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Resumo 
 
Introdução: Os cancros da mama (CaMa), pulmão (CaPl), coloretal (CaCr) e próstata 

(CaP) são os quatro cancros mais incidentes a nível mundial para ambos os sexos. Apesar 

de os métodos de rastreio disponíveis terem contribuído para reduzir a incidência e a 

mortalidade, existe ainda uma necessidade de desenvolver novas formas eficazes e 

minimamente invasivas de detetar precocemente estas neoplasias. A hipermetilação do 

promotor de genes é um evento precoce na carcinogénese, sendo específica quer de 

tumores, quer do tipo de tecido, e facilmente obtida de fluídos corporais, sendo então um 

potencial biomarcador para uma deteção precoce e minimamente invasiva destes cancros. 

Uma análise de dados da TCGA foi realizada para encontrar promotores de genes 

hipermetilados especificamente em cancro e foram identificados os promotores do ADCY4, 

MIR129-2, NID2 e MAGI2 comumente hipermetilados no CaMa, CaPl, CaCr e CaP. Assim, 

o objetivo deste trabalho foi desenvolver um teste baseado na metilação do DNA livre em 

circulação (cfDNA) para deteção simultânea destes quatro cancros. 
 

Métodos: Ensaios de droplet digital PCR (ddPCR) específicos para metilação foram 

desenvolvidos de modo a avaliar os níveis de metilação do promotor dos genes 

mencionados acima. cfDNA foi extraído de amostras de plasma de 50 pacientes com 

CaMa, 50 com CaPl, 50 com CaCr e 50 com CaP e 50 doadores de sangue, seguido por 

modificação bissulfito. Os níveis de metilação do promotor do ADCY4, MIR129-2, NID2 e 

MAGI2 foram avaliados através dos ensaios de ddPCR desenvolvidos. 
 

Resultados: Todos os promotores apresentaram níveis de metilação significativamente 

elevados em pacientes com cancro relativamente aos controlos, exceto o MIR129-2 e NID2 

em pacientes com CaMa. Um painel “PanCancer” combinando todos os genes e, 

considerando uma amostra positiva sempre que um gene é positivo, detetou CaMa com 

52% de sensibilidade, CaPl com 85.71%, CaCr com 78.72% e CaP com 56.41% a uma 

especificidade de 93.75%. A deteção do cancro em estadios iniciais mostrou resultados 

similares a todos os estadios. O painel “PanCancer” apresentou 69.80% de sensibilidade, 

93.75% de especificidade e 74.03% de precisão na deteção simultânea dos quatro cancros. 
 

Conclusões: O teste “PanCancer” baseado na metilação do DNA em biópsias líquidas 

apresentou um grande potencial para a deteção precoce dos CaMa, CaPl, CaCr e CaP, 

oferecendo uma nova ferramenta de pré-triagem de doentes para o exame diagnóstico 

mais adequado, permitindo aumentar a adesão aos rastreios e reduzir os custos nos 

sistemas de saúde. 



 

 
  



 

Abstract 
 
Background: Breast (BrC), lung (LC), colorectal (CRC) and prostate (PCa) cancers are the 

four most incident cancers worldwide for both males and females. Despite available 

screening methods having contributed to incidence and mortality reduction, there is still a 

great need for the development of minimally invasive and effective tools for early detecting 

these malignancies. Gene promoter hypermethylation is an early tumorigenic event, being 

cancer- and tissue-specific and easily obtained from body fluids, thus being a potential 

biomarker for minimally invasive pan-cancer early detection. A TCGA data mining was 

performed to select cancer-specific hypermethylated gene promoters depicting ADCY4, 

MIR129-2, NID2 and MAGI2 promoters as commonly hypermethylated in BrC, LC, CRC 

and PCa. Herein, we aimed to develop a cell-free DNA (cfDNA) methylation-based test, 

using the above targets, for simultaneously detecting the four major cancers.  

 
Methods: Methylation-specific droplet digital PCR (ddPCR) assays were developed for 

assessing gene promoter methylation levels. cfDNA was extracted from plasma samples of 

50 BrC, 50 LC, 50 CRC and 50 PCa patients and 50 healthy blood donors, followed by 

sodium-bisulfite modification. ADCY4, MIR129-2, NID2 and MAGI2 promoter methylation 

levels were evaluated using the developed ddPCR assays.  

 
Results: All gene promoters displayed significantly higher methylation levels in cancer 

patients compared to controls, except MIR129-2 and NID2 in BrC patients. A “PanCancer” 

panel combining all genes was built and considering a positive sample whenever one gene 

was positive, we detected BrC with 52% sensitivity, LC with 85.71%, CRC with 78.72% and 

PCa with 56.41% at 93.75% specificity. Early-stage cancer detection showed similar 

performance to all-stage cancer. The “PanCancer” panel depicted 69.80% sensitivity, 

93.75% specificity and 74.03% accuracy for simultaneous detection of the four cancers.  

 
Conclusions: The “PanCancer”, a DNA methylation-based test in liquid biopsies showed 

great potential for early detecting BrC, LC, CRC and PCa, unveiling a new tool for pre-

screening patients for further adequate diagnostic examinations, hopefully, increasing 

compliance to screening and reducing the costs on health care systems. 

 
 
 
 
 
 



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

Table of Contents 
 
I. INTRODUCTION .......................................................................................................... 1 

1. Four major cancers .................................................................................................... 3 

1.1 Breast Cancer ....................................................................................................... 3 

1.1.1 Screening and diagnosis ................................................................................... 4 

1.2 Lung Cancer .......................................................................................................... 5 

1.2.1 Screening and diagnosis ................................................................................... 6 

1.3 Colorectal Cancer ................................................................................................. 7 

1.3.1 Screening and diagnosis ................................................................................... 8 

1.4 Prostate Cancer .................................................................................................... 9 

1.4.1 Screening and diagnosis ................................................................................... 9 

2. Liquid biopsy-based cancer biomarkers ............................................................... 10 

3. Epigenetics ............................................................................................................... 13 

3.1 DNA methylation ................................................................................................. 13 

4. DNA methylation testing in liquid biopsies as a novel strategy for multi-cancer 
early detection ................................................................................................................. 15 

II. PRELIMINARY RESULTS ......................................................................................... 25 

TCGA data mining for gene selection ........................................................................... 27 

In silico analysis .............................................................................................................. 30 

Validation of selected genes in tissue samples ........................................................... 30 

III. AIM ......................................................................................................................... 35 

IV. MATERIAL AND METHODS ................................................................................. 39 

1. Clinical Samples ....................................................................................................... 41 

1.1 Tissue samples ................................................................................................... 41 

1.2 Plasma samples .................................................................................................. 41 

2. DNA extraction from tissue samples ...................................................................... 42 

3. cfDNA extraction from plasma samples ................................................................ 42 

4. DNA quantification ................................................................................................... 43 

5. cfDNA fragmentation analysis ................................................................................ 43 

6. Sodium-bisulfite modification ................................................................................. 44 

7. Target-specific preamplification ............................................................................. 45 

8. Methylation-specific primer and probe design ...................................................... 45 

9. Quantitative methylation-specific PCR (qMSP) ..................................................... 46 

10. Methylation-specific droplet digital PCR ............................................................ 48 

11. Statistical Analysis ............................................................................................... 50 

V. RESULTS ................................................................................................................... 51 



 

1. Selection and validation of new CancerType genes in tissue samples ................. 53 

2. Clinical and Pathological Data ................................................................................ 54 

3. Optimization of methylation-specific ddPCR assays ........................................... 57 

3.1 Optimal annealing temperature ........................................................................... 57 

3.2 Multiplex panels .................................................................................................. 58 

3.3 Limit of blank (LOB), detection (LOD) and quantification (LOQ) ......................... 59 

4. Optimization of a pipeline for cfDNA downstream methylation analysis ........... 61 

4.1 Selection of an optimal method for cfDNA extraction from plasma samples ...... 61 

4.2 cfDNA input and cut-offs for sample eligibility ..................................................... 64 

5. Gene promoter methylation levels in cfDNA ......................................................... 66 

5.1 cfDNA concentrations across cancer patients and healthy donors ..................... 66 

5.2 cfDNA methylation across cancer patients and healthy donors .......................... 68 

5.3 Biomarker performance of gene promoter methylation levels ............................. 69 

5.4 Association between gene promoter methylation levels and clinicopathological 

features .......................................................................................................................... 72 

VI. DISCUSSION ......................................................................................................... 75 

VII. CONCLUSION & FUTURE PERSPECTIVES ........................................................ 85 

VIII. REFERENCES ....................................................................................................... 89 

IX. APPENDIX ........................................................................................................... 103 

 

 
 
 



 

Figures Index 
 
Figure 1. Pie charts representing the percentage of cancer-related incidence (A) and 

mortality (B) in both sexes, worldwide, in 2020. Adapted from [1]. ...................................... 3 
Figure 2. Liquid biopsy. Tumors shed information into the bloodstream, such as circulating 

cell-free DNA (cfDNA), cell-free RNA (cfRNA), circulating tumor cells (CTCs) and 

extracellular vesicles (EVs), so blood can be collected and used as a minimally invasive 

source of cancer-related biomarkers. Created with BioRender.com. ................................ 11 
Figure 3. Epigenetic mechanisms regulating gene expression. DNA methylation consists in 

the addition of a methyl group to cytosines present in CG dinucleotides. Histone post-

translation modification consist in the addition of chemical groups (methyl, acetyl, 

phosphate, ubiquitin, etc.) to amino acid residues of histone tails. Histone variants substitute 

canonical histones in the nucleosome, impacting chromatin structure. Chromatin 

remodeling complexes are protein complexes that regulate chromatin structure by altering 

nucleosome positioning. Created with BioRender.com. .................................................... 13 
Figure 4. Flowchart of TCGA data mining analysis performed. Kindly provided by V. 

Constâncio. Unpublished. .................................................................................................. 28 
Figure 5. Venn Diagram obtained from TCGA data mining regarding the number of CpG 

probes listed as hypermethylated in TCGA datasets for each cancer type. Kindly provided 

by V. Constâncio. Unpublished. ........................................................................................ 28 
Figure 6. Distribution of (A) ADCY4, (B) CDO1, (C) MAGI2, (D) MIR129-2, (E) NID2, (F) 

HOXA11, (G) CELF2, (H) CHFR and (I) FLOT1 aggregation methylation levels of selected 

CpGs in lung cancer adenocarcinoma (LUAD), lung cancer squamous cell carcinoma 

(LUSC), breast cancer (BRCA), colorectal cancer (COAD) and prostate cancer (PRAD) 

tumor (T) and normal tissues (N). Mann-Whitney U Test between tumor and normal tissues, 

n.s. p>0.05, *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001. Red horizontal lines represent 

the median methylation level. ............................................................................................ 31 
Figure 7. Distribution of (A) ADCY4, (B) MAGI2, (C) MIR129-2, (D) NID2, (E) HOXA11, (F) 

CELF2, (G) CHFR and (H) FLOT1 relative promoter methylation levels in lung cancer 

(LCA), normal lung (NL), breast cancer (BRCA), normal breast (NBr), colorectal cancer 

(CRC), normal colorectal (CRN), prostate cancer (P) and normal prostate (CP) tissues. 

Mann-Whitney U Test between tumor and normal tissues, n.s. p>0.05, *p<0.05, **p<0.01, 

***p<0.001, ****p<0.0001. Red horizontal lines represent the median methylation level. . 32 
Figure 8. Distribution of (A) EDNRB, (B) ZSCAN1, (C) GFRA1 and (D) AOX1 relative 

promoter methylation levels in lung cancer (LCA), normal lung (NL), breast cancer (BRCA), 

normal breast (NBr), colorectal cancer (CRC), normal colorectal (CRN), prostate cancer (P) 



 

and normal prostate (CP) tissues. Mann-Whitney U Test between tumor and normal tissues, 

n.s. p>0.05, *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001. Red horizontal lines represent 

the median methylation level. ............................................................................................ 54 
Figure 9. Temperature gradient for selection of the optimal annealing temperature for (A) 

ACTB, (B) MAGI2, (C) ADCY4, (D) MIR129-2 and (E) NID2 promoter’s methylation. The 

highest separation between positive (green/blue) and negative (grey) droplets was 

achieved at 57ºC for all genes. .......................................................................................... 58 
Figure 10. 2D-plots of the optimized multiplex gene panels. (A) Duplex panel combining 

MAGI2me (blue droplets) and ACTB (green droplets); (B) Triplex panel combining ADCY4me 

(red droplets), MIR129-2me (purple droplets) and NID2me (dark yellow droplets). ............. 59 
Figure 11. Limit of quantification (LOQ) for (A) ADCY4me, (B) MIR129-2me, (C) NID2me and 

(D) MAGI2me. Observed number of methylated copies were correlated with the expected 

copy number for different methylation percentages. r – Pearson correlation coefficient. .. 60 
Figure 12. Electropherogram profiles of cfDNA extracted from a stage IV lung cancer 

plasma sample with (A) QIAmp MinElute ccfDNA kit, (B) MagMAXTM Cell-Free DNA 

Isolation Kit and (C) magLEAD® 12gC extractor. Obtained from TapeStation Analysis 

software. ............................................................................................................................ 62 
Figure 13.  Comparison of cfDNA extraction using QIAmp MinElute ccfDNA kit, 

MagMAXTM Cell-Free DNA Isolation Kit and magLEAD® 12gC extractor across 20 plasma 

samples. (A)  Concentration of DNA with size ranging from 50-700bp. (B) Total DNA 

concentration. (C) %cfDNA i.e., % of DNA with 50-700bp in the sample. Numbers in sample 

name refer to cancer stage, for example, BrC1 corresponds to a stage I breast cancer 

sample. Data obtained from TapeStation Analysis software. ............................................ 63 
Figure 14. Comparison between cfDNA extraction using QIAmp MinElute ccfDNA kit and 

MagMAXTM Cell-Free DNA Isolation Kit. (A) Total DNA concentration of samples extracted 

with the 2 kits. (B) %cfDNA of samples extracted with the 2 kits. Mann-Whitney U Test 

between kits, n.s. p>0.05, **p<0.01. Red lines represent the median value and interquartile 

range. Data obtained from TapeStation Analysis software. .............................................. 64 
Figure 15. Number of methylated copies/μL for ADCY4, MIR129-2, NID2 and MAGI2 

promoters across 20 plasma samples using ddPCR (A) and targeted pre-amplification 

followed by ddPCR (B). Number of methylated copies/μL was computed automatically by 

the software after manual threshold setting. Red lines represent the median value and 

interquartile range. ............................................................................................................. 65 
Figure 16. Input DNA in nanograms (ng) used in the ddPCR reaction for each sample. 5ng 

was defined as cut-off for sample quality control. .............................................................. 66 
Figure 17. Normalized cfDNA concentration values per mL of plasma across lung, breast, 

colorectal and prostate cancer and asymptomatic controls (A) and between cancer stages 



 

(B). Kruskal-Wallis test followed by Dunn's multiple comparisons test between groups, 

*p<0.05, **p<0.01, ***p<0.001. Red lines represent the median value and interquartile 

range. ................................................................................................................................ 67 
Figure 18. Distribution of (A) ADCY4, (B) MIR129-2, (C) NID2 and (D) MAGI2 promoter 

methylation levels in lung (LC), breast (BrC), colorectal (CRC) and prostate (PCa) cancers 

and asymptomatic controls (AC) samples. Mann-Whitney U Test between AC and each 

cancer type, n.s. p>0.05, *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001. Red horizontal lines 

represent median methylation levels. ................................................................................ 68 
Figure 19. Percentage of cases identified by the “PanCancer” panel in cancer samples 

(70% Positive, 30% Negative) and in asymptomatic controls (6% Positive, 94% Negative).

 ........................................................................................................................................... 71 
Figure 20. Distribution of methylation levels in lung (A), colorectal (B) and prostate (C) 

cancer patients according to clinical stage. (A) MIR129-2 promoter methylation levels in 

stage I & II and III & IV lung cancer patients. (B)-(1) MIR129-2, (2) NID2 and (3) MAGI2 

promoter’s methylation levels across stage I-IV colorectal cancer patients. (C)-(1) ADCY4, 

(2) MIR129-2 and (3) NID2 promoter’s methylation levels across stage I-IV prostate cancer 

patients. Kruskal-Wallis test followed by Dunn's multiple comparisons test, *p<0.05, 

**p<0.01, ***p<0.001. Red horizontal lines represent the median value and interquartile 

range. ................................................................................................................................ 72 
Figure 21. Distribution of methylation levels in lung (A), colorectal (B) and prostate (C) 

cancer patients according to metastatic dissemination. (A) MIR129-2 promoter methylation 

levels in non-metastatic (M0) and metastatic (M+) lung cancer patients. (B)-(1) MIR129-2, 

(2) NID2 and (3) MAGI2 promoter’s methylation levels across non-metastatic and metastatic 

cancer patients. (C)-(1) ADCY4, (2) MIR129-2 and (3) NID2 promoter’s methylation levels 

across non-metastatic and metastatic prostate cancer patients. Mann-Whitney U Test, 

*p<0.05, **p<0.01, ****p<0.0001. Red horizontal lines represent the median value and 

interquartile range. ............................................................................................................. 73 
Figure 22. (A) ADCY4, (B) MIR129-2 and (C) NID2 promoter’s methylation levels across 

node-positive (N+) and node-negative (N0) prostate cancer patients. Mann-Whitney U Test, 

***p<0.001, ****p<0.0001. Red lines represent the median value and interquartile range.74 

 
 
 
 
 



 

 
  



 

Tables Index 
 
Table 1. DNA methylation-based multi-cancer early detection (MCED) tests. .................. 16 

Table 2. Top hypermethylated genes for PanCancer (Top 10) and for each cancer type (top 

5) depicted from TCGA data mining analysis. Bold genes indicate the genes selected for 

further analysis in this project. ........................................................................................... 29 

Table 3. Biomarker performance of each gene promoter methylation and “PanCancer” 

panel for lung, breast, colorectal and prostate cancer detection in tissue samples. ......... 33 

Table 4. Binding Solution/Beads Mix components. ........................................................... 43 

Table 5. Primers and probes sequences with respective fluorochrome and quencher for 

qMSP. ................................................................................................................................ 47 

Table 6. Gene combinations for multiplex qMSP. ............................................................. 47 

Table 7. Primers and probes sequences with respective fluorochrome and quencher for 

ddPCR. .............................................................................................................................. 49 

Table 8. Gene combinations for multiplex ddPCR. ........................................................... 49 

Table 9. Formulas for biomarker performance calculations. ............................................. 50 

Table 10. Clinical and pathological features of breast, lung, colorectal and prostate cancer 

patients and asymptomatic controls included in this study. ............................................... 55 

Table 11. Limit of blank (LOB) and limit of detection (LOD) for ADCY4, MIR129-2, NID2 

and MAGI2. Values are displayed as number of positive droplets. ................................... 60 

Table 12. Concentration values of cfDNA extracted from plasma samples of lung, breast, 

colorectal and prostate cancer patients and asymptomatic controls included in this study.

