power deviation can always be balanced by exchanging power with the grid. During each time 

slot, the batteries can be charging or discharging or in the idle mode. 

 (𝑃𝑃𝑉,𝑡
𝑖 + 𝑃𝐵𝐷,𝑡

𝑖 + 𝑃𝐺𝑟𝑖𝑑,𝑡
𝑖 ) − (𝑃𝐿,𝑡

𝑖 + 𝑃𝐶,𝑡
𝑖 + 𝑃𝐵𝐶,𝑡

𝑖 ) = 0     (5.5) 

In the previous expression: 

- in case the agent i is a prosumer, 𝑃𝐿,𝑡
𝑖  and 𝑃𝑃𝑉,𝑡

𝑖  are its demand and PV generation at time 

slot t; 

- in case the agent i is a consumer, 𝑃𝐶,𝑡
𝑖  represents its demand at time slot t; 

- 𝑃𝐺𝑟𝑖𝑑,𝑡
𝑖  is the power exchanged with the grid at time slot t; 

- 𝑃𝐵𝐶,𝑡
𝑖  is the battery charging power; 

- 𝑃𝐵𝐷,𝑡
𝑖  is the battery discharging power; 

The representation of the net load of the community agent i either being a prosumer or a consumer 

at time slot t is given by 𝑁𝑃𝑡
𝑖 (Equation 5.6.)  

𝑁𝑃𝑡
𝑖 = (𝑃𝐿,𝑡

𝑖 + 𝑃𝐶,𝑡
𝑖 ) − 𝑃𝑃𝑉,𝑡

𝑖       (5.6) 

Batteries are in the charging mode when ∑ 𝑁𝑃𝑡
𝑖 < 0𝑁

𝑖=1 , and the surplus PV power is used to 

charge the battery system, unless the SOC reaches the maximum. The charging power of a central-

ized system is calculated by (Equation 5.7): 

𝑃𝐵𝐶,𝑡
𝑖 =

{
 
 

 
 

−∑ 𝑁𝑃𝑡
𝑖𝑁

𝑖=1

∑ 𝑃𝐵𝐶,𝑚𝑎𝑥
𝑖𝑁𝐵

𝑖=1

∗ 𝑃𝐵𝐶,𝑚𝑎𝑥
𝑖             

−∑ 𝑁𝑃𝑡
𝑖𝑁

𝑖=1

∑ 𝑃𝐵𝐶,𝑚𝑎𝑥
𝑖𝑁𝐵

𝑖=1

< 1   and 𝑆 𝐶𝑡
𝑖 < 𝑆 𝐶𝑚𝑎𝑥

𝑖

𝑃𝐵𝐶,𝑚𝑎𝑥
𝑖                                 

−∑ 𝑁𝑃𝑡
𝑖𝑁

𝑖=1

∑ 𝑃𝐵𝐶,𝑚𝑎𝑥
𝑖𝑁𝐵

𝑖=1

≥ 1 &  𝑎 𝑑 𝑆 𝐶𝑡
𝑖 < 𝑆 𝐶𝑚𝑎𝑥

𝑖

0                                                                                    𝑆 𝐶𝑡
𝑖 = 𝑆 𝐶𝑚𝑎𝑥

𝑖

                                 (5.7) 

A battery is discharging when ∑ 𝑁𝑃𝑡
𝑖 ≥ 0𝑁

𝑖=1 . In this case, the residual demand of the consumer 

(prosumer or the community) is met by discharging the battery system, unless the SOC reaches the 

minimum. The discharging power is calculated by (Equation 5.8): 
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𝑃𝐵𝐷,𝑡
𝑖 =

{
 
 

 
 

∑ 𝑁𝑃𝑡
𝑖𝑁

𝑖=1

∑ 𝑃𝐵𝐷,𝑚𝑎𝑥
𝑖𝑁𝐵

𝑖=1

∗ 𝑃𝐵𝐷,𝑚𝑎𝑥
𝑖             

∑ 𝑁𝑃𝑡
𝑖𝑁

𝑖=1

∑ 𝑃𝐵𝐷,𝑚𝑎𝑥
𝑖𝑁𝐵

𝑖=1

< 1  and 𝑆 𝐶𝑡
𝑖 > 𝑆 𝐶𝑚𝑖𝑛

𝑖

𝑃𝐵𝐷,𝑚𝑎𝑥
𝑖                                 

∑ 𝑁𝑃𝑡
𝑖𝑁

𝑖=1

∑ 𝑃𝐵𝐷,𝑚𝑎𝑥
𝑖𝑁𝐵

𝑖=1

≥ 1  𝑎 𝑑 𝑆 𝐶𝑡
𝑖 > 𝑆 𝐶𝑚𝑖𝑛

𝑖

0                                                        𝑆 𝐶𝑡
𝑖 = 𝑆 𝐶𝑚𝑖𝑛

𝑖

                                  (5.8) 

 

The operation strategy of the ESS aims at reducing the energy costs of the community and to 

increase the community self-consumption. The strategic participation of an ESS in the electricity 

market is based on different bidding structures. A comparative analysis on bidding structures of ESS 

systems is presented in [292] and consider four options: 

a) A simple quantity bidding, where the ESS participates in the market by deciding availa-

bility offers (i.e., charging and discharging capacity) in the form of quantity bids; 

b) A simple price bidding, that reflects the ESS willingness to charge and discharge at each 

time step on a price-based approach; 

c) A quantity-price pair bidding structure that represents a combination of the previous two 

approaches. The strategic agent is able to withhold charging/discharging capacity and 

express its willingness to charge/discharge in the form of price bids; 

d) A complex bidding where the strategic agent discloses all its technical constraints to the 

Market Operator and this one is responsible for fulfilling these constraints when clearing 

the market. This implies that the Market Operator has knowledge on the ESS’s charac-

teristics, technical constraints and of the value of the stored energy. 

The decision problem of the ESS owner presented in [292] is formulated as a bilevel programming 

model, where the upper-level problem represents the profit maximization of the ESS and the lower-

level problem simulates possible market clearing outcomes. The presented bilevel models are refor-

mulated as an equivalent mixed-integer linear programming problems by means of the Karush-Kuhn-

Tucker optimality conditions, the strong duality theorem and the Big-M method. In [293] it is pro-

posed a different approach, less complex and time intensive and based on intelligent agents. With 

the emergence of ESS, some operation strategies of the ESS regarding the maximization of their 

overall profit by controlling the placement proportion of the ESS in different markets has been pro-

posed. The model presented in [294] details a Performance-Based Regulation optimal bidding model. 

It addressed not only the optimal strategy for the ESS in different markets but also considered the 

battery life time. In [295] it is proposed the integration of an energy storage system and solar power 

plant. This publication details an optimal strategy for a Concentrating Solar Power plant, which con-

sidered the energy, the reserve and the regulation markets. 
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However, with the increased penetration of storage systems and new market designs and agents 

(e.g., RECs concepts), different approaches and bidding strategies within prosumers and retailers 

(aggregators) are necessary. One of the major concerns is that traditional bidding strategies only 

solve the allocation problem of a single ESS and neglect biddings from other actors and prosumers 

[296]. During the process of bidding, the bidder does not know the rivals’ bidding price and bidding 

quantity, which is hard to address by traditional optimization algorithms. Furthermore, since bidding 

is a highly random and uncertain process, the bidders cannot know the specific revenue model during 

bidding. Considering incomplete information of stochastic demand from the market and unknown 

bids from rivals, some individual based approaches have been widely applied to develop bidding 

strategies in electricity markets, where the individual agents learn to maximize their own profit based 

on their past experiences [297-299] . 

Therefore, the model developed in this work is based on the methodology proposed in [296] which 

presents a Markovian based bidding model that is used to build the optimized bidding strategy of 

ESS in day-ahead energy and regulation markets, considering the charging/discharging losses, the 

SOC and the deficit or surplus in the community. 

Similar to the proposed strategy used in Chapter 4, each ESS will have an associated Agent that 

will submit the day-ahead bids to the Market Community Agent, including bidding energies and 

bidding prices. The electricity will be allocated according to market requirements. However, and 

during the bidding process, the ESS agents cannot know the bidding data of their rivals (in case of 

decentralized ESS, for instance), but the MCP and offers from the Market Community Agent are 

public. The ESS agents are supposed to be price-takers, since they will not affect the energy price in 

the LEM. They submit their bids to the Market Community Agent, considering that their energy will 

be firstly self-consumed in the community or sold into the WSM if there exists any remaining sur-

plus.  

The objective function of the proposed bidding model is to maximize the total profit of the ESS 

considering its operational constraints, costs, and the allowed bid structures (Equation 5.9). 

𝑚𝑎𝑥𝑃𝑟𝑜𝑓𝑖𝑡 = ∑ (𝑃𝑟𝑜𝑓𝑖𝑡𝑡
𝑒 − 𝐶𝑜𝑠𝑡𝑡

𝑡𝑜𝑡𝑎𝑙)𝑡∈      (5.9) 

In this expression 𝑃𝑟𝑜𝑓𝑖𝑡𝑡
𝑒 is the hourly revenue from the LEM and 𝐶𝑜𝑠𝑡𝑡

𝑡𝑜𝑡𝑎𝑙 is the hourly cost, 

which includes operation and maintenance cost, and loss costs (related with batteries charging/dis-

charging efficiency). The hour index is 𝑡.  

As referred in Section 5.2, the energy deficit or surplus in each trading period will be traded by 

the Market Community Agent via the Aggregator in the WSM. In this framework, the ESS owners 
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(both centralized and decentralized) submit their bids to the Market Community Agent. Since ESS 

are price-takers, the revenue of an ESS in the LEM, 𝑃𝑟𝑜𝑓𝑖𝑡𝑡
𝑒 , can be calculated by Equation (5.10.) 

[296]. 

𝑃𝑟𝑜𝑓𝑖𝑡𝑡
𝑒 = 𝑝𝑡

𝑒 ∙ 𝑃𝑒,𝑡 ∙ ℎ𝑒      (5.10) 

In this expression, 𝑝𝑡
𝑒is the LEM electricity price, 𝑃𝑒,𝑡 is the power of the ESS and ℎ𝑒 is the trading 

period of the energy market, set at 1 hour in this work. The subscript t is the index of the hours in 

each day since the bidding strategy is day-ahead with hourly bids in the wholesale electricity market.  

The power of the ESS, 𝑃𝑒,𝑡, depends on the charging or discharging requirements of the ESS, 𝑏𝑒,𝑡, 

which can be positive or negative (equation 5.11.). In this expression 𝑏𝑒,𝑡 is assumed positive when 

the battery is discharging and is taken as negative when it is charging. 

𝑃𝑒,𝑡 = {
𝑏𝑒,𝑡 ∙

1

𝜂𝐵𝐷
, 𝑖𝑓 𝑏𝑒,𝑡 > 0 

𝑏𝑒,𝑡 ∙ 𝜂𝐵𝐶 , 𝑖𝑓 𝑏𝑒,𝑡 < 0
     (5.11) 

 

The total cost is calculated using (5.12): 

𝐶𝑜𝑠𝑡𝑡
𝑡𝑜𝑡𝑎𝑙 = 𝐶𝑂&𝑀,𝑡 + 𝐶𝑙𝑜𝑠𝑠,𝑡     (5.12) 

Where 𝐶𝑂&𝑀,𝑡, 𝐶𝑙𝑜𝑠𝑠,𝑡 are the operation and maintenance cost, and the charging and discharging 

costs, respectively.  

The operation and maintenance cost of an ESS is usually a variable term proportional to the size 

of the ESS, which can be calculated as: 

𝐶𝑂&𝑀,𝑡 = 𝐶𝑎 × 𝐸𝑚𝑎𝑥      (5.13) 

where 𝐶𝑎 is the annual maintenance cost of ESS [300]. 

The charging and discharging efficiencies can be different [301] and the corresponding losses can 

be represented as: 

𝐶𝐵𝐶𝑙𝑜𝑠𝑠 = 𝑝𝑒,𝑡 ∙ 𝑃𝐵𝐶(1 − 𝜂𝐵𝐶) ∙ Δ𝑇     (5.14) 

𝐶𝐵𝐷𝑙𝑜𝑠𝑠 = 𝑝𝑒,𝑡 ∙ 𝑃𝐵𝐷 (
1

𝜂𝐵𝐷
− 1) ∙ Δ𝑇     (5.15) 

An analysis of the effect of the SOC and battery wear cost can be found in [302] which will be 

considered in the batteries’ economic assessment (detailed in Section 5.5).  
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The energy balance model of the ESS is based on the physical constraints and the market require-

ment. The SOC of the ESS in each time slot t can be calculated as: 

𝑠𝑜𝑐𝑡 = 𝑠𝑜𝑐𝑡−1 + ∆𝑆𝑂𝐶𝑡      (5.16) 

Where ∆𝑆𝑂𝐶𝑡 indicates the amount of energy change from time slot 𝑡 − 1 to 𝑡, which is usually 

expressed in %. According to the energy selling and buying, the value of ∆𝑆𝑂𝐶𝑡 can be negative and 

positive. Therefore, the charging/discharging rate of the ESS (∆𝑆𝑂𝐶𝑡) is expressed as: 

∆𝑆𝑂𝐶𝑡= (∆𝐸𝑡
𝑒)/𝐸𝑚𝑎𝑥     (5.17) 

In this expression, ∆𝐸𝑡
𝑒represents the amount of energy change in the battery. The 𝑆 𝐶𝑡 is used 

to calculate the next state of the reinforcement learning algorithm (to be detailed in Section 5.4), 

which is the actual state of the ESS. 

The ESS must keep its SOC within its energy capacity limits. According to [303], the ESS per-

forms better if the SOC lies in the range 20% - 80% of its capacity. To get the best performance of 

the ESS the capacity limits are set as: 

𝜌𝑚𝑖𝑛 ∙ 𝐸𝑚 ≤ 𝑆 𝐶𝑡 ∙ 𝐸𝑚𝑎𝑥 ≤ 𝜌𝑚𝑎𝑥 ∙ 𝐸𝑚 ∀𝑡 ∈ 𝑇    (5.18) 

Where 𝜌𝑚𝑖𝑛and 𝜌𝑚𝑎𝑥 are the minimum and maximum operation limits. 𝐸𝑚 is the rated energy 

capacity of the battery storage. 

The initial and final SOC are usually set to be same during the optimization period, as described 

below. 𝑡𝑜and 𝑡24 represent the initial and the final periods of the day. 

𝑆 𝐶𝑡0 = 𝑆 𝐶𝑡24      (5.19) 

Regarding the previous explanation, the ESS operation strategy defined in this work follows the 

iterative procedure illustrated in Figure 5.3. It considers that the battery discharging is in operation 

mode (until the pre-defined SOC minimum limits) if the demand is higher than the community pro-

duction (until the minimum SOC level is reached, (5.3)). On other hand, and if the PV production is 

higher than the demand, the surplus will charge the batteries (until the predefined maximum level of 

SOC; Equation 5.2.). If there is still an energy surplus, this energy will be traded between LEM and 

the WSM followed by the optimization model using the reinforcement learning approach, which will 

be detailed in the next section. If the energy stored is insufficient to feed the demand, then the market 

community agent has to buy the required energy at the WSM. 

 



144                                                              Enhanced Model considering Energy Storage Systems

   

 

 

 

 

Figure 5.3. Iterative procedure included in the operation strategy of the ESS 
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5.4. Modelling the ESS, the LEM and the WSM as an ABM 

with Q-Learning 

 

The optimization of the operation strategy of the ESS in the scope of the operation of the Energy 

Community can be transformed into an optimization decision making problem with multiple coupled 

states. The developed model is similar to the model detailed in Section 4.7 to simulate the Consumer 

and Prosumer (in that case without considering the ESS) Agents. 

Considering the stochastic environment of power markets, the optimal bidding problem of an ESS 

in a stochastic environment is reformulated based in equation (5.20). This is formulated as a MDP, 

which is defined as a five-element tuple and includes the state space 𝒮, the action space 𝒜, the tran-

sition probability function 𝒫, the reward function ℛ and the discount factor 𝛾. 

ℳ = {𝒮,𝒜,𝒫,ℛ, 𝛾}      (5.20) 

At each time slot the ESS owner has its observation of the bidding market, namely state 𝑠𝑡. Con-

sidering that the bidding quantity and bidding price of rivals are uncertain, the state of the ESS owner 

is set as: 

𝑠𝑡 = (𝑣𝑡
−1, 𝑎𝑡−1

 , 𝑆 𝐶𝑡, 𝑡)
       (5.21) 

Where 𝑠𝑡𝜖 𝒮 presents the observable information and 𝑣𝑡
−1 is the clearing price of the previous day 

at time slot 𝑡 and 𝑎𝑡−1
 is the last decided bidding action, including bidding quantities and bidding 

prices.  

Having the quantities to buy or to sell between the LEM and the WSM, the reinforcement learning 

starts regarding the strategy to be performed. The state’s definition is in line with the energy com-

munities’ perspective, i.e., to enhance the self-supply capacity and to minimize the dependency of 

the grid. This is similar to the strategy presented in Chapter 4 and based on the state’s definition 

adopted in [14] where the following 5 states were considered: 

• State 1 - the agent has obtained a higher reward, compared to the previous episode, which 

it is not possible to increase; 

• State 2 - the agent has obtained a higher reward, compared to the previous episode, which 

it is possible to increase; 

• State 3 - the agent has not obtained any change on reward, compared to the previous 

episode; 
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• State 4 - the agent has obtained a lower reward, compared to the previous episode, which 

it is possible to increase;  

• State 5 - the agent has obtained a lower reward, compared to the previous episode, which 

it is not possible to increase. 

This strategy is in line with the derivative-following strategy presented in the last chapter and 

based in [287]. However, this strategy has in consideration the ESS characteristics (Equations 5.1-

5.4). Each action taken by the Market Community Agent will increase or decrease its bid price in an 

attempt to increase the profit. However, the quantities to be submitted in the bidding process are 

limited by the state of the batteries (charging, discharging or idle mode) and SOC. As previously 

mentioned, the SOC of a ESS should be kept between 20% to 80% to obtain the best efficiency 

operation [304].  

Remembering that when using an Agent Based Model to model a MDP, the agent firstly observes 

the current environment state and then takes an action, then the agent receives an immediate reward 

from the environment, and moves to the next state based on the transition probability. So, according 

to this modelling approach, the objective of the reinforcement learning is to obtain the best 24-hour 

reward, now considering the storage system and its technical characteristics as part of the environ-

ment. The Q-function can be defined by (5.22) in a similar way to the one defined in Section 4.7. 

(Expression 4.4). 

𝑄(𝑠𝑚, 𝑎𝑛)
𝑛𝑒𝑤 = (1 − 𝜆) ∙ 𝑄(𝑠𝑚, 𝑎𝑛) + 𝜆 ∙ [𝑅(𝑠𝑚, 𝑎𝑛) + 𝛾 ∙ 𝑚𝑎𝑥𝑄(𝑠𝑚+1, 𝑎𝑛)]  (5.22) 

 

In this expression 𝜆 is the learning rate and 𝛾 is the discount factor. It gives the utility function 

that the agent receives from state s. It is also used a greedy police 𝜀 to keep the exploration of the 

behavior, so that all exploratory actions have probability to be chosen during the training period.  

