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Resumo 

Os avanços na sequenciação de nova geração (NGS) melhoraram bastante a deteção 

de variações no DNA, quer no caso de variantes herdadas quer no caso de variantes 

adquiridas. O estudo destas variantes é de grande interesse na área da genética, 

fornecendo informações sobre o aparecimento e progressão de doenças, como o 

cancro, e, portanto, ajudando também a encontrar melhores soluções de diagnóstico e 

tratamento para estas. A identificação destas variações genómicas é feita através de 

múltiplas ferramentas e programas de bioinformática, um processo geralmente 

denominado por variant calling. Programas específicos desenvolvidos para esta tarefa 

tentam “chamar” mutações com alta confiança enquanto tentam resolver ao mesmo 

tempo problemas inerentes aos métodos de sequenciação, como o ruído. De acordo 

com o tipo de sequenciação realizada e o tipo de mutações que se pretende identificar, 

existem diferentes programas disponíveis para este efeito. 

Com este trabalho apresentamos uma possível solução para melhorar os resultados 

obtidos por variant calling através do desenvolvimento de um pipeline composta por  

diferentes programas adaptados a sequenciadores específicos, além de combinar os 

resultados de mais do que um variant caller de forma a obter uma maior confiança nos 

resultados. Esta pipeline foi projetada especificamente para dados provenientes de 

exomas somáticos obtidos por meio de sequenciação do exoma (Whole Exome 

Sequencing (WES)). O nosso objetivo principal com este trabalho é tentar encontrar 

variantes  estruturais (SV) verdadeiras com múltiplos callers em duas plataformas de 

sequenciação diferentes, aumentando a confiança e as informações obtidas com este 

método. Para atingir este objetivo, nós revimos a literatura disponível sobre os softwares 

usados para análise de exomas somáticos e selecionamos os programas que iam de 

encontro aos nossos objetivos, com posterior implementação dos mesmos. A pipeline 

possui diferentes funções escritas em Python para cada tarefa diferente inerente ao 

processo de variant calling, fazendo também uso de comandos Bash e R. 

Usamos uma amostra de um par normal-tumor sequenciada por WES nas plataformas 

Illumina e Ion Torrent para testar a pipeline. 

Com este trabalho queremos destacar a importância do variant calling, bem como do 

uso de mais de que um caller para obter variantes verdadeiras com alta confiança. 

Palavras-chave: Bioinformática, NGS, Somático, SV, Variant Calling, WES 
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Abstract 

Next-generation sequencing (NGS) breakthrough improved greatly the detection of 

variations in the DNA, in both inherited and acquired situations. The study of these 

variants is of great interest in the genetic fields, giving insights on diseases appearance 

and progressing, like cancer, and therefore accounting for better diagnosis and treatment 

solutions. The identification of these genomic variations is made through multiple tools 

and bioinformatic programs, a process usually called variant calling. Specific programs 

designed for this mean try to call mutations with high confidence while tackling problems 

inherent to the sequencing methods, such as noise. According to the type of sequencing 

performed and the type of mutations desired to identify, there are different programs 

available for this mean. 

With this work we present a possible solution to improve variant calling results by 

developing a pipeline that has different programs tailored to specific sequencers 

machines, as well as combining the results of more than one variant caller to achieve 

higher confidence. This pipeline was specifically designed for somatic exomes obtained 

through Whole Exome Sequencing (WES). Our main goal with this work is to try to find 

true structural variants (SV) with multiple callers in two different sequencing platforms, 

increasing the confidence and the information obtained with this method. To achieve this 

objective, we have reviewed the literature regarding software’s for analysis of somatic 

exomes, and selected the programs that met our objectives, with further implementation 

of them. The pipeline has different functions written in Python for each different task 

inherent to the variant calling process, making also use of Bash and R commands. 

We used a normal-tumour pair sample sequenced by WES on Illumina and Ion Torrent 

platforms to test the pipeline. 

With this work we want to highlight the importance of variant calling as well as the use of 

more than one variant caller to obtain true high confidence variants. 

Keywords: Bioinformatics, NGS, Somatic, SV, Variant Calling, WES 
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1. Introduction 

1.1. Exome analysis to variants detection 

The genome is the complete set of genetic information present in an organism, 

individually arranged to provide individual characteristics. The human genome of each 

cell is composed of approximately three billion molecules of DNA stored in twenty-three 

pairs of chromosomes1.  

DNA is a molecule composed of four nucleotides (adenine (A), cytosine (C), guanine 

(G) and thymine (T)) and has a twisted structure in the shape of a double helix. Is 

composed of two different regions, the coding and the non-coding regions1. The coding 

regions, are the DNA sub-sequences of the gene that encode genes with potential to 

codify proteins, also called exons, whereas the non-coding regions are the sub-

sequences of DNA that encode for functional RNAs but that do not have the potential to 

codify proteins. These latter regions also originate other DNA elements such as 

promoters, regulatory elements, introns, untranslated regions, centromeres and 

telomeres. The complete set of exons of an organism, the exome, only represents about 

one to two percent of the complete genome2, which means that only this small 

percentage corresponds to the codifying portion of the genome. 

DNA can suffer alterations in its sequence, both in the coding and non-coding 

regions of the genes, creating genomic variations that differ from individual to individual. 

These variations are important because they account for the diversity between 

individuals of the same species. It is believed that in humans 4.1 to 5 million bases of 

the genome differ from the reference genome3. These changes are derived from changes 

in the replication of DNA. The replication is based in the two strands of DNA of a mother 

cell, which are split and used as reference to form the complementary strand of DNA. 

Variations can be classified according to where they occur. Variants that occur in 

gametes are called germline and are the ones passed on to the offspring4, while variants 

that occur in all cells except the gametes are called somatic and are specific to the 

individual that has these variants, therefore not being passed to the descendants.  

Germline mutations are the ones responsible for heritable diseases whereas somatic 

mutations are known to be involved in cellular aging and many processes involved in 

disease progression, namely in cancer, as shown in literature9,10. Somatic mutations in 

oncogenes, tumor suppressor and DNA repairing genes increase the risk of cancer, 

making these types of mutations one of the most studied worldwide11. 
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Variants can also be classified according to their size and type of change they 

produce. The smallest and most common type of variants are the Single Nucleotide 

Variants (SNV) (Fig. 1 a)), where one nucleotide of a DNA sequence is replaced by a 

different one. If the nucleotide that is changed is replaced by another that has the same 

chemical type of nucleotide base, for example, an A is changed for a G, or a T for a C, it 

is called Transition. But if it is replaced by a nucleotide with another chemical base type 

it is called Transversion, for example, an A being replaced by a C12.  

In the specific case of SNVs that occur in the coding regions of the DNA, they can 

additionally be classified according to the effect they have on the codon, that is, the effect 

they have in the nucleotide’s triplets of the DNA sequence that will be translated into 

amino-acid sequences. Following that, if the nucleotide replacement does not affect the 

amino-acid sequence produced by the codon, due to the genetic code redundancy, then 

it is classified as a synonymous or silent variant. But if the variant leads to an alteration 

on the codon it can be one of two possible cases. If the altered codon produces a different 

amino acid, is a missense variant. If the original codon becomes a stop-coding, further 

resulting in a truncated-protein, it is a nonsense variant13.  

Still regarding the SNVs, is important to refer that if they are present in at least one 

percent of the population they are considered Single Nucleotide Polymorphisms (SNP)4. 

Within the group of small variants, but bigger than the SNVs, are the indels, 

insertions or deletions of less than fifty nucleotides (Fig. 1 b)). A specific subtype of 

variant caused by the indels is the frameshift variant, that is characterized by a change 

in the reading frame of the nucleotides that follow the indel occurrence. A reading frame 

is a way to divide the genetic code into non-overlapping sets of codons that will form the 

coding region of the gene, and can start in one of three possible positions, which means, 

in one of the three nucleotides present in the start codon of the coding region. This means 

that if the length of the indel is not a multiple of three, these reading frames will shift the 

reading starting positions, originating these types of variants and leading to incorrect or 

incomplete translations of the gene in cause14. 

Lastly, the structural variants, are the largest variants, affecting more than fifty 

nucleotides (Fig. 1 c)). These types of variants include the copy number variants (CNVs), 

where the total number of nucleotides is altered due to duplication or deletion events, 

changing the normal number of copies of specific regions in the genome. Likewise, 

insertions, inversions and translocations of more than fifty base pairs cause changes in 

the structure of chromosomes4,5.   
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Of all the variants present in the human genome, 99.9% are SNPs and indels; 

however structural variants affect more bases, around 20 million, due to their 

characteristics5. 

In some cases, variations can confer advantages to the individuals that carry them, 

therefore being benign, these are shared in the further generations and become common 

in the population, normally called polymorphisms. However, they can also be pathogenic, 

these ones have impact in the normal function of the cells that can lead to disease. It is 

estimated that throughout the life of an individual, eighty-five percent of his exome suffers 

DNA mutations2.  

 

1.2. Whole Exome Sequencing (WES) 

Next-generation Sequencing (NGS), or Massive Parallel Sequencing, is a high-

throughput DNA and RNA sequencing technology that revolutionized the genetic 

analysis field and that is commonly used worldwide, namely in a clinical context. 

Sequencing technologies are used to identify the order of the nucleotides of regions or 

complete sequences of DNA and RNA. The major characteristic of NGS, and as its name 

a) 

b) 

c) 

Figure 1 - Types of variants. a) SNV, b) Indels and c) SV 
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suggests, is that it allows the sequencing in parallel of more than one sample 

simultaneously, something that the previous sequencing methods, such as the Sanger 

sequencing, did not allow. Still in comparison with the Sanger sequencing, NGS is more 

cost-effective and quicker, and achieves better accuracy and confidence in the results. 

Furthermore, it offers single-nucleotide resolution, allowing the detection of SNVs and 

larger variations, as well as the detection of mosaicism and low-frequency variants15. 

A common NGS workflow for DNA is composed of four steps. The first step is the 

library preparation where the DNA molecules of each sample are randomly fragmented 

into shorter fragments, either enzymatically or by sonication (applying ultrasound waves 

to break the chemical bonds present on the DNA). Adaptors are then ligated to these 

fragments by the DNA Ligase, forming a library for each sample. A common practice 

inside this step is “pooling” or “multiplexing”, that is, to mark the adaptors with a specific 

DNA barcode, so each sample can be easily tracked throughout the process. The next 

step is clonal amplification. In this step the DNA molecules from the previously prepared 

libraries are attached to a solid surface, such as beads or flow-cells, and amplified by 

PCR, creating identical clones of each molecule so their signal is increased and they are 

easily detected during the following step, sequencing. This step varies from platform to 

platform. The first NGS sequencing approach used was developed by Roche/454, and 

used a pyrosequencing method, a pioneer of the Sequencing by synthesis method. In 

this method pyrophosphate molecules would be released when a nucleotide was 

incorporated in the new DNA strand. Nowadays this method is no longer used, with the 

current ones being the following. Sequencing by synthesis, used by Illumina, in which 

nucleotides with reversible fluorescent blockers bind to the DNA template strand, 

releasing a fluorescence signal upon incorporation that is specific to each nucleotide 

base. Pictures of the chip are then taken after every synthesis round and a computer 

identifies what bases were added according to the color that appears on the picture. 

