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The magnetic activity of many stars can prove to be an obstacle in exoplanet detec-

tion. The detected signals of solar spots and solar plages, caused by the star’s magnetic

activity, can be similar to those emitted by exoplanets, and it’s hard to distinguish the

signals. There is one notable difference between these signals though: while stellar activity

deforms the spectral lines of the stellar spectrum, the presence of planets shifts them in

wavelength, excluding the transiting exoplanet observations, which also deform the spec-

tral lines’ profiles. That way, by observing the spectrum of a star, using the radial velocity

technique, we can detect if the spectrum is being shifted by the action of an orbiting exo-

planet. A method to study these spectra and determine their radial velocities has already

been implemented before, using Hermite-Gaussian functions of first degree. What we’re

aiming to do with this project is to further study the method, obtain the star’s radial

velocity and compare our results with those obtained with other methods, and even try

to further improve on the existing method. While we weren’t able to obtain results with

greater accuracy when compared to those obtained with the Cross-Correlation method,

we did obtain results with greater precision. Even though we originally intended to also

obtain the exoplanets’ properties through the radial velocity, the time taken to implement

the method didn’t leave us with much time left for such an analysis.
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A atividade magnética de várias estrelas pode tornar-se um obstáculo na deteção de

exoplanetas. Os sinais detetados de manchas e praias solares, causadas pela atividade mag-

nética da estrela, podem ser semelhantes aos sinais emitidos por exoplanetas, e não é fácil

distingui-los. Há no entanto uma notável diferença entre esses sinais: enquanto que a ativi-

dade solar deforma as linhas espetrais do espetro estelar, a presença de planetas transita-as

em comprimento de onda, excluindo observações de trânsitos dos exoplanetas, que também

deformem os perfis das linhas espetrais. Assim, através da observação do espetro de uma

estrela, utilizando a técnica da velocidade radial, podemos detetar se o espetro está a ser

”shiftado”pela ação de um exoplaneta orbitante. Um método para estudar esses espetros

e determinar as suas velocidades radiais já foi implementado no passado, usando funções

Hermite-Gaussianas de primeiro grau. O nosso objetivo com este projeto é estudar ainda

mais este método, obter a velocidade radial da estrela e comparar os nossos resultados com

os obtidos através de outros métodos, e até mesmo tentar melhorar o método existente.

Apesar de não termos conseguido obter resultados com maior exatidão quando compara-

dos com os obtidos pelo método Cross-Correlation, obtivemos ainda assim resultados com

maior precisão. Ainda que nós originalmente quiséssemos também obter as propriedades

dos exoplanetas através da velocidade radial, o tempo que levou a implementar o método

não nos deixou com tempo suficiente para essa análise.

Palavras-chave: Astrophysics, Radial velocity, Stellar spectrum, Hermite-Gaussian,

Absorption features
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Chapter 1

Introduction

The detection and study of exoplanets is one of the most prominent fields of research in

astrophysics, in part thanks to its overlapping relevance with other topics, such as biology

and geology, and it has become a popular subject over the last few years. The first result in

the field was the discovery of two planets orbiting the pulsar PSR 1257+12, by Aleksander

Wolszczan and Dale Frail in 1992 (Wolszczan and Frail [1992]), and in 1995, Michel Mayor

and Didier Queloz presented the first confirmed detection of an exoplanet, orbiting a main-

sequence star, 51 Pegasi (Mayor and Queroz [1995]). This discovery was part of the start

of a booming interest in exoplanets, and was later recognized in 2019 for a Nobel Prize in

Physics..

One of the main methods of detection of exoplanets is the Transit Photometry method

(Deeg and Alonso [2018]), which focuses on the observation of stars, and the analysis of

the variations in their brightness. If a planet is orbiting a star, whenever it passes in front

of it in relation to the observer, when it transits the star, part of the stellar light will be

blocked, which results in a temporary reduction of the observed brightness. Given the

nature of planetary orbits, this means that the presence of an exoplanet will reveal itself

in the periodic variation of the observed brightness of a star.

The other main method of exoplanet detection, and the main focus of this disserta-

tion, is the Radial Velocity method, also known as Doppler spectroscopy, which requires

observation and analysis of the star’s spectrum. Alongside the absorption features of a

star’s spectrum, there may be some features which belong to an orbiting exoplanet. These

features are there due to the stellar light that’s reflected by the exoplanet, which contains

the absorption features of said exoplanet. Furthermore, while we can detect changes in the

stellar features as we observe the spectrum over an extended period of time, some of them

1



2 Activity-Free Radial Velocities

may be caused by the star’s own magnetic activity. However, while a star’s magnetic phe-

nomena cause a distortion of the spectrum’s features, the presence of an exoplanet merely

shifts them in relation to their wavelength, since the gravitational pull caused on the star

by the planet causes a very small but periodic distortion on the stellar flux, causing it to

redshift and blueshift at very small scales. The Radial Velocity method uses these shifts in

the stellar spectra to calculate the star’s variation in radial velocity and verify if they were

caused by orbiting exoplanets. If the stellar radial velocity varies periodically, we can infer

the presence of a planetary companion and estimate its orbital properties. While one can-

not observe great amounts of stars simultaneously with the same instrument of observation

unlike with Transit Photometry, as we can only execute the method with the flux spectrum

of a single star at a time, this method has many advantages. It’s fit for the detection of

exoplanets around low-mass stars, which rotate more slowly, allowing for clearer spectral

lines, and are more affected by the gravitational pull of their orbiting exoplanets, causing

greater variations in their radial velocity. This makes this method ideal for discovering

new candidates of potential Earth-like planets, which tend to be low-mass rocky planets

orbiting M-type stars, although they can also be found in stars of greater mass, similar to

the Sun, a G-type star,. However, Hot Jupiters, which tend to form around F- and G-type

stars, cause even greater shifts with their greater mass, and are therefore easier to detect

than rocky planets. For reference, Jupiter causes a shift of the Sun’s velocity of 12.4 ms−1,

while the Earth only causes a change of 0.1 m s−1.

The visible variations in radial velocity for planets in inclined orbits in relation to the

observer’s line of sight are much smaller and harder to detect. Moreover, this method is

limited by the observations’ signal-to-noise ratio (SNR), requiring a high value of that ratio

for more precise results. Even still, for planets orbiting very bright stars or reflecting a lot

of light, we can measure their mass and obtain information about their composition. More

so, this method allows us to directly measure the exoplanet’s eccentricity, and although

the radial velocity of a star only allows for an estimation of the orbiting planet’s minimum

mass, due to the fact that we only measure the star’s movement along our line-of-sight, with

enough brightness either coming from a star or being reflected by a planet, we can obtain

the planet’s own radial velocity by distinguishing the spectral lines of each and separately

analyzing their shifts, allowing us to infer the inclination of the planet’s orbit. This is

because, through the binary mass function, we know the relation between the masses of

two orbiting bodies, their distances to the center of mass, and their orbiting velocities,
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and therefore, with the mass of the star and the radial velocities of both the star and the

exoplanet, we can obtain the exoplanet’s mass as well. Even if, overall, the Transit method

has proven to be the most effective of the two, the usage of both methods not only yields

more precise measurements but also allows for a clearer picture of the detected exoplanet’s

properties, such as its mass and radius. Rodler et al. [2012]

When it comes to analyzing the observed spectra in order to obtain information on the

RV values and their shifts, there have been multiple methods over the years to perform that

analysis. One of the most popular is the Cross-Correlation technique, in which the observed

spectrum is shifted along the template spectrum, and the degree of similarity between them

is determined by making use of the Cross-Correlation Function (CCF), where the highest

similarity value reveals the number of pixels by which the observed spectrum is shifted in

relation to the template spectrum, allowing us to calculate the difference of RV between

them. This method is intuitive and conceptually easy, and several authors have suggested

improvements to further increase its precision (Zucker [2003]) (Prieto [2007]). Another

popular technique is the absorption cell calibration technique, which employs the use of a

glass cell filled with gas, placed in the path of the incoming starlight and imprinting the

observed spectra with its own spectral absorption features, which serve as a grid against

which the stellar line shifts can be detected, and therefore are used to track these changes.

While hydrogen fluoride gas (HF) had been used before (Campbell and Walker [1979]),

it was later discovered that Iodine gas (I2) yielded results with greater precision, around

the order of m s−1 (Marcy and Butler [1992]) (Butler et al. [1996]), and it’s currently

regarded as the gas of choice for this method, the Iodine Cell method. The Simultaneous

Reference technique is another method that yields high-precision RV measurements, which

consists of the insertion of a template spectrum simultaneously with the observed spectrum

through the use of a Thorium-Argon lamp (ThAr). Two channels of the spectrograph

are used, one for the scientific data, and another, the simultaneous-reference channel, is

used to monitor instrumental drifts and do wavelength calibrations to the observed data.

