
How secure are
blockchains?

João Miguel de Sousa Regateiro
Mestrado em Segurança Informática
Departamento de Ciências e Computadores
2023

Orientador
João Paulo da Conceição Soares, Doutorado Equiparado a
Investigador Principal, Faculdade de Ciências da Universidade do
Porto

Coorientador
Rolando da Silva Martins, Professor Auxiliar, Faculdade de
Ciências da Universidade do Porto

Abstract

The blockchain is an evolving technology that was first introduced in 2009 with the launch of
Bitcoin. Blockchains are decentralized networks maintained by peers participating in the network,
this means that there is no central authority controlling the entire network and participants must
communicate with each other to retrieve data.

There are different types of blockchains, with the most common being public. Public
blockchains allow users to freely join and leave the network without any specific validation, which
means that everyone is allowed to participate in it. This raises some concerns because malicious
actors can join the network at any time and try to compromise its correct behavior or even
interfere with other nodes.

This work conducted an analysis of Bitcoin with the primary objective of gaining a profound
understanding of its underlying mechanisms and operations, specifically from a security perspective.
The study delved into the process of a node joining the network and discovering new peers from
which he would download the blockchain data. Bitcoin is currently one of the most well-known
blockchain projects, serving essentially to execute transactions without the need for a trusted
intermediary.

Recent projects such as Ethereum also brought new attack vectors with the introduction
of new concepts as smart contracts for decentralized applications. This paper analyses some
potential attack vectors to understand how blockchains are programmed to prevent them, giving
special importance to eclipse attacks on the Ethereum network. By exploring previous works
done in this area, the main goal is to perceive whether security measures are being applied to no
longer be vulnerable to the same attacks and how the countermeasures are effective in preventing
them.

The use of simulators was important to see how peers behave under certain conditions,
however, some simulators lack user interactivity and others maintenance, which makes the
research of some attack vectors quite difficult.

Keywords: Blockchain, Security, Ethereum, Bitcoin, Node, Proof-of-Work, Proof-of-Stake,
Vulnerabilities.

i

Resumo

A blockchain é uma tecnologia introduzida pela primeira vez em 2009 com o lançamento
da Bitcoin. Blockchains são redes descentralizadas mantidas por nós que participam na rede,
isto significa que não existe nenhuma autoridade central a controlar toda a rede e que os nós
participantes na mesma devem comunicar entre eles para obterem informação.

Existem diferentes tipos de blockchains, sendo as públicas mais comuns. Blockchains públicas
permitem que utilizadores entrem ou saiam da rede livremente e sem serem submetidos a
validações específicas, o que significa que qualquer um pode participar na mesma. Isto levanta
preocupações devido à possibilidade de atores maliciosos poderem-se juntar à rede a qualquer
altura e tentarem comprometer o correto funcionamento da mesma ou interferir com outros nós.

Este trabalho realizou uma análise à Bitcoin com o principal objetivo de obter conhecimento
profundo sobre os mecanismos e operações subjacentes, mais especificamente numa perspetiva
de segurança. O estudo aprofundou o processo de um nó se juntar à rede e descobrir novos nós
através dos quais ele irá obter informação sobre a blockchain. A Bitcoin é atualmente uma das
mais conhecidas blockchains, servindo essencialmente o propósito de realizar transações sem
necessitar de um intermediário confiável.

Projetos mais recentes como a Ethereum trouxeram novos vetores de ataque com a introdução
de novos conceitos como os contratos inteligentes usados para o desenvolvimento de aplicações
descentralizadas. Esta dissertação analisa potenciais vetores de ataque e de que forma as
blockchains estão protegidas contra os mesmos, focando-se especialmente em ataques de eclipse
na rede Ethereum. Explorando trabalhos já realizados nesta área, o objetivo principal é perceber
se estão a ser aplicadas medidas de segurança que impeçam estes mesmos ataques e se estas
medidas de segurança são eficientes em preveni-los.

O uso de simuladores foi importante para perceber como os nós se comportam em determinadas
circunstâncias. Contudo, alguns simuladores não permitem interatividade com o utilizador e por
vezes falta de suporte, o que limita o trabalho a ser realizado.

Palavras-chave: Blockchain, Security, Ethereum, Bitcoin, Node, Proof-of-Work, Proof-of-
Stake, Vulnerabilities.

ii

Contents

Abstract i

Resumo ii

Contents v

List of Tables vi

List of Figures vii

Listings viii

Acronyms ix

1 Introduction 1

1.1 Demystifying blockchain . 1

1.2 Types of blockchains . 2

1.3 Blockchain Properties . 2

1.4 Types of nodes . 3

1.4.1 Full nodes . 4

1.4.2 Lightweight nodes . 5

2 Background 6

2.1 Bitcoin . 6

2.1.1 Proof of Work . 6

iii

2.1.2 Joining the network . 7

2.1.3 Network storage . 7

2.1.4 Maintaining Connections . 8

2.1.5 Disseminating Information . 9

2.2 Ethereum . 10

2.2.1 Proof of Stake . 11

2.2.2 Ethereum accounts . 12

2.2.3 Ethereum Virtual Machine . 13

2.2.4 Ethereum State Transition Function . 14

2.2.5 Messages and Transactions . 15

2.2.6 Transactions . 15

2.2.7 Peer Discovery/Networking Layer . 17

2.2.8 Ethereum’s network storage . 19

2.2.9 Ethereum Wire Protocol . 21

2.2.10 Gas . 24

3 Vulnerabilities 25

3.1 Vulnerabilities in the Bitcoin network layer . 25

3.1.1 DNS Seeds . 25

3.2 The 51% attack . 25

3.3 Vulnerabilities Ethereum in the network layer . 26

3.3.1 Unlimited nodes creation . 26

3.3.2 Public Peer Selection . 26

3.3.3 Sole block synchronization . 26

3.4 Eclipse attacks . 27

4 Related Work 28

4.1 Eclipse attacks by monopolizing connections . 28

4.2 Eclipse by table poisoning . 29

iv

4.3 False friends eclipse attack . 30

4.4 lookup function . 32

4.5 Logdist Function . 33

5 Practical Work 34

5.1 Planning . 34

5.2 Simulators . 34

5.2.1 Ethereum-shadow . 35

5.2.2 Blockchain Simulator . 37

5.3 Ethereum Official Testnets . 40

5.4 Running a node . 40

5.4.1 Execution and consensus client . 40

5.4.2 Syncing the network . 41

5.4.3 Initializing the clients . 42

6 Conclusion 44

6.1 Limitations . 45

6.2 Future Work . 45

Bibliography 47

v

List of Tables

2.1 Ethereum Layers. 11

vi

List of Figures

1.1 Public Blockchain . 2

1.2 Private Blockchain . 2

1.3 Consortium Blockchain . 3

1.4 Types of Nodes . 4

2.1 How peers are selected . 9

2.2 Block propagation [27] . 10

2.3 Ethereum accounts . 13

2.4 Ethereum Mapping Account . 14

2.5 Ethereum world-state . 15

2.6 Transaction State Change . 15

3.1 Example of eclipse attack . 27

5.1 Network topology of test scenario 1 . 38

5.2 Network statistics of test scenario 1 . 38

5.3 Network statistics of test scenario 2 . 39

vii

Listings

viii

Acronyms

ASIC Application-Specific Integrated
Circuits

SPV Simple Payment Verification

EOA Externally Owned Account

EVM Ethereum Virtual Machine

ECDSA Elliptic Curve Digital Signature
Algorithm

DHT Distributed Hash Table

RLP Recursive Length Prefix

TD Total Difficulty

P2P Peer to Peer

PoS Proof of Stake

PoW Proof of Work

BLS Boneh-Lyn-Shacham

SCA Smart Contract Account

DoS Denial-of-Service

ENR Ethereum Node Record

VM Virtual Machine

ENR Ethereum Node Record

ISP Internet Service Provider

NAT Network Address Translation

DNS Domain Name System

ix

Chapter 1

Introduction

1.1 Demystifying blockchain

Blockchain is an emergent technology that gained a lot of attention when introduced in 2009
[42] by an unknown person who goes by the name of Satoshi Nakamoto. This paper describes
the Bitcoin cryptocurrency and the technology behind it to work as the first decentralized digital
payment system/currency, which allows individuals to make payments without the need to rely
on a third party. Since then, multiple projects have been introduced – a significant amount of
them aim to improve efficiency on some components, address possible deficiencies, or bring out
new concepts and functionalities like the Ethereum [21] project which allows the development of
decentralized applications on top of it and smart contracts, a piece of immutable code that runs
on the EVM (Ethereum Virtual Machine) when certain conditions are met.

Blockchains are non-stop growing ledgers [43] that group a set of transactions into a block.
Every block is hashed and stores the previous block’s hash value since the genesis block, thus
forming a chain of blocks, also known as the blockchain. After adding a block to the blockchain,
it is no longer possible to delete it, meaning that adversaries are unable to quash transactions
published on the blockchain. This makes the blockchain censorship resistant [55].

An important characteristic of this technology is the decentralization it aims to provide.
This means that the blockchain data is not stored centrally. Peers in the network store small or
full copies of the ledger and maintain it. To counter the inexistence of a central authority that
validates blocks and transactions, the network implements a consensus protocol, which allows
every peer to agree on the current state of the blockchain.

Blockchains are known to be overlay Peer to Peer (P2P) networks and so nodes need to
communicate information to each other. Nodes will receive and send information to the nodes
they are able to establish a connection. This can raise concerns if nodes are only surrounded by
malicious actors that deliberately send incorrect information to take advantage of a victim and
harm them in some way.

1

2 Chapter 1. Introduction

1.2 Types of blockchains

The most well-known blockchain systems, which are Bitcoin and Ethereum, are both public
blockchains, however, this is not a unique approach. Blockchains can be also private or consortium.
[49] [22]

• Public Blockchains: There is no central authority in the network. The system does not
have a set of constraints that need to be fulfilled when joining the network and there is not
a fixed number of consensus members. Any node can join or leave the network freely.

Figure 1.1: Public Blockchain

• Private Blockchains: In private blockchains, there is a central authority that controls the
network and imposes restrictions on nodes that aspire to join the network meaning not
everyone is free to enter. The consensus members are usually pre-defined and operate with
the assumption that everybody knows each other in the network.

Figure 1.2: Private Blockchain

• Consortium Blockchains: They work similarly to private blockchains, however, they are
more decentralized due to being controlled by a group or organizations instead of a single
central authority.

1.3 Blockchain Properties

The blockchain implements some computer technologies that allows it to work smoothly and
stand out from other systems. Some of those are the distributed data storage since nodes in the
network need to keep and make available a copy of the ledger, networking (managing nodes on

1.4. Types of nodes 3

Figure 1.3: Consortium Blockchain

the network and their connections), consensus algorithms, which are extremely important to
reach an agreement on the current state of the blockchain, and encryption algorithms to facilitate
ownership management.

It also attracts attention for having the following properties [25]:

• Decentralization - The core property of blockchain technology is its decentralization.
Being a decentralized technology allows for multiple nodes to be accountable on the
blockchain and to agree on a consensus that ensures persistence across the network.

• Tamper proof - To successfully deviate the blockchain from its main chain, an attacker
must control 51% of the whole network. This reveals to be extremely resource expensive
and the overall return might not be as rewarding as maintaining an honest posture on the
network.

• Traceability - All blocks are stored in the blockchain and hashed with the previous block
hash which performs the blockchain data structure. It is possible to trace all blocks and
transactions made on the network from the last to the very first.

• Autonomy - The consensus protocol implemented by the blockchain allows multiple nodes
to record and update data in a trustworthy environment.

1.4 Types of nodes

A node is simply a participant in the blockchain technology that when connected to many
other participants forms a network. These nodes can assume diverse types, each assigned with
different roles and functions in the network. [33]

The two main types of nodes are full nodes and lightweight nodes. Full nodes have a server-
like behaviour on the network and more storage capabilities, being able to provide others with
blockchain data. On the other hand, lightweight nodes have fewer storage capabilities and
are required to connect to full nodes for the purpose of downloading blockchain data. Figure
1.4 depicts a visual representation of the different node types within the blockchain network,
organized in a tree structure.

4 Chapter 1. Introduction

Figure 1.4: Types of Nodes

1.4.1 Full nodes

Full nodes have a very important role in maintaining the blockchain and achieving consensus
over the network. They store a copy of the blockchain, validate transactions, and vote on
proposals to change the network. They are also the ones from which other nodes, including
themselves, download the blockchain data. Full nodes are subdivided into different categories
and subcategories [33] [32], as described in figure 1.4.

• Pruned full nodes: The pruned full nodes are functional working full nodes with storage
constraints. Due to the limited capacity of storage, these nodes download and validate
every block until their memory is full. Once this happens, the oldest blocks are dropped
and only the headers are maintained. This process happens repeatedly as pruned full nodes
drop the oldest blocks to validate new ones as needed. Since they are considered full nodes,
they are still capable of validating transactions and being involved in the consensus.

• Archival full nodes: These nodes are similar to the pruned ones in the sense that they
also store a full copy of the blockchain. However, as storage constraints do not affect archival
nodes, these nodes are able to maintain a copy of every block added to the blockchain
without having to drop the oldest blocks. Within the realm of archival nodes, it is possible
to distinguish two more types: Mining nodes and staking nodes.