 ........................................................................................................................................... 66 

Table 13. Biomarker performance of each gene promoter methylation levels for breast, 

lung, colorectal and prostate cancer detection. ................................................................. 70 

Table 14. Biomarker performance of the “PanCancer” gene panel for breast, lung, colorectal 

and prostate cancer detection. .......................................................................................... 70 

Table 15. Biomarker performance of the “PanCancer” panel for early (stage I/II) and late 

(stage III/IV) stage detection of breast, lung, colorectal and prostate cancer. ................... 71 

Table 16. Biomarker performance of the “PanCancer” panel for simultaneous detection of 

breast, lung, colorectal and prostate cancer. ..................................................................... 71 

 
 
 
 



 

 
  



 

List of Abbreviations 
 
5hmC – 5-hydroxymethylcytosine 

5mC – 5-methylcytosine 
 

A 
AC – Asymptomatic control 

ADC – Adenocarcinoma 

ADCY4 – Adenylyl cyclase type 4 

ADCY4me – Methylated adenylyl cyclase type 4 

ADT – Androgen deprivation therapy 

ALK – ALK receptor tyrosine kinase 

AOX1 – Aldehyde oxidase 1 

APC – APC regulator of WNT signalling pathway 

AR – Androgen receptor 

AUC – Area under curve 
 

B 
BRAF – B-Raf proto-oncogene, serine/threonine kinase 

BrC – Breast Cancer 
 

C 
CDO1 – Cysteine dioxygenase type 1 

CE-IVD – Conformité Européenne – In Vitro Diagnostic 

CELF2 – CUGBP Elav-like family member 2  

cfDNA – cell-free DNA 

cfRNA – cell-free RNA 

CHFR – Checkpoint with forkhead and ring finger domains 

CIMP – CpG island methylator phenotype 

CIN – Chromosomal instability 

CP – Normal prostate tissue  

CpG – Cytosine-phosphate-guanine 

CRC – Colorectal Cancer 

CRN – Normal colorectal tissue 

CT – Computed tomography  

CTC – Circulating tumor cell  

ctDNA – Circulating tumor DNA 

CXR – Chest X-Ray 



 

D 
DBT – Digital breast tomosynthesis  

DCIS – Ductal carcinoma in situ 

ddPCR – Droplet digital polymerase chain reaction 

DNMT – DNA methyltransferase 

dPCR – Digital polymerase chain reaction 

DRE – Digital rectal examination 
 

E 
EDNRB – Endothelin receptor type B 

EDTA – Ethylenediaminetetraacetic acid 

EGFR – Epidermal growth factor receptor 

ER – Estrogen receptor 

ETS – E26 transformation-specific 

EV – Extracellular vesicle 
 

F 
FAP – Familial adenomatous polyposis 

FDA – US Food and Drug Administration 

FFPE – Formalin-fixed paraffin-embedded 

FIT – Fecal immunochemical test 

FLOT1 – Flotillin 1 

FOBT – Fecal occult blood test 
 

G 
GFRA1 – GDNF family receptor alpha-1 
 

H 
HDAC – Histone deacetylase 

HER2 – Human epidermal growth factor receptor 2 

HNPCC – Hereditary non-polyposis colon cancer 

HOXA11 – Homeobox A11 
 

I 
IDC – Invasive ductal carcinoma 

IHC – Immunohistochemistry  

ILC – Invasive lobular carcinoma  
 

K 
Ki-67 – Marker of proliferation Ki-67 



 

KRAS – Kirsten rat sarcoma viral oncogene homolog 
 

L 
LC – Lung cancer  

LCIS – Lobular carcinoma in situ 

LCLC – Large cell lung cancer  

LDCT – Low-dose computed tomography  

LOB – Limit of blank 

LOD – Limit of detection 

LOQ – Limit of quantification 
 

M 
MAGI2 – Membrane-associated guanylate kinase, WW and PDZ domain-containing protein 

2 

MAGI2me – Methylated membrane-associated guanylate kinase, WW and PDZ domain-

containing protein 2 

MBP – Methyl-binding protein 

MCED – Multi-cancer early detection 

MIR129-2 – microRNA-129-2 

MIR129-2me – Methylated microRNA-129-2 

MRI – Magnetic resonance imaging  

MSI – Microsatellite instability 
 

N 
NBr – Normal breast tissue 

NID2 – Nidogen 2 

NID2me – Methylated Nidogen 2 

NL – Normal lung tissue 

NSCLC – Non-small cell lung cancer  
 

P 
p40 – Isoform of p63 (deltaNp63) 

p53 – Tumor suppressor p53 

PCa – Prostate cancer 

PCR – Polymerase chain reaction 

PIK3CA – Phosphatidylinositol-4,5-bisphosphate 3-kinase, catalytic subunit alpha 

PR – Progesterone receptor 

PSA – Prostate-specific antigen  

PTGER4 – Prostaglandin E receptor 4 



 

Q 
qMSP – Quantitative methylation-specific polymerase chain reaction 
 

R 
ROC – Receiver operating characteristic 

ROS1 – Proto-oncogene tyrosine-protein kinase ROS 
 

S 
SCC – Squamous cell carcinoma 

SCLC – Small cell lung cancer  

SEPT9 – Septin 9 

SHOX2 – Short-stature homeobox 2 

SSP – Sessile serrated polyp 
 

T 
TEP – Tumor-educated platelet 

TET – Ten-eleven translocation methylcytosine dioxygenases 

TOO – Tissue-of-origin 

TTF-1 – Thyroid transcription factor 1 
 

U 
USPSTF – United States Preventive Services Taskforce 
 

W 
WHO – World Health Organization 
 

Z 
ZSCAN1 – Zinc Finger And SCAN Domain Containing 1 

 



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

I.INTRODUCTION 



 

 



 3 

1. Four major cancers 
 

According to GLOBOCAN 2020, considering both genders, breast cancer (BrC), lung 

cancer (LC), colorectal cancer (CRC) and prostate cancer (PCa) are the most incident 

cancers worldwide. In fact, these four cancers account for over 40% of all cancer diagnoses 

and about 38% of all cancer deaths, worldwide (Figure 1) [1]. 

In males, LC is the most diagnosed cancer, followed by PCa and CRC. Moreover, LC is 

also the leading cause of death by cancer in males, followed by liver cancer and CRC. 

Among females, BrC is the most diagnosed malignancy, followed by CRC and LC in 

incidence and mortality [1].  

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 1. Pie charts representing the percentage of cancer-related incidence (A) and mortality (B) in both sexes, 

worldwide, in 2020. Adapted from [1]. 

 

1.1 Breast Cancer  
 

Worldwide, 2.3 million new BrC cases were estimated in 2020, which accounts for 1 in 

4 cancer cases in women [1]. BrC can also occur in men, but it is more than 100 times more 

common in females than in males [2]. Usually, developed countries present higher BrC rates 

compared to developing countries, which may be due to certain lifestyle and reproductive 

factors more common in developed countries. However, with the ‘‘Westernization’’ of 

developing countries, BrC incidence rates have been rising over the last decades, leading 

to a global incidence increase [1, 3]. BrC is most common in women aged 55 to 64 and is 

rarely diagnosed in women younger than 40. As expected, the risk increases with age, 

although decreasing after menopause, suggesting that hormones play a crucial role in 

breast carcinogenesis [3]. In fact, environmental, lifestyle and reproductive factors have 

Incidence Mortality 

A B 



 4 

been shown to have impact in BrC: late menarche and early menopause are associated 

with less risk of BrC and it has also been shown that postmenopausal BrC risk reduces by 

4% for each year that menarche is postponed [3]; women who went through pregnancy 

have reduced risk of BrC and studies revealed that each pregnancy reduces 

premenopausal BrC risk by 3% and by 12% for postmenopausal BrC. Also, earlier first births 

and increased number of births have been associated with lower risk [3], along with 

breastfeeding and increased breastfeeding [3, 4]; Contrarily, oral contraceptive use seems 

to be linked with increased BrC risk, however, research in this topic is not enough to fully 

support this association [3, 4]. Additionally, family history of breast cancer, especially in one 

or more first-degree relatives is a strong risk factor for BrC [4]. Although with less 

consistency, external factors, such as alcohol consumption, diet, especially with high fat 

intake, obesity and exposure to radiation are also considered risk factors for BrC 

development. On the other hand, physical activity has been associated with BrC risk 

reduction [3].  

BrC has been recognized as a heterogeneous disease for a long time, with a large 

degree of inter- and intra-tumor variability [4]. It can occur in any cell of the mammary gland 

and displays a variety of morphologies, IHC profiles and histological subtypes, each leading 

to specific clinical outcomes [2]. Carcinomas account for the majority of BrC and are 

histologically classified according to two factors: if the tumor is limited to breast epithelium 

(in situ carcinoma) or invaded the stroma (invasive carcinoma); if the tumor originates from 

the ducts (ductal carcinoma) or from the lobules (lobular carcinoma). Hence, BrC can be 

subdivided in ductal carcinoma in situ (DCIS), invasive ductal carcinoma (IDC), lobular 

carcinoma in situ (LCIS) and invasive lobular carcinoma (ILC) [2]. IDC is the most common 

form of BrC with 55% incidence, followed by ILC with 5%-15% incidence. [2]. Importantly, 

molecular classification provides information for targeted therapies and allows for 

individualized treatment [5]. According to different genes’ expression, BrC is classified in 

luminal A, luminal B, HER2 and basal-like. Luminal A is positive for estrogen (ER) and 

progesterone receptors (PR) expression and negative for human epidermal growth factor 

receptor-type 2 (HER-2) expression. Luminal B is also positive for ER/PR, meanwhile, 

expression of HER-2 may vary. It is distinguished from luminal A due to increased Ki-67 

expression. HER2 is negative for ER/PR and is characterized by a highly positive HER-2 

expression. Basal-like or tiple-negative is negative for ER/PR and HER-2 [2, 5].  

 

1.1.1 Screening and diagnosis 
 

Early BrC diagnosis without detectable metastasis is a potentially curable disease [6]. 

Therefore, effective screening and early detection are essential for mortality reduction.  
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Mammography is the gold-standard screening method for BrC and it significantly 

reduces the risk of death from the disease. Data from randomized control trials have shown 

that screening mammography reduces BrC cancer mortality by at least 20% [7]. Nowadays, 

several European countries have national or regional mammography screening programs 

aiming to detect BrC at an early stage and recommend this procedure to be taken every 

two years. In fact, a two-year time interval between screening allowed for mortality reduction 

in women between 50 and 69 years old [8]. Importantly, annual screening in women aged 

between 40 and 84 years has shown more impressive results in mortality reduction [7]. 

Indeed, the guidelines for BrC screening are not consensual and different organizations 

suggest different time and age intervals [7, 9]. Digital breast tomosynthesis (DBT), 

ultrasound, and magnetic resonance imaging (MRI) are other methods for BrC screening 

that appear to improve its detection [7]. For instance, DBT enables BrC detection even in 

women with dense breasts, a factor that is known to interfere with mammography accuracy 

[10]. However, these procedures can be more expensive and require more samples, being 

more time consuming [7, 10]. Besides its benefits in mortality reduction, BrC screening also 

presents some disadvantages such as overdiagnosis [11]. False positive results, 

unnecessary biopsies, and radiation exposure are also harmful consequences of BrC 

screening [9, 11]. 

Currently, BrC diagnosis is based on clinical examination, such as breasts and lymph 

nodes palpation, and is confirmed by histopathological evaluation of tissue samples 

obtained by core needle biopsy from the primary tumor or metastasis, if suspected [8]. 

Personal medical history, breast/ovarian cancer-related family history, and menopausal 

status assessment are other factors usually considered for diagnosis [8].  

 

1.2 Lung Cancer 
 

Worldwide, 2.2 million new LC cases and 1.8 million fatalities were estimated in 2020 

[1]. The World Health Organization (WHO) estimates that LC is the cause of 1.59 million 

deaths globally per year [12], which happens mainly because it is mostly asymptomatic, 

leading to a late-stage diagnosis [13].  

Tobacco smoking is an important LC risk factor, being responsible for 80-90% of all LC 

cases. However, only 15% of smokers develop LC, which suggests the relevance of other 

factors, namely genetic/epigenetic factors. Males appear to be more susceptible to develop 

LC than females, although, large cohort studies have found no association between gender 

and risk of LC. In addition, LC usually does not manifest until people reach around 50 years 

old and the risk of developing the disease increases with age, thereafter, being the median 

age of diagnosis at 70 years [13, 14].  
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Based on histology, LCs are classified in two main groups: small-cell carcinoma 

(SCLC), which accounts for 10-15% of all cases, and non-small-cell carcinoma (NSCLC), 

the most common form of LC, accounting for 85-90% of all cases [15]. NSCLC 

encompasses adenocarcinoma (ADC), squamous cell carcinoma (SCC) and large-cell lung 

carcinoma (LCLC). ADC accounts for about 40% of all LC cases, being, in fact, the major 

diagnosed subtype, followed by SCC with 20% of incidence and, lastly, LCLC, which 

represents a small percentage of about 3% of all LCs [15]. LCLC is also known as 

undifferentiated NSCLC, due to the fact that its diagnostic is achieved by ruling out the other 

three subtypes [15]. SCLC is the most tobacco smoking associated LC type, with 95% of 

all diagnosed cases having a history of tobacco exposure. Since smoking rates tend to be 

declining, this might explain why SCLC incidence is lower compared to NSCLCs [16].   

In addition to histological classification, genetic alterations, such as EGFR mutations and 

ALK and ROS1 rearrangements provide prognostic information allowing for patient tailored 

therapy [15]. 

 

1.2.1 Screening and diagnosis 
 

As mentioned, LC has a high mortality rate since it is usually detected at late stages, 

when patients present symptoms. Therefore, screening is crucial for early diagnosis and 

mortality reduction [13, 17].  

Currently, low-dose computed tomography (LDCT) and chest X-ray (CXR) are two 

available screening methods. In the USA, in a study conducted by the National Lung 

Screening Trial, researchers demonstrated a 20% reduction in LC mortality by LDCT 

compared with CXR, which only decreased mortality by 6.7%. However, 96.4% of the 

positive results by LDCT and 94.5% of those by CRX were false positive results [18]. 

Therefore, the high false positive rates raised by these screening methods are a major 

concern, in addition to the excessive radiation exposure [17]. Nonetheless, the US 

Preventive Services Task Force (USPSTF) recommends annual screening by LDCT in 

individuals aged 50–80 at increased risk of developing LC i.e., individuals with >20 pack-

year smoking history, currently smoking or that have quit within the last 15 years [19].  

Regarding LC diagnosis, the current gold-standard procedure is microscopic 

evaluation of histological or cytological samples, providing the confirmation of the tumor’s 

presence and its histological type, based on morphology and IHC. Samples are usually 

obtained from the primary tumor or metastasis through a bronchoscopy [12, 15]. IHC serves 

primary diagnosis, as well as prediction of LC subtypes according to specific markers: 

positive expression of thyroid transcription factor 1 (TTF-1) favors ADC diagnosis, positive 

expression of p40 favors SCC diagnosis and both markers are usually used in combination. 
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If the expression is negative for both, the diagnosis remains NSCLC-not otherwise specified 

(NSCLC-NOS), due to its inconclusiveness [12]. 

 

1.3 Colorectal Cancer 
 

Over 1.9 million new CRC cases and 935,000 deaths were estimated in 2020, for both 

genders, accounting for 1 in 10 cancer cases and related deaths [1]. Incidence is low at 

ages younger than 50 years, but increases with age, being the median age of diagnosis 

around 70 years in developed countries [20]. Also, the risk seems to be about 2 times higher 

in men than in women [21].  

Several environmental and lifestyle risk factors have been associated with CRC 

development, including high consumption of red and processed meats, high consumption 

of alcohol, increased body fat and diabetes [20]. Other pathologies, like ulcerative colitis 

and Crohn’s disease were also associated with CRC development [21]. Evidence suggests 

that infection with Helicobacter pylori, Fusobacterium spp and other infectious agents might 

also be associated with CRC increased risk [20]. Contrarily, physical activity has been 

shown to be a protective factor [20]. Importantly, CRC also has a heavy heritable 

component. In fact, 35% of CRC risk might be due to heritable factors [20]. Over the last 

decades, genetic bases of several CRC syndromes have been identified, such as the Lynch 

syndrome or hereditary nonpolyposis colorectal cancer (HNPCC) and familial adenomatous 

polyposis (FAP), the two main heritable syndromes. Lynch syndrome is caused by 

mutations in genes involved in DNA mismatch repair and FAP is caused by APC gene 

mutations. In fact, APC gene mutations are an early event in CRC formation and occur in 

more than 70% of cases [20, 21]. Nonetheless, most CRC cases are sporadic i.e., are 

developed due to external factors that generate a sequential accumulation of somatic 

mutations that lead to genomic instability by 3 different pathways: chromosomal instability 

(CIN) pathway, caused by mutations in genes that activate the WNT pathway; microsatellite 

instability (MSI) pathway, due to loss or failure of DNA mismatch repair genes; CpG island 

methylator phenotype (CIMP) pathway, characterized by promoter hypermethylation and 

consequent silencing of many key tumor suppressor genes [21, 22].  

Heritable or sporadic, CRCs develop slowly via a multistep process involving a series 

of histological, morphological, and genetic/epigenetic changes that accumulate over time. 

It typically develops from benign abnormal tissue growths, also known as polyps, within the 

intestinal mucosa, from which the cells start to proliferate and accumulate genetic and 

epigenetic changes, acquiring the ability to invade the lumen and eventually spread to 

distant metastatic sites [23]. There are two types of polyps with malignant potential, 

adenomas and sessile serrated polyps (SSPs), and each use different pathways to develop 
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into a tumor. For instance, adenomas commonly follow the so-called “adenoma–carcinoma 

sequence”, which consists of sequential mutations in the APC gene, followed by the KRAS 

oncogene and the p53 gene. However, development of SSPs often begins with mutations 

in the BRAF gene and may also occur in the KRAS oncogene but are less frequent [20, 23].  

 

1.3.1 Screening and diagnosis 
 

While early stage and localized CRC display a 5-year survival rate in 90% of cases, 

those diagnosed at late stage and that have metastasized to distant sites only show a 

survival rate of about 13%. At late stages, CRC treatment is palliative and highly expensive, 

hence, effective screening methods are essential for mortality and cost reductions [23]. 

Colonoscopy is the current reference method for CRC screening and is recommended 

every 10 years in patients aged 50 years or older, presenting up to 95% sensitivity and 

nearly 100% specificity [23, 24]. It allows the visualization of the entire colon and the 

detection of both cancerous and precancerous lesions [23]. One of colonoscopy’s greatest 

advantages is that it allows the removal of polyps at the time of detection [23, 24]. However, 

some disadvantages include the invasiveness of the procedure and the risk associated with 

anesthesia and the required bowel preparation. Bowel preparation is often time-consuming 

due to the necessary temporary change in medications and diet and entails use of a 

cleansing agent, leading to electrolyte abnormalities. Perforation of the bowel and post-

colonoscopy bleeding is also possible, but very rare [23, 24]. Sigmoidoscopy is another 

screening method available, very similar to colonoscopy, but less common, that only 

analyses the distal half of the colon. Besides, it does not require sedation and the bowel 

preparation is simply an enema on the day of the examination. However, if lesions are 

identified in the distal colon, a follow-up colonoscopy is required [23]. Computed 

tomography (CT) colonography consists in a structural radiologic examination of the colon 

that takes multiple pictures and allows to create a 2- or 3-dimensional image of the colon 

[23, 24]. Usually, this procedure is undertaken by patients who are not fitted for colonoscopy 

and has the disadvantage of radiation exposure [23]. Fecal occult blood testing (FOBT) and 

fecal immunochemical testing (FIT) are also screening methods available that detect 

hemoglobin as a marker of blood in feces [23]. These tests are non-invasive and do not 

require bowel preparation, although usually lead to false-positive results and have limited 

sensitivity to detect precancerous lesions [23]. While FOBT displays 79.4% sensitivity and 

86.7% specificity, FIT can detect CRC with 79% sensitivity and 94% specificity, although 

only showing 28% sensitivity for detecting advanced adenomas [25].  

For diagnosis, tissue samples obtained from the colonoscopies are further analyzed 

histologically by a pathologist [20, 26]. 
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1.4 Prostate Cancer  
 

Being the second most incident cancer among men, almost 1.4 million new PCa cases 

and 374,000 deaths were estimated in 2020 [1]. PCa is more commonly diagnosed in older 

men, being the average age at diagnosis 65 years. The risk for developing the disease 

increases after the age of 50 and it is expected that 1 in 6 men will be diagnosed with PCa 

during lifetime [27]. African American, African Caribbean and South American men also 

have higher incidence and mortality rates of PCa than Caucasian men [27]. Aside from age 

and race, the most well-established risk factor for PCa is family history of the disease. First-

degree relatives of men with PCa have two times more risk for PCa than the general 

population and four times more risk if they are first-degree relatives of men diagnosed with 

PCa at age younger than 60 years [28]. Lifestyle factors, such as diet, smoking and alcohol 

consumption also seem to be associated with an increased risk for PCa [27].  

The majority of prostate tumors are carcinomas, although, rarely, they can also be 

diagnosed as sarcomas or lymphomas [29]. Prostate carcinomas can be further subdivided 

in intraductal carcinomas, adenocarcinomas, adenosquamous carcinomas, squamous cell 

carcinomas and basal cell carcinomas, being adenocarcinomas the most commonly found 

tumors [29]. Adenocarcinomas might originate from prostatic intraepithelial neoplasms, that 

develop into localized adenocarcinomas and, eventually, into advanced adenocarcinomas 

and metastasis [30]. PCa can also be classified molecularly, according to specific genes 

expression, as ETS-positive or ETS-negative, based on the fusion of ETS genes with 

androgen-regulated, prostate-specific genes, the most common rearrangement that occurs 

in prostate carcinogenesis [31]. These rearrangements seem to occur early and might result 

from activated androgen receptors (AR) generating DNA damage through transcription at 

androgen-receptor binding sites [28]. AR are transcription factors that bind to testosterone 

and other androgens, becoming active, and then bind to the promoter region of their 

targeted genes to promote transcription. They are required for prostate normal functioning, 

however, their activation is also associated with PCa development, since several molecular 

alterations that occur in early stages of PCa involve genes that are androgen-dependent 

[31]. Hence, androgen deprivation therapy (ADT) is a common procedure for PCa 

treatment, and its application has led to a significant reduction in mortality, even in 

metastatic PCa [28, 31]. 