This is done because the observed data is subjected to certain effects, them being the

varying index of air refraction and mechanical flexures, and with this method, since the

two channels will follow nearly similar paths in the spectrograph, the effects will disturb

them in approximately the same way, allowing us to measure the instrumental drift. We

do this by comparing, at the end of the observation session, the initial ThAr spectrum to

the ThAr spectrum obtained simultaneously with the observed stellar flux, and we then
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subtract said drift from the scientific data channel to obtain the stellar variations without

the drift effects (Lovis and Fischer [2010]) (Wright [2018])

Regardless of the technique used, many discoveries were made with this method in those

past few years, starting with 51 Pegasi, but also including the discovery of the first Multi-

Planet System of the binary star Upsilon Andromedae by the Lick Observatory (Butler

et al. [1999]), whose observations spanned for a total of 11 years to confirm the presence of

three exoplanets; the prediction of the time of transit of multiple exoplanets; the discovery

of planets around stars with masses greater and smaller than solar-type stars, and revealing

to us the types of planets that orbit around those other types of stars, including the reveal

of brand new planet types (Lovis and Fischer [2010]).

Up until very recently, the RV precision achieved by state-of-the-art spectrographs was

limited to about 1 m s−1. High precision had been reached with the aid of the High Accuracy

Radial Velocity Planet Searcher (HARPS) spectrograph in 2003 (Mayor et al. [2003]), and

it set a new standard in RV precision, but newer spectrographs would be required in

order to achieve even more precise measurements. At that time, various techniques had

already been developed for exoplanet discovery, including Doppler measurements, transit

photometry, direct imaging, and microlensing. Ground-based transit surveys demonstrated

the existence of transiting extra-solar planets and ultimately managed to achieve 1 mmag

of photometric precision, but the Kepler space mission was a dramatic improvement over

these ground-based photometry methods, confirming that most of the stars in our galaxy

have planetary systems, with a high frequency in small planets.

In 2016, a paper was published describing the state of the art regarding the radial

velocity method (Fischer et al. [2016]). It described the current advancements that had

already been achieved, as well as the current obstacles. The RV measurements used to be

carried out by either the iodine cell method or the cross-correlation technique. Estimates of

errors include the estimated single measurement precision (SMP), which helps indicate the

”on-sky” precision; and the long-term velocity root-mean-square (rms), which exposes the

systematic instrumental errors and limitations in the analysis techniques for the treatment

of stellar jitter. In the year of 2015, some of the new space missions included the Transiting

Exoplanet Survey Satellite (TESS), the CHaracterizing ExOPlanet Satellite (CHEOPS)

and the PLAnetary Transits and Oscillation (PLATO) of stars. In July of the same year,

the second workshop for Extreme Precision Radial Velocities (EPRV) was held at Yale

University, where they discussed and examined the current state of the Doppler precision
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and the recent advances of the time, and work to achieve the 10 cm/s level of precision.

However, while this document provides a great level of insight into the state of the

radial velocity method field, much more work was done afterwards. In particular, one

method has been developed, one that aims to be much more mathematically precise in

the calculation of stellar RVs - the Hermite-Gaussian Radial Velocity (HGRV) method,

which utilizes first-degree Hermite-Gaussian curves. First proposed by Parker Holzer, a

PhD student at Yale University in the Department of Statistics & Data Science (Holzer

et al. [2020], this article is the basis and focus of our work, with which we aim to not

only replicate this method of stellar data treatment and exoplanet detection, but also a

look into the obstacles that presented to ourselves along the way, how we managed to

mitigate them, the influence on the results of some of our decisions and choices regarding

the treatment of some of the data, and hopefully to further push interest in developments

and advancements of this method.

In this work, we will be analyzing data obtained by the ESPRESSO spectrograph

installed at the ESO’s VLT (Pepe et al. [2021]). We will focus on observations of the

star HD10700, also known as Tau Ceti. This is a G-class star with a spectrum similar

to our Sun’s, although with less than 80% of its mass, and at a distance of 3.7 parsecs.

Its observed radial velocity is of about −17 km s−1. The star has at least four candidate

orbiting planets, two of which are located on the star’s habitable zone, Tau Ceti e and f

(Tuomi, M. et al. [2013], Feng et al. [2017]). This star is commonly used by several RV

surveys as a standard, in order to track low-amplitude instrumental variations over time.

As such, there is a large collection of public observations.

Star Mass (M⊙) Radius (R⊙) RV (km s−1)
Tau Ceti 0.783 ± 0.012 0.793 ± 0.004 −16.68 ± 0.05

Exoplanet Mass (M⊕) Semimajor Axis (AU) Eccentricity
Tau Ceti g ≥1.75 +0.25/−0.40 0.133+0.001/−0.002 0.06±0.13
Tau Ceti h ≥1.83 +0.68/−0.26 0.243±0.003 0.23+0.16/−0.15
Tau Ceti e ≥3.93 +0.83/−0.64 0.538±0.006 0.18+0.18/−0.14
Tau Ceti f ≥3.93 +1.05/−1.37 1.334+0.017/−0.044 0.16+0.07/−0.16

Table 1.1: Properties of Tau Ceti and its candidate orbiting planets. With the habitable
zone of the system spanning an area of radius within 0.55 AU and 1.16 AU, we can place

Tau Ceti f and, arguably, Tau Ceti e within the habitable zone.

In Chapter 2, we will discuss the theory behind the HGRV method, as well as explain in

detail the process of the functionality and development of all the algorithm’s components.

In Chapter 3, we will apply the method to the data obtained from Tau Ceti and in Chapter
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4 we will compare our results with those obtained using other methods. Finally, we will

discuss our conclusions and closing thoughts in Chapter 5.



Chapter 2

Method

2.1 Theory

Perhaps it is important, before delving further, to clarify what radial velocity is. Radial

velocity, by general definition, is the velocity of an object relative to a defined point of

reference, or observer, taken as the center with radial coordinates, measuring the rate

of the object’s change in distance from the observer. In the context of Astrophysics and

Astronomy, Earth tends to be the observer when we want to measure a star’s radial velocity,

so these values measure how fast a star is moving away from our planet or, in the case of

negative radial velocities, how fast they are approaching.

Much of what we currently know about the motion of exoplanets around stars can be

inferred from what we already know about the inner workings of binary star systems - after

all, in the simplest form of both cases, we have two bodies orbiting their common center of

mass (CM). We can understand their orbits through the variation of their radial velocity,

and from there, calculate their relative masses. In the cases when only one of the stars is

bright enough to properly measure its spectrum, we can define the mass function f that

relates the semi-amplitude K of the binary system’s orbit with its properties, such as the

orbital period P, eccentricity e and inclination i:

f ≡ PK3(1− e2)
3
2

2πG
=

M3
unseen sin3 i

(Munseen + Mseen)2 (2.1)

with G being Newton’s constant, and Mseen and Munseen being the masses of the seen and

unseen stars, respectively. Furthermore, we can define the orbit’s phase and orientation

with respect to the observer’s line of sight with the additional variables φ and ω. The

radial velocity of the system’s CM in relation to the observer is denoted as γ. With these

7
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parameters, we can define the orbit of the observed star around the CM of the system,

caused by the movement of the unseen star, for which the orbital parameters are inferred

from the system’s motion. However, most of the unseen star’s orbital elements are identical

to the seen star’s, except for the semi-amplitude, in which K is scaled by a factor of the

masses’ ratio, and its orientation, where ω differs by π since the stars are opposite to each

other in their orbits:

Kseen =
Munseen

Mseen
Kunseen (2.2)

ωseen = ωunseen − π (2.3)

These relations between two orbiting stellar objects can be applied to many other cases,

including those where a star is being orbited by an exoplanet. In this scenario, since the

mass of an exoplanet is much smaller than that of a star, we can approximate the mass

ratio as Munseen/Mseen = Mplanet/M∗ ≪ 1, allowing us an approximation of equation 2.1

into a function that relates a Doppler shift’s amplitude to the planet’s orbital properties

and mass:

K ≈
(

2πG
PM2

∗

)1/3 Mplanet sin i
√

1− e2
(2.4)

With a weak dependence on the orbit’s period and eccentricity (for low values), it’s

clear that the strongest dependence comes from the product of the planet’s mass and the

sine of the orbit’s inclination, referred to as the planet’s minimum mass, as the planet’s

true mass is actually larger than the aforementioned value by a geometric factor of 1/sini.

There is also a dependence on stellar mass, which shows that the radial velocity method

should be more sensitive for low-mass stars.