– Mining nodes: The mining nodes are on the network aiming to solve a cryptographic
puzzle, so they can append a block to the blockchain. Solving the cryptographic
puzzle proves that the node has put in the effort required to create a block. The
goal is to be the first one to solve this problem taking advantage of high-performance
hardware components such as Application-Specific Integrated Circuits (ASIC), which

1.4. Types of nodes 5

is mainly used for bitcoin mining. Once the puzzle is solved, the new block will be
disseminated through the network and validated by other full nodes. If consensus is
achieved, the mining node, also known as “miner”, will be rewarded for the effort put
into solving the problem with a fee defined by the network.

– Staking nodes: Staking nodes are participants of networks following a different
consensus algorithm, the Proof of Stake (PoS). Instead of leveraging computational
power to create a new block and append it to the blockchain, nodes must stake a
certain amount of their owned coins to be able to create and validate blocks. The
node to be chosen to append the block will depend on several factors such as coin age
(coin holding time), coins owned, number of total stakers, and a random factor.

1.4.2 Lightweight nodes

The lightweight nodes, also known as light nodes, are nodes with very few storage capabilities.
They are dependent on full nodes to provide them with the necessary blockchain data. They only
keep records of the most recent block headers and are still able to execute transactions despite
their constraints regarding storage and computational power.

Chapter 2

Background

2.1 Bitcoin

Bitcoin is a distributed ledger technology [41] that was introduced to the world in 2009.
The main purpose of bitcoin is to allow users to execute transactions over a P2P network in a
decentralized manner, without the need to rely on third parties. It stores blocks of transactions
in a public ledger maintained by active peers on it. As it runs on a permissionless environment,
nodes are able to freely join the network and leave it at any time. The papers [27] and [47] provide
detailed explanation on the processes a node go through when joining the bitcoin network.

2.1.1 Proof of Work

Bitcoin adopts in its blockchain the Proof of Work (PoW) consensus algorithm. The PoW
concept was inherited by the one introduced in [17] as a Denial-of-Service (DoS) countermeasure,
specifically thought to prevent email spamming. Users would have to expend computational
power over a period of time to solve a cryptographic problem.

In Bitcoin, nodes known as “miners” must generate a proof of work to be able to append a
block to the blockchain, a process known as “mining”. These nodes must solve a difficult hash
problem that consists of finding a hash with a certain number of leading zeros. The amount of
leading zeros is considered the network difficulty or the PoW difficulty and is adjusted every
2016 blocks [54]. Nodes compete among themselves to be the first to solve the hashing problem,
which gives them the opportunity to append a block. Calculating this hash involves numerous
calculations, which translates into computational power, thus giving an advantage to the ones
who have more computing resources.

Once a node “mines” a block, it must propagate it through the network and receive a reward
in the form of bitcoins (BTC) for the computational work performed.

6

2.1. Bitcoin 7

2.1.2 Joining the network

When a node joins the network for the first time, it must synchronize its local chain with the
current blockchain view held by other peers in the network, however, at the moment of joining
the network there are no known peers [31]. To do so, the new node can query some DNS seeds
which are held by the bitcoin community. These seeds are DNS servers hardcoded in the bitcoin
client that hold a list of peers that are accepting connections [5].

During the communication with the DNS servers, nodes might find some advertisement
messages not to be reachable, this is because there is no specific way to leave the network. To
decrease the probability of receiving DNS responses with addresses of inactive bootstrapping
nodes, Bitcoin integrates dynamic DNS seeds, which are more likely to reach active peers.
These Dynamic DNS seeds can automatically trace the network to get active peers while static
DNS seeds need to be updated manually, making them more susceptible to responding with IP
addresses of inactive nodes. There are two scenarios in which nodes might recur to DNS seeds,
the first is when they join the network for the first time and the second is when they reconnect
and fail to establish more than two connections within 11 seconds [34].

Nodes do not need to solely rely on DNS seeds to learn about new peers. Bitcoin Core, the
most common Bitcoin client, keeps a persistent database with a set of peers to which a new
node can establish a connection. Another method to find nodes’ addresses is by listening to
advertisement messages that are at times broadcasted to the network [47] or asking neighboring
nodes.

Peers’ network information is shared through ADDR messages. These can contain up to 1000
addresses and nodes that do not respect this boundary get blacklisted. ADDR messages are
usually unsolicited, however, when an outgoing connection is established, the node can solicit up
to three ADDR messages. To advertise itself to the network, a node shares its own information
by sending ADDR messages to its connected peers, which will be forwarded to their connected
peers.

2.1.3 Network storage

Nodes in the network store the public IP addresses of other nodes. Those can be stored in
two persistent databases: the tried and new tables [34]. The persistence of these databases allows
nodes to still acknowledge previously discovered peers if they reboot. The new table has 1024
buckets and holds IP addresses of peers to which the node has not yet established a successful
connection. The tried table has 256 buckets and stores the IP addresses of peers to which the
node has already established a connection with success [31]. Both tables are comprised of 64
entries for each bucket, which store IP addresses, ports, timestamp of the last connection, and
the last time the respective node was seen on the network.

When a new node is discovered, it is first added to the new table through the GetNewBucket

8 Chapter 2. Background

function. This function determines the bucket where a node must land. If the bucket is full,
an eviction process is run and evicts all the nodes that are older than one week, have failed to
connect 7 times in a row or have their clock 10 minutes ahead of the current time.

Whenever a successful connection is established, the client runs a GetTriedBucket function
to determine the appropriate bucket for that address in the tried table. If that address is already
present in the bucket, its timestamp is updated. In the case that it is not but the bucket is full,
four random addresses will be selected and the oldest from the four gets evicted and moved to
the new table [28]. In an attempt to increase addresses on the tried table, the node periodically
tries to connect with peers in new.

2.1.4 Maintaining Connections

Every node in the network has the capacity to establish outgoing or incoming connections
with other peers over unencrypted TCP. The identity of a peer in the bitcoin network is its
public IP address. Every node with a public IP address can initiate up to a default of 8 outgoing
connections and receive up to 117 incoming connections, while nodes with private IP addresses
can only establish 8 outgoing connections [34]. Nodes that are accepting unsolicited connections
express their availability by broadcasting an ADDR message through the network saying they are
accepting connections [27]. A node can choose to drop inbound connections but not outbound,
unless the peers are blacklisted. Every time a node has less than 8 outgoing connections, it
triggers a method for establishing the missing connections, which can happen upon a restart or
if an outgoing connection is dropped [28].

Connected peers send regular messages to check on aliveness and if no response is received
within 90 minutes, the peer is assumed to be disconnected from the network.

2.1.4.1 Selecting peers

Outgoing connections are established every time a client reboots or when a connection gets
dropped by the network. Bitcoin nodes do not usually drop outbound connections unless they
receive something that deviates from the normality (e.g., receiving addr messages that exceed
the total addresses limit) [34].

The first step in choosing a node to establish an outgoing connection is deciding whether
to choose an address from new or tried table. Bitcoin prioritizes selection from tried in
case the node has few outgoing connections established, or the table has a big amount of
nodes. After deciding on the table, a random node n is selected and accepted with probability
min(1, 2rejected

1`pT imestamprns´currentT imeq
). In this process, nodes with more recent timestamps are

favoured and rejected is set to 0. If the node is accepted, a connection attempt is started.
Otherwise, a new node is selected and rejected is increased. If the connection is attempted but
fails, the process returns to step one [28].

2.1. Bitcoin 9

Figure 2.1 helps to visualize the process detailed above.

Figure 2.1: How peers are selected

2.1.5 Disseminating Information

Nodes in Bitcoin disseminate information through the gossip protocol [37]. Nodes can
announce transactions and block hashes on their local chains with an inv (inventory) message.
This message alerts the neighbour nodes that blocks and transactions have been validated and
are ready to be transmitted. Another purpose of using this method is to avoid sending a block or
transaction to a node that already knows it [27]. Nodes that are missing the block or transactions
might respond with a getdata message requesting the full block or with a getheaders message
requesting some block headers on top of the chain and follow with a getdata message as illustrated
in 2.2. This is called the Standard Block Relay method.

When a miner discovers a new block, he does not need to send the inv message because if the
block was discovered by him that means that no one else knows about it. In this case the block
is shared with an unsolicited block push. The block’s discover sends a direct block message to its
neighbours because he knows for sure that they do not have the block on their local chain.

10 Chapter 2. Background

The last method for sharing a block is via a Direct Headers Announcement. Some nodes
might prefer to receive a message with the block header instead of the inv message so the sender
just sends a headers message instead. The receiver verifies the header and decides whether to
send a getdata message or not. The preference for headers instead of inv message can be shared
at the moment of establishing a connection [5].

Propagating a message involves previously validating the information that is going to be
propagated, and this introduces in the network a propagation delay, which is the time a node
takes to validate a block or a transaction, added to the time it takes to propagate and reach the
target.

Figure 2.2: Block propagation [27]

2.2 Ethereum

Ethereum is one of the most impactful blockchain technologies operating today. It brings
people together from all over the world through the power of an innovative concept. Its release
in 2015 stood out when introducing new functionalities and pushing its way to being more than
just a cryptocurrency.

Described in [21] by Vitalyk Buterim, Ethereum is a project designed to facilitate the creation
of revolutionary decentralized applications, also known as dApps. To provide this service, the
project introduced Smart Contracts, one of the core characteristics of this network that makes it
excel from the others. Developers can build decentralized applications on top of the Ethereum
blockchain through the development of pieces of code that are able to execute themselves when
determined conditions are met – these are known as Smart Contracts. These programmable
pieces of code run in a virtualized environment called the EVM (Ethereum Virtual Machine),
explained in more detail in section 2.2.3

Looking at the Ethereum architecture, it is possible to denote five different layers, as illustrated
in table 2.1 [30].

The focus of this paper is on the Network Layer, however, the following chapters make a brief

2.2. Ethereum 11

1 Data Layer
Data block, chain structure, hash function, asymmetric
encryption, timestamp, merkle trees, etc. All of these important
components ensure the reliability of the network.

2 Network Layer

Responsible for handling peer-to-peer connections. Specifies
how a node joins the network and get to know their neighbours
and is responsible for establishing communication channels, so
nodes can send and receive blockchain data information.

3 Consensus Layer
Ensures the consistent state of the blockchain across all peers.
Everyone in the network must agree on what is being seen.

4 Contract Layer
Scripts, Algorithms, and Smart Contracts to allow instructions
to be run automatically and determinately. This layer is
executed in the Ethereum Virtual Machine.

5 Application Layer
Applications built on top of the Ethereum blockchain are
deployed in the application layer.

Table 2.1: Ethereum Layers.

introduction and explanation of some concepts such as Ethereum Accounts and the EVM.

Regarding the Network Layer, the present research explores the process of a new node joining
the network as well as how nodes can establish connections with each other and receive and
transmit blockchain information. The purpose is to understand if the network is vulnerable
to eclipse attacks, or how can a malicious actor can compromise or pollute an honest node’s
connection. Section 2.2.7 describes more in-depth the process of peer discovery, which is the
main point of attack when trying to eclipse a victim.

2.2.1 Proof of Stake

With the introduction of Proof of Stake to replace the Proof of Work consensus algorithm,
Ethereum changed the way blocks are proposed to the network and the actors that participate
in that process. Miners are no longer part of the equation since that nodes are not competing
with each other to be the first to solve some difficult cryptographic puzzle leveraging their
computational power. The PoS introduces a core actor for the achieving consensus, known
as validator. Validators are responsible for validating blocks and transactions an occasionally
append a new block to the blockchain.

Validators are randomly chosen to be head of consensus and their time on it is measured
on slots and epochs. A slot is a timeline of 12 seconds and 32 slots form an epoch. Every slot
represents an opportunity to add a new block to the blockchain, a pseudo-random algorithm
runs to choose a validator to be the proposer of a block. The chosen validator collects a group of
transactions, executes them and wraps them into a block. The block is then propagated to a
specific group of validators that must execute all transactions and validate the block giving their
attestation. The group of validators responsible for validating blocks is changed at every slot for

12 Chapter 2. Background

managing the network load.

To be a validator, one has to stake its own ETH, a total amount of 32ETH. This helps
preventing malicious behavior from validators like continuously appending their favored blocks
because since validators are staked on the network they risk to have their ETH destroyed in case
of bad behavior.

2.2.2 Ethereum accounts

The Ethereum network comprises two types of accounts: the Externally Owned Account
(EOA), which can be controlled by owning its private keys, and the contract accounts. Unlike
EOA, these are related to smart contracts deployed on the network and thus are controlled by
the code written in those. Both accounts can interact with smart contracts deployed to the
network and are able to exchange Ethereum tokens.

The four following fields, as depicted in figure 2.2.2, compose the Ethereum Account [50]:

• A nonce that starts at 0 for each EOA and is incremented each time that account performs
a transaction. By doing so, it prevents the same transaction from being processed twice.
For contract accounts, it indicates the total of contracts created by the account.

• The balance - the amount of ether an account has expressed in WEI, a denomination of
ETH.

• The codeHash - the hash of an account’s code on the Ethereum Virtual Machine (EVM).
It is a code fragment programmed to execute a set of operations. This code is immutable
and thus can never be changed, it gets executed once the account receives a message call.
In the case of an EOA, since there is no contract deployed on the network, the codeHash
value is the hash of an empty string.

• The storageRoot, which is a 256-bit hash representing the entire storage of a single
account (root hash of the Account Storage Trie). All the contents of a smart contract and
the results of its execution are stored in this persistent storage. This field is usually empty
by default and remains empty for externally owned accounts.

