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Abstract

Although cosmic strings arise naturally in both unifying theories and string theory

inspired inflation models, no observational evidence of their existence has been found so

far, implying that their study must rely on field theory numerical simulations. Since these

simulations are still computationally demanding, alternative approaches based on analytical

models that are able to characterise the evolution of the network based on a reduced

number of macroscopic parameters are often used, with particular relevance for the velocity-

dependent one scale model (VOS). Originally developed to explain the evolution of the

simplest networks, its canonical version has already been extended to allow for strings with

additional degrees of freedom, as small scale structure or charges and currents. In this

work, its generalised version for current carrying strings is analysed and the compatible

scaling solutions characterised. In particular, the expansion rates that allow for different

qualitative behaviour of the strings charge and/or current are identified, as well as the

impact on this evolution of the existence of energy and/or charge loss mechanisms, here

included as model parameters. The identified solutions indicate that both charges and

currents are more easily preserved for slower expansion rates, but full scaling can occur

for specific values of the expansion rate. Finally, the analytical solutions predictions are

compared with numerical simulations for different expansion rates. Although the qualitative

behaviour is compatible with the analytical expectations, it was found that the details are

not. In particular, the numerical simulations seem to suggest that the networks are loosing

charge faster then expected and/or the strings velocity is higher than anticipated. It is left

for future works to understand if this is due to a poor behaviour of some of the estimators

associated with the numerical simulations, or if some more fundamental assumption of the

analytical model is not valid for current-carrying strings.

Keywords: Cosmic strings, topological defects, analytical solutions, Cosmology





Resumo

Apesar de cordas cósmicas serem uma previsão de várias teorias de unificação ou modelos

inflacionários baseados em teoria das cordas, não foram detetadas até hoje, pelo que o seu

estudo depende de simulações numéricas avançadas. Sendo estas simulações computacio-

nalmente exigentes, modelos analíticos em que a evolução da rede é caracterizada a partir

de um número reduzido de parâmetros macroscópicos são comummente utilizados, e em

particular o modelo Velocity-dependent one scale (VOS). Apesar de ter sido originalmente

desenvolvido para estudar a evolução dos casos de redes de cordas mais simples. a sua

versão canónica foi, entretanto, estendida para acomodar modelos de cordas com graus

de liberdade adicionais, como estrutura de pequena escala ou cargas e correntes. Neste

trabalho, é analisada a versão deste modelo desenvolvida para cordas com cargas genera-

lizadas e as soluções em que as diferentes quantidades evoluem de acordo com leis bem

definidas (scaling) caracterizadas. Em particular, as taxas de expansão que permitem di-

ferentes comportamentos de um ponto vista qualitativo da carga e/ou corrente nas cordas

são identificados. bem como o impacto da possível existência de mecanismos adicionais de

perda de energia e/ou carga, aqui contemplados como parâmetros do modelo. As soluções

encontradas sugerem que tanto cargas como correntes são mais facilmente conservadas para

taxas de expansão mais baixas, apesar de regimes de scaling serem possíveis para valores

específicos desta quantidade. Finalmente, as soluções analíticas são comparadas com os

resultados de simulações numéricas para diferentes taxas de expansão. Apesar do com-

portamento ser qualitativamente semelhante às previsões analíticas, os seus detalhes não

o são. Em particular, as simulações estudadas sugerem que as redes perdem carga mais

rapidamente do que antecipado e/ou a velocidade característica das cordas é maior do que

esperado. É deixado para trabalhos futuros perceber se estas diferenças se devem aos esti-

madores utilizados nas simulações numéricas, ou se alguma hipótese mais fundamental do

modelo analítico não é válida para cordas cósmicas com cargas.

Palavras-chave: Cordas cósmicas, defeitos topológicos, soluções analíticas, Cosmologia
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Chapter 1

Introduction

1.1 Modern Cosmology: the theoretical minimum

In the XXth century the physicist Lev Landau developed an exam based on everything a

student was supposed to know in order to work with him called The Theoretical Minimum.

Although the definition was slightly relaxed, this concept led to a series of courses, from

Classical Mechanics to General Relativity and Quantum Mechanics, lectured by Stanford’s

Professor Leonard Susskind. In his idea, the theoretical minimum was "just what you need

to know in order to proceed to the next level" [1]. Following the latter interpretation, our

current understanding of the universe evolution in the context of modern Cosmology is

mostly based on Einstein field equations, that can be expressed as: *

Gµν = Rµν −
1
2

gµνR = 8πGTµν (1.1)

where Rµν and R are the Ricci tensor and scalar (or scalar curvature) and can be computed

for the metric tensor and its derivatives alone, here taken to be the Friedmann-Lemaître-

Robertson-Walker (FLRW) metric, that may be written in spatial spherical coordinates as:

ds2 = −dt2 + a(t)2
[

1
1 − kr2 dr2 + r2

(
dθ2 + sin2 θdϕ2

)]
=

= a(τ)2
[
−dτ2 +

1
1 − kr2 dr2 + r2

(
dθ2 + sin2 θdϕ2

)] (1.2)

*Here, for convenience, it has been set c = 1.

1



2 EVOLUTION OF CURRENT CARRYING COSMIC STRINGs

where Tµν is the energy momentum tensor*, a is the scale factor, and t and τ are the cosmic

and conformal time, respectively, that are related by:

dt = adτ (1.3)

The curvature parameter, k, defines the nature of the space-time structure as flat (k = 0),

hyperbolic/open (k = −1) or spherical/closed (k = +1).