Sequencing by ligation, used by SOLiD, where the mismatch sensitivity of the DNA ligase 

is used to identify the nucleotide sequence in a fragment. Four fluorescent labeled 

probes compete to ligate to the sequencing primer, and upon ligation the fluorescence 

of the ligated probe is captured and identified. And lastly, Ion Torrent uses an Ion-

Semiconductor Sequencing approach in which a hydrogen ion is formed upon the 

incorporation of the nucleotide in the new synthesized strand. These hydrogen ions will 

lead to a change in the pH of the environment, creating a high positive voltage that is 

then detected by semiconductor chips15,16,17,19.  
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Whatever the sequencing technology used the determined sequences, commonly 

called raw reads, are saved in a file. This file is the base of the final NGS step, the 

analysis of the sequencing data using bioinformatic techniques. These will be explored 

in the next chapter.  

DNA sequencing can be subdivided into three main types according to what regions 

of the DNA they sequence: Whole Genome Sequencing (WGS), Whole Exome 

Sequencing (WES), and Target Sequencing. Their main differences are stated in table 

1.  

Table 1 - Types of DNA sequencing20,22,23 

 Whole genome Whole exome Target sequencing 

Sequencing 

regions 

Whole genome (codifying 

and non-codifying 

regions) 

Whole exome 

Specific group of genes 

(usually between 10 to 

500) 

Sequencing 

Coverage 
> 30x > 100x > 500x 

Cost per sample < $1000  ~$800 $250 to $500 

 

Sequencing coverage is defined as the number of reads that align to regions of the 

reference genome. Higher coverages are more sensitive and therefore allow the 

detection of low-frequency alleles variations24.   

As mentioned in section 1.1, most disease-causing variants are found in coding 

regions of DNA, the exome. This makes the use of WES more suitable to study these 

types of variants when compared with WGS, since it has higher sequencing-depth, lower 

costs and requires less storage, besides only sequencing the regions of interest. On the 

other hand, if we are interested in variations of non-coding regions that could potentially 

lead to genetic disorders, then WGS is the most used method16,18.  

 

1.3. Bioinformatics and its importance in research 

The fast and diverse growing of sequencing technologies caused a huge increase in 

available data and resources to analyze this data, this leads with emerging of a new 

scientific discipline, the bioinformatics. It is a discipline that develops and uses 

computational tools to collect, store and analyze biological data. It is a multidisciplinary 



FCUP 
A Multi-Caller pipeline to maximize the output of Somatic Exome Sequencing Analysis 

6 

 
 

field that involves knowledge from Biology, Computer Science, Chemistry, Physics and 

Statistics. 

WES analyses are made using pipelines that usually have the following backbone: 

quality control, reads preprocessing, alignment, post-alignment processing, variant 

calling, and variant annotation25. A detailed explanation of each step is given below. 

 

1.3.1. Quality Control 

First of all, the file that comes out of the sequencer is analyzed regarding its quality. 

The output of a sequencer is usually a FASTQ file, a text file that contains sample reads 

and their respective Phred quality scores represented in ASCII characters, standard 

encoding characters used in electronics (Fig. 2).  

Even under the same sequencing conditions, files that come from sequencers can 

be different from each other due to chemical and instrumental failures, and therefore, it 

is very important to account for these errors by verifying the quality of these files and 

then preprocess them accordingly. Checking the quality per base, the percentage of GC 

content, the presence of adapters and the number of duplicated reads, are some of the 

most verified characteristics on the FASTQ files.  

FastQC28 is the most used program worldwide to check these files. This program 

accepts inputs in varied formats and from almost all of the available sequencing 

platforms. It outputs a graphical report in the form of HTML file, a text file specifically 

designed to be seen in a digital context, containing interactive contents within it. This 

report contains information about the number of reads, per base sequence content, per 

base sequence quality, per base content and nitrogen content, per sequence quality 

scores and GC content, sequence length distribution, sequence duplication levels, 

overrepresented sequences and k-mer content.  

FastQC can be used in one of two modes, stand-alone interactive mode or non-

interactive mode. The first has a graphical-user interface (GUI) and only outputs the 

HTML report whereas the second one is only through command-line interface (CLI) and 

Figure 2 - Exemple of a FASTQ file 
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outputs a .zip folder that contains the graphs of the HMTL file and other data files in 

addition to the HTML report. 

 

1.3.2. Reads preprocessing 

As said previously, after the quality control of the reads they are preprocessed if needed. 

In this step, low-quality reads, adaptors and/or unwanted sequences are removed in 

order to improve the number of correctly aligned reads in the next step, the alignment29. 

In some cases, it happens that after reads processing, some of the reads on the file 

are longer than others. This is usually due to low-quality bases or adaptor trimming, a 

situation that could lead to misalignment between the sequence and the reference 

genome, so depending on research objective sometimes we need to choose only the 

reads with certain size. Contaminations can be observed through the GC content. 

Normally the GC content follows a normal distribution, but if this is not the case, then it 

can be indicative of contamination. 

Trimmomatic30 is a program that performs different trimming methods in Illumina 

single and paired-end data. Users can apply more than one trimming method and choose 

the order by which the methods will be applied to the data through the order they write 

the methods on the command. The methods available are the following: ILLUMINACLIP, 

removes Illumina sequencer adapters and specific sequences, with the program 

containing some of the most common used adapters in the Trimmomatic0.39/adapters/ 

folder. Users can specify the number of mismatches the program allows per full match, 

the accuracy of the match between the adapter reads from the sample and the one from 

the file given, and the accuracy of the match between the adapter sequence and the 

sample sequence. SLIDDINGWINDOW removes reads whose quality makes the 

average quality of the defined search window be below a defined threshold. LEADING 

and TRAILING both remove reads below a threshold quality, on the start and on the end 

of the read respectively. CROP trims the reads to a specified length, and HEADCROP 

removes the specified number of bases from the start of the read. MINLEN, removes the 

read if its quality is below a threshold, and lastly, TOPHRED33 and TOPHRED64 convert 

the quality score values present on the reads to Phred-33 or Phred-64 scores 

respectively. 

SolexaQA31 is another trimming program composed of three different algorithms: 

Analysis, DynamicTrim and LengthSort. Analysis gives information about the quality and 

characteristics of the FASTQ files, DynamicTrim trims the reads and keeps their longest 
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contiguous segments whose quality is above a defined threshold, or uses the BWA32,33 

trimming algorithm, another trimming program algorithm, to perform this step. Users can 

specify the quality threshold both in probability values or Phred quality scores, or use the 

default value, that is a probability of 0.05.  

The Lengthsort algorithm separates low-quality from high-quality reads, storing both in 

two different respective files, and can remove unpaired reads in paired-end mode using 

the -c option.  

The first two algorithms have options that allow the user to specify the sequencer that 

originated the files, since it accepts data from Illumina, Ion Torrent or Roche/454, even 

though the program automatically identifies the origin of the data. 

Usually, the last two algorithms are used together to preprocess reads, so we followed 

this recommendation.  

The output of this programs is a FASTQ file. 

 

1.3.3.  Alignment 

The alignment consists in aligning the reads to a reference genome or submitted to de 

novo alignment (if a reference genome does not exist or if the downstream analysis 

benefits from that), which consists of assembling a genome from scratch without 

reference. In the case of the human species, there is available a reference genome34. 

The first step of alignment is the index of the reference sequence  to speed up the 

overall process, with each index being specific to each reference sequence and aligner. 

This step outputs a BAM file, a tab-delimited text file with a header, with information 

about the metadata (HQ), reference sequence (SQ), read group (RG) and the program 

used to perform the alignment (PG); and the aligned reads, that contain information 

about the name, sequence, and quality of the reads, as well as information about the 

alignment35. 

BWA32,33, or Burrow-Wheels Alignment Tool, is the most used program used to align 

low-divergent sequences to reference genomes. The index is made through bwa index. 

With the use of this command, users can specify the algorithm used to construct the 

index using the argument -a, with the available options being IS and bwtsw. IS is the 

default algorithm and only works for genomes up to 2GB of size, whereas the bwtsw 

works for larger genomes, such as the human genome32.  
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Regarding the alignment algorithms there are three possible choices from which the 

user can choose, the bwa backtrack, specifically designed for reads up to 100 base pairs 

and sequenced by Illumina platforms, the bwa mem and the bwa-sw. These last two are 

similar, working with reads longer than 100 bp and allowing the performance of split 

alignments, that are characterized by the alignment of different parts of the sequences 

to disjoint regions of the reference. However, bwa mem is more used than the bwa-sw 

for being faster and more accurate in high-quality reads when compared to the latter32,33. 

Users can specify a variety of arguments when running the alignment command 

such as the number of threads the program can use, the header of the output file, the 

minimum seed length, the matching score, the mismatch penalty, and many other 

options regarding the alignment scores. 

Another program used for alignment is TMAP, a program developed by 

ThermoFisher specifically for the alignment of Ion Torrent data to a reference genome36. 

Just like BWA, it also has an option to index the reference genome as well, and it also 

contains more than one alignment algorithm, map1, map2, map3, map4 and mapvsw. 

map1, map2 and map4 are all based on BWA, with the first being better for short reads 

and the second for long reads, and map4 being the default algorithm for being more 

general. map3 is based on SSAHA (Sequence Search and Alignment by Hashing 

Algorithm) and k-mers. Lastly, mapvsw is an implementation of the Smith-Waterman 

algorithm37. It is also possible to combine more than one algorithm using the mapall 

command, fastening the process and increasing sensitivity. Inside each algorithm there 

are a lot of options the user can specify such as matches score, mismatch penalties, 

gaps penalties, among many others. 

Alignment programs take as input a reference genome FASTA file and the sample 

FASTQ, and output a BAM file. 

 

1.3.4. BAMs processing 

According to GATK Best practices38, after the alignment it is recommended to process 

the file obtained in this step because during the preparation of the samples for 

sequencing and during the sequencing itself, duplicated reads can arise, leading to 

errors during variant calling. Due to this, they must be marked or removed. Furthermore, 

sequencers are also subject to technical errors that may over or underestimate the 

quality score of some sequence bases. Given that variant calling algorithms highly 

depend on these quality scores, it is necessary to recalibrate these latter in case there 
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was some technical error15. To do that, machine learning algorithms based on empirical 

error models are applied to the scores. These steps are illustrated in figure 3. 

 

 

 

 

 

 

 

 

 

 

 

GATK is a software composed of a set of computational tools used for many tasks 

in the processing and discovery of variants, both germline or somatic, in DNA and RNA-

seq. The use of MarkDuplicates, BaseRecalibrator and ApplyBQSR tools present in 

GATK is commonly used to perform the processing of BAMs. MarkDuplicates is used to 

mark the duplicates present on the reads. This tool takes as input the alignment BAM 

file, and outputs a BAM file with the duplicate reads marked with the tag DT, that stands 

for duplicate type, on the optional field of the BAM file, as well as a text file with the 

metrics used to consider a read a duplicate. Users can add other optional arguments to 

the command, such as marking all duplicates, marking only the optical ones, as well as 

specifying the program to remove the marked duplicates38.  

BaseRecalibrator then takes the previously obtained BAM file as input as well as the 

reference genome and a file with the known polymorphic sites present in the human 

genome, and outputs a recalibration table that will be used by ApplyBQSR. This last will 

also take as input the same BAM file and reference genomes used by BaseRecalibrator, 

and will output a BAM file with the recalibrated base scores of the reads38. 

 

 

Figure 3 - BAMs processing steps 
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1.3.4. Variant calling 

Variant calling comprises the identification of differences between the reads and the 

reference genome and see where they differ. Variant callers can work on each sample 

individually, what facilitates the automation of this process; or they can call multiple 

samples simultaneously, which allows the caller to produce genotypes for all the variants 

of the cohort in all samples. Following this, variant calling in multiple samples 

simultaneously, also called joint analysis, has higher sensitivity to detect variants present 

in low-coverage regions25. 

The output of this step is a Variant Call Format (VCF) file, a text-file that stores the 

found variants39. 