To be able to own an EOA, a user must generate a cryptographic key pair. This process
involves generating two cryptographic keys: a private key and a public key. The first is used for
signing transactions whilst the second is mainly used for verifying transactions. The public key
is derived from a 64 hexadecimal character private key recurring to the Elliptic Curve Digital
Signature Algorithm (ECDSA). The public address of an account is determined by adding 0x to
the last 20 bytes of the Keccak-256 hash of the public key [10]. This address is public to the
blockchain and serves as a unique identifier.

The contract accounts also a hexadecimal address of 42 characters instead of 64. The contract
address is given by an association between the contract owner’s address and its respective nonce.

2.2. Ethereum 13

Figure 2.3: Ethereum accounts

The main difference between EOA and contract accounts is that EOA are free of charge, while
contract accounts will have a cost since they are consuming network storage. Besides following
a cryptographic private/public key logic, EOAs are able to initiate transactions on their own.
Contract accounts are unable to initiate transactions, they can only respond to transactions if
they receive one. Furthermore, they follow the logic of the smart contract code instead of being
associated with private keys.

With the switch from proof-of-work to proof-of-stake, a new type of keys were introduced to the
network. These are called BLS keys due to being generated with the Boneh-Lyn-Shacham (BLS)
signature algorithm [16].

2.2.3 Ethereum Virtual Machine

The EVM is a key component that permits the Ethereum Ecosystem to be considered
a 2.0 Blockchain model. While Blockchain 1.0 is related to payment systems, the 2.0
Blockchain introduces smart contracts, which allow Decentralized Applications to run on top of
blockchains [24]. These smart contracts are executed on a computation engine not very dissimilar
from virtual machines, known as EVM. This machine plays a pivotal role in transitioning from
one state to another with each new block. It belongs to the execution model that defines how
the blockchain state is altered based on bytecode instructions and a small set of environmental
data [21]. The EVM follows a stack-based architecture with a word size of 256-bit, specifically
chosen to streamline operations related to the keccak256 hash scheme and elliptic-curve signature
algorithms, and is composed by the following:

• Stack: 32 bytes fields with a maximum size of 1024.

• Memory: An infinite expanding byte array stored separately in a virtual ROM environment,
expanding this byte array implies paying more gas.

• Storage: Persistent memory for contract storage.

• Environment variables: These variables are stored, so the virtual machine can access the
block number, mining difficulty, previous block hash, and others.

14 Chapter 2. Background

• Logs: Event registers.

• Sub-calling: Opcodes for calling other contracts.

It is considered to be a quasi-Turing-complete state machine, the term “quasi” is used
because Ethereum uses the amount of gas available to solve the halting problem. The amount of
computation done is always limited by the amount of gas available [50]. The EVM defines the
rules for computing a new valid state for the blockchain from block to block [11] and offers a
runtime environment for smart contracts to run [23].

Smart contracts are programmed in high-level languages such as solidity and compiled into
byte-code so they can run on the EVM [44]. Once a developer writes a smart contract, he deploys
it to the network, then the contract’s code is compiled to byte code and distributed through all
the machines, which means that every node on the network running an EVM will have a copy of
the contract. A user participating in the network can run its EVM on geth, which is the most
popular software client among the Ethereum network nodes.

2.2.4 Ethereum State Transition Function

Ethereum is described in [21] as a transaction-based state machine. This is because the
Ethereum network processes transactions in order to change the current state of the blockchain,
which implies that a transaction represents a valid arc between two states [50]. A state transition
function described as APPLY(S,Tx) -> S’ is applied to change the state. Given a block of
transactions, a transaction T, and the state S, a new state S’ or an error will be generated. The
Ethereum world state is defined as a mapping between addresses and account state [48]. Figure
2.4 illustrates the account state, which maps an address to account fields. As mentioned in
section 2.2.2 an Ethereum account state has a nonce, a balance, a storageRoot, and a codeHash,
which is the EVM code.

Figure 2.4: Ethereum Mapping Account

In figure 2.5 is illustrated the concept of world-state, which maps addresses to account states
to reach the current state of the Ethereum Blockchain.

2.2. Ethereum 15

Figure 2.5: Ethereum world-state

2.2.5 Messages and Transactions

A transaction is a signed interaction between accounts [3] whose execution implies changing
the state of the blockchain(2.6). Transferring ether from one account to another is seen as the
simplest way of executing a transaction. Messages are similar to transactions, however, they are
associated with the contracts’ ability to send messages to other contracts (e.g. opcodes calls).

Figure 2.6: Transaction State Change

2.2.6 Transactions

Transactions are sent from an EOA [45] to other EOA or contract accounts. A transaction
contains the following fields [50]:

• nonce: corresponds to the sender and is incremented each time he initiates a transaction.

• to: Account of destination, which can be an EOA or a contract account.

• value: In case of an ether transfer, this field specifies the amount Wei correspondent to the
amount of ether to be transferred.

• data: An optional data field that is used to specify contract message calls.

• gasLimit: The maximum gas the sender is willing to spend.

• gasPrice: The price to be paid in Wei for each computational step needed to execute the
transaction.

• (v, r, s): An ECDSA signature identifying the sender.

16 Chapter 2. Background

Each valid transaction execution involves updating the state of the corresponding accounts
and thus updating the blockchain state.

The following steps describe the process that an Ethereum transaction goes through [29]:

(i) The sender constructs and digitally signs a transaction.

(ii) To submit the signed transaction to the Ethereum client, the sender must execute a
JSON-RPC call.

(iii) The Ethereum client receives the transaction and, after verifying it, broadcasts it through
the Ethereum P2P network.

(iv) Clients that are also miners receive the transaction and add it to their mining pool.

(v) The miner selects and execute transactions from his transaction pool, creates a block and
updated the blockchain state. Transactions can be divided into three types. The simplest
of transactions is a money transfer, where the specified value is transferred from an EOA to
another or to a contact account. For contract creation transactions, the piece of bytecode
specified in the transaction input creates a new contract account and is associated to it. For
transactions that call a contract, where the recipient is the called contract and the input
field specifies a callee contract function, the bytecode associated with the callee contract
gets loaded into the EVM.

(vi) The miner tries to solve a PoW that consist in finding a random nonce so that the hash value
of the block’s metadata is smaller than a certain value, which translates into the difficulty of
mining a block. While Bitcoin implements a computation-intense PoW, Ethereum adopts
a memory-intense puzzle called “Ethash”.

(vii) Upon creating the block, the miner broadcasts it through the P2P network in order for
other clients to verify and validate it.

(viii) After verifying and validating the block, the client appends it to the blockchain.

With the recent change in Ethereum from PoW to Proof of Stake (PoS), transactions are
now validated by the validators, the actors introduced in the network with the change to PoS.

2.2.6.1 Messages

Messages, unlike transactions, are specific to the execution environment. They are initiated
by smart contracts when the call opcode is triggered and are used to interact with other contracts.
A message is composed by:

• The message sender.

2.2. Ethereum 17

• The message recipient.

• The amount of ether to be transferred.

• A field for optional data.

• The maximum to be spent on the message.

2.2.7 Peer Discovery/Networking Layer

The networking layer of Ethereum can be separated into two stacks: the discovery stack and
the DevP2P stack. The discovery stack manages a set of protocols layered on top of UDP for
discovering new nodes in the network, which are implemented on version 4 of the Peer Discovery
Protocol. In contrast, the DevP2P stack sits on top of TCP and includes protocols responsible
for establishing and managing sessions, such as RLPx and Ethereum Wire Protocol (eth), which
plays a crucial role with regard to exchanging information about the blockchain itself [2].

The process of discovering nodes in the Ethereum network is defined by version 4 of the Node
Discovery Protocol [6]. Even though it is soon to be changed to version 5, this is the current
protocol followed by Ethereum nodes to find other nodes on the network.

Whenever a node enters the network, it has no information about other peers. To be able
to connect and acknowledge other nodes in the network, a set of bootnodes is available to be
reached. These are made available by a slightly modified version of Kademlia, a Distributed
Hash Table (DHT) used to store nodes’ information and assist with efficiency on the lookup of
identifiers and routing to the corresponding nodes. The bootstrap nodes are trusted to provide
new nodes with correct information about a set of honest peers to connect to on the first time
the client is initiated, however, for security concerns the boostrap nodes available on the DHT
are regularly refreshed. These nodes function is solely to provide newly joined nodes with a set
of peers, they do not perform other client tasks such as chain synchronization [2].

As previously stated, Ethereum nodes use a modified version of Kademlia, which is a well-
known data structure with aim to optimize the storage and retrieve of data. Its purpose is to
help the process of storing and retrieving nodes instead of storing and retrieving blockchain
data [20]. Each node has its own DHT that contains the information required to connect to its
closest peers, organized in buckets. There are 256-buckets in every DHT with 16 entries each.
However, because it is very hard to find nodes closer than a certain bucket, only the first 17
buckets are filled. Nodes are mapped to buckets according to a XOR metric that measures how
distant two nodes are from each other. Furthermore, the Ethereum version of kademlia applies a
keccaak256 function to the nodeID and this value is represented as the ID in the table, unlike in
the kademlia official version where IDs are 160-bit.

The node discovery protocol implements two messages that allow a new node to bond with
the bootstrap nodes when it joins the network. By the use of the PING-PONG scheme, a node
can send to a boostrap node a ping message containing the following information comprised on a

18 Chapter 2. Background

hash: information of itself, the node to connect to, and an expiry timestamp. After sending a
ping message, the node awaits for a pong response containing the ping hash. To be valid, the
pong message should match the ping hash of the most recent ping message. After trading these
two messages, nodes are bonded and the new node can send FindNode messages to learn about
more nodes in the network to bond with and add them to its DHT.

To do so, nodes perform a recursive lookup, which locates the k-closest nodes to a certain
target [6]. To initiate a recursive lookup, a node chooses a random target t and sends a findNode
message to the 16 nodes closest to the target. Each of the 16 nodes will respond with the closest
nodes to the target they know about in a neighbors packet. This process runs iteratively until
the lookup initiator encounters the closest nodes to the target from all the nodes received in the
response packets. Nodes are mapped to the respective buckets according to a logdist function [20].
Every time a new node x is discovered, it is mapped to the corresponding bucket and added to
its tail if not full. In case the bucket is full, the least recently seen node y is pinged to check if
it is still alive. In the event of y does not respond, it is evicted from the DHT and node x is
added. However, if this node responds, node x is not added to the bucket but can be added to
the bucket-specific replacement list, which can hold up to 10 nodes.

During the discovery process, nodes establish RLPx sessions to exchange information and
share connectivity information [9]. This transport protocol is based on TCP and employed for
Ethereum nodes to communicate with each other [7]. It initiates, authenticates, and maintains
connections between nodes. Moreover, RLPx encodes messages using the space-efficient Recursive
Length Prefix (RLP) to encode messages.

An RLPx connection starts with an Initial Handshake. This process involves creating a
TCP connection and exchanging ECIES keys [39] for nodes to change information securely and
privately. The RLPx Initial Handshake is done between the initiator and recipient, which are
the node that starts the connection and the one that receives it, respectively. The initiator sends
an auth message to the receiver, which verifies it, and responds with an auth-ack message in case
the verification succeeds. Afterward, both nodes send their first encrypted frame containing the
following information in a Hello message:

• Protocol version

• Client ID

• Port

• Node ID

• list of supported sub-protocols

The main purpose of the hello message is to share the capabilities of the two nodes, which is
a list of supported protocols and their versions. In concurrence with the hello message, a node
might also send a disconnect message to indicate that the connection will be closed.

2.2. Ethereum 19

2.2.8 Ethereum’s network storage

Ethereum has available two data structures for its clients to store information about other
nodes [40]. The first one is a long-term database known as db that stores the nodes physically [20]
and is persistent across the client reboot. The other database is short-term and non-persistent,
thus is empty every time the client reboots. It is called table and is the kademlia-like DHT
employed by the Ethereum network for facilitating the process of storing and retrieving nodes.

• db - This is a long-term database that stores every node the client has even connected
with. It is persistent, which means that records remain after a reboot. It has no limit on
size so it can store all the nodes that the client bonded with. The process of bonding is
described in section 2.2.8.1 but can be as simple as sending a ping message and receiving
a valid pong response. Once this is completed, the client stores in its db the following
information on the node: nodeID, TCP port, UDP port, time of last ping sent, time of
last pong received, and the number of times that node has failed to respond to a findnodes
message. To keep the database updated and exclude nodes that are no longer alive on the
network, the client runs an eviction process to discard nodes that are older than one day.
The node age refers to the time that has passed since the last valid pong message.

• table – A short-term database with a kademlia-like structure, it is the modified DHT
implemented by the Ethereum network. It is not persistent and therefore will be empty
every time the client reboots [40].

This database is composed of 256 buckets, each with k=16 entries. Every entry corresponds
to a slot that may or may not be available to store a node. The client uses the table to
keep records of nodeID, IP address, TCP port, and UDP port of every peer in it. Nodes
are mapped to buckets according to their distance from the client, this is calculated by
the implementation of a logdist function similar to the kademlia XOR metric [53]. This
function hashes two nodeIDs to a 256-bit value and calculates the level of proximity r
between them. It then maps to the correspondent bucket, which can be described as 256-r.

Buckets are structured in a most recently seen architecture, where the nodes that responded
to ping messages last are moved to the top. The ones on the tail of the bucket are the
oldest ones and thus the more likely to be evicted from the table.

While db is more directed to store network information, the table is designed with the
purpose of selecting peers. It runs its own eviction process and discard nodes if they fail
to respond to a findnode message more than four times or if they fail to respond to ping
messages.