 

1.4.1 Screening and diagnosis 
 

PCa screening is essential for identifying men with potentially lethal tumors during an 

asymptomatic phase, hopefully, leading to an increase in survival rates. Currently, the most 

widely used screening procedures are digital rectal examination (DRE) and serum prostate-
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specific antigen (PSA) testing [32]. During many years, DRE was the primary screening test 

for PCa, however, the majority of cancers were detected, already, at an advanced stage 

[33]. In 1986, the PSA test was approved by the FDA as a tool for PCa patients monitoring 

but was rapidly converted in a screening test and widely used due to its ability of increased 

early detection of PCa, compared to DRE [33, 34]. PSA is a protease produced by prostatic 

epithelial cells and its levels are elevated in PCa, but also in other pathologies, such as 

prostatic hyperplasia or infections, which may lead to false-positive results [34]. 

Overdiagnosis of PCa is another drawback of PSA screening, with a study having reported 

29% overdiagnosis for white men and 44% for black men [35]. Moreover, a normal PSA 

value does not exclude the existence of PCa. It was shown, in a clinical trial, that PCa was 

detected in 15% of men with normal results on PSA and also DRE who underwent a prostate 

biopsy at the end of the study [33]. Concerning screening guidelines, most guidelines do 

not recommend screening in men older than age 75, since the risks of adverse effects from 

treatment, comorbidity and overdiagnosis are increased. Intervals between screening 

should be 2 years for men in risk and can be expanded up to 8 years for those not at risk. 

As for at which age to start screening, options vary between countries and are adapted to 

the risk of patients [32, 36].  

Regarding diagnosis, the current standard procedure is transrectal ultrasound-guided 

prostate biopsy, following abnormal results obtained from DRE and PSA. By convention, 

10-12 tissue samples are collected, and further analyzed histologically for PCa confirmation 

[36].  

 

2. Liquid biopsy-based cancer biomarkers 
 

A biomarker can be any substance, structure or process measurable in the body that 

sheds light on disease status and behavior [37]. Particularly, cancer biomarkers comprise 

a wide variety of molecules such as nucleic acids, enzymes, metabolites, transcription 

factors, cell surface receptors or epigenetic alterations obtained from either tumor tissue or 

body fluids [38, 39]. Based on their applications, these can be classified as: 

“Screening/Diagnostic biomarkers” if they are used to identify early-stage cancer/specific 

cancer types; “Prognostic biomarkers” if they aim at informing physicians regarding the risk 

of clinical outcomes; Predictive biomarkers” if they predict response to specific therapeutic 

interventions [40]. Thus, the ultimate goal of cancer biomarkers is to become a reliable and 

cost-effective tool for disease management in all its phases, whether from early detection 

to tumor classification and monitoring, hopefully leading patients to receive the most 

appropriate treatment [39]. Indeed, with the rise of high-throughput technologies and tumor 

molecular characterization, biomarkers have become a powerhouse of a field in cancer 
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research and, together with the demand for precision medicine, these play an increasingly 

important role in cancer patients’ clinical course and, consequently, mortality reduction [38, 

40]. Nonetheless, since cancer diagnosis and prognostication use tissue biopsy sampling 

as a standard approach, biomarker research has also taken advantage of this biological 

material for molecular profiling of tumors. However, there are important issues linked to 

tissue-based biopsy that need to be considered: (1) it requires an invasive surgical 

procedure; (2) some tumors are not accessible due to their anatomical location; (3) its ability 

to be used as an early detection tool is very reduced, (4) as well as its application in the 

evaluation of treatment efficiency and monitoring of tumor progression; (5) it does not allow 

characterization of tumor heterogeneity [41-43].  

Recently, liquid biopsies have emerged as a tool to overcome these challenges. 

Consisting in the capture of tumor-related markers from fluid samples, such as blood or 

urine, liquid biopsies are an ideal substitute for tissue biopsies due to its minimal 

invasiveness, ease to obtain, ability to follow-up tumor evolution in real time and highlight 

tumor heterogeneity [42, 43]. They comprise a variety of analytes namely circulating cell-

free DNA (cfDNA), cell-free RNA (cfRNA), circulating tumor cells (CTCs), extracellular 

vesicles (EVs), tumor-educated platelets (TEPs), proteins and metabolites [43, 44].  

 

 

 
 
 
Figure 2. Liquid biopsy. Tumors shed information into the bloodstream, such as circulating cell-free DNA 

(cfDNA), cell-free RNA (cfRNA), circulating tumor cells (CTCs) and extracellular vesicles (EVs), so blood can 

be collected and used as a minimally invasive source of cancer-related biomarkers. Created with 
BioRender.com. 
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Focusing on cfDNA, consisting in circulating extracellular DNA not related to any 

subcellular or molecular structure [43], it can arise from a wide variety of cell types and its 

proportions are also dependent on the physiological status, being the cfDNA of a healthy 

individual derived primarily from dead blood cells, while a pathological tissue, such as a 

cancer tissue, can contribute and release more DNA into the circulation [45]. This circulating 

tumor DNA (ctDNA) can be released into the bloodstream from necrotic or apoptotic cells 

within the primary tumor, CTCs in the blood, metastatic deposits present in distant locations 

or it can be even secreted within EVs [46]. Therefore, ctDNA may present the same genetic 

and epigenetic alterations found in the primary tumor, making it a potential biomarker for 

cancer detection and monitoring [47]. It is important to note that elevated cfDNA levels in 

the blood can be due to other conditions besides cancer, such as, inflammation or trauma. 

Both these events involve cell death, consequently leading to the release of nucleic acids 

[48]. Hence, ctDNA represents a fraction of cfDNA that can be increased in cancer patients 

due to the accelerated cellular turnover together with the decreased removal of dead cells, 

ranging from 0,01% to more than 50% of the total cfDNA population. Other factors that 

might influence ctDNA quantity are tumor size, location and vascularization, as well as the 

presence of metastatic sites [47, 48]. 

Molecular profiling of driver mutations in tumor tissue has been the main clinical use of 

biomarkers. Accordingly, the first clinical application of liquid biopsies also was the detection 

of these mutations in ctDNA to replace multiple puncturing with multiple blood draws [49, 

50]. In fact, 2 cfDNA-based assays have been approved by the FDA and are currently used 

to identify patients who will likely respond to specific targeted therapies: cobas® EGFR 

Mutation Test v2, a PCR test that detects mutations in the EGFR gene of patients with 

NSCLC predictive of response to erlotinib; therascreen PIK3CA RGQ PCR kit, a PCR test 

that detects mutations in the PIK3CA gene of BrC patients and predicts response to alpelisib 

[51]. More recently, 2 next generation sequencing-based assays were also approved: 

Guardant360 CDx, a genomic profiling test that detects mutations in cfDNA of patients with 

NSCLC predictive of response to osimertinib and amivantamab [52]; FoundationOne Liquid 

CDx, the first approved pan-cancer cfDNA-based genomic profiling assay that detects 

mutations in patients with NSCLC, metastatic PCa, BrC and ovarian cancer, and predicts 

response to several therapies [53].  

Although the use of liquid biopsies for cancer prognostication and drug response 

prediction has been well established, its utility as a tool for cancer early detection and 

diagnosis is far behind. However, it has been reported that tumors start to shed information 

into the circulation very early, allowing to detect cancer even when individuals have not 

started to develop symptoms or tumor masses are not visible by imaging [54, 55]. 
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3. Epigenetics 
 

The concept of epigenetics arose in the 1940s by Conrad Waddington to explain why 

genetic variations did not always lead to phenotypic variations and how genes interacted 

with their environment to yield a phenotype. This concept evolved and, currently, 

epigenetics is known as the study of gene expression alterations, without changes in the 

DNA sequence itself. Besides, epigenetic modifications are maintained during cell division, 

thus being heritable [56, 57]. The main epigenetic mechanisms are DNA methylation, 

histone tail post-translation modifications, histone variants and chromatin remodelling by 

protein complexes (Figure 2) [57, 58]. These mechanisms are essential for proper gene 

expression, defining where and when DNA transcription can start, in order to guide normal 

cell development and differentiation [59]. Hence, the disruption of epigenetic regulation 

leads to uncontrolled cell division and differentiation defects, underlying a variety of 

pathologies, such as cancer [60]. Indeed, aberrant epigenetic patterns are increasingly 

being studied as alternatives to genetic variations in the disruption of normal gene 

expression that underlies the carcinogenic process [57].  
 

 

Figure 3. Epigenetic mechanisms regulating gene expression. DNA methylation consists in the addition of a 

methyl group to cytosines present in CG dinucleotides. Histone post-translation modification consist in the 
addition of chemical groups (methyl, acetyl, phosphate, ubiquitin, etc.) to amino acid residues of histone tails. 

Histone variants substitute canonical histones in the nucleosome, impacting chromatin structure. Chromatin 

remodeling complexes are protein complexes that regulate chromatin structure by altering nucleosome 
positioning. Created with BioRender.com.  

 
3.1 DNA methylation  

 

DNA methylation is the most well studied epigenetic mechanism in mammals [57-59]. It 

consists in the covalent addition of a methyl group to the 5-carbon of cytosines residues by 

the action of DNA methyltransferases (DNMTs). Usually, this reaction takes place within 

CpG dinucleotides i.e., regions of the genome where a cytosine nucleotide is followed by 
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a guanine nucleotide. While most CpG dinucleotides are scattered across gene coding 

regions and repetitive sequences, CpG clusters can be found in the so called CpG islands, 

preferentially located at the 5’ end of the genes, where the promoters are located [61-63]. 

In normal cells, CpG islands are usually unmethylated, however, they can become 

methylated, leading to gene silencing. There are some exceptions, and physiological 

hypermethylation associated with promoters is observed on the silenced copy of the X 

chromosome in females, on imprinted genes, and in a tissue-specific manner [57]. Gene 

silencing mediated by DNA methylation can happen by two mechanisms: by directly 

preventing the interaction of transcription factors with the DNA sequence and/or by the 

action of methylcytosine-binding proteins (MBPs) that identify methylated CpGs and recruit 

other proteins, like DNMTs and histone deacetylases (HDACs), that modify the chromatins 

conformation, preventing gene transcription [57, 63].  

Besides, CpG island promoter hypermethylation is commonly linked to cancer, due to 

altering specific genes’ expression, such as tumor suppressor genes or genes involved in 

DNA repair [61]. In fact, aberrant DNA methylation can contribute to the carcinogenic 

process by: global hypomethylation of the genome leading to activation of silenced 

oncogenes; hypermethylation of the promoters of tumor suppressor genes and direct 

mutagenesis; CpG sites methylation increases the binding of some chemical carcinogens 

to DNA and increases the rate of UV-induced mutations [62, 64]. Of note, methylation’s 

effect in cells depends on the genomic location where it occurs. As aforementioned, gene 

promoter methylation is associated with gene silencing, however, gene body methylation 

appears to be associated with gene expression [65]. 

The number of known genes affected by transcription disruption through DNA 

methylation continues to grow and involves genes found at all chromosome locations. 

Furthermore, this alteration occurs during all tumor progression and, apparently, specific 

genes are aberrantly methylated in specific tumor stages, which renders DNA methylation 

an attractive cancer biomarker from early detection to disease monitoring. Additionally, due 

its cell- and tissue-specificity, combined with its easiness of access through liquid biopsies, 

DNA methylation presents an ideal biomarker for detecting and discriminating different 

cancer types in a minimally invasive manner [64, 66]. In fact, cfDNA methylation-based 

assays have already been developed for cancer detection. For instance, the Epi ProColon® 

2.0 test, developed by Epigenomics AG, is intended for CRC detection in individuals 

declining conventional screening. By assessing the methylation levels of the SEPT9 gene 

in cfDNA, this test has shown 75-81% sensitivities and 96-91% specificities for CRC 

detection and, remarkably, it was the first epigenetic-based blood test for cancer detection 

to receive FDA approval in 2016 [67, 68]. Additionally, it is also commercially available in 

Europe (CE-IVD certified) and China [69]. Interestingly, the same company also developed 
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the Epi proLung® test, meant for LC detection by evaluating the methylation status of the 

SHOX2 and PTGER4 genes. This test displayed 85% sensitivity for 50% specificity, while 

sensitivity decreased to 59% if 95% specificity was considered [67]. Notably, Epi proLung® 

received CE-IVD mark in 2017 [67, 68].  

 

4. DNA methylation testing in liquid biopsies as a novel strategy 
for multi-cancer early detection 
 

Current screening methods for the four major cancers applied in the clinical practice 

have, indeed, increased the detection and survival rates of cancer patients. Nonetheless, 

several drawbacks are also associated with each screening method, as mentioned above. 

While BrC, LC and PCa screening result in high rates of false-positives and overdiagnosis, 

leading to unnecessary invasive tissue biopsies and treatments, CRC screening is highly 

invasive. Besides, population-based screening is only available for BrC and CRC, in 

addition to cervical cancer, meaning that more than 60% of cancer deaths are caused by 

cancers without any screening option [1]. It is widely accepted that early detection of cancer 

results in better outcomes for patients, due to the availably of treatment options, namely 

curative ones. In fact, at least 15% of cancer-related deaths within 5 years could be avoided 

by detecting the disease early onset [70]. Thus, there is a demand for new screening and 

early detection strategies, preferably an unexpensive, minimally invasive and highly 

sensitive and specific one. Following such rationale, a blood-based test that could 

simultaneously detect multiple cancer types in early stages, and even be applied to high-

risk population-based screening, seems a rather intriguing new approach. Besides, a pan-

cancer approach might be the only cost-effective option for low prevalent cancer screening 

[71]. Such a multi-cancer early detection (MCED) test would ideally have high sensitivity for 

early-stage disease detection, high specificity to avoid false-positive results, and the ability 

to discriminate the tissue of origin (TOO) of the detected cancer [71]. Besides, given DNA 

methylation’s features of aberrant tumor-specific patterns, tissue-specificity and easiness 

to assess in cfDNA, there is great potential for methylation-based pan-cancer detection [66].  

Having this in mind, we conducted a literature review aiming to explore the current 

approaches and advances being made for multi-cancer early detection using DNA 

methylation as a biomarker (Appendix I). The information gathered from the studies found 

and considered relevant is displayed in Table 1, showing multi-cancer detection strategies 

validated in human clinical specimen. 
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Table 1. DNA methylation-based multi-cancer early detection (MCED) tests. 

Biomarker Source Tumor types Sample Methodology Main findings Ref. 

 
 
DNA methylation Tissue 

lung, breast, 
colorectal, esophagus, 
liver, pancreatic, 
gastric, cervical, head 
and neck 

120 tumor tissue 
123 normal tissue 

Bisulfite 
pyrosequencing 

TCGA methylation data mining identified HIST1H4F as hypermethylated in 17 
tumor types.  
Methylation analysis in tissue samples of 9 cancer types showed AUCs above 
0.87 for all cancers and above 0.90 for all except pancreatic cancer. 

[72] 

Tissue 

lung, breast, 
colorectal, prostate, 
pancreas, 
glioblastoma and 
leukemia 

83 tumor tissue 
54 normal tissue 

Bisulfite 
pyrosequencing 

Methylation levels at 27 CpGs of the GHSR gene showed a higher average 
methylation degree in all tumor samples compared to normal samples.  
27 CpG-signature displayed an AUC of 0.8789 for discriminating cancer from 
normal tissue. 

[73] 

Tissue colorectal, gastric and 
esophageal 

229 tumor and normal-
adjacent tissue 

Bisulfite-
sequencing PCR 

TCGA methylation data mining identified differentially methylated regions 
(DMRs) in the SST gene. 7 CpG sites were shown to be hypermethylated in all 3 
cancers.  
A combination of 2 CpGs (+18 and +129) displayed the best AUC of 0.698, with 
59.3% sensitivity and 72.8% specificity for detecting the 3 gastrointestinal 
cancers. 

[74] 

Tissue 
lung, breast, colon, 
gastric and 
endometrial 

184 tumor tissue 
34 normal tissue 

Bisulfite 
amplicon 
sequencing 

Designed a 302-bp PCR amplicon, covering the ZNF154 tumor-specific 
hypermethylated region, and methylation patterns were used to develop a multi-
cancer classifier.  
AUC of 0.96 for discriminating cancer from normal tissue. 
Computational simulation of ctDNA displayed AUCs of up to 0.79. 

[75] 

Plasma colon, pancreatic, liver 
and ovarian 

71 cancer patients 
20 healthy individuals DREAMing 

TCGA methylation data from white blood cells revelead that ZNF154 locus 
remains unmethylated, even in older individuals, showing the potential for the 
development of a blood test for cancer detection. 
AUC values ranged from 0.75 to 0.87 for discriminating cancer patients from 
healthy individuals, except for liver cancer which displayed an AUC of 0.48. 

[76] 

Plasma lung and prostate 323 cancer patients 
136 healthy individuals qMSP 

"PanCancer" panel (FOXA1, RARβ2 and RASSF1A) detected cancer with 64.3% 
sensitivity, 69.8% specificity and 66.4% accuracy.  
"CancerType" panel (GSTP1 and SOX17) discriminated between lung and 
prostate cancer with 93% specificity. 

[77] 

Plasma lung, breast and 
colorectal 

253 cancer patients 
103 healthy individuals qMSP 

"PanCancer" panel (APC, FOXA1, RASSF1A) detected cancer with 72.4% 
sensitivity, 73.5% specificity and 72.8% accuracy. 
"CancerType" panel (SCGB3A1, SEPT9 and SOX17) discriminated TOO with 
80.0%, 98.9% and 85.1% specificity for breast, colorectal and lung cancer, 
respectively.  

[78] 

Serum 

lung, breast, 
colorectal, gastric, 
pancreatic, and 
hepatocellular 

70 cancer patients 
10 healthy individuals  MSP Methylation levels of a 4 gene-panel (RUNX3, p16, RASSF1A and CDH1) 

showed 89% sensitivity and 100% specificity for cancer detection.  [79] 

Plasma colorectal and 
pancreatic 

60 cancer patients 
60 healthy individuals 

Methylation 
array 

Found a 7 gene panel (MDR1, SRBC, VHL, MUC2, RB1, SYK and GPC3) that 
detects colorectal and pancreatic cancers with 63.16% sensitivity, 84% 
specificity and AUC of 0.8177. 

[80] 

Plasma lung, breast and liver 46 cancer patients 
32 healthy individuals 

Bisulfite 
sequencing 

Developed CancerLocator, a test based on cfDNA bisulfite sequencing combined 
with a probabilistic model for cancer detection and TOO discrimination. 
CancerLocator uses TCGA methylation data as features to estimate the fraction 
of ctDNA in the plasma and the likelihood of coming from each tumor type.  
TOO discrimination showed a low error rate of 0.265 (99.7% accuracy). 

[81] 
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Plasma liver but applicable to 
any cancer 

33 cancer patients 
36 healthy individuals 

Bisulfite 
sequencing 

Developed CancerDetector, a test based on cfDNA bisulfite sequencing 
combined with a probabilistic model that joints methylation states of multiple 
adjacent CpG sites on an individual sequencing read, for cancer detection.  
94.8% sensitivity and 100% specificity were obtained.  

[82] 

Plasma > 50 cancer types  

2482 cancer patients 
4207 healthy 
individuals 

Bisulfite 
sequencing 

Developed a targeted methylation assay combined with a machine learning 
classifier for detecting and discriminating TOO in more than 50 cancer types 
using cfDNA. 
54.9% sensitivity and 99.3% specificity were obtained in the validation set. 
93% accuracy for TOO prediction. 

[83] 

2 823 cancer patients 
1 254 healthy 
individuals 

Developed a refined assay and classifiers optimized for screening purposes and 
performed clinical validation. 
51.5% sensitivity and 99.5% specificity were obtained. 
88.7% accuracy for TOO prediction. 
PPV of 44.4% and NPV of 99.4% for cancer detection. 

[84] 

Plasma 

colorectal, 
hepatocellular, 
esophageal, gastric 
and pancreatic  

254 cancer patients 
46 healthy individuals 

Bisulfite 
sequencing 

Developed EpiPanGI Dx, a cfDNA methylation-based test combining bisulfite 
sequencing and machine learning, for detecting and discriminating TOO of 
gastrointestinal cancers. 
AUC of 0.88 for detecting gastrointestinal cancers. 
Accuracy of 0.85-0.95 for TOO prediction.  

[85] 

Plasma 
lung, colorectal, 
gastric, liver and 
esophageal 

191 pre-diagnosis 
cancer samples 
223 post-diagnosis 
cancer samples 
414 healthy samples 

Bisulfite 
sequencing 
(using semi-
targeted PCR 
libraries) 

Developed PanSeer, a blood test combining the analysis of 477 cancer-specific 
differentially methylated regions with machine learning for cancer detection.  
87.6% sensitivity for post-diagnosis samples, 94.9% sensitivity for pre-diagnosis 
samples and 96.1% specificity were obtained in the testing set. 
Cancer can be detected by PanSeer up to 4 years before conventional diagnosis 
with 95.7% sensitivity. 

[86] 

Plasma 
lung, pancreatic and 
acute myeloid 
leukemia  

137 cancer patients 
62 healthy individuals  cfMeDIP-seq  

Developed cfMeDIP-seq, an immunoprecipitation-based protocol for methylation 
profiling in cfDNA and combined it with machine learning algorithms to 
discriminate TOO. 
AUC values ranged from 0.92 to 0.98 for discriminating TOO. 