The variants detected are dependent on the type of caller that is chosen, with some 

callers only detecting SNVs and small indels, while others only detect CNVs and 

structural variants. The programs are also specific to the provenance of the samples, this 

is, if they are from germline or somatic cells25.  

 

1.3.4.1. SNV/Indel variant callers 

SNV/Indel variant callers use one of two methods, heuristic or probabilistic methods40. 

Heuristic methods were the ones used in the early days of variant callers, when these 

would make their calls according to fixed cut-offs of heuristic factors like base quality, 

alignment quality and coverage. This usually leads to miss variants from heterozygous 

genotypes when the read depth is low or medium. Apart from that, callers that use these 

methods do not produce any type of confidence measure regarding about the called 

genotypes. On the other hand, probabilistic methods make use of probabilistic functions 

to calculate the likelihoods of the possible genotypes, followed by the score of a certain 

genotype being expected in a given place. One of the most used functions is based on 

the Bayesian inference method. In this, the genotype’s likelihoods are obtained to then 

calculate the prior probability P(G|R) of a genotype G happening given the information 

of the read count coverage R. 

𝑃(𝐺|𝑅) =
𝑃(𝑅|𝐺)𝑃(𝐺)

𝑃(𝑅)
 

Where P(R|G) is the previous calculated genotype likelihood and P(G) is the prior 

probability of that genotype happening, and can be obtained from external databases, 

the reference genome or can be assumed as the same for all genotypes. The result 
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probability is used either directly or indirectly as a confidence measure. 

The genotype with the highest value of prior probability is chosen as the possible 

genotype at that site40. 

Machine learning algorithms, namely deep learning ones, that are algorithms based 

on artificial neural networks (ANNs) are recently being used to perform variant calling41. 

In table 2 we present some of the available SNV/Indel variant callers. 

 

Table 2 - SNV/Indel variant callers 

Name 
Operative 

System 

Sequencing 

Type 
Algorithm 

Number of 

Citations 
Year 

DeepVariant41 Linux, MacOS WGS, WES 

CNN 

(Convolutional 

Neural 

Network) 

736 2017 

FreeBayes46 Linux WGS, WES 
Bayesian 

Model 
- 2012 

GATK 

HaplotypeCaller47 

Linux, MacOS, 

Windows 
WGS, WES Bayesian Model 1111 2015 

SomaticSniper48 Linux, MacOS, WGS, WES 

MAQ Genotype 

Likelihood 

Model 

510 2011 

Strelka249 Linux WGS, WES - 796 2018 

VarScan250 Linux, MacOS WGS, WES 

Heuristic 

method plus 

Fisher’s Exact 

Test 

3765 2012 

 

• DeepVariant 

DeepVariant is a variant caller based on Convolutional Neural Networks (CNN), a 

deep-learning method. It takes the input files, in either BAM or CRAM format, and 

finds possible variants, that are then transformed into tensors, that are matrixes with 

multiple dimensions that represent an image. CNN is applied to the tensors, 

assigning a genotypic likelihood for three possible genotypes, homozygous 

reference, homozygous alternate or heterozygous alternate41. 
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• FreeBayes 

FreeBayes is a haplotype-based algorithm that uses BAM input files with short-read 

alignments from the individuals of a population, and a reference genome, and 

determines the most likely genotype in the population in a given position46. Figure 4 

exemplifies this method. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4 - FreeBayes method. Adapted 46 
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1.3.4.2. SV variant callers 

SV variant callers are based in four main methods: read-pair, read-depth, split-read 

and local-assembly (Fig. 5). Read-pair is based on the insert size present on the 

sequenced read-pairs and the observed on the reference genome. Split-reads is 

based on the complete aligned of a read and a partial or fail alignment of the other 

read. Read depth is based on the correlation of the read depth of a region with the 

number of copies of that region. And lastly, local assembly, that generates contigs, 

without looking to the reference, and then comparing this contigs with a reference51.  

 

A summary of some of the most used SV variant callers is present on table 3. 

 

 

 

 

Figure 5 - Methods used for SV detection52.
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Table 3 - SV variant callers 

Name 
Operative 

System 

Sequencing 

Type 

Sequencer 

 
Algorithm 

Number 

of 

Citations 

Year 

cn.MOPS53 

Linux, 

MacOS, 

Windows 

WGS, WES 
Illumina, 

Roche 

Bayesian 

Model 
366 2012 

CONTRA58 
Linux, 

MacOS, 
WGS, WES 

Illumina, 

Roche 

Bayesian 

Model 
283 2012 

DELLY59 
Linux, 

MacOS 
WGS 

Illumina, 

PacBio 

Split and 

paired 

reads 

based 

1582 2012 

ExomeDepth60 

Linux, 

MacOS, 

Windows 

WES Illumina Read Depth 493 2012 

VarScan250 
Linux, 

MacOS 
WGS, WES 

Illumina, Ion 

Torrent 

Heuristic 

method plus 

Fisher’s 

Exact Test 

3765 2012 

 

• Contra 

Contra (Copy Number Targeted Resequencing Analysis) identifies copy number 

variants, including large variants. It detects copy number gains and losses by 

estimating log-ratios variations through binning and interpolation methods. It requires 

as input a BAM or SAM alignment file for both control and tumor samples, a BED file 

with the targeted regions where the sequenced regions are reported, and the 

reference genome. Users can specify optional parameters such as the minimum read 

depth, minimum number of bases and p-value threshold, among others, as well as 

run the CBS (Circular Binary Segmentation) algorithm and create a plot of log-ratio 

distributions for each bin58.  

 

• VarScan2 

VarScan2 works in all major sequencing platforms and can identify SNVs, indels, 

CNVs and LOHs in both germline and somatic samples. To identify the variants, the 

program uses a heuristic/statistic approach that identifies which variants meet the 
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various thresholds of the base quality, read depth, statistical significance and variant 

allele frequency parameters. It takes an alignment file from both the normal and 

tumor sample, and the reference genome. 

VarScan has a recommended workflow. The first step is to run the copynumber 

algorithm on both normal and tumor alignments. Then ran the copycaller algorithm 

that makes preliminary variant callings and adjusts the GC content, followed by the 

application of a CBS algorithm from the R BioConductor library DNACopy. Lastly, 

adjacent segments with similar copy number values are merged and then classified 

according to their size. The copycaller algorithm can accept additional parameters 

such as the minimum coverage and minimum region size threshold, the lower and 

upper bound for log-ratios to be considered amplifications or deletions, respectively, 

and, in case it’s necessary to recenter the alignment data around a baseline.50  

 

• GATK  

Another possible way to detect copy ratio alterations is using GATK. As said 

previously, GATK encompasses several tools. With the combination of some of these 

tools it is possible to detect copy ratios alterations. To achieve that, a “Sensitively 

detect copy ratio alterations and allelic segments” tutorial is available on the GATK 

website61. 

The first step of this tutorial is to collect coverage counts from the alignment files. To 

do that a binning process is applied in a file with genomic regions intervals, using the 

PreProcessIntervals tool, and then the coverage counts of the pair-end fragments 

that fall within the bins present in the previously prepared file are collected, using the 

CollectReadCounts tool. The following step is to create a panel of normals (PON). A 

panel of normal makes use of the normal samples to define the baseline level from 

which the CNVs are called. To achieve that the CreateReadCountPanelOfNormals 

tool is used, that takes as input the normal samples counts obtained previously and 

outputs a PoN in HDF5 format, a data type format that allows the storage of more 

than one type of data in a single file. With the obtained PoN, read counts are 

denoised in order to obtain denoised copy ratios by using the DenoiseReadCounts 

tool. This tool can perform additional GC-bias correction in the copy ratios.  

The next step is to count the reference and alternative alleles at common germline 

variant sites. This is done using CollectAllelicCounts, for both the normal and tumour 

samples. Copy and allelic ratios that are contiguous are then grouped using 
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ModelSegments. To do this the tool performs three steps. First it identifies the 

heterozygous sites and removes the ones that overlap with copy ratio intervals. Then 

performs a multidimensional kernel segmentation followed by a Markov-Chain Monte 

Carlo sampling and segmentation smoothing.  

Lastly, CNVs are called using the CallCopyRatioSegments tool61. 

 

1.3.5 Variant Annotation 

Variant annotation is an important step that allows the collection of functional information 

associated with each of the identified variants, as well as add information regarding the 

genes, transcripts, proteins, and known variants. Moreover, this information together with  

information about allelic frequencies on specific population, association to diseases, 

among others, help on the inference of the effect these variants can have at various 

biological levels. Since this step is very important for identifying meaningful variants, the 

databases that contain additional information should be chosen very carefully62. There 

are a lot of databases available to predict the variants effect or add additional information 

to the reported variants, such as CADD63 (Combined Annotation Dependent Depletion), 

DGV64 (Database of Genomic Variants), GENCODE65, gnomAD66 (The Genome 

Aggregation Database), OMIM67 (Online Mendelian Inheritance in Man), among others. 

This databases contain information about many of the previous stated genomic features 

of our genome, that are then used by the annotation tools to compare that information 

with the variants obtained through variant calling and identify differences and similarities, 

therefore assigning genomic information to the variants identified. 

Most of the available tools to perform variant annotation make use of one or more of this 

databases to perform this step, being conditioned by the information present on these 

databases. 

 

• AnnotSV68 

AnnotSV is an annotation tool that compiles information about structural variants 

function, regulation and clinical relevancy. It starts by identifying if there is overlap 

between any variant identified in the previous step and the transcripts present in the 

human genome build GRh37 or GRCh38. Then if the variants are associated with a 

gene, their names are added to the annotation file, and lastly, two annotations are 

generated for each SV identified, one that is based on the complete SV, and other 

that is based on the genes present within the SV. AnnotSV can perform three types 
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of annotations: genomic, patient or custom-based. Genomic-based annotation 

makes use of databases such as DGV64 and RefSeq69 to find genes or transcripts 

that overlap the SVs, and ClinVar70, ClinGen71 and OMIM67 databases to report 

overlaps with known pathogenic  genes or genomic regions. Patient-based 

annotations make use of the SNV and indels variants identified in the patient’s data 

to annotate true SVs and discard false positives, and custom-based use a user-given 

tab-separated file with the information the user wants to annotate. If identified 

variants overlap with known pathogenic genes or genomic regions when using 

genomic-based annotations, AnnotSV will rank the variant in a scale of five classes 

that go from “Benign” to “Pathogenic”, according to recommendations from the 

America College of Medical Genetics (ACMG) and ClinGen71,72. 

The output of this tool is a tab-separated values file (tsv), and it can also output a 

VCF file optionally. 

 

• Ensembl Variant Effect Predictor (VEP)73 

VEP gives information about the effect of SNP/indels and SV in genes, transcripts, 

protein sequences and regulatory regions. Users can choose which database to use 

from a variety of databases present within this tool, or can use GFF (Generic Feature 

Format) or GTF (General Transfer Format) files with  transcripts information present 

on them. Users can also connect to MySQL database servers that contain Ensembl 

databases. 

VEP allows the use of more databases that are not present in the program cache by 

installing them through “plug-ins”. 

If the variants obtained in variant calling are known or overlap known variants, VEP 

also gives information regarding allele frequencies, phenotypes and associated 

diseases. Information regarding the allele frequencies is obtained from the 1000 

Genomes Project3, and the SIFT74 and PolyPhen275 tools score the variants identified 

and use this score to predict the effect of the variant in amino acid sequences, and 

possible amino acid substitution.  

The output of this tool is a VCF, a TXT or the tool specific format, VEP format73.  