So, considering that the energy produced will be firstly self-consumed, the remaining surplus (if 

there exists) will be sold in the WSM following the derivative strategy already described in Chapter 

4. Remember that these quantities depend on the battery’s state, charging, discharging or idle and on 

the SOC. A derivative follower does incremental increases (or decreases) in price, continuing to 

move its price in the same direction until the observed profitability level falls. At this point, the 

direction of the movement is reversed. As illustrated in Figure 5.4, action a1 corresponds to a maxi-

mum bid down (in which the bid price is decreased as much as possible), a4 means that neither a bid 

up nor a bid down is adopted and a7 represents a maximum bid up action (in which the bid price is 

increased as much as possible).
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In order to get the reward that will be obtained during the surplus selling process, the same as-

sumptions referred to in Section 4.6. will be considered, namely that the Market Community Agent 

will try to increase the selling price as close as possible to the WSM price and in this sense have a 

higher reward. However, it will be considered the state of the batteries (charging, discharging or idle 

mode) and the SOC. 

 

.  

 Figure 5.4. Actions (a1 to a7) used in the Q-Learning procedure 

 

5.5. Economic viability of Energy Communities business 

models 

5.5.1. Overview 

Besides the implemented legal framework and the incentives for the deployment of Energy Com-

munities, it should be assessed the impact of different levels of charges and exemptions as a way of 

getting insights on the economic feasibility of the Energy Communities. The economic viability of 

the investments (namely in Storage Systems) and operation of RECs, specifically considering differ-

ent tariff and charge exemption designs, should therefore be studied in order to get conclusions on 

the breakeven of the investments. 

In Portugal, the DL 162/2019 Art. 18 (n. 4) [49], stated that the charges associated with the Costs 

of General Economic Interest, CIEG (Custos de Interesse Económico Geral, in Portuguese), that are 
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internalized in the regulated revenues associated to Tariff for the Global Use of the System, can be 

totally or partially deducted from grid Access Tariffs to be paid by community members. In the 19th 

June 2020, a government dispatch [279] also stated that self-consumption and REC projects, starting 

operation till the end of the calendar year of 2021, benefit from an exemption of the CIEG charges 

included in the network Access Tariffs for seven years. This provision is intended to induce the wider 

deployment of self-consumption and of Energy Communities. Although this dispatch was associated 

to projects that started operation till the end of 2021, it is expected that similar decisions are published 

in the coming years. Nevertheless, the impact of this kind of exemptions should be evaluated namely 

to conclude if they are needed to ensure the economic feasibility of this kind of business model 

because in fact exempting some consumers from paying some costs does not eliminate these costs 

but it will rather contribute to increase the amounts to be paid by agents not profiting from these 

exemptions. 

Recently, the mentioned DL 162/2019 was revoked by the publication of the new electricity law 

corresponding to the DL 15/2022 of January 14 [54]. This new Decree includes definitions and pro-

visions for Renewable Energy Communities similar to the ones included in the DL 162/2019 and, in 

particular, the number 4 of article 212 states the CIEG can be totally or partially deduced from the 

Access Tariffs to be paid by the members of the communities and by self-consumption agents de-

pending on a decision of the government till the 15th of September each year. 

The legal framework also considers the definition of proximity among the members, devices and 

equipment that integrate a community. As detailed in Section 2.2.1., the definition of proximity pro-

vided in the DL 162/2019 and now included on the DL 15/2022 does not clearly set spatial limits for 

the location of prosumers and can consider that they are connected to the LV side of a MV/LV 

substation, to different voltage levels or considering other legal and technical issues. 

Some of the simulations that will be detailed in Chapter 6, will consider the impact of having or 

not exemptions on the Access Tariffs, namely for the CIEG component of the tariffs. These scenarios 

will take into account the utilization of the public grid for self-consumption purpose, when the stor-

age system will be located outside the electrical network of the buildings where the consumers are 

installed. A variety of studies will be developed to achieve a broad selection of results which consider 

different grid charges and tariffs. Once again, the main objective is to get insights related with the 

payment of grid tariffs and in particular with the CIEG component applied to self-consumption that 

uses the public grid. 
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In a different but complementary and also relevant way, admitting that the payment by the com-

munity members of all the Access Tariffs as define in the Tariff Code including the mentioned CIEG 

originates their economic unfeasibility, these simulations can also be used to identify the minimum 

level of charge reductions or exemptions to ensure the break even. From a regulatory point of view, 

enlarging the charge reductions or exemptions so that more and more network users benefit from 

them, originates an important regulatory problem. In fact, the Access Tariffs are designed to provide 

the amount of regulated revenues defined in the Tariff Code and required to finance several regulated 

activities as network distribution and transmission and the system control and management as well 

as a number of public policies that are designed to benefit all the society on the long term. As the 

number of consumers or network users benefiting from charge reductions or exemptions increases, 

the consumers that at the end will pay the complete regulated Access Tariffs reflecting the mentioned 

regulated revenues gets more and more reduced which means that each of them would pay more for 

the access to the system. This is a major concern as the number of RECs increase and clearly shows 

that these charge reductions or exemptions should be cautiously set and should only be accepted as 

a transitory provision to help inducing the development this new business case. 

5.5.2. Economic Evaluation Methodology 

The economic value of the investments and operation of RECs should offer a financially valued 

proposition to let communities to be viable under this new paradigm. One of the initial factors for 

consumers and prosumers to form and participate in an Energy Community is the willingness to 

lower the investment risk in renewable energy generation and storage equipment. For this reason, 

the investments in PVs and storage systems are relevant for the economic evaluation of RECs. 

The decision on whether a project should be carried out or abandoned is commonly made relying 

on an “investment criterion”. The most commonly applied approaches found in the literature for 

storage and PV systems are based on the Net Present Value (NPV) and on the Internal Rate of Return 

(IRR). Less often, the Benefit-Cost Ratio and the Payback Period are also calculated [288].  

Regarding the energy communities’ frameworks and strategies, it is also expected that the excess 

energy can be sold and therefore the community members should experience a profit from it, unless 

the payments from network operators charging energy communities to connect and use the grid as 

well as taxes charged by governments are not going to break an economic business case. The finan-

cial gains associated with different system configurations and interactions among LEM and the WSM 

should also be evaluated.  
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On this sense, the economic viability of the investments and operation of RECs depend on several 

factors listed below: 

a) The tariffs and prices used to remunerate some primary resources, as for instance the 

energy from PV systems; 

b) Electricity Prices; 

c) Access Tariffs; 

d) Investment Costs of ESS and PV systems. 

5.5.2.1. Storage and PV systems economic analysis 

The values of the investment and replacement costs, IRR, NPV and payback period are considered 

to access the economic viability of the PV and storage systems. These elements depend on the cost 

associated with the installation and on the Operation and Maintenance (O&M) of the systems, their 

lifetime and the interest rate. 

Economic profitability of an investment project is commonly measured by its NPV, which is the 

difference between a project’s present value and its cost. The present value of a forecasted cash flow 

is a measure of today’s value of future cash streams. The sum of all discounted cash flows – both 

revenues and costs – corresponds to the Net Present Value. Economic theory dictates that an invest-

ment should only be undertaken if the NPV is positive, which is the case if future revenues exceed 

all costs under consideration considering the time value of the money [288]. 

Related to the calculation of the NPV is the determination of the IRR. This concept corresponds 

to the projects discount rate for which the present value of all cash flows equals zero. The resulting 

rate is typically compared to the required return on capital or to alternative projects having a similar 

risk level to determine if an investment is sufficiently profitable and should be pursued. However, 

IRR can be ambiguous if cash flows have a reversal of sign during lifetime [305, 306]. Furthermore, 

IRR oftentimes provides a too optimistic view as it inherently assumes that interim cash flows are 

reinvested at the IRR [288]. 

Related to the concept of NPV, the benefit-cost ratio is the ratio of the present values of benefits 

and cost, with numbers greater than one representing projects with a positive NPV. This figure is 

commonly used in project evaluations in the public sector [288]. 
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The Payback period is another popular evaluation criterion. It measures “[…] the number of 

years necessary to recover the project cost of an investment under consideration” [307]. Therefore, 

projects should only be accepted if their payback period falls below some defined threshold. 

Specific to the evaluation of energy related projects is the concept of Levelized Cost of Electric-

ity (LCOE) or Levelized Cost of Storage (LCOS), which is an estimate of the value at which a unit 

of energy that is produced or stored should be sold. It is calculated by determining all expenses during 

the lifetime, discounting them to the base year and setting them in relation to the associated quantity 

of energy. LCOS / LCOE can also be interpreted as the revenue requirement to break-even [308]. 

Considering a battery as a storage system, the lifetime of the battery is restricted by two limits: 

the battery technology’s degradation over time as well as its usage-based wear down. Once one of 

these limits is reached, the storage system is considered at the end of its usable life. The average 

price required over the lifetime of a storage device to break even the full costs of its operation is 

known as the LCOS. Alternatively, the LCOS can be viewed as the electricity price that makes the 

net present value of all storage cash flows over its lifetime equal to zero. Therefore, it gives an insight 

into the cost of storing and providing a unit of energy. This levelized cost can be determined using 

equation (5.23). 

𝐿𝐶 𝑆 =
𝐶𝑆𝑡𝑜𝑟𝑎𝑔𝑒
𝐼𝑛𝑣𝑒𝑠𝑡

𝐿𝑆𝑡𝑜𝑟𝑎𝑔𝑒
𝐶𝑦𝑐𝑙𝑒

×𝐸𝑆𝑡𝑜𝑟𝑎𝑔𝑒
𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦

×(1−𝛿𝑆𝑡𝑜𝑟𝑎𝑔𝑒)
    (5.23) 

 

In this expression 𝐶𝑆𝑡𝑜𝑟𝑎𝑔𝑒
𝐼𝑛𝑣𝑒𝑠𝑡 is the investment cost of storage system, 𝐸𝑆𝑡𝑜𝑟𝑎𝑔𝑒

𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦
 is the energy that 

the storage can provide, 𝐿𝑆𝑡𝑜𝑟𝑎𝑔𝑒
𝐶𝑦𝑐𝑙𝑒

 is the expected cycle lifetime and 𝛿𝑆𝑡𝑜𝑟𝑎𝑔𝑒 is the depth of discharge. 

As a normalized figure independent of storage dimensions, this levelized cost then allows for a 

comparison of system configurations and between technologies. It also could be interpreted as a 

depreciation charge or as an average revenue hurdle. 

The lifetime cost of electricity storage technologies (Pumped Hydro; Compressed air; Flywheel; 

Lithium-ion; Sodium-Sulphur; Lead-acid; Vanadium redox-flow; Hydrogen; Supercapacitor) in 12 

power system applications (Energy Arbitrage; Primary Response; Secondary Response; Tertiary Re-

sponse; Peaker Replacement; Black Start; Seasonal Storage; Transmission and Distribution Invest-

ment Deferral; Congestion Management; Bill Management; Power Quality; Power Reliability), from 

2015 to 2050, was studied in [309]. Figure 5.5. shows an overview of the probability each technology 

has to exhibit the lowest LCOS, and the mean value of LCOS of the most cost-efficient technology 

for all 12 investigated electricity storage applications. The left-hand axis of each graph displays the 



152                                                              Enhanced Model considering Energy Storage Systems

   

 

 

 

probability that a technology will exhibit the lowest LCOS in a specific application. The right-hand 

axis displays the expected evolution of the LCOS of the technology that will most probably display 

the lowest LCOS for each application. Note there are different scales on the graphs in this figure.  

 

Figure 5.5. Lowest LCOS probabilities for 9 Electricity Storage Technologies in 12 applications from 

2015 to 2050 (source [309]).  

In 2015, pumped hydro and compressed air dominated most applications except for bill manage-

ment, power quality and reliability, and primary response, where size and response time requirements 

made these technologies unsuitable for these applications. For these exceptions, battery systems such 

as lead acid, sodium sulphur, lithium ion, and vanadium redox flow compete for the least-cost, while 

primary response is dominated by flywheels. Projected cost reductions for battery technologies limit 

the competitiveness of pumped hydro and compressed air. Battery technologies exhibit the highest 

probability of getting the lowest LCOS for most applications beyond 2025. By 2030, lithium ion 

appears to be the most cost efficient in most applications, with <4 h discharge and <300 annual cycles 
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such as power quality and black start. For applications with greater duration and cycle requirements, 

vanadium redox flow stays competitive, albeit never being the most likely to offer the minimum 

LCOS value. These applications are power reliability (>4 h) or secondary response and bill manage-

ment (>300 cycles). For seasonal storage with more than 700 h discharge, hydrogen storage is likely 

to become the most cost-efficient technology. Primary response with 5.000 full equivalent charge-

discharge cycles sees the dominance of flywheels contested by lithium ion. This report [309] con-

cludes that the values of the LCOS will get reduced by one-third to one-half from 2030 and 2050, 

respectively, across the modeled applications, with lithium ion batteries likely to become the most 

cost efficient storage technology for nearly all stationary applications from 2030 onwards. 

Regarding solar PV systems, the rapid technological evolution of these systems has made future-

cost assumptions cheaper than average spot market electricity all over Europe. For instance, in 2030, 

utility-scale PV LCOE will range from 14 €/MWh to 24 €/MWh, making PV clearly one of the 

cheapest forms of electricity generation [310]. Solar PV modules have maintained a learning rate of 

23% since 1976, i.e., their cost reduces by 23% every time the capacity doubles [311]. The main 

drivers for PV systems cost reductions include technological improvements, such as efficiency in-

crease and high-level mechanisms, including economies of scale, automation, and standardization in 

manufacturing. 

The LCOE for solar PV systems is calculated by dividing the sum of costs of the PV system over 

its lifetime by the electricity produced over its lifetime, as presented in equation (5.24). 

 

𝐿𝐶 𝐸 =
∑

𝐼𝑡+𝑀𝑡
(1+𝑟)𝑡

𝑁
𝑡=1

∑
𝐸𝑡

(1+𝑟)𝑡
𝑁
𝑡=1

      (5.24) 

In this expression It and Mt are the O&M expenditure in year t. Et stands for the electricity gener-

ated in year t, r is the discount rate, and N the lifetime of the PV system.  

Since most of the investment expenditures are allocated in the initial year, lifetime extension can 

significantly reduce the LCOE for solar systems. Solar cells with low degradation rates, such as 

silicon solar cells (~0.5 %/year) [312], have an impact on the lifetime extension and consequently on 

the reduction of the LCOE. 

  The investment cost of a PV system (Cpv) includes the price of the photovoltaic modules (CMod), 

the inverter (CInv) and installation (CIns) as given in equation (5.25). 

𝐶𝑃𝑉 = 𝐶𝑀𝑜𝑑 + 𝐶𝐼𝑛𝑣 + 𝐶𝐼𝑛𝑠      (5.25) 



154                                                              Enhanced Model considering Energy Storage Systems

   

 

 

 

On a PV-storage system, the battery cost (CBattery) represents a considerable portion of the invest-

ment. The total cost of a PV-storage system, equation (5.26), depends on the sizing of the photovol-

taic itself and the associated storage device. 

𝐶 𝑜𝑡𝑎𝑙 = 𝐶𝑃𝑉 + 𝐶𝐵𝑎𝑡𝑡𝑒𝑟𝑦      (5.26) 

A PV-storage project is considered to have a lifetime equal to the lifetime of the PV modules, 

which is around 20 years. The warranty of the battery and the inverter is approximately 10 to 15 

years, consequently they will have to be replaced after that time [313]. Therefore, the costs presented 

in Equation (5.27) must be taken into consideration when doing an economic analysis. 

𝐶𝑟𝑒𝑝𝑙𝑎𝑐𝑒 = 𝐶𝐼𝑛𝑣 + 𝐶𝐵𝑎𝑡𝑡𝑒𝑟𝑦      (5.27) 

The IRR, defined by Equation (5.28), assesses the profitability of the PV-storage system. It rep-

resents the discount rate of the project considering the NPV (difference between the present value of 

cash inflows and the present value of cash outflows) equals to zero. IRR (%) considers the cash flows 

(CF) of each year of the project (t) and the lifetime (n) in years [314]. 

0 = ∑
𝐶𝐹𝑡

(1+𝐼𝑅𝑅)𝑡
𝑛
𝑡=0         (5.28) 

The NPV, defined by Equation (5.29), reflects the difference between benefits and costs of a 

project, considering the yield expectation of the investor and therefore its time value of money. It is 

obtained by discounting all cash flows with the cost of capital 𝑟𝐸𝑞𝑢𝑖𝑡𝑦. 

𝑁𝑃𝑉 = ∑
𝐶𝐹𝑡

(1+𝑟𝐸𝑞𝑢𝑖𝑡𝑦)
𝑡×∆𝑡

 
𝑡=0       (5.29) 

5.5.2.2. Electricity Prices and Access Tariffs 

As previously mentioned, the impact of having or not exemptions on network tariffs, namely for 

the CIEG component of the Access Tariffs will be considered in order to access the economic feasi-

bility of Energy Communities. In addition, it should also be mentioned that the DL 15/2022 of Jan-

uary 14th [54] states in number 3 of article 213, that storage systems are also exempted of paying the 

charges associated with the CIEG that are typically included in the Global Use of the System Tariff.  

In order to better understand the different components that constitute the final price paid by con-

sumers, a structure of the price of electricity supply in Portugal is presented in Figure 5.6. The elec-

tricity price paid by the final consumers can be grouped in three clusters: payment for use of networks 

(distribution and transmission), payment for purchased energy and taxes.  
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Access Tariffs reflect the cost of infrastructures and all services used by the consumers in a col-

lective manner. It is composed by the Global System Usage Tariff, the Transmission System Use 

Tariff, the Distribution System Use Tariff and the Logistics Operator for Switching Electricity and 

Gas Supplier (OLMC) Tariff. These tariffs are typically paid by retailers on behalf of their consumers 

and the corresponding values are incorporated in the final energy bill to be paid by the end consum-

ers. On the other hand, each supplier defines freely the corresponding value of the Energy and Re-

tailing Tariffs, being in competition with other suppliers. The government is responsible for the def-

inition and setting the taxes. All the regulated price components, namely the components of the Ac-

cess Tariff, are annually published by ERSE [315]. 

 

Figure 5.6. Structure of the price of liberalized electricity market supply in Portugal, adapted from 

[315] 

The electricity tariffs and prices set by ERSE for 2022 were approved by the ERSE Directive nº 

3/2022 on January 7th, and published in the Diário da República [316]. This Directive also approves 

the network Access Tariffs for electric mobility, the tariffs applicable to self-consumption, and the 

network access tariffs for autonomous storage facilities.  

However, the Directive no. 8/2022, of 11 April [317] approved an extraordinary revision of the 

Energy Tariff applicable by the Last Resource Retailer, with effects on the transitory End-User Tar-

iffs and End-User Social Tariff, in mainland Portugal and in the Autonomous Regions of the Azores 

and Madeira, on the End-User Tariffs to be applied in the context of supplementary supply and on 

the Energy and Supply Tariff for electric mobility. 

The Access Tariffs that must be paid by the community agents regarding the utilization of public 

networks for energy transactions are presented in Annex B1. The charges associated with CIEG, 

without exemption, with 50% exemption and with 100% exemption, are provided respectively in 
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Annexes B2.1, B2.2 and B2.3. These correspond to values of the tariffs in force in 2020 and will be 

considered in the Simulations to be described in Chapter 6. We decided to use the tariffs applied to 

the year 2020, because the economic and market context (pandemic and Russian-Ukrainian war) in 

2021 and 2022 had impact on the stability of these tariffs (e.g., negative values on the CIEG compo-

nent). 