2.2.8.1 How to populate Data Structures

An Ethereum client has two data structures to keep a record of other nodes on the network,
the long-term database db and the short-term table. Although db is persistent and does not lose

20 Chapter 2. Background

data across reboots, both databases are empty when the client joins the network for the first
time. Despite db having six bootstrap nodes hardcoded, it is still considered to be empty as a
result of them being only there to provide the new participant with a set of peers to connect to.
By acknowledging these peers, the client can initiate communication with them and possibly
integrate them into its databases. When the client receives information on new peers from the
bootstrap nodes, it needs to bond with them so they can be added to the db.

To bond with a node can be as simple as exchanging valid ping and pong messages. After
bonding is complete, the client will check if the node is already in its db, if it has a record of zero
failed responses to findnode requests and if it records a valid pong message received in the last
24 hours. If the node complies with these requirements, the client tries to add it to the table [40].
When encountering a new node, as is the case with the set of peers received from the bootstrap
nodes, the client endeavours to add them to table after a successful bonding. As the client sends
ping messages, it can also receive unsolicited ping messages that can turn into a successful bond
and further integration in the table. To actively search for new peers to connect to, nodes can
run the lookup function and acknowledge new nodes which they may or may not establish a
connection with.

To populate the buckets in table, the Ethereum network relies on logdist function (See 4.5)
to map nodes to the according buckets. However, not all buckets are filled, due to the low
probability of finding nodes that can be mapped to the lower buckets, Ethereum restricted the
bucket usage to the first 17 buckets only [35].

Nodes can be added to buckets through two different functions: addSeenNode() and
addVerifiedNode(). The first one is to add a seen node regardless of being live or not to
the end of a bucket. The second adds a verified node, i.e., a node confirmed to be live to the
front of a bucket. In both functions the node is immediately added to the bucket if it is not full,
otherwise, it is added to the replacement list, which can hold up to 10 nodes. Even in cases
where a bucket is not full, nodes can be left out if adding them implies not complying with IP
restrictions.

For security purposes, verified nodes cannot be added if table is still initializing. This
implementation prevents attackers from filling a table by sending repeatedly ping messages.

2.2.8.2 Establishing connections

Ethereum’s nodes can establish two different types of connections, depending on whether they
are exchanging information about the peer-to-peer network or sharing information about the
blockchain. While UDP connections are used to fill the db and table databases, TCP connections
are established to perform actions such as chain synchronization, block propagation, or other
information about the node itself.

Every single UDP message is timestamped and authenticated with the sender’s ECDSA key.
To help mitigate replay attacks, the client must drop UDP messages that are 20 seconds older

2.2. Ethereum 21

than the client’s local time. Peers in the network can exchange the following UDP messages.

• Ping packet – Message sent to see if the node is online.

• Pong packet – It is a hash of the corresponding ping message.

• FindNode packet – Message used to find nodes close to a selected target.

• Neighbors packet – Response message to the FindNode packet containing the closest nodes
to the pre-determined packet, if any. Peers ca sometimes respond with an empty neighbors
packet.

TCP connections are also encrypted and authenticated, however, there is a limit on the
maximum of TCP connections a node can maintain at any given time. To establish a connection
with another peer the client can either receive an unsolicited ping request – an incoming connection
– or initiate the connection himself – an outgoing connection. Prior to geth v1.8.0, the only limit
imposed on incoming connections was maxpeers, that means that a client can have all of its TCP
connection slots filled with incoming connections. This represented an attack vector for eclipse
attacks, since the attacker could repeatedly ping the victim and fill all the slots with relative
ease. Aiming to mitigate that, incoming connections are now limited to 1/3 of maxpeers, and
the default value of maxpeers was incremented from 25 to 50.

Clients establish their outgoing connections in two possible methods: one can make a request
to the discovery table or fill its outgoing connections with nodes from the lookup_buffer. If
the outbound slots are not all filled, the client will occupy half of the slots with nodes from
the lookup_buffer and the other half with nodes from the discovery table selected through the
function ReadRandomNodes. In case there is only one slot available, the lookup_buffer and the
ReadRandomNodes function are favoured one at a time [35].

2.2.8.3 Seeding Process

Ethereum has implemented a function to check whether buckets are full. It runs upon client
reboots and verifies if the table is non-empty. The seeding process can be described in three
stages. If the table is empty, the client queries 30 nodes in the db with a maximum age of 5 days,
also known as seeding nodes. This is the first stage. It then starts a lookup on itself to find
neighbor nodes - this is the second stage. In the last stage, the client performs three lookups on
random targets.

2.2.9 Ethereum Wire Protocol

The Ethereum Wire Protocol, also known as ’eth’, is a protocol that runs on top of RPLx
and has the main purpose of providing seamless interaction between peers. It defines rules for

22 Chapter 2. Background

data exchange mechanisms so nodes in the network can remain up to date with their blockchain
data.

This protocol includes multiple messages such as NewBlockHashes, GetBlockHeaders, and
NewBlockHeards, all describe in more detail in the following subsections. These messages
are exchanged during the execution of crucial methods, for example, Chain Synchronization,
Transactions, and Block Propagation.

2.2.9.1 Chain Synchronization

Nodes participating in the ’eth’ protocol are expected to know the full chain of blocks. This
knowledge can be obtained by downloading the full copy of the blockchain from other peers in
the network.

When two peers establish a connection, they must both send a Status message containing
information the blockchain and protocols supported. Among this information, nodes also share
the total difficulty (TD) and the hash of the latest block added to their blockchain copy.

If the two peers do not agree on the blockchain data sent in the Status message, the peer
with the smallest TD value starts to download the missing block headers via a GetBlockHeaders
message. Upon receiving the block headers, the proof-of-work associated is verified. Once
validates, the block bodies are requested via a GetBlockBodies message. After receiving the
block bodies, these are executed through the Ethereum Virtual Machine and the state tree and
transaction receipts are recreated.

2.2.9.2 Transaction Exchange

Miners have a pivotal role in the blockchain network since they are responsible for picking
transactions and wrapping them onto a block for further mining. To achieve this purpose,
every node on the network needs to share exchanged pending transactions with miners. These
transactions are located in the client’s transaction pool and may contain up to a thousand
transactions.

When two peers establish a connection, they need to synchronize their transaction pools. To
do so, both peers exchange a NewPooledTransactionHashes announcement including all hashes
in their local pools. Upon receiving this message, each peer conducts a filtering process to
request only the transactions not already present in their local pool via a GetPooledTransactions
message.

If a client learns new transactions, it should propagate them, resorting to two types of
messages: “Transactions” and “NewPooledTransactionHashes”. A Transactions message sends
the complete transaction object to a small fraction of connected peers chosen at random. The
remaining peers will learn about the transactions via a NewPooledTransactionHashes, which

2.2. Ethereum 23

announces them.

To avoid flooding the network with unnecessary messages, nodes should keep a record of
recently relayed transaction hashes to avoid sending back a transaction to a peer that was already
aware of it [8].

2.2.9.3 Block Propagation

In order to form a block, nodes should aggregate transactions in it and try to mine it. If a
node is able to successfully mine a block, it must propagate it through the network so all the
nodes learn about the block. When a node receives a NewBlock announcement message, it needs
to confirm that the received block’s predecessor is the highest block on its local chain. Otherwise,
it means that the client’s local chain is not up-to-date and needs to be synchronized.

The process of synchronization involves requesting the missing blocks from other peers to
update the local chain to the longest valid chain in the network. The following steps enlight how
the block propagation works:

1. When a node receives a NewBlock message announcing a block, it must check if the block’s
predecessor is the highest block on its current chain.

2. If not, that means that the node’s local chain is outdated and needs to be synchronized
with the current latest state of the network.

3. The node can synchronize its local chain by requesting the missing blocks to its connected
peers.

4. After synchronizing its chain, the node validates the proof-of-work value.

5. If successfully validated, the node sends the block in a NewBlock message to some of its
connected peers, usually the square root of the total connected peers.

6. Following this validation, the client attaches the block to his local chain and executes all
transactions included. Computing all these transactions results in a block’s post-state,
which must match the block’s state root value.

7. Upon complete processing and validating the block, the node sends a NewBlockHashes
message to the known peers not previously notified. Peers that were not notified of the
block in a NewBlock message by other nodes in the network might request the full block.

Nodes must keep track of block announcers to prevent announcing a block to a peer that has
previously announced the same block.

This process is utilized in Ethereum PoW and PoA networks. After the Merge, ’eth’ protocol
does not handle block propagation anymore and will be excluded from the protocol in future
versions [8].

24 Chapter 2. Background

2.2.10 Gas

As stated in 2.2.3, Ethereum’s scripting language is considered quasi-Turing-Complete because
it can almost perform the computations of a Turing machine. Unlike the Turing complete machine,
Ethereum’s scripting language imposes a limit of execution through the use of “gas”, which is a
measure of computational work, thus the use of the term “quasi”.

Turing-Complete machines face a challenging problem, which is the halting problem1. To
address this issue, Ethereum imposes a maximum “gas” value on every transaction to limit the
amount of computational done during the execution of that transaction, and consequently a
smart contract.

The adoption of the gas mechanism serves as a countermeasure against unintentional errors or
malicious purposed actors. This is because not only an attacker could program a smart contract
to run forever but an honest programmer could mistakenly indulge in the same error [38]. Also,
the fact that participants in the network have to pay a gas fee for executing a transaction helps
prevent network spamming and Denial of Service attacks [1].

1The halting problem states that it is generally impossible to determine whether a program, or in this case, a
smart contract, will run forever.

Chapter 3

Vulnerabilities

3.1 Vulnerabilities in the Bitcoin network layer

3.1.1 DNS Seeds

When a node joins the network it has at its disposal some DNS seeds that it can query
to learn about full peers on the network from whom it can download blocks and transactions.
However, the DNS seed responses are not authenticated and thus peers should not solely rely
on that. Some seeds might be controlled by a malicious seed operator or results from seeds can
be intercepted by a middle-man on the network and return IP addresses of malicious nodes
instead [46]. Relying exclusively on DNS seeds makes the nodes vulnerable to being isolated on
the attacker’s network.

3.2 The 51% attack

The Bitcoin network adopts a Proof of Work (PoW) consensus algorithm, previously described
in 2.1.1. The characteristics of PoW make it susceptible to 51% attacks. This attack consists of
a miner or a group of colluding miners having more hash power than all the other miners in the
network, thus having more chances to find a new block [36]. Moreover, controlling 51% of the
network hashing power also allows the attackers to modify the blockchain by rewriting transactions
and blocks and empowers attacks such as denial-of-service, eclipse, or double-spending [26].

It is extremely difficult for a single node to control 51% of the network hashing power, so it
is more probable that this kind of attack happen in a colluding environment, as are mining pools.
Mining pools are composed of multiple miners that share computing resources to successfully
mine a block. Mining pools are not necessarily evil, but they still pose a threat to decentralization
because a pool of honest miners can still obtain 51% of the hash power.

As a countermeasure to this attack, a two-phase PoW consensus is proposed in [19] attempting

25

26 Chapter 3. Vulnerabilities

to prevent the formation of large mining pools. One other proposal to mitigate 51% attacks is a
PoW based on mining groups and random selection [18]. The authors propose to divide miners
into groups and select a specific group to mine the subsequent block. Once the block is mined
and propagated through the network, all the nodes that validate the block and transactions must
also validate if the creator of the block belonged to the correct group.

3.3 Vulnerabilities Ethereum in the network layer

3.3.1 Unlimited nodes creation

This vulnerability arises from the fact that Ethereum nodes are identified by a nodeID and
Geth client does not correlate IP addresses and nodeIDs thus an attacker the ability to generate
as many nodeIDs as needed to monopolize the victim’s incoming and outgoing connections.
Furthermore, the attacker can simply keep generating nodeIDs and find the most suitable ones
in a short time and with standard computer resources. Usually, the first step to take when
executing an eclipse attack is to generate a huge amount of nodeIDs on a single machine. To
prevent an attacker from exploiting this vulnerability, the Geth developers could include IP
addresses in the process of generating a new NodeID [24].

3.3.2 Public Peer Selection

Each node participating in the Ethereum network possesses a Kademlia-like Distributed Hash
Table (DHT) to store nodes and serve as a routing table. Each DHT has 256 buckets, where
nodes are mapped according to their distance, following a logdist function described in Section
4.5. This process of mapping nodes to buckets is public [24], which makes it trivial for an attacker
to predict what bucket a crafted node will land in. This can compromise the table [31], especially
because, as seen in Section 3.3.1, an attacker can generate as many nodeIDs as necessary and
use the most convenient ones to exploit this vulnerability.

3.3.3 Sole block synchronization

The process of synchronizing the blockchain also raises some concerns. When a node
propagates a block to another node, it sends a block header containing the Total Difficulty (TD)
of the block along with the cumulative TD of all blocks, reflected in totalDifficulty. This last one
represents the total difficulty of the blockchain.

If client A receives a block from client B and realizes that its totalDifficulty is smaller than the
totalDifficulty of the block received, client A perceives that it does not have an up-to-date copy
of the blockchain and initiates the synchronization process with client B. To address network load
concerns, each client is only allowed to synchronize with one client at a time. This restriction

3.4. Eclipse attacks 27

permits client B to deliberately delay the process of synchronization causing client A to reject
subsequent blocks, making it more vulnerable to double-spending and DoS attacks.

This attack is described in [52] and could be mitigated if clients are allowed to synchronize
with multiple nodes at the same time [31].

3.4 Eclipse attacks

The P2P network inherent to a blockchain faces susceptibility to eclipse attacks. These
attacks occur when an adversary can successfully isolate a node or group of nodes participating in
the blockchain by monopolizing all their incoming and outgoing connections [20] with malicious
nodes, usually crafted with the sole purpose of performing this attack.