[87] 

Plasma lung, breast, colorectal 
and melanoma 

78 cancer patients 
66 healthy individuals 

Bisulfite 
sequencing 

Developed a targeted methylation sequencing assay to analyze the methylation 
status of 9 223 cancer related CpG sites, combined with a novel algorithm that 
converts sequencing data into a methylation score, for cancer detection and 
TOO discrimination.  
83.8% sensitivity and 100% specificity were obtained for cancer detection.  
78.9% accuracy for TOO discrimination. 

[88] 

Plasma lung, breast, colorectal 
and liver  Not available NGS 

Developed IvyGeneCORE Test, a blood test analyzing cfDNA methylation levels 
at specific genes combined with artificial intelligence for cancer detection.  
84% sensitivity and 90% specificity were obtained for discriminating cancer from 
healthy individuals. 

[89] 

Plasma 

lung, colorectal, 
pancreatic, liver, 
esophageal and 
ovarian 

625 cancer patients 
483 healthy individuals ELSA-seq 

Developed ELSA-seq, a targeted methylation sequencing assay combined with 
machine learning for cancer detection and TOO discrimination. 
80.6% sensitivity and 98.3% specificity were obtained in validation set. 
81.0% accuracy for TOO discrimination. 

[90] 

Plasma 14 cancer types 549 cancer patients 
80 healthy individuals 

Targeted 
sequencing 

Developed a cancer detection model based on 37 methylation-correlated blocks 
(MCB). 
72.86% sensitivity, 96.67% specificity and AUC of 0.86 were obtained in the 
validation set.  

[91] 

Plasma 

lung, breast, 
colorectal, pancreatic, 
gastric, esophageal, 
liver and ovarian 

598 cancer patients 
302 healthy individuals   

Targeted 
sequencing 

Developed a cancer detection and TOO discrimination model based on 135 
MCB. 
66.3% sensitivity, 95.5% specificity and AUC of 0.85 were obtained in the 
validation set. 75.4% accuracy for TOO discrimination. 

[92] 
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Plasma lung, breast, colorectal 
and pancreatic 

101 cancer patients 
71 healthy individuals  MSRE-qPCR 

Developed a 10-marker panel for cancer detection and a 16-marker panel for 
TOO discrimination.  
79% sensitivity, 90% specificity and AUC of 0.89 were obtained for cancer 
detection. TOO discrimination accuracy was 80% for colorectal, 78% for lung, 
75% for pancreatic and 62% for breast cancer. 

[93] 

Plasma 
lung, colorectal, 
bladder and 
pancreatic 

> 1 500 cancer 
patients 
> 1 800 healthy 
individuals 

5mC enrichment 
and targeted 
sequencing  

Developed a blood test based on cfDNA methylation signatures for early cancer 
detection and TOO discrimination. 
90% and 87% sensitivity at 90% specificity for stage I/II colorectal and lung 
cancer detection. 73% and 52% sensitivities at 95% specificity for stage I/II 
pancreatic and bladder cancer detection.  
At 98% specificity, TOO accuracy was 99% for colorectal, 94% for lung, 88% for 
bladder and 86% for pancreatic cancer. 

[94] 

Plasma 

lung, breast, 
colorectal, prostate, 
pancreatic, liver and 
ovarian 

111 cancer patients  
55 healthy individuals  

Targeted 
sequencing 

Developed Omni1, a targeted methylation sequencing panel comprising around 
3000 cancer-specific hypermethylation markers for cancer early detection. 
65% sensitivity for stage I cancers, 75% sensitivity for stage II cancers and 89% 
specificity were obtained.  

[95] 

Plasma 
lung, breast, 
colorectal, gastric, 
esophageal and liver 

269 cancer patients  
170 healthy individuals  

Bisulfite 
sequencing 

Developed Aurora, a blood test based on cancer specific cfDNA methylation 
signatures for detecting 6 major cancer types.  
AUCs of 0.90, 0.98 and 0.92 were obtained for lung, breast and colorectal 
cancer detection, respectively. 

[96] 

203 cancer patients  
206 healthy individuals  

Improved to Aurora 2.0, a targeted methylation sequencing assay.  
AUCs of 0.94 and 0.935 were obtained for gastric and esophageal cancer 
detection, respectively. 
AUCs of 0.973, 0.962 and 0.92 were obtained for lung, breast and colorectal 
cancer detection, respectively.  

[97] 

1000 cancer patients  
505 healthy individuals  

AUCs of 0.973, 0.962 and 0.92, 0.94 and 0.935 were obtained for lung, breast, 
colorectal, gastric and esophageal cancer detection, respectively.  
At 99% specificity, 84%, 75%, 82%, 85% and 78% sensitivity were obtained for 
lung, breast, colorectal, gastric and esophageal cancer, respectively. 

[98] 

Tissue 
Plasma 

breast, colorectal, 
prostate and 
lymphoma 

72 tumor and 31 
normal tissues 
100 cancer and 45 
healthy plasmas 

Electrochemical 
assays 

Developed electrochemical and colorimetric assays that can detect methylation 
differences between cancer and healthy genomes based on the level of DNA 
adsorption on planar and colloidal gold surfaces.  
DNA adsorption levels could discriminate between cancer patients and healthy 
individuals with an AUC of 0.887 using an electrochemical assay. 
DNA adsorption levels could discriminate between cancer patients and healthy 
individuals with an AUC of 0.785 using a colorimetric assay. 

[99] 

Stool colorectal and gastric 105 cancer patients 
113 healthy individuals Hi-SA 

 
Developed a method combining single-step sodium bisulfite modification and 
fluorescence PCR to measure RASSF2 and SFRP2 methylation status in fecal 
DNA. 
DNA recovery from feces showed an AUC of 0.78 for distinguishing cancer from 
non-advanced lesions (adenomas, polyps and healthy). Methylation levels 
showed an AUC of 0.78. A combination score showed the best AUC of 0.81.  
 

[100] 

 
DNA methylation 
and circulating 
proteins 
  

Plasma 
Serum 

lung, pancreatic, 
gastric, esophageal, 
liver and ovarian 

180 cancer patients 
257 healthy individuals Multiplex PCR + 

LQAS 

Developed a multi-analyte blood test based on 26 methylation markers and 5 
circulating proteins combined machine learning algorithms for cancer detection.  
83% sensitivity, 94% specificity and AUC of 0.96 were obtained in validation set.  

[101] 

160 cancer patients 
315 healthy individuals 85% sensitivity, 95% specificity and AUC of 0.96 were obtained in validation set.  [102] 



 19 

DNA methylation 
and copy number 
variations  

Plasma 

lung, breast, 
hepatocellular, 
nasopharyngeal, 
smooth muscle 
sarcoma and 
neuroendocrine tumor 

46 cancer patients 
32 healthy individuals 

Bisulfite 
sequencing 

Performed bisulfite sequencing to analyze genome-wide hypomethylation 
combined with copy number alterations in cfDNA and developed algorithms for 
cancer detection. 
If a sample was positive if either hypomethylation or CNAs were observed, 85% 
sensitivity and 88% specificity were obtained. 
If a sample was positive if both hypomethylation and CNAs were observed, 60% 
sensitivity and 94% specificity were obtained. 

[103] 

cfDNA methylation, 
fragmentation, 
copy number 
variations and 
microbial 
composition 

Plasma lung, colon, gastric 
and liver 

275 cancer patients 
204 healthy individuals  cfMethyl-Seq 

Developed CancerRadar, a test based on genome-wide methylation profiling of 
cfDNA combined with machine learning for cancer detection and TOO 
discrimination.  
85.6% sensitivity and 99% specificity for cancer detection.  
91.5% accuracy for TOO discrimination.  

[104] 

 
DNA 
hydroxymethylation 
  

Plasma 
lung, breast, 
colorectal, gastric, 
esophageal and liver 

2 241 cancer patients 
2 289 healthy 
individuals 

5hmC-Seal 
profiling  

Used the 5hmC-Seal technology to profile genome-wide 5hmC in cfDNA and 
combined it with machine learning for cancer detection and TOO discrimination.  
79.3% sensitivity and 95% specificity were obtained in training set.  
67.6% sensitivity and 98.2% specificity were obtained in the testing set. 
83.2% accuracy for TOO discrimination.  

[105] 

Plasma lung, breast, prostate 
and pancreatic 

188 cancer patients 
180 healthy individuals  

5hmC 
enrichment and 
sequencing  

Developed a novel 5hmC enrichment technology coupled with sequencing and 
machine learning for cancer detection. 
AUCs of 0.89, 0.84, 0.95 and 0.83 were obtained for breast, lung, pancreatic and 
prostate cancer detection, respectively.  

[106] 

 
Abbreviations: AUC – Area under ROC curve; cfDNA – cell-free DNA; cfMeDIP-seq – cell-free methylated DNA immunoprecipitation and sequencing; CpG – 

Cytosine-phospate-Guanine; ctDNA – circulating tumor DNA; DREAMing - Discrimination of Rare EpiAlleles by Melt; Hi-SA – high-sensitivity assay for bisulfite 

DNA; LQAS - long probe quantitative amplified signal; MSP – methylation-specific PCR; MSRE-qPCR – methylation-sensitive restriction enzyme -based 

quantitative PCR; NGS – next generation sequencing; NPV – negative predictive value; PPV – positive predictive value; qMSP – quantitative methylation-specific 

PCR; TCGA – The Cancer Genome Atlas; TOO – tissue of origin; 5hmC – 5-hydroxymethylcytosine; 5mC – 5-methylcytosine. 
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Whether analyzing a single gene [76] or gene panels [77, 78], methylation levels of 

cfDNA have demonstrated the feasibility of minimally invasively detecting multiple cancers 

and further identifying their anatomical location. Nonetheless, these approaches fall short 

regarding sensitivity values. On the other hand, sequencing-based methylation profiling of 

cfDNA has shown more promising results, by using machine learning algorithms that 

convert the complex data into classifiers that discriminate cancer from healthy individuals 

and further identify its origin. For instance, Kandimalla et al. reported EpiPanGI Dx, an 

assay that showed an AUC of 0.88 for simultaneous detection of gastrointestinal cancers 

and accuracies of 85-95% for TOO prediction [85]. Focusing on 4 major cancers (lung, 

breast, colorectal and liver), the IvyGeneCORE® Test is commercialized by the Laboratory 

for Advanced Medicine, showing that the methylation analysis of target genes discovered 

by data mining can detect these cancers with 84% sensitivity and 90% specificity [89, 107]. 

Similarly, the PanSeer assay developed by Singlera Genomics [108] uses semi-targeted 

PCR libraries followed by sequencing for analyzing 477 differentially methylated regions 

(DMRs). This blood test was evaluated using samples from the Taizhou Longitudinal Study, 

in which healthy individuals provided plasma samples and were monitored for cancer, 

allowing a retrospective take on early detection viability. Concerning 5 tumor types (lung, 

colorectal, gastric, liver and esophageal), 87.6% sensitivity and 96.1% specificity were 

obtained, with similar sensitivities between early- and late-stage disease. Remarkably, 

using pre-diagnostic samples, PanSeer showed that cancer could be detected up to 4 years 

before medical diagnosis with 95.7% sensitivity [86]. Nevertheless, no results regarding 

TOO prediction were reported.  

A company that revolutionized the cancer screening paradigm and emphasized the wide 

variety of cancers that can be simultaneously detected through liquid biopsy is GRAIL, a 

spin-off of Illumina, that received around $1 billion in funding for the solen goal of developing 

a blood test for early cancer detection [109, 110]. For such purpose, the Circulating Cell-

free Genome Atlas Study (CCGA) (NCT02889978), divided into 3 sub-studies, was 

conducted and recruited over 15000 participants with and without cancer that were 

longitudinally followed. In the first CCGA sub-study, 3 different sequencing assays were 

evaluated and, ultimately, whole-genome bisulfite sequencing outperformed whole-genome 

sequencing and targeted mutation analysis, showing, once more, the superior ability of DNA 

methylation for early cancer detection [111, 112]. Therefore, in the second sub-study, a 

targeted methylation assay was developed, trained, and validated using 6689 participants, 

for simultaneous detection and TOO discrimination of more than 50 cancer types. 54.9% 

sensitivity and 99.3% specificity were obtained for all cancer stages, while sensitivity was 

43.9% for early stages. Besides, when focusing on a set of 12 high-signal cancers (based 

on Surveillance, Epidemiology, and End Results (SEER) mortality data) sensitivity was 
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67.3%. Notably, 93% accuracy was displayed for TOO localization [83]. In the third and final 

sub-study, meant to further validate an improved test version specific for screening 

purposes, an independent validation set of 5309 participants was used and resulted in 

51.5% sensitivity, 99.5% specificity and 88.7% accuracy for TOO prediction [84]. Given the 

prospective nature of CCGA, the prognostic value of this blood test could also be assessed. 

By following cancer patients from the second sub-study for 3 years, it was possible to 

observe that cancers not detected by the test had significantly better overall survival (OS) 

than those detected by the MCED test. Additionally, detection sensitivity was higher in 

participants who died than in those alive, suggesting that this test tends to detect more 

aggressive cancers and may not increase risk of overdiagnosis [113]. Currently, this blood 

test is available to the population as Galleri® at the price of $949, upon request to health 

care providers [114]. In addition to CCGA, other clinical trials are being conducted by GRAIL 

to ripen the tests’ potential as a screening tool: STRIVE (NCT03085888) is evaluating the 

test performance to detect breast and other invasive cancers in women undergoing 

screening mammography; SUMMIT (NCT03934866) is evaluating the test performance to 

detect invasive cancers in individuals at high risk of lung and other cancers due to a 

significant smoking history; PATHFINDER (NCT04241796, NCT05155605) is assessing 

the implementation of the test into clinical practice; REFLECTION (NCT05205967) wants 

to understand the performance of the test in clinical settings and its impact on patients and 

healthcare professionals. In fact, some results from PATHFINDER have already been 

reported. Aiming to evaluate the time and number of additional procedures required to 

achieve a final diagnosis following a positive test result, it was observed that a cancer signal 

was detected in 1.5% of participants, of which 65% reached a diagnostic resolution. The 

median time for diagnosis was 78 days, with 93% of participants undergoing imaging tests 

and 72% being submitted to an invasive procedure. Remarkably, only 18% of participants 

with a final non-cancer diagnosis had to go through an invasive procedure [115, 116].  

Most PCR- and sequencing-based methods for methylation analysis rely on sodium-

bisulfite modification and it has been proven that this aggressive treatment causes DNA 

degradation and fragmentation, hindering the analysis of large CpG islands, especially in 

cfDNA which is already highly fragmented [117]. As an alternative, immunoprecipitation of 

methylated DNA (MeDIP), i.e., the use of antibodies that target 5-methylcytosine (5mC) for 

the enrichment of methylated DNA fragments, followed by sequencing can be used [118]. 

Following such reasoning, Adela is a company developing a sensitive technology for the 

enrichment of methylated fragments from low input samples, like cfDNA, followed by 

sequencing of cancer-related regions (cfMeDIP-seq) [119, 120]. When applied to cancer 

detection, by combining the above-described assay with machine learning, AUC values of 

0.980, 0.918, 0.971, and 0.969 were obtained for discriminating acute myeloid leukemia, 
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pancreatic cancer, lung cancer and healthy individuals, respectively. Besides, early- and 

late-stage cancer detection depicted similar values [87]. Interestingly, the CAMPERR study 

(NCT05366881) was, at the time of writing, recruiting patients with any of 20 tumor types, 

plus healthy individuals to validate the cfMeDIP-seq assay.  

To the best of our knowledge, several other methylation-based MCED tests using a 

variety of methodologies are being currently developed by different companies (Table 1). 

Besides, many of them are also conducting clinical trials for participant recruitment and 

prospective assessment of test performance. 

Remarkably, methylation analysis showed potential for cancer detection even beyond its 

molecular analysis. Aberrant DNA methylation patterns in cancer also alter the 

physicochemical properties of DNA, which led Sina et al. to develop simple, fast analysis 

and low-input electrochemical and colorimetric assays. These demonstrated AUC values of 

0.887 and 0.785, respectively, for differentiating breast and colorectal cancer from control 

plasma samples [99]. However, only advanced-stage samples were used, suggesting that, 

although promising, these prototypes require validation in early-stage cancer as well as 

more tumor types.  

Beyond 5mC modifications, 5-hydroxymethylcytosine (5hmC), the result of 5mC 

oxidation catalyzed by Ten-Eleven Translocation (TET) enzymes [121], was also proposed 

as pan-cancer biomarker by Li et al., who developed a genome-wide 5hmC analysis tool 

and reported 67.6% sensitivity and 98.2% specificity for cancer detection and 83.2% 

accuracy for TOO discrimination in 6 cancer types [105]. Additionally, BlueStar Genomics 

is also conducting a study (NCT03869814) for the development of a 5hmC-based MCED 

test and already reported some promising results [106, 122]. 

Interestingly, approaches, other than methylation, to multi-cancer early detection are 

also being developed. As early as 2009, Zou et al. performed targeted mutation analysis in 

stool from several gastrointestinal cancer patients and showed that pan-gastrointestinal 

cancer detection was feasible with 68% sensitivity and 100% specificity [123]. In fact, stool 

is also a non-invasive source of cancer biomarkers but limited to tumors of the digestive 

system. Curiously, a study evaluating patients’ perceptions about stool-based multi-cancer 

detection reported that 98% of participants would use such a test, preferred it over 

conventional colorectal cancer screening, and highlighted its pan-cancer feature as the 

most important [124]. Cohen et al. also reported a blood test, CancerSEEK, for the detection 

of 8 common cancers (lung, breast, colorectal, pancreatic, gastric, liver, esophageal, and 

ovarian) based on the analysis of mutations in 16 genes combined with the circulating levels 

of 8 proteins. Methodologically, this test consists of a multiplex PCR and a single 

immunoassay, being a simple workflow and easily applicable to clinical practice, with an 

estimated price of around $500. When applied to 1005 cancer patients and 812 healthy 
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controls, CancerSEEK showed 62% sensitivity at a specificity greater than 99% for 

discriminating cancer from healthy samples. Concerning early-stage detection, a median 

sensitivity of 43% was obtained for stage I, 73% for stage II, and 78% for stage III. 

Additionally, TOO discrimination was also possible with 63% accuracy [125]. However, it is 

important to note that the protein biomarkers were the major contributors to identifying the 

underlying cancer type after a positive test result. A refined version of CancerSEEK was 

then developed and combined with PET-CT imaging to evaluate the test performance for 

detecting cancer prospectively in a study (DETECT-A) involving 10,006 women not known 

to have cancer. For that purpose, participants were submitted to the blood test, if results 

were abnormal a second blood collection was conducted for confirmation and, if such came 

back positive, a full body PET-CT was performed. Test results were considered positive for 

134 participants, out of which 127 were further evaluated by PET. 64 showed concerning 

imaging and 26 were proven to have cancer. This resulted in 27.1% sensitivity and 98.9% 

specificity for blood testing alone, while sensitivity decreased to 15.6% and specificity 

increased to 99.6% for blood testing combined with PET imaging [126]. Therefore, although 

mutation-based MCED tests have demonstrated their potential, even in early stages, these 

might not be the ideal approach, since TOO identification of the detected cancers is not 

possible, due to gene driver mutations not being tissue-specific [127]. 

Since the mechanisms of cell death causing DNA shedding into the blood are variable, 

reflecting different fragmentation patterns, and also are cell- and tissue-dependent 

mechanisms, reflecting nucleosome positioning in the nucleus, tumor-derived cfDNA 

fragments carry distinct features that may allow cancer detection and further TOO 

identification [127, 128]. Indeed, DELFI Diagnostics developed the DELFI assay, which, 

using genome-wide fragmentation analysis in 236 cancer patients (lung, breast, colorectal, 

pancreatic, gastric, bile duct and ovarian) and 245 healthy individuals, displayed 73% 

sensitivity and 98% specificity for discriminating cancer from healthy, and 61% accuracy for 

TOO [129, 130]. Noteworthy, when combining mutation analysis with fragmentation, DELFI 

showed an increased sensitivity and TOO accuracy of 91% and 75%, respectively [130]. 

This suggest that combining cfDNA fragmentation with other tumor-related feature may 

increase its detection capacity. Interestingly, CancerRadar, a multi-omics approach 

combining cfDNA fragmentation with methylation, copy number variations and microbial 

composition showed a remarkable 85.6% sensitivity and 99% specificity for lung, colon, 

gastric and liver cancer detection and 91.5% TOO accuracy [104].   