 



 

 

 

Chapter 6  

6. Simulations, Results and Discussion 

 

6.1. Overview of the simulations to be described 

 

As mentioned in previous chapters, the energy community proposed in this work considers a LEM 

constituted by prosumers with PV generation that can integrate, or not, storage systems. To under-

stand how ESS systems can add value to a LEM, we propose two different architectures regarding 

their integration. In the first one, storage, constituted by batteries, is located at the building level. 

This architecture is termed as decentralized in the sense that each building has its own battery equip-

ment. In the second one, termed as centralized, the batteries will be located at the LV side of the 

MV/LV substation that supplies a set of buildings that constitute the community. Specifically, the 

value of battery storage and the associated architectures in combination with LEM are examined. To 

understand the value of local markets and battery flexibility, we compared the outcomes of the two 

proposed designs against a reference case that does not incorporate storage systems. 

As a reference case, designated as Ref-Case, we considered a Portuguese collective building with 

electricity demand distributed by the common services and by 15 flats. All the apartments are orga-

nized as an energy community considering a collective self-consumption scheme. It has a renewable 

generation unit constituted by PV systems without storage systems and the operation of the LEM is 

simulated not using the Q-Learning approach. The same as in the previous scenario but considering 

the optimization approach with the Q-Learning strategy will be named as scenario SC_PV. The ar-

chitecture for these scenarios (without storage) is illustrated in (Figure 6.1). 
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Figure 6.1. Illustration of the collective self-consumption design (scenario SC_PV) (adapted from 

DGEG [318]) 

As scenario for SC_ST45, it was considered a community that has a battery storage system lo-

cated at the building level. The power flow between the batteries and the community doesn’t use the 

public grid because they are located inside the building. This will be named as Decentralized Storage 

System as mentioned above and it is illustrated in (Figure 6.2) namely because there is a storage unit 

for each building that could be considered. It should be recognized that this does not correspond to 

a fully decentralized approach in which each consumer/prosumer would have its own small storage 

unit. Such a level of decentralization was not considered in this study because the current investment 

cost in storage systems is still large enough to prevent this type of dissemination. In other words, 

currently it is more feasible to adopt some level of decentralization involving sets of consumers rather 

than a fully decentralized design. 

It was also studied a centralized storage architecture in which the storage system is located at a 

Low Voltage side of the MV/LV substation that feeds a set of buildings. This scenario is termed as 

SC_ST300. The location of this battery is not inside the community itself, and it is termed as a cen-

tralized one given that a set of buildings share the same storage unit (Figure 6.3). In order to get 

insights related with the payment of grid tariffs and in particular with the CIEG component applied 

to self-consumption that uses the public grid, its economic impact will be assessed in scenario 

SC_ST300. This evaluation will be done by considering different exemption conditions.



6.1 Overview of the simulations to be described                                                                           159 

 

 

 

 

 

Figure 6.2. Illustration of the collective self-consumption installation with a decentralized storage sys-

tem (scenario SC_ST45) (adapted from DGEG [318]) 

 

 

Figure 6.3. Illustration of the collective self-consumption installation with a centralized storage system 

(scenario SC_ST300) located at the LV side of the MV/LV substation (adapted from DGEG [318]) 

 

To assess the impact of the different parameters used in the developed Q-Learning methodology, 

i.e., the learning rate, the discount factor and greedy police parameters, several simulations will also 

be developed considering the scenario SC_PV.  

To validate the previous results from an economic point of view, a long-term economic assess-

ment will be presented considering the equipment live-cycle, CAPEX and OPEX expenditures. A 

sensitivity analysis will also be performed in order to assess the behavior of the Net Present Value 

considering the change of some parameters. 

Main Grid

Building Electrical Grid distribution

Main Grid

Building Electrical Grid distribution
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Table 6.1 summarizes the different scenarios that will be analyzed. 

 

Table 6.1. REC configurations and scenarios to be analyzed 

Scenario name Description 

Ref-Case With PV, without storage and without Q-Learning strategy 

SC_PV With PV, without storage and with Q-Learning strategy 

SC_ST45 With PV, with storage (decentralized) and with Q-Learning strategy 

SC_ST300_A  With PV, with storage (centralized) and with Q-Learning strategy (without CIEG ex-

emptions) 

SC_ST300_B With PV, with storage (centralized) and with Q-Learning strategy (with 50% CIEG 

exemptions) 

SC_ST300_C With PV, with storage (centralized) and with Q-Learning strategy (with 100% CIEG 

exemptions) 

 

6.2. Global characterization and Reference Case descrip-

tion  

The simulations to be described use real data from a Portuguese collective building with electric-

ity demand distributed by the common services and by 15 flats. All the apartments and common 

services are organized as an energy community considering a collective self-consumption scheme. 

The installation includes a renewable generation unit constituted by PV systems with overall 45 kWp 

and 70,2 MWh of annual generation. The sample power profiles for the demand and the PV systems 

were built using open datasets available at [319] and with sampling periods of 15 minutes, starting 

on 1st January 2019 until the 1st January 2020. Table 6.2 presents the annual energy demand of the 

consumers and their contracted power. 

As illustrated in (Figure 6.1) the PV systems are integrated at the building level and in this sense 

the electrical public grid is not used for self-consumption purposes, i.e., for physical exchanges of 

energy between the PV systems and the community consumers. The public grid is only used to inject 

eventual electricity surplus in some periods and to get electricity from the grid in other periods.
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Table 6.2. Annual Energy demand  

 

 

The annual hourly energy demand profile for all the apartments and common services are pre-

sented in Figure 6.4. These load profiles show that between 23.00 and 6.00 the demand is lower, 

which is related to hours with less activity. After 07.00 the demand starts to increase, having a rela-

tively constant profile in the common services until 22.00. On the other hand, the demand of the 

apartments increases after 18.00 achieving the peak power by 21.00.  

 

 

Figure 6.4.Global hourly energy consumption profile. 
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Regarding the photovoltaic generation, Figure 6.5. shows the corresponding hourly average gen-

eration.  

 

Figure 6.5. Average hourly PV generation 

 

Considering the 15 min values of the demand of the 15 flats plus the common services and the 

generation of the PV systems, it was possible to estimate the demand supplied by the public grid, the 

demand supplied by the self-consumption and the electricity injected back to the grid. Table 6.3. 

presents the corresponding aggregated results. 

Considering the community energy demand and production, Figure 6.6. presents the annual elec-

trical energy balance. For a global energy demand of 145,4 MWh, 68% (98,6 MWh) are provided by 

the electrical supplier which means that the remaining 32% (46,8 MWh) are provided by self-con-

sumption (left bar on Figure 6.6.). However, it is also possible to observe that the community pro-

duced more energy than the 46,8 MWh, corresponding to 70,2 MWh (right bar on Figure 6.6). This 

means that, 33% (23,4 MWh) of the community production was injected back into the grid and the 

remaining 67% (46,8 MWh) that was produced in the community was self-consumed.  

 

Table 6.3.Annual Energy Community balance 

  MWh 

Global Energy demand 145,4 

Demand supplied by the public grid   98,6 

Demand supplied by self-consumption   46,8 

Electricity injected back in the public grid   23,4 
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Figure 6.6. Community annual electricity demand and production 

 

Figure 6.7 presents the monthly electrical energy balance. In this graph all the values are read in 

the left-hand side (LHS) vertical axis, except the energy injected back to the public network that is 

read in the right-hand side (RHS) vertical axis. It is possible to observe that the summer months 

(July, August, and September) are the periods when more electricity is injected back into the public 

grid. This is coincident with the months in which more energy is produced in the community, and 

this is obviously related with the higher PV output. 

 

 

Figure 6.7. Monthly electrical energy balance  

 

As mentioned before, this is the Reference Scenario, which doesn’t consider storage systems 

(neither decentralized or centralized) and consists only of a PV system used for self-consumption 

purposes. In the case of any surplus, it will be injected back into the main public grid and will be 
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remunerated by a bilateral contract established by the community and a traditional retailer which 

means that the Q-Learning approach is not used to optimize this remuneration. 

The remuneration established for this bilateral contract (CPV) was set at 50 €/MWh. The value 

established for CPV had a relevant impact on the renewable energy promotion and on its penetration 

on the electric systems, namely electricity produced by PV systems. Since 2022, the Portuguese leg-

islation [54] allows establishing bilateral contracts between producers (integrated in renewable en-

ergy communities) and retailers. The value defined for CPV is somehow related but distant from the 

initial Feed In Tariffs supported by the Portuguese Legislation namely by the DL n.215-B/2012 [320] 

and the DL n.35/2013 [321]. In fact, the mentioned value adopted for CPV in this work is much lower 

than the original Feed In Tariffs applied to PV generation units and this reduction is suggested by 

the values currently offered by retailers that accept buying the excess of electricity from self-con-

sumption units. 

In what concerns to the cost of electricity acquisition, all the demand supplied by the public grid 

will be paid at the WSM prices. In this work, and for all the scenarios considered, we used real 

electricity market prices for 2019 publicly available at the webpage of the Iberian Market Operator, 

OMIE, in [322]. 

 

Table 6.4. presents the energy annual costs for this Reference Case scenario. It presents the 

amounts associated with the Access Tariffs, the energy acquisition costs, and the remuneration ob-

tained from selling the energy surplus generated by the PV generation regarding the demand.  

 

Table 6.4. Energy annual costs (Ref-Case) 

Costs Ref-Case 

Access Tariffs  5.171,07 € 

Electricity acquisition 6.899,66 € 

Selling energy -1.167,18 € 

Total 10.903,55 € 

 

Analyzing the previous table, it is possible to observe that the total energy annual cost is reduced 

by almost 11% given the remuneration obtained by selling the electricity surplus (-1.167,18 €). Re-

call that this remuneration is obtained by selling the energy surplus at the CPV price and without 

considering the Q-Learning process. The impact of using Q-Learning will be assessed and analyzed 

in the next sections. 
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6.3. Scenario SC_PV description and simulation results 

6.3.1. Optimization model analysis and results  

As it was explained in Chapters 4 and 5, the utility function used in the developed model corre-

sponds to the ratio between the 𝐶𝐵𝑖𝑑 and 𝐶𝑃𝑉. The higher this ratio is, the higher will be the commu-

nity profits by applying the optimization model. After defining the Bid Price (𝐶𝐵𝑖𝑑), the Market 

Community Agent calculates the Utility Function. If the WSM price (𝐶𝑎𝑔𝑔) is lower than 𝐶𝑃𝑉, the 

Market Community Agent will receive the guaranteed reward defined by the bilateral contract, that 

is 𝐶𝑃𝑉. Otherwise, and if the 𝐶𝐵𝑖𝑑 is lower than the 𝐶𝑎𝑔𝑔 and higher than 𝐶𝑃𝑉, the reward will be 

equal to the difference between 𝐶𝐵𝑖𝑑 and 𝐶𝑃𝑉. This reward will be a consequence of the defined 

bidding strategy of the developed Q-Learning methodology. In case of energy deficit, and because 

we assume that consumers have no elasticity regarding the price, the bids in the LEM will correspond 

to the required energy paid at the WSM market price. 

The LEM and the WSM markets are cleared individually, and their coordination is done as fol-

lows: 

a) the local energy deficit is bought at the WSM price Cagg; 

b) the local generated electricity is firstly self-consumed and then the remaining energy will 

be traded in the WSM considering the price obtained after the optimization strategy pro-

cess, i.e., due to the application of the Q-Learning methodology. If the LEM prices CBid 

are lower than the WSM prices Cagg, the community has a potential profit that is associ-

ated to the difference between both prices. Otherwise, if the WSM prices are lower than 

the LEM prices, the surplus energy will be sold at CPV as previously referred. 

The developed ABM model was applied to real data of consumption, PV generation and WSM 

prices. As mentioned in Sections 4.7 and 4.8, the definition of the Q-Learning procedure is based on 

a pair state-action 𝑄(𝑠𝑚, 𝑎𝑛).  

The learning rate λ reflects the degree to which estimated Q-values are updated by new data. If 

λ=0 the agent doesn’t learn. If λ=1 then the agent is induced to consider only the most recent infor-

mation. The discount factor 𝛾 represents the weight given to future reinforcements. If 𝛾 = 0 the agent 

considers only current rewards, otherwise if 𝛾 = 1 distant rewards become more important. The 

greedy policy parameter ε is related with the probability for the agent to select an action rather than 

the best one, that is, the one associated with the largest Q-value. 
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In this Case Study, we used the following 3 actions: 

- a1 represents Action 1 corresponding to a bid down of -1 €/MWh regarding the bid price 

of the previous iteration; 

- a2 represents Action 2 corresponding to no bid up nor bid down regarding the bid price 

of the last iteration (0 €/MWh);  

- a3 represents Action 3 corresponding to a bid up of +1 €/MWh regarding the bid price of 

the last iteration. 

As mentioned in Section 4.8, the state’s definition considers five states that are related with the 

reward associated with the previous episode and with the obtained profit. These states are detailed in 

Table 6.5. 

Table 6.5. Definition of the Q-Learning States 

 

The structure of the Q-matrix 𝑄(𝑠𝑚, 𝑎𝑛), as well as the values of the parameters λ, 𝛾  and ε used to 

obtain this matrix are presented in Table 6.6. 

 

Table 6.6. Q-matrix for the Scenario SC_PV 

State/Action a1 a2 a3 Parameter 

S1 Q1,1 Q1,2 Q1,3 λ 0,8 

S2 Q2,1 Q2,2 Q2,3 𝛾 0,8 

S3 Q3,1 Q3,2 Q3,3 ε 0,1 

S4 Q4,1 Q4,2 Q4,3  
 

S5 Q5,1 Q5,2 Q5,3   

 

The learning rate λ was set at 0,8, as well as the discount factor 𝛾. The greedy policy parameter ε 

was set at 0,1, which means that the agent has 90% probability of choosing the action with higher Q-

value (greedy selection).  

State Reward Reward (related with previous episode) 
        

S1 Increased Not possible to increase 

S2 Increased Possible to increase 

S3 Equal Indifferent 

S4 Decreased Possible to increase 

S5 Decreased Not possible to increase 

 



6.3 Scenario SC_PV description and simulation results  167 

 

 

 

After describing the simulation conditions and having enumerated the values that were adopted 

for several parameters, we will now present and analyze the results that were obtained for Scenario 

SC_PV. Figure 6.8 presents the results for one year (52 weeks) simulation. 

 

 

Figure 6.8. Bidding results for the SC_PV scenario. 

 

In Figure 6.8., the light blue line corresponds to the WSM price Cagg, the orange line represents 

the CPV specific value, and the dark blue line represents the LEM price CBid taking in consideration 

the bid strategy of the Market Community Agent. It is possible to verify that the community agent 

was exploring the environment by doing bid up and bid downs always above 50,00 €/MWh. This 

situation is explained by the learning experience that our agent has during the bidding process. The 

agent adapted his behavior considering the pre-defined strategy and learns with past experiences.  

Figure 6.9 presents the WSM and LEM average prices observed in the month of January, as a 

consequence of the bidding strategy adopted by the Market Community Agent. In addition, Figure 

6.10. includes a more detailed overview of the impact of the defined strategy. On January 27th the 

bid strategy of the agent reaches an average value little higher than the WSM price, where the WSM 

price was 69,46 €/MWh and the bid price was set as 69,71 €/MWh. In this case, the selling price will 

be equal to CPV (50 €/MWh). In these cases, there will be no additional profit and the reward will be 

equal to 0 €/MWh. If the bid price was a little lower than the WSM price, the reward was equal to 

difference between those Bid Price and the bilateral contract price CPV. This was a consequence of 

the fact that the agent explores the environment by doing bid up/downs between CPV and the WSM 

price. 
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Figure 6.9. January average prices results for SC_PV 

 

 

Figure 6.10. January average prices results for SC_PV highlighting the results for day 27. 

 

Analyzing now in more detail the behavior of the Market Community Agent, regarding the actions 

and the states that were considered, Table 6.7. shows the Q-matrix on January 4th between hour 11 

and 15. Given there is energy surplus at this period (after being self-consumed), the remaining energy 

will be traded considering the defined coordination between the WSM and LEM. The agent has 90% 

of probability (ε=0,1) of choosing the action which corresponds to the maximum value of the Q-

matrix. At hour 12, the action that was chosen was a3, that corresponds to a bid up of +1 €/MWh 

regarding the bid price of the last iteration. So, at this hour the bid was 58,00 €/MWh (the previous 

bid was 57,00 €/MWh at hour 11). Considering that there is an increase on the reward regarding the 

previous one (difference between CBid and CPV changes from 7 to 8 €/MWh, and it is possible to get 

more profit (increase until WSM price), state s2 was therefore obtained. 
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Table 6.7. Q-matrix for SC_PV (considering no storage) – January 4 

 

 

At day 4 hour 13, the agent chooses the action with higher Q-value (greedy selection), which was 

action a3. This represents a bid up of 1 €/MWh which means a change of bid price from 58,00 €/MWh 

to 59,00 €/MWh. The agent state keeps in s2, which means that the agent has obtained more profit, 

compared with the previous episode and it is possible to get more profit because the WSM price was 

68,72 €/MWh and the LEM was 59,00 €/MWh. So, the LEM price still has margin to increase in 

order to get closer to the WSM price.  

At hour 14, the chosen action is not the one having the maximum Q-value (there is 10% proba-

bility of the agent not choosing the action with maximum Q-value) and in this sense the agent didn’t 

chose action a2 and chose action a1. This represented a bid of 58,00 €/MWh (change of -1 €/MWh 

regarding the previous bid). Since the reward decreases (regarding the previous episode) and it is 

possible to get more profit (the difference between the BID price and WSM price is not equal to zero) 

the agent assumes that the state is now s4.  

The Q-matrix is again updated and at day 4 hour 15 the agent choses the maximum value of Q-

matrix (with 90% of probability) which originates the selection of action a2. This means not to bid 

up nor bid down regarding the bid price of the last iteration (change of 0 €/MWh regarding the 

previous bid). Since the reward remains the same regarding the previous episode, the agent is in state 

s3. 

Analyzing with more detail the behavior of the Market Community Agent at day 27, Table 6.8. 

presents the corresponding Q-matrix results. At hour 12 the WSM price was higher than the LEM 

price. However, and since there was a bid up of 1 €/MWh (as consequence the agent takes the action 

a3 at hour 13) the bid price became higher than the WSM price at hour 13. In this case, the revenue 

will be equal to the CPV which was defined at 50,00 €/MWh. The potential reward corresponds to the 

difference between the CPV (50,00 €/MWh) and the WSM price (69,82 €/MWh) and this explains 
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why the corresponding reward value in Table 6.8 is negative meaning that it was lost the opportunity 

of having a reward of 19,82 €/MWh. 

 

Table 6.8. Q-matrix for SC_PV (considering no storage) – January 27 

 

 

Now let us analyze the economical results for Scenario SC_PV considering a period of 12 months. 

Figure 6.11. presents the results obtained monthly as well as the accumulated results along the year. 

In this Figure, blue bars correspond to the monthly calculated rewards (values in the left vertical 

axis) whereas the dark blue line represents the cumulative reward (values in the right-hand side ver-

tical axis).  

 

 

Figure 6.11. Scenario SC_PV - calculated reward by month and accumulated reward (€) for λ=0,8,  
𝜸=0,8 and ε=0,1 
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As can be observed, the accumulated reward at the end of the year is approximately 1463,33 €. 