Under this metric choice, the non vanishing components of the Einstein tensor can now

be obtained as †:

Gtt = −3
ä
a
+ 3

[
ä
a
+

ȧ2 + k
a2

]
= 3

ȧ2 + k
a2 (1.4a)

Gij = −
(

2
ä
a
+

ȧ2 + k
a2

)
a2γij (1.4b)

where γij is defined from the metric as:

γijdxidxj =
1

1 − kr2 dr2 + r2
(

dθ2 + sin2 θdϕ2
)

(1.5)

Making now use of the metric tensor for a perfect fluid (T00 = T00 = ρ and Tij = pgij =

pa2γij), the time component of the Einstein equation and any of the spatial ones provide:

3
ȧ2 + k

a2 = 8πGρ + Λ −→ ȧ2 + k
a2 =

8πGρ + Λ
3

(1.6a)

− 2
ä
a
− ȧ2 + k

a2 = 8πGp − Λ (1.6b)

where the cosmological constant as been made explicit and that are known as the Friedmann

equations. Multiplying Equation 1.6b by 3 and adding Equation 1.6a, the Raychaudhury

equation is finally obtained:

−6
ä
a
= 8πG · 3p − 2Λ + 8πGρ −→ 3

ä
a
= Λ − 4πG

(
ρ + 3p

)
(1.7)

It should be noted that the relation between pressure (p) and density (ρ) can be written

as an equation of state that differs for different components (non relativistic, relativistic or

dark energy), but that may generally be written as:

p = wu = wρ (1.8)

*For convenience, the energy momentum tensor includes the effect of a cosmological constant or any
other form of dark energy.

†The dot represents derivatives with respect to the physical time t, while the prime will represent deriva-
tives with respect to conformal time τ.
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where u is the energy density of the fluid. Assuming an adiabatic expansion of the universe,

the first law of thermodynamics imply that:

dU = −dW −→ dU
dt

= −p
dV
dt

(1.9)

or, expressing the function from the scale factor, the fluid equation finally emerges:

d
(

a3(t)ρ
)

dt
= −p

d
(

a3(t)
)

dt
(1.10)

Substituting the equation of state in the form presented in Equation 1.8, and assuming w

to be constant, results in the well known conservation law:

a3(1+w)ρ = ρ0 (1.11)

where the equality follows from setting a0 = a(t = 0) = 1. It should be noted that:

1. For non-relativistic matter (p ≪ ρ), w = 0 and the familiar mass conservation

equation a3ρ = ρ0 is recovered, or ρ ∝ a−3.

2. For photons, as p = u/3, w = 1/3 and so a4ρ = ρ0 or, equivalently, ρ ∝ a−4

3. For the cosmological constant, and expressing ρΛ = Λ/ (8πG) = ρΛ,0 = constant,

the equation of state is equivalent to pλ = −ρΛ, or w = −1.

The contribution of different components to the right hand side of the Einstein equation

can be explicitly written as the total pressure and densities p = ∑s ps and ρ = ∑s ρs where

the index s identifies the different types of particles, each with its own equation of state.

Finally, it is particularly useful to introduce the Hubble parameter, defined as H = ȧ/a,

and the density parameter Ωs = ρs/ρc, being ρc the critical density associated to a flat

universe. Here, the Friedmann equation can be alternatively expressed as:

H2(t)
H2

0
= ∑

s
Ωs,0a(t)−3(1+ωs) (1.12)

where the index 0 stands for the value of the quantities evaluated today. The properties

expressed above combined imply that for very early times (small scale factor) radiation

dominates leading to the so called radiation era, meaning:

H ∝∼ a−2 −→ a ∝ t1/2 ∝ τ (1.13)
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On the other end, for a sufficiently large scale factor, the dark energy will inevitably dom-

inate, as it already does, leading to the Λ era:

H ∝∼
√

Ωλ (1.14)

and the universe expands exponentially. Finally, and in between these two scenarios, non

relativistic matter (both baryonic and dark) will govern the expansion of the universe during

the matter era, in which case:

H ∝∼ a−3/2 −→ a ∝ t2/3 ∝ τ2 (1.15)

Although the theoretical framework of General Relativity applied to the universe evo-

lution just described provides an unmatched level of understanding, there are still relevant

aspects that are not fully understood.

Firstly, recent observations of high redshift have found that the universe is accelerating

its expansion, implying that the cosmological constant must be positive and recent data

from the Planck mission [2] constrain it to be such that ΩΛ = 0.691 ± 0.006. Interestingly

enough, this constant was not only firstly introduced by Einstein itself in order to make

the universe stable, but later removed and considered as its "greatest mistake". However,

the last word is always reserved for Nature itself and currently a non-vanishing value is

accepted, in what is commonly referred to as dark energy.

On the other hand, observations of the rotation curve of galaxies reveal that the outer

bodies exhibit higher velocities than the ones that could be foreseen from the observed

matter in the galaxy. In order to keep the framework of General Relativity, it has been

suggested that an important part of non-relativistic matter is in the form of what is com-

monly referred to, in the absence of a better name, as dark matter, as it hardly interacts, if

at all, with the remaining forms of matter, expect for its gravitational influence. Recently

additional evidences for this proposal have been found, in particular in the bullet cluster,

where the mass distribution based on gravitational lensing and X-ray emissions can be seen

to present different distributions [3, 4], as represented in Figure 1.1.

Finally, the Friedmann equation can be alternatively written as:

H2

[
1 − ρ

3H2

8πG

− Λ
3H2

]
a2 = H2

[
1 −

ρ + Λ
8πG

3H2

8πG

]
a2 = −k (1.16)

where our claim that the cosmological constant can be included in the stree-energy tensor

becomes evident by defining the equivalent mass density for the cosmological constant as
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FIGURE 1.1: Identification of matter distribution in the bullet cluster from different
sources. On the left panel, the X-ray emission associated with hot gas is superimposed
on the visible matter. On the centre panel, the same X-ray emission is presented in pink,
with the mass distribution based on gravitational lensing is coloured in blue. On the right

panel, the visible matter is superimpose on the gravitational lensing estimates
(Source: Chandra X-Ray Observatory: 1E 0657-56)

ρΛ = Λ
3H2 , in which case the expression above can be written as:

H2

[
1 − ρ + ρΛ

ρc

]
a2 = H2 [1 − Ωm − ΩΛ] a2 = [1 − Ωm − ΩΛ] ȧ2 = −k (1.17)

where the critical density ρc has been defined and the density parameter Ωi introduced as

the ratio between the equivalent density and the critical density. From the expression above,

it becomes clear that for a total density equal to the critical value, the universe if flat (k = 0).

More importantly, since the right hand side is constant, so must be the left hand side.