From this, we simply need to look into the Doppler-shifted spectra of stars to deduce

the parameters of their orbiting planet. A stellar spectrum is a representation of the

intensity of a star’s radiation flux, or brightness, in function to the values of wavelength

it emits at. The narrow dips and valleys we can see in the spectra correspond to the

absorption features that are characteristic to every chemical element existent within the

star’s atmosphere, from atoms and ions to molecules, and thanks to atomic physics, we

know the values of the wavelengths at which each element absorbs radiation, their rest

wavelengths, λrest. The star’s motion causes the lines in observed spectra to be Doppler
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shifted to their observed wavelength values, λobs. We can use the Doppler formula to

calculate the relative radial speed vr between the star and the observer that measured the

emitted light, through the redshift value z:

z ≡ λobs − λrest

λrest
=

λobs

λrest
− 1 =

1
γ(1 + vr/c)

− 1 (2.5)

with γ here being the relativistic factor 1/(1− (v/c)2), c being the speed of light, and

v being the relative scalar speed between the star’s frame and the observer, though not

necessarily in the radial direction. However, the stellar spectra itself pose some obstacles

to this simple method.

The blending and overlap of features are very frequent in stellar spectra, and it’s caused

by the high frequency of such features. Meanwhile, the remainder of the spectrum, the

line of base flux from which the features dip from, is referred to as the continuum. The

continuum of stellar spectra is not flat, which stems from two main reasons, besides back-

ground noise and stellar jitter: one being the black-body effect, and the other being an

error of instrumental origin, known as the blaze function. The formerly mentioned effect

relates to the way a star’s spectrum is shaped. A black body is an object that, ideally,

is non-reflective and fully opaque, absorbing all radiation that hits it, with the radiation

it emits in thermal equilibrium with its surroundings. A star can be considered a black

body in this regard, as we can assume its temperature remains constant. The radiation

emitted by a black body has a spectrum that only depends on the body’s temperature, in

accordance with Planck’s Law, and it has a maximum for a specific wavelength, after which

the wavelength spectrum becomes inversely related to its intensity, which explains its con-

tinuum’s characteristic shape. The latter, the blaze function, relates to how the diffraction

grating of a spectroscopic tool must be shifted relatively to the center-edge interference

of each of the grating’s facets. We can, however, divide these effects out, normalize the

continuum and diminish the effect of those effects Planck [1901].

Another source of noise that contributes to a decrease in precision is the presence of

telluric lines in the spectrum. Since the instruments used to observe the stars are situated

on Earth, our atmosphere influences the observed data. Besides the flux spectra we obtain

from observed stars with their absorption features, our atmosphere’s own absorption lines,

which are what we refer to as telluric lines, also contaminate the observed spectra. This

is what’s referred to as telluric contamination, and it varies with many factors, such as

altitude and weather conditions, with their variability being what makes it so difficult to
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remove. Since these lines are more common at higher wavelength values, in the red and

near Infra-Red regions, the contamination will be more noticeable at the later orders of

wavelength in observed spectra than the earlier ones. They’re also narrower than the other

absorption features in most cases, and many advancements have been made over the years

to further mitigate their effect on observed spectra. However, the only way to guarantee

their complete removal is by performing the observations with an instrument located in

space, outside our atmosphere.

Taking a template spectrum of a star, a noiseless and normalized spectrum with no

effects applied to it, we can take another spectrum from the same star, a Doppler-shifted

one, and calculate the difference between both to obtain the difference flux. This is useful

because one of the main factors of the HGRV method is that it can estimate such Doppler

shifts using the first-degree Hermite-Gaussian function, fitted to the difference flux spec-

trum. Since a Doppler shift only occurs horizontally, in the wavelength axis, very little

information will be obtained from the normalized continuum, as opposed to sloped lines,

such as those from absorption features. In order to work with such data, an algorithm

must be computed in order to correctly locate and detect stellar features, both standalone

features and blends of multiple of them, and obtain their properties. The process of com-

putation of this algorithm will be described further below.

Given how spectral features will be our main sources of data for this method, we shall

focus on them in particular. Let’s first assume that the shape of the inverted absorption

features in the spectrum can be approximated to the shape of a Gaussian curve (Gray

[2005]). With x as the wavelength of the observed light, and f(x) as the corresponding

normalized light flux value, then, according to special relativity, f(ξ x) will be the value

of the normalized Doppler-shifted light flux, with the inverse of ξ being referred to as the

Doppler factor, and defined as

ξ =
1 + vr/c√
1− (v/c)

(2.6)

with c defined as the speed of light, v as the absolute speed of the source, and vr as the

star’s radial velocity. While the Earth’s motion around the Solar System’s barycenter

can introduce relativistic effects to the observations, they can be corrected (Wright and

Eastman [2014], Blackman et al. [2017], Blackman et al. [2020]), and since the values of

RVs are well under the speed of light’s, we can simplify the formula into
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ξ = 1 +
vr

c
(2.7)

Since we’re assuming that the features are shaped like a Gaussian, let us take the

Hermite-Gaussian functions, which are defined as

ψn(x) =
1√

2nn!
√

π
Hn(x)e−x2/2 (2.8)

with Hn(x) as the physicist’s Hermite polynomial of n’th degree

Hk(s) = k!
⌊k/2⌋

∑
m=0

(−1)m

m!(k− 2m)!
(2s)k−2m (2.9)

where ⌊k/2⌋ is the floor function that finds the closest integer number equal to or less than

k/2.

The Hermite-Gaussian curves have other properties of their own, due to the unique at-

tributes of the physicist’s Hermite polynomials as opposed to the probabilist’s polynomials,

defined respectively as Hn(x) = (−1)nex2 dn

dxn e−x2 and Hen(x) = (−1)nex2/2 dn

dxn e−x2/2.

For instance, as stated in Johnston [2014], we can show that

∫ ∞

−∞
Hn(x)Hm(x)e−x2

dx =
√

π2nn!1{m = n} (2.10)

where 1{A} is an indicator, similar to the Kronecker delta function, that equals 1 when

the event A within the brackets is true, and zero when otherwise. Therefore, we can show,

using the functions 2.8 and 2.10, that

∫ ∞

−∞
ψn(x)ψm(x)dx = 1{m = n} (2.11)

From the same work of Johnston [2014] on weighted Hermite polynomials, we can also

find that the set of Hermite-Gaussian functions forms a full orthonormal basis of the set

of every square-integrable, real-valued functions, L2(R), and the same applies to sets of

generalized Hermite-Gaussian functions with variables to specify their general location in

the x axis and their scale, through the variables µ and σ, for any µ ∈ R and σ ∈ R+.

Thus, we can redefine the H-G as

ψn(x; µ, σ) =
1

σ
√

2nn!
√

π
Hn

(
x− µ

σ

)
e−

(x−µ)2

2σ2 (2.12)

Therefore, for an L2(R) function g(x), we can decompose it as
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g(x) =
∞

∑
n=0

cnψn(x; µ, σ) (2.13)

with cn being the coefficient associated with the generalized H-G function of the corre-

sponding degree.

With that, taking f (x) as a Gaussian curve with a defined center µ and width σ, and

g(x; ξ) = f (x)− f (ξx) the difference between the Gaussian and its Doppler-shifted version.

If we decompose this difference using equation 2.13, and only using n = 1, i.e. the first

degree of Hermite equations, then we obtain Holzer’s first theorem:

Theorem 2.1. For any σ ∈ R+ and any µ, ξ ∈ R,and for g(x; ξ) = e
−−(x−µ)2

2σ2 − e
−−(ξx−µ)2

2σ2 ,

we have that

lim
ξ→1

∫ ∞
−∞(g(x; ξ)− c1(ξ)ψ1(x; µ, σ))2dx∫ ∞

−∞(g(x; ξ))2dx
=

(
1 +

2µ2

3σ2

)−1

(2.14)

This theorem was proven in Holzer et al. [2020] and it states that, as ξ approaches 1, at

small RV values, the proportion of the difference between g(x; ξ) and the ψ1 curve that was

Figure 2.1: The Hermite-Gaussian functions of the first five degrees, simulated using
Gaussian curves of µ = 5005 and σ = 0.1, given by Equation (2.8)



2. Method 13

modelled with the same σ and µ as the Gaussian curve, approaches
(

1 + 2µ2

3σ2

)−1

, and given

that, for real data, µ≫ σ, this means that this value is close to zero. What this means is

that Doppler shifting a Gaussian absorption feature at a small RV can be considered to be

equivalent to adding a constant multiple of ψ1 to the feature, meaning that the subtraction

between both Gaussian curves results in a constant multiple of a Hermite-Gaussian. This

is because, despite the multiplicative nature of the Doppler shift, this approximation for

small RV values allows for the assumption that the shift is additive instead.