 

 

 



FCUP 
A Multi-Caller pipeline to maximize the output of Somatic Exome Sequencing Analysis 

19 

 
 

1.3.6. Variant Prioritization 

Variant callers retrieve millions of variants, but that does not necessarily mean that all of 

them must be trusted. Filters are usually necessary to obtain high-confidence variants, 

however, most of these filters rely on metrics that are highly variable according to the 

caller used, such as genotyping quality metrics. Some programs already apply filters, 

and add a flag if the variant passes those filters. However, this is not linear, and the high-

confidence variants obtained must always be verified by biologists and clinicians. On the 

other hand, using population frequency, genomic location and variant class is normally 

used to filter variants, since a rare variant is more likely to have more impact than a 

frequent74. 

 

  

1.3.7. Variant Visualization 

Lastly, variants are visualized. This step allows researchers to obtain better insights 

about the data77. The tools available for this means allow the visualization of the aligned 

reads, with the most common ones being the linear genome browsers such as IGV 

(Integrative Genome Viewer)78 or UCSC Genome Browser79 (Fig. 6 A)). These display 

the reference genome and user’s reads in genomic intervals that allow for zooms in them, 

enabling the visualization of changes at the single-nucleotide level80. 

Circo plots and linear coordinate plots are also of great interest to visualize variants 

(Fig. 6 E) and F)). The first one represents the 22 chromosomes, as well as the X and 

Y ones, as arcs of a circle, with the number of SVs in each chromosome being 

represented as curves. Linear coordinate plots represent one or more chromosomes, 

with lines or curves connecting and representing the two end-points of the SVs80. 

A simple yet effective way of visualizing the variants is also through a table (Fig 6 

C)). 
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Figure 6 - Variant visualization methods. Adapted80 
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2. Aim 

Variant calling is an important method to obtain insights regarding unknown variants and 

unravel potential effects that come from their existence. Moreover, the knowledge gained 

from analyzing the data that comes from this process has been proven to help with the 

development of treatments and clinical diagnostics for some diseases. 

Nonetheless, NGS methods, either WGS or WES, are prone to errors, and the results 

obtained from variant calling of these types of data must be verified carefully and 

validated through Sanger Sequencing, a method that is costly and time-consuming, and 

that is not error-free as well81. 

Due to this, it is important that the results obtained from variant calling are of the 

highest-confidence possible so the insights that can come from them are accurate. As 

stated in the literature, one way to achieve this is by using more than one variant caller 

and combine their results to obtain a high confidence set of true variants25.  

Another factor that can influence the variants obtained through this process is the 

sequencer used to obtain the NGS data. Different sequencers use different methods to 

prepare the libraries and different technologies for the process of sequencing itself which 

can lead to different variants called. 

Therefore, the main goal of this work is to use multiple callers in the same data that 

comes from two different sequencers, to find a set of high-confidence true variants. 
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3. Materials and Methods 

3.1. Literature review 

Our work started with a review of the literature available regarding somatic variant 

callers. In a first stage we collected the available literature and analyzed it for possible 

programs to integrate our pipeline. Potential programs were obtained by considering the 

possibility of accepting data from Illumina and/or Ion Torrent, and being available to 

download at the time of development of this work. We then analyzed the literature for 

each program individual and compared them relatively to metrics such as computational 

time they take, F1-score, number of citations and if they were already benchmarked. 

 

3.2. Pipeline development  

We developed a bioinformatic pipeline on data from two different sequencers, Illumina 

and Ion Torrent, two of the most worldwide used sequencing companies. Our pipeline 

was written in Python but incorporates Bash and R commands through the use of Python 

packages. The workflow of the pipeline was developed so it could adapt to the type of 

sequencer used to obtain the initial data, making use of different programs in some of its 

steps, due to their better performance on data from one sequencer when compared to 

the other. The workflow of our pipeline is shown in figure 7. 
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Figure 7 - Pipeline workflow 

 

3.2.1.  Samples and Reference files 

To develop the pipeline, we used data from the Sequencing Quality Control 2 (SEQC2) 

project82 of the Microarray and Sequencing Quality Control (MAQC) consortium83. We 

choose two sequencing replicates of a normal and tumor paired samples sequenced by 

WES. The normal sample (https://www.ncbi.nlm.nih.gov/biosample/SAMN10102574) 

was a B lymphoblast cell line, and the tumor sample 
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(https://www.ncbi.nlm.nih.gov/biosample/SAMN10102573) a triple-negative Breast 

Carcinoma cell line, both from the same donor, a 43-year-old woman. The samples 

replicates were sequenced both on an Illumina and Ion Torrent Sequencer.  The samples 

obtained by the Illumina Hiseq 2500 platform had the SRA accession number 

SRR7890845 (normal) and SRR7890844 (tumor), and the samples obtained by the Ion 

Torrent Ion S5 platform had the SRA number SRR8955981 (normal) and SRR8955982 

(tumor). Illumina replicates were paired end meaning there were two reads per sample. 

Their FASTQ files were downloaded from the NCBI website 

(https://www.ncbi.nlm.nih.gov/sra) using the SRA Toolkit . 

Besides the samples files we also needed a reference genome. We used the hg38 

version of the Human Genome obtained from the Genomic Data Commons website.  

Some steps also required a file with the known-polymorphic sites of the human 

genome, which we used the last dbSNP build, dbSNP 150, obtained from the NIH 

Medical Genetics and Human Variation website. A file with the target regions used in the 

variant calling step is also needed, which was obtained from the available data of the 

article where the samples we used were described. 

 

3.2.2.  Quality Control 

We inspected the quality of all FASTQ files, for both sequencers’ replicates, with 

FastQC28, using the command-line version since is the most suitable for pipelines. As 

said previously, this tools reports information about per-base sequence content and 

quality, duplication levels, and overrepresented sequences, among others. We checked 

the results obtained on the reports and proceeded to pre-process the files according to 

what was observed. 

 

3.2.3.  Reads Processing 

Files obtained from the Illumina sequencer were preprocessed using Trimmomatic30, 

version 0.39. We used the ILLUMINACLIP and MINLEN option with the following 

arguments, ILLUMINACLIP:/opt/Trimmomatic0.39/adapters/TruSeq3-PE-2.fa:2:30:10 

and MINLEN:50. The adapter sequence we used was available in the program folder 

/opt/Trimmomatic0.39/adapters/, and the numbers following the file path were the values 

we defined for the options referred previously, which means, we allowed 2 mismatches 

per full match while wanting an accuracy of at least 30 between the adapters present in 
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the sample reads and the ones in the file with the adapters, and an accuracy of at least 

10 between the sequence of the adapter and the sample. For the MINLEN parameter 

the value we chose was 50, which means we filtered the reads to stay only with the ones 

that had a minimum length of 50 bases. 

The replicas obtained through Ion Torrent sequencing were preprocessed using 

SolexaQA31, version v.3.1.7.3. We used the DynamicTrim and Lengthsort algorithms, 

using the default values of 0.05 for the probability value cutoff in the DynamicTrim 

algorithm, and using the value of 50 for the length cutoff parameter in the Lengthsort 

algorithm. We didn’t use the Analysis algorithm since that step had already been 

performed with FastQC28.  

 

3.2.4.  Reads Alignment 

After the previous step and before the alignment, we chose to keep only the autosomal 

chromosomes (1 to 22) in order to focus on the chromosomes of interest and decrease 

further computational time, using a function we developed to execute this step. This 

function makes use of samtools faidx86 to select only the twenty-two chromosomes and 

saves only those in a new FASTA file. Due to chromosome notation compatibility 

between programs, we also incorporated in this function code to generalize the notation 

so no problems regarding this matter appeared in subsequent steps. 

After that we proceeded with the alignment. We used the BWA32,33 program for the 

Illumina replicas, and TMAP36 for the Ion Torrent ones. Before the alignment we indexed 

the reference genome with the same programs used to perform the alignment. In the 

case of BWA, we used the bwa-mem algorithm and used the -R argument to specify the 

header. Regarding TMAP, we used the mapall option, including all algorithms except the 

mapvsw, and did not use any optional argument. 

 

3.2.5. BAMs processing 

As said previously, it is recommended to process the BAM files obtained after the 

alignment. Therefore, we followed the GATK Best practices38 and used GATK 

MarkDuplicates, BaseRecalibrator and ApplyBQSR tools to execute this step for both 

replicas.  
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3.2.6.  Variant calling 

We performed the variant calling with more than one program for both sequencing cases.  

Starting with Illumina, we used Contra58 and VarScan250. For Contra, we used the 

optional parameters -p and -l, but apart from that used the default values for the other 

arguments, such as the number of bins (Default value : 20), minimum number of bases 

in each target region (Default value: 10) and p-value threshold (Default value: 0.05). 

Regarding VarScan2, we applied every recommended step, except the last one, the 

merging adjacent segments, due to errors in the program script that were incompatible 

with our work. We used the default values. 

In the case of the Ion Torrent replicates, we used the GATK “Sensitively detect copy 

ratio alterations and allelic segments” tutorial61, and VarScan250 as well.   

We followed GATK tutorial, using most of the times the default or recommended 

values, except in the CreateReadCountPanelOfNormals tool, where specified an 

optional parameter, minimum-interval-median-percentile, and changed its default value 

of 10.0 to 5.0. This parameter filters genomic intervals which median is above the defined 

percentile value, keeping only the ones that are above that value. By changing this value 

to 5.0, we could maintain more information. Asides from that we additionally plotted the 

copy and allelic ratios segmentation results using the PlotModeledSegments tool. 

For VarScan2, the procedure was the same as the one used with the Illumina 

replicates. 
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4. Results 

4.1. Literature Review 

We searched on PubMed for the mesh terms “exome variant callers” and “analysis 

software for somatic cells”, and collected 215 articles that were used to perform our 

literature review. From these, we chose 101 different programs that could potentially 

integrate our pipeline since they verified the criteria showed in figure 8. We analyzed 

and compared them and chose 9 programs to make part of our pipeline (Table 4). 

 

 

 

 

Table 4 - Chosen programs and reason of choosing 

Programs Source 
Reasons for 

choosing them 

FastQC28 

S., A. (2010). FastQC: a quality control tool for high 

throughput sequence data. 

http://www.bioinformatics.babraham.ac.uk/projects/fastqc 

 

Good performance 

Number of citations 

Most used 

worldwide 

Figure 8 - Literature review process 
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Trimmomatic30 

Anthony M. Bolger, Marc Lohse, Bjoern Usadel, 

Trimmomatic: a flexible trimmer for Illumina sequence 

data, Bioinformatics, Volume 30, Issue 15, August 2014, 

Pages 2114–2120, 

https://doi.org/10.1093/bioinformatics/btu170 

Benchmarking 

Good performance 

Number of citations 

SolexaQA31 

Cox, M. P., Peterson, D. A., & Biggs, P. J. (2010). 

SolexaQA: At-a-glance quality assessment of Illumina 

second-generation sequencing data. BMC 

Bioinformatics, 11, 485. https://doi.org/10.1186/1471-

2105-11-485 

 

Good performance 

Works with Ion 

Torrent files 

BWA32,33 

Li, H., & Durbin, R. (2009). Fast and accurate short read 

alignment with Burrows-Wheeler transform. 

Bioinformatics, 25(14), 1754-1760. 

https://doi.org/10.1093/bioinformatics/btp324 

Li, H., & Durbin, R. (2010). Fast and accurate long-read 

alignment with Burrows-Wheeler transform. 