This apparently innocuous claim implies that to the universe being almost flat today (with

maximum deviations at the percent level), it must have been much more so in the very early

times. If this is not clear, it should be noted that for either a radiation or matter dominated

expanding universe, a(t) scales as tλ, with λ < 1, implying that, for very early times, ȧ ≫ 1

and the deviation from flatness (the term 1 − Ωm − ΩΛ on the left) must be very small.

This is what is commonly identified as the Flatness problem. Additionally, the cosmic

microwave background homogeneity at distances greater than allowed by causality is also

not compatible with an universe that has been dominated by matter, and radiation before

it, leading to the Horizon problem. These issues lead to the proposal of the inflationary

cosmology scenario, where the universe experiences an exponential growth at the very early

stages, before the onset of the radiation dominated epoch. It should be noted that a

cosmological constant type of evolution can not be used to explain such epoch, although

it also predicts an exponential expansion, since in this case it would not come to a stop.

Although the details of inflation will not be addressed here, it should be mentioned that

is also solves the so-called Monopole problem, by wiping out any traces of the magnetic

monopoles that soon would come to dominate the universe expansion, which is strongly

https://chandra.harvard.edu/photo/2006/1e0657/more.html]
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contradicted by observations. Magnetic monopoles are the first example of a topological

defect, although not the one of interest, introduced here and would have formed in many

Grand Unified Theories (GUT). As will become clear, the formation of topological defects

is a general prediction of any GUT where the universe experiences a phase transition,

although no observational evidence exists so far.

1.2 Thesis objectives

Cosmic strings arise naturally in both unifying theories and superstring inspired inflation

models. In the latter case, fundamental superstrings produced in the very early universe

may have stretched to macroscopic scales, in which case they are known as cosmic super-

strings. To better understand the underlying physical mechanisms and eventually constrain

high-resolution experimental data defect fingerprints, analytical developments are needed.

In this work, we have studied the asymptotic solutions of the generalised velocity-dependent

one-scale model for current-carrying strings. This analysis, and the interpretation of the

physical mechanisms that govern the evolution of such networks, also reveal the expansion

rates that are compatible with each solution branch, namely under which conditions it

would be possible to have charge and current solutions that are not erased through the

universe expansion. Additionally, it is also important to understand, if a detection is made,

what are the particular aspects of current carrying objects with respect to the remaining

ones.

1.3 Organisation of the thesis

To answer the objectives above, this thesis is organised as follows. In Chapter 2 is discussed

the theoretical background that justifies the quest for topological defects, in general, and

strings, in particular, in a cosmological context. The discussion starts with some toy models

that illustrate the formation of such elements and how they may arise in an expanding

universe. Once this formation is properly understood, their evolution is studied, firstly

from a microscopical point of view, where the field equations evolution are derived, and

then characterised as a function of some macroscopic properties of the full network, namely

energy, velocity, charge and current. Although this last step does simplify the problem at

hand, the system of equations obtained is still mostly intractable for analytical purposes.
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To solve this issue, Chapter 2 ends with the introduction of the scaling solutions, that will

be characterised for the remaining of the work.

Having introduced the needed concepts, the solutions to the full system of equations,

constrained to the power law behaviour discussed in Chapter 2, are presented. It should be

noted, however, that not every single solution to the equations, from a mathematical point

of view, is expected to be realisable due to additional, physics motivated, constraints (for

instance, solutions where the network velocity equals the speed of light may be possible

in purely mathematical grounds, but are clearly excluded as possible scaling solutions in

the physical universe as we understand it today). To clearly separate between the two

types of solutions, firstly the physical ones are presented in Chapter 3, while the purely

mathematical ones are listed in Appendix A, with considerable less detail and discussion

than their physical counterparts.

Having the solutions identified in analytical terms, it was considered relevant to make

some preliminary comparison with full field numerical simulations. In Chapter 4 different

approaches are used to try to quantify the evolution of the simulated network and use the

constrained values to identify the branch of the analytical solutions that best explains this

data. In particular, some introductory aspects related to Bayesian inference and Monte

Carlo Markov Chain (MCMC) methods is provided.

Finally, Chapter 5 summarises the key findings of this work, as well as identifies some

relevant limitations, proposing some research features to be further developed in future

works.





Chapter 2

Topological defects

2.1 Introduction

Before proceeding to the possible evolutionary regimes of cosmic strings networks, it is

fundamental to understand how these entities may have formed in a cosmological context

and what equations govern their evolution. For that purpose, this Chapter starts by in-

troducing some toy models where topological defects are formed spontaneously, that are

then reinterpreted as oversimplifications of the actual scenario encountered in a cosmo-

logical framework. Here, also the observational implications of such a network are briefly

presented.

After that, the equations that govern the simplest strings network evolution are derived

and then extended to the more general cases, in particular to the current-carrying cosmic

strings. This Chapter ends with the definition of the scaling solutions that this thesis aims

at characterising, and that will be further explored in Chapter 3 and Appendix A.

2.2 Defects formation

2.2.1 Spontaneous symmetry breaking

The formation of topological defects is well established in condensed matter systems and

clearly associated with some symmetry breaking transition that originates a non-trivial

set of degenerate ground states, that may differ between different regions of the system.

Although they are purely hypothetical in a cosmological context, it is thought that the

different phase transitions that are expected in the framework of the current cosmological

evolutionary model will also lead to formation of these type of structures. To gain some

9
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additional insight into these processes, a simple toy model is useful, and in particular the

one firstly studied by Goldstone [5], defined for a real field by the classical Lagrangian

density:

L =
1
2

(
∂µϕ

)2
− 1

4
λ
(

ϕ2 − η2
)2

(2.1)

The Euler-Lagrange equations for ϕ can be obtained by simple variational principles and

read:

∂L
∂ϕ

− ∂µ

 ∂L
∂
(

∂µϕ
)
 = ∂µ∂µϕ + ϕλ

(
ϕ2 − η2

)
= 0 (2.2)

The model just described can be used to better understand the formation of topological

defects. From Equation 2.1, it is clear that true vacuum of the theory is associated with

|ϕ| = η, but there is another, unstable, equilibrium position for η = 0. It should be noted

that the Lagrangian symmetry of the latter does not exist on the former. Expanding the

potential around the ϕ = 0 state leads to:

V(ϕ = 0 + δϕ) =
1
4

λ
(

δϕ2 − η2
)2

≈ −1
2

λδϕ2η2 + C +O(δϕ4) (2.3)

where C is a constant and the negative mass term is compatible with the previous identified

instability of this state. On the other hand, to study the behaviour around the true vacuum

state, it is convenient to extend the model above to allow for a complex scalar field, while

still writing the perturbed state around a purely real state ϕ = η:

ϕ = η +
1√
2

(
ϕ1 + iϕ2

)
(2.4)

Expanding the potential around it, now leads to:

V(ϕ = η + δϕ) =
1
4

λ
(

ϕϕ∗ − η2
)2

=
1
2

λη2ϕ2
1 + Vint (2.5)

where we can see that ϕ1 can be interpreted as a massive particle with mas m =
√

λη,

while ϕ2 is associated with a massless one. The physical meaning of such perturbations,

and the corresponding mass/massless dichotomy can be made more clear by representing

the potential in the plane defined by the real and imaginary parts of ϕ, as in Figure 2.1.

Here, it becomes clear that ϕ1 is associated with radial oscillations, and hence the positive

mass term, while ϕ2 is associated with oscillations over the phase angle.

Let now the field configuration at a given time be such that this unstable condition holds
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FIGURE 2.1: Typical mexican hat potential from the Goldstone model.

FIGURE 2.2: Time evolution of the field starting from the unstable condition for a single
perturbation (on the left) or two independent perturbations (on the right).

and recover the real scalar field model. If a single point in spacetime is then perturbed,

it will evolve towards its stable, true vacuum expected value ϕ = ηeiθ = ±η, and this

transition is then propagated to the all field, and no defect is formed. However, there

is something in the reasoning above that makes us pause: what would be the effect of

perturbations at different regions in space? In fact, the different regions will, in a sense,

make an arbitrary choice of the field phase θ, each propagating with a finite speed. When

the different regions meet, the only possibility to restore the field continuity is to have a

point where ϕ = 0, and the unstable, symmetric, state is recovered, with the associated

energy density that is now trapped and a topological defect is formed. An example of the

field evolution for a non stationary initial configuration obtained from a simple numerical

evaluation of the field equation of motion is presented in Figure 2.2, while the overall field

value as a function of time and position is represented in Figure 2.3.
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FIGURE 2.3: Full evolutionary portrait of the field value and corresponding potential for
the case where a topological defect is formed.

2.2.2 Current carrying strings

If in the previous section attention was given to local symmetry breaking models, here

local, gauge symmetries will be briefly analysed based on the abelian-Higgs model [6], since

they are at the core of current carrying and superconducting strings. Following the same

symmetry breaking arguments above, another 2-scalar complex field can be shown to give

rise to superconducting solutions. Let now the Lagrangian be given by [7]:

L =
∣∣∣D̃µϕ

∣∣∣2 + ∣∣∣Dµσ
∣∣∣2 − 1

4
F̃µν F̃µν − 1

4
FµνFµν − V(ϕ, σ) (2.6)

where D̃µ = ∂µ − igÃµ and Dµ = ∂µ − ieAµ are associated with the complex scalar fields

ϕ and σ, respectively, and the potential takes the form:

V(ϕ, σ) =
1
4

λϕ

(∣∣ϕ∣∣2 − η2
ϕ

)2
+

1
4

λσ

(
|σ|2 − η2

σ

)2
+ β

∣∣ϕ∣∣2 |σ|2 (2.7)

A representation of this potential for different values of β is plotted in Figure 2.4. It can be

seen that, depending on the values of the coupling term β, both symmetries may, or may

not, be broken simultaneously. In the case where the ϕ field symmetry is broken, this field

will acquire its true vacuum value outside the string, and the σ field remains a symmetry

of the theory. Inside the string, however, things are drastically different, since here ϕ = 0

and the potential reduces to:

V(σ; ϕ = 0) =
1
4

λϕη4
ϕ +

1
4

λσ

(
|σ|2 − η2

σ

)2
(2.8)
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FIGURE 2.4: Potential and its derivative with respect to the field value characterisation
for different values of β.

which reaches a minimum for |σ| = |η| ̸= 0 and the σ field can condensate on the string

core. For this field there is a locally conserved current given by:

Jµ = eJu = 2eℑ
[

σ∗
(

∂µ − ieAµ

)
σ

]
= ie

(
σ∗Dµσ − σD∗

µσ∗
)

(2.9)

Since outside the string core σ → 0, then its current is confined to the string itself. In

particular, and taking an ansatz for the field configuration as σ = ησe−iα, where α is now

an internal degree of freedom of the broken symmetry state, the total current can be easily

identified as:

Jµ = 2eη2
σ

(
∂µα + eAµ

)
(2.10)

while the corresponding charge may now be obtained as:

Q =
∫

dx3J0 (2.11)

Let now, for convenience, the string lay along the z axis. Since the field vanishes at scales

larger than the condensate width, we must have α = α(z) and the current above can be

integrated across the string cross section to yield:

J =
∫

Jzdxdy = 2e (∂zα + eAz)
∫

η2
σdxdy (2.12)

In particular, it should be noted that if eAµ dominates the expression above, the current

evolution is given by:

∂t J ≈ ∂t Az

(
2e2

∫
η2

σdxdy
)

(2.13)
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which can be seen to be the London equations for the relation between a superconductor

current and the external electric fields [8]. In fact, and taking derivatives in both sides and

making use of Maxwell equations leads to:

∂t J ≈ Ez (2.14)

For a constant external electric the current grows linearly, which although is the expected

behaviour for a superconductor [9], it is drastically different from the one encountered in a

typical conducting wire, where Ohm’s law would dictate:

J ∝ Ez (2.15)

In particular, it should be noted that Equation 2.14 allows for the onset of persistent

currents, even in the absence of any applied external fields.

2.2.3 Phase transitions in Cosmology

If in the last section a reasonable mechanism to generate topological defects based on spon-

taneous symmetry breaking processes has been presented, its existence in a cosmological

context is still unclear. In fact, the discussions above have implicitly relied on two major

assumptions or conditions: if on one hand it has been required of the potential to have a

configuration that would allow for non symmetric stable states, it has also been assumed

that the field configuration had somehow started from the unstable symmetric configura-

tion, and this may be easily questionable as a valid premise. The question that should be

answered is whether cosmological evolution would be able to replicate these conditions.