As defined in our bidding strategy, when the bid price is higher than the WSM price, the bid price is 

not cleared and it is assumed a value equal to the CPV, i.e., 50,00 €/MWh. When the bid price is lower 

than the WSM price, the assumed price is the bid price. It is also possible to observe that the months 

in which the rewards are larger correspond to July, August, and September. These are the months in 

which PV generation is larger (sunny months in Portugal). Month 8, August, has the highest calcu-

lated reward (163,96 €) and this value is 61% higher than the value obtained for November, which 

had the lowest calculated reward at 99,83 €. The exception is related to March. As it was possible to 

observe in the dataset, the consumption was lower in this month. Therefore, the energy surplus is 

larger and so this allows having more transactions in the LEM thus contributing to an increase in the 

reward. 

6.3.2. Impact of the learning rate, discount factor and greedy policy  

Let us now analyze the impact of the learning rate λ, the discount factor 𝛾 and the greedy policy 

ε parameters in the Q-matrix and on the results obtained in scenario SC_PV. This means that new 

simulations were run considering changes on each of these parameters, one at a time, so that they 

correspond to variations of SC_PV termed as SC_PV_A, SC_PV_B and SC_PV_C regarding the 

base case that is associated to scenario SC_PV that was previously described. 

We will start by changing the greedy police parameter from 0,1 to 0,0 (Table 6.9.). This means 

that the agent will always choose the action with the higher Q-value which corresponds to a greedy 

selection strategy. 

 

Table 6.9. Scenario SC_PV_A – changing the greedy police parameterε 

Parameter 

λ 0,8 

𝛾 0,8 

ε 0,1 –> 0,0 

 

As we can observe in Table 6.10, for the same day that was analyzed previously (January 27 

between hours 11 and 13), the agent always choses the action with higher Q value. In this case, at 

hour 13, it was chosen action a2 which keeps the bid equal to the previous one at 55,00 €/MWh. This 

situation occurs because the agent always chooses the action with the highest Q-value (with 0% of 

probability of choosing a worse one). This behavior doesn’t let the agent choose another action than 
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the one associated with the highest Q-value which eventually means that the agent loses the oppor-

tunity of increasing its reward. For instance, if the agent increased its bid after taking action a3 (which 

has not the highest matrix Q-value) the reward was higher because the bid instead of 55,00 €/MWh 

would be 56,00 €/MWh.  

Table 6.10. Scenario SC_PV_A - Q-matrix – January 27; – λ=0,8, 𝜸 =0,8 and ε=0,0 

 

Figure 6.12. presents the values of the rewards for 12 months simulation, after changing the 

greedy police parameter from 0,1 to 0,0. 

 

 

Figure 6.12. Scenario SC_PV_A - calculated reward by month and accumulated reward (€) for λ=0,8, 

𝜸 =0,8 and ε=0,0 

 

The values of the rewards per month and the corresponding accumulated value are depicted in 

Figure 6.12. The accumulated reward at the end of the year decreases from 1.463,33 € to 1.372,98 € 
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when compared with the result obtained using the greedy policy parameter equal to 0,1 (Figure 6.11). 

As observed for day 27, this “greedy” convergence doesn’t allow the exploration process to be more 

effective by experimenting all the actions even if they are worse at a given step of the learning pro-

cess. 

Now, we will analyze the behavior of the results of scenario SC_PV by changing the value of the  

𝛾 parameter, that represents the weight given to future reinforcements, as indicated in Table 6.11. 

that is reducing its value from 0,8 to 0,1. 

 

Table 6.11. Scenario SC_PV_B – changing the discount factor parameter 𝜸 

Parameter 

λ 0,8 

𝛾 0,8 -> 0,1 

ε 0,1 

  

The same day that was previously analyzed (January 27) is now also considered. It is possible to 

observe that the bid price was lower than the WSM price only at hour 11 (Table. 6.12.) and conse-

quently a positive reward was achieved. This is justified by the fact that in the other hours of this 

day, the agent uses bid prices higher than the WSM price. So, these bids were not cleared, and the 

agent sold the electricity at the bilateral contract price CPV (and the reward obtained, i.e., the differ-

ence between CPV and CBid was negative). At hour 11, the agent selected action a1 (decrease the bid 

value by 1 €/MWh, from 72,00 to 71,00 €/MWh). Given that the reward increased, and it is not 

possible to get a larger profit, the state was s1. 

 

Table 6.12. Scenario SC_PV_B - Q-matrix – January 27; – λ=0,8, ϒ=0,1 and ε=0,1 
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Figure 6.13. presents the results for the 12 months simulation, after changing the value of the 𝛾 

parameter from 0,8 to 0,1. 

 

Figure 6.13. Scenario SC_PV_B - calculated reward by month and accumulated reward (€) for λ=0,8, 

𝜸 =0,1 and ε=0,1. 

 

By decreasing the value of the 𝛾  parameter, and in this way the weight given to future reinforce-

ments decreases, the agent finds new strategies in each hour and doesn’t have in consideration the 

impact of its decisions in future rewards. Due to this consideration, we choose to use a higher value 

for 𝛾 in our model. The accumulated reward at the end of the year is now 1.345,11 €. 

Let us now analyse the behaviour of the developed model by changing the learning rate parameter 

λ. This parameter reflects the degree to which estimated Q-values are updated by new data. Table 

6.13. presents the new parameters that will now be used. In this new simulation we only changed the 

value of the learning rate, while the values of the other two parameters remained unchanged regard-

ing the original values that were used. 

Table 6.13. Scenario SC_PV_C – changing the learning rate parameter λ 

Parameter 

λ 0,8 -> 0,1 

𝛾 0,8 

ε 0,1 
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As observed in Table 6.14., at hour 13, the bid price was higher than the WSM and so the reward 

was negative. At hour 14, and after the agent performs action a3, the bid price increases by 1 €/MWh, 

from 70,00 €/MWh to 71,00 €/MWh. Since this bid continues to be higher than the WSM, the reward 

remains negative. At hours 15 and 16 the bid price maintains the value of 71,00 €/MWh followed by 

performing action a2 and the bid price continues higher than the WSM price. These results reveal 

that the agent doesn’t “want to learn” using fresh information, namely the obtained negative rewards, 

and doesn’t change its actions in order to decrease the bid price until achieving a lower value when 

compared with the WSM price. This situation happens because of the low value of the learning rate 

that was used in this simulation. 

 

Table 6.14. Scenario SC_PV_C - Q-matrix – January 27; – λ=0,1, 𝜸 =0,8 and ε=0,1 

 

 

 The analysis of the rewards obtained for the entire year indicates that they are lower than the 

ones obtained on the simulation with λ equal to 0,8. In this case the annual reward is 1335,98 € 

(Figure 6.14). When using λ equal to 0,1, the agent does not completely explore its bid ups and bid 

downs taking in consideration its experience. Since the market dynamics are continuously changing, 

it is most desirable that agents can rapidly adapt to new situations so in this sense a value of 0,8 will 

be adopted for the learning rate. 
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Figure 6.14. Scenario SC_PV_C - calculated reward by month and accumulated reward (€) for λ=0,1, 

𝜸 =0,8 and ε=0,1. 

 

Table 6.15. presents an overview of the different parameters that were analyzed and the respective 

model annual reward of the selling bids. The adoption of the values used for λ, ϒ and ε will be 

justified below. 

Table 6.15. Parameters data - summary table 

Parameter SC_PV SC_PV_A SC_PV_B SC_PV_C 
     

Λ 0,8 0,8 0,8 0,1 

𝛾 0,8 0,8 0,1 0,8 

ε 0,1 0,0 0,1 0,1 
     

Annual reward (€) 1463,33 1372,98 1345,11 1335,98 

 

By changing the greedy policy parameter (ε) to 0,0, the agent will always choose the action with 

higher Q-value (greedy selection) and has 0% probability of choosing a worse action. However, this 

greedy strategy doesn’t allow the exploration process to be more effective by experimenting with all 

actions even if they are worse at a given step of the learning process. So, in our work we will adopt 

a value to the parameter ε equal to 0,1. 

The 𝛾  parameter represents the weight given to future reinforcements and when it decreases the 

agent finds new strategies in each hour and doesn’t have in consideration the impact of its decisions 
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in future rewards. Due to this consideration, the value assumed to 𝛾 will be 0,8 to give importance 

to possible future rewards. 

Analyzing now the impact of the learning rate parameter λ that reflects the degree in which esti-

mated Q-values are updated by new data, a low value means that the agent doesn’t want to learn 

using “fresh” information”. In this case, the Q-values are updated with very small increments of new 

information and for that reason the new information is not valued, meaning that the agent has a very 

slow learning rate. Considering that electricity market dynamics are continuously changing, it is most 

desirable to have agents that can adapt their behavior with a very high capability of learning. For this 

reason, we chose to use in our work a value of the learning rate λ of 0,8. 

There are different approaches to model the evolution of the learning rate, like for instance dy-

namic ones that evolve during the simulation process. However, the simulations done along this work 

do not use such a dynamic approach but in fact the value of the learning rate remains constant along 

the simulations. As a reference, the simulations developed in [14] present also good results using a 

similar environment with values of the parameters that will be considered in the simulations reported 

in this work (i.e., ε=0,1, 𝛾 =0,8 and λ=0,8). 

6.3.3. Economic assessment of the scenario SC_PV 

As previously indicated, we considered a Portuguese collective building with electricity demand 

distributed by the common services and by 15 flats. All the apartments are organized as an energy 

community considering a collective self-consumption scheme. It has a renewable generation unit 

constituted by PV systems without storage systems and the operation of the LEM is simulated not 

using the Q-Learning approach. The public grid is only used to inject eventual electricity excesses in 

some periods and to get electricity from the grid in other periods. Regarding the applicable tariffs, 

the access and energy tariffs (see Annex B1) [323] are applied to the energy imported from the grid. 

For comparison purposes, we considered a Normal Exploration situation that has the same de-

mand profile but without self-consumption, that is without the PV units. This means that all the 

electricity is taken from the grid, and so the annual energy costs (including the applicable Access 

Tariffs and electricity acquisition), as indicated in Table 6.16, will be larger than 18.000 €. When 

compared with Scenario SC_PV, the cost associated with access tariffs and electricity acquisition 

will be reduced to a value of approximately 12.000 €. Therefore, it is possible to observe a significant 

reduction in the global annual cost resulting in a total saving of 34,23%. 
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Table 6.16. Comparison of access tariffs and electricity acquisition cost– Scenario SC_PV with Normal 

Exploration 

Costs Scenario SC_PV Normal Exploration Savings 

Access Tariffs 5.171,07 € 8.135,26 € 2.964,20 € 36,44% 

Electricity acquisition  6.899,66 € 10.218,71 € 3.319,05 € 32,48% 

Total 12.070,73 € 18.353,97 € 6.283,25 € 34,23% 

 

Figure 6.15 and 6.16 present the related costs and their distribution in both cases, scenario SC_PV 

versus normal exploration. It is possible to observe a reduction of more than 30% on the Energy 

Costs and on the Access Tariff using the self-consumption scheme associated with SC_PV, when 

compared with the Normal Exploration mode.  

 

 

Figure 6.15. Comparison of costs between scenario SC_PV and normal exploration 

 

Figure 6.16. Breakdown of costs for scenario SC_PV versus normal exploration 

 

Regarding now the total costs, considering the profits of selling the electricity surplus, and in 

order to assess the impact of the applied learning strategy, Table 6.17 presents the results that were 

obtained with and without the application of the optimization model, that is for the scenarios SC_PV 
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and Ref-Case. For this, the right column considers the Ref-Case scenario in which the surplus energy 

generated by the PV regarding the demand is paid at the bilateral contract price, CPV, set at 50,00 

€/MWh and the energy supplied by the public network is paid at the market price so that no optimi-

zation strategy is used. On the central column, the energy is sold using the bids prices followed by 

the applied learning strategy. As it is possible to observe, the increase of the revenues by selling the 

electricity surplus has an important impact on the reduction of the total energy annual costs. When 

applying the optimization strategy, the revenue by selling the electricity surplus is 25% higher than 

in the Ref-Case. 

Table 6.17. Energy annual costs (optimization and non-optimization models) (Scenario SC_PV and 

Ref-Case) 

Costs SC_PV Ref-Case 

Access Tariffs  5.171,07 € 5.171,07 € 

Electricity acquisition 6.899,66 € 6.899,66 € 

Selling energy -1.460,66 € -1.167,18 € 

Total 10.610,06 € 10.903,55 € 

 

To access the economic value associated with the scenario SC_PV, the NPV methodology will 

now be used. As mentioned in Section 5.5.2, the NPV is the sum of the present value of a series of 

present and future cash flows, considering a discount rate. Because NPV accounts for the time value 

of money, it provides a way to evaluate and compare products with cash flows spread over many 

years, as in loans, investments, payouts from insurance contracts and so on. 

The NPV methodology, which will be calculated for all scenarios, will reflect the total costs, 

namely the operational and investment costs, and will consider the expected economic benefits of 

selling the surplus of energy with the grid. 

To establish a baseline for further comparison, the reference case will be considered (Ref-Case). 

Recall that in this scenario the community to be assessed considers a collective self-consumption 

scheme with PV generation, where the surplus of energy generated by the PV regarding the demand 

is paid at a CPV and the energy supplied by the public grid is paid at the market price. So, in the Ref-

Case the Q-Learning strategy is not considered. 

The dimensioned photovoltaic unit consists of PV systems with a total of 45 kWp peak power. 

This capacity is aligned with the peak power of the installation and in a way that self-consumption 

is privileged while reducing the excesses the energy injected into the grid. This self-consumption 

scheme is supported by D.L 15/2022 (Article 88 – 2 e) [54]. 
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The estimation of the installation costs is based on the fact that economies of scale can originate 

benefits. Solar PV is already the cheapest form of electricity generation in many countries and market 

segments. Market prices of PV modules are evolving so fast that it is difficult to find reliable up to 

date public data on real PV capital (CAPEX) and operational expenditures (OPEX) on which to base 

the economic calculations. The report presented in [310] projects the PV LCOE until 2050. In this 

work, the assumptions for PV investment costs were made based on the previous report considering 

the year 2020. Table 6.18 presents the PV installations reference costs for CAPEX and OPEX. 

Table 6.18. PV installations reference costs and economic parameters used for economic performance 

calculation 

  Reference Cost  

CAPEX 0,384 €/Wp 

OPEX 8,1 €/kWp/year 

 

Considering the investment in PV, for a 45 kWp system, the following data will also be consid-

ered: 

- Lifetime of the panels: 20 years; 

- Lifetime of the inverters: 10 years [324]; 

- 20% of the investment with equity interest rate, and the remaining by a financial loan; 

for 20 years with an interest rate of 2,5% [324]; 

In this sense, the expenses needed to do the investment on the PV system, considering 20% with 

equity for CAPEX and OPEX, are 17.280 € and 364,5 €/year, respectively. All the tariffs and elec-

tricity acquisition costs that were considered were the same throughout the years under analysis. The 

NPV of this scenario, Ref-Case that considers the PV system but does not use the optimization strat-

egy, is –210.085,00 €.  

Let us now consider the SC_PV scenario in which the energy in excess is injected in the public 

network using selling bids optimized according to the Q-Learning strategy. In this case, the revenue 

obtained from selling the energy excess is 1460,66 € per year as indicated in Table 6.17. Considering 

the same investment costs in the PV systems, the NPV is now –205.510,00 €. 

It should be clarified that this negative value directly results from the investment cost, the acqui-

sition of electricity from the grid and the associated access tariffs. Although the PV installation, 

operation and maintenance costs are considered in both cases, the NPV becomes less negative indi-

cating that there is a decrease of the total cost to be paid by the consumers over the simulated period.
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Comparing with the reference case, Ref-Case, the NPV decreases by 4575 € (Table 6.19.) which 

reveals that the optimization strategy that was used impacts on the final NPV namely because in 

several periods it allows selling the excess of local generation regarding the local demand at a price 

higher than the value adopted for CPV. This result also means that, although investment, operation 

and maintenance costs of the PV systems are internalized in the calculation, the NPV evolves in the 

positive direction, meaning that it gets less negative and so the consumers obtain important savings. 

 

Table 6.19. Net present values for the Ref-case and for the SC_PV scenario 

 Ref-Case  Scenario SC_PV 

 without optimization strategy  with optimization strategy 

NPV -210.085,00 €  -205.510,00 € 

 

6.4. Decentralized storage – scenario SC_ST45 description 

and results 

6.4.1. Scenario description and energy balance 

In this simulation, the installation to be analyzed differs from the previous one because we now 

consider an energy storage system (Figure 6.17.) located at the building level. As explained in Sec-

tion 6.1 if a set of similar buildings was studied, then each of them would have its own storage unit 

and this sense this architecture is termed as decentralized. As explained before, this does not corre-

spond to a fully decentralized installation in which each consumer/prosumer would have its own 

storage unit. This kind of fully decentralized architecture was not considered and tested since the 

investment cost of the storage equipment is still too large to justify such an approach. On the other 

hand, installing a storage system at each building level will turn the definition of its operation strategy 

less complex. As much as possible, the energy produced in the community is self-consumed and 

stored without any tariff payment. This is supported by the number 2 of article 212 of  DL 15/22  

[54], since the energy is self-consumed and stored using the building busbar and not using the elec-

trical public grid.  
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Figure 6.17. Illustration of the collective self-consumption installation with decentralized storage sys-

tem (scenario SC_ST45) (adapted from DGEG [318]) 

 

As mentioned in Chapter 5.3.2., in this simulation the bidding strategy of the Market Community 

Agent considers the storage system. The objective of the community is to minimize the electricity 

consumption cost by prioritizing self-sufficiency and to sell any surplus to the WSM through the 

Market Community Agent. However, the quantities and the bids to be considered by the Market 

Community Agent will now take into account the existence of the ESS and depend on its technical 

characteristics, namely on the SOC of the batteries and if they are charging, discharging or in idle 

mode. They will be in the charging mode if there is surplus of PV generation regarding the local 

demand and in the discharging mode if the community demand is higher than the local PV genera-

tion. However, and if the stored energy is sufficient to feed the demand, and it also has some surplus, 

the energy in excess will be sold to the market following the optimization strategy defined in this 

work. Using this strategy, the social welfare of the community members will increase because the 

cost of buying electricity from the grid is reduced and it is increased the self-consumption level of 

the community. 

In this simulation, three 15 kWh modules of sonnenBatterie [325] (leading to a total of 45 kWh), 

each one with an efficiency up to 98%, were considered. The charge and discharge rates depend on 

the performance of the inverters with a nominal power of 3,3 kW and a maximal efficiency of 96%. 

The SOC of individual batteries was restricted to a range between 20 and 80% of the nominal capac-

ity [326]. We assume no degradation processes and do not consider lifetime expansion by smart 

charging control devices. 

Main Grid

Building Electrical Grid distribution
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The demand and PV renewable generation profiles were built using the same dataset already used 

in Section 6.2. [319]. The annual energy community balance, considering now the ESS system, is 

presented in Table 6.20. This table includes the global energy demand (equal to the value in the 

previous simulation since the dataset used was the same), the demand supplied by the grid and by 

self- consumption, as well as the electricity injected back in the public grid. 