Bioinformatics, 26(5), 589-595. 

https://doi.org/10.1093/bioinformatics/btp698 

Computational time 

Good performance 

Number of citations 

Most used 

Worldwide 

 

TMAP36 

Caboche, S., Audebert, C., Lemoine, Y., & Hot, 

D. (2014). Comparison of mapping algorithms 

used in high-throughput sequencing: 

application to Ion Torrent data. BMC 

Genomics, 15, 264. 

https://doi.org/10.1186/1471-2164-15-264 

 

Specifically 

designed for Ion 

Torrent 

Contra58 

Li, J., Lupat, R., Amarasinghe, K. C., Thompson, E. R., 

Doyle, M. A., Ryland, G. L., Tothill, R. W., Halgamuge, S. 

K., Campbell, I. G., & Gorringe, K. L. (2012). CONTRA: 

copy number analysis for targeted resequencing. 

Bioinformatics, 28(10), 1307-1313. 

https://doi.org/10.1093/bioinformatics/bts1467 

Detection of small 

and large CNVs 

GATK61 

https://gatk.broadinstitute.org/hc/en-

us/articles/360035531092--How-to-part-I-Sensitively-

detect-copy-ratio-alterations-and-allelic-segments 

GATK tools 

perform very well 

and are used 

worlwide 

VarScan250 

Koboldt, D. C., Zhang, Q., Larson, D. E., Shen, D., 

McLellan, M. D., Lin, L., Miller, C. A., Mardis, E. R., Ding, 

L., & Wilson, R. K. (2012). VarScan 2: somatic mutation 

and copy number alteration discovery in cancer by 

exome sequencing. Genome Res, 22(3), 568-576. 

https://doi.org/10.1101/gr.129684.111 

F1-Score 

Number of citations 
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4.2. Quality Control 

The quality control step carried out with FastQC reported adaptor contamination in the 

Illumina replicates (Fig.9 and 10), and the presence of low-quality reads in the 3´end of 

the Ion Torrent replicates (Fig. 11). The results obtained with FastQC are displayed on 

table 5. 

 

Table 5 - Reads quality before the processing step 

Sequencer Samples Read Total reads 

Poor 

quality 

reads 

Mean read 

length 

Presence 

of 

adapters 

Illumina 

Normal sample 

(SRR7890845) 

Read 1 57058265 0 126 Yes 

Read 2 57058265 0 126 Yes 

Tumor sample 

(SRR7890844) 

Read 1 54548549 0 126 Yes 

Read 2 54548549 0 126 Yes 

Ion Torrent 

Normal sample 

(SRR8955981) 
- 82434896 0 25-353 No 

Tumor sample 

(SRR8955982) 
- 66834918 0 25-355 No 

 

Since Illumina replicates are paired-end, the number of reads per sample is the 

summation of the number of reads per reads. Therefore, the total number of reads for 

the normal sample of Illumina is 114116530 reads, and for the tumor sample is 

109097098  reads. As we can observe, Ion Torrent replicates had a smaller number of 

reads per file when compared with the Illumina ones, for both the normal and tumor 

sample. The mean sequence length of the Illumina replicates was constant for both 

samples, whereas the replicates that came from Ion Torrent varied greatly in their 

sequence length, going to the encounter of what is stated in the literature85. 
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c) d) 

b) a) 

Figure 9 - Per base quality and adapter content of the Illumina replicate of the normal sample before reads processing. a) and b) correspond to 
read 1, and c) and d) to read 2 
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Figure 10 - Per base quality and adapter content of the Illumina replicate of the tumour sample before reads processing. a) and b) correspond to 
read 1, and c) and d) to read 2 

b) a) 

c) d) 
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Figure 11 - Per base quality and adapter content of the Ion Torrent replicates before reads processing. a) and b) correspond to the normal sample, 
and c) and d) to the tumour sample 

a) b) 

c) d) 
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4.3. Reads Processing 

Since Illumina reads had adapter content, we removed the specific adapters of the 

sequencer used and filtered the reads in order to keep only the ones whose length was 

equal or higher than 25 (Fig. 12 and 13). With regard to the Ion Torrent replicas, we 

removed the reads whose length was below 25. In both cases we decided to filter reads 

to stay with the ones that were equal or higher than 25 because we are looking for SVs, 

which are known to be of at least 50 bases, however, it can happen that there are reads 

with 25 bps whose mate can have an insert size bigger, and therefore be a SV. So, by 

using this value it’s not only possible to detect SVs with 50 bases but also detect this 

cases. Besides that, we also tackled the problem of the low-quality reads of the Ion 

Torrent replicates as well simply by filtering out the reads as previously said (Fig. 14). 

Table 6 - Reads quality after the processing step 

Sequencer Samples 
Total 

reads 

Mean read 

length 

Percentage 

of reads lost 

Illumina 

Normal sample 

(SRR7890845) 

52172914 28-126 ~ 8.56% 

52172914 25-126 ~ 8.56% 

Tumor sample 

(SRR7890844) 

49793638 26-126 ~ 8.72% 

49793638 25-126 ~ 8.72% 

Ion Torrent 

Normal sample 

(SRR8955981) 
80859855 25-207 ~ 1.91% 

Tumor sample 

(SRR8955982) 
65011616 25-195 ~ 2.73% 
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Figure 12 - Per base quality and adapter content of the Illumina replicate of the normal sample after reads processing. a) and b) correspond to 
read 1, and c) and d) to read 2 

a) b) 

c) d) 



FCUP 
A Multi-Caller pipeline to maximize the output of Somatic Exome Sequencing Analysis 

35 

 
 

 

 

 

 

 

 

 

 

 

  

Figure 13 - Per base quality and adapter content of the Illumina replicate of the tumour sample after reads processing. a) and b) correspond to 
read 1, and c) and d) to read 2 

a) b) 

c) d) 
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Figure 14 - Per base quality and adapter content of the Ion Torrent replicates after reads processing. a) and b) correspond to the normal sample, 
and c) and d) to the tumour sample 

a) b) 

c) d) 
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4.4. Alignment and BAMs processing 

After the alignment and BAMs processing, statistics were obtained using samtools 

flagstat and are displayed on table 7. With respect to the Illumina samples, we achieved 

a 98.52% alignment for the normal sample and 98.68% for the tumor sample, whereas 

for the Ion Torrent samples we achieved 98.81% alignment for the normal sample and  

98.71% for the tumor sample. 

Table 7 - Samtools flagstat report after alignment and BAMs processing 

 

 

 

 

 

 

 

 

 

 

 

Sequencer Samples 
Total reads before 

alignment 

Mapped reads 

(% of alignment) 

Number of 

reads marked 

as duplicated 

Illumina 

Normal sample 

(SRR7890845) 
104534734 

102987576 

(98.52% ) 
3543402 

Tumor sample 

(SRR7890844) 
99761492  

98440858  

(98.68%) 
3097110 

Ion Torrent 

Normal sample 

(SRR8955981) 
82434896 

81452727  

(98.81% ) 
36987065 

Tumor sample 

(SRR8955982) 
66834918 

65970458 

(98.71%) 
28772928 
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4.5. Variant calling 

The number of variants obtained from Contra and VarScan2 for Illumina, and from GATK 

and VarScan2 for Ion Torrent is showed in Figure 15. As it’s possible to see, Contra 

returned much more variants than VarScan2 for Illumina, around 278.32% more variants. 

With respect to Ion Torrent, VarScan2 returned more variants than GATK, but the 

difference between them is not as big as the one seen in Illumina, with VarScan2 calling 

2.23% more variants than GATK. 

 

 

 

Figure 15 - Number of variants called per program 
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In Section A.2 of the Supplementary Information, it’s possible to observe that the 

distribution of the variants per chromosome along all variant callers was not the same, 

despite the total number of variants called. The majority of the chromosomes occupies 

the same position in both callers for a specific replicate, but there are some 

discordances, nonetheless. For example, chromosome 1, occupies the same position in 

both callers for the Illumina replicate, however chromosome 3 is the 3rd chromosome 

with the most called variants in VarScan2, but in Contra is the 7th one (Section A.2.1).  

The log ratio distribution for each caller is shown next (Fig.16 to 19). 
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• Contra 

Contra classifies CNV gains when the log-ratio is above 0.3 or losses if it is below – 0.358. 

As it’s possible to see from Fig.16, there are two spikes with similar density, one around 

- 0.5 and the other around 0. This means we have a greater number of variants with log-

ratio values of -0.5 and 0, and therefore there are more SVs classified as losses and 

neutral variants, with low density of variants classified as gains. 

  

Figure 16 - Distribution of the Log Ratio in Contra 
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• VarScan2 (Illumina) 

For VarScan2, values higher than 0.20 of log ratio represent amplifications, and values 

below -0.10 represent deletions50. As it’s possible to see from Fig.17, there is a higher 

density of variants around the threshold of -0.10, and a spike of density of positive values 

around 0.75 approximately. This means that there is a high density of variants that are 

considered losses and neutral. However, there is also a moderate density of variants 

classified as gains. 

  

Figure 17 - Distribution of the Log Ratio in VarScan2 (Illumina) 
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• GATK 

GATK considers losses when log-ratio values are below - 0.183 and considers gains 

when the log-ratio values are above 0.133 (Fig. 18). As it’s possible to see there is one 

spike on the loss area, around the -0.20, and a smaller one in the neutral area, followed 

by a decrease of density for values above the upper threshold of 0.133. This shows that 

there are more variants considered as losses and neutral then gains. 

 

 

 

 

 

Figure 18 - Distribution of the Log Ratio in GATK 
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• VarScan2 (Ion Torrent) 

 

For the Ion Torren replicates, VarScan2 shows two spikes of density below the lower 

threshold, meaning once again, that the majority of variants is classified as a loss. It is 

also possible to see there is a huge decrease regarding the density of variants that are 

neutral or gains. (Fig. 19). 

 

 

Figure 19 - Distribution of the Log Ratio in VarScan2 (Ion Torrent) 
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4.6. Merging of variant caller’s results 

After merging the files of both callers for each of the replicates we obtained around 1.34% 

(3841 variants) that were called for both callers in Illumina replicates. Regarding the Ion 

Torrent replicates we obtained 45.78% (1372 variants) of variants called by both callers. 

When comparing the variants called by Contra with the ones called by the Ion Torrent 

variant callers, GATK and VarScan2, the percentage of variants that were called by both 

of them was 0.49% (1386 variants) and 0.55% (1579 variants) respectively. However, 

when comparing the VarScan2 results for the Illumina replicates with the GATK and 

VarScan2 results for Ion Torrent, the percentage of variants called by both of them was 

25.81% (1395 variants) and 28.54% (1601 variants) respectively.  

 

 

 

 

 

 

 

 

 

  

Table 8 - Intersection between callers 



FCUP 
A Multi-Caller pipeline to maximize the output of Somatic Exome Sequencing Analysis 

45 

 
 

5. Discussion 

Variant identification and characterization are a field of high importance among 

researchers. It relies on the use of many programs to obtain information from the data 

that comes out of the sequencer, with special focus on the programs used to perform the 

variant calling. Literature advises to use more than one variant caller, and therefore that 

was what we did, by combining the results of two different callers for CNV identification24.  

With the first step in the workflow, the literature review, we noticed that the majority 

of programs developed for different tasks of variant calling pipelines are for data from 

Illumina sequencers. A possible explanation for this fact is that Illumina is the most used 

sequencer worldwide88. Finding programs for Ion Torrent proved to be a challenge due 

to this. We also noticed that a large part of the programs described in literature have not 

been updated or received bug fixes in recent years, making them obsolete  and hard to 

work with. We experienced this with some programs that were initially part of our pipeline, 

but due to bugs or incompatibilities between the programs dependencies version and 

the one present in our system, we had to discard them. Even with some of the programs 

we used, we had to resort to virtual environments to use them due to the dependencies 

issue we mentioned, causing us to change the environment constantly between the steps 

of the pipeline. 