To see how this may happen, its simpler to consider once more the Goldstone model

previously introduced to illustrate the formation of defects. In this case, it can be shown

that the effective potential at high temperatures is given by [10]:

Veff(ϕ, T) = V(ϕ) +
λ + 3e2

12
T2 ∣∣ϕ∣∣2 − 2π

45
T4 = V(ϕ) +

λ + 3e2

12
T2 ∣∣ϕ∣∣2 − 2π

45
T4 (2.16)

with e = 0 and where V(ϕ) is the mexican hat potential for a single field represented in

Figure 2.1. The expression above may be conveniently rewritten as:

Veff(ϕ, T) =
λ

12

(
T2 − 6η2

)
︸ ︷︷ ︸

m2(T;λ,η)

∣∣ϕ∣∣2 + λ

4

∣∣ϕ∣∣4 + C(T; λ, η) (2.17)
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FIGURE 2.5: The effective potential evolution for different values of temperature.

where a temperature-dependent mass term has been defined as m2(T) and all the terms

that do not depend on ϕ have been encapsulated in the constant C. The shape of this

potential is presented in Figure 2.5 for different values of T. As can be seen, there is

a critical temperature,obtained for T = Tc =
√

6η (the black dashed lines on both plots)

above which the potential minimum is found for ϕ = 0. For T < Tc, however, a ground state

with non-vanishing expected value is favoured and the symmetry is broken. The evident

similarities between the plots in Figure 2.5 and in Figure 2.4 make the transposition of

the discussion regarding topological defects formation there straightforward and hence a

viable mechanism for the formation of these type of structures in a cosmological context is

obtained.
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2.3 Strings evolution

If in the previous section attention was dedicated to present the fundamental equations for

cosmological evolution, strings themselves have not yet been properly considered. Here,

this discussion will be made under the assumption that the string thickness is much smaller

than its length, allowing to effectively treat the defect as a one-dimensional object whose

motion can be written as:

xµ = xµ(σa) (2.18)

where xµ are the spacetime coordinates of the worldsheet while σa for a = {0, 1} define the

parameterisation on the worldsheet. The invariant spacetime interval may now be written

as:

ds2 = gµνdxµdxν = gµν∂axµ∂bxνdσadσb = gµνxµ
,axν

,bdσadσb = γabσadσb (2.19)

where the last equality defines the induced metric on the worldsheet.

As a point-like object trajectory over an arbitrary space-time is usually referred to as

its wordline, a string sweeps a worldsheet, leading to an action of the form:

S =
∫

L
√
−γdσ2 (2.20)

where γ is the determinant of the induced metric. Noting that the Lagrangian, L, has units

of mass squared, it may expanded in terms of the string curvature, κ, as:

L = −µ + ακ + β
κ2

µ
+ . . . (2.21)

where α and β are two numerical coefficients. Assuming the string curvature radius to be

much larger than its thickness, which is equivalent to take the first term alone from the

expansion presented in Equation 2.21, the Nambu-Goto action is recovered:

S = −µ
∫ √

−γdσ2 (2.22)

Having the Nambu-Goto action presented, the equations of motion follow directly by making

it stationary against arbitrary variations of its coordinates:

xµ;a
,a + Γµ

νσγabxν
,axσ

,b =
1√
−γ

∂a

(√
−γγabxµ

,b

)
+ Γµ

νσγabxν
,axσ

,b = 0 (2.23)
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2.3.1 Flat spacetime

The general equation of motion expressed in Equation 2.23 when applied to flat spacetime is

significantly simplified, by the replacements gµν → ηµν and Γµ
νσ = 0. There is however still

significant freedom in them, due to the action reparameterisation invariance that may be

removed by making a particular identification of the worldsheet variables with the spacetime

ones or, alternatively, by two gauge conditions. A particular convenient choice is to describe

the string motion as a 3-vector, x = x(t, ζ), being t time and ζ a space like parameter, which

can be made by using the conditions:

ẋ · x′ = 0 (2.24a)

ẋ2 + x′2 = 1 (2.24b)

ẍ − x′′ = 0 (2.24c)

This particular choice is usually referred to as the transverse gauge, since as may become

clear from Equation 2.24a, ẋ can now be interpreted as the transverse velocity as it is

orthogonal to the string itself. On the other hand, Equation 2.24b can be used to write:

dζ =
1√

1 − ẋ2
|dx| (2.25)

It may now be seen that, under this particular gauge choice, the spacetime parameter that

parameterises the string worldsheet can be understood as proportional to the energy per

unit length of the string.

2.3.2 Curved spacetime

In a curved spacetime and considering an expanding universe described by the FLRW

metric a particular convenient gauge choice, and perhaps the most natural one could make,

is to identify the string spacetime parameter with the conformal time τ. Keeping the same

spirit as before, a transversal velocity can still be identified by requiring:

ẋ · x′ = 0 (2.26)

where now dot and prime are derivatives with respect to conformal time and the spacelike

parameter ζ. The equations of motion now read [11]:

ẍ + 2
ȧ
a

(
1 − ẋ2

)
ẋ =

1
ϵ

∂ζ

(
1
ϵ

x′
)

(2.27)



18 EVOLUTION OF CURRENT CARRYING COSMIC STRINGs

where ϵ can still be identified as an energy per unit length of the string defined as:

ϵ ≡

√
x′2

1 − ẋ2
(2.28)

Note that from the evolution in a flat spacetime, the quantity above is unity. Combined with

the gauge condition expressed by Equation 2.26, it can be shown that the time evolution

of ϵ is governed by:

ϵ̇ = −2Hϵẋ2 (2.29)

where the conformal Hubble parameter H = ȧ/a has been introduced. The string total

energy is given by:

E = a(τ)µ
∫

ϵdζ (2.30)

and its evolution dictated by:

Ė = ȧµ
∫

ϵdζ + aµ
∫

ϵ̇dζ = HE − 2Haµ
∫

ϵẋ2dζ = HE
(

1 − 2
〈

v2
〉)

(2.31)

where the root mean square velocity that will play an important roll in the analytical

models to be described has been introduced as:〈
v2
〉
=

∫
ϵẋ2dζ∫
ϵdζ

(2.32)

From the definition above, it may be seen that the characteristic velocity value is nothing

more than an weighted expected value, where the string energy has been used as weighting

function. This concept may be generalised right away to any other quantity as:

⟨O⟩ =
∫

ϵOdζ∫
ϵdζ

(2.33)

2.3.3 VOS model

In the previous section the equations of motion of a string in an expanding universe have

been derived, but if they are to be solvable analytically, further simplifications are needed.