Overall, these data suggest the feasibility of using a single blood test for simultaneously 

detecting several cancer types, with DNA methylation-based tests being in the forefront of 

development. Hopefully, such tests will soon be available to the general public to increase 

patient compliance to screening programs and reduce cancer-related mortality. 
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This study is integrated in a larger project developed in the Cancer Biology and 

Epigenetics Group (CI-IPOP), whose major goal is to develop a “PanCancer” and 

“CancerType” gene panels for early detection of the four major cancers, using cfDNA 

methylation as a biomarker (CI-IPOP-74-2016-MethylBiom4Can).  

The “PanCancer” approach aims to select the most sensitive and specific gene panel for 

simultaneous detection of the four cancers, while a “CancerType” gene panel focuses on 

selecting the most adequate genes for discriminating each individual cancer.  

Some results gathered until the beginning of this project include: 

 

TCGA data mining for gene selection 
 
 

TCGA methylation data was retrieved from the Shiny Methylation Analysis Resource 

Tool (SMART) App website, an interactive web server for analysing DNA methylation of 

TCGA project [131]. Differential Methylation Analysis was performed on TCGA-LUSC & 

TCGA-LUAD (lung cancer), TCGA-BRCA (breast cancer), TCGA-COAD (colon cancer) and 

TCGA-PRAD (prostate cancer) datasets using the following criteria: Hypermethylation, M-

Value, M-value cut-off = 2 and Adj p.value cut-off = 0.01. This resulted in the identification 

of 15,833 CpG probes as hypermethylated in TCGA-LUSC dataset, 7,589 CpGs in TCGA-

LUAD, 10,550 CpGs in TCGA-BRCA, 16,122 CpGs in TCGA-COAD and 9,976 CpGs in 

TCGA-PRAD (Figure 4).  

A Venn diagram (Figure 5) was then assembled to evaluate the number of CpG probes 

that were hypermethylated in all four cancer types (PanCancer) and only in each one of the 

cancer types (CancerType). 494 CpGs were identified for “PanCancer” panel, whereas 796 

CpGs were identified exclusively for LC, 3491 CpGs for BrC, 9399 CpGs for CRC and 4202 

CpGs for PCa. 

Later, the data obtained was merged with data from HumanMethylation450 v1.2. 

Manifest File (Illumina) and CpG probes were filtered by UCSC CpG Island (Island) and 

USCS RefGene_group (TSS200 or TSS1500) to obtain the number of CpGs located 

concomitantly in CpG Islands and promoter regions. Finally, as each gene might contain 

more than one hypermethylated CpG, the number of genes represented by more than one 

CpG island were counted (Figure 4). Therefore, 30 genes were identified as promising 

genes for our “PanCancer” panel, whereas 12 genes for LC discrimination, 82 for BrC, 496 

for CRC and 159 for PCa. The top 10 hypermethylated genes for PanCancer and top 5 for 

each cancer type are described in Table 2. 
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Figure 4. Flowchart of TCGA data mining analysis performed. Kindly provided by V. Constâncio. Unpublished. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
Figure 5. Venn Diagram obtained from TCGA data mining regarding the number of CpG probes listed as 

hypermethylated in TCGA datasets for each cancer type. Kindly provided by V. Constâncio. Unpublished.  
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Table 2. Top hypermethylated genes for PanCancer (Top 10) and for each cancer type (top 5) depicted from 

TCGA data mining analysis. Bold genes indicate the genes selected for further analysis in this project. 
 

Cancer Type Gene Number of hypermethylated CpGs 
PanCancer 

ADCY4 5 
CDO1 4 
MAGI2 4 

MIR129-2 4 
NID2 4 
DRD5 3 
EMX2 3 
OLIG2 3 
PAX6 3 

POU3F3 3 
Lung Cancer 

HOXA11 5 
ZNF529 3 

ZSCAN11 3 
BARX2 2 
CETN1 2 

Breast Cancer 
CELF2 7 
EDNRB 6 
FOXA2 6 
GFI1 6 
ISM1 5 

Colon Cancer 
CHFR 19 
GFRA1 18 

BRUNOL4 14 
HSPA1L 14 
NDRG4 12 

Prostate Cancer 
FLOT1 18 

HRASLS5 7 
AOX1 6 

C2orf88 6 
CCND2 6 
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In silico analysis 
 

In silico analysis was performed to evaluate the ability of the selected genes to 

distinguish tumoral from normal tissue for each cancer type. For this purpose, mean 

aggregation methylation data of the most relevant CpGs, depicted in the data mining, for 

each gene was retrieved from the SMART App website (Figure 6). Mann-Whitney non-

parametric test was used for comparisons between the two groups. 

As expected, ADCY4, CDO1, MAGI2, MIR129-2 and NID2 aggregation methylation 

levels were significantly higher in tumor tissues of the four cancer types when compared to 

normal tissues (p<0.0001 in all comparisons) (Figure 6 A, B, C, D, E). These results are in 

agreement with the obtained data mining results (Figure 4 and 5; Table 2), thereby, being 

potential candidates for a “PanCancer” gene panel, aiming to simultaneously detect these 

four cancers. Regarding HOXA11, CELF2, CHFR and FLOT1 aggregation methylation 

levels, each gene promoter exhibited higher levels for lung, breast, colorectal and prostate 

tumor tissues, respectively, when compared to normal tissues (p<0.0001 in all 

comparisons). Although significant differences were also observed for these genes between 

other tumor types and respective normal tissues, we could observe that β-values’ amplitude 

was higher for the specific cancer type when compared to others (Figure 6 F, G, H, I). 

Hence, HOXA11, CELF2, CHFR and FLOT1 seem to be potential markers for discrimination 

of LC, BrC, CRC and PCa, respectively. 

 

Validation of selected genes in tissue samples  
 

Methylation-specific primers and probes were designed in the promoter region of the 

most promising hypermethylated genes depicted in the data mining analysis. The promoter 

methylation levels of the 8 most promising genes (CDO1 was not analyzed due to lack of 

specificity of the primers/probe designed) were then tested in tissue samples of 120 tumors 

and 61 controls from IPO-Porto patients by quantitative methylation-specific PCR (qMSP). 

ADCY4, MAGI2, MIR129-2, NID2 promoter methylation levels were significantly higher 

in tumor tissues when compared to normal tissues independently of the tissue of origin 

(Figure 7 A, B, C, D), suggesting their putative value as “PanCancer” biomarkers for liquid 

biopsy testing. Contrarily, FLOT1 was observed to be hypermethylated in PCa samples 

(Figure 7H), whereas CELF2 and CHFR were hypermethylated in BrCa and CRC (Figure 

7F-G), respectively, but in a lesser extent. Disappointingly, although significant differences 

were only depicted between LCa and NL (Figure 7E), high HOXA11 methylation levels were 

depicted in LCa, BrCa, NBr and some CRC and PCa, indicating the lack of specificity as a 

“CancerType” biomarker. 
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Figure 6. Distribution of (A) ADCY4, (B) CDO1, (C) MAGI2, (D) MIR129-2, (E) NID2, (F) HOXA11, (G) CELF2, (H) CHFR and (I) FLOT1 aggregation methylation levels of 

selected CpGs in lung cancer adenocarcinoma (LUAD), lung cancer squamous cell carcinoma (LUSC), breast cancer (BRCA), colorectal cancer (COAD) and prostate cancer 
(PRAD) tumor (T) and normal tissues (N). Mann-Whitney U Test between tumor and normal tissues, n.s. p>0.05, *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001. Red horizontal 

lines represent the median methylation level. 
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Figure 7. Distribution of (A) ADCY4, (B) MAGI2, (C) MIR129-2, (D) NID2, (E) HOXA11, (F) CELF2, (G) CHFR 

and (H) FLOT1 relative promoter methylation levels in lung cancer (LCA), normal lung (NL), breast cancer 
(BRCA), normal breast (NBr), colorectal cancer (CRC), normal colorectal (CRN), prostate cancer (P) and normal 

prostate (CP) tissues. Mann-Whitney U Test between tumor and normal tissues, n.s. p>0.05, *p<0.05, **p<0.01, 

***p<0.001, ****p<0.0001. Red horizontal lines represent the median methylation level.  

 
Since our main goal was to develop a test capable of simultaneously detecting LC, BrC, 

CRC and PCa, the biomarker performance of the “PanCancer” selected genes was 

assessed (Table 3). Remarkably, individually, all genes’ promoter methylation levels were 

able to discriminate cancer with at least 43% sensitivity and 87% specificity. Also, gene 
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panels were further constructed to increase overall biomarker performance (Table 3). 

Indeed, when “PanCancer” panel was considered positive whenever one of the 4 genes 

was positive (allowing the maximal sensitivity), this panel was able to discriminate LC with 

70% sensitivity and 86% specificity, BrC with 97% sensitivity and 87% specificity, CRC with 

93% sensitivity and 100% specificity and PCa with 70% sensitivity and 86% specificity. 

Besides, 100% specificity was also achieved for LC, BrC and PCa when two positive genes 

were considered for panel positivity (corresponding to 60%, 90%, and 60% sensitivity, 

respectively). 

 
Table 3. Biomarker performance of each gene promoter methylation and “PanCancer” panel for lung, breast, 

colorectal and prostate cancer detection in tissue samples.  
  

 
 

Abbreviations: SE% - Sensitivity; SP% - Specificity; 1 POS. GENE – at least one positive gene; 2 POS. GENES 

– at least two positive genes; 3 POS. GENES – at least three positive genes; 4 POS. GENES – at least four 

positive genes 

Lung Cancer Breast Cancer Colorectal Cancer Prostate Cancer

Cut-off SE% SP% Cut-off SE% SP% Cut-off SE% SP% Cut-off SE% SP%

ADCY4 0,2155 57 93 61,2954 84 100 7,5524 66 100 27,267 93 100

MIR129-2 0,9647 50 93 0,6964 90 93 7,4221 86 100 1,9257 90 100

NID2 2,597 53 100 3,1411 68 100 4,3836 79 100 45,0803 97 87

MAGI2 7,2989 43 100 8,889 52 93 48,5787 45 100 15,6849 50 100

PA
NC

AN
CE

R 1 POS. GENE 70 86 1 POS. GENE 97 87 1 POS. GENE 93 100 1 POS. GENE 70 86

2 POS. GENES 60 100 2 POS. GENES 90 100 2 POS. GENES 86 100 2 POS. GENES 60 100

3 POS. GENES 43 100 3 POS. GENES 68 100 3 POS. GENES 69 100 3 POS. GENES 43 100

4 POS. GENES 30 100 4 POS. GENES 39 100 4 POS. GENES 47 100 4 POS. GENES 30 100
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BrC, LC, CRC and PCa are the most incident and among the deadliest cancers 

worldwide. Considering the limitations of currently available screening methods, there is a 

great need for the development of effective, accurate and minimally invasive screening 

procedures for cancer early detection. Indeed, DNA promoter hypermethylation appears to 

be a potential screening marker once it emerges early in carcinogenesis, its cancer- and 

tissue-specific, it is easy to assess in body fluids and it allows the detection of several cancer 

types in one single sample.  

Thereby, the aim of this dissertation is to develop a minimally-invasive methylation-based 

test for simultaneous detection of BrC, LC, CRC and PCa.  

 

Specifically, we intend to: 

1. Assess the promoter methylation levels of new “CancerType” genes in tissue 

samples by multiplex qMSP, aiming to improve the discrimination capacity of the 

first tested genes (shown in preliminary data). 
 

2. Evaluate different methodologies for cfDNA extraction from plasma samples and 

select the most suitable one. 
 

3. Optimize methylation-specific droplet digital PCR (ddPCR) assays for evaluating 

promoter methylation levels of ADCY4, MAGI2, MIR129-2 and NID2. 
 

4. Assess the promoter methylation levels of ADCY4, MAGI2, MIR129-2 and NID2 by 

ddPCR in a set of plasma samples from patients with BrC, LC, CRC, PCa and 

asymptomatic controls (AC).  
 

5. Evaluate the diagnostic performance of gene promoter methylation levels for each 

cancer type. 
 

6. Evaluate the association between promoter methylation levels of each gene and 

clinicopathological features of each cancer type. 



 

 

 

 

 

 

 

 

 

 

 

 

 

  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
IV.MATERIAL AND METHODS 
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1. Clinical Samples 
  

1.1 Tissue samples 
 

Tissue samples from 120 cancer patients (31 BrCa; 30 PCa; 29 CRC; 30 LCa) 

submitted to surgery at IPO Porto, were selected. Additionally, as control samples, were 

selected: 16 (NL) lung tissue samples obtained from patients who underwent surgery 

due to benign conditions; 15 (NBr) breast tissue samples obtained from reduction 

mammoplasty of the contralateral breast of BrC patients without BrC hereditary 

syndrome; 15 (CRN) colorectal tissue samples obtained from surgical margins of non-

gastrointestinal tumors with a total absence of tumor tissue; 15 (CP) prostate tissue 

samples obtained from patients who underwent radical cystoprostatectomy. All lung and 

colorectal samples corresponded to formalin-fixed paraffin-embedded (FFPE) tissues 

archived at the Department of Pathology of IPO Porto, while breast and prostate samples 

were fresh-frozen tissues, immediately frozen at -80ºC at the institutional tumor bank 

after surgical resection and examination (CES-IPOFG-EPE 120/015).  

 

1.2 Plasma samples  
 

For the optimization phase of this study, a total of 20 pre-treatment blood samples 

were selected, 4 for each tumor model (one of each stage) and 4 samples from 

asymptomatic blood donors (AC) (2 males and 2 females).  

For the testing set, pre-treatment blood samples were collected from 200 patients 

diagnosed with LC (n=50), BrC (n=50), CRC (n=50) or PCa (n=50) between 2017 and 

2020 at IPO Porto, Portugal. Additionally, for control purposes, blood samples were 

donated by 50 AC, from 2020 to 2022, at the same institution.  

After collection of peripheral blood into EDTA-containing tubes, plasma was 

separated by centrifuging at 2500g for 30 minutes at 4ºC, and subsequently, stored at -

80ºC in the institutional tumor bank until further use. All blood samples were processed 

within a maximum of 4h from the collection. Relevant clinical and pathological data were 

retrieved from clinical charts and an anonymized database was constructed for analysis 

purposes. 

This study was approved by the institutional review board (Comissão de Ética para 

a Saúde) of IPO Porto, Portugal (CES-IPOFG-EPE 120/015). Written informed consent, 

following the Declaration of Helsinki ethical principles, was provided by all patients. 
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2. DNA extraction from tissue samples 
 

For FFPE tissue samples, representative areas were macrodissected from 8 μm thick 

tissue sections to maximize the proportion of malignant cells (>70%), and subsequently 

deparaffinized, rehydrated using xylene and graded ethanol, and digested with proteinase 

K. For fresh-frozen tissue samples, 10 μm thick sections were cut and digested with SE 

buffer, 10% SDS and proteinase K (NZYTech, Portugal). Then, DNA was extracted from all 

samples using standard phenol-chloroform, ethanol, ammonium chloride and glycogen 

protocol. Briefly, subsequently to digestion, samples were transferred to Phase Lock Light 

2mL tubes and mixed with 500 μL of phenol-chloroform pH=8 (PC8; Sigma-Aldrich, USA), 

followed by centrifugation at 13000 rpm for 15 minutes at 4ºC. Then, the aqueous phase 

was transferred to a new 2 mL tube, and the process was repeated. Afterward, the aqueous 

phase was transferred to a Safe Lock 2 mL tube and DNA was precipitated by mixing with 

cold absolute ethanol (2x the volume of DNA) (Merck Millipore, Germany), ammonia acetate 

at 7.5M (1/3 the volume of DNA) (Sigma-Aldrich, USA) and 2 μL of glycogen and left 

incubating overnight at -20ºC. Tubes were then centrifuged at 13000 rpm for 20 minutes 

and the supernatant was discarded. 1 mL of 70% cold ethanol was added and tubes were 

again centrifuged at 13000 rpm for 20 minutes. This washing step was repeated twice.  

In the end, air-dried pellets were eluted in sterile bi-distilled water. All DNA elutes were 

stored at -20ºC until further use. 

 
3. cfDNA extraction from plasma samples 

 

cfDNA extraction from plasma samples was compared across 3 different methodologies: 

Manual extraction using QIAmp MinElute ccfDNA kit (Qiagen, Germany); manual extraction 

using MagMAXTM Cell-Free DNA Isolation Kit (Applied Biosystems, USA); automatic 

extraction using MagDEA® Dx SV kit for the magLEAD® 12gC extractor (Precision System 

Science, Japan). All protocols were performed according to manufacturer’s instructions.  

For the testing set samples, cfDNA was extracted from 2 – 4 mL of plasma using 

MagMAXTM Cell-Free DNA Isolation Kit. Plasma samples were prior centrifuged at 16,000g 

for 10 minutes at 4ºC, to remove any cellular debris. Then, the plasma supernatant was 

transferred to a 15 mL tube and MagMAXTM Cell Free DNA Magnetic Beads and MagMAXTM 

Cell Free DNA Lysis/Binding Solution were added in the appropriate ratio (Table 4). After a 

10 minutes incubation period with shaking at 300rpm to bind cfDNA to the magnetic beads, 

the tubes were placed in a magnetic rack until the solution was clear and the beads were 

pelleted against the magnet. The supernatant was discarded, and 1 mL of MagMAXTM Cell 

Free DNA Wash Solution was added to wash the beads, with the bead slurry being then 
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transferred to a 1.5 mL tube and placed on a 1.5 mL tube-magnetic rack. After the solution 

was clear and the beads were pelleted against the magnet, the supernatant was discarded, 

and the washing step was repeated. Afterwards, washing with 80% ethanol was performed 

twice, and the beads were left to air dry for 5 minutes while still on the magnet. In the end, 

22 μL of MagMAXTM Cell Free DNA Elution Solution were added to the beads, to elute the 

cfDNA, vortexed for 5 minutes and placed on the magnetic stand, with the supernatant 

containing the purified cfDNA.  

All steps were performed at room temperature. The extracted cfDNA was stored at -20ºC 

until further use. 
 

Table 4. Binding Solution/Beads Mix components. 
 

Plasma (mL) MagMAXTM Cell Free DNA 
Lysis/Binding Solution (mL) 

MagMAXTM Cell Free DNA 
Magnetic Beads (μL) 

2 2 20 
2.5 2.5 25 
3 3 30 

3.5 3.5 35 
4 4 40 

 
 

4. DNA quantification 
 

DNA extracted from tissue samples was quantified using NanoDrop Lite 

Spectrophotometer (Nanodrop Technologies, USA). 1 μL of DNA from each sample was 

used for such purpose.  

DNA extracted from plasma samples was quantified in Qubit 4 Fluorometer using Qubit 

1X dsDNA HS Assay Kit (Invitrogen, USA). 2 μL of each cfDNA sample and 198 μL of Qubit 

working solution were mixed in a 0.5 mL tube and used for quantification.  

 

5. cfDNA fragmentation analysis 
 

cfDNA fragment sizing and quantification was performed using the Cell-free DNA 

ScreenTape assay for 4200 TapeStation instrument (Agilent Technologies, USA). Such 

system performs electrophoretic separation of input cfDNA, allowing the identification of 

cfDNA subcomponents, their size and quantification, as well as total DNA concentration 

and the presence of contaminant high molecular weight DNA. Also, the assay provides a 

%cfDNA quality metric for evaluating the quality of cfDNA for downstream applications 

[132].  
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A ladder was prepared by mixing 15 μL of Cell-free DNA Sample Buffer and 15 μL of 

Cell-free DNA Ladder in a 0.5 mL tube (volume required for analyzing more than 2 

ScreenTape devices). Also, 2 μL of cfDNA from each sample and 2 μL of Cell-free DNA 

Sample Buffer were pippeted into a 96-well plate (Agilent Technologies, USA), followed by 

vortexing at 2000 rpm for 1 min and spinning down. Results were analyzed with the 

TapeStation Analysis software version 4.1.1 (Agilent Technologies, USA).  

 

6. Sodium-bisulfite modification 
 

Sodium-bisulfite modification is a gold standard procedure regarding DNA methylation 

studies. This technique allows the differentiation of methylated from unmethylated cytosines 

by converting unmethylated cytosines into uracils, while methylated cytosines remain 5-

methylcytosines. The conversion occurs by a series of chemical reactions: (1) Sulphonation: 

addition of bisulfite to the 5-6 double bond of cytosine; (2) Deamination: hydrolytic 

deamination of the resulting cytosine-bisulfite derivative to give an uracil-bisulfite derivative; 

(3) Desulphonation: removal of the sulphonate group to originate an uracil residue [133]. 