To find the RV limit for which this theorem remains valid, Holzer et al. [2020] stated

some Lemmas to solve for the coefficients for Equation 2.13 to solve.

Lemma 2.2. For Ik(a, b, c) :=
∫ ∞
−∞ uke−

(
au2+bu+c

)
du where a > 0, we have that

I0(a, b, c) =
√

π

a
e

 b2
4a−c


(2.15)

I1(a, b, c) = −
√

πb
2a3/2 e

 b2
4a−c


(2.16)

and for k ≥ 2,

Ik(a, b, c) = − b
2a

Ik−1(a, b, c) +
k− 1

2a
Ik+2(a, b, c) (2.17)

With this purely mathematical proof, Holzer then created the second lemma to find

the solutions of Lemma 2.2.

Lemma 2.3. For g(x; ξ) = e- (x−µ)2

2σ2 − e- (ξx−µ)2

2σ2 decomposed as g(x) =
∞
∑

n=0
cnψn(x; µ, σ), and

for Ik(a, b, c) as defined in Lemma 2.2, for ϵ = ξ − 1, we have that

c0(ϵ) =

√
σ
√

π − 1√
σ
√

π
I0

1 + ϵ + ϵ2

2
σ2 ,−2µ + ϵµ

σ2 ,
(

µ

σ

)2
 (2.18)

and, for all k ≥ 1,

ck(ϵ) = −

√
σk!2k
√

π

⌊
k/2
⌋

∑
m=0

(−1)m

4mm!(k− 2m)!
Ik−2m

(
1 + ϵ +

ϵ2

2
,

ϵµ

σ
(1 + ϵ),

1
2

(
ϵµ

σ

)2
)

(2.19)

With these lemmas, we can calculate the coefficients of the n’th H-Gs as functions

of RV, and while all of them equal to zero with a null RV, since the g(x; ξ) function in

Theorem 2.1 becomes a zero-function at that point, when RV approaches zero, at the

window of magnitude below 100 ms−1all coefficients besides c1 become negligible, while c1
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evolves almost linearly with vr within the values of magnitude 500 ms−1. This means that,

for stars whose orbiting exoplanets cause RV variations with a semi-amplitude lesser than

100 ms−1, we can only take the Hermite-Gaussian coefficient of first degree into consid-

eration when modelling Gaussian stellar feature that suffered a Doppler shift due to an

orbiting exoplanet, as we can observe in Figure 2.2

(a) RV = [-10; 10]
km s−1 (b) RV = [-1; 1] km s−1

(c) RV = [-100; 100]
m s−1

Figure 2.2: Overview of the evolution of the H-G coefficients of different degrees in function
of the radial velocity. For smaller RVs, all coefficients but the one of the first degree become
negligible, while c1 changes in a linear fashion. This simulation of the H-G coefficients
was computed for a simulated Gaussian curve with µ = 5005 and σ = 0.1, to represent a

typical feature found in a stellar spectrum.

With the knowledge that the c1 coefficient is the most dominant one within the above-

defined RV value limits, we should now define the approximation error made by ignor-

ing the other coefficients, by introducing the standardized approximation error, D(ϕ||φ),

which gives the proportion of the squared function φ that remains to be modelled after we

approximate it with ϕ:

D(ϕ||φ) =
∫ ∞
−∞(φ(x)− ϕ(x))2dx∫ ∞

−∞ φ(x)2dx
(2.20)

For our theorem, we’ll take the case where ϕ = g(x; ξ) and φ = c1(ξ)ψ1(x; µ, σ), as

Holzer wrote the following Lemmas:

Lemma 2.4. For g(x; ξ) = e
− (x−µ)2

2σ2 − e
− (ξx−µ)2

2σ2 decomposed as

g(x; ξ) =
∞
∑

n=0
cn(ξ)ψn(x; µ, σ), we have

D(g(x; ξ)||c1(ξ)ψ1(x; µ, σ)) = 1− c2
1(ξ)∫ ∞

−∞(g(x; ξ))2dx
(2.21)

Lemma 2.5. lim
ξ→1

c2
1(ξ)∫ ∞

−∞(g(x;ξ))2dx
= 1

1+ 3σ2

2µ2

These Lemmas are, once again, proven in Holzer et al. [2020].
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With a small enough vr, and a big enough µ/σ ratio, as well as an absorption feature

with a shape close enough to a Gaussian, we can do a least-squares fitting of the first-degree

Hermite-Gaussian curve to the difference between a template spectrum and a Doppler-

shifted spectrum, and then link the fitted coefficient to an RV value. According to Lemma

2.3:

c1(ϵ) =

√√
π√

2σ
ϵµ(1 + ϵ)h̃(ϵ) (2.22)

lim
ϵ→0

δ

δϵ
c1(ϵ) =

µ
√√

π√
2σ

(2.23)

If we use Equation 2.7 with ϵ = ξ − 1, we find that vr(ϵ) = cϵ and limϵ→0
δ
δϵ vr(ϵ) = c

Therefore, going back to 2.23, we can define the proportionality constant, which is

lim
ϵ→0

δ

δvr
c1(v1(ϵ)) =

µ
√√

π

c
√

2σ
(2.24)

As such, the proportionality at low RV values is defined as

c1 =
µ
√√

π

c
√

2σ
vr (2.25)

However, we cannot get precise enough RVs from a single absorption feature. So, we

need to be able to use as many features from the stellar spectrum as possible. Rather

than fitting a single Hermite-Gaussian around a single feature, we can fit a sum of these

features to the difference spectrum. It has to be taken into account that every feature has

its own center, width and depth, a new variable that has to be taken into consideration

with the involvement of multiple features. Since Doppler-shifting any Gaussian, regardless

of amplitude, only multiplies the resulting coefficients by the same amplitude, which in

this case is the line depth, then we can use Equation 2.25 to compute the model of the

difference spectrum at pixel i as a function of wavelength:

yi = vr

n

∑
j=1

√√
πdjµj

c
√

2σj
ψ1(xi; µj, σj) + ϵi (2.26)

where the sum goes over all n features, xi is the wavelength at pixel i, dj is the line depth

of the j’th feature, and ϵi is an independent uncertainty with expectation 0.

Finally, it is important to delve into this model’s misspecifications. Many absorption

features in a stellar spectrum are described by the Voigt profile, itself described by the

convolution of a Cauchy-Lorentz distribution and a Gaussian distribution:
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V(x; σ, γ) ≡
∫ ∞

−∞
G(x′; σ)L(x− x′; γ)dx′ (2.27)

where G(x′; σ) is the centered Gaussian distribution, and L(x − x′; γ) is the centered

Lorentzian distribution:

G(x; σ) =
e−x2/(2σ2)

σ
√

2π
(2.28)

L(x; γ) =
γ

π(x2 + γ2)
(2.29)

where γ is a scale parameter that’s defined by the Full Width Half Measure (FWHM) as

FWHM = 2γ = 2
√

2 ln 2σ.

Since, for the values of σ that the absorption features usually have, the Voigt profile has

a similar shape to that of the Gaussian distribution, that is what allows the assumption

that the shapes of the absorption features are Gaussian in nature, the basis for the HGRV

method. However, that does not necessarily hold true at all times, as some features may

have a non-negligible Lorentzian component, and some may even have a line depth too

Figure 2.3: An example of a Gaussian distribution, a Lorentzian distribution, and the
Voigt profile, for comparison (σ = 0.4).
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great to even follow the Voigt profile. Holzer et al. [2020] showed that the obtained RV

values would consistently have a bias that would be three orders of magnitude lower.
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2.2 Algorithm to detect and adjust spectral lines

Our algorithm was written using the Python language. The first step in the creation of

the algorithm that would be used for this project consisted in the creation of a function

that would allow me to generate a Hermite-Gaussian curve, using equation (2.12).

def HG_single(x, mu, sigma):

return -hermite(1)((x-mu)/sigma) *

e**(-(x-mu)**2/(2*sig**2)) /

np.sqrt(sigma*2**n*factorial(n)*np.sqrt(np.pi))

where hermite(1)(x) is the Hermite function of the 1st degree in x, mu stands as the variable

for µ, and sigma as that for σ.