By controlling all the victim’s connections, an attacker has control over what information the
victim receives. Regarding this, the attacker can purposely feed false information and trick the
victim into believing he’s receiving honest blockchain data.

Establishing an incoming connection with a target requires transmitting a SYN-pakcet to
the desired node. However, outgoing connections are not that easy to manipulate since they are
established by the victim, which means that the attacker must find a way to trick the victim’s
into initiating a connection with the nodes he controls. Once all the connections are compromised,
the honest node becomes trapped within the malicious environment. It is then flooded with false
information regarding blocks and transactions and is also prevented from synchronizing its local
chain with an honest node [25].

To successfully exploit an eclipse attack, all connections must be compromised. If the victim
is able to maintain at least one honest connection, they could still get information on the real
state of the blockchain. Moreover, other honest nodes in the network that establish a connection
with the malicious nodes might also become vulnerable to the eclipse attack [46].

Figure 3.1: Example of eclipse attack

Chapter 4

Related Work

4.1 Eclipse attacks by monopolizing connections

This attack was seen in previous versions of Geth1 and encompasses three key factors. To
begin with, Geth client sets a default number for the maximum TCP connections any participant
can have (maxpeers). Secondly, every time a client reboots they automatically drop all the
previously established incoming and outgoing connections. This means that upon reboot, the
client will have an empty table. Furthermore, an attacker can patiently wait for the client to
reboot or send a packet of death. The third important factor to consider in this attack is that
when a client restarts, they are open to receiving incoming connections before being able to
establish outgoing connections [40].

Considering this, a malicious actor must generate a considerable number of nodeIDs, sufficient
to surpass the value of maxpeers, and wait for the client to reboot. As soon as the client reboots,
the attacker can use the crafted nodes closest to the victim and successively ping them [53]. The
victim accepts these messages and establishes incoming connections with the crafted nodes. To
be successful in eclipsing the target, the attacker must be able to flood all of their connection
slots.

Previous versions of Geth allowed this attack to happen because a client could have all of
their connection slots filled with incoming connections. To mitigate this attack, the current Geth
version assures that every client has a certain number of outgoing connections, defined by 1/3 of
the maxpeers.

1Older versions of geth allowed a node to have only established incoming connections, which eased the difficulty
for an attacker to flood all the victim’s connections and successfully eclipse them. Since all these connections are
unsolicited, the attacker just needed to be persistent.

28

4.2. Eclipse by table poisoning 29

4.2 Eclipse by table poisoning

To successfully eclipse a victim, an attacker must control all incoming and outgoing connections.
While incoming connections may be established via unsolicited ping messages, the same does not
happen with outgoing connections. These must be established by the target with resource to the
table and the lookup_buffer.

The attack to be described aims to control all the nodes in the victim’s table and in the
lookup_buffer so that when the target establishes outgoing connections they are established
with the attacker’s crafted nodes.

The first step is to craft as many nodes as needed to fill all the free slots in each bucket.
To exploit this, the attacker leverages the fact that mapping node IDs to buckets is a public
process, which means that a crafted node can be mapped to bucket 256 – r with a probability
of 1. Honest nodes, otherwise, map to a bucket r with a probability of 1/2pr`1q. The attacker
crafts n × 16 nodes, where n is the number of buckets he aspires to compromise. Nodes are
continuously being crafted until all slots available are filled in bucket 256 – r. Once this is
achieved, r is incremented and the process is repeated. Note that as r increments, the time
to find a suitable node also increments, which creates some difficulty in finding nodes to fit in
the lower buckets. For this reason, the Geth client only uses 17 kademlia buckets and thus the
attacker only needs to generate and control 17 × 16 node IDs, which was done in this experiment
in about 15 minutes [40].

The second step of this attack is to insert all the crafted nodes in the db database. To do so,
the attacker only needs to send a ping message to the target from each of the crafted nodes. The
target responds with a pong message, resulting in a successful bond and consequent insertion in
db. To ensure that the attacker nodes are not evicted from db they ping the victim once every 24
hours and respond to every findnode message with an empty neighbors message.

The third step, just like the previous attack, takes advantage of the client reboot. Once the
client reboots, its table is empty and the attacker’s goal is to fill it with the crafted nodes. This
is important because it is no longer possible for a client to establish only incoming connections,
so the victim has to establish some outgoing connections with nodes that are stored in the table.
By controlling all the nodes in the victim’s table, the attacker forces the target to establish all of
its k connections to the nodes he controls.

After the client reboots, the incoming connections (maxpeers - k) are rapidly established. All
the crafted nodes repeatedly ping the victim to quickly bond and get added to the table. The
previous step of this attack plays an important role here: due to the fact that the crafted nodes
were already in the victim’s db, they can quickly bond with the target and get added to the table.
If the crafted nodes comply with these three requirements: 1) being in the victim’s table; 2) have
responded to every findnode message received; 3) has responded to a ping message in the last 24
hours; they are added to table before being pinged. Otherwise, the target would need to ping the
attacker’s nodes first before adding them, which would cost crucial time to execute the eclipse

30 Chapter 4. Related Work

attack.

Since the Ethereum client starts their UDP listeners before starting the seeding process (see
section 2.2.8.3), the attacker leverages this to manipulate the seeding process and prevent the
victim from performing the seeding process. The attacker is able to quickly insert nodes into
the target’s table and so when the seeding process initiates, it is no longer empty2. Impeding
the seeding process also impeded the target from picking nodes from its db and therefore honest
nodes are not inserted in its table. As outgoing connections are made by the victim to nodes
on its table (compromised with the attacker’s crafted nodes), the attacker only needs to worry
about honest nodes pinging the victim.

This experiment was successful in eclipsing the victim using two machines, one to poison
the table for outgoing connections and another one to ping the victim right after rebooting and
establishing incoming connections with them [40].

4.3 False friends eclipse attack

After Ethereum adopted some countermeasures suggested in [40] it is now harder to execute
an eclipse attack by poisoning the victim’s table i.e., fill the victim’s table with malicious nodes
only. While before it was possible to craft multiple nodes on a single machine and poison the
victim’s table, now the Ethereum client has some restrictions on IP addresses. Every bucket is
only allowed to store two node IDs with IP addresses in the same /24 subnet and can only be a
total of 10 node IDs in the same /24 subnet on the whole table, which increases the difficulty
and resources needed to eclipse a node in the network. The authors of the False Friends attack
described in [35] how to successfully eclipse a node using only two IP addresses from different
/24 subnets.

In this paper, the attackers established the incoming connections with the victim by
instantiating multiple Geth instances on different ports and pinging the victim. This was
possible because the restrictions were only imposed on table aiming to increase the difficulty
and effort an attacker needed to have to force the victim to initiate a connection with one of
its crafted nodes. To try to make the victim establish an outgoing connection with a crafted
node, the attackers exploit the lookup_buffer and the ReadRandomNodes function. The attack
is following a restart, however, despite a reboot might speed up the eclipsing process it was not
needed since the Ethereum network connection proved to be short-lived and therefore the attack
could be successfully executed in a couple of days.

At the time of this attack, Geth client had its maxpeers set to 25, which meant that four
outgoing connections would be made recurring to the lookup_buffer and the other four to the
ReadRandomNodes function. This function returns the nodes at the top of randomly chosen
buckets. It follows this logic because the nodes at the top of the buckets are the more active

2The seeding process only starts if the table is empty

4.3. False friends eclipse attack 31

ones and therefore most likely to connect with. This can be easily exploited by being extremely
active and sending ping messages to the victim, so the attacker nodes are seen as more active
and stand on the bucket’s head. Given this, the attacker only needs to populate each bucket with
one malicious node. The adversary computes multiple nodeIDs by generating multiple ECDSA
key pairs and checks if the nodeID is mapped to the bucket of interest. Due to the restrictions of
the current Geth version, it is not allowed to have more than 10 nodes from the same /24 subnet
in the discovery table. Since Geth clients maintain 17 buckets, this means that two different IP
addresses are enough to compromise ReadRandomNodes.

The second method for establishing outgoing connections is the lookup_buffer, which will
establish the second half of the remaining slots. This buffer is populated by the iterative
kademlia-lookup to a random target t and thus will hold the 16 closest nodes to the target found
through the kademlia lookup function, described in section 4.4. When establishing a connection
to the lookup_buffer, the client prioritizes the nodes that are closer to the target. To exploit this
buffer, an attacker needs to: 1) Make sure that an adversarial node is queried during the lookup
process; 2) Ensure that nodes returned by the adversarial nodes are closer than all the other
nodes. The first step is guaranteed because if the attacker has one node in each bucket it does
not matter what the target is, there will be always a findnode request sent to the adversarial
node in the same bucket as the random target. The second step involves computing as many
nodeIDs as possible and find the 16 closest to the target. The fact that computing nodeIDs is
uniformly distributed over the ID-space induces that the more node IDs the attacker generates,
the more likely to craft node IDs closer to the target than honest ones [35].

If the ReadRandomNodes function and the lookup-buffer are successfully compromised, it is
possible to eclipse the victim.

How to sneak into a bucket

This subsection is to detail the process of entering a bucket and how to calculate the probability
of a specific node landing in the bucket of interest.

Given that SHA256 is a cryptographic hash function, it is possible to infer that nodeIDs
are uniformly distributed, meaning that the probability of each bit being 1 or 0 is always 1

2 .
Considering an existing nodeID K and a nodeID M that is yet to be generated, the probability
of computing M and its first bit being the same as K is 1/2, as is the probability of them being
different. Since the probability of each bit being 1 or 0 is 1/2, it is correct to assume that the
probability of M landing in bucket 255 of K is 1/2.

When considering computing M2 to land in bucket 254 of K, the attacker needs to have his
two first bits equal to the first two bits of K. This results in a probability of 1

2 ˆ 1
2 “ 1

4 . The
probability of a nodeID landing in a bucket i is dictated by: 2i´256. This is easily demonstrated
by calculating the probability of M2 to land in bucket 254 of K and getting the same result:
2i´256 “ 2254´256 “ 2´2 “ 1

4 .

32 Chapter 4. Related Work

The authors leverage this to calculate the number of nodes they need to generate to eventually
obtain a node that falls into the intended bucket i. It is given by: 2256´i. The example described
in [35] states that an attacker would need to generate 262 142 key pairs to land a node in each
of the 17 buckets used by Geth. However, as shown in annex_to_be_created, this might be
possible with just 100 000 key generations in a favourable scenario.

Receiving a findnode Request

The lookup function is started at a random node, the so-called target t. After the client
randomly chooses the target, he will send find requests to the 16 closest nodes to that target t.
Since 16 is also the number of nodes in each bucket, that means that the closest 16 nodes to any
random target t are the ones in the same bucket as the target. This results in always receiving a
findnode request every time the lookup function is executed.

Countermeasures

Following the authors’ suggestions, connections have now increased from a default value of
25 to 50. ReadRandomNodes function has also been updated and considers every node in the
table instead of only considering the head nodes in each bucket. The lookup_buffer, however,
was not modified prior to this paper. Regarding incoming connections, it is now not possible to
aggressively ping a target since connection attempts from the same IP must be within 30s of
each other [35].

4.4 lookup function

The lookup function is an Ethereum function similar to the kademlia lookup utilized to
unearth new nodes. It is an iterative process where nodes send a findnode message to their
closest nodes and expect a neighbors message in response. It follows a notion of closeness to a
target t where t is a 256-bit string. The distance between nodes a and b is measured by dA =
SHA3(a) XOR t and dB = SHA3(b) XOR t where the smallest value is the one closest to t. This
function can be triggered when the lookup_buffer is empty [35], with aim to populate it and
later fill the buckets in table.

To start the process, the lookup initiator selects a random target t from one of its buckets.
It then sends a findnode message to the 16 closest nodes to t, which will be the t itself and all
the other nodes in the bucket. Every node that received the findnode message queries its own
Distributed Hash Table (DHT) and returns a neighbor message with its set of nodes closest to
t. Neighbor messages are limited to 12 nodes so the client will end up with 16x12=192 nodes.
From these 192 nodes, the client selects the closest to t and repeats the process until the 16
closest nodes to t remain unchanged [40].

4.5. Logdist Function 33

After uncovering the 16 closest nodes to t, the client adds them to the lookup_buffer. If
during this process a node fails to respond to a ping message for 5 times, he is evicted from table.

4.5 Logdist Function

The logdist function is similar to the kademlia XOR metric. Its main purpose is to map
nodes to the according buckets based on the distance between two nodes. It can be described as
log2 (N¯1 ‘ N¯2) or the equivalent (255 – length of common prefix) [35].

When a client encounters a new node it uses the logdist function to determine which bucket
will it go to. The process starts by applying the cryptographic hash function SHA3 to the
nodeIDs to get 256-bit values. It then applies the function that will result in the output r, which
represents the common most significant bits between the two nodes. This means that if two
hashes have r most significant bits in common but r + 1 is different, then their logdist value is
r [40]. Therefore, the node is mapped to the bucket 256 - r. All the process of mapping nodeIDs
to buckets is public.

Chapter 5

Practical Work

5.1 Planning

This chapter focuses on putting into practice all the knowledge acquired during the research
phase. Regarding all the information gathered from case studies and other research in this field,
the main goal is to try to compromise a node in the Ethereum network.