All DNA samples were modified using the EZ DNA Methylation-GoldTM Kit (Zymo 

Research, USA), according to the manufacturer’s instructions. To begin, 130 μL of CT 

conversion reagent solution was added to the volume equivalent to 1000 ng of the 

previously extracted/quantified DNA samples. Regarding cfDNA, a total of 20 μL were used 

for the modification protocol. Then, samples were incubated at 98ºC for 10 minutes (DNA 

denaturation), followed by 64°C for 180 minutes (bisulfite conversion) in the Veriti 96-Well 

Thermal Cycler (Thermo Fisher Scientific, USA). Next, each sample was added to Zymo- 

SpinTM IC columns, plus 600 μL of M-Binding Buffer, and incubated for 10 minutes. The 

columns were centrifuged at 10,000 rpm for 30 seconds. After, 100 μL of M-Wash Buffer 

were added, followed by centrifugation. Next, 200 μL of M-Desulphonation Buffer were 

added to the column, followed by 20 minutes incubation and centrifugation. Following, the 

column was washed twice with 200 μL of M-Wash Buffer and centrifuged. Finally, the 

columns were transferred to 1.5 mL safe-lock tubes and sterile bi-distilled water was added 

to elute the modified DNA. After 5 minutes of incubation, the columns were centrifuged at 

12,000 rpm for 30 seconds. This process was repeated twice. In the end, 60 μL of bisulfite-

converted tissue-extracted DNA and 20 μL of bisulfite-converted cfDNA were obtained. 

Additionally, 1 μg of Human Methylated & Non-methylated DNA (Zymo Research, USA) 

were also modified using the previously mentioned protocol and eluted in 30 μL of sterile 

bi-distilled water. 

All bisulfite-converted DNA was stored at -80oC until further use. 
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7. Target-specific preamplification  
 

DNA preamplification is performed when the available input DNA for downstream 

applications is limited. For such purpose, the SsoAdvanced™ PreAmp Supermix (Bio-Rad, 

USA) was used.  

A preamplification assay pool was prepared by mixing 2.5 μL of forward and reverse 

primers at 100 μM of the interest genes and sterile bi-distilled water up to a volume of 500μL. 

For the reaction mix, 8 μL of sodium-bisulfite modified cfDNA were mixed with 25μL of 

SsoAdvanced PreAmp Supermix, 5 μL of the described assay pool and 12 μL of sterile bi-

distilled water. Then, samples were incubated at 95ºC for 3 minutes, followed by 12 cycles 

of 95ºC for 15 seconds and 58ºC for 45 minutes in the Veriti 96-Well Thermal Cycler 

(Thermo Fisher Scientific, USA).  

The resulting amplified cfDNA samples were diluted in sterile bi-distilled water in a 1:5 

ratio prior to ddPCR.  

 

8. Methylation-specific primer and probe design  
 

Genomic DNA sequences of the target genes (plus 1500bp upstream – promoter region) 

were acquired from the UCSC Genome Browser on Human Dec. 2013 (GRCh38/hg38) 

Assembly. The bisulfite-treated methylated DNA sequence was obtained through Methyl 

Primer Express v1.0. Specific forward/reverse primers and probes were designed to 

accommodate the CpG sites relevant for the study (as determined by the previous in silico 

analysis). FAM, HEX and Cy5 (for β-Actin) fluorochromes and BHQ quenchers were 

selected for each probe to allow the assessment of multiple genes simultaneously (multiplex 

PCR). Importantly, to assure optimal primer/probe properties, sequences were analyzed 

using the Primer Express 3.0 – Primer Probe Test Tool, and additionally with the Beacon 

Designer, Premier Biosoft. Finally, to assure specificity for only one (specific) PCR product, 

primer sequences were run through Bisearch Primer Design and Search Tool.  
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9. Quantitative methylation-specific PCR (qMSP) 
 

Promoter methylation levels of EDNRB, ZSCAN1, GFRA1 and AOX1 were evaluated by 

multiplex qMSP, allowing the assessment of multiple genes simultaneously. β-Actin was 

used as the internal reference gene to normalize the assay.  

Primers and probe sequences for each gene are listed in Table 5. The multiplex gene 

panels used are displayed in Table 6. 

qMSP assays were run in 384-well plates using a QuantStudioTM 12K Flex Real-Time 

PCR System (Applied Biosystems, USA). Per each well, it was added 1 of μL bisulfite-

modified DNA extracted from tissue samples, 5 μL of Xpert Fast Probe MasterMix (GRiSP, 

Porto, Portugal) with ROX, a variable volume of primers and probe at 10 μM (Table 5) and 

sterile bi-distilled water to a final volume of 10 μL.  

The following PCR program was used: 1 cycle at 95oC for 3 minutes (polymerase 

activation), 45 cycles at 95ºC for 5 seconds (DNA denaturation) and a variable temperature, 

according to each panel (Table 6), for 30 seconds (annealing and extension). 

All samples were run in triplicates. Three no template controls (NTC) and two negative 

controls (Human HCT116 DKO Non-Methylated DNA [Zymo Research, USA]) were 

included in every plate, assuring the absence of contaminations and specificity for the 

methylated DNA template. Serial dilutions (five, in duplicate) of a positive control (Human 

HCT116 DKO Methylated DNA [Zymo Research, USA]) were included in each plate, used 

to compute a standard curve and evaluate the efficiency of the run. All plates displayed 

efficiency values above 90%. Results were plotted as relative methylation levels (Target 

gene/β-Actin), multiplied by 1000 for easier tabulation. 
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Table 5. Primers and probes sequences with respective fluorochrome and quencher for qMSP. 

 

 

 
Table 6. Gene combinations for multiplex qMSP. 

 

Combination 1 Annealing Temperature Combination 2 Annealing Temperature 
𝛽-Actin 

60ºC 
GFRA1me 

62ºC EDNRBme AOX1me 

ZSCAN1me --- 

Gene  Sequence (5’–3’) Volume Vendor 

𝛽-Actin 
Primers 

F – TGGTGATGGAGGAGGTTTAGTAAGT 
0.8 μL Sigma-Aldrich, Germany R – ACCAATAAAACCTACTCCTCCCTTAA 

Probe Cy5 – ACCACCACCCAACACACAATAACAAACACA – QSY 0.1 μL Eurofins Genomics, Germany 

EDNRB 
Primers F – GTCGTTTGGAGGGAATAGCGG 0.8 μL Eurofins Genomics, Germany 

R – CGAAAAACTCCTCCCGACG 
Probe HEX – TGCGGGTTTTCGAATTTTCGGCGTA – BHQ1 0.05 μL Frilabo, Portugal 

ZSCAN1 
Primers 

F – AATGTCGTCGTTTTGTTTCGC 
0.8 μL Eurofins Genomics, Germany R – AATCGCCTTAACAACGAATCG 

Probe FAM – ATCGTATATGCGTATTTTCGTAGTCGT – BHQ1 0.05 μL Frilabo, Portugal 

GFRA1 
Primers F – GGCGGGAATAGGAGTAGGTCG 0.8 μL Eurofins Genomics, Germany 

R – CGAACAAAACCCTCGACTCG 
Probe FAM – TTCGGAATACGTTATTTTTCGCGTCGT – BHQ1 0.05 μL Frilabo, Portugal 

AOX1 
Primers 

F – GACGTTAAGCGTTATTGGCG 
0.8 μL Eurofins Genomics, Germany R – TCTTCCCGAAACACCAACACG 

Probe HEX – CGTCGGATGATTTTCGTTTATATAGAGGGCGT – BHQ1 0.05 μL Frilabo, Portugal 
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10. Methylation-specific droplet digital PCR 
 

Promoter methylation levels of ADCY4, MIR129-2, NID2 and MAGI2 were evaluated 

by multiplex droplet digital PCR (ddPCR). β-Actin was used as the internal reference gene 

to normalize the assay. Primers and probe sequences for each gene are listed in Table 7. 

The multiplex gene panels used are displayed in Table 8. 

ddPCR reactions were prepared in 96-well plates. An assay mix (20X) was prepared 

for each gene panel by mixing the corresponding volume of primers and probes at 100μM 

(Table 7) and sterile bi-distilled water to the final volume, varying according to the number 

of samples being ran. Ten μL of sodium-bisulfite modified cfDNA, 1.1 μL of the prepared 

assay mix and 11 μL of 2X ddPCR Supermix for probe no dUTP (Bio-Rad, USA) were added 

per each well.  

For droplet generation, 20 μL of the reaction mix and 70 μL of Droplet Generation Oil 

for Probes (Bio-Rad, USA) were pippeted into cartridges and then placed on the QX200 

Droplet Generator (Bio-Rad, USA). After being generated, droplets were pippeted into a 

ddPCR 96-Well Plate (Bio-Rad, USA) and heat-sealed in a PX1 PCR Plate Sealer (Bio-

Rad, USA) at 180ºC for 5 seconds. Subsequently, plates were placed on C1000 Touch 

Thermal Cycler (Bio-Rad, USA) and the following PCR program was used: 95ºC for 10 

minutes, 50 cycles of 94ºC for 30 seconds and 57ºC (optimized annealing temperature) for 

1 minute with a ramp rate of 2ºC/s, and 98ºC for 10 minutes. In the end, droplets where 

then read on the QX200 Droplet Reader (Bio-Rad, USA) to count droplets containing 

amplified target DNA and empty ones based on fluorescence. Positive, negative and no 

template controls were included in every plate. Additionally, to minimize contaminations, 

PCR reaction preparation and droplet generation/reading were performed in separate 

dedicated rooms.  

The limit of blank (LOB) and limit of detection (LOD) were calculated for each target 

using negative control replicates, according to [134, 135]. A target was considered positive 

when more than LOB droplets were detected. The limit of quantification (LOQ) was 

evaluated by serial diluting methylated with unmethylated control DNA in 5 ng of total DNA 

in each well, as reported by Yu et al. [136].  

Results were analyzed using the QuantaSoft Analysis Pro software (Bio-Rad, USA). 

Positive droplets were manually identified based on positive control performance at each 

experiment. Wells reporting less than 10,000 read droplets were not considered for 

analysis. The number of target copies per 20 μL outputted by the software were normalized 

for the plasma volume of each sample. Normalized copy numbers of each target gene were 

divided by normalized β-Actin copies and multiplied by 100 to provide the methylation 

percentage of each target. 
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Table 7. Primers and probes sequences with respective fluorochrome and quencher for ddPCR. 

 

 

 
Table 8. Gene combinations for multiplex ddPCR. 

 

Combination 1 Annealing Temperature Combination 2 Annealing Temperature 
𝛽-Actin 

57ºC 
ADCY4me 

57ºC MAGI2me MIR129-2me 
--- NID2me 

Gene  Sequence (5’–3’) Concentration Vendor 

𝛽-Actin 
Primers 

F – TGGTGATGGAGGAGGTTTAGTAAGT 
400μM Sigma-Aldrich, Germany R – ACCAATAAAACCTACTCCTCCCTTAA 

Probe HEX – ACCACCACC – ZEN – CAACACACAATAACAAACACA – IBFQ 250μM Integrated DNA Technologies, USA 

ADCY4 
Primers F – AAAGGAGACGGGATTGTTAC 400μM Eurofins Genomics, Germany 

R – AACCGAACGCCGAATTAC 
Probe FAM – TTTAGGTGG – ZEN – GGTTCGTCGGGTC – IBFQ 250μM Integrated DNA Technologies, USA 

MIR129-2 
Primers 

F – GGAGTGGTGAGATTGAGTCG 
400μM Eurofins Genomics, Germany R – GACTTCTTCGATTCGCCG 

Probe HEX – CGCGTTGGG – ZEN – GAGATTTAGTTTGTTC – IBFQ 250μM Integrated DNA Technologies, USA 

NID2 
Primers F – TCGTAATTTCGTTATTCGTTCGC 400μM Eurofins Genomics, Germany 

R – CCCGCAAAATTTAAAACAACG 
Probe HEX/FAM – CCGCAACGA – ZEN – CGAATACGACTACTAACCTACG – IBFQ 125μM Integrated DNA Technologies, USA 

MAGI2 
Primers 

F – GGATTTCGCGTTAGGACGTTC 
400μM Eurofins Genomics, Germany 

R – ACCTCTATACGACCGAACCGC 
Probe FAM – CGCGCCTAA – ZEN – TACCACATCTCGAACTCTACG – IBFQ 250μM Integrated DNA Technologies, USA 
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11. Statistical Analysis  
 

Data was tabulated using Microsoft Excel and analyzed and plotted using GraphPad 

Prism 9 (GraphPad Software Inc., USA) and IBM SPSS Statistics version 26 (IBM-SPSS 

Inc., USA) for MacOS. Non-parametric tests were performed to compare methylation levels 

of each gene’s promoter between cancer and control samples, in both tissue and plasma 

samples, and to evaluate associations with clinicopathological features. Mann-Whitney test 

was used for comparisons between two groups, while Kruskal-Wallis test was used for 

multiple groups, followed by Dunn’s multiple comparison test for pairwise comparisons. 

Pearson correlation was performed for comparing the expected and observed number of 

methylated copies for determining LOQ, while Spearman correlation was applied to 

correlate the levels of methylation with patients and controls’ ages. A result was considered 

statistically significant when p-value<0.05. 

For each gene promoter, samples were classified as methylated or non-methylated 

based on the cut-off values set using Youden’s J index (combining highest sensitivity and 

specificity) [137], through receiver operator characteristic (ROC) curve analysis. Validity 

estimates (sensitivity, specificity and accuracy) were determined to assess detection 

biomarker performance (Table 9). To improve detection performance of the selected genes, 

panels were constructed considering a positive result whenever at least one gene promoter 

was classified as methylated. 

 
Table 9. Formulas for biomarker performance calculations. 

 

Cancer vs. Control 
 Validity Estimates 

 Cancer Control 
 

> Cut-off A B  Sensitivity (%) (A/E) x 100 
< Cut-off C D  Specificity (%) (D/F) x 100 

Total E F  Accuracy (%) [(A+D) / (E+F)] x 100 
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1. Selection and validation of new CancerType genes in tissue 
sample set 

 

Given the suboptimal results regarding the “CancerType” genes obtained in the 

preliminary data, we sought to select new genes that would discriminate between BrC, LC, 

CRC and PCa. For that, we have chosen the following genes in line for each cancer type 

depicted in the TCGA data mining (Table 2). Accordingly, we designed methylation-specific 

primers and probes for EDNRB, ZNF529, GFRA1 and HRASLS5. After optimization, 

methylation specificity could not be obtained with the designed sequences for ZNF529 and 

HRASLS5, hence, ZSCAN1 and AOX1 were further selected for discriminating LC and PCa, 

respectively.  

EDNRB, ZSCAN1, GFRA1 and AOX1 promoter methylation levels were compared 

between tumoral tissues of each cancer type and respective normal tissues (Figure 8). 

EDNRB and ZSCAN1 promoter methylation levels were significantly higher in CRC tissue 

compared to normal tissue (p<0.0001) and in LC and BrC, in a lower extent. Given that the 

methylation status of these genes is supposed to be specific of BrC and LC, respectively, 

their value as “CancerType” genes is rather weak. GFRA1 methylation levels were also 

significantly higher in CRC tissue (p<0.0001), its specific cancer type, nonetheless, 

significant differences were also observed between LC and normal tissues.  Regarding 

AOX1, promoter methylation levels were significantly higher in PCa tissue compared to 

normal tissue (p<0.0001), as expected, but CRC tissues also displayed high methylation 

levels of this gene promoter.  

Overall, these results, together with the preliminary ones, showed a limited capacity of 

the “CancerType” panel in discriminating between the four cancers. Hence, major 

improvements need to be done in order to develop a better algorithm to select genes for 

identifying a tumor’s site of origin.  

Importantly, given the promising results obtained for the “PanCancer” genes to 

simultaneously detect all 4 cancer types in study, we decided to proceed with liquid biopsy 

testing focusing only on this panel. 
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Figure 8. Distribution of (A) EDNRB, (B) ZSCAN1, (C) GFRA1 and (D) AOX1 relative promoter methylation 

levels in lung cancer (LCA), normal lung (NL), breast cancer (BRCA), normal breast (NBr), colorectal cancer 
(CRC), normal colorectal (CRN), prostate cancer (P) and normal prostate (CP) tissues. Mann-Whitney U Test 

between tumor and normal tissues, n.s. p>0.05, *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001. Red horizontal 

lines represent the median methylation level.  

 

2. Clinical and Pathological Data 
 

This study included 2 sets of plasma samples, an optimization and a testing set. 

The optimization set consisted of 16 cancer patients (4 of each cancer type, one of each 

clinical stage) and 4 asymptomatic blood donors (AC), which served as controls. 

Additionally, 200 cancer patients with BrC (n=50), LC (n=50), CRC (n=50), PCa (n=50) 

and 50 AC were selected for the testing set.  

Detailed clinical and pathological characterization of the selected patients for both sets 

is provided in Table 10. 

No correlation was observed between the methylation levels of any tested gene and the 

age of cancer patients or asymptomatic controls (p>0.05 for all genes). 
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Table 10. Clinical and pathological features of breast, lung, colorectal and prostate cancer patients and 

asymptomatic controls included in this study. 

 
 

Clinicopathological features 
Optimization Set 

Breast Cancer 4 samples (Stage I-IV) 
Lung Cancer 4 samples (Stage I-IV) 
Colorectal Cancer 4 samples (Stage I-IV) 
Prostate Cancer 4 samples (Stage I-IV) 
Healthy Donors 4 samples (2 ♀ and 2 ♂) 

Testing set 
Asymptomatic controls 
Number 50 
Age median (range) 59 (40 – 66) 
Breast Cancer 
Number 50 
Age median (range) 59 (30 – 93) 
Histological Type  
Lobular carcinoma in situ 1 
Invasive lobular carcinoma 6 
Ductal carcinoma in situ 1 
Invasive ductal carcinoma 36 
Other invasive carcinoma subtypes a 6 
Estrogen Receptor Status 
Positive  47 
Negative 3 
Progesterone Receptor Status 
Positive  44 
Negative 6 
HER2 Expression Status 
Positive  6 
Borderline 3 
Negative 41 
Primary Tumor (T) 
T1/T2 46 
T3/T4 4 
Regional Lymph Node (N) 
N0 33 
N+ 17 
Distant Metastasis (M) 
M0 48 
M+ 2 
Clinical Stage 
I/II 45 
III/IV 5 
Lung Cancer 
Number 50 (14 ♀, 36 ♂) 
Age median (range) 63 (36 – 84) 
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Histological Type  
Non-small cell lung cancer (NSCLC):  

Adenocarcinoma 37 
Squamous cell carcinoma 8 
Large-cell neuroendocrine carcinoma 1 

Small cell lung cancer (SCLC) 2 
Carcinoid tumor 2 
Primary Tumor (T) b 
T1 9 
T2/T3/T4 27 
Regional Lymph Node (N) b 
N0 17 
N+ 19 
Distant Metastasis (M) 
M0 22 
M+ 28 
Clinical Stage 
I/II 14 
III/IV 36 
Colorectal Cancer 
Number 50 (22 ♀, 28 ♂) 
Age median (range) 62 (49 – 81) 
Histological Type  
Adenocarcinoma  50 
Tumor location  
Proximal colon 13 
Distal colon 14 
Rectum 23 
Primary Tumor (T) c  
T1/T2 12 
T3/T4 34 
Regional Lymph Node (N) c  
N0 28 
N+ 18 
Distant Metastasis (M) c  
M0 44 
M+ 2 
Clinical Stage  
I/II 27 
III/IV 23 
Prostate Cancer 
Number 50 
Age median (range) 66 (47 – 78) 
Histological Type  
Adenocarcinoma  50 
Primary Tumor (T) d  
T1/T2 26 
T3/T4 23 
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Regional Lymph Node (N) d  
N0 38 
N+ 11 
Distant Metastasis (M) d  
M0 42 
M+ 7 
PSA Levels (ng/mL) e  
<10 32 
10-20 9 
>20 7 
Clinical Stage  
I 8 
II 19 
III/IV 23 

 

a includes NST (no special type), mucinous, pleomorphic and mixed type carcinoma; b no information 

available in 14 cases; c no information available in 4 cases; d no information available in 1 case; e no 
information available in 2 cases.  

 

3. Optimization of methylation-specific ddPCR assays 
 

To optimize methylation-specific ddPCR assays, fully methylated and non-methylated 

DNA were used at a 1:100 dilution, to mimic cfDNA concentration. The optimization phase 

aimed:  

1) At finding the adequate settings to allow the best separation between positive and 

negative droplet populations for each target and between droplet populations (in 

multiplex panels). 

2) To accurately consider a sample as positive only in the presence of methylated DNA. 

 

3.1 Optimal annealing temperature  
 

A temperature gradient (54-62ºC) was performed to select the annealing temperature 

that provided the best separation between positive and negative droplets, as well as the 

highest amplitude for the positive population (Figure 9).  

Except for MAGI2me, in which the annealing temperature did not affect much the 

amplitude of positive droplets, an annealing temperature of 57ºC or below should be 

selected for the remaining genes. Moreover, as our goal was to further develop multiplex 

panels, we selected 57ºC as the annealing temperature for all genes, since less “droplet 

rain” between the 2 droplet clusters was attained, while providing the highest amplitude. 
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Figure 9. Temperature gradient for selection of the optimal annealing temperature for (A) ACTB, (B) MAGI2, 
(C) ADCY4, (D) MIR129-2 and (E) NID2 promoter’s methylation. The highest separation between positive 

(green/blue) and negative (grey) droplets was achieved at 57ºC for all genes.  