 

Table 6.20. Annual Energy Community balance (with decentralized ESS) 

  MWh 

Global Energy demand 145,4 

Demand supplied by the public grid 78,6 

Demand supplied by self-consumption 66,8 

Electricity injected back in the public grid 13,9 

 

Comparing this balance with the one from the SC_PV scenario in which there is no storage unit 

(Table 6.3), the demand supplied by the public grid decreases 21% (from 98,6 to 78,6 MWh). This 

is due to the additional energy provided by the storage system. The demand supplied by self-con-

sumption increases 30% (from 46,8 to 66,8 MWh) which is in line with the strategy defined in our 

simulation model. This means that the energy produced by the PV system and the additional one 

provided by the storage system follows the Energy community philosophy which aims at incentiviz-

ing self-consumption. In what concerns the electricity injected back to the public grid, it is now more 

reduced than the one that was injected in the grid without storage, and it decreases by almost 41% 

(from 23,4 to 13,9 MWh). This reduction is explained by the fact that the adopted strategy prioritizes 

the self-consumption, and the presence of the storage unit allows storing energy generated by the PV 

systems when it is in excess regarding the local demand instead of immediately injecting these ex-

cesses back to the public grid. 

Figure 6.18 shows the annual energy balance for the architectures with storage (SC_ST45) and 

without storage (SC_PV), considering the community energy demand and generation. It is possible 

to observe the increase of the community self-consumed energy in the simulation with storage system 

(SC_ST45). In what concerns the electricity injected back into the grid, it is lower in the scenario 

SC_ST45 as indicated above. As previously highlighted, in the overall energy generation, using the 

SC_ST45 architecture it is possible to have a better management of the energy generated by the PV 

panels. This means that the generation profile is more “aligned” with the demand profile than what 

occurs in the system without storage meaning that the self-consuming level is leveraged by the in-

stallation of the storage unit. 
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Figure 6.18. Community annual electricity demand and production (with and without storage) 

 

Figure 6.19 presents the monthly distribution of the electrical energy for scenario SC_ST45. 

When compared with the monthly analyses for the architecture without storage, SC_PV, in Figure 

6.7, it is possible to observe that the demand supplied by the public grid is lower in every month. 

Conversely, there is an increase in each month of the demand supplied by self-consumption. In this 

graph all the values are read in the left-hand side (LHS) vertical axis except for the electricity injected 

back in the public grid that is read in the right-hand side (RHS) vertical axis. 

 

 

Figure 6.19. Monthly electrical energy balance for scenario SC_ST45  
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6.4.2. Optimization model analysis and results 

The analysis to be presented in this section follows the structure of the one presented in Section 

6.3.1. The developed model is based on the same strategy defined for the Q-Learning procedure, i.e., 

it was created based on identical pairs state-action behavior analysis. So, the Q-Learning states and 

actions are the same. The parameters λ, 𝛾  and ε to compute the Q-values will also be the same as the 

ones presented in Table 6.56. and are indicated in Table 6.21.  

 

Table 6.21. Structure of the Q-matrix for Scenario SC_ST45 

State/Action a1 a2 a3 Parameter 

S1 Q1,1 Q1,2 Q1,3 λ 0,8 

S2 Q2,1 Q2,2 Q2,3 𝛾 0,8 

S3 Q3,1 Q3,2 Q3,3 ε 0,1 

S4 Q4,1 Q4,2 Q4,3  
 

S5 Q5,1 Q5,2 Q5,3   

 

In order to facilitate the comparison with the analysis performed in Section 6.3.1, similar graphs 

will now be detailed. In this sense, Figure 6.20. presents the results for one year (52 weeks) simula-

tion. When compared with the analysis with the architecture without storage (SC_PV) in Figure 6.8, 

one can observe that the submitted bids show a different trend regarding the ones that are presented 

in Figure 6.20. Nevertheless, the defined strategy is similar, and it contributes to increase the social 

welfare of the community members by reducing the cost of buying electricity from the grid and to 

increase the self-consumption level, considering now the storage equipment.  

In Figure 6.20, the dark blue line represents the average bid price, and it is also possible to observe 

that the community agent was also exploring the environment by doing bid up and bid downs always 

above the CPV. It is also interesting to observe that the agent has a different behavior regarding the 

results obtained for the SC_PV scenario. In fact, the submitted average bid price is often closer and 

more stable regarding the WSM price than the results presented for the SC_PV case. This means that 

the agent is responding in a more dynamic way to different environments.  
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Figure 6.20. Bidding results for Case Study SC_ST45 (considering decentralized storage) 

Figure 6.21 presents the WSM and the LEM average prices that were observed in the month of 

January. In this simulation, the bid strategy of the Market Community Agent reaches the WSM bid 

price at days 17 and 27. As comparison, in scenario SC_PV for the same month, the bid price only 

reached the WSM price on day 27. Notwithstanding the learning parameters are the same, this occurs 

because the agent was doing different explorations of the environment, which is different in this 

scenario, and consequently originated different behaviors although the same overall strategy was 

used.  

 

Figure 6.21. January average prices results for the Case Study SC_ST45 

As shown in Figure 6.212, on January 27 the bid strategy of the agent reaches a value higher than 

the WSM price (@27/Jan 13h00). In this simulation, the WSM price was 69,46 €/MWh (obviously 

the same as in the simulation for SC_PV) and the bid price was set as 69,57 €/MWh. In this case, the 

revenue will be equal to the CPV which was defined as 50,00 €/MWh and there is no additional profit. 

Figure 6.22 details the abovementioned results.  
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Figure 6.22. January average prices results for the Case Study SC_ST45 (highlight day 27) 

 

By doing the same analysis of the behavior of the Market Community Agent regarding the actions 

and states that were selected, Table 6.22. shows the Q-matrix for the same day and period that was 

addressed in Table 6.7. for the Scenario SC_PV. As the Q-Learning parameters are the same, the 

agent has 90% probability (ε =0,1) of choosing the action which corresponds to maximum value of 

the Q-matrix. However, at hour 12, the action chosen was a2, which doesn’t correspond to the max-

imum value of the Q-matrix. Nevertheless, at hour 13 the performed action corresponds to the max-

imum value of the Q-matrix and in this way action a3 was selected, which led to a bid up of +1 

€/MWh regarding the bid price of the last iteration. So, at this hour the bid was 61,00 €/MWh (the 

previous bid at hour 12 was 60,00 €/MWh). Considering that there is an increase on the reward 

regarding the previous one (the difference between 61,00 €/MWh and 50,00 €/MWh - CPV - is higher 

when compared with the difference between 60,00 €/MWh and 50 €/MWh), and it is possible to get 

more profit (increase until the WSM price, i.e., from 61,00 €/MWh until 70,65 €/MWh), state s2 was 

therefore selected. 

 

Table 6.22. Q-matrix for the scenario SC_ST45 - January 4 
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On hour 14 of January 4th, the agent keeps choosing the highest Q-matrix value, which corre-

sponds to action a3, leading to a bid up of +1 €/MWh regarding the previous value. In this way, the 

Market Community Agent performs a bid up to 62,00 €/MWh. As the agent obtained more profit and 

it continues to be possible to increase the profit, the Q-Learning state keeps in s2. As it is possible to 

observe, the reward per MWh is the difference between the cleared bid price and the CPV (e.g., at 

hour 14, the average bid price is 62,00 €/MWh and the reward is equal to the difference between 

62,00 €/MWh and the CPV, 50,00 €/MWh, i.e., 12,00 €/MWh).  

Analyzing the behavior of the Market Community Agent on January 27, Table 6.23 presents the 

corresponding Q-matrix results. It is possible to observe that at hour 12 the agent chooses the action 

that corresponds to the higher Q-matrix value, action a3. As a consequence, the bid price will increase 

by 1 €/MWh from 70,00 €/MWh till 71,00 €/MWh, which is higher than the WSM price (which is 

69,72 €/MWh). In this sense, the reward at hour 13 is negative, i.e., the agent lost the opportunity of 

having a reward of 19,82 €/MWh (difference between WSM price and the CPV price).  

 

Table 6.23. Q-matrix for Case Study SC_ST45 - Day 27 

 

 

Analyzing the economical results for the scenario SC_ST45, considering a period of 12 months, 

Figure Table 6.23. presents the monthly reward values and the accumulated value throughout the 

year. 
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Figure 6.23. Scenario SC_ST45 - calculate reward by month and accumulated reward (€) 

 

Similarly, to the analysis for the scenario SC_PV, this graph shows the calculated rewards per 

month and the accumulated reward. In this case, the accumulated reward corresponds to almost 830 

€. When compared to the accumulated reward assessed for Scenario SC_PV (Figure 6.1Figure 

6.141), it is possible to verify a significant reduction. This is justified by the strategy that was per-

formed, which prioritizes self-consumption and storage, instead of selling energy in the market which 

in the end reduces the revenues from selling electricity in the WSM. This allows storing a larger 

volume of energy coming from the PV panels in the periods in which the demand is more reduced 

than the PV generation. However, the months in which the rewards are higher, are the same than the 

presented in Scenario SC_PV and corresponds to July, August and September. This is justified by 

that fact that these months are the months with more irradiation in Portugal and so the PV generation 

is higher and consequently more energy is sell into the WSM. 

6.4.3. Economic assessment of the scenario SC_ST45 

In a similar way regarding what was done for the Case Study SC_PV, the results for the economic 

evaluation for this architecture will now be analyzed. The same comparison with the system without 

self-consumption, termed Normal Exploration, will also be made. For the Normal Exploration situ-

ation, the values obtained for the energy cost and access tariff are the same as the ones indicated in 

Section 6.3.3. 
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As previously mentioned, the SC_ST45 architecture considers a system with three 15 kWh son-

nenBatterie modules [325] and the same analysis will be done.  

The tariffs considered in this work are detailed in Annexes B1, B2.1, B2.2 and B2.3. They were 

published by ERSE in Portuguese Diário da República (Diretiva n.º 5/2020, of March 20 and Diretiva 

n.º 15/2020, of October 7) [323]. 

Table 6.24 presents a comparison of the energy acquisition costs and the access tariffs between 

the Normal Exploration (without self-consumption and all the electricity to supply demand is taken 

from the grid) and considering this decentralize storage architecture, SC_ST45. The overall costs 

reduced by 39,2%, with a reduction on the access tariffs of 41,3%, which is aligned with the increase 

of the self-consumption level of the installation. 

Table 6.24. Comparison of access tariffs and electricity acquisition for SC_ST45 and Normal Explora-

tion 

Costs Scenario SC_ST45 Normal exploration Savings 

Access Tariffs 4.770,47 € 8.135,26 € 3.364,79 € 41,36% 

Electricity acquisition 6.385,94 € 10.218,71 € 3.832,77 € 37,51% 

Total 11.156,41 € 18.353,97 € 7.197,56 € 39,22% 

 

Figure 6.24 and 6.25 present the related costs and their distribution in both cases, i.e., Normal 

Exploration and self-consumption exploration for a decentralized storage architecture system, 

SC_ST45. It is possible to observe that access tariff in the Normal Exploration case represents almost 

50% of the total.  

 

 

Figure 6.24. Self-consumption SC_ST45 and Normal Exploration costs 
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Figure 6.25. Breakdown of self-consumption SC_ST45and Normal exploration costs  

 

In order to access the behavior of the developed optimization model and the applied learning 

strategy, Table 6.25. presents the global annual energy costs considering the revenues obtained from 

selling energy in the WSM, admitting that the Q-Learning approach was used and not used. For this, 

the right column considers the SC_ST45 scenario where the surplus energy generated by the PV, 

regarding the demand and the stored energy is paid at the bilateral contract price, CPV, set at 50,00 

€/MWh and the energy supplied by the public network is paid at the market price so that no optimi-

zation strategy is used. In this case, the energy sold in the market leads to a revenue of 695,03 €/year. 

On the central column, the selling bids consider the values followed by the applied learning strategy, 

i.e., if the storage energy plus the PV generation is sufficient to feed the demand, and there is still 

some surplus, the energy in excess will be sold to the market following the optimization strategy. 

The application of the optimization model enables increasing the annual revenues to 936,61 €/year. 

As it is possible to observe, the application of the developed optimization methodology originates an 

increase on the selling energy revenues by 26%, which has a significant impact in the overall energy 

annual costs. 

Table 6.25. Energy annual costs for SC_ST45 using and not using the Q-Learning approach 

Costs Optimization model Without optimization 

Access Tariffs  4.770,47 € 4.770,47 € 

Electricity acquisition 6.385,94 € 6.385,94 € 

Selling energy -936,61 € -695,03 € 

Total 10.219,81 € 10.461,38 € 

 

To access the economic value of this architecture, the NPV methodology will also be used, con-

sidering the same assumptions as detailed in Section 6.3.3.  
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The initial investment cost will now consider a configuration with self-consumption with PV 

units, and with the already mentioned storage system. The selected photovoltaic system is the same 

as the one used in Section 6.3.3. which corresponds to 17.280 € of CAPEX and 364,5 €/year of 

OPEX investment and considers 20% with equity. 

Considering current battery cost and its breakdown, the data to be used follows the same reference 

that was considered for the PV investment analysis [310]. The assumptions for the storage system 

investment analysis consider data for 2020. Table 6.26 presents the reference costs considered for 

the storage system investment analysis [310]. 

 

Table 6.26. Battery reference costs used for the economic assessment calculation 

  Reference Cost  

CAPEX 0,209 €/Wp 

OPEX 6,0 €/kWp/year 

 

In this sense, for a storage system with a capacity of 45 kWh, the cost is about 9405 € for CAPEX 

and 270 €/year for OPEX. So, the overall investment associated to SC_ST45 (PV and storage system) 

for 20 years is 26.685 € for CAPEX and 634,5 €/year for OPEX. 

In order to access the impact of the optimization strategy in this scenario, the NPV calculation is 

now provided in Table 6.27. It considers the results provided in Table 6.25, i.e., the different annual 

energy costs regarding the application or not of the optimization model. In this sense, for a 20-year 

analysis, the NPV will be -211.198,00 € without considering the application of the optimization 

strategy and -207.432,00 € regarding the application of the optimization strategy. 

 

Table 6.27. Comparison of the Net Present Value for the SC_ST45 scenario, using and not using the Q-

Learning approach 

 Scenario SC_ST45  Scenario SC_ST45 

 without optimization strategy  with optimization strategy 

NPV -211.198,00 €  -207.432,00 € 

 

For an architecture which considers a PV and a decentralized storage system (scenario SC_ST45), 

the NPV increases by 3766 € to -207.432,00 €, i.e., it gets less negative, when following the imple-

mentation of the optimization Q-Learning strategy. This means a reduction of 2% which is consid-

erable in an investment decision analysis. It should be again mentioned that without the application
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of the optimization strategy, the surplus of energy is paid at the defined CPV and the energy supplied 

by the grid is paid at the WSM price. When the optimization strategy is applied, the surplus of energy 

is paid at the submitted bid price (if the bid price is lower than the WSM price) or at CPV (if the bid 

price is higher than the WSM price). 

The presented analysis shows the benefits of investing in storage systems. When integrated in 

communities with its own PV generation, not only the dependence on the electrical grid decreases, 

but also the benefits from selling eventual surplus of electricity became important in terms of taking 

a decision on this type of investment. 

6.5. Centralized storage – scenario SC_ST300 description 

and results 

6.5.1. Scenario description and energy balance 

In this section, a new architecture of an energy community will be simulated. It consists of an 

architecture with a storage system located at the Low Voltage side of the MV/LV substation that 

supplies a set of buildings. This architecture is termed Centralized Storage and it is illustrated in 

Figure 6.26. In stand of having one storage system per building as in the previous situation, we will 

now have just one storage equipment at the LV busbar of the MV/LV substation and with a larger 

storage capacity. The dataset used in this simulation is the same as in the previous one but it is 

replicated to a combination of 3 collective buildings with the same demand and PV generation pro-

files [319]. That is, the demand and the PV generation have an increase of 3 times. 

Considering the usage of the public grid for self-consumption purposes, different simulations will 

be performed taking into consideration the impact of having or not exemptions on network tariffs, 

namely regarding the CIEG component of the Access Tariffs. The corresponding simulations allow 

getting insights about the impact of paying the grid tariffs considering the utilization of the public 

grid [305] and, in this sense, assess the economic performance of the entire installation, namely con-

sidering the storage system, in this architecture.  

The bidding strategy of the Market Community Agent will be the same and we will also consider 

the same range of SOC values already defined for the batteries used in the previous scenario 

(SC_ST45) and their three possible operation modes, charging, discharging or idle. They will be in 

the charging mode if there is a surplus of PV generation regarding the demand and in the discharging 

mode if the community demand is higher than the local PV generation. However, and if the stored 

energy is sufficient to supply the demand, and if there is still some surplus, the remaining energy will 

be sold to the market following the optimization strategy defined in this work. 
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Figure 6.26. Illustration of the collective self-consumption installation with centralized storage system 

(scenario SC_ST300) located at the same voltage level (adapted from DGEG [318]) 

 

The PV generation is constituted by a system 3 times larger than the one that was used in previous 

scenarios, i.e., it has a peak power of 135 kWp. A 300 kWh storage system was considered in this 

simulation. Yet, the chosen system can be paralleled with other modules for scalability of power and 

capacity [327, 328]. The SOC limits are the same as for the 45 kWh batteries used in the previous 

simulation, that is a range from 20 to 80% of the nominal capacity.  

The demand and PV renewable generation profiles were built using the same dataset mentioned 

in Section 6.2. The annual energy community balance, considering now the centralized ESS system, 

is presented in Table 6.28. This table includes the global energy demand (which corresponds to three 

times the one in the previous simulation since in this case we considered three collective buildings, 

each one equal to the one used previously), the demand supplied by the grid and by self-consumption, 

as well as the electricity injected back to the public grid. 

 

Table 6.28. Annual Energy Community balance (with centralized ESS) 

  MWh 

Global Energy demand 436,2 

Demand supplied by the public grid 212,1 

Demand supplied by self-consumption 224,1 

Electricity injected back in the public grid 4,9 

 

The demand supplied by the public grid represents 212,1 MWh for a global energy demand of 

436,2 MWh which means that 49% of the demand is supplied by the public grid. On the other hand, 

the demand supplied by self-consumption is 224,1 MWh which is 51% of the global energy demand. 

Main Grid

Building Electrical Grid distribution
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Comparing with the simulation without storage (SC_PV, Table 6.3), the demand supplied by the grid 

represented 68% of the global energy demand (i.e., 98,6 MWh out of 145,4 MWh), whereas the 

demand supplied by self-consuming accounted for 32% of the global energy demand (i.e., 46,8 MWh 

out of 145,4 MWh). When compared with the decentralized storage system (SC_ST45, Table 6.20), 

the demand supplied by the public grid represented 54% of the global energy demand (i.e., 78,6 

MWh of 145,4 MWh) and the demand supplied by self-consumption represented 46% of the global 

energy demand (i.e., 66,8 MWh of 145,4 MWh). 

The results also show that the energy injected back into the grid decreases when going from 

SC_ST45 to SC_ST300, where the share of energy injected back into the grid decreases almost to 

zero in SC_ST300. This is related with the capacity of the storage equipment used in this case that 

is more than 6 times larger than the one that was used in case SC_ST45. This allows storing a larger 

volume of energy coming from the PV panels in the periods in which the demand is more reduced 

than the PV generation. These excesses can now be stored rather than being injected back in the grid 

as it occurred more frequently in scenario SC_ST45. Table 6.29 makes a resume of the aggregated 

results for comparison purposes. 