Then, we wrote a function that fits a Hermite-Gaussian curve of the first degree to the

difference between the template spectrum and a shifted spectrum, returning the deduced

value for the radial velocity. For that, we wrote, inside said function, a ”helper” function

of wavelength, with an RV value as the only variable. In this function, we would at first,

for one feature, obtain the value of its center and width, µ and σ, to calculate the Hermite-

Gaussian curve with the associated coefficient in accordance to Equation (2.25):

def HG_list(x, y_dif, mu, sigma, n):

def HG_helper(x, vr):

y = HG_single(x, mu, sigma, n) * np.sqrt(np.sqrt(np.pi)) *

1/(sig*np.sqrt(2*np.pi)) * mu / (c*np.sqrt(2*sigma))

return y*vr

popt, pcov = curve_fit(HG_helper, x, y_dif, v_i)

vr = popt[0]

y = HG_helper(x, vr)

return y, vr

with c as the speed of light in SI units, and where we ended up using a fixed value for

the initial guess of the radial velocity used for the Doppler shifted curve. While we were

testing these functions, we merely used a single Gaussian curve, generated by us using

values for center and width that are typically found in absorption features, by using a

function found in the scipy.special Python package, norm.pd f (x), upon which we’ll touch

in a bit. With this first generated feature correctly fitted, we moved on to the computation

of the feature detection algorithm, to first try and replicate the described algorithm in

Holzer et al. [2020].
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In a list of ordered wavelength values Γ = (x0, x1, ..., xn) and their corresponding flux

values τ = (τ0, τ1, ..., τn) from a stellar spectrum, and for a certain pixel index i, we have

a value of wavelength xi and one of flux τi. For a wavelength region of size m, we observe

the wavelength points of the spectrum in a window from xi−m to xi+m, and the same for

the flux points in a window within τi−m and τi+m. We will separate these points into four

separate arrays of size m:

Γl,i = (xi−m+1, xi−m+2, ..., xi)
T

Γr,i = (xi, xi+1, ..., xi+m−1)
T

τl,i = (τi−m+1, τi−m+2, ..., τi)
T

τr,i = (τi, τi+1, ..., τi+m−1)
T

Afterwards, take the arrays of corresponding regions and do two linear, least-squares

regressions, with their curves defined as:

τl,i = β0,l1m + β1,lΓl,i + ϵ

τr,i = β0,r1m + β1,rΓr,i + ϵ′

with ϵ, ϵ′ being the regression’s uncertainty errors, the coefficients of degree 0 β0 being the

y−intercepts, and those of degree 1 β1 being the regressions’ slopes. We do this in order

to estimate the coefficients β0,l and β1,l for the region left of pixel i, and β0,r and β1,r for

the region to its right.

When we find the coefficient β1,l to be negative while β1,r is positive with enough

statistical significance, this means that xi is found to be a statistically significant minimum -

the minimum of an absorption feature. This process is done automatically in our algorithm

by the use of the function linregress(x, y, alternative) from the scipy.stats Python package,

with the alternative variant being set as ”less” for the regression of the left region and

”greater” for that of the right region, since that makes the function only take in the values

where the slope of the regression is lower than zero and greater than zero, respectively.



20 Activity-Free Radial Velocities

From the results of these functions, we can obtain the regressions’ p-values, pl , i and pr, i,

which we’ll need for the next part of the feature-finding process. P-values are statistical

numbers obtained from testing the first-degree coefficients when equal to zero against

themselves when in their proper conditions, i.e. testing β1,l = 0 against β1,l < 0 and β1,r =

0 against β1,r > 0, and they serve to conclude if there is a statistically strong relationship

between the two variables in the linear regression, or if the slope coefficients are actually

null. When the p-values are below a given small probability, then the coefficients are valid.

In our algorithm, we’ll start testing the validity of the features we found by initializing a

new index j = m, with an upper bound u = 0. While j is located within the entirety of

Γ with a margin of value m at the beginning and end, i.e. while j ≤ length(Γ)− m + 1,

which will allow us to have a look at all features and their slopes from both sides, then, for

a coefficient of significance α, chosen by us, we’ll test if the two p-values at index j, pl,j and

pr,j, are lower than half of the value of α, the coefficients are very likely to not be zero. As

such, we can start computing the wavelength margins of the feature we’re indexing over

with j, by creating two lists for the left and right, and taking the maximum value from the

former and the minimum value from the latter where their respective p-values are equal or

greater to another significance coefficient, η, whose value is also chosen by us:

kmax = max{k ∈ {u, u + 1, ..., j} : pl,k ≥ η}

kmin = min{k ∈ {j, j + 1, ..., length(Γ)} : pr,k ≥ η}

With kmax and kmin, we can calculate the wavelength bounds of the feature we’re ana-

lyzing, and progress with the search on the other features, associating new values to j and

u:

(
xkmax + xkmax−m

2
,

xkmin + xkmin+m

2

)

j←
⌊
(kmin+m/2)

⌋
, u← j

Other additions were made to the algorithm to make sure we would ignore cases when

the p-values were greater than η, so that we would not obtain null values for kmax and

kmin. However, since the wavelength values we calculated for our bounds were in no way

guaranteed to fit in the values of our wavelength list, we needed to find a way to find the
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indexes of the values in the list closest to the ones we calculated. We did so by subtracting

our calculated bounds from the wavelength list, turning all values within the result into

their absolute values, and then finding the index of the minimum value - the index of the

value closest to zero would be the index of the correct bound value. After that, we can

isolate the feature within these bounds, and fit a Gaussian curve to it in order to obtain

its central wavelength, standard deviation (width), and later on, also its line depth and

offset.

With this algorithm done, we were ready to try it on some simulated spectra. While

we at first tried to randomly create a small spectrum segment with features using a list of

our own values for µ and σ, we decided to test the algorithm by use of the functions from

the Python package Spectrum. With it, we were able to randomly generate spectra with

an amount of features similar to those of the real spectra we would later use. There were

other complications that we had to fix, such as an improved version of the Gaussian curve

and fit of the absorption features that would give us their line depth, essential for working

with multiple features, and an issue where the recovered radial velocities were over 5 to 6

times the expected, due to an earlier error in how we defined the Gaussian function. That

issue was due to a misinterpreted definition of the function norm.pd f (x), which computes

a normalized Gaussian curve over the list of values x, it being

norm.pd f (x) =
e−x2/2
√

2π

However, since we wanted to define the central wavelength and standard deviation of

each curve, we used an alternate form of the function, norm.pd f (x, µ, σ), which instead

returned

norm.pd f (x; µ, σ) =
e−y2/2

σ
√

2π

y =
x− µ

σ

While the changes regarding y do not affect the function overall, the appearance of σ

in the denominator causes a noticeable change. Therefore, when using that form of the

norm.pd f function, we also multiplied it by σ to nullify those changes:

def HG_single(x, m, sig):

fac = (x-m)/sig

return hermite(1)(fac) * norm.pdf(x, m, sig) * sig /

np.sqrt(sig*2*factorial(1)*np.sqrt(np.pi))
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With these mistakes out of the way, we were presented with a new challenge, the

overlapping features. The curves that were fitted around those features, at the time, had a

high error factor, so we followed the suggestions of the paper, and we executed comparisons

between the features’ Root-Mean Square, and the fitted curve:

RMS(τ̂) =

√
1
n

n

∑
i=1

(τi − τ̂i)
2 (2.30)

If the difference was too high, then that meant what we initially assumed as a single

Gaussian feature was actually a double Gaussian feature, so we simply had to fit two

Gaussian curves at once, which would result in two sets of attributes for each of the two

features:

def gauss_func(x, m, sig, c, off):

return off - c*norm.pdf(x, m, sig) * sig

def double_gauss_func(x, m1, sig1, c1, m2, sig2, c2, off):

return off - (c1*norm.pdf(x, m1, sig1) * sig1 +

c2*norm.pdf(x, m2, sig2) * sig2)

However, the criteria for what’s considered a high difference between values of RMS

consists of whether the difference is higher than the quadruple of the median of all ob-

tained RMS’, which meant we first had to fit a single Gaussian curve over all the features,

obtain their RMS, and then realize these comparisons afterwards, but the results were

very positive. While cases of three overlapping features were possible, they were infrequent

enough for us to dismiss them. By this point, we also added another variable to the Gaus-

sian curves to be detected and returned, the continuum line’s offset, to further reduce the

possibility of errors. We also added, as per the article’s recommendations, recommended

initial values and bounds for the attributes of the features we’re fitting, to avoid obtaining

any poorly fitted curves. The originally intended initialization for these values, as well as

their bounds, can be easily summarized in Table 2.1. However, as we’ll later see, some

changes had to be made in response to the data we would work with.