The initial phase was to search for simulators that incorporate some of the Ethereum network
processes and characteristics and use them to learn how nodes behave. The intention was
to leverage the simulators for creating a scenario where the process of discovering nodes and
establishing connections is compromised, so the node is eclipsed. The analysis of an eclipse
attack is crucial to understanding what is to be improved to secure the network, so the research
also covered trying to find simulators that run older versions of Ethereum that would allow
replicating an eclipse attack. Outside the Ethereum scope, the objective was to find a simulator
that allowed running a network where a node would have 51% of its hashing power.

The subsequent step was to dive into a more realistic scenario by running two full nodes on
Ethereum official testnet, Sepolia: one acting as a “malicious” node and the other as the “target”
node. In this case, it is possible to interact with the network so the "malicious" node is going
to try to interact with the "target". Building on this, the goal is to escalate and compromise
this node’s connections upon reboot and get a better understanding of how nodes establish and
manage their connections.

5.2 Simulators

The first approach to interacting with the Ethereum network was through the use of simulators.
The core purpose of using simulators was to overcome the difficulties of complying with the
storage and computational power requirements.

34

5.2. Simulators 35

5.2.1 Ethereum-shadow

The first simulator of interest found was ethereum-shadow (https://github.com/ppopth/
ethereum-shadow). It is a discrete-event network simulator. It is built with shadow [4], a
framework used to test real-life applications on a simulated distributed network. It uses lighthouse
as the consensus client and geth as the execution client and has already implemented discv5,
the improved version of discv4 that is supposed to be introduced with Proof of Stake (PoS) and
libp2p, which replaces devp2p on the consensus layer.

This simulator allows running multiple nodes and validators, simulating the interaction
between them and feeding the blockchain. Although validators’ behaviour is out of scope,
it is possible to analyse their behaviour on the network. Understand how often they start
discovery processes, and how they establish connections between them. The numbers of nodes
and validators can differ, although they are set to 4 and 40 by default. The approach here is
to simulate networks of different sizes in peers and try to identify any differences in them. The
main scenario to be tested is to validate if the simulator employs bucket subnet restrictions and
delve deeper into this subject. All the data produced from the simulation is provided on a log
file that, despite being interesting for doing some analysis, does not let user interactivity and
limits the research on how to eclipse a node.

1st run: The first test using Ethereum-Shadow simulator was a default test, mainly to see
how the network works and have a model of nodes’ behavior for future comparison. The first
simulation run used the default configs, with only 4 nodes forming a network and a set of 40
validators. It simulated 10 minutes of network time, which took around the same 10 minutes in
real time with all the logs being written to the specific node folder. Log files are used to analyse
nodes’ behavior and get a perception of what have they done and what have they been through
during the network simulation.

Starting the simulation implies generating nodes’ key pairs, initializing Ethereum Node
Record (ENR) as this simulator uses discv5, and writing some specifications to the disk. The
node then proceeds to add the bootnode to the routing table, however, first he starts a discovery
service and opens the listening ports before dialling the bootnode. Nodes are pre-defined to
establish a total of 80 connections, so they start peer discovery queries with a target for 80
nodes. Discovery requests have a target for 16 nodes, but since there are only 4 nodes present
in the network it only returns 3 peers. Upon finding the three nodes, it attempts to establish
connections with them. When successfully establishing a connection, the node is considered to
be a listener or dialer, depending on whether the connection is inbound or outbound. Once the
connection is established the node sends his peers a Status request for blockchain information
to which they should reply. Peers then keep on exchanging blockchain information and trying
to establish more connections by repeatedly sending discovery requests. Since there are only 4
peers on the network, there are no more peers to be found.

Every peer established at least one outbound connection except one. This is a violation of a
previously implemented countermeasure and makes this node susceptible to being easily eclipsed

https://github.com/ppopth/ethereum-shadow
https://github.com/ppopth/ethereum-shadow

36 Chapter 5. Practical Work

since he has no control over whom he is establishing a connection. This might be seen here due
to the network being very limited in size, however, it should not be ignored.

2nd run:

The second simulation test run involved a network composed of 30 nodes and 50 validators.
It took 30 minutes this time to simulate 10 minutes of network running. The initial steps for
each node are the same, however it takes more time to initiate due to the existence of more
nodes and validators.

Nodes join the network and quickly start sending discovery requests before even opening
the listening ports or connecting with the bootnode. The first 16 nodes are rapidly found and
another discovery request is sent before even setting up a connection. As connections are being
setup, nodes continue their exhaustive search for new peers so they can fill the target value of 80
connections. In this test, since there are more nodes on the network, it is possible to observe
things happening concurrently. While a node is dialing with a discovered peer, he is already
exchanging metadata and Status messages with others with whom he has successfully connected.
The protocol exchange messages occur later than expected, this message is seen after nodes
being connected and communicating with each other. There are at times problems connecting
peers, which might lead to disconnections. The two cases observed in this simulation are a peer
discovered and successfully connected that incurs a dialing error which leads to a disconnection.
However, later in time this peer is able to successfully connect and exchange information. The
other case is from a peer that is discovered and an error on the transport protocol occurs while
being dialed. The peer is marked as disconnected on the Distributed Hash Table (DHT) and is
only added again after being re-discovered on a discovery request message.

Nodes keep sending discovery requests even though there are no more nodes to find. The
rest of the simulation is basically nodes exchanging data and receiving blocks through a gossip
pub/sub scheme. Each time a node receives a block, he processes and validates that same block
before transmitting it to the next node.

Even though this simulation had far more nodes than the previous one, nodes 5 and 14 still
only were able to establish 1 outbound connection, while inbound connections were set at 29.

3rd run:

The third test simulates a network with 80 nodes, which is also the maximum number of
connections a node can have. This network also was composed of 120 validators, so it took 1h30
to simulate 10 minutes of network.

Having a total of 80 nodes with each capable of establishing 80 connections would mean that
all nodes would have 79 established connections, based on the data from the previous tests run.
This was confirmed by some nodes, however, not by all. Node 7 was only capable of establishing
75 connections, 3 outgoing and 72 incoming. The node did not establish any more outgoing
connections and was not allowed to establish more incoming due to a limit set to 72. There were

5.2. Simulators 37

also another 10 nodes that only established a total of 65 connections all outbound ones. They
kept looking for more nodes to connect to, but never sent nor received any connection message.
It was possible to observe that even though a discovery request handles up to 16 peers, nodes
can initiate a discovery request with a smaller target in case they do not need 16 peers.

Once again, there is a node with only 3 outbound connections in a total of 75. This scenario
facilitates the attacker to eclipse a node since the most difficult connections to forge are outbound.

Conclusion:

With the three tests that were run, it was possible to confirm that in this simulator, the
node indeed starts listening for connections before trying to establish any outgoing connection.
It was also helpful to see the flow of communication between the peers, how they manage failed
connections, and how they transfer blockchain data between them. However, some key points of
this research were not achievable, there is a lack of control on the network and the simulator
does not seem prepared to handle eclipse attack testing. It was also not perceivable how nodes
are mapped to buckets and where are they being mapped on the DHT. There were also some
log files that mentioned times of last ping and other information that could be related to the
Ethereum data structures, but unfortunately these files were not readable.

5.2.2 Blockchain Simulator

This simulator is a Proof of Work (PoW) blockchain network simulator [51]. It runs a PoW
consensus algorithm and allows crafting specific network topologies to analyze the behavior of
nodes under certain attacks or threats. It also provides a log of the network properties for analysis
and lets the user manipulate node-specific attributes according to what the user is testing. The
scenario testing can either be static or dynamic.

To perform a static analysis, one should create the network topology desired, define the
attributes of the nodes such as mining power, latency, and connections and run the network to
analyze how it behaves for a specific period of time. The dynamic analysis involves everything
above, however, it also includes changing nodes’ properties while the network is running. The
idea with this simulator is to leverage its visual component to set up the network topology of
interest and the logging functions to analyze the behaviour of the nodes in the network.

The first scenario to be tested is when a node or a mining pool has 51% of the network
hashing power. The goal is to demonstrate that even if the node is an honest one or the mining
pool is also composed of honest nodes, having 51% of the hashing power still threatens the
decentralization property that characterizes most blockchains, especially Bitcoin.

1st test:

The network topology selected is illustrated in Figure 5.1. The network is composed of twelve
connected nodes that are active miners with different computational resources and thus different
hash rate capacities. Every node has the same latency and from 1 to 4 bidirectional connections.

38 Chapter 5. Practical Work

Figure 5.1: Network topology of test scenario 1

The total hash power score of the network is 56, meaning that 56 hashes are generated per
second, however, node 8 alone has a score of 29 which represents 51.7% of the total network
hashing power. This is not to be considered a malicious node, it is simply an honest node with
more resources than any other. The difficulty of the network is at the default 0.01, which is not
a very difficult value, but the number of hashes generated per second by all the nodes is not
very high either. Two and a half minutes running the network was enough to understand how
someone controlling 51% of the hashing power poses a threat to decentralization.

Looking at Figure 5.2 it is possible to see that 51% of the blocks were found by Node 8, the
one with 51% of the network hashing power. The other nodes were also able to mine some blocks,
however, they got a lot more stale blocks in comparison to Node 8.

Figure 5.2: Network statistics of test scenario 1

2nd test:

The second test followed the same network topology illustrated in Figure 5.1. This time, all
the nodes have a lot more hashing capabilities: 50 hashes per second for every node except Node
8 who has the capacity of generating 600 hashes per second and once again has more than 51%
of the network hashing power. The network ran for 3 minutes with all nodes together producing

5.2. Simulators 39

1356 blocks. By looking at 5.3 it is easily understandable that Node 8 did not produce 50% of
the total blocks, however, not all blocks found are appended to the blockchain. From the 1356
blocks found, 605 turned out to be stale blocks, which means that those did not integrate the
longest chain. The highest block height seen is 756, which is shared by Node 8 and the nodes
surrounding it so it is solid to assume that the longest chain has 756 blocks. From those, 51%
were appended by node 8.

During the experiment, it was possible to observe that nodes farther from Node 8 were
sometimes 3 blocks behind, thus spending their computational resources trying to find blocks
that would eventually become stale. The nodes with the most stale block’s percentage are the
nodes with the most hops to Node 8, with an average of 83% block staling. The rest of the
miners, despite not having as many blocks getting stale as Nodes 7, 12, and 14 still have many
more stale blocks than Node 8. Since Node 8 is capable of generating 12 times more hashes per
second than all the other nodes, it is usually ahead on the chain, which led to some forks that
were eventually dropped to follow the leading chain.

Figure 5.3: Network statistics of test scenario 2

The results of these two experiments showed that even if a node is playing an honest role,
having more than 51% of the network hashing power still poses a threat to the decentralization
property of blockchains. The differences in blocks appended to the blockchain and stale blocks
between Node 8 and the rest of the network are significantly high. Dishonest nodes with this
much hash power might start redoing some blocks and eventually get the leading block height to
fork the blockchain to their own local chain. Since PoW consensus follows the longest chain, all
nodes would eventually follow the attacker’s chain if all the precedent blocks have been properly
redone.

The experiment only considers a single node, but it is actually more likely for a mining pool
to get 51% of the network hashing power. The consequences are the same, the main difference is
instead of a single node acting maliciously, there is a group of dishonest miners colluding to get
control of the network.

40 Chapter 5. Practical Work

5.3 Ethereum Official Testnets

The Ethereum project maintains two primary testnets: goerli and sepolia. Sepolia is the
preferred choice for testing applications and deploying contracts, while goerli is usually where
users test network upgrades and run validator for testing purposes [13]. In this work, we have
selected Sepolia as our preferred testnet. It is faster to sync due to being more recent than goerli.
Moreover, goerli is being deprecated in 2023 and replaced by Holesovice, which is scheduled for
release by the end of September 2023.

5.4 Running a node

To interact with the network as a node, one needs to run a client. Geth [12], also known as
“Go Ethereum”, is an Ethereum client implementation written in Go and it’s the most widely
used client among all nodes. Moreover, most of the research papers cited in this work are from
studies made in the geth client, where it was possible to analyse the process nodes go through
when entering the network. This led to the conclusion that geth was the most suitable option
given that it gives a continuity of previous research.

5.4.1 Execution and consensus client

As previously mentioned, Ethereum started as a PoW network. This meant that consensus
was achieved by expending computational power in order to prove ownership over a block. Every
“miner” in the network worked hard on solving a difficult mathematical problem, and the one that
solved it first got the privilege of wrapping up transactions and adding them to the blockchain.

After Ethereum merge, one of the biggest changes in the network until current days, the
consensus algorithm changed from PoW to PoS. This change eliminated miners from the network
and introduced the validators, who are now responsible for voting and sometimes appending
blocks to the blockchain. Furthermore, nodes do not need to expend computational power to be
able to append a new block to the blockchain.

Besides changes at the consensus level, Ethereum also made some changes on the client level.
At the current time, it is no longer sufficient to run an execution client solely. Ethereum now
requires an execution client and a consensus client to run together, smoothly communicating
with each other to stay updated on the recent blocks and facilitate interaction with the network.

• Execution client - The client used to listen to transactions and execute them on the
EVM. Also maintains the most up-to-date state version and all recent Ethereum data.

• Consensus client - Also known as the Beacon Node, used to implement PoS. Allows the
network to achieve agreement on the data validated by the execution client.

5.4. Running a node 41

In addition, it is possible to run the validator-dedicated software in case a user aspires to
participate in the attestation process or desires to append new blocks to the blockchain.

In this work, the chosen execution client was geth. For consensus client the selected option
was prysm, also written in the Go programming language.

5.4.2 Syncing the network

If nodes want to actively participate in the blockchain, they must be synchronized with the
current network state. This is achieved by querying other peers in the network the desired
blockchain data and downloading it to the local database to create a local blockchain. There are
different synchronization methods that essentially depend on the role a node is playing on the
network.