 

Table 6.29. Relative global Energy Community demand and electricity injected back in the public grid 

(scenarios SC_PV, SC_ST45 and SC_ST300) 

    SC_PV SC_ST45 SC_ST300 

Demand supplied by the public grid  68% 54% 49% 

Demand supplied by self-consumption  32% 46% 51% 

Electricity injected back in the public grid  23,4 MWh/year 13,9 MWh/year 4,9 MWh/year 

 

Figure 6.27 presents the annual energy balance for the architectures with Centralized (SC_ST300) 

and Decentralized Storage (SC_ST45) and without Storage (SC_PV), considering the community 

energy demand and production. 
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Figure 6.27. Community annual electricity demand and production (for Decentralized SC_ST45, Cen-

tralized Storage SC_ST300 and without Storage SC_PV scenarios) 

 

Figure 6.28. presents the monthly distribution of electrical energy. In this graph all the values are 

read in the left-hand side (LHS) vertical axis, except the values of the energy injected back to the 

public grid that are read in the right-hand side (RHS) vertical axis. When compared with the same 

monthly analyses for the architecture with decentralized storage, SC_ST45, in Figure 6.19, it is pos-

sible to observe that the demand supplied by the public grid is proportionally lower in every month. 

On the other hand, the demand supplied by self-consumption has larger shares in every month. The 

electricity injected back into the public grid has a behavior in line with the philosophy and strategy 

previously mentioned, that is, the energy is firstly self-consumed, followed by charging the storage 

system and the remaining will be considered as a surplus. Because the storage capacity is higher in 

this scenario, the electricity injected back into the public grid achieves much lower values as previ-

ously explained. 
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Figure 6.28. Monthly electrical energy balance for scenario SC_ST300 

6.5.2. Optimization model analysis and results 

The analysis to be presented in this section is similar to the one presented in Sections 6.3.1 and 

6.4.2. The developed model is based on the same strategy defined for the Q-Learning procedure, i.e., 

it was created based on identical pairs state-action used in the previous analysis. So, the Q-Learning 

states and actions are the same as the ones used previously. The learning rate, λ, discount factor, 𝛾, 

and greedy police, ε, parameters used to obtain the Q-values are also the same as the ones presented 

in Table 6.6. and Table 6.21., which were used for the simulation of scenarios SC_PV and SC_ST45. 

They are now replicated in Table 6.30.  

 

Table 6.30. Structure of the Q-matrix for the Scenario SC_ST300 

State/Action     a1   a2  a3 Parameter 

S1   Q1,1 Q1,2 Q1,3 λ 0,8 

S2   Q2,1 Q2,2 Q2,3 𝛾 0,8 

S3   Q3,1 Q3,2 Q3,3 ε 0,1 

S4 Q4,1 Q4,2 Q4,3    

S5 Q5,1 Q5,2 Q5,3     

 

Figure 6.29 presents the results for one year (52 weeks) simulation. When compared with the 

same analysis done for the architecture without storage (SC_PV) in Figure 6.8. and with decentral-

ized storage (SC_ST45) in Figure 6.20, we observe that the average bid price is different. In this 

case, the fact of having larger capacity of stored energy conjugated with the defined strategy, where 

the agents prioritize the self-consumption instead of selling the surplus into the market, the electricity 

injected back into the public grid achieves much lower values. This fact explains the agent behavior, 
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namely the fact of the bid price that is much closer to CPV value when compared with Scenarios 

SC_PV and SC_ST45. However, the strategy behind this behavior is the same since the agent is 

always trying to increase its bid prices in order to get closer to the WSM prices. This observation 

highlights the previous conclusion, indicating that the Market Community Agent is responding in a 

dynamic way to different environments.  

 

 

Figure 6.29. Bidding results for Scenario SC_ST300 (considering centralized storage) 

 

Figure 6.30 presents the WSM and the LEM average prices that were observed in the month of 

January. In this simulation, the bid strategy of the Market Community Agent doesn’t reach the WSM 

bid price in January, as it occurred in SC_PV and SC_ST45. Although the Q-Learning parameters 

are the same, this difference occurs because the Market Community Agent is doing different explo-

rations of the environment which originate different behaviors but keeping the same philosophy. In 

this sense, Figures 6.31 and 6.32 extend the analysis until February so that it is possible to see that 

the agent reaches the WSM bid price on day 59. In this day, the WSM price was 72,38 €/MWh 

(defined by 2019 WSM price dataset) and the bid price was set as 73,00 €/MWh. In the same way, 

in this case the revenue will be equal to the CPV value which was defined as 50,00 €/MWh and there 

is no additional profit. 
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Figure 6.30. January average price results for the scenario SC_ST300 

 

 

Figure 6.31. January and February average price results for the scenario SC_ST300 

 

 

Figure 6.32. January and February average prices results for the scenario SC_ST300 highlighting the 

values obtained for day 59 
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Analyzing now in more detail the behavior of the Market Community Agent regarding the actions 

and the states that were considered, Table 6.31 shows the Q-matrix for day 54 between hours 14 and 

16. We will now make an analysis similar to the ones in Sections 6.3. and 6.4. Given there is an 

energy surplus in this period (after supplying the local demand and charging the storage system, that 

is after self-consuming), the surplus will be traded considering the defined coordination between the 

WSM and LEM. The agent has 90% probability (ε=0,1) of choosing the action which corresponds 

to the maximum value in the Q-matrix. At hour 14 the action that is chosen corresponds to the Q-

matrix highest value and so it was performed action a3 which corresponds to a bid up of 1 €/MWh 

(from 70,00 €/MWh to 71,00 €/MWh). However, at hour 15 the chosen action doesn’t correspond to 

the highest value of the Q-matrix and the agent doesn’t select action a3 but in fact action a1 is used. 

This behavior originates that the agent decreases the bid from 71,00 €/MWh to 70,00 €/MWh. Con-

sequently, and because the reward decreases from 21,00 €/MWh to 20,00 €/MWh, the state obtained 

was s4. In hour 16, the agent chooses action a3 and the bid price increases 1 €/MWh to 71,00 €/MWh. 

As the reward also increases and it is possible to get more profit, since the WSM price is 73,28 

€/MWh, the state that was obtained was s2. 

Table 6.31. Q-matrix for Case Study SC_ST300 – Day 54 

 

Analyzing the behavior of the Market Community Agent at day 62, Table 6.32 presents the cor-

responding Q-matrix results. At hour 14 of day 62, the agent doesn’t choose the highest Q-matrix 

value, which corresponds to the action a1, but chooses and performs action a3 which led to a bid up 

of +1 €/MWh regarding the previous one. In this way, the Market Community Agent performs a bid 

up to 73,00 €/MWh. As the agent obtained a bid with a value higher than the WSM price, which was 

71,95 €/MWh, the reward was negative, and the profit decreased. In this way it wasn’t possible to 

get more profit and the Q-Learning state changes to s5. In hour 15 the agent selects again action a3 

and increases its bid price from 73,00 €/MWh to 74,00 €/MWh. As this bid price continues higher 

than the WSM price, the reward remains negative, and the state continues in s5. In hour 16, the agent 

chooses the Q-matrix highest value and performs action a1 which originates a bid decrease from 

74,00/MWh to 73,00 €/MWh. As the bid price reached a value lower than the WSM price, the reward 

changed to positive. The state of the Q-Learning at hour 16 is now the state s1. This means that the 

reward increased regarding the previous bid (from -22,38 €/MWh to +23,00 €/MWh), but it isn’t 
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possible to get more profit because the WSM price is 73,28 €/MWh and the bid price of 73,00 €/MWh 

is very close. 

 

Table 6.32. Q-matrix for Case Study SC_ST300 - Day 62 

 

Figure 6.33. presents the monthly rewards and its accumulate values for the Case Study 

SC_ST300, considering a period of 12 months. It is possible to observe the calculated rewards per 

month and the accumulated reward. As it is possible to see, the accumulated reward is close to 300 

€. Since the quantity of energy traded in the market in this scenario is lower than in the previous 

scenarios, the accumulated reward also decreases. This was expected to occur because the adopted 

strategy prioritizes self-consumption instead of selling energy in the market an also because of the 

capacity of the storage system. 

It is also possible to observe that the months in which the rewards are larger correspond to July, 

August, and September. These are the months in which PV generation is larger (sunny months in 

Portugal) and the quantity of generated electricity is sufficient to supply de demand, charge the stor-

age equipment and injected the surplus back to the network.  
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Figure 6.33. Scenario SC_ST300 - calculate reward by month and accumulated reward (€) 

6.5.3. Economic assessment of the scenarios SC_ST300_A, B and C 

Similarly, to what was done for scenarios SC_PV and SC_ST45, the economic results for the 

simulation for SC_ST300 will now be analyzed. However, and since the storage system is connected 

to the public grid, the network tariffs applied for self-consumption will now be considered. There-

fore, these simulations were done considering the impact of having or not exemptions on network 

tariffs, namely for the CIEG component of the Access Tariffs.  

Table 6.33. presents the annual energy costs, the Access Tariffs and the self-consumption tariff. 

For a system without self-consumption (Normal Exploration), the costs to supply the demand, which 

includes the applicable Access Tariffs and electricity acquisition costs, are higher than 55.000 € as 

indicated in Regarding SC_ST300_A, Table 6.33 presents the annual energy costs, the access tariffs, 

and the self-consumption tariff. It should be notice that the self-consumption tariff is related to the 

fact that in this scenario, the location of the battery it is not inside the community itself and it is 

located at a Low Voltage side of the MV/LV substation that feeds the set of buildings. In this sense, 

it is applied the related tariffs (see Annex B2.1 – without CIEG exemption). In other hand and con-

sidering that the battery storage system used in scenario SC_ST45, is located at the building level, 

and the community does not use the public grid, these tariffs are not applied in this scenario. 
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Regarding SC_ST300 we considered three variations as follows: 

- SC_ST300_A with no CIEG exemption, that is, the full Access Tariffs are considered; 

- SC_ST300_B with 50% of CIEG exemption; 

- SC_ST300_C with full CIEG exemption. 

Regarding SC_ST300_A, Table 6.33 presents the annual energy costs, the access tariffs, and the 

self-consumption tariff. It should be notice that the self-consumption tariff is related to the fact that 

in this scenario, the location of the battery it is not inside the community itself and it is located at a 

Low Voltage side of the MV/LV substation that feeds the set of buildings. In this sense, it is applied 

the related tariffs (see Annex B2.1 – without CIEG exemption). In other hand and considering that 

the battery storage system used in scenario SC_ST45, is located at the building level, and the com-

munity does not use the public grid, these tariffs are not applied in this scenario. 

Table 6.33. Comparison of access tariffs and electricity acquisition, for scenario SC_ST300_A and for 

Normal Exploration 

Costs Without CIEG exemption 

  SC_ST300_A Normal Exploration Savings 

Access Tariffs 12.818,43 € 24.404,29 € 11.585,86 € 47,47% 

Self-Consumption Tariff 10.819,64 € ---- ---- ---- 

Electricity acquisition 17.410,63 € 30.650,76 € 13.240,13 € 43,20% 

Total 41.048,70 € 55.055,05 € 14.006,35 € 25,44% 

 

 The implemented architecture is designed to prioritize self-consumption in such a way that the 

demand supplied by self-consumption is higher than the one supplied by the public grid as indicated 

in Table 6.28. So, notwithstanding the costs related with the utilization of the public grid for self-

consumption purposes (self-consumption tariff - DL 15/22 Art. 212 1) [54], which doesn’t exist in 

the Normal Exploration mode, the overall savings are almost 26%. This is also an expected result 

since we have less electricity acquisition from the grid and lower access tariffs in the SC_ST300_A 

when compared with the Normal exploration mode.  

Figures 6.34. and 6.35. presents the related costs and their distribution in both cases, i.e., Normal 

Exploration and self-consumption exploration without exemption of the CIEG for a centralized stor-

age architecture system, SC_ST300_A. 
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Figure 6.34. Comparison of costs for SC_ST300_A versus Normal exploration  

 

Figure 6.35. Breakdown of costs for SC_ST300_A versus Normal exploration cost  

 

In Normal Exploration the access tariffs represent 44% of the total costs. When the exploration is 

in the self-consumption mode, these costs only represent 31% of the total. 

Table 6.34. presents the global annual energy costs considering the revenues of selling energy in 

the WSM, for a simulation with and without using the optimization Q-Learning model. It is possible 

to observe that the application of the developed optimization methodology originates a residual var-

iation of the selling energy profits. This is in line with the lower quantity of electricity injected back 

into the grid and sold in the WSM.  

Table 6.34. Scenario SC_ST300_A - energy annual costs using and not using the optimization ap-

proach 

Costs Optimization model Without optimization 

Access Tariffs; Self consumption Tariffs 23.638,07 € 23.638,07 € 

Electricity acquisition 17.410,63 € 17.410,63 € 

Selling energy -299,93 € -246,17 € 

Total 40.748,78 € 40.802,53 € 
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Let now us analyze the impact of introducing an exemption of 50% of the CIEG component for 

an architecture with centralized storage system, that is, scenario SC_ST300_B. The community un-

der analysis now saves almost 34% of the total cost when compared with the same scenario with 

Normal exploration as indicated Table 6.35. Making a similar comparison with the centralized ar-

chitecture without exemption CIEG, that is for SC_ST300_A (Table 6.33) the savings correspond to 

8,5%. 

Table 6.35. Comparison of access tariffs and electricity acquisition costs for scenario SC_ST300_B and 

for Normal Exploration 

Costs With 50% CIEG exemption 

  SC_ST300_B Normal Exploration Savings 

Access Tariffs 12.818,43 € 24.404,29 € 11.585,86 € 47,47% 

Self-Consumption Tariff 6.154,57 € ---- ---- ---- 

Electricity acquisition 17.410,63 € 30.650,76 € 13.240,13 € 43,20% 

 Total 36.383,64 € 55.055,05 € 18.671,41 € 33,91% 

 

Figures 6.36 and 6.37 present distribution of the costs for the centralized system with an exemp-

tion of 50% in the CIEG component, ST_SC300_B, versus the Normal Exploration mode. It is veri-

fied a very significant reduction of the total cost, despite the presence of the self-consumption tariff 

in the architecture with the centralized storage system. 

 

 

Figure 6.36. Comparison of costs for SC_ST300_B versus Normal Exploration  
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Figure 6.37. Breakdown of costs for SC_ST300_B versus Normal Exploration  

 

Table 6.36 presents the global annual energy costs which includes the revenues of selling energy 

in the WSM, for a simulation with and without using the Q-Learning optimization model. 

 

Table 6.36. Scenario SC_ST300_B - energy annual costs using and not using the optimization approach  

 Costs Optimization model Without optimization 

Access Tariffs; Self consumption Tariffs 18.973,00 € 18.973,00 € 

Electricity acquisition 17.410,63 € 17.410,63 € 

Selling energy -299,93 € -246,17 € 

Total 36.083,71 € 36.137,47 € 

 

Finally, we will now analyze the impact of introducing an exemption of 100% of the CIEG com-

ponent for an architecture with centralized storage system, that is, scenario SC_ST300_C. Table 6.37 

presents the comparation of the total costs of SC_ST300_C regarding the Normal Exploration mode. 

In this case, the total savings almost reach 42% when comparing the centralized storage system with 

the Normal Exploration mode. As it is possible to observe, the cost associated with the Self Con-

sumption Tariff is approximately 1500 €/year, which is less than 5% of the total costs.  

When compared with scenarios SC_ST300_A and SC_ST300_B, the savings in the total costs in 

scenario SC_ST300_C are, respectively, of 23% and 13%. These numbers highlight the impact that 

the exemption levels in the access tariffs can reach, namely in architectures with storge systems. 
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Table 6.37. Comparison of access tariffs and electricity acquisition costs for scenario SC_ST300_C and 

for Normal Exploration 

Costs With 100% CIEG exemption 

  SC_ST300_C Normal Exploration Savings 

Access Tariffs 12.818,43 € 24.404,29 € 11.585,86 € 47,47% 

Self-Consumption Tariff 1.475,98 € ---- ---- ---- 

Electricity acquisition 17.410,63 € 30.650,76 € 13.240,13 € 43,20% 

Total 31.705,04 € 55.055,05 € 23.350,01 € 42,41% 

 

 

Figures 6.38 and 6.39 present the related costs and their distribution for Normal exploration mode 

and for SC_ST300_C. 

 

 

Figure 6.38. Comparison of costs for SC_ST300_C versus Normal Exploration 

 

 

 

Figure 6.39. Breakdown of costs for SC_ST300_C versus Normal Exploration 
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Table 6.38. presents the global annual energy costs which includes the revenues of selling energy 

in the WSM, for a simulation with and without using the Q-Learning optimization model.  

 

Table 6.38. Energy annual costs (optimization and non-optimization models scenario SC_ST300_C) 

Costs Optimization model Without optimization 

Access Tariffs; Self consumption Tariffs 14.294,41 € 14.294,41 € 

Electricity aquisition 17.410,63 € 17.410,63 € 

Selling energy -299,93 € -246,17 € 

Total 31.405,12 € 31.458,87 € 

 

Similarly, to what was done for scenarios SC_PV and SC_ST45, we will now access the economic 

value of this architecture. Accordingly, a 20-year cash flow analysis was developed considering the 

demand equal for all the years along the period under analysis. The discount rate was set at 2,5%. 

The same CAPEX and OPEX costs will be considered, which are detailed in Table 6.18 for the PV 

system and in Table 6.26 for the storage system. However, the capacity of the storage energy con-

sidered in this scenario is 300 kWh and for the PV system is 135 kWp peak power. So, the total costs 

for a centralized storage architecture with a battery of 300 kWh and a PV system with 135 kWp, will 

be 114.540 € for CAPEX and 2.893,50 €/year for OPEX costs. Reference [310] contains the values 

that are used in this economic analysis as for the analysis of scenarios SC_PV and SC_ST45. 

The Net Present Values for the different CIEG exemptions levels are now presented in Table 6.39. 

Considering a scenario without CIEG exemption and without the application of the optimization 

strategy, the NPV is -794.702,00 €. On the other hand, when applied the optimization strategy, the 

NPV is -793.864,00 €. For the scenarios with optimization strategy and with 50% and with 100% of 

CIEG exemptions the NPV is -726.670,00 € and -653.735,00 €. This means an increase of the NPV 

by 8,4% and 17,7% respectively compared in scenario with optimization strategy and without CIEG 

exemption. Notwithstanding the residual profit of selling energy in all of these scenarios with cen-

tralized storage, the impact of the exemption level of the CIEG component on the overall NPV is 

very significative. This impact is very relevant when investors have to assess their final investment 

decisions processes.
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Table 6.39. Net present value for scenarios SC_ST300_A (with and without optimization strategy), 

SC_ST300_B and SC_ST300_C (PV and Centralized Storage system) 

 Scenario SC_ST300_A (without CIEG exemption) 

 without optimization strategy  with optimization strategy 

NPV -794.702,00 €  -793.864,00 € 

 Scenario SC_ST300_B  Scenario SC_ST300_C 

 

with optimization strategy (50% 

CIEG exemption)  

with optimization strategy (100% CIEG 

exemption) 

NPV -726.670,00 €  -653.735,00 € 

 

 The exemptions on the CIEG component have a significant impact in the improvement of the 

NPV. By adopting this incentive policy associated with exemptions of the CIEG component of the 

Access Tariff, and considering investments in PV and storage systems, the improvement of the NPV 

is large. The NPV remains negative (due to the initial investment cost in new equipment and also 

due to the acquisition energy costs and the remaining access tariff components) but it moves towards 

the positive direction meaning that there is a reduction of the costs to be incurred by the consumers 

during the entire horizon. 