Attribute Initial Value Bounds
di 1 - yj [0, 1]
µi xj [min(λi), max(λi)]
σi width(λi)/5 [0, width(λi)]

Table 2.1: Values for the initialization of a feature i’s attributes before the Gaussian curve
fit, and the bounds for the fit’s results, where λi is the wavelength window for feature i, fi
is the corresponding set of values for the flux, yj is the flux value located at index j such
that yj = min( fi), and xj is the wavelength value for which we attained the minimum flux
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With this, we tested the algorithm for multiple radial velocities which led to computing

multiple shifted spectra. We realized that the RVs that were obtained from the algorithm

were consistently slightly smaller in absolute value compared to the generated RVs. We

deduced it was a systematic error caused by the intrinsic imperfections of our approxima-

tions, like using a Gaussian curve model to fit the spectral lines. Another issue that had

been noticeable up to this point was how our algorithm ignored some of the more promi-

nent lines in the curves. Our assumption was that the m window for the feature detection

was too big for the number of points in those features, making it so that the algorithm

would ignore them entirely. With real data, however, as we ended up seeing further ahead,

this issue was not as noticeable, and the detection of the absorption features and their

attributes was deemed to be satisfactory.

We attempted another technique to further improve our values, this time to the spectra

we were using as the template, in the case we would not have any given template spectra

to use. In that case, we would need to compute our own from the shifted spectra we would

have. Therefore, depending on how shifted the spectra were in relation to each other, we

would do one of the following: we either simply calculate a mean of all shifted spectra, and

use the result as the final template spectrum, or we use that resulting spectrum as a first

approximation, and use it to obtain approximations of the radial velocities. With those, we

then ”re-shift” the shifted spectra with the corresponding values of obtained RVs towards

their approximate unshifted position and calculate a mean of those resulting spectra to

obtain a better template spectrum, with which we calculate the final difference spectra to

then calculate the final RV values. Both of these methods, as they were initially planned,

used simple unweighted means of the spectra to create a template. While we were going

to further perfect them however, given how the data we had available included template

spectra, this was an approach that ended up being unnecessary.

2.3 Adjustment of the H-Gs and calculation of the RVs

With the template and observed spectra obtained, as well as their features’ attributes,

we can then create the difference spectrum, and use the values obtained to fit Hermite-

Gaussian curves over every feature in the difference spectrum. However, the functions we

first wrote to define the Hermite-Gaussian functions and fit the curves on them required

a few changes first. One of the main changes done was fixating the degree of the Hermite

function as 1 to avoid using too many unnecessary variables since we would not be using
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curves of any other degree. And, as it was mentioned prior to this section, we multiplied

the norm.pd f function by sigma to cut that variable from the formula, since it does not

appear in the Gaussian component of Equation (2.8). However, that leaves out a constant

included with the norm.pd f function, 1√
2π

. The reason why I did not remove it comes from

the fact that it would be introduced in the next function, where we would sum all of the

features, now multiplied by their respective line depth, and fit a curve to the resulting list

of values:

def HG_list(x, y_subtraction, list_m, list_sig, list_const,

list_off, v_guess):

def HG_helper(x, vr):

y = np.zeros_like(x)

for m, sig, con, off in zip(list_m, list_sig, list_const, list_off):

c1 = con * np.sqrt(np.sqrt(np.pi)) * m / (c*np.sqrt(2*sig))

y -= (HG_single(x, m, sig) * c1)

return y*vr

popt, pcov = curve_fit(HG_helper, x, y_subtraction,

p0 = v_guess)

vr = popt[0]

y = HG_helper(x, vr)

return y, vr

with said value lists being for µ, σ, the line depth (represented as the variable con) and the

offset as the function’s input, the latter of which we could not find a way to incorporate

into the formula, and including an initial guess of the RV for the curve fit as well. The

inclusion of the constant carried over from the previous formula makes it so that our current

definition of the difference flux is the following:

y = vr

n

∑
j=1

√√
πµ

c
√

2σ
d (2.31)

with d = con√
2π

defined as the line depth, making con an unnormalized line depth.

Having obtained the lists of Gaussian spreads (σi), centers (µi) and amplitudes (di),

we defined a function within the main HGlist function, one also of flux in function of

the wavelength, defined above as the HGhelper, with the Radial Velocity as its variable.

We first recursively create a list of flux values to which we keep adding up the calculated

Hermite-Gaussian curves, using the values of the spectral line’s attribute lists. Then, we

fit the helper function to this newly created list of flux values to obtain the value of its

only variable, the Radial Velocity of the shifted spectrum. During our testing work with
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generated spectra, only one major adjustment had to be made to this part of the algorithm,

to correct the way this function was defined. It was also during this time that we ran into

some issues regarding the shape of the obtained difference flux. With out first test runs,

the continuum was not flat and instead showed large oscillations of a periodic nature, not

too dissimilar to a large Hermite-Gaussian curve of the first degree. As it turned out, the

feature detection algorithm, which at the time still did not have bounds for the fits of

detected fits implemented, had obtained severely deviating values for some of the features,

causing the large H-G curves to deform the continuum of the difference spectrum. We fixed

this by introducing proper bounds for the values of the attributes of the spectral lines, in

our spectral line detection algorithm.

Finally, in order to allow the algorithm to work with multiple shifted spectra, we added

a f or cycle to go over the entire list of spectra. We also took this chance to compute a

graph generator that would show the template spectrum and the current shifted spectrum,

as well as their difference spectrum and the fitted Hermite-Gaussian curves. I also took the

liberty of using the obtained RVs to calculate new H-Gs, to see how would they compare

to the ones obtained from the difference spectrum. One other thing must be taken into

consideration, however: the signal-to-noise ratio of the values of each observation. Holzer

et al. [2020] had realized multiple simulations of spectra with a known RV value, using

the HGRV method on them to calculate the error that comes from modelling alone, by

calculating the RMS of the obtained RV value of all n simulations against the fixed value:

R̂MS(v̂r) =

√
1
n

n

∑
i=1

(v̂r,i − vr)2 (2.32)

We can also estimate the standard deviation (SD) and bias as

ŜD(v̂r) =

√
1
n

n

∑
i=1

(v̂r,i − vr)2 (2.33)

B̂ias(v̂r) = vr − vr (2.34)

with vr as the average estimated velocity. Holzer et al. [2020] explored how these values,

simulated to imitate those obtained from the star 51 Pegasi, varied with the SNR and the

given radial velocity. With that, he uncovered that the HGRV method, in the small RV

regime, can obtain a precision of less than 0.3 m s−1 for an SNR of approximately 250 or
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higher, while the bias is only above 0.1 m s−1 for RV values in the order of 100. Further-

more, expanding on the bias introduced by the model misspecification, the combination

of multiple non-Gaussian absorption features in the HGRV method does not cause a bias

amplification. In fact, the SD contributes more to the RMS than the bias, which is also

shown to be somewhat proportional to the RV value.



Chapter 3

Applying the Method to Real Data

3.1 Further changes to the algorithm

Applying our method to real ESPRESSO observations posed some additional challenges.

The data was stored in . f its files, which required the package astropy.io to properly unpack

and explore. As we previously stated, we were working with observations of the star

Tau Ceti, of which we have 30 observations done on the 29th of November 2022, 15 of

which were done from 1:13:02 to 1:30:28, and the latter 15 from 3:15:49 to 3:33:15. There

is also a template spectrum available, which was built by median-combining individual

observations. The spectra are provided in so-called S2D files, separated by the 170 Echelle

orders of ESPRESSO. The wavelengths in the provided files were already corrected for the

relativistic effects introduced by the Earth’s motion, the values of which can be checked

in the headers. For each order, we would obtain the corresponding template, and compare

it with all of the provided observed spectra. Since the spectra cover a wavelength range

of 3700-7900Å, the first few orders will be overfilled with features and their continuum

line will be very sloped, and the spectral regions at longer wavelengths will have telluric

features. It is also important to remember that, while we created our algorithm to work

with velocities in the SI units (meters per second), the values within the real data files are

set for radial velocities in kilometers per second, so a conversion of values was also taken

into consideration, which involved a simple rescaling of the obtained RV values.

Each of the spectra of every order first needed to undergo proper treatment for better

handling and for obtaining more precise results. For that, we need to first normalize the

spectra, in order to remove the continuum in each order. For this, we decided to calculate a

polynomial fit to the continuum, and then use it to normalize the spectra itself. However,

27
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many areas of the template spectrum have blanked out sections in several orders, with

values that were set to zero. This is to mask regions of very low SNR, regions contaminated

by telluric lines or cosmic rays, for example. Having these values set to 0 interferes with

the calculation of the polynomial fit, so we use the provided masks, available in the .fits

files, to convert the masked values into NaN values which can then be ignored using a

Numpy function that determines which elements of an array are finite values or otherwise.