At the execution layer, there are three possible ways in which a node can synchronize:

• Full archive sync - Downloads every block from the genesis until the most recently added
to the blockchain. While downloading blocks, all the respective transactions are executed.

• Full snap sync - Download and verification is also made block by block, however, the
starting point is not the genesis block but from a trusted checkpoint on the blockchain.
Nodes delete older data to save space but keep these considered trusted checkpoints for
faster synchronization. This method is currently the default on Ethereum mainnet [14].

• Light sync - Used in clients with less computational and storage capabilities, this method
consists of downloading all block headers but only verifying some at random. It only saves
the current state and can be rapidly set up.

With Ethereum changing to PoS a new client was introduced to the network: the consensus
client. This client is responsible for handling the propagation of blocks and consensus logic.
Consensus clients and execution clients work together to synchronize the chain. The execution
client validates the blocks downloaded by consensus clients. Furthermore, geth can no longer be
synchronized if not connected to a consensus client. It will require a header from the consensus
clients, which geth uses as a syncing flag. After retrieving the header, geth downloads all the
headers between that flag point and the top header of the local chain to understand if the
block sequence is correct. After performing this validation, geth starts downloading the blocks’
data [15].

Geth can retrieve the header through two different methods:

• Optimistic sync - Consists of downloading the blocks before the execution client validates
them. Instead of only downloading the headers first, nodes assume that the information
they are receiving is legit so they download the blocks’ data and verify them from front

42 Chapter 5. Practical Work

to back. While every block is not correctly validated, nodes cannot participate in the
attestation process.

• Checkpoint sync - Consists of downloading a header from a trusted source and trusting
that the information is correct. From that time onwards, the node will act as a full node
and perform verifications block by block. Though this is a fast way to synchronize the
chain, it is important to take precautions with whom to trust.

To synchronize with the network, the selected methods were the default snap sync for the
execution client and a checkpoint sync via https://checkpoint-sync.sepolia.ethpandaops.io/.

5.4.3 Initializing the clients

As previously mentioned, the plan was to run two nodes where one would be malicious, and
the other would be the target. That creates a need for two environments to run geth, so two
Virtual Machines (VMs) were created. Both VMs had 350 GB of disk and 8 GB of RAM and
SWAP memory with Ubuntu 22.10 installed.

To join the network, it is essential to establish an account. This is achieved by using Clef,
which is considered a best practice for creating new Ethereum accounts. Subsequently, the
execution client is started using geth and passing the chain ID of sepolia testnet. Since Ethereum
is now a PoS network, it is mandatory to start a consensus client as well, which was done
through prysm. Even though the consensus client is performing a snap sync, the process of
synchronization is still time consuming and can take up to 24 hours to synchronize, depending on
the RAM available of the system, downloading capabilities and whether both VMs are sharing
resources. However, the consensus client can be synced more rapidly depending on the I/O
capacity of the disk in use.

Once both nodes are synced with the network, the following task in to establish a connection
between them. To see if the network is fully synced one can run eth.syncinc and if it returns
true that means that the network is still being synchronized. There are various namespaces to
retrieve information from the node or the network, such as: devp2p, net, admin, and eth. The
eth command allows the retrieval of information about the blockchain, signing and submitting
transactions. The net command permits to get the version of the network, which in this case
would be 11155111, the version number of sepolia network. It also retrieves the total connections
a node has and whether it is listening for connections or not. The admin command is used to
retrieve information about the node itself, it can also be used to add new peers or get information
about the connected peers (e.g., ENR, enode id, local and remote addresses). The devp2p is an
official go-ethereum tool but is external to geth so it must be installed on the local machine. It
can be used to print node records, perform operations on node keys, discv4 or discv5 operations,
Domain Name System (DNS) commands, and others.

The devp2p tool was installed on both machines and used to perform ENR dumps, discv4,

https://checkpoint-sync.sepolia.ethpandaops.io/

5.4. Running a node 43

and discv5 operations. The first operation done was an ENR dump on the target machine, this
retrieved the nodeID, the enode url, the ip address and some other information like udp and tcp
ports. However, node is not reachable either with discv4 or discv5 ping. This tool also provides
a function to crawl the DHT and retrieve all nodes stored in it, but that as well outputted an
error.

The admin RPC was used in an attempt to connect both nodes. It has two functions that
permit adding nodes, the first is addPeer() and the second is addTrustedPeer(). To add a peer
one should execute one of these functions and pass the enode url as the network is still working
on discv4. Both functions were executed on the malicious node side to add the target and even
though it returned true, the node was never seen on the list of peers. To eliminate any possible
issue with these functions, other peers were tried and successfully added to the list of peers.
The unsuccessful results on trying to add the peer might be related to being behind a Network
Address Translation (NAT) on a VM. After changing the network configuration on the VMs and
setting them as bridged adapter, it was possible to establish a successful connection between
the two nodes. When querying the malicious node peers, it was possible to see an outbound
connection to the target node. On the other side, the target node had in its list of peers an
inbound connection established with the malicious node. During all the tests and even after
letting the nodes run for a couple of days, the only inbound connection ever seen was the one
manually established during the test.

Geth allows the generation of a configuration file based on the current network configurations.
This network file contains network configurations that are executed when geth is initiated and
the bootnodes to which the node must communicate when joining the network for the first time.
This file can be modified to include static and trusted peers so the target enode as trusted
peer. Geth client was initiated according to the modified configuration file and even though the
connection was not immediately established, the peer was considered a trusted peer by default
and could be added just by using the addPeer() function.

Chapter 6

Conclusion

This dissertation started by delving into the concept of blockchains and their properties, as it
is important to perceive the capabilities of this technology and how can it be integrated into
real-world applications. The main projects known are Bitcoin and Ethereum which implement
the most well-known consensus algorithms: Proof of Work (PoW) and Proof of Stake (PoS).
Even though at the beginning of this work Ethereum was a PoW blockchain, in September 2022
this network began what is known to be the biggest network change. A transition from PoW to
PoW introduced a new actor on the network and a different method to propose blocks.

This study dived more deeply into these two blockchains with the intention of comprehending
how nodes integrate into the network and the different roles played by each. Analysing two
different consensus algorithms permitted the expansion of knowledge in this technology, especially
at the consensus layer.

After conducting preliminary research on vulnerabilities in the different layers of blockchains,
this work delved deeper into the investigation of vulnerabilities in the network layer. Entering
the network can sometimes be a tricky process, nodes have no information on the blockchain, so
they need to connect to other nodes to get it. The paper [31] [34] [47] allowed an understanding
of how nodes joined the Bitcoin network and papers [40] [52] [35] provided valuable insights
into the process of nodes joining the Ethereum network and how it has evolved in implementing
countermeasures to prevent nodes from being trapped by malicious actors.

The purpose of this work is to use simulators and Ethereum official testnet to test whether
blockchains are still vulnerable to eclipse and 51% attacks. [Blockchain simulator] was used to run
two different scenarios in which a node has 51% of the network to demonstrate that event honest
miners threaten the decentralization of a blockchain if they have more power than anyone else.
The Ethereum-shadow simulator was an important tool to analyse the first steps node take on
joining the Ethereum network. The idea was to leverage this simulator to enhance the knowledge
of the network behavior and even though it did not allow interaction, it provided log files with
every node behavior. Using the Ethereum main testnet introduces a more realistic scenario since
it provides real-world communication. Being behind a Network Address Translation (NAT) did

44

6.1. Limitations 45

not facilitate the communication between nodes.

Even though it was not possible to eclipse a node in the Ethereum, this network still presents
some vulnerabilities that could be exploited by a malicious actor with more computational
resources, a crucial aspect to execute this sort of attack. It was possible to create and run more
than one node on the same machine with the same public IP address. By using only one Virtual
Machine (VM), it is feasible to manually deploy multiple nodes to the network or develop an
automation script that is able to create the nodes and initiate geth.

6.1 Limitations

During the practical execution of this work, some limitations were encountered, specifically
on hardware requirements. In regard to simulators, some simulation scenarios would not run
simply because there was not enough memory. The disk space is also not ideal since it has to be
split between the VMs running the nodes on Ethereum official network and the ones running
or testing the simulators. Moreover, the range of simulators available is also limited and from
the ones available some are somewhat old and lack maintenance. They were also not really
appropriate to test attack scenarios, but more to perform an analysis of some specific metrics.

6.2 Future Work

The continuity of this dissertation should follow an approach with more computing capabilities.
One optimal approach would be to deploy as many nodes as there are slots available on the
target’s Distributed Hash Table (DHT) to compromise all node connections without crossing any
network restrictions. Compromising the whole DHT ensures that the target would only establish
connections to the attacker’s crafted nodes and lookups would also be performed against the same
nodes. This would give the attacker full control of the lookup buffer, and since readRandomNodes
function selects nodes from the DHT, there is a great chance of being able to eclipse a node.

Bibliography

[1] Gas and Fees. https://ethereum.org/en/developers/docs/gas/, .

[2] Networking Layer. https://ethereum.org/en/developers/docs/networking-layer/, .

[3] Transactions. https://ethereum.org/en/developers/docs/transactions/, .

[4] Shadow. https://shadow.github.io/.

[5] Bitcoin Developer. https://developer.bitcoin.org/devguide/index.html, 2014.

[6] Node Discovery Protocol. https://github.com/ethereum/devp2p/blob/master/discv4.md,
2018.

[7] The RLPx Transport Protocol. https://github.com/ethereum/devp2p/blob/master/rlpx.md,
2020.

[8] Ethereum Wire Protocol (ETH). https://github.com/ethereum/devp2p/blob/master/caps/
eth.md, 2020.

[9] Go-Ethereum, [Online] Available:. https://github.com/ethereum/go-ethereum/wiki/geth,
2020.

[10] Ethereum Accounts. https://ethereum.org/pt/developers/docs/accounts/, 2022.

[11] Ethereum Virtual Machine (EVM). https://ethereum.org/en/developers/docs/evm/, 2022.

[12] go-ethereum. https://geth.ethereum.org/, 2022.

[13] Networks. https://ethereum.org/en/developers/docs/networks/, 2022.

[14] Nodes-and-clients. https://ethereum.org/en/developers/docs/nodes-and-clients/
#checkpoint-sync, 2022.

[15] Sync modes. https://geth.ethereum.org/docs/fundamentals/sync-modes, 2022.

[16] keys in proof-of-stake Ethereum. https://ethereum.org/en/developers/docs/consensus-
mechanisms/pos/keys/, 2023.

[17] Adam Back. Hashcash - a denial of service counter-measure. 09 2002.

47

https://ethereum.org/en/developers/docs/gas/
https://ethereum.org/en/developers/docs/networking-layer/
https://ethereum.org/en/developers/docs/transactions/
https://shadow.github.io/
https://developer.bitcoin.org/devguide/index.html
https://github.com/ethereum/devp2p/blob/master/discv4.md
https://github.com/ethereum/devp2p/blob/master/rlpx.md
https://github.com/ethereum/devp2p/blob/master/caps/eth.md
https://github.com/ethereum/devp2p/blob/master/caps/eth.md
https://github.com/ethereum/go-ethereum/wiki/geth
https://ethereum.org/pt/developers/docs/accounts/
https://ethereum.org/en/developers/docs/evm/
https://geth.ethereum.org/
https://ethereum.org/en/developers/docs/networks/
https://ethereum.org/en/developers/docs/nodes-and-clients/#checkpoint-sync
https://ethereum.org/en/developers/docs/nodes-and-clients/#checkpoint-sync
https://geth.ethereum.org/docs/fundamentals/sync-modes
https://ethereum.org/en/developers/docs/consensus-mechanisms/pos/keys/
https://ethereum.org/en/developers/docs/consensus-mechanisms/pos/keys/

48 Bibliography

[18] Jaewon Bae and Hyuk Lim.

[19] Martijn Bastiaan. Preventing the 51%-attack: a stochastic analysis of two phase proof of
work in bitcoin. 2015.

[20] Dhanasak Bhumichai and Ryan Benton. Feature extraction of network traffic in ethereum
blockchain network layer for eclipse attack detection. In SoutheastCon 2023, pages 869–876,
April 2023. doi:10.1109/SoutheastCon51012.2023.10115126.

[21] Vitalik Buterin. Ethereum: A Next-Generation Smart Contract and Decentralized
Application Platform. https://ethereum.org/en/whitepaper/, 2014.

[22] Christian Cachin and Marko Vukolić. Blockchain consensus protocols in the wild, 2017.
doi:10.48550/ARXIV.1707.01873.

[23] Wren Chan and Aspen Olmsted. Ethereum transaction graph analysis. In 2017 12th
International Conference for Internet Technology and Secured Transactions (ICITST), pages
498–500, 2017. doi:10.23919/ICITST.2017.8356459.

[24] Huashan Chen, Marcus Pendleton, Laurent Njilla, and Shouhuai Xu. A survey on ethereum
systems security: Vulnerabilities, attacks and defenses. CoRR, abs/1908.04507, 2019.

[25] Yourong Chen, Hao Chen, Yang Zhang, Meng Han, Madhuri Siddula, and
Zhipeng Cai. A survey on blockchain systems: Attacks, defenses, and privacy
preservation. High-Confidence Computing, 2(2):100048, 2022. ISSN: 2667-2952.
doi:https://doi.org/10.1016/j.hcc.2021.100048.