6.6. Final comparisons and sensitivity analysis 

As mentioned, the developed ABM model was applied to real data of consumption, PV generation 

and 2019 WSM prices of the Iberian Electricity Market. The demand data considers 16 consumers 

for each collective building (15 apartments plus common services) and the simulations also consider 

generation using PV systems, and storage units (decentralized with 45 kWh and centralized with 300 

kWh capacities). In the centralized storage scenario, the dataset used was the same, however repli-

cated to a combination of 3 collective buildings. 

Table 6.40. presents the global energy demand, the demand supplied by the public grid, the de-

mand supplied by the self-consumption and the electricity injected back to the grid for the three 

analyzed cases using the Q-Learning approach, that is for the scenarios SC_PV, SC_ST45 and 

SC_ST300. 
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Table 6.40. Annual Energy Community balance for the three analyzed scenarios 

MWh   SC_PV SC_ST45 SC_ST300 

Global Energy demand  145,4 145,4 436,2 

Demand supplied by public grid  98,6 78,6 212,1 

Demand supplied by self-consumption  46,8 66,8 224,1 

Electricity injected back into the grid  23,4 13,9 4,9 

 

When compared with the SC_PV, these results show that the SC_ST45 case has a lower amount 

of energy injected back into the grid namely due to the installation of batteries. This is line with the 

fact that the demand supplied by the public grid decreases and the demand supplied by self-consump-

tion increases in case SC_ST45. These results also show that the operation strategy that was used is 

successful in terms of maximizing the energy community self-energy consumption. Case SC_ST300 

is also designed to prioritize self-consumption in such a way that the demand supplied by self-con-

sumption is higher than the one supplied by the public grid. 

Figure 6.40 presents the distribution of the energy demand for these 3 scenarios. It is possible to 

observe that in scenarios SC_ST45 and SC_ST300 there is an increase of the demand that is fed by 

self-consumption, due to the existence of the storage system. This difference is more relevant in 

scenario SC_ST300, since it has a larger storage capacity and consequently it can store more energy 

surplus. Apart from the increase of the capacity of the storage units, this evolution is a consequence 

of the maximization of the self-consumed energy by the optimization of the use of the storage equip-

ment through the adequate selection of its charging and discharging periods. However, and if the 

stored energy is sufficient to feed the demand, and there is still some surplus, these additional quan-

tities will be injected back into the grid and will be used in the selling bids strategy of the Market 

Community Agent. 

In Figure 6.41 we can observe the increase of the percentage of energy that is self-consumed 

regarding the energy that is locally generated as well as the percentage of energy that is injected back 

to the grid regarding the local generation (in SC_ST45 and in SC_ST300, when compared with 

SC_PV in which there is no storage systems). It should also be noted that the energy surplus injected 

back into the grid decreases when going from SC_ST45 to SC_ST300. When comparing SC_ST45 

with SC_ST300, the share of energy injected into the grid decreases almost to zero in SC_ST300. 

This is related with the capacity of the storage system that, in this case, has a capacity larger than 6 

times the one that was used in SC_ST45. This allows storing a larger volume of energy coming from 

the PV panels in periods in which the demand is more reduced than the PV generation. These ex-

cesses can now be stored in SC_ST300 rather than being injected back in the grid as it occurred more 

frequently in SC_ST45. 
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Figure 6.40. Share of Community Energy Demand 

 

 

Figure 6.41. Percentage of self-consumed and injected back energy regarding local generation 

 

The overall results of these simulations show a very good performance of the proposed Agent-

Based Model. Table 6.41 presents the results for the real WSM annual average price for 2019, the 

selling value of the PV generation excess without using the bidding strategy, that is the CPV value, 

and the average values using the LEM strategies for SC_PV, SC_ST45 and SC_ST300. Despite the 

annual average price in the WSM is 71,1 €/MWh, these results show that if the LEM strategy is 

applied, the LEM average market price gets closer to the WSM price. This improvement regarding 

the initial CPV value (50,00 €/MWh) is explained because of the use of the ABM model incorporating 

the Q-Learning approach with bid up/bid-down strategy. In all the scenarios, the improvement 

achieves values higher than 15% of the selling bilateral contract price that was defined. 
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Table 6.41. Results for the annual average selling price 

Scenario  Annual average selling price €/MWh 

Real WSM price data 71,1 

Selling price without LEM strategies (CPV) 50,0 

Selling price with LEM strategies SC_PV 62,04 

Selling price with LEM strategies SC_ST45 59,20 

Selling price with LEM strategies SC_ST300 59,35 

 

Figure 6.42 shows the average weekly prices of the WSM and of the LEM after using the bidding 

strategy, as well as the bilateral contract price CPV. As we can see, when using the bidding strategy, 

independently of the simulated case, the agent in LEM tries to increase its prices in order to get closer 

to the WSM prices (curves BID Strategy SC_PV, BID Strategy SC_ST45 and BID Strategy 

SC_ST300). This reflects the learning capability that the agents have since the start of the process. 

Regarding the impact of the application of the optimization model, the profits by selling the elec-

tricity surplus using the learning approach, presents an improvement of 25% in scenario SC_PV 

(Table 6.17), 34% in scenario SC_ST_45 (Table 6.25) and 22% in scenario SC_ST_300 (Table 6.34). 

Notwithstanding the difference verified, due to different behaviors of agents, the impact is significa-

tive in the overall profits. Recall that the excess of generated electricity regarding the demand is paid 

at a minimum of CPV price or at a LEM price as a consequence of the bidding strategy. So, the reward 

will be higher as lower is the difference between the WSM and the LEM price (considering a mini-

mum value for CPV).  

To access the economic value of the different scenarios, the NPV methodology was used. As 

mentioned in Section 5.5.2, the NPV is the sum of the present value of a series of present and future 

cash flows, considering a discount rate. Because NPV accounts for the time value of money, it pro-

vides a way to evaluate and compare products with cash flows spread over many years, as in loans, 

investments, payouts from insurance contracts and so on. Figures 6.43, 6.44 and 6.45 present the 

resulting accumulated cash flows for scenarios SC_PV, SC_ST45 and SC_ST300, considering the 

application of the optimization strategy and the initial investment costs. The expected economic ben-

efits are constant along the years and depend on the energy that is sold to the market. The NPV 

reflects the total operating costs, exchanges with the grid as well as the attributable investment costs 

for a 20-year analysis. The updated accumulated cash flow represents the discount rate of the project 

considering the NPV (see equation 5.29). 
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Figure 6.42. Average weekly prices for the WSM and the LEM markets for the different analyzed sce-

narios 

 

 

Figure 6.43. Scenario SC_PV - cash flow over 20 years 
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Figure 6.44. Cash flow over 20 years – Scenario SC_ST45 

 

Figure 6.45. Cash flow over 20 years – Scenario SC_ST300 

Analyzing now the impact of the CIEG exemptions on the NPV, Figure 6.46 presents the NPV 

for scenarios SC_ST300_A, SC_ST300_B and SC_ST300_C. It is possible to observe that as the 

exemption level increases, from a scenario without exemption till a scenario with 100% of exemp-

tion, the NPV evolves in the positive direction, meaning that it gets less negative and so the consum-

ers obtain important savings. The results that were obtained indicate that a 50% exemption increases 

the NPV by 10% while a scenario with total exemption increases it by 20%, when compared with 

scenario without CIEG exemptions. 
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Figure 6.46. Impact of the CIEG exemptions on scenarios SC_ST300_A, SC_ST300_B and SC_ST300_C 

 

To better understand the impact of several factors on the overall value of the installation of PV 

and storage units for self-consumption purposes, a sensitivity analysis is now conducted. We consid-

ered different changes affecting different parameters used in the simulations:  

• Investment cost of the PV units and storage devices: 

o Based on the forecasted values for the CAPEX and OPEX of PV units and batteries, 

[310] presents the expected evolution until 2050. For instance, regarding the prices 

in 2022, the cost of PV units is expected to be reduced by 28% for the CAPEX and 

by 21% for the OPEX in the year 2030. For 2050, these reductions are respectively 

of 57% and 48% when compared with 2022. In what concerns storage, the expected 

reductions are 44% and 25% for CAPEX and OPEX for the year 2030 and 69% and 

44% for the year 2050. So, regarding the cost reduction forecasts, we analyzed the 

impact of 25%, 50% and 75% reductions on investment costs in PV and storage 

systems. All scenarios, Ref-Case, SC_PV, SC_ST45 (Figure 6.47) and 

SC_ST300_A, SC_ST300_B and SC_ST300_C (Figure 6.48), were assessed; 

• Electricity acquisition costs: 

o Figure 6.49. presents the impact of the variation on the electricity acquisition cost 

which is related to possible changes in the WSM prices. It was analyzed the impact 

of both the increase and the decrease of the cost of electricity acquisition (in steps of 

25%). 
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On the right side of Figure 6.47 the NPV values for 0% cost reduction were obtained using the 

reference prices in Tables 6.19. and 6.27, that is no reduction of the investment cost are used. It is 

possible to observe, when we consider the reference prices, the scenario Reference Case presents the 

lower NPV. When comparing the scenario SC-ST45 with the scenario SC_PV, this last presents a 

less negative NPV which is related to the investment in the storage systems in scenario SC_ST45.  

Analyzing now the impact of reductions of 25% of the investment cost, it is observed a change in 

the relative position between the SC_ST45 and the SC_PV scenario, which presents in this case a 

less negative value. It is interesting to observe that with a reduction of 75% on the investment costs, 

scenario SC_ST45 presents a less negative NPV than the Ref-Case and SC_PV scenarios. This 

change highlights the relevance of the investment costs in PV and storage systems so that a reduction 

of these costs will certainly be important when selecting an investment decision. So, we can conclude 

that reductions of 50% and 75% on CAPEX and OPEX for PV and storage systems make investments 

in PV and storage systems more competitive, namely when compared with the Ref-Case in which no 

such equipment is considered. 

So, despite the appearance of battery costs in the SC_ST45 scenario, the NPV value does not 

degrade. And this fact is related to the increase in self-consumption in SC_ST45 and, consequently, 

a reduction in network tariff payments. 

 

 

Figure 6.47. NPV versus investment costs reduction for scenarios Ref-Case, SC_PV and SC_ST45 
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In Figure 6.48 the same analysis is done now for scenarios SC_ST300_A, SC_ST300_B and 

SC_ST300_C. These results show that the NPV increases, or gets less negative, by approximately 

4%, 8% and 11% as the investment cost is reduced respectively by 25%, 50% and 75%.  

 

 

Figure 6.48. NPV versus investment costs reduction for scenarios SC_ST300_A, SC_ST300_B and 

SC_ST300_C 

 

Figures 6.49 and 6.50 present the impact on the NPV of the scenarios Ref-Case, SC-PV, 

SC_ST45, SC_ST300_A, SC_ST300_B and SC_ST300_C, if the electricity acquisition cost 

changes. By observing Figure 6.49, it is possible to observe that NPV changes by approximately 

30% if the energy acquisition costs change by 50%.  When considering a larger storage system, i.e., 

in scenarios SC_ST300_A, SC_ST300_B and SC_ST300_C, the variation of 50% on the energy 

acquisition costs has an impact on 22% on the NPV (Figure 6.50). This is explained by the fact that 

in these scenarios, the storage allows having higher quantities of self-consumed energy and conse-

quently lower energy imported from the grid. 
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Figure 6.49. NPV versus variation of the energy acquisition cost for (scenarios Ref-Case, SC_PV and 

SC_ST45 

 

Figure 6.50. NPV versus energy acquisition cost variation for scenarios SC_ST300_A, SC_ST300_B, 

and SC_ST300_C 

Analyzing the overall results, it is possible to conclude that the investment in PV systems, allow-

ing to inject in the public grid an eventual surplus of generated electricity, has an impact of 2% on 

the NPV when compared to a system without PV. So, although investment, operation and mainte-

nance costs of the PV systems are internalized in the calculation, the NPV evolves in the positive 

direction, meaning that it gets less negative and so the consumers obtain important savings.  

The same analysis and the same impact are verified when the architecture considers a PV and a 

storage system. When compared with the same reference case (architecture without PV), the NPV 

continues to get less negative which reveals that exists benefits in investing in both PV and storage 
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systems. In this case, the impact on the NPV is lower, around 1,3%, which is obviously related to the 

investment in both technologies (PV and storage) (Table 6.42). 

Table 6.42 Net present values for the Ref-case, SC_PV and SC_ST45 scenarios 

 Ref-Case  SC_PV SC_ST45 

NPV -210.085,00 €  -205.510,00 € -207.432,00 € 

 

When integrated in communities, not only does the dependence of the electrical grid decreases, 

but also the benefits from selling surplus of electricity become important in terms of investment 

decisions.  As bigger is the dimension of the storage systems, lower will be the demand supplied by 

the public grid and higher the demand supplied by self-consumption. Considering the architecture 

with a centralized storage system (where the location of the battery is not inside the community itself 

and it is located at the Low Voltage side of the MV/LV substation), the self-consumption tariff should 

be applied. However, the cost savings in tariffs are almost of 26% when compared to the same ar-

chitecture but with batteries located at the electrical building level (Table 6.33). If it is considered an 

exemption of 50% and 100% of this component of self-consumption tariffs (CIEG), the savings will 

be respectively almost 34% and 43%. (Tables 6.35. and 6.37).  These exemptions are significative 

and have an important impact in the improvement of the NPV, that is it increases by 10% and 20% 

for respectively 50% and 100% of CIEG exemptions. It was possible to conclude that a reduction of, 

at least 50% on CAPEX and OPEX for PV and storage systems, turns these architectures more com-

petitive when compared for architectures only with PV systems. 

By observing Figures 6.49 and 6.50, it is possible to conclude that electricity acquisition cost is 

the parameter that has a larger impact on the NPV.  However, this conclusion doesn’t underestimate 

the overall impact of the other parameters, namely investment costs and the CIEG component, which 

obviously have also a significant influence. Furthermore, if several of these parameters are reduced 

in a simultaneous way, the NPV would become less negative turning the investments more econom-

ically attractive. 

Finally, let us discuss the computational performance of the developed model. To emulate the 

optimization problem, the Spyder Integrated Development Environment © [329] was used. For one 

year simulation and using a computer having 16 GB of RAM and with a processor of 3.0 GHz, the 

simulation for scenario SC_ST300 runs in approximately 39,3 seconds. As a final indication, the 

results of the Q-Learning model were treated using the Power BI © namely to build the graphs pre-

sented along this chapter [330].  
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Chapter 7 

7. Conclusions and Future Work 

7.1. Main conclusions 

Power systems are evolving very rapidly namely in what concerns the technologies used to gen-

erate electricity, the diversification of commercial relationships which involves different agents and 

more specifically the empowerment of consumers. Otherwise, regarding the new paradigm with bi-

directional power flow between production and demand prosumers and producers, as well as with 

the increasing of renewable energy penetration, several countries have enacted new legislation. These 

acts are aimed at promoting the establishment of renewable energy communities and increasing the 

self-sufficiency of end-users. In this sense, new players and architectures, such as LEM, are gradually 

entering into the electricity markets. However, the way these new frameworks interacts with the 

conventional ones, such as the integration of LEM into WSM, is not yet fully established. 

To this end, the present PhD thesis addresses a design and an optimization model to increase the 

mentioned self-sufficiency level, to better manage the energy produced locally, also admitting the 

installation of battery storage units, and to profit as much as possible of them. It is proposed a new 

Agent-Based modelling with a special focus on the Energy Communities purposes. The general over-

view presented in Chapter 2, allowed to describe the electricity market in the past till nowadays and 

link it to the State of The Art of Legislation that support European Climate and Energy policies, 

namely in what concerns Energy Communities. The electricity sector is characterized by multiple 

and interconnected markets: day-ahead and intraday markets, bilateral trading, ancillary services 

markets, emissions allowances, and fuel (namely Natural Gas) markets. In this sense, with the in-

crease of the participation of new actors in the electricity markets, the identification of the most 

adequate trading strategies turns it more complex. Considering this complexity, and to complement 

this decentralized and open energy market, Agent-Based Models are being used as a new research 

paradigm that allows adaptive approaches to provide adequate decisions to support in view of the 

complexity of the problems to handle. 
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Thus, it has become a core interest for all the participants in electricity markets, to develop new 

simulation models that takes into account this “democratization of energy”. Since Agent Based Mod-

els simulate the interactions and actions of autonomous agents, it is widely used in the electricity 

market simulations field. In line with that, the main goal of this work was to develop a computational 

tool, using an Agent-Based Model, to help Energy Communities participants to build an optimal 

trading strategy, taking into account the regulations and limitations behind these local architectures. 

The developed model was based on an Energy Community constituted by different type of agents, 

such as consumers or prosumers, focused mainly of maximizing its self-energy consumption and 

profit in consequence of selling at the best price the energy surplus. The developed framework con-

siders that the Energy Community deficit or surplus in each trading period will be traded between a 

Market Community agent and Aggregator through a bilateral contract. 

The concept of an Agent-Based Model allows agents to take their decisions based on their past 

experiences with other agents and through the interaction with the environment. This type of model 

allows the market participants to develop their own strategies and preferences as adaptive agents. 

The electricity markets complexity contributes to create dynamic and adaptive systems. In this cir-

cumstance, the Q-Learning strategy was used in this work. However, and to assess the impact of the 

different parameters used in the developed Q-Learning methodology, several simulations were done 

considering different learning parameters. When was changed the greedy police parameter, ε, it was 

possible to verify that the “greedy” selection strategy had impact on the exploration strategy since 

with lower values didn’t allow the process to be more effective by experimenting all the actions even 

if they were worse at a given step of the learning process. By decreasing the discount factor, ϒ, i.e., 

the weight given to future reinforcements, we conclude that the agent finds new strategies in each 

hour and did not have in consideration the impact of its decisions in future rewards.  Otherwise, when 

was changed the learning rate parameter λ, to lower values, the agent did not completely explore its 

bid ups and bid downs considering its experience. In this sense, and since the markets dynamics are 

continuously changing, it was considered a higher value for the learning rate. 

The results that were obtained in this work indicates that the proposed Agent-Based model can 

be a very important tool to help LEM participants to follow the best strategy regarding self-consump-

tion purposes and to increase the revenues that are coming from selling energy surplus into WSM. 

The simulation results, considering a Community with PV generation, reveals that when it was ap-

plied the optimization strategy, the revenues by selling the electricity surplus, was 25% higher than 

in the case that wasn’t consider any optimization strategy. 

When the developed model simulates energy trading between LEM and WSM, but also consid-

ering storage systems, two architectures were proposed. As established by the European Directives,
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Energy Community business models can include not only local generation trading and aggregation, 

but also storage. To understand how Energy Storage Systems can add value to a LEM, the two de-

veloped architectures were located at different Community locations – a decentralized located at the 

community building level and a centralized located at the substation near the community. It was also 

possible to observe that the application of the optimization model enables increasing the annual prof-

its. The application of the optimization methodology originates an increase on the selling profits by 

26% in both scenarios. 