 

3.2 Multiplex panels 
 

Given that the “PanCancer” panel consists of 5 genes (4 targets and reference gene), 2 

individual panels (1 duplex panel and 1 triplex panel) were defined. Several primer and 

probe concentrations of the chosen genes and gene combinations were tested in order to 

select the best panels to be assessed simultaneously.  

Considering that the available ddPCR system only has 2 fluorescence channels, the 

triplex panel was developed by using 2 probes for the same target labeled with different 
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fluorochromes at a 50:50 ratio to create a third droplet population with intermediate 

fluorescence amplitude between the other 2 targets (Figure 10B) [138].  

The selected gene panels were a duplex combining MAGI2me and the reference gene 

ACTB (Figure 10A), and a triplex combining ADCY4me, MIR129-2me and NID2me (Figure 

10B). All genes were optimized with 400nM of each primer and 250nM of probe, except for 

NID2me with 125nM of both HEX/FAM-labeled probes. 

 
Figure 10. 2D-plots of the optimized multiplex gene panels. (A) Duplex panel combining MAGI2me (blue droplets) 

and ACTB (green droplets); (B) Triplex panel combining ADCY4me (red droplets), MIR129-2me (purple droplets) 
and NID2me (dark yellow droplets). 
 

3.3 Limit of blank (LOB), detection (LOD) and quantification (LOQ) 
 

For determining the LOB and LOD, consisting in the highest analyte concentration likely 

to be observed for a blank sample and the lowest amount of analyte that can be reliably 

detected, respectively, 30 replicates of negative (fully unmethylated DNA) control were ran 

for the 2 gene panels. The calculated LOBs (Table 11) of each gene were set as thresholds 

of positivity, meaning that a testing sample was considered positive for a certain gene if it 

showed a number of positive droplets higher than the respective LOB.  
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Table 11. Limit of blank (LOB) and limit of detection (LOD) for ADCY4, MIR129-2, NID2 and MAGI2. Values are 

displayed as number of positive droplets.  
 

Methylated Gene Promoter LOB LOD 
ADCY4 0 3 

MIR129-2 0 3 
NID2 3 7 

MAGI2 0 3 
 

 

For determining the LOQ, defined as the lowest amount of analyte that can be reliably 

quantified, positive control (fully methylated DNA) was serially diluted with negative control 

(fully unmethylated DNA) from 100% to 0% and used as the template for each gene panel 

run (Figure 11). The expected number of methylated copies per gene was correlated with 

the observed number of copies. For all genes, a near perfect correlation was observed, with 

Pearson correlation coefficients above 0.994 for ADCY4, MIR129-2 and MAGI2, and 0.9893 

for NID2 (p<0.0001 for all genes). Thereby, the assays can accurately quantify methylation 

even with 90% of non-methylated DNA background. 

 

 
Figure 11. Limit of quantification (LOQ) for (A) ADCY4me, (B) MIR129-2me, (C) NID2me and (D) MAGI2me. 

Observed number of methylated copies were correlated with the expected copy number for different methylation 

percentages. r – Pearson correlation coefficient.  
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4. Optimization of a pipeline for cfDNA downstream methylation 
analysis 
 

4.1 Selection of an optimal method for cfDNA extraction from plasma samples 
 

A set of 20 plasma samples (optimization set; Table 10) was selected to compare the 

performance of 3 different methods for cfDNA extraction. Comparison was performed by 

evaluating cfDNA profiles of each sample extracted by each methodology in the 

TapeStation system.  

The average size of cfDNA is around 170bp corresponding to mononucleosomal DNA, 

but longer fragments can also be identified, consisting of di- and tri-nucleosomes, however 

in less abundance [132]. Thereby, in an electrophoretic separation of cfDNA it is expected 

to observe a prominent peak at around 170bp and smaller peaks in the area between 300-

500bp. DNA fragments with size above 700bp are considered high molecular weight (HMW) 

DNA, most likely contaminant DNA arising from white blood cells [139].  

Representative electropherograms from a stage IV LC sample extracted with the 3 kits 

are provided in Figure 12.  

Samples extracted with both QIAmp MinElute ccfDNA Kit and MagMAXTM Cell-Free DNA 

Isolation Kit displayed expected cfDNA fragmentation profiles, all presenting a peak in the 

region between 160-180bp. Additionally, all samples presented one additional lower 

intensity peak around 400bp, while most even displayed a third peak near 500bp, showing 

that these extraction kits can maintain the integrity and extract all cfDNA subpopulations 

(Figure 10A, B). Concerning samples extracted with the magLEAD® 12gC automatic 

extractor, no prominent peaks were observed within 50-700bp, suggesting that such 

methodology results in a highly fragmented sample, thus, not being suitable for downstream 

molecular analysis (Figure 12C). Besides, it was possible to observe that when HMW DNA 

was present, its peak intensity was higher in samples extracted with QIAmp MinElute 

ccfDNA Kit (Figure 12A, B), indicating that this kit may yield a more contaminated sample.  

Beyond fragment size analysis, the TapeStation system also allowed cfDNA populations’ 

quantification (Figure 13). While no differences were depicted in total DNA nor DNA sized 

between 50-700bp (range considered cfDNA by the analysis software) concentrations 

obtained with QIAmp MinElute ccfDNA Kit and MagMAXTM Cell-Free DNA Isolation Kit, 

significantly lower concentrations were obtained when using magLEAD® 12gC extractor 

(p<0.0001) (Figure 13A, B). Regarding %cfDNA, a metric automatically computed by the 

software as a sample quality check, significantly lower values were also displayed for 

samples extracted automatically (p<0.0001) (Figure 13C).  
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Figure 12. Electropherogram profiles of cfDNA extracted from a stage IV lung cancer plasma sample with (A) 

QIAmp MinElute ccfDNA kit, (B) MagMAXTM Cell-Free DNA Isolation Kit and (C) magLEAD® 12gC extractor. 

Obtained from TapeStation Analysis software. 
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Figure 13.  Comparison of cfDNA extraction using QIAmp MinElute ccfDNA kit, MagMAXTM Cell-Free DNA Isolation Kit and magLEAD® 12gC extractor across 20 plasma 

samples. (A)  Concentration of DNA with size ranging from 50-700bp. (B) Total DNA concentration. (C) %cfDNA i.e., % of DNA with 50-700bp in the sample. Numbers in 

sample name refer to cancer stage, for example, BrC1 corresponds to a stage I breast cancer sample. Data obtained from TapeStation Analysis software.
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Although no significant differences were obtained in total or cfDNA concentrations 

between the samples extracted with the 2 manual kits (Figure 13A, B and Figure 14A), 

samples extracted with MagMAXTM Cell-Free DNA Isolation Kit showed significant higher 

%cfDNA (p=0.0069) (Figure 13C and 14B), indicating a higher proportion of contaminant 

HMW DNA present in samples extracted with QIAmp MinElute ccfDNA Kit. In fact, most 

samples extracted with MagMAXTM Cell-Free DNA Isolation Kit displayed %cfDNA above 

90, emphasizing the quality of extraction.  

 

Figure 14. Comparison between cfDNA extraction using QIAmp MinElute ccfDNA kit and MagMAXTM Cell-Free 

DNA Isolation Kit. (A) Total DNA concentration of samples extracted with the 2 kits. (B) %cfDNA of samples 
extracted with the 2 kits. Mann-Whitney U Test between kits, n.s. p>0.05, **p<0.01. Red lines represent the 

median value and interquartile range. Data obtained from TapeStation Analysis software. 
 

In addition to the quality of extracted samples, MagMAXTM Cell-Free DNA Isolation Kit 

also resulted in a higher cfDNA concentration when initial volumes were normalized, since 

this kit used 1mL of input plasma, while QIAmp MinElute ccfDNA Kit required a minimum of 

2mL. Thus, MagMAXTM Cell-Free DNA Isolation Kit was selected for further experiments. 

 

4.2 cfDNA input and cut-offs for sample eligibility 
 

After fragmentation analysis, cfDNA samples were submitted to sodium-bisulfite 

modification and promoter methylation levels of the genes of interest were assessed by 

ddPCR, as previously described.  

Surprisingly, only 3 samples showed positive droplets for any of the genes, being them 

stage IV BrC, CRC and PCa samples. Accordingly, these samples also showed a higher 

number of β-Actin copies/μL, indicating that more input DNA was present (Figure 15A).  

To confirm that the obtained results were due to lack of input and not related to gene 

performance, we performed targeted pre-amplification on all samples to increase the 
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amount of DNA available for the ddPCR reaction. This time, all samples had positive 

droplets for at least one of the genes, except stage II LC and PCa samples (Figure 15B).   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 
Figure 15. Number of methylated copies/μL for ADCY4, MIR129-2, NID2 and MAGI2 promoters across 20 

plasma samples using ddPCR (A) and targeted pre-amplification followed by ddPCR (B). Number of methylated 
copies/μL was computed automatically by the software after manual threshold setting. Red lines represent the 

median value and interquartile range. 

 

Since insufficient input led to the low methylation levels depicted, we sought to look at 

the DNA quantity corresponding to the volume used in the ddPCR reaction (5 μL) for each 

sample (Figure 16). Indeed, all samples except the 3 showing methylated copies for any 

gene had an input below 5ng. Thus, we defined as a criterion for sample eligibility that only 
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samples with concentration sufficient for inputting 5ng of DNA in each gene panel would be 

considered for methylation analysis. Additionally, a cut-off of 250 copies/20μL was defined 

for β-Actin to minimize the rate of false negative results. 

 
 

 

 

 

 

 

 

 
 

 
 

Figure 16. Input DNA in nanograms (ng) used in the ddPCR reaction for each sample. 5ng was defined as cut-
off for sample quality control.   

 

5. Gene promoter methylation levels in cfDNA 
 

5.1 cfDNA concentrations across cancer patients and healthy donors 
 

The median cfDNA concentration was higher in all four cancers compared to 

asymptomatic controls. Nonetheless, since different plasma volumes were used, 

concentration values were normalized to provide a more accurate comparison. After 

normalization, LC showed the highest median concentration, reaching up to 89.5ng of 

cfDNA per mL of plasma, followed by CRC, while BrC, PCa patients and AC displayed 

similar normalized median concentration values (Table 12 and Figure 17A).  

 
Table 12. Concentration values of cfDNA extracted from plasma samples of lung, breast, colorectal and prostate 

cancer patients and asymptomatic controls included in this study. 
 

Concentration Lung 
Cancer 

Breast 
Cancer 

Colorectal 
Cancer 

Prostate 
Cancer Controls 

Raw (ng/μL) 
Median (range) 

0.911 
(0.332-7.16) 

0.752 
(0.391-2.57) 

1.325 
(0.321-13.5) 

0.749 
(0.168-5.64) 

0.684 
(0.138-2.66) 

Normalized 
(ng/mL) 

Median (range) 

9.54 
(2.36-89.5) 

5.30 
(3.12-14.25) 

8.71 
(2.35-84.86) 

5.42 
(1.23-35.45) 

5.91 
(1.2-16.72) 
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Overall, increased cfDNA concentration was observed across disease stages for all 

cancer types individually, except for BrC. Significant differences were observed between 

concentrations of early- and late-stage LC and CRC patients, while stage III PCa patients 

showed significantly higher cfDNA concentrations than stage I/II patients (Figure 17B).  

 

Figure 17. Normalized cfDNA concentration values per mL of plasma across lung, breast, colorectal and 

prostate cancer and asymptomatic controls (A) and between cancer stages (B). Kruskal-Wallis test followed by 
Dunn's multiple comparisons test between groups, *p<0.05, **p<0.01, ***p<0.001. Red lines represent the 

median value and interquartile range.   
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5.2 cfDNA methylation across cancer patients and healthy donors 
 

cfDNA methylation levels of ADCY4, MIR129-2, NID2 and MAGI2 promoters were 

compared between each cancer type and controls (Figure 18). After applying the sample 

concentration and β-Actin copy number cut-offs for sample quality control, 38 LC samples, 

25 BrC, 47 CRC, 39 PCa and 33 AC were considered suitable for methylation analysis.  

All gene promoter methylation levels were significantly higher in LC patients compared 

to AC (p<0.0001 for ADCY4me, MIR129-2me and MAGI2me; p<0.01 for NID2me). Concerning 

BrC, ADCY4me and MAGI2me levels were significantly higher (p<0.01), although no 

significant differences were apparent for MIR129-2me and NID2me (p=0.1128 and p=0.1880, 

respectively). Remarkably, significantly higher methylation levels were depicted for all gene 

promoters in CRC patients, with p<0.0001 for all genes. Similarly, all gene promoters 

showed higher methylation levels in PCa samples compared with AC, (p=0.0167 for 

MIR129-2me, p<0.01 for MAGI2me and ADCY4me and p<0.001 for NID2me). 
 

 

Figure 18. Distribution of (A) ADCY4, (B) MIR129-2, (C) NID2 and (D) MAGI2 promoter methylation levels in 

lung (LC), breast (BrC), colorectal (CRC) and prostate (PCa) cancers and asymptomatic controls (AC) samples. 

Mann-Whitney U Test between AC and each cancer type, n.s. p>0.05, *p<0.05, **p<0.01, ***p<0.001, 
****p<0.0001. Red horizontal lines represent median methylation levels. 
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5.3 Biomarker performance of gene promoter methylation levels 
 

Since our main goal was to develop a test for simultaneous detection of BrC, LC, CRC 

and PCa, we further assessed the biomarker performance of the methylation levels of 

selected gene promoters in detecting individual cancer types, as well as pan-cancer 

detection.  

Remarkably, 100% specificity was obtained for all genes, except for MIR129-2me, in all 

cancer types (Table 13). In fact, no positive droplets were observed in AC for all the tested 

genes, except for MIR129-2 in 2 samples. Nonetheless, a specificity of 93.75% was 

obtained for the methylation level of this gene promoter in discriminating each of the cancers 

from the controls.  

Despite their high specificity, all genes displayed low sensitivity for BrC detection, with a 

maximum of 28% for ADCY4me. Similarly, PCa detection reached a maximum sensitivity of 

30.77% for NID2me. While the methylation levels of this gene were only able to detect LC 

with 21.05% sensitivity, ADCY4me and MAGI2me showed 50% sensitivity and MIR129-2me 

60.53%. Regarding CRC detection, all gene promoter methylation levels displayed 

sensitivities above 42%, reaching 68.09% for MIR129-2me levels (Table 13).  

Gene panels were further constructed to increase detection sensitivity. Thus, the 

“PanCancer” panel combining all genes was applied and a sample was considered positive 

when at least one of the gene promoters presented methylation above the established cut-

off. Using this approach, the 4 cancer types could be detected with 93.75% specificity, while 

sensitivities were 52% for BrC, 56.41% for PCa, 78.72% for CRC and 85.71% for LC 

detection (Table 14). 100% specificity was achievable by considering 2 or more positive 

genes, however, at the cost of reduced sensitivity (Table 14). 

Given the importance of early cancer detection, we further assessed the performance of 

the “PanCancer” panel in detecting stage I/II cancer. Remarkably, early-stage cancer 

detection was possible with similar performance as for all stages, while stage III/IV detection 

sensitivity was slightly higher (Table 15). 

When applied to the simultaneous detection of the 4 cancers, the “PanCancer” panel 

was able to correctly identify 104 out of 149 cancer patients, resulting in 69.80% sensitivity, 

93.75% specificity and 74.03% accuracy (Table 16 and Figure 19).  

 

 

 

 

 



 

 70 

Table 13. Biomarker performance of each gene promoter methylation levels for breast, lung, colorectal and 

prostate cancer detection. 
 

 

 
Table 14. Biomarker performance of the “PanCancer” gene panel for breast, lung, colorectal and prostate cancer 
detection. 
 

Pa
n C

an
ce

r 

Positive 
genes* 

Breast 
Cancer 

Lung  
Cancer 

Colorectal 
Cancer 

Prostate 
Cancer 

SE% SP% SE% SP% SE% SP% SE% SP% 
1 52 93.75 85.71 93.75 78.72 93.75 56.41 93.75 

2 20 100 57.89 100 61.70 100 20.51 100 

3 5.88 100 34.21 100 42.55 100 17.95 100 

4 0 100 5.41 100 19.15 100 7.69 100 
 

* ”PanCaner” panel is considered positive for a given sample if at least 1, 2, 3 or all 4 genes are positive. 

Abbreviations: SE – sensitivity; SP – specificity. 

Gene Cut-off Sensitivity% Specificity% Accuracy% 

Breast Cancer 

ADCY4me 0.045 28 100 68.42 

MIR129-2me 0.09 24 93.75 63.16 

NID2me 0.12 8 100 59.65 

MAGI2me 0.06 24 100 66.67 

Lung Cancer 

ADCY4me 0.145 50 100 72.86 

MIR129-2me 0.17 60.53 93.75 75.71 

NID2me 0.51 21.05 100 57.14 

MAGI2me 0.11 50 100 72.86 

Colorectal Cancer 

ADCY4me 0.04 42.55 100 65.82 

MIR129-2me 0.085 68.09 93.75 78.48 

NID2me 0.07 42.55 100 65.82 

MAGI2me 0.045 48.94 100 69.62 

Prostate Cancer 

ADCY4me 0.085 23.08 100 57.75 

MIR129-2me 0.155 28.95 93.75 58.57 

NID2me 0.13 30.77 100 61.97 

MAGI2me 0.055 20.51 100 56.34 
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Table 15. Biomarker performance of the “PanCancer” panel for early (stage I/II) and late (stage III/IV) stage 

detection of breast, lung, colorectal and prostate cancer. 
 

Early-stage Cancer 

 Sensitivity% Specificity% 

Breast Cancer 52.17 93.75 

Lung Cancer 77.78 93.75 

Colorectal Cancer 76.92 93.75 

Prostate Cancer 55 93.75 

Late-stage Cancer 

 Sensitivity% Specificity% 

Breast Cancer 50 93.75 

Lung Cancer 86.21 93.75 

Colorectal Cancer 80.95 93.75 

Prostate Cancer 57.89 93.75 

 
Table 16. Biomarker performance of the “PanCancer” panel for simultaneous detection of breast, lung, 

colorectal and prostate cancer. 
 

PanCancer – 4 Major Cancers 

Sensitivity 69.80% 

Specificity 93.75% 

Accuracy 74.03% 

 
 
 
 
 
 
 
 
 
 

 
 
 
Figure 19. Percentage of cases identified by the “PanCancer” panel in cancer samples (70% Positive, 30% 
Negative) and in asymptomatic controls (6% Positive, 94% Negative). 
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5.4 Association between gene promoter methylation levels and 
clinicopathological features 
 

Regarding associations between promoters’ methylation levels and clinicopathological 

features, higher MIR129-2 methylation levels were associated with advanced stages of LC 

(p<0.01; Figure 18A), CRC (Figure 20B-1) and PCa (Figure 20C-2). Additionally, higher 

NID2me levels were present in late-stage CRC (Figure 20B-2) and PCa (Figure 20C-3). 

MAGI2me and ADCY4me levels were also significantly higher in stage IV CRC and PCa, 

respectively, compared to earlier stages (Figure 20B-3 and C-1, respectively).  
 

Figure 20. Distribution of methylation levels in lung (A), colorectal (B) and prostate (C) cancer patients according 

to clinical stage. (A) MIR129-2 promoter methylation levels in stage I & II and III & IV lung cancer patients. (B)-
(1) MIR129-2, (2) NID2 and (3) MAGI2 promoter’s methylation levels across stage I-IV colorectal cancer 

patients. (C)-(1) ADCY4, (2) MIR129-2 and (3) NID2 promoter’s methylation levels across stage I-IV prostate 

cancer patients. Kruskal-Wallis test followed by Dunn's multiple comparisons test, *p<0.05, **p<0.01, 
***p<0.001. Red horizontal lines represent the median value and interquartile range. 
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Similarly, MIR129-2me higher levels were associated with metastatic disease (M) in LC 

(p=0.0150; Figure 21A), CRC (p<0.0001; Figure 21B-1) and PCa (p<0.01; Figure 21C-2) 

patients, while the same applies for NID2me levels in the 2 latter (Figure 21B-2 and C-3, 

respectively). MAGI2me levels were also significantly higher in CRC metastatic patients 

(p<0.0001; Figure 21B-3), whereas ADCY4me levels were more present in the circulation of 

PCa patients with distant metastasis (p<0.01; Figure 21C-1).  

 

 
Figure 21. Distribution of methylation levels in lung (A), colorectal (B) and prostate (C) cancer patients according 
to metastatic dissemination. (A) MIR129-2 promoter methylation levels in non-metastatic (M0) and metastatic 

(M+) lung cancer patients. (B)-(1) MIR129-2, (2) NID2 and (3) MAGI2 promoter’s methylation levels across non-

metastatic and metastatic cancer patients. (C)-(1) ADCY4, (2) MIR129-2 and (3) NID2 promoter’s methylation 
levels across non-metastatic and metastatic prostate cancer patients. Mann-Whitney U Test, *p<0.05, **p<0.01, 

****p<0.0001. Red horizontal lines represent the median value and interquartile range. 
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ADCY4, MIR129-2 and NID2 promoter methylation levels were also significantly elevated 

in PCa patients with regional lymph node (N) involvement (p<0.0001 for ADCY4me and 

MIR129-2me and p<0.001 for NID2me; Figure 22).  