From now on whenever the velocity squared is mentioned it should be taken as the expected

value as defined in Equation 2.32.

The Velocity-dependent One Scale model tries to provide this framework by providing

differential equations for the evolution of the relevant macroscopic variables of a string

network. In this sense, the evolution of the network total energy, if no additional degrees
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of freedom are considered, coincides with the bare string one, can be obtained by assuming

the network to be Brownian, meaning that inside an arbitrary volume with dimensions ξ3,

the average length of the strings is also ξ [12], hence motivating the name One-Scale. This

is equivalent to defining the average energy density of the string network as:

ρ =
µ

ξ2 =
E
a3 (2.34)

The evolution equation of the energy density can now be used to write:

ρ̇

ρ
=

a3

E
d

dτ

(
E
a3

)
=

Ė
E
− 3H = −2H

(
1 + v2

)
(2.35)

It can be easily seen that the Brownian network assumption allows to express the energy

evolution of the network as a function of the correlation length, as is typically presented in

the VOS model:

− ρ̇

ρ
= 2

ξ̇

ξ
= 2H

(
1 + v2

)
(2.36)

The expression above constitutes the first fundamental equation of the VOS model, but it

should be noted that by treating all the strings as infinite strings, it fails to properly account

for the energy that is confined into smaller loops and for any energy loss mechanism. Under

the VOS model framework, the former is considered by adding a term proportional to the

network density and velocity and parameterised by the chop efficiency c̃, that essentially

quantifies the energy fraction that is lost to loops*. On the other hand, external energy loss

mechanisms may be accounted for by including a damping term, that in its most simple

form may be taken as proportional to the velocity. With this additional phenomenological

terms, the full equation for the characteristic length scale evolution now reads:

2
ξ̇

ξ
= 2H

(
1 + v2

)
+

ξv2

ℓ f
+ c̃v0 (2.37)

The reasonable extensive derivation above was given to illustrate how the VOS model is

able to provide overall differential equations for the evolution of characteristic macroscopic

quantities, but also to make it explicit that in this process some information is inherently

lost. In fact, and by averaging over the full network, one needs to add new phenomenological

parameters that try to capture some of the details that a full network simulation would

provide. Following a similar reasoning, and here the reader is referred to the detailed

*Note that while the energy lost to loops is positive, the network must lose energy, which is compatible
with an additional increment of the characteristic length.



20 EVOLUTION OF CURRENT CARRYING COSMIC STRINGs

analysis conducted by Martins [13], the velocity equation can be written as:

dv
dt

= (1 − v2)

 k
ξ
− v

(
2H +

1
ℓ f

) (2.38)

where the momentum parameter k has been introduced which quantifies the effect of small

scale structure and may be taken as dependent on the velocity alone, the derivative has

been made explicit since it is here with respect to cosmic time, and H is the Hubble

parameter defined as da/adt. As a final remark, it should be mentioned that an additional

assumption has been made to keep the One-Scale philosophy by taking the curvature radius

to be well approximated by ξ. The velocity evolution equation can be written with respect

to conformal time as:

v̇ = (1 − v2)

 k
ξ/a

− v

(
2H+

1
ℓ f /a

) (2.39)

It should be still mentioned that the equations above have been presented in the usual

form for the VOS model, but alternative representations may be used. One in particular

that will be useful for the extended model that will be analysed is to express the energy

equation from the comoving correlation length defined as:

ξ = aξc (2.40)

With this new definition, the VOS equations are now written as:

2
ξ̇c

ξc
= 2Hv2 +

ξcv2

ℓ fc

+ c̃v0 (2.41a)

v̇ = (1 − v2)

 k
ξc

− v

(
2H+

1
ℓ fc

) (2.41b)

where the friction length scale has also been redefined to its comoving counterpart.

2.3.4 Generalised VOS

The canonical VOS model just described can be seen to not be applicable when the strings

network increases in complexity and possesses additional degrees of freedom, either in the

form of small scale structure, commonly known as wiggles, or by the presence of charges

and currents.

By simple qualitative analysis, it is clear that a single length scale representing both

the network correlation length and the network energy can no longer be applied, since the
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additional degrees of freedom can contribute themselves for the energy balance and the

VOS equations must be generalised. A common approach is to keep the definition of the

correlation length scale as the typical string separation, and hence related to the so-called

bare string energy, while defining an additional length scale, L, that relates to the total

energy of the network. If the wiggly case has already been explored by Almeida and Martins

[14, 15] and calibrated with numerical simulations conducted by Correia and Martins [16],

the current carrying case has only been explored in the chiral limit by Oliveira et al.

[17]. Since this work aims at exploring the generalised cases where charges and currents

may behave differently, only the generalised model provided by Martins et al. [18] will be

presented.