We can then calculate the polynomial fit using only the finite values:

temp_wave = hdr_temp[1].data[order]

temp_y = hdr_temp[2].data[order]

maskbad = hdr_temp[3].data[order] == 1

temp_y[maskbad] = np.nan

idx = np.isfinite(temp_wave) & np.isfinite(temp_y)

cont_fit = np.polyfit(temp_wave[idx], temp_y[idx], 2)

temp_y = temp_y/np.polyval(cont_fit, temp_wave)

in which hdr_temp is the . f its file from which we obtained the wavelength and flux arrays,

as well as the mask that was used. idx is a list of Boolean values, which is used to select

the non-NaN values. The same process was used for the normalization of the observed

spectra although, as we will later see, that led to some oversights.

With all of this information, we could now fit the Gaussian curves to the features

of the template individually, then obtain their properties, and use them to calculate the

respective H-Gs after calculating the difference flux for each observation and order. As we

can see in Figure (3.1), many of the features found have a very minimal line depth, barely

managing to distinguish themselves from the continuum line, as a result of the significance

levels we had set. Most of our attempts to change these values within a reasonable range to

try and ignore these minimal features did not prove to be very fruitful. While they could

simply be a result of noise, many of these oscillations remain consistent among orders,

hence why we decided to keep them for the rest of our analysis. We can also see in Figure

(3.2) some of the cases where the features in a blend are not correctly detected. Besides

this however, much like the first part of the algorithm, many changes had to be made to

not only accommodate the algorithm for the format of real data we were now using, but

to also correct and mitigate any errors that appeared during that process.

First, during the time when we were still testing the algorithm with a single real spec-

trum, we focused on being able to fit the new format of the available data, so the code
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Figure 3.1: Section of the normalized template spectrum, showcasing the Gaussian curve
fits done individually to each absorption feature. Many of the features detected have very

minimal line depth.

was changed to take in the values from the previously created lists, so we could analyze

the features of the spectrum, at each of its orders. This means we also had to remove the

flux values at the wavelength ranges that were obscured by the template’s mask, using the

same method that was used to first treat the template spectrum. Afterwards, we have

to normalize the observed spectrum’s continuum and mask out the contaminated regions,

using the same method we had for the template. However, the continuum varies substan-

tially from order to order and from one spectrum to the other, so using a polynomial fit of

a fixed degree proved to be unreliable, and it led to clear errors of normalization. As such,

for each order, we calculate the first and second-degree fits of the continuum, and then

we calculate the Root Mean Square of the residuals in order to choose the fit to normalize

the spectrum. If none of the fits were suitable, we assumed the continuum was closer

to a constant in shape, and simply divided the spectrum by its maximum value. Once

the individual spectra are continuum normalized, we proceeded with the feature-finding

algorithm.

Another detail regarding the algorithm had to do with the RV of the template spectrum.

The template was calculated in Earth’s rest frame and so had an RV value equal to 0.

But the individual spectra have RVs around the systemic velocity of Tau Ceti which is

around −16.7 km s−1. Since our RV calculation algorithm is only valid for RVs smaller

than 100 m s−1, we had to bring our template closer to the observed spectra, which meant

we had to Doppler shift the template spectrum by a value close enough to the observed
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Figure 3.2: Section of the normalized template spectrum, showcasing the cases where the
Gaussian curve fits done to blends result in one of the features of the blend being either

badly detected, or outright undetected.

spectrum’s RVs. If we shift the template to a value too close to the observed spectrum’s

RV, then the difference flux would be nonexistent, so we agreed on a value close enough

to that of the RV that would bring the template’s RV closer to those of the observation

spectra. We did so with such a value that their difference would be under the limit for

which our algorithm would still be valid. Then, once we obtain the features, calculate the

difference flux and obtain the RV values from the curve fit to the H-Gs, we now have the

values of the normalized RV shifts, to which we add the value used to Doppler shift the

template spectra in order to obtain the true RV values.

We also needed to include in the algorithm the calculation of the uncertainties on the

derived RV values. We started by obtaining the flux uncertainties, associated with each

spectra, from their respective . f its file. After treating the list of values with the flux

spectrum’s mask and normalizing it to the same continuum fit as the spectrum’s, we also

shift its values in accordance with the shift done to the template. However, it must be

done in a different way, since for the uncertainties, we only want to change the index of

the values, without changing the values themselves. So, for the flux error, we instead used

this:

flux_err = doppler_shift(template_wavelength, flux_err,

-rv*1e3, kind = 'nearest')

with the function doppler_shi f t(x, y, v, kind) being different from the one used in the first

method, and instead allowing us to specify the kind of interpolation we want to do for the
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shift. We used the ”nearest” interpolation to keep the exact uncertainty, just with changed

positioning. We then incorporate the flux uncertainties into the least squares fit of the

H-G functions, which allows us to obtain a statistical estimate of the uncertainty in the

derived RV. Some care had to be taken to mask out the previously set NaN values before

the H-G fit.

3.2 Calculation of RVs order by order

At first, we had set the initial Doppler shift done to the template spectrum and its flux

errors to an amount equal to 9/10 of the symmetric of the CCF-obtained RV of the

spectrum that was observed at 1:30:29, to see if the process worked. While the RV values

obtained were still lower than those obtained through the CCF method, they were close

in order of magnitude, so we were on the right track. What we needed was to bring the

template spectrum closer to the observed spectra so that the RV difference value between

them is below the 100 m s−1 limit. Therefore, we set the Doppler shift of the template

to 199/200 of the symmetric of the CCF-obtained RV of the spectrum that was observed

at 1:30:29, a shift of approximately 16.58 km s−1, which led to a vast improvement of the

values, since it equated to a difference between template and observed spectra of roughly

83.33 ms−1, which is the value we used for the initial guess of the RV for the H-Gs curve

fit.

In order to locate the absorption features on the template spectrum, we defined the

algorithm values by following some of the recommendations from Holzer et al. [2020],

setting m = 20, α = 0.01 and η = 0.05. We set a lower value for m, the size of the search

window, in order to avoid skipping spectral lines. These values remained the same as we

obtained the features of the template spectra over all 170 orders. However, when we set the

initial values and bounds for the attributes of the Gaussian fits for the absorption features,

we realized we had to increase the limit for the line depth, mostly due to the features in

the earlier orders being relatively deeper and more asymmetric, with a continuum that

was difficult to fully normalize. However, any features whose set initial values went over

the normal limits, such as too wide or deep features, or those with negative values for the

attributes, would be cut. With that set, the feature-finding process went normally for all

orders of templates, getting the wavelength bounds of the features and their attributes as

well, and saving them in distinct files.
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From there, we ran the second part of the algorithm to go over the 30 . f its files over

each order, where we compared the respective template data with all observed spectra

from that order, calculating the difference flux and using the Hermite-Gaussian formulas

to fit the curve on it. After we obtained the values, we noticed that some of the RV

values had inconsistently high errors associated with them, particularly those from orders

146, 147, 162 and 163. A look into the observed spectra revealed that, while we were

normalizing them correctly, we were only masking the values that did not appear on the

template spectra after their normalization. Because of that, some of the spectra, which

had more irregular regions in their spectra - which corresponded to the masked sections of

the templates - led to more irregular continuum lines, and therefore to curved difference

flux spectra instead of flat, which increased the values of the RV errors drastically. So, we

masked the observed spectra using the template masks before normalizing them, yielding

values with smaller uncertainties. Some of the orders still had slightly higher error values,

mostly due to frequent masked regions in their spectra, leading to fewer features to fit. In

Figures (3.3) and (3.4), we can see examples of the H-G fits done to the difference flux

after all the corrections.
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Figure 3.3: A section of the normalized difference flux array, with the H-G curve fit in
orange, and the residual difference between the difference values and the fit. This fit is
taken from the first observation, order 100, and for the most part, its residual difference
does not go beyond the order of magnitude of 0.1 m s−1. However, we can see a deviation
between the difference flux values and the curve fit. While the cause of the deviation is
not clear, we believe it is the reason why the RV values are not as accurate as predicted.
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Figure 3.4: A section of the normalized difference flux array, with the H-G curve fit in
orange, and the residual difference between the difference values and the fit. This fit
is taken from the first observation, order 120, showcasing similar observations to those
from the previous figure. This image is also an example of some of the greater deviations

between the values in the difference flux and the fitted curve.
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3.3 Combined results for all orders

Once we obtained the Radial Velocity values, before we could combine the results, we de-

cided to check some of the information about the observed spectra from which we obtained

them. Each file has a signal-to-noise ratio (SNR) for each of the orders that it covers. As

expected, the earlier orders, overfilled with features and stellar noise, and all before the

stellar spectrum’s flux peak, have a very low SNR as opposed to the later orders, although

there’s a decrease in the last values, and while it is possibly due to the presence of telluric

features, the lesser amount of spectral lines could also play a part in that. Calculating the

mean of the SNR of all 30 observed spectra per order, we’ll take into account the RVs that

came from orders with an SNR greater than 250, as recommended in Holzer et al. [2020].