No associations were observed between clinicopathological features and circulating 

methylation levels in BrC samples.   
 

 

Figure 22. (A) ADCY4, (B) MIR129-2 and (C) NID2 promoter’s methylation levels across node-positive (N+) 

and node-negative (N0) prostate cancer patients. Mann-Whitney U Test, ***p<0.001, ****p<0.0001. Red lines 

represent the median value and interquartile range. 
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BrC, LC, CRC and PCa are the four most incident cancers worldwide and are among the 

deadliest, for both males and females, accounting for over 3 million annual deaths [1]. 

Although being part of the small fraction of cancers with available screening methods, which 

have, indeed, contributed to mortality reduction, several disadvantages, such as 

overdiagnosis [11, 17, 35] and invasiveness of the procedures [23] have also resulted from 

it. Thus, minimally invasive and highly specific screening protocols for early detection of 

these major cancers are urgently needed. DNA methylation displays cancer-specific 

aberrant patterns, namely hypermethylation and consequent silencing of tumor suppressor 

genes, in addition to being an early oncogenic event and easily accessible in cfDNA [66]. 

Besides, given its tissue-specific features, it shows great promise as a minimally-invasive 

biomarker for multi-cancer early detection using a single blood sample. Thus, we sought to 

assess the feasibility of a DNA methylation blood-based test for simultaneous detection of 

BrC, LC, CRC and PCa using multiplex ddPCR.  

Aiming to identify candidate hypermethylated genes common to the four cancers, a 

TCGA data mining was performed, disclosing 30 potential genes. Additionally, cancer type-

specific genes were also identified, 82 for BrC, 12 for LC, 496 for CRC and 159 for PCa. 

The top 5 genes common to all cancers were selected to comprise a “PanCancer” gene 

panel, while the top hypermethylated specific gene of each cancer was selected to compass 

a “CancerType” panel aiming to discriminate the TOO after a positive “PanCancer” result.  

ADCY4, CDO1, MIR129-2, NID2 and MAGI2 promoter methylation levels were 

compared in silico between tumoral and normal tissues of the four cancers using 

aggregation methylation values. Such analysis confirmed their potential as pan-cancer 

biomarkers, which we further validated using an in-house cohort of tissue samples. The 

methylation levels assessed by qMSP supported the in silico results, highlighting the 

potential value of these genes as markers for liquid-biopsy testing. Noteworthy, primers and 

probes could not be designed for CDO1 fulfilling all our criteria, thus this gene was discarded 

since we could not ensure its methylation-specificity. 

Adenylyl cyclase type 4 (ADCY4), like all adenylyl cyclases, is involved in the cAMP 

signaling pathway, which has been proposed as a treatment target, showing inhibition of 

cell growth and migration, as well as improvements in conventional antitumor drug 

sensitivity [140]. ADCY4 functions as a tumor suppressor gene and has been shown, in 

silico, to be downregulated by promoter hypermethylation in BrC and LC. Besides, it has 

been proposed as a potential biomarker for the detection and prognosis of BrC [140, 141]. 

In the same line, in our study, higher methylation levels were found in CRC and PCa tumor 

samples compared to normal samples for this gene promotor.  

MIR129-2 encodes the miR-129-2, which acts as a tumor suppressor microRNA in many 

cancers. Our results are in line with several others from other research groups, with 
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MIR129-2 promoter hypermethylation having been described in CRC cell lines and tissue 

samples [142], BrC primary tumors [141, 143-145], LC cell lines and primary tumors [146, 

147] and PCa tissue specimens and urine sediments [148], supporting our results. 

Additionally, several other malignancies such as liquid tumors [149], gastric cancer [150], 

liver cancer [151, 152], bladder cancer [153], ovarian cancer [154], esophageal cancer 

[155], oropharyngeal carcinoma [156] and glioma [157] have been shown to display 

MIR129-2 hypermethylation. Indeed, MIR129-2 has been shown to be hypermethylated in 

multiple cancers, being considered one of the markers of the universal pan-cancer set [158].  

Nidogen 2 (NID2) belongs to the nidogen protein family, thus being involved in 

maintaining the integrity and stability of basement membranes. NID2 silencing by promoter 

hypermethylation has been described for LC in tissues [159], cell lines [160] and plasma 

samples [161], as well as for BrC tissues [162]. Other cancers like gastric [163], oral 

squamous cell carcinoma [164, 165] and bladder cancer [166-169] also displayed NID2 

hypermethylation. Besides LC and BrC, we observed high levels of NID2 promoter 

hypermethylation for CRC and PCa. 

MAGI2 encodes the membrane-associated guanylate kinase, WW and PDZ domain-

containing protein 2. This protein has been shown to be less expressed during PCa 

progression, suggesting that it can be helpful to predict PCa aggressiveness [170, 171]. 

Concerning MAGI2 methylation, no reports are available concerning the tumor types 

address by our study, however, higher MAGI2 methylation levels have been found in 

cervical cancer, both in tissue [172, 173] and cervical scrapings samples [174], as well as 

in ovarian [175] and gastric cancer primary tumors [176]. 

Overall, the available literature supports our hypothesis that the methylation levels of 

selected pan-cancer genes may indeed detect BrC, LC, CRC and PCa in a variety of 

biological samples and it further shows its extent to additional cancer types.  

Regarding the “CancerType” selected genes, HOXA11 promoter methylation levels were 

only significantly higher in LC tissues compared to respective normal, both in silico and in 

the tested tissue set, as expected. Nonetheless, high methylation levels were also seen in 

BrC and respective normal tissues, compromising its value as a cfDNA-based biomarker 

for LC discrimination, as both healthy and BrC females may, in theory, also display higher 

levels of circulating HOXA11me. Homeobox A11 (HOXA11) belongs to the homeobox family 

of transcription factors, thus modulating gene expression in morphogenesis and 

differentiation. Its downregulation by promoter hypermethylation has been reported for LC 

and this gene is thought to have a tumor suppressor function, once it inhibited cell 

proliferation and migration in lung carcinogenesis in in vitro assays [177, 178]. Furthermore, 

in agreement with our results, HOXA11 methylation has also been reported in tissue 

samples from BrC [179].  
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CELF2 was identified as the candidate gene for BrC discrimination and, although in silico 

analysis showed significantly higher methylation levels of the respective promoter in BrC, 

LC and PCa, by qMSP, significant differences were obtained only in BrC primary tumors. 

This gene encodes the CUGBP Elav-like family member 2 protein, an RNA-binding protein 

involved in pre-mRNA alternative splicing, mRNA translation and stability. Indeed, CELF2 

promoter hypermethylation associated with transcriptional silencing, enhancing breast 

tumors’ growth [180]. Moreover, higher CELF2me circulating levels have also been reported 

in ovarian cancer [181].  

Similarly, in silico CHFR promoter methylation levels were higher in LC and PCa in 

addition to CRC, while in our tissue set, significant differences were only depicted for CRC. 

Checkpoint with forkhead and ring finger domains (CHFR) encodes the E3 ubiquitin-protein 

ligase CHFR already identified as a mitotic stress checkpoint and tumor suppressor gene, 

that was shown to display promoter hypermethylation in CRC cell lines and tissue samples 

[182, 183]. However, many other cancer types have shown high methylation levels of 

CHFR, namely BrC [184], LC [185, 186], gastric cancer [187, 188], pancreatic cancer [189], 

esophageal cancer [190] and oral cancer [191].  

FLOT1, identified as PCa specific by in silico analysis, also showed high methylation 

levels in normal breast tissues. Such gene encodes a scaffolding protein of lipid rafts, 

implicated in several cellular mechanisms, including signal transduction, protein recruiting, 

and cell proliferation. While FLOT1 overexpression has been associated with different 

cancer types, like LC [192, 193], BrC [194] and CRC [195], no data is available on FLOT1 

methylation. 

Gathering our results with the available literature, the potential of this “CancerType” 

panel as a tool for discriminating each one of the tested cancers is rather weak, since higher 

methylation levels have been reported for many other cancers. Hence, additional genes 

were selected for each cancer from the data mining process.  

EDNRB and ZSCAN1 promoter methylation levels were significantly higher in our set of 

BrC, LC and CRC tissues, thus discarding their value as specific biomarkers for BrC and 

LC, respectively. Endothelin Receptor Type B (EDNRB) encodes a G-protein coupled 

receptor involved in phosphatidylinositol-calcium signaling and acts as a tumor suppressor 

gene in many cancers. Its downregulation by promoter hypermethylation has already been 

reported by others in CRC [196, 197], LC [198] and PCa [199-201], as well as in bladder 

cancer [202], gastric cancer [203], hepatocellular carcinoma [204] and head and neck 

cancer [205-207]. Regarding ZSCAN1, which encodes a zinc finger protein involved in DNA 

transcription, its methylation levels have only been reported for cervical cancer as a part of 

gene panels aiming to triage HPV-positive women [208, 209]. Nonetheless, in our hands, 

higher GFRA1 promoter methylation levels were also found in CRC and LC. Although this 
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has been confirmed in LC [210], only GFRA1 re-activation by hypomethylation has been 

associated with CRC aggressiveness, due to this protein being involved in the activation of 

the RET oncogene and downstream AKT signaling [211, 212]. Furthermore, we found 

higher AOX1 promoter methylation levels in PCa and CRC samples. This gene encodes 

the aldehyde oxidase 1, an enzyme involved in oxidation-reduction reactions, that, in line 

with our data, was previously shown to be downregulated by methylation in PCa [213-215] 

and CRC [216].  

Overall, the identified genes for TOO discrimination showed little value, suggesting that 

improvements are needed to develop a better algorithm for cancer-type-specific genes’ 

selection. Thereby, we did not further assess their methylation levels in cfDNA and, instead, 

focused our efforts on developing a highly accurate ddPCR-based assay for detecting 

circulating methylation levels of the “PanCancer” genes.  

Given the impact of pre-analytical conditions on cfDNA downstream analysis [217], we 

started by comparing different extraction methodologies across a set of plasma samples 

from cancer patients and healthy blood donors (optimization set). While the automatic 

extractor magLEAD® 12gC performed the poorest, the 2 manual kits showed similar 

performance concerning concentration values and cfDNA fragment size yield. Nonetheless, 

MagMAXTM Cell-Free DNA Isolation Kit outperformed QIAmp MinElute ccfDNA Kit in regard 

to contamination with high molecular weight DNA and %cfDNA. Besides, it provided a 

higher normalized cfDNA concentration, since the similar concentration values depicted 

between the 2 kits originated from different starting plasma volumes. Accordingly, the 

MagMAXTM kit was selected as the most suitable method for cfDNA extraction from plasma 

samples. Indeed, this kit has been shown to outperform other magnetic bead-based kits, 

providing the highest yield and low molecular weight fractions [218]. Other pre-analytical 

factors affecting cfDNA, such as the type of blood collection tubes, blood collection volume, 

plasma isolation, storage and freeze-thaw cycles could not be evaluated since the used 

samples were provided by the institutional biobank. Notwithstanding, blood was collected 

into EDTA tubes, processed within 4 hours after collection and plasma was carefully 

collected avoiding the buffy coat, aliquoted and frozen at -80ºC, thereby, following the most 

recommended guidelines [217].  

In the optimization set samples, using a defined amount of 5 μL of DNA input per 

reaction, hypermethylation levels were only observed in samples of BrC, CRC and PCa 

patients with advanced stages of malignancy (stage IV) for all the gene promoters. 

Regarding the DNA input of each sample in the ddPCR reaction, a minimum of 5ng per 

reaction was mandatory in order to reliably detect methylation in cfDNA. Hence, such 

quantity was defined as a cut-off for sample eligibility. Additionally, another cut-off was 

further defined for the number of β-Actin copies per sample, aiming to control the cfDNA 
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input quantity and to minimize false-negative results. Following such reasoning, samples in 

the testing set were considered for methylation testing if a minimum of 10ng was available 

(5ng for each panel) and only analyzable if a minimum of 250 copies/μL of ACTB was 

reached. 

After applying these criteria, from each group's 50 selected plasma samples, only 38 LC, 

25 BrC, 47 CRC, 39 PCa and 33 AC samples were considered suitable for methylation 

analysis. This goes in agreement with the obtained cfDNA low concentration values for BrC 

and AC, thus leading to more excluded samples. In fact, insufficient cfDNA was a major 

drawback in this work, due to the limited amount of plasma available. Since we used 

biobank-stored samples, a maximum of 4mL of plasma per sample was available for cfDNA 

extraction. Comparing with other cfDNA methylation-based tests, both Epi ProColon® and 

Epi proLung® tests require 3.5 mL of plasma, nonetheless, these use a single gene panel, 

while our ddPCR assay consisted of 2, thus requiring the double input. The IvyGene test 

collects 40 mL of blood from each individual [219], while we routinely collect 12 mL (3 EDTA 

tubes of 4 mL) of blood from cancer patients at diagnosis and 8 mL (2 EDTA tubes of 4 mL) 

from blood donors. Thereby, the available amount of plasma for cfDNA extraction in the 

IvyGene test is far higher. Similarly, the Galleri® test requires collecting 20mL of blood per 

person [114], while in the CCGA study 80 mL were collected and cfDNA was extracted from 

10mL of plasma [83]. Hence, up to 80mL of blood collection is feasible and safe, considering 

that healthy blood donors usually donate between 400-500 mL [220]. Hypothesizing a “real 

world” application of our test, higher blood volumes would be collected, and all resulting 

plasma used for DNA extraction, overcoming the lack of input challenge. Besides, even if 

such minimal input was not achieved, individuals would be contacted to re-collect a sample. 

Another approach would be to develop a 5-plex-based ddPCR assay combining all our 

targets, thus only requiring a limited sample to be inputted once, resulting in more eligibility. 

In fact, such high-order multiplexing has already been performed, although only for 

assessing gene expression [221, 222]. Also, new digital PCR technologies with more than 

2 fluorescence channels have recently become available [223, 224].  

Regarding the circulating methylation levels of “PanCancer” gene promoters, all 

displayed significantly higher levels in cancer patients compared to controls, except 

MIR129-2 and NID2 in BrC patients. To the best of our knowledge, we are the first team to 

report the methylation levels of these gene promoters in cfDNA of patients with LC, BrC, 

CRC and PCa. Only NID2 methylation levels have been assessed in LC patients’ plasma, 

showing a 45.65% methylation rate [161]. Their performance in cancer detection was 

analyzed individually, displaying 100% specificity for ADCY4me, NID2me and MAGI2me and 

93.75% for MIR129-2me for all cancer types. Nonetheless, sensitivities fell short for BrC 

detection, with NID2me only being able to detect this cancer with 8%. In fact, NID2me showed 
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the lowest sensitivity for all cancer types, excepting PCa. Nonetheless, MIR129-2me was 

able to detect LC and CRC with 60.53% and 68.09% sensitivity, respectively. Aiming to 

increase detection sensitivity, we further constructed gene panels (“PanCancer” panel). 

When considering a sample positive whenever one of the genes was positive, sensitivity 

values increased to 52% for BrC, 85.71% for LC, 78.72% for CRC and 56.41% for PCa, at 

93.75% specificity. 100% specificity was obtained when considering at least 2 positive 

genes, however, at the cost of decreased sensitivity. Indeed, our “PanCancer” panel may 

overcome a major challenge of standard screening procedures, with our high specificity 

resulting in a maximum false-positive rate of 6%, thus minimizing overdiagnosis and 

unnecessary costly additional workups. Although showing lower sensitivity than 

mammography, our test may be useful in detecting malignant lesions in women with dense 

breasts, often missed by the above mentioned [10], while also reducing radiation exposure 

by functioning as a tool for triaging women at higher risk of BrC. Similarly, our test also 

underperformed colonoscopy screening [24], but its minimally invasive nature may result in 

much higher patient compliance, hopefully encouraging individuals with a positive result to 

pursue a confirmatory colonoscopy. Notably, our results have clearly outperformed both 

LDCT [18] and PSA testing [225], thus our test may be a promising strategy for pre-

screening LC and PCa and triaging patients for subsequent standard clinical approaches. 

Moreover, the minimal invasiveness, high specificity and low cost of our test favors its usage 

in an annual basis along with other routine blood tests, aiming to increase the detection 

sensitivity or even detect tumors that were too small to be detected by molecular analysis. 

Given the importance of detecting cancer at earlier stages, we further evaluated the 

“PanCancer” panel's ability for detecting stage I and II BrC, LC, CRC and PCa, displaying 

similar performance to all-stage detection.  

In addition to individual cancer detection, we evaluated the capacity of the “PanCancer” 

panel to simultaneously detect BrC, LC, CRC and PCa, showing near 70% sensitivity at 

93.75% specificity. While disclosing similar sensitivity to previous panels reported by our 

group for simultaneous detection of the major female [78] and male [77] cancer types, this 

panel showed much higher specificity. Nonetheless, these studies relied on whole-genome 

amplified cfDNA followed by qMSP analysis, while in the current study methylation-specific 

ddPCR, a more precise technology requiring less input DNA, was used [226]. Moreover, 

although our assay showed less sensitivity relatively to recently published multi-cancer early 

detection blood tests (Table 1), most of these are based on sequencing or other high-

throughput methodologies, which are lengthy processes, require expert bioinformatic 

analysis and are highly costly [227, 228]. Conversely, we have developed a targeted, fast-

workflow and cost-effective ddPCR assay, thus being more feasible as a population-based 

screening tool.  
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Importantly, gene promoter methylation levels associated with tumors clinicopathological 

features. For instance, circulating MIR129-2me levels were significantly elevated in late-

stage and metastatic LC, CRC and PCa patients. Indeed, miR129-2 downregulation by 

methylation has been shown to render SOX4 active and promote CRC aggressiveness, 

including invasion and metastasis [229, 230]. Similarly, NID2me and MAGI2me levels were 

significantly higher in metastatic CRC, while higher ADCY4me and NID2me levels were found 

in node-positive and metastatic PCa at the time of diagnosis. Nonetheless, the number of 

samples from each clinical feature was very reduced, impairing the evaluation of the 

methylation levels of these gene promoters in distinguishing early- from late-stage cancer.  

Overall, we report a proof-of-concept study showing the potential of a simple blood-

based test for the simultaneous detection of the four most incident cancers worldwide. 

Nevertheless, it should be emphasized that we had a limited number of tested samples, in 

addition to a short follow-up of asymptomatic controls, thereby not being able to confirm 

that controls who tested positive will not eventually develop any cancer.  Another drawback 

is the lack of a test for subsequent identification of tumor location, which hampers the choice 

of the most suitable confirmatory method. Despite that, by combining the gender, habits 

related to risk factors and family history of cancer of individuals with a positive “PanCancer” 

test, a more guided sequential workup may be possible. Additionally, our results should be 

validated in prospective studies including high-risk populations and benign conditions.
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In conclusion, we confirm the feasibility of using a single blood test for detecting multiple 

cancers, particularly, BrC, LC, CRC and PCa, major incident and deadly cancers. Thus, 

such test can complement current screening methods, aiming to increase patient 

compliance and shifting cancer detection to earlier stages, where curative treatment options 

are more likely to succeed.  

Considering our results, we further intend to: 

• Develop a more suitable algorithm for identifying methylated genes with potential for 

discriminating between BrC, LC, CRC and PCa. 

• Develop a 5-plex ddPCR assay for assessing the simultaneous promoter methylation 

levels of ADCY4, MIR129-2, NID2 and MAGI2. 

• Validate our results in a larger set of plasma samples from BrC, LC, CRC and PCa 

patients and healthy blood donors. 

• Assess the methylation levels of ADCY4, MIR129-2, NID2 and MAGI2 in patients with 

benign lesions and additional cancer types. 

• Validate our results in large-scale multicentre prospective studies, including high-risk 

populations.  
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Abstract: Cancer remains a leading cause of death worldwide, partly due to being detected in 

late stages, where treatment options are scarce. Most cancers do not have recommended 

screening procedures, and the available ones present several drawbacks, leading to low patient 

compliance and unnecessary workups, adding up the costs to health care systems. Thus, there 

is a great need for accurate and minimally invasive tools for cancer early detection. In recent 

years, multi-cancer early detection (MCED) tests emerged as the ideal tool, combining molecular 

analysis of tumor-related markers present in body fluids with artificial intelligence to 

simultaneously detect a variety of cancers and further discriminate the underlying cancer type. 

Therefore, the aim of this review is to highlight the variety of different approaches currently being 

developed for MCED, in addition to the factors precluding their clinical implementation. Although 

showing great potential, large clinical validation of MCED tests is still lacking.  
 