Starting from the area swept by the string concept once more, where the current is

assumed to live in, the Nambu-Goto action can be generalised to:

S =
∫

dσ2
(
−µ

√
−γ +

1
2
√
−γγab φ,a φ,b − qAµxµ

,aϵab φ,b

)
− 1

16π

∫
d4x

√
−gFµνFµν (2.42)

where use has been made of the fact that a conserved current in two dimensions can be

written as the derivative of a scalar field, here taken to be φ. A physical interpretation of the

different terms can be provided right away, since, from left to right, we can clearly identify

the typical Nambu-Goto contribution, the worldsheet current correction, its coupling to the

electromagnetic sector and the usual kinetic term associated with the external field. For

the purpose of this work, it is convenient to rewrite the action above as [18]:

S = −µ0

∫
f (κ)

√
−γd2σ (2.43)

where the Lagrangian has been written from a constant with units of mass squared, µ0,

and f (κ), that depends on the so-called state parameter κ defined from a scalar field, ψ,

as:

κ = γab φ,a φ,b = q2 − j2 =
ϕ̇2

a2
(
1 − ẋ2

) − ϕ′2

a2x′2
=

1
a2x′2

(
ε2ϕ̇2 − ϕ′2

)
(2.44)

where the microscopic charge q2 and current j2 have been implicitly defined and the last

equality above has been written to highlight the fact that the chiral limit studied by Oliveira

et al. [17] corresponds, in this model, to the limit where κ → 0.
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Finally, the equations of motion of this system are better expressed by considering the

dimensionless variables derived by Rybak et al. [19]:

Ũ ≡ f − 2q2 d f
dκ

(2.45a)

T̃ ≡ f + 2j2
d f
dκ

(2.45b)

Φ ≡ −2qj
d f
dκ

(2.45c)

which have been named in this way to reflect the fact that their dimensional counterparts

are the the energy per unit length U, the string tension T and the scalar field representing

the current φ.

Armed with these definitions, it is now clear that the total energy of the network is

given by:

E = aµ0

∫
Ũεdσ = aµ0

∫ (
f − 2q2 d f

dκ

)
εdσ = aµ0

∫
f εdσ − aµ0

∫
2q2 d f

dκ
εdσ (2.46)

The first term above, up to a renormalisation factor, is just the bare string energy as

defined in the canonical VOS model, which motivates the definition of the macroscopial

ratio betweeen total energy and bare energy as:

E
E0

=

∫
f εdσ −

∫
2q2 d f

dκ εdσ∫
εdσ

=
〈

f
〉
− 2
〈

q2 d f
dκ

〉
= F − 2Q2F′ (2.47)

where capital letters should be understood as the expected value of their microscopical

counterpart and the variables have been assumed to be uncorrelated to obtain the last

equality. Finally, and following the length scale approach spirit, one may rewrite the energy

relation above by introducing an additional comoving length scale, Lc, that is related to

the correlation length by:

Lc
√

F − 2Q2F′ = ξc (2.48)

where Q2 has been defined as the expected value of the microscopic charge q2. In similar

fashion, one can define the macroscopic current, J2, as the expected value of its microscopical

counterpart, j2. Under the VOS model these quantities evolve as:

(
J2
)•

= 2J2

(
vkv

L
√

F − 2Q2F′
−H

)
= 2J2

(
vkv

LW
−H

)
(2.49a)

(
Q2
)•

= 2Q2 F′ + 2J2F′′

F′ + 2Q2F′′

(
vkv

LW
−H

)
(2.49b)



2. TOPOLOGICAL DEFECTS 23

where for convenience the relation between the two lengthscales, W =
√

F − 2Q2F′, has

been defined.

The full set of equations of the generalised VOS model for current carrying strings are

then given by:

L̇c = HLc

[
v2 −

(
1 − v2

) Q2 + J2

W2 F′
]

(2.50a)

v̇ =
(

1 − v2
)  kv

WLc

(
1 + 2

Q2 + J2

W2 F′
)
− 2vH

(
1 +

Q2 + J2

W2 F′
) (2.50b)

(
J2
)•

= 2J2
(

vkv

LcW
−H

)
(2.50c)(

Q2
)•

= 2Q2 F′ + 2J2F′′

F′ + 2Q2F′′

(
vkv

LcW
−H

)
(2.50d)

ξ̇c = Hξcv2

(
1 +

Q2 + J2

W2 F′
)
− vkv

J2 + Q2

W2 F′ (2.50e)

As in the canonical VOS model, the equations above do not properly account for addi-

tional energy loss mechanisms, a phenomenological concept that here should be extended

to include charge losses. The additional terms to try to mimic these effects are:

L̇c = · · ·+ g
W

c̃
2

v (2.51a)(
J2
)•

= · · ·+ ρc̃
v
Lc

(g − 1)W
F′ − 2Q2F′′ (2.51b)(

Q2
)•

= · · ·+ (1 − ρ)c̃
v
Lc

(g − 1)W
F′ + 2Q2F′′ (2.51c)

ξ̇c = · · ·+ c̃
2

v (2.51d)

A final note should be made here regarding the charge loss parameters g. In the latest

work by Rybak et al. [20], it is shown that the bias function dependence on the charge and

current is given by:

g = 1 − gQ
F′ + 2Q2F′′

F − 2Q2F′ Q2 − gJ
F′ − 2Q2F′′

F − 2Q2F′ J2 (2.52)

from where it is clear that solutions with decaying charge and currents are asymptotically

compatible with g = 1, while for constant charge and/or current solutions one may expect

constant, but not necessarily unitary, values for g. Finally, the bias function asymptotic

value for growing charges and/or currents depends on the nature of the microscopic model.

Since in these cases, as will be discussed later, F′ ̸= 0, one may decouple between models
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where F′′ = 0 and models where F′′ ̸= 0. In the first cases, it follows that:

g = 1 +
gQ

2
+

gJ

2
J2

Q2 (2.53)

and it should be noted that, if both charge and current exhibit the same behaviour, this is

still a constant. On the other hand, if F′′ ̸= 0, it follows that:

g = 1 + gQ
F′′

F′ Q2 − gJ
F′′

F′ J2 (2.54)

and now the bias function exhibits a dependency on the charge and current values, that

only vanishes if charge and currents exhibit similar behaviours and:

gQ

gJ
=

J2

Q2 =
J2
0

Q2
0

(2.55)

in which case g = 1 once again. In any other case, g will have an implicit time dependency.