With the orders of enough SNR, we then proceeded to calculate the mean of the RVs from

the 30 observations per order, as well as of their errors, ignoring the orders for which their

templates were fully masked out.

Looking more in-depth at the results, two main observations regarding the structure of

the observed data were made. The first 90 orders, roughly within the range of [3800 Å -

5200 Å], both the left and right sections of the data sets are made out of null values, while

past that order, in [5200 Å - 7900 Å], the observed values span the entire wavelength range.

The other observation made was that the results from the orders seemed to group together

in consecutive pairs. This is due to the fact that, for every two orders, two observations

on the same wavelength range were made, leading to pairing results of great similarity,

although since the similarities were not exact, we decided to not separate them. Looking

back at the spectra of lower SNR, relative to those of higher SNR, and as it can be seen in

Figure (3.5), we can see a much higher frequency of features, as well as some much wider

features, blending with multiple ones of regular width at once. Plus, before the corrections

that were needed for the method of normalizing the observed spectra, some abnormalities

were found in the spectrum of some of the orders with higher SNR, due to the peculiar

bands and features in the respective observed spectra. In some orders, one or two negative

absorption features could be spotted, but since these abnormal flux spikes were not present

in the pairing orders of the same wavelength range, we can assume these are actually a

result of either an instrumental error or an error that comes from stray flux emissions. We

also noticed, upon making a direct comparison between the template spectrum’s masks

and the observed spectra, that many regions in many of the later orders were vastly cut

down, but of greater note are the regions within the ranges [5870 Å - 6000 Å], [6460 Å -
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6600 Å], [6980 Å - 7430 Å], with this last region having entire orders cut out entirely, with

an unusually high-frequency rate of absorption features, and [7590 Å - 7750 Å] also having

many peculiarities. These last two regions also stuck out to us due to the noticeable odd

change in the shape and frequency of their features, within the ranges [6870 Å - 6940 Å]

and [7590 Å - 7700 Å].
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(a) Order 40 - We can see how the left and right sections have NaN
values, as well as the large amount of spectral lines

(b) Order 110 - We see some breaks in the middle of the difference flux
due to the masks of the template. We can also see a fluctuation of the

values

(c) Order 150 - At higher orders, the amount of spectral lines is very
low

Figure 3.5: Examples of three distinct orders from the first observation





Chapter 4

Comparison of obtained RVs with other

methods

In order to test the practicality and precision of the HGRV method, we decided to test

the RV values we obtained by comparing them to the CCF-obtained values of the same

observed spectra, present in the header of the . f its files, as we can see in Figure (4.1).

We did so by calculating the mean of all RVs and their errors across the selected orders

per each of the 30 observations, to then directly compare them to the CCF-obtained RV

values. We can observe that the values we obtained deviate from those obtained through

the CCF, with both groups of values being outside the others’ uncertainty range. However,

this deviation is less than 0.5%, with all of the values still remaining in the same order of

magnitude. Plus, as we can observe in Figure (4.2), the variation range of our values is

also in the same order as that of the CCF values, despite a few outliers. Even still, the

uncertainties of our values are roughly 20 times greater than those obtained with the CCF

method.

We also wanted to take a look into the dispersion of the RV values we obtained and

compare it to that of the CCF values, so we created two distinct histograms. The first, seen

in Figure (4.3) was created with the 30 values we obtained from calculating the mean of all

RV values obtained for all valid orders, per each of the observations, directly comparing it

with the histogram created with the 30 RV values from the CCF. We can see that, while

the RV values obtained from the CCF reveal a tendency towards two separate values, the

HGRV values show a more cohesive dispersion, peaking at a single value, which means that

for these observations, the HGRV method obtains values with a greater precision.
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Figure 4.1: Comparison of the values obtained with the HGRV method (top) to those
from the CCF method (bottom), with their respective uncertainties

Figure 4.2: Comparison of the values obtained with the HGRV method (top) to those
from the CCF method (bottom), with the Radial Velocity axis scaled in a way to allow

for a comparison of the values’ variation.



4. Comparison of obtained RVs with other methods 41

Figure 4.3: Histogram of the RV values obtained through the means of all values from all
valid orders, per observation (left); and histogram of the CCF values (right). We can see
how the CCF values formed two distinct groups of values, as opposed to those from the

HGRV.





Chapter 5

Conclusion

In this work, we looked into the Radial Velocity method for detecting exoplanets. We

examined the Hermite-Gaussian Radial Velocity method, proposed by Holzer et al. [2020],

which showed promising results in terms of precision, and in doing so, we obtained a deeper

understanding of the theory behind the method, and of the simulations that showcased the

limits for which the method was valid. Our algorithm searches a template spectrum for

spectral lines, which we assume are Gaussian in shape, to then obtain their properties.

After that, we calculate the difference in flux between our template and the observation

spectrum, use the properties of the features to define their respective Hermite-Gaussian

curves of the first degree, and fit them in the difference flux, which will give us the observed

spectrum’s relative radial velocity to our template spectrum.

We then proceeded to put the method into practice, gaining more insight into the

practical work needed to execute it, from developing the algorithm that finds absorption

lines in a stellar spectrum and distinguishes them from each other within blends, obtain-

ing their attributes, to the functions necessary to fit Hermite-Gaussian functions of first

degree on the data that results from the difference between the template spectrum and the

observed spectra. This was the most time-consuming part of our work, as we spent a long

time not only testing our functions with randomly generated spectra, which had their own

limitations that were not present in real spectra, as well as realizing many corrections to

our formulas, caused by oversights during their initial development. Besides that, we also

tried to come up with methods to tackle some of the method’s obstacles, like the tackling

of blended features and the construction of our own templates from the observed spectra,

although some of these methods ended up at least partially unused in some areas, not

deemed necessary or worthwhile, mostly due to time constraints.
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When we moved to real data, we realized more work needed to be done to not only treat

the data so it could be used but also change the algorithm to accommodate the format of

the data. The observed spectra were all divided in the 170 echelle orders of ESPRESSO,

so the algorithm had to obtain the template’s features and use them to fit the H-Gs to the

difference flux for each of them. Moreso, the template spectrum had many masked regions,

so we needed to use the masks of each order to remove the corresponding sections of the

observed spectra before normalizing their continuum. From this, we were not only able

to obtain the radial velocities of each observation for each order, which all had different

values of SNR, but we also implemented the template spectrum’s uncertainties in the curve

fits, so as to properly obtain the errors of the RV values. This part of our work, while not

the most time-consuming, was the one that required the most changes and corrections, as

multiple oversights of the results of individual parts of our algorithm resulted in poorly

normalized spectra, bad H-G fits, or drastic increases in the RV errors.

While we were not able to achieve more accurate results than those obtained through

the Cross-Correlation Function method, we did obtain a more precise array of values.

The lack of accuracy could be attributed to a number of factors, such as the differences

in the radial velocities between the provided template and the observed spectra initially

proving to be too great for the limits within which the HGRV method can properly work.

Therefore, we had to work around those limitations to be able to obtain valid results, like

Doppler shifting the template spectra closer to their corresponding observed spectra, after

which we took the obtained RV variations and added back the value used for the templates’

shifting, which could have resulted in a loss of accuracy. Another factor that could have

contributed to the differences between the obtained values and the CCF values is the high

number of detected features with very minimal line depth, which could have simply been

noises caused by noise and could have been ignored in favour of more prominent features

in the spectrum, rather than removing weight from the contribution of these features to

the results.

Furthermore, we sadly were not able to experiment with enough data nor for long

enough to attempt to perform the necessary analysis in order to obtain the features of the

orbiting exoplanets of Tau Ceti. That would have required an amount of data that could

span over months of observations, instead of the two observation sessions of half an hour

that we used. However, we hope that our work on this method and implementation of

this algorithm can serve as an incentive for future development on the observations done
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and on the algorithm that was already constructed, to further develop the approaches

already taken and perhaps even try out new approaches to the HGRV method. Some of

the possible improvements on the feature detection and treatment could include some of

the features we initially considered adding but ended up unused, like the detection of triple

feature blends, due to their overall rarity in comparison to the double feature blends, or

the continuum fits of variable degree for the template spectrum, which was only used for

the observed spectra. We hope that, in the future, improvements could be made to our

algorithm, to then utilize it to not only obtain the radial velocity variations of stars but

also obtain the attributes of their orbiting exoplanets.
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