Besides the design and the optimization model developed, which aimed to increase the commu-

nity self-sufficiency level and the revenues that are coming from selling energy surplus, the Energy 

Storage Systems had impact in the Energy Communities business models and in its investment de-

cisions. Considering the usage of the public grid for self-consumption purposes, different simulations 

were performed taking into account the consideration the impact of having or not exemptions on 

network tariffs. These allows to getting insights about the impact of paying grid tariffs considering 

the utilization of the public grid and, in this sense, was assessed the economic performance of the 

entire installation, namely considering the storage systems. The results that were obtained reveals 

that the exemption in some elements of the Access Tariffs, namely in the CIEG component, had a 

significant impact in the improvement of the Net Present Values. For scenarios with 50% and 100% 

of exemption on CIEG components, the NPV increased, respectively, by nearly 10% and 20% when 

compared with a scenario without exemption.  

The level of exemptions of the access tariffs, as well as the electricity purchase costs and the 

investment costs of PV and storage systems, are among the factors that will determine the massifi-

cation of RECs. A sensitivity analysis performed in this work concludes that reductions on CAPEX 

and OPEX for PV and storage systems, turn investments more attractive. For instance, if investment 

costs are reduced by 25%, 50% and 75%, the NPV increases by 4%, 8% and 11%, respectively. In 

what concerns electricity acquisition costs, we concluded that this parameter had a larger impact on 

the NPV. If the electricity costs decrease by 50%, the NPV was reduced by approximately 30%. So, 

we concluded that the overall impact of tariffs exemptions, electricity acquisition costs and invest-

ment costs will induce the penetration and massification on electric power systems. 

The main contributions of this work will be presented in Section 7.2. Then Section 7.3 aims to 

answering to the Research Questions presented in Chapter 1 and finally, Section 7.4 includes sug-

gestions for future work. 
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7.2. Contributions 

The following paragraphs presents the major contributions of this PhD Thesis, specifically what 

covers each chapter. 

Chapter 2 presents a background and the state of the art about the main topics approached n this 

thesis, namely an overview of electricity markets, different national frameworks for Energy Com-

munities and P2P and VPPs models. Regarding the development of this work, with Agent Based 

Models, some modelling methods to simulate electricity markets, Machine Learning Methodologies 

and ABM in Power systems simulators, were presented in Chapter 3. 

Considering the operations strategies under Energy Communities, Chapter 4 presents the structure 

of the model that was developed. It was presented an ABM as a decision tool to support energy 

transactions between the LEM and the WSM. In the developed ABM model, the market participants 

were modeled as adaptive agents with main purpose of maximizing the profits resulting from the 

reduction of the generation cost, the increase of self-consumption, and of selling the energy surplus 

in the Wholesale Market. The Market Community Agent purchased the energy to balance the Energy 

Community electricity deficit from the Aggregator Agent and sell the excess electricity considering 

specified price limits. In order to evaluate the performance of the optimization tool, it was defined a 

utility function as a numeric representation of how good some sort of possible residence state of a 

system under analysis was. It consists of the ratio between the Market Community Agent Bid (𝐶𝐵𝑖𝑑) 

and a bilateral contract predefined (𝐶𝑃𝑉). The higher this ratio is, the higher will be the community 

profits by applying the optimization model. If the WSM price (𝐶𝑎𝑔𝑔) is lower than 𝐶𝑃𝑉, the Market 

Community Agent will receive the guaranteed reward defined by the bilateral contract, that is 𝐶𝑃𝑉. 

Otherwise, and if the 𝐶𝐵𝑖𝑑 is lower than the 𝐶𝑎𝑔𝑔and higher than 𝐶𝑃𝑉, the reward will be equal to 

the difference between 𝐶𝐵𝑖𝑑and 𝐶𝑃𝑉. Regarding the strategy adaptation tool, it was developed an 

ABM associated to the reinforcement Q-Learning approach to simulate the LEM market and its in-

teractions namely with the WSM.  The Q-Learning procedure, evaluates the payoff that can be ob-

tained for a given state-action pair Q(s,a). In this sense, the state’s definition developed was in line 

with energy communities’ perspective, i.e., to enhance the self-supply capacity and to minimize the 

dependency of the grid. In the learning approach it was considered 5 states and an adaptation of the 

derivative-following strategy, where the Market Community Agent increases or decreases its bid 

price in an attempt to increase the overall profit. 

Chapter 5 was directed to an electricity market design, similar to the previous one, but now con-

sidering prosumers and energy communities with ESS, namely batteries. The operation strategy im-

plemented was similar than the previous one, however it aimed at benefiting the community members
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by storing the excess of electricity for their internal consumption or to sell in the LEM. Regarding 

the system structure, two architectures were presented. One, where ESS was placed anywhere in the 

community (named as decentralized) and located not inside the community (termed as centralized). 

The operation strategy of the batteries, consider charging and discharging mode operation. The first 

one, was if there was any surplus of PV generation regarding the local demand and in discharging 

mode if the community demand was higher than local generation. However, and if the stored energy 

was sufficient to feed the demand, and it also had some surplus, those additional quantities was con-

sidered in the selling bids optimization strategy of the Market Community Agent. This Chapter also 

presented an overview of different energy storage technologies and explained how the proposed ESS 

was modelized. However, it was similar to the model developed in the previous Chapter but consid-

ered its technical characteristics. Besides the implemented legal framework and the incentives for 

the deployment of Energy Communities, in this Chapter, it was also detailed the legal frameworks 

that impacted in the economic viability of the investments and operation of Renewable Energy Com-

munities, namely tariffs, charges and some kind of exemptions.  

Chapter 6 presents the simulations, the results, and discussions regarding the main outcomes. The 

first simulation considers a collective self-consumption with PV system integrated into a Portuguese 

collective building. All the data used were real data. The second scenario consider the same commu-

nity, however with a decentralized storage system (not a fully decentralized approach in which each 

consumer/prosumer would have its own small storage unit). Such level of decentralization was not 

considered in this study because the current investment cost in storage systems is still large enough 

to prevent this type of dissemination. The third architecture simulated, consider a storage system 

located not inside the community, but located at a Low Voltage side of the MV/LV substation that 

feeds the set of the buildings. In this last architecture, it was possible to get insights related with the 

payment of grid tariffs and in particular with the CIEG component applied to self-consumption that 

used the public grid. Other contribution of this Chapter was to access the dependence of the external 

grid in systems with its own generation but also, the benefits of the developed optimization tool 

regarding the application of its bidding strategy. An economic assessment was made, for all the pro-

posed scenarios, using the NPV methodology. It reveals that the optimization strategy that was used, 

the levels of exemptions on the CIEG component, and the CAPEX, OPEX and electricity costs ac-

quisition impact on the NPV. The final contribution was related to sensitivity analysis made consid-

ering changes on the investment and electricity acquisition costs. 
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7.3. Answering the Research Questions 

In this section, the research questions raised in Chapter 1 are answered.  

 

Research Question 1: 

1. Are the Agent-Based Models capable of handling Energy Communities’ main purposes? 

 

Energy Communities and Renewable Energy Communities introduce new concepts and 

business models, where small scale producers and end users can participate in the electricity 

trading systems. This new energy paradigm gives new roles and opportunities for citizens, 

having more choices in their homes as well as flexibility to reduce their energy use when it 

is expensive and consume or store it when it is cheap. This type of framework also contrib-

utes to the appearance of markets, such as LEM, where new agents can interact, not only 

locally, but also be integrated with conventional markets. 

As referred in Chapter 3, the traditional market analysis models, such as equilibrium models, 

do not incorporate strategic behavior of market participants and have unrealistic design when 

assuming that market participants have all relevant information about the characteristics and 

behavior of competitors. The answer to this research question may rely, among other issues, 

on the development of new computational tool based on Artificial Intelligence to deal with 

the increase complexity of the participation of new actor in local energy markets. With new 

computing technologies, those new actors can use Artificial intelligence models with learn-

ing capabilities to solve more complex problems. In this sense, Agent Based Models are a 

new paradigm that allows the developing of tools that can represent and model, in a more 

realistic way, Energy Communities frameworks and Local Energy Markets. 

 

Research Question 2: 

2. How should the Energy Communities’ actors be organized, regarding integration with con-

ventional electricity markets? 

 

This framework behind Energy Communities aims at increasing the renewable-based decen-

tralized generation and empowering consumers as important decision makers in the energy 

markets. It is also designed to allow smaller energy retailers to develop and offer innovative 

electricity supply packages, making room for new Energy Business Models to emerge. One
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of these standpoints is the Energy Community business models, where all the members 

should be considered in the overall arrangement design, implementation, and operation. As 

advocated by the European Directives, Energy Community Business Models ‘key activities’ 

include local generation, supply, storage, consumption, trading, aggregation, e-mobility, and 

energy related services, as well as system administration. To address some of these chal-

lenges, LEM emerges as a new energy business model where consumers have access to a 

joint market platform to trade locally produced electricity among each other. 

So, considering the appearance of new agents and new energy business models, Energy 

Communities actors should be organized in LEM in order to consider the community agents 

participation and their interaction with the conventional electricity market design, namely 

WSM.  

As mentioned in Chapter 4, the energy sharing concept is at the root definition of Energy 

Communities where any member of the community can buy and sell its electricity within the 

community boundaries. In this sense, LEM are emerging mechanisms to enable local energy 

trading in Energy Communities regarding its integration with conventional markets. The de-

veloped LEM presented in Chapter 4, describes different types of agents and a Market Com-

munity Agent which was in charge of maximizing self-energy consumption and the profit in 

consequence of selling the energy surplus. To balance supply and demand in the community, 

it communicates with an aggregator, who operates as a traditional retailer regarding the mar-

ket clearing mechanism in the WSM. 

Research Question 3: 

3. What is the influence of including not only generation trading and aggregation in Energy 

Communities, but also storage systems? 

 

As established by the European Directives, Energy Community business models can include 

not only local generation trading and aggregation, but also storage. To understand how ESS 

can add value to a LEM, in Chapter 5 was proposed an electricity market design which con-

siders two different architectures regarding the integration of storage systems. The first one 

was a decentralized architecture, where storage was located at the building level, while the 

second one was a centralized architecture within the community. Specifically, the value of 

battery storage and associated architectures in combination with LEM were examined. To 

understand the value of local markets and battery flexibility, we compared the outcomes of 

the two proposed market designs against a reference case that did not incorporate storage 

systems. 
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 The results show that when compared with a scenario without storage, the decentralized 

architecture had a lower amount of energy injected back into the grid. This is in line with the 

fact that the demand supplied by the public grid decreases and the demand supplied by self-

consumption increases due to integration of the storage systems. In the case of the centralized 

architecture where self-consumption was also prioritized, the demand supplied by self-con-

sumption was also higher than the one supplied by the public grid. When comparing both 

storage scenarios, the centralized architecture, since it had a larger storage capacity of the 

storage units, stored more energy than the decentralized architecture. Apart from the increase 

of the capacity of the storage units, this evolution was consequence of the maximization of 

the self-consumed energy by the optimization of the use of the storage equipment through 

the adequate selection of its charging and discharging periods. However, and if the stored 

energy was sufficient to feed the demand, and there was still some surplus, those additional 

quantities were injected back into the grid and used in the adopted selling bids strategy. In 

this sense, it could increase the community profits. 

 

Research Question 4: 

4. Can the regulatory context induce the massification of Energy Communities? 

 

Besides the implemented legal framework and the incentives for the deployment of RECs, 

the economic viability of the investments (namely in storage systems) and operation of 

RECs, specifically considering different tariff and charge exemption designs, can induce the 

massification of Energy Communities. 

The legislation stated that CSC and REC should receive a remuneration for the surplus en-

ergy injected back into the grid and which can be commercialized by an independent aggre-

gator or utility company. However, and in the case of Portugal, it is also stated that the 

charges associated with CIEG (Costs of General Economic Interest), a component of the grid 

tariffs paid by end consumers, could be totally or partially deducted from the grid access 

tariffs. On 19th June 2020, a Portuguese government dispatch, n. º 6453/2020, stated that 

CSC and REC projects, starting operation till the end of the calendar year 2021, benefit from 

an exemption regarding the payment of the CIEG component of the access network tariffs 

for seven years. More recently, it was passed the DL 15/2022 of January 14 corresponding 

to new Portuguese electricity law. 
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This provision is intended to induce the wider deployment of self-consumption and of En-

ergy Communities. When the public grid is used for self-consumption purposes, namely 

when storage systems are located outside the electrical network of the buildings where the 

consumers are installed, the exemptions of grid tariffs have impacts on the final investment 

decisions processes. In this work, it was possible to observe in Chapter 6, that as the exemp-

tion level increases, from a scenario without exemption till a scenario with 100% exemption, 

the NPV evolves in the positive direction, meaning that it gets less negative and so the in-

vestors obtain important savings. 

However, and as stated in Chapter 5, from a regulatory point of view, enlarging the charge 

reductions or exemptions so that more and more network users benefit from them, originates 

an important regulatory problem. In fact, the Access Tariffs are designed to provide the 

amount of regulated revenues defined in the Tariff Code and required to finance several 

regulated activities as network distribution and transmission and the system control and man-

agement as well as several public policies that are designed to benefit all the society on the 

long term. As the number of consumers or network users benefiting from charge reductions 

or exemptions increases, the consumers that at the end will pay the complete regulated Ac-

cess Tariffs reflecting the mentioned regulated revenues gets more and more reduced which 

means that each of them would pay more for the access to the system. This is a major concern 

as the number of RECs increases and clearly shows that these charge reductions or exemp-

tions should be cautiously set and should only be accepted as a transitory provision to help 

induce the development of this new business case. 

 

7.4. Future work and Research Opportunities 

 

Power systems are an area that has been and will be in continuously development. Consequently, 

its optimization will remain to be a concern for all the actors enrolled in this sector, namely electrical 

companies as well as researchers dedicated to this topic. In this section, we identify further research 

areas related to the work developed in this PhD Thesis. 

Chapter 3 presents some modelling methods to simulate electricity markets. In this work a Q-

Learning procedure was developed and showed to be as an efficient approach to perform the bidding 

strategy behind local energy markets. Nevertheless, because of the increasing complexity of power 

systems, for instance by considering an aggregation of several energy communities, the Q-Learning 

strategy can lead to a slow convergence of the Q-values. For this reason, hybrid methodologies and 
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techniques using Deep Learning should be considered.  However, another modelling methods for 

optimizing the bidding process, namely traditional methods and another agent-based method of op-

timization could be developed for further comparison with the develop model presented in this work. 

The models proposed in Chapters 4 and 5, presents a structure considering an energy community 

constituted by consumers and prosumers. In these models there are some improvements that can be 

considered and implemented. The first one is related with the potential of Energy Communities by 

demand-side solutions to reduce energy demand and foster demand-side flexibility. Demand re-

sponse will be an opportunity for consumers to play a more significant role in the operation of the 

power systems by reducing or shifting their electricity consumption during peak periods in response 

to price variations or other forms of financial incentives (e.g., capacity markets). Other research area 

to explore is the storage arbitrage price strategy, that is, by moving the time intervals in which elec-

tricity would have to be bought to some other periods in which the price is lower or to store electricity 

when local generation is in excess in order to sell it in periods in which the price is higher. These 

improvements can have a significant impact in the local energy market prices, meaning that these 

agents should have a bidding strategy that consider these issues. 

As presented in this work, local electricity markets give end-users the ability to trade electricity 

at different voltage levels, namely at the distribution level. However, distributed energy transactions 

can threaten the correct operation and stability of the grid since it impacts on the control, operation, 

and planning of electricity distribution systems. For this reason, a power flow assessment should be 

developed considering the presence of new consumers and prosumers (electric vehicles, heat pumps, 

rooftop photovoltaic panels, large scale, and local storage systems, etc). The co-optimization/simu-

lation of real-time intraday markets and ancillary services and capacity markets should be considered 

in this assessment.
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Annex B2.1 Self-consumption network tariffs -Without CIEG exemption (2020) 

 

 

  

TARIFA DE ACESSO ÀS REDES DO AUTOCONSUMO ATRAVÉS DA RESP EM MT

Potência (EUR/kW.mês) (EUR/kW.dia) *

Horas de ponta 2,011 0,0660

Energia activa

Horas de ponta 0,0548

Períodos I, IV Horas cheias 0,039

Horas de vazio normal 0,0134

Horas de super vazio 0,013

Horas de ponta 0,0546

Períodos II, III Horas cheias 0,0389

Horas de vazio normal 0,0133

Horas de super vazio 0,013

* RRC art. 119.º, n.º 6

TARIFA DE ACESSO ÀS REDES DO AUTOCONSUMO ATRAVÉS DA RESP EM BTE

Potência (EUR/kW.mês) (EUR/kW.dia) *

Horas de ponta 6,613 0,2168

Energia activa

Horas de ponta 0,0797

Períodos I, IV Horas cheias 0,051

Horas de vazio normal 0,018

Horas de super vazio 0,0165

Horas de ponta 0,0793

Períodos II, III Horas cheias 0,0507

Horas de vazio normal 0,0178

Horas de super vazio 0,0165

PREÇOS

(EUR/kWh)

PREÇOS

(EUR/kWh)
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Annex B2.2 Self-consumption network tariffs -With 50% CIEG exemption (2020) 

 

 

  

TARIFA DE ACESSO ÀS REDES DO AUTOCONSUMO ATRAVÉS DA RESP EM MT

Potência (EUR/kW.mês) (EUR/kW.dia) *

Horas de ponta 2,011 0,0660

Energia activa

Horas de ponta 0,0303

Períodos I, IV Horas cheias 0,0222

Horas de vazio normal 0,009

Horas de super vazio 0,0086

Horas de ponta 0,0301

Períodos II, III Horas cheias 0,0221

Horas de vazio normal 0,0089

Horas de super vazio 0,0086

* RRC art. 119.º, n.º 6

TARIFA DE ACESSO ÀS REDES DO AUTOCONSUMO ATRAVÉS DA RESP EM BTE

Potência (EUR/kW.mês) (EUR/kW.dia) *

Horas de ponta 6,613 0,2168

Energia activa

Horas de ponta 0,0443

Períodos I, IV Horas cheias 0,0295

Horas de vazio normal 0,0123

Horas de super vazio 0,0108

Horas de ponta 0,0439

Períodos II, III Horas cheias 0,0292

Horas de vazio normal 0,0121

Horas de super vazio 0,0108

(EUR/kWh)

PREÇOS

PREÇOS

(EUR/kWh)
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Annex B2.3 Self-consumption network tariffs -With 100% CIEG exemption (2020) 

 

 

 

 

 

 

 

TARIFA DE ACESSO ÀS REDES DO AUTOCONSUMO ATRAVÉS DA RESP EM MT

Potência (EUR/kW.mês) (EUR/kW.dia) *

Horas de ponta 2,011 0,0660

Energia activa

Horas de ponta 0,0058

Períodos I, IV Horas cheias 0,0054

Horas de vazio normal 0,0046

Horas de super vazio 0,0042

Horas de ponta 0,0056

Períodos II, III Horas cheias 0,0053

Horas de vazio normal 0,0045

Horas de super vazio 0,0042

* RRC art. 119.º, n.º 6

TARIFA DE ACESSO ÀS REDES DO AUTOCONSUMO ATRAVÉS DA RESP EM BTE

Potência (EUR/kW.mês) (EUR/kW.dia) *

Horas de ponta 6,613 0,2168

Energia activa

Horas de ponta 0,0089

Períodos I, IV Horas cheias 0,0079

Horas de vazio normal 0,0065

Horas de super vazio 0,005

Horas de ponta 0,0085

Períodos II, III Horas cheias 0,0076

Horas de vazio normal 0,0063

Horas de super vazio 0,005

(EUR/kWh)

PREÇOS

PREÇOS

(EUR/kWh)



   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



                                                                                                                     

  

 

 

 

 

 