2.4 Scaling solutions

If the generalised VOS model equations are already a macroscopic description of the net-

work evolution, they are still a formidable problem to solve analytically and further sim-

plifications or assumptions are needed. This analysis is significantly simplified if power law

solutions are assumed such that:

Lc = L0τα , L̇c = αL0τα−1 (2.56a)

v = v0τβ , v̇ = βv0τβ−1 (2.56b)

J2 = J2
0 τγ ,

(
J2
)•

= γJ2
0 τγ−1 (2.56c)

Q2 = Q2
0τδ ,

(
Q2
)•

= δQ2
0τδ−1 (2.56d)

ξc = ξ0τε , ξ̇c = εξ0τε−1 (2.56e)

W = W0τζ =
ξ0

L0
τε−α , W2 =

(
ξ0

L0

)2

τ2(ε−α) (2.56f)

where the physical solutions must be such that β ≤ 0 and α ≤ 1. Under the same spirit,

the scale factor also can be assumed to follow a scaling solution given by:

a = a0τλ −→ H =
a′

a
= λτ−1 (2.57)
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which is asymptotically equivalent to assume a scaling solution of the scale factor when

expressed with respect to the cosmic time:

a(t) ∝ t
λ

1+λ (2.58)

Additionally, it should be noted that this representation as a function of conformal time

and comoving length scales can be easily reinterpreted as a function of cosmic time and

physical lengths. In fact, any quantity that is scaling with respect to conformal time as

a power law of exponent ζ, will scale as a function of cosmic time as a power law with

exponent ζ/(1 + λ), while if a comoving length scales as τκ its physical counterpart will

scale as τκ+λ. In particular, and combining both conditions above, it is clear that linearly

scaling comoving distances with respect to conformal time are fully equivalent to linearly

scaling physical quantities with respect to cosmic time.

By assuming these power law solutions, the differential equations of the VOS model can

be transformed into analytical ones by the adequate substitutions:

α = λ
[
v2

0τ2β − CKτ2(α−ε)+η
]
+

gc̃
2

v0

ξ0
τ1+β−ε (2.59a)

β = C
[

kv

v0ξ0
τ1−β−ε

(
1 + 2Kτ2(α−ε)+η

)
− 2λ

(
1 +Kτ2(α−ε)+η

)]
(2.59b)

γ = 2
(

v0kv

ξ0
τ1+β−ε − λ

)
− ρc̃

v0

ξ0

ξ2
0

J2
0 L2

0

1 − g
F′ − 2Q2

0τδF′′ τ
1+β+ε−2α−γ (2.59c)

δ = 2
F′ + 2J2

0 τγF′′

F′ + 2Q2
0τδF′′

(
v0kv

ξ0
τ1+β−ε − λ

)
−

− (1 − ρ)c̃
v0

ξ0

ξ2
0

Q2
0L2

0

1 − g
F′ + 2Q2

0τδF′′ τ
1+β+ε−2α−δ (2.59d)

ε = λv2
0τ2β

(
1 +Kτ2(α−ε)+η

)
− v0kv

ξ0
Kτ2(α−ε)+η+1+β−ε +

c̃
2

v0

ξ0
τ1+β−ε (2.59e)

where the following variables have been defined:

K =
L2

0J 2
0

ξ2
0

F′ (2.60a)

J 2
0 = Q2

0 + J2
0 if δ = γ, J 2

0 = J2
0 if δ < γ or J 2

0 = Q2
0 if δ > γ (2.60b)

η = γ if δ ≤ γ or η = δ if δ > γ (2.60c)

C = 1 − v2 (2.60d)

The last definition above is reasonable since for β = 0, 1 − v2
0 is a constant, and for β < 0,

1 − v2
0t2β ∼ 1, which is also constant. Finally, it has been assumed that all the initial

parameters X0 ̸= 0.
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It should be noted that the equations above are valid as long as none of the power law

exponents vanishes. If this is the case, the velocity, charge and current equations should be

replaced by (in the charge equation it was already made the replacement α = ε):

0 =
kv

ξ0

(
1 + 2Kτ2(α−ε)+η

)
τ−ε − 2v0λτ−1

(
1 +Kτ2(α−ε)+η

)
(2.61a)

0 = 2J2
0

(
v0kv

ξ0
τβ−ε − λτ−1

)
+ ρc̃

v0

ξ0

(g − 1)
F′ − 2Q2

0F′′τδ

ξ2
0

L2
0

τε−ατβ−α (2.61b)

0 = 2Q2
0

F′ + 2J2
0 τγF′′

F′ + 2Q2
0F′′

(
v0kv

ξ0
τβ−ε − λτ−1

)
+ (1 − ρ)c̃

v0

ξ0

(g − 1)
F′ + 2Q2

0F′′
ξ2

0

L2
0

τβ−α (2.61c)

Although these equations are fully equivalent to the more general ones above, they may

allow for less restrictive solutions. For instance, and assuming that both terms in between

brackets in the velocity equation are constant (or at least not growing sufficiently fast), one

would arrive at the following conclusions for the possibility of constant velocity solutions:

0 =
kv

ξ0
(1 + 2K) τ1−ε − 2v0λ (1 +K) (2.62a)

0 =
kv

ξ0
(1 + 2K) τ−ε − 2v0λτ−1 (1 +K) (2.62b)

It is clear that both solutions require ε = 1, but now comes the subtle point. As only

asymptotic solutions are under analysis, it is assumed that τ → ∞, which actually makes

that the two formulations above are not fully equivalent anymore. In fact, although in both

cases it is still required ε = 1, the second formulation allows for a loophole worth searching

for: since ε is clearly positive, one may allow for solutions where the correlation length does

not scale linearly, but that for sufficient high τ is essentially indistinguishable from the

true solutions for practical purposes. In the results that will be presented the more general

formulation will be followed, with the caution to properly check for additional branches,

hidden at first sight, whenever suitable.

A preliminary inspection of the different equations already identifies some of the relevant

parameters that are most likely to play a central role in the analysis to come. In particular,

the factor 2(α − ε) + η that appears associated with F′ is closely related to the relation

defined by Equation 2.48 which in terms of the power law defined above yields:

L2
0τ2α

(
F − 2Q2

0τδF′
)
= ξ2

0τ2ε −→ ξ2
0

L2
0

τ2(ε−α) = F − 2Q2
0τδF′ (2.63)

This is particular significant, since the presence of F on the right hand side above, that is

not expected to vanish, fixes the relation between the 3 exponents. In particular, one can
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easily see that for decaying or constant charge solutions (δ ≤ 0) both length-scales must

evolve with a similar rate, α = ε. On the other hand growing charge cases are only possible

if the current length grows slower