When we started to work with the data, we identified some issues that were already 

described in the literature (Section 1.2). Illumina replicates were contaminated with 

adapters, and in the case of the Ion Torrent replicates, their quality decreased through 

the 3’end of the reads. The programs we chose to process the reads and get rid of these 

problems performed very well (Section 4.3). These also helped us achieve high 

alignment percentages, with above 98% of the reads being aligned to the reference90. 

Regarding the variant calling we obtained good results using our methods and most 

of the time, using the default values of the programs, however, this is not valid for all 

cases. We tried to change the default values, but the best results were obtained 

proceeding the way we did. For example, in the case of Contra, we tried to change the 

default values to see if we could improve the results. We decided to change the number 

of bins to group the regions, but no improvement was verified when using less or more 

than 20 bins, the default value (Fig. 22). 
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As said previously, the use of more than one variant caller increases the confidence on 

the calls, therefore, in our case, we have more confidence in the variants that were called 

by the two variants than the ones who were only called by one. 

 

 

 

 

  

Figure 20 - Log Ratio distribution across number of bins 
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6. Conclusion 

6.1. Conclusions 

Our pipeline achieved a high number of calls when using the combination of two variant 

callers for both sequencer replicates. For Illumina replicates, Contra was the caller that 

returned more variants, while for Ion Torrent it was VarScan2.  Nonetheless,  and as it 

was possible to see previously, the callers have different density of variants distributed 

across the log-ratio scales, apart from having different log-ratio thresholds. This 

highlights the importance of using more than one variant caller, so it is possible to 

achieve the maximum insights possible from the data, since different callers use different 

algorithms that lead to some specific variants called only by that caller, and that can be 

of great interest for researchers. Apart from that, the choice of using different and more 

specific programs for the reads pre-processing and alignment steps, previous to variant 

calling, allowed us to achieve good filtering results and high percentage of alignment 

between the read and the reference genome. 

We expect that by improving the results of this important method for variant 

discovery, researchers can obtain more precise insights and make better choices for 

treatments and clinical diagnostics. 

 

 

6.2. Limitations 

During this work we experience first-hand the difficulty within the use of some programs. 

Even though some of them are still available online, most have not been updated or 

received corrections for some years, what caused some problems with their 

dependencies and their use when integrated with other programs. 

Besides that, variant calling methods available nowadays are still prone to errors, due to 

NGS library preparation and lack of standardization of this method. SV’s detections are 

even more difficult to detect since variant callers designed for this specific type of variants 

make use of short reads that limit these detection5. 

Regarding the sequencers used to obtain WES data, each year there are new 

methods or sequencers available to perform this task, which makes it difficult to choose 

the right platform in which to sequence the data. This also influences the type of 

programs to choose, since programs are developed according to the provenience of the 

data regarding these matters. 
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Lastly, this pipeline is prone to changes, since the programs that compose it might 

suffer alterations that could lead to malfunctioning of some steps of the pipeline. 

 

6.3. Future Work 

To improve the work developed in this dissertation, we can add in the future programs 

to detect other types of variants, such as SNV/indels. Additional studies using 

benchmarked datasets, such as the ones available in the Genome in a Bottle Consortium 

(GIAB), is something we plan to do in the future since it can help tune some parameters 

regarding the pipeline. With the continue release of more programs, the variant callers 

used here might be changed if a better combination of programs is found, besides adding 

more than two variant callers per sequencer. 

Furthermore, accepting data from other sequencers, and therefore implement other 

programs specific to that sequencer can be an improvement to consider. 
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Attachments 

 

A.1. Variant callers 

 

A.1.1 . Number of chromosomes called per each Illumina variant caller 

  

Figure 21 - Number of variants per chromosome for Contra 
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Figure 22 - Number of variants per chromosome for VarScan2 (Illumina) 
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A.1.1 . Number of chromosomes called per each Ion Torrent variant caller 

 

 

 

 

 

 

Figure 23 - Number of variants per chromosome for GATK 
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Figure 24 - Number of variants per chromosome for VarScan2 (Ion) 
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A.2. Pipeline 

The script developed for this pipeline includes many functions that will be shown below. 

Our script assumes that people have already installed the necessary programs and 

dependencies. 

#Libraries 
import os 
import sys 
import re 
import gzip 
import shutil 
import pandas as pd 
from rpy2 import robjects 
 

 
#Inputs 

#Function to obtain the input files 
def inpt(x): 
    if x == "single": 
        readn = input("What is the normal read? ") 
        readt = input("What is the tumour read? ") 
        sequencer = input("What was the sequencer used? ").lower() 
        ref_genome = input("What is the genome of reference? ") 
        index = input("Do you want to index the genome of reference? ").lower() 
        ks = input("What is the file with the known polymorphic sites? ") 
        bf = input("What is the target bed file? ") 
        return x, readn, readt, sequencer, ref_genome, index, ks, bf 
    elif x == "paired": 
        read1n = input("What is the first normal read? ") 
        read2n = input("What is the second normal read? ") 
        read1t = input("What is the first tumour read? ") 
        read2t = input("What is the second tumour read? ") 
        sequencer = input("What was the sequencer used? ").lower() 
        ref_genome = input("What is the genome of reference? ") 
        index = input("Do you want to index the genome of reference? ").lower() 
        ks = input("What is the file with the known polymorphic sites? ") 
        bf = input("What is the target bed file? ") 
        return x, read1n, read2n, read1t, read2t, sequencer, ref_genome, index, ks, 
bf 
 

 

´ 
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#Header 
 
#Function to obtain the parameters that will make part of the header 
def parm_f(read): 
    parm = [] 
    with open(read, "r") as f: 
        for line in f: 
            if line.startswith("@"): 
                y = line.split(" ") 
                for i in y: 
                    z = i.split(":") 
                    parm.extend(z) 

return parm 
 
#Function to obtain the header  
def header(read, sequencer): 
    r_name = re.sub(r"\..*", "", read) 
    re_name = r_name.split("_") 
    read_name = re_name[0] 
    p_r = parm_f(read) 
    if p_r[-1].endswith("\n"): 
        p_r[-1] = p_r[-1].replace("\n","") 
    p_r[0] = p_r[0].replace("@", "") 
    ID = f"{read_name}" 
    PL = f"{sequencer}" 
    PU = f"{re_name[1]}" 
    h = f"@RG\tID:{ID}\tPL:{PL}\tPU:{PU}\tSM:{ID}" 
    return h 
 

 

#Reads processing 
 
#Function to obtain the processed reads in case they are single end reads 
def read_processing_s(rn, rt, s): 
    rn_name1 = re.split("\_", rn) 
    rn_name2 = re.split("\.", rn_name1[2]) 
    rn_name = f"{rn_name1[0]}{rn_name1[1]}{rn_name2[1]}" 
    rt_name1 = re.split("\_", rt) 
    rt_name2 = re.split("\.", rt_name1[2]) 
    rt_name = f"{rt_name1[0]}{rt_name1[1]}{rt_name2[1]}" 
    if s == "illumina": 
        os.system(f"trimmomatic SE -phred33 {rn} {rn_name}_trimts.fastq 
ILLUMINACLIP:/opt/Trimmomatic-0.39/adapters/TruSeq3-PE-2.fa:2:30:10 MINLEN:50") 
        os.system(f"trimmomatic SE -phred33 {rt} {rt_name}_trimts.fastq 
ILLUMINACLIP:/opt/Trimmomatic-0.39/adapters/TruSeq3-PE-2.fa:2:30:10 MINLEN:50") 
    elif s == "ion torrent": 
        os.system(f"SolexaQA++ dynamictrim {rn} --torrent") 
        os.system(f"SolexaQA++ dynamictrim {rt} --torrent") 
        os.system(f"SolexaQA++ lengthsort {rn_name}.fastq.trimmed -l 50") 
        os.system(f"SolexaQA++ lengthsort {rt_name}.fastq.trimmed -l 50") 
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#Function to obtain the processed reads in case they are paired-end reads 
def read_processing_p(r1n, r1t, r2n, r2t, s): 
    r1n_name1 = re.split("\_", r1n) 
    r1n_name2 = re.split("\.", r1n_name1[2]) 
    r1n_name = f"{r1n_name1[0]}{r1n_name1[1]}_{r1n_name2[1]}" 
    r2n_name1 = re.split("\_", r2n) 
    r2n_name2 = re.split("\.", r2n_name1[2]) 
    r2n_name = f"{r2n_name1[0]}{r2n_name1[1]}_{r2n_name2[1]}" 
    r1t_name1 = re.split("\_", r1t) 
    r1t_name2 = re.split("\.", r1t_name1[2]) 
    r1t_name = f"{r1t_name1[0]}{r1t_name1[1]}_{r1t_name2[1]}" 
    r2t_name1 = re.split("\_", r2t) 
    r2t_name2 = re.split("\.", r2t_name1[2]) 
    r2t_name = f"{r2t_name1[0]}{r2t_name1[1]}_{r2t_name2[1]}" 
    if s == "illumina": 
        os.system(f"trimmomatic PE -phred33 -trimlog {r1n_name}_trimlog {r1n} {r2n} 
{r1n_name}_trimts.fastq {r1n_name}_trimtns.fastq {r2n_name}_trimts.fastq 
{r2n_name}_trimtns.fastq ILLUMINACLIP:/opt/Trimmomatic-0.39/adapters/TruSeq3-PE-
2.fa:2:30:10 MINLEN:50") 
        os.system(f"trimmomatic PE -phred33 -trimlog {r1t_name}_trimlog {r1t} {r2t} 
{r1t_name}_trimts.fastq {r1t_name}_trimtns.fastq {r2t_name}_trimts.fastq 
{r2t_name}_trimtns.fastq ILLUMINACLIP:/opt/Trimmomatic-0.39/adapters/TruSeq3-PE-
2.fa:2:30:10 MINLEN:50") 
    elif s == "ion torrent": 
        os.system(f"SolexaQA++ dynamictrim {r1n} {r2n} --torrent") 
        os.system(f"SolexaQA++ dynamictrim {r1t} {r2t} --torrent") 
        os.system(f"SolexaQA++ lengthsort {r1n_name}.fastq.trimmed 
{r2n_name}.fastq.trimmed -l 50") 
        os.system(f"SolexaQA++ lengthsort {r1t_name}.fastq.trimmed 
{r2t_name}.fastq.trimmed -l 50") 
 
 

#Alignment 
 
#Function to align the processed reads in case they are single-end reads 
def map_align_s(rn, rt, s, rg, i): 
    rn_name = re.split(r"\..*", "", rn) 
    rt_name = re.split(r"\..*", "", rt) 
    rg_name = re.sub(r"\..*", "", rg) 
    h_rn = header(rn, s) 
    h_rn_parm = h_rn.split("\t") 
    h_rt = header(rt, s) 
    h_rt_parm = h_rt.split("\t") 
    if s == "illumina": 
        if i == "yes": 
            os.system(f"samtools faidx {rg} chr1 chr2 chr3 chr4 chr5 chr6 chr7 chr8 
chr9 chr10 chr11 chr12 chr13 chr14 chr15 chr16 chr17 chr18 chr19 chr20 chr21 chr22 > 
{rg_name}.fa") 
            os.system(f"bwa index -a bwtsw {rg_name}.fa") 
            os.system(f"bwa mem -R '{h_rn}' {rg} {rn_name}_trimts.fastq | samtools 
sort -o aln_{rn_name}.bam") 
            os.system(f"bwa mem -R '{h_rt}' {rg} {rt_name}_trimts.fastq | samtools 
sort -o aln_{rt_name}.bam") 
            os.system(f"samtools index aln_{rn_name}bam") 
            os.system(f"samtools index aln_{rt_name}bam") 
        elif i == "no": 
            os.system(f"bwa mem -R '{h_rn}' {rg} {rn_name}_trimts.fastq | samtools 
sort -o aln_{rn_name}.bam") 
            os.system(f"bwa mem -R '{h_rt}' {rg} {rt_name}_trimts.fastq | samtools 
sort -o aln_{rt_name}.bam") 
            os.system(f"samtools index aln_{rn_name}bam") 
            os.system(f"samtools index aln_{rt_name}bam") 
    elif s == "ion torrent": 
        if i == "yes": 