[26] Mauro Conti, E. Sandeep Kumar, Chhagan Lal, and Sushmita Ruj. A survey on security
and privacy issues of bitcoin. IEEE Communications Surveys Tutorials, 20(4):3416–3452,
2018. doi:10.1109/COMST.2018.2842460.

[27] Christian Decker and Roger Wattenhofer. Information propagation in the bitcoin network.
In IEEE P2P 2013 Proceedings, pages 1–10, 2013. doi:10.1109/P2P.2013.6688704.

[28] Varun Deshpande, Hakim Badis, and Laurent George. Btcmap: Mapping bitcoin peer-
to-peer network topology. In 2018 IFIP/IEEE International Conference on Performance
Evaluation and Modeling in Wired and Wireless Networks (PEMWN), pages 1–6, 2018.
doi:10.23919/PEMWN.2018.8548904.

[29] Li Duan, Yangyang Sun, Kejia Zhang, and Yong Ding. Multiple-layer security threats on
the ethereum blockchain and their countermeasures. Secur. Commun. Netw., 2022:1–11,
February 2022.

[30] Li Duan, Yangyang Sun, Kejia Zhang, Yong Ding, and Yuling Chen. Multiple-layer security
threats on the ethereum blockchain and their countermeasures. Sec. and Commun. Netw.,
2022, jan 2022. ISSN: 1939-0114. doi:10.1155/2022/5307697.

https://api.semanticscholar.org/CorpusID:10993933
https://api.semanticscholar.org/CorpusID:10993933
http://dx.doi.org/10.1109/SoutheastCon51012.2023.10115126
http://dx.doi.org/10.1109/SoutheastCon51012.2023.10115126
https://ethereum.org/en/whitepaper/
http://dx.doi.org/10.48550/ARXIV.1707.01873
http://dx.doi.org/10.23919/ICITST.2017.8356459
http://arxiv.org/abs/1908.04507
http://arxiv.org/abs/1908.04507
http://dx.doi.org/https://doi.org/10.1016/j.hcc.2021.100048
http://dx.doi.org/https://doi.org/10.1016/j.hcc.2021.100048
http://dx.doi.org/10.1109/COMST.2018.2842460
http://dx.doi.org/10.1109/COMST.2018.2842460
http://dx.doi.org/10.1109/P2P.2013.6688704
http://dx.doi.org/10.23919/PEMWN.2018.8548904
http://dx.doi.org/10.23919/PEMWN.2018.8548904
http://dx.doi.org/10.1155/2022/5307697
http://dx.doi.org/10.1155/2022/5307697

Bibliography 49

[31] Jean-Philippe Eisenbarth, Thibault Cholez, and Olivier Perrin. A comprehensive
study of the bitcoin p2p network. In 2021 3rd Conference on Blockchain Research
& Applications for Innovative Networks and Services (BRAINS), pages 105–112, 2021.
doi:10.1109/BRAINS52497.2021.9569782.

[32] Christian Trummer Eric Demuth, Paul Klanschek. What is a Bitcoin Node?
https://www.bitpanda.com/academy/en/lessons/what-is-a-bitcoin-node/#what-is-
defined-as-a-full-node, 2014.

[33] John Evans. Blockchain Nodes: An In-Depth Guide. https://nodes.com/, 2018.

[34] Ethan Heilman, Alison Kendler, Aviv Zohar, and Sharon Goldberg. Eclipse attacks on
Bitcoin’s Peer-to-Peer network. In 24th USENIX Security Symposium (USENIX Security
15), pages 129–144, Washington, D.C., August 2015. USENIX Association. ISBN: 978-1-
939133-11-3.

[35] Sebastian Henningsen, Daniel Teunis, Martin Florian, and Björn Scheuermann. Eclipsing
ethereum peers with false friends, 2019. doi:10.48550/ARXIV.1908.10141.

[36] Tam T. Huynh, Thuc D. Nguyen, and Hanh Tan. A survey on security and privacy issues of
blockchain technology. In 2019 International Conference on System Science and Engineering
(ICSSE), pages 362–367, 2019. doi:10.1109/ICSSE.2019.8823094.

[37] Meng-Jang Lin and Keith Marzullo. Directional gossip: Gossip in a wide area network.
In Jan Hlavička, Erik Maehle, and András Pataricza, editors, Dependable Computing —
EDCC-3, pages 364–379, Berlin, Heidelberg, 1999. Springer Berlin Heidelberg. ISBN:
978-3-540-48254-3.

[38] Fangxiao Liu, Xingya Wang, Zixin Li, Jiehui Xu, and Yubin Gao. Effective gasprice
prediction for carrying out economical ethereum transaction. In 2019 6th International
Conference on Dependable Systems and Their Applications (DSA), pages 329–334, 2020.
doi:10.1109/DSA.2019.00050.

[39] Soo Hoon Maeng, Meryam Essaid, and Hong Taek Ju. Analysis of ethereum
network properties and behavior of influential nodes. In 2020 21st Asia-Pacific
Network Operations and Management Symposium (APNOMS), pages 203–207, 2020.
doi:10.23919/APNOMS50412.2020.9236965.

[40] Yuval Marcus, Ethan Heilman, and Sharon Goldberg. Low-resource eclipse attacks on
ethereum’s peer-to-peer network. IACR Cryptol. ePrint Arch., 2018:236, 2018.

[41] Joanna Moubarak, Eric Filiol, and Maroun Chamoun. On blockchain security and
relevant attacks. In 2018 IEEE Middle East and North Africa Communications Conference
(MENACOMM), pages 1–6, 2018. doi:10.1109/MENACOMM.2018.8371010.

[42] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system. Cryptography Mailing
list at https://metzdowd.com, 03 2009.

http://dx.doi.org/10.1109/BRAINS52497.2021.9569782
http://dx.doi.org/10.1109/BRAINS52497.2021.9569782
https://www.bitpanda.com/academy/en/lessons/what-is-a-bitcoin-node/#what-is-defined-as-a-full-node
https://www.bitpanda.com/academy/en/lessons/what-is-a-bitcoin-node/#what-is-defined-as-a-full-node
https://nodes.com/
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/heilman
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/heilman
http://dx.doi.org/10.48550/ARXIV.1908.10141
http://dx.doi.org/10.48550/ARXIV.1908.10141
http://dx.doi.org/10.1109/ICSSE.2019.8823094
http://dx.doi.org/10.1109/ICSSE.2019.8823094
http://dx.doi.org/10.1109/DSA.2019.00050
http://dx.doi.org/10.1109/DSA.2019.00050
http://dx.doi.org/10.23919/APNOMS50412.2020.9236965
http://dx.doi.org/10.23919/APNOMS50412.2020.9236965
http://dx.doi.org/10.1109/MENACOMM.2018.8371010
http://dx.doi.org/10.1109/MENACOMM.2018.8371010

50 Bibliography

[43] Sunny Pahlajani, Avinash Kshirsagar, and Vinod Pachghare. Survey on private blockchain
consensus algorithms. pages 1–6, 04 2019. doi:10.1109/ICIICT1.2019.8741353.

[44] Purathani Praitheeshan, Lei Pan, Jiangshan Yu, Joseph Liu, and Robin Doss.
Security analysis methods on ethereum smart contract vulnerabilities: A survey, 2019.
doi:10.48550/ARXIV.1908.08605.

[45] Sara Rouhani and Ralph Deters. Performance analysis of ethereum transactions in private
blockchain. In 2017 8th IEEE International Conference on Software Engineering and Service
Science (ICSESS), pages 70–74, 2017. doi:10.1109/ICSESS.2017.8342866.

[46] Muhammad Saad, Jeffrey Spaulding, Laurent Njilla, Charles Kamhoua, Sachin Shetty,
DaeHun Nyang, and David Mohaisen. Exploring the attack surface of blockchain: A
comprehensive survey. IEEE Communications Surveys Tutorials, 22(3):1977–2008, 2020.
doi:10.1109/COMST.2020.2975999.

[47] Yahya Shahsavari, Kaiwen Zhang, and Chamseddine Talhi. Performance modeling and
analysis of the bitcoin inventory protocol. In 2019 IEEE International Conference
on Decentralized Applications and Infrastructures (DAPPCON), pages 79–88, 2019.
doi:10.1109/DAPPCON.2019.00019.

[48] Takenobu T. Ethereum EVM illustrated. https://takenobu-hs.github.io/downloads/
ethereum_evm_illustrated.pdf, 2018.

[49] Kathleen E. Wegrzyn Eugenia Wang. Types of Blockchain: Public, Private, or Something
in Between. https://www.foley.com/en/insights/publications/2021/08/types-of-blockchain-
public-private-between, 2021. [Online; accessed 19-August-2021].

[50] Daniel Davis Wood. Ethereum: A secure decentralised generalised transaction ledger. 2014.

[51] Simeon Wuthier and Sang-Yoon Chang. Demo: Proof-of-work network simulator
for blockchain and cryptocurrency research. In 2021 IEEE 41st International
Conference on Distributed Computing Systems (ICDCS), pages 1098–1101, 2021.
doi:10.1109/ICDCS51616.2021.00110.

[52] Karl Wüst and Arthur Gervais. Ethereum Eclipse Attacks. 2016. doi:10.3929/ETHZ-A-
010724205.

[53] Guangquan Xu, Bingjiang Guo, Chunhua Su, Xi Zheng, Kaitai Liang, Duncan S. Wong, and
Hao Wang. Am i eclipsed? a smart detector of eclipse attacks for ethereum. Computers &
Security, 88:101604, 2020. ISSN: 0167-4048. doi:https://doi.org/10.1016/j.cose.2019.101604.

[54] Shi Yan. Analysis on blockchain consensus mechanism based on proof of work and proof
of stake. In 2022 International Conference on Data Analytics, Computing and Artificial
Intelligence (ICDACAI), pages 464–467, 2022. doi:10.1109/ICDACAI57211.2022.00098.

[55] Haofan Zheng, Tuan Tran, and Owen Arden. Total eclipse of the enclave: Detecting
eclipse attacks from inside tees. In 2021 IEEE International Conference on Blockchain and
Cryptocurrency (ICBC), pages 1–5, May 2021. doi:10.1109/ICBC51069.2021.9461081.

http://dx.doi.org/10.1109/ICIICT1.2019.8741353
http://dx.doi.org/10.1109/ICIICT1.2019.8741353
http://dx.doi.org/10.48550/ARXIV.1908.08605
http://dx.doi.org/10.1109/ICSESS.2017.8342866
http://dx.doi.org/10.1109/ICSESS.2017.8342866
http://dx.doi.org/10.1109/COMST.2020.2975999
http://dx.doi.org/10.1109/COMST.2020.2975999
http://dx.doi.org/10.1109/DAPPCON.2019.00019
http://dx.doi.org/10.1109/DAPPCON.2019.00019
https://takenobu-hs.github.io/downloads/ethereum_evm_illustrated.pdf
https://takenobu-hs.github.io/downloads/ethereum_evm_illustrated.pdf
https://www.foley.com/en/insights/publications/2021/08/types-of-blockchain-public-private-between
https://www.foley.com/en/insights/publications/2021/08/types-of-blockchain-public-private-between
http://dx.doi.org/10.1109/ICDCS51616.2021.00110
http://dx.doi.org/10.1109/ICDCS51616.2021.00110
http://dx.doi.org/10.3929/ETHZ-A-010724205
http://dx.doi.org/https://doi.org/10.1016/j.cose.2019.101604
http://dx.doi.org/10.1109/ICDACAI57211.2022.00098
http://dx.doi.org/10.1109/ICDACAI57211.2022.00098
http://dx.doi.org/10.1109/ICBC51069.2021.9461081
http://dx.doi.org/10.1109/ICBC51069.2021.9461081

	Abstract
	Resumo
	Contents
	List of Tables
	List of Figures
	Listings
	Acronyms
	1 Introduction
	1.1 Demystifying blockchain
	1.2 Types of blockchains
	1.3 Blockchain Properties
	1.4 Types of nodes
	1.4.1 Full nodes
	1.4.2 Lightweight nodes

	2 Background
	2.1 Bitcoin
	2.1.1 Proof of Work
	2.1.2 Joining the network
	2.1.3 Network storage
	2.1.4 Maintaining Connections
	2.1.5 Disseminating Information

	2.2 Ethereum
	2.2.1 Proof of Stake
	2.2.2 Ethereum accounts
	2.2.3 Ethereum Virtual Machine
	2.2.4 Ethereum State Transition Function
	2.2.5 Messages and Transactions
	2.2.6 Transactions
	2.2.7 Peer Discovery/Networking Layer
	2.2.8 Ethereum's network storage
	2.2.9 Ethereum Wire Protocol
	2.2.10 Gas

	3 Vulnerabilities
	3.1 Vulnerabilities in the Bitcoin network layer
	3.1.1 DNS Seeds

	3.2 The 51% attack
	3.3 Vulnerabilities Ethereum in the network layer
	3.3.1 Unlimited nodes creation
	3.3.2 Public Peer Selection
	3.3.3 Sole block synchronization

	3.4 Eclipse attacks

	4 Related Work
	4.1 Eclipse attacks by monopolizing connections
	4.2 Eclipse by table poisoning
	4.3 False friends eclipse attack
	4.4 lookup function
	4.5 Logdist Function

	5 Practical Work
	5.1 Planning
	5.2 Simulators
	5.2.1 Ethereum-shadow
	5.2.2 Blockchain Simulator

	5.3 Ethereum Official Testnets
	5.4 Running a node
	5.4.1 Execution and consensus client
	5.4.2 Syncing the network
	5.4.3 Initializing the clients

	6 Conclusion
	6.1 Limitations
	6.2 Future Work

	Bibliography