FCUP 
A Multi-Caller pipeline to maximize the output of Somatic Exome Sequencing Analysis 

66 

 
 

            os.system(f"tmap-ion index -f {rg_name}.fa") 
            os.system(f"tmap-ion mapall -f {rg} -r {rn}.trimmed -v -Y -u -R 
{h_rn_parm[1]},{h_rn_parm[2]} ,{h_rn_parm[3]},{h_rn_parm[4]} stage1 map1 map2 map3 
map4 | samtools sort -o aln_{rn_name}.bam") 
            os.system(f"tmap-ion mapall -f {rg} -r {rt}.trimmed -v -Y -u -R 
{h_rt_parm[1]},{h_rt_parm[2]},{h_rt_parm[3]},{h_rt_parm[4]} stage1 map1 map2 map3 
map4 | samtools sort -o aln_{rt_name}.bam") 
        elif i == "no": 
            os.system(f"tmap-ion mapall -f {rg} -r {rn}.trimmed -v -Y -u -R 
{h_rn_parm[1]},{h_rn_parm[2]},{h_rn_parm[3]},{h_rn_parm[4]} stage1 map1 map2 map3 
map4 | samtools sort -o aln_{rn_name}.bam") 
            os.system(f"tmap-ion mapall -f {rg} -r {rt}.trimmed -v -Y -u -R 
{h_rt_parm[1]},{h_rt_parm[2]},{h_rt_parm[3]},{h_rt_parm[4]} stage1 map1 map2 map3 
map4 | samtools sort -o aln_{rt_name}.bam") 
 

#Function to align the processed reads in case they are paired end reads 
def map_align_p(r1n, r2n, r1t, r2t, s, rg, i, ks): 
    r1n_name1 = re.split("\_", r1n) 
    r1n_name2 = re.split("\.", r1n_name1[2]) 
    r1n_name = f"{r1n_name1[0]}{r1n_name1[1]}_{r1n_name2[1]}" 
    r2n_name1 = re.split("\_", r2n) 
    r2n_name2 = re.split("\.", r2n_name1[2]) 
    r2n_name = f"{r2n_name1[0]}{r2n_name1[1]}_{r2n_name2[1]}" 
    r1t_name1 = re.split("\_", r1t) 
    r1t_name2 = re.split("\.", r1t_name1[2]) 
    r1t_name = f"{r1t_name1[0]}{r1t_name1[1]}_{r1t_name2[1]}" 
    r2t_name1 = re.split("\_", r2t) 
    r2t_name2 = re.split("\.", r2t_name1[2]) 
    r2t_name = f"{r2t_name1[0]}{r2t_name1[1]}_{r2t_name2[1]}" 
    rg_name = re.sub(r"\..*", "", rg) 
    h_rn = header(r1n, s) 
    h_rn_parm = h_rn.split("\t") 
    h_rt = header(r1t, s) 
    h_rt_parm = h_rt.split("\t") 
    if s == "illumina": 
        if i == "yes": 
            os.system(f"samtools faidx {rg} chr1 chr2 chr3 chr4 chr5 chr6 chr7 chr8 
chr9 chr10 chr11 chr12 chr13 chr14 chr15 chr16 chr17 chr18 chr19 chr20 chr21 chr22 > 
{rg_name}.fa") 
            os.system(f"bwa index {rg_name}.fa") 
            os.system(f"bwa mem -R '{h_rn}' {rg_name}.fa {r1n_name}_trimts.fastq 
{r2n_name}_trimts.fastq | samtools sort -o aln_{r1n_name[0]}.bam") 
            os.system(f"bwa mem -R '{h_rt}' {rg_name}.fa {r1t_name}_trimts.fastq 
{r2t_name}_trimts.fastq | samtools sort -o aln_{r1t_name[0]}.bam") 
            os.system(f"samtools index aln_{r1n_name[0]}.bam") 
            os.system(f"samtools index aln_{r1t_name[0]}.bam") 
        elif i == "no": 
            os.system(f"bwa mem -R '{h_rn}' {rg_name}.fa {r1n_name}_trimts.fastq 
{r2n_name}_trimts.fastq | samtools sort -o aln_{r1n_name[0]}.bam") 
            os.system(f"bwa mem -R '{h_rt}' {rg_name}.fa {r1t_name}_trimts.fastq 
{r2t_name}_trimts.fastq | samtools sort -o aln_{r1t_name[0]}.bam") 
            os.system(f"samtools index aln_{r1n_name[0]}.bam") 
            os.system(f"samtools index aln_{r1t_name[0]}.bam") 
    elif s == "ion torrent": 
        if i == "yes": 
            os.system(f"tmap-ion index -f {rg_name}.fa") 
            os.system(f"tmap-ion mapall -f {rg_name}.fa -r {r1n} {r2n} -S 1 -P 0 -v -
u -R {h_rn_parm[1]} -R {h_rn_parm[2]} -R {h_rn_parm[3]} -R {h_rn_parm[4]} stage1 map1 
map2 map3 map4 | samtools sort -o aln_{r1n_name[0]}.bam") 
            os.system(f"tmap-ion mapall -f {rg_name}.fa -r {r1t} {r2t} -S 1 -P 0 -v -
u -R {h_rt_parm[1]} -R {h_rt_parm[2]} -R {h_rt_parm[3]} -R {h_rt_parm[4]} stage1 map1 
map2 map3 map4 | samtools sort -o aln_{r1t_name[0]}.bam") 
        elif i == "no": 
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            os.system(f"tmap-ion mapall -f {rg_name}.fa -r {r1n} {r2n} -S 1 -P 0 -v -
u -R {h_rn_parm[1]} -R {h_rn_parm[2]} -R {h_rn_parm[3]} -R {h_rn_parm[4]} stage1 map1 
map2 map3 map4 | samtools sort -o aln_{r1n_name[0]}.bam") 
            os.system(f"tmap-ion mapall -f {rg_name}.fa -r {r1t} {r2t} -S 1 -P 0 -v -
u -R {h_rt_parm[1]} -R {h_rt_parm[2]} -R {h_rt_parm[3]} -R {h_rt_parm[4]} stage1 map1 
map2 map3 map4 | samtools sort -o aln_{r1t_name[0]}.bam") 
 
 
 

#BAMs processing 
 
#Marking Duplicates and Base Quality Score Recalibration 
def markdup_bqsr(r1n, r1t, rg, ks): 
    r1n_name1 = re.split("\_", r1n) 
    r1n_name2 = re.split("\.", r1n_name1[2]) 
    r1n_name = f"{r1n_name1[0]}{r1n_name1[1]}_{r1n_name2[1]}" 
    r1t_name1 = re.split("\_", r1t) 
    r1t_name2 = re.split("\.", r1t_name1[2]) 
    r1t_name = f"{r1t_name1[0]}{r1t_name1[1]}_{r1t_name2[1]}" 
    rg_name = re.sub(r"\..*", "", rg) 
    os.system("awk 'FNR > 62 {print $1, $10}' < 
GCF_000001405.38_GRCh38.p12_assembly_report.txt | awk 'FNR > 1 {print}' > 
rename_chromosomes_map.txt")     
    os.system(f"bcftools annotate --rename-chrs rename_chromosomes_map.txt {ks} > 
All_new.vcf") 
    os.system("gatk IndexFeatureFile -I All_new.vcf") 
    os.system(f"samtools faidx {rg_name}.fa") 
    os.system(f"gatk CreateSequenceDictionary R={rg_name}.fa O={rg_name}.dict") 
    os.system(f"gatk MarkDuplicates I=aln_{r1n_name[0]}.bam 
O=dup_aln_{r1n_name[0]}.bam M=dup_metrics_{r1n_name[0]}.txt ASSUME_SORTED=TRUE 
VALIDATION_STRINGENCY=LENIENT") 
    os.system(f"gatk MarkDuplicates I=aln_{r1n_name[0]}.bam 
O=dup_aln_{r1t_name[0]}.bam M=dup_metrics_{r1t_name[0]}.txt ASSUME_SORTED=TRUE 
VALIDATION_STRINGENCY=LENIENT") 
    os.system(f"gatk BaseRecalibrator -R {rg_name}.fa -I aln_{r1n_name[0]}_m.bam --
known-sites {ks} -O rec_aln_{r1n_name[0]}.table") 
    os.system(f"gatk BaseRecalibrator -R {rg_name}.fa -I aln_{r1t_name[0]}_m.bam --
known-sites {ks} -O rec_aln_{r1t_name[0]}_.table") 
    os.system(f"gatk BaseRecalibrator -R {rg_name}.fa -I aln_{r1n_name[0]}_m.bam --
known-sites {ks} -O rec_sec_aln_{r1n_name[0]}.table") 
    os.system(f"gatk BaseRecalibrator -R {rg_name}.fa -I aln_{r1t_name[0]}_m.bam --
known-sites {ks} -O rec_sec_aln_{r1t_name[0]}.table") 
    os.system(f"gatk ApplyBQSR -R {rg_name}.fa -I dup_aln_{r1n_name[0]}.bam  --bqsr-
recal-file rec_sec_aln_{r1n_name[0]}.table -O rec_aln_{r1n_name[0]}.bam") 
    os.system(f"gatk ApplyBQSR -R {rg_name}.fa -I dup_aln_{r1t_name[0]}.bam  --bqsr-
recal-file rec_sec_aln_{r1t_name[0]}.table -O rec_aln_{r1t_name[0]}.bam") 
 
 
 

#Variant calling 
 
def filter_target(bf): 
    os.system(f"sort-bed {bf} > target.bed") 
    os.system(f"awk "'{print $1, $2, $3}'" target.bed > target_reg.bed") 
    for c in range(1,23): 
        os.system(f"bedextract chr{c} target_reg.bed > target_{c}.bed") 
    os.system(f"bedops -u target_1.bed target_2.bed target_3.bed target_4.bed 
target_5.bed target_6.bed target_7.bed target_8.bed target_9.bed target_10.bed 
target_11.bed target_12.bed target_13.bed target_14.bed target_15.bed target_16.bed 
target_17.bed target_18.bed target_19.bed target_20.bed target_21.bed target_22.bed > 
target_final.bed") 
    os.system(f"sort -k1,1V target_final.bed > target_regions.bed") 
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#Illumina 
 
#VarScan2 
def var_call_vs2(r1n, r1t, rg): 
    r1n_name1 = re.split("\_", r1n) 
    r1n_name2 = re.split("\.", r1n_name1[2]) 
    r1n_name = f"{r1n_name1[0]}{r1n_name1[1]}_{r1n_name2[1]}" 
    r1t_name1 = re.split("\_", r1t) 
    r1t_name2 = re.split("\.", r1t_name1[2]) 
    r1t_name = f"{r1t_name1[0]}{r1t_name1[1]}_{r1t_name2[1]}" 
    rg_name = re.sub(r"\..*", "", rg) 
    os.system(f"samtools mpileup -q 1 -f {rg_name}.fa rec_aln_{r1n_name[0]}.bam 
rec_aln_{r1t_name[0]}.bam | java -jar /usr/local/bin/VarScan.v2.4.6.jar copynumber 
varScan --mpileup 1 --output-vcf 1") 
    os.system("java -jar /usr/local/bin/VarScan.v2.4.6.jar copyCaller 
output.copynumber --output-file varScan.copynumber.called") 
    robjects.r(''' 
        library(DNAcopy) 
        cn <- read.table("varScan.copynumber.called",header=F) 
        CNA.object <-CNA( genomdat = as.numeric(cn[,6]), chrom = cn[,1], maploc = 
as.numeric(cn[,2]), data.type = 'logratio') 
        CNA.smoothed <- smooth.CNA(CNA.object) 
        segs <- segment(CNA.smoothed, verbose=0, min.width=2) 
        segs2 = segs$output 
        write.table(segs2[,2:6], file="out.file", row.names=F, col.names=T, quote=F, 
sep="\t")  
               ''') 
 
 

#Contra 
def var_call_contra(r1n,r1t,rg): 
    r1n_name1 = re.split("\_", r1n) 
    r1n_name2 = re.split("\.", r1n_name1[2]) 
    r1n_name = f"{r1n_name1[0]}{r1n_name1[1]}_{r1n_name2[1]}" 
    r1t_name1 = re.split("\_", r1t) 
    r1t_name2 = re.split("\.", r1t_name1[2]) 
    r1t_name = f"{r1t_name1[0]}{r1t_name1[1]}_{r1t_name2[1]}" 
    rg_name = re.sub(r"\..*", "", rg) 
    os.system("conda activate py27") 
    os.system(f"contra.py --target target_regions.bed --test recaln_{r1t_name[0]}.bam 
--control rec_aln_{r1n_name[0]}.bam --fasta {rg_name}.fa -p -l --outFolder 
~/ContraTest/") 
 
 
 

#Ion Torrent 
def var_call_g(r1n, r1t, rg): 
    r1n_name1 = re.split("\_", r1n) 
    r1n_name2 = re.split("\.", r1n_name1[2]) 
    r1n_name = f"{r1n_name1[0]}{r1n_name1[1]}_{r1n_name2[1]}" 
    r1t_name1 = re.split("\_", r1t) 
    r1t_name2 = re.split("\.", r1t_name1[2]) 
    r1t_name = f"{r1t_name1[0]}{r1t_name1[1]}_{r1t_name2[1]}" 
    rg_name = re.sub(r"\..*", "", rg) 
    os.system(f"gsutil cp gs://broad-public-
datasets/funcotator/gnomAD_2.1_VCF_INFO_AF_Only/hg38/gnomad.exomes.r2.1.sites.liftove
rToHg38.INFO_ANNOTATIONS_FIXED.vcf.gz .") 
    os.system(f"bcftools view -r 
chr1,chr2,chr3,chr4,chr5,chr6,chr7,chr8,chr9,chr10,chr11,chr12,chr13,chr14,chr15,chr1
6,chr17,chr18,chr19,chr20,chr21,chr22 
gnomAD_2.1_VCF_INFO_AF_Only/hg38/gnomad.exomes.r2.1.sites.liftoverToHg38.INFO_ANNOTAT
IONS_FIXED.vcf.gz > gnomad_exomes.vcf ") 
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    os.system(f"docker run -v 
/home/imarques/pipeline/ion_torrent_samples:/gatk/my_data -it 
broadinstitute/gatk:4.1.3.0") 
    os.system(f"gatk PreprocessIntervals -L target_regions.bed -R {rg_name}.fa --bin-
length 0 --interval-merging-rule OVERLAPPING_ONLY -O targets.interval_list") 
    os.system(f"gatk CollectReadCounts -I rec_aln_{r1n_name[0]}.bam -L 
targets.interval_list --interval-merging-rule OVERLAPPING_ONLY -DF 
ProperlyPairedReadFilter -O aln_{r1n_name[0]}.counts.hdf5") 
    os.system(f"gatk CollectReadCounts -I rec_aln_{r1t_name[0]}.bam -L 
targets.interval_list --interval-merging-rule OVERLAPPING_ONLY -DF 
ProperlyPairedReadFilter -O aln_{r1t_name[0]}.counts.hdf5") 
    os.system(f"gatk --java-options '-Xmx6500m' CreateReadCountPanelOfNormals -I 
normal.counts.hdf5 --minimum-interval-median-percentile 0.5 -O cnvponC.pon.hdf5") 
    os.system(f"gatk AnnotateIntervals -R {rg_name}.fa -L target_regions.bed --
interval-merging-rule OVERLAPPING_ONLY -O annotated_intervals.tsv") 
    os.system(f"gatk --java-options '-Xmx12g' DenoiseReadCounts -I tumor.counts.hdf5 
--count-panel-of-normals cnvponC.pon.hdf5 --standardized-copy-ratios 
tumor.standardizedCR.tsv --denoised-copy-ratios tumor.denoisedCR.tsv --annotated-
intervals annotated_intervals.tsv") 
    os.system(f"gatk PlotDenoisedCopyRatios --standardized-copy-ratios 
tumor.standardizedCR.tsv --denoised-copy-ratios tumor.denoisedCR.tsv --sequence-
dictionary {rg_name}.dict --output ./plots --output-prefix tumor") 
    os.system(f"gatk SelectVariants -R GRCh38.fa -V gnomad_exomes.vcf --select-type-
to-include SNP -O targets_SNP.vcf") 
    os.system(f"gatk --java-options '-Xmx12g' CollectAllelicCounts -L gnomad_sv.vcf -
I recal_reads_t_aln81nm.bam -R GRCh38.fa -O normal.allelicCounts.tsv") 
    os.system(f"gatk --java-options '-Xmx12g' CollectAllelicCounts -L gnomad_sv.vcf -
I recal_reads_t_aln82tm.bam -R GRCh38.fa -O tumor.allelicCounts.tsv") 
    os.system(f"gatk --java-options '-Xmx8g' ModelSegments --denoised-copy-ratios 
tumor.denoisedCR.tsv --allelic-counts tumor.allelicCounts.tsv --normal-allelic-counts 
normal.allelicCounts.tsv --output ./segments --output-prefix tumor") 
    os.system(f"gatk CallCopyRatioSegments ./segments/tumor.cr.seg --output 
tumor.called.seg ") 
    os.system(f"gatk PlotModeledSegments --denoised-copy-ratios tumor.denoisedCR.tsv 
--allelic-counts ./segments/tumor.hets.tsv --segments ./segments/tumor.modelFinal.seg 
--sequence-dictionary GRCh38_f.dict --minimum-contig-length 46709983 --output 
./segments --output-prefix tumor") 
    os.system(f"exit") 
 
 

#Merging 
 
#Illumina 
def read_split_illumina(file, vc): 
    current_file = pd.read_csv(file, sep="\t") 
    if vc == "contra": 
        new_file = current_file[["Chr","OriStCoordinate","OriEndCoordinate"]] 
        new_file.insert(3, "caller", "contra") 
        new_file.to_csv('contra.bed', sep = '\t', header = False, index = False) 
    elif vc == "varscan": 
        new_file = current_file[["chrom","loc.start","loc.end"]] 
        new_file.insert(3, "caller", "varscan2") 
        new_file.to_csv('varscan2_illumina.bed', sep = '\t', header = False, index = 
False) 
 

def mergefiles_illumina(file1, file2): 
    read_split_ion(file1, "contra") 
    read_split_ion(file2, "varscan") 
    os.system("bedtools intersect -a contra.bed -b varscan2_illumina.bed -wao > 
merge_illumina.bed") 
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def percentage_overlap_illumina(file): 
    current_file = pd.read_csv(file, sep="\t") 
    current_file.columns = ["chr", "chr_start_contra", "chr_end_contra", "caller", 
"chr", "chr_start_var", "chr_end_var", "caller", "overlap"] 
    size_contra = current_file["chr_end_contra"] - current_file["chr_start_contra"]   
    size_varscan = current_file["chr_end_var"] - current_file["chr_start_var"] 
    dif_contra = (current_file["overlap"] *100) / size_varscan 
    dif_varscan = (current_file["overlap"] *100) / size_contra 
    current_file['overlap_perc_contra'] = round(dif_contra,2) 
    current_file['overlap_perc_varscan'] = round(dif_varscan,2) 
    current_file.to_csv('merge_illumina.bed', sep = '\t', header = False, index = 
False) 
    return 
 
 
 

#Ion Torrent 
def read_split_ion(file, vc): 
    current_file = pd.read_csv(file, sep="\t") 
    if vc == "gatk": 
        new_file = current_file[["CONTIG","START","END"]] 
        new_file.insert(3, "caller", "gatk") 
        new_file.to_csv('gatk.bed', sep = '\t', header = False, index = False) 
    elif vc == "varscan": 
        new_file = current_file[["chrom","loc.start","loc.end"]] 
        new_file.insert(3, "caller", "varscan2") 
        new_file.to_csv('varscan2_ion.bed', sep = '\t', header = False, index = 
False) 
 

def mergefiles_ion(file1, file2): 
    os.system(f"sed '1,24d' {file1}") 
    read_split_ion(file1, "gatk") 
    read_split_ion(file2, "varscan") 
    os.system("bedtools intersect -a gatk.bed -b varscan2_ion.bed -wao > 
merge_ion.bed") 
 

def percentage_overlap_ion(file): 
    current_file = pd.read_csv(file, sep="\t") 
    current_file.columns = ["chr", "chr_start_gatk", "chr_end_gatk", "caller", "chr", 
"chr_start_var", "chr_end_var", "caller", "overlap"] 
    size_gatk = current_file["chr_end_gatk"] - current_file["chr_start_gatk"]   
    size_varscan = current_file["chr_end_var"] - current_file["chr_start_var"] 
    dif_gatk = (current_file["overlap"] *100) / size_varscan 
    dif_varscan = (current_file["overlap"] *100) / size_gatk 
    current_file['overlap_perc_gatk'] = round(dif_gatk,2) 
    current_file['overlap_perc_varscan'] = round(dif_varscan,2) 
    current_file.to_csv('merge_ion.bed', sep = '\t', header = False, index = False) 
    return 
 

 
#Run all functions 

x = input("Are the reads single or paired end? ").lower() 
 
def calling(x): 
  ipt = inpt(x) 
  if ipt[0] == "single": 
    file_merge = "merge_ion.bed" 
    file1 = "tumor.called.seg" 
    file2 = "out.file" 
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    read_processing_s(ipt[1], ipt[2], ipt[3]) 
    map_align_s(ipt[1], ipt[2], ipt[3], ipt[4], ipt[5], ipt[6]) 
    markdup_bqsr(ipt[1], ipt[2], ipt[4], ipt[6]) 
    filter_target(ipt[7]) 
    var_call_g(ipt[1], ipt[2], ipt[4]) 
    var_call_vs2(ipt[1], ipt[2], ipt[4]) 
    mergefiles_ion(file1,file2) 
    percentage_overlap_ion(file_merge) 
  elif ipt[0] == "paired": 
    file_merge = "merge_illumina.bed" 
    file1 = "CNATable.10rd.10bases.20bins.txt" 
    file2 = "out.file" 
    read_processing_p(ipt[1], ipt[2], ipt[3], ipt[4], ipt[5]) 
    map_align_p(ipt[1], ipt[2], ipt[3], ipt[4], ipt[5], ipt[6], ipt[7], ipt[8]) 
    markdup_bqsr(ipt[1], ipt[3], ipt[5], ipt[8]) 
    filter_target(ipt[9]) 
    var_call_contra(ipt[1], ipt[3], ipt[5]) 
    var_call_vs2(ipt[1], ipt[3], ipt[5]) 
    mergefiles_illumina(file1,file2) 
    percentage_overlap_illumina(file_merge) 
 

calling() 

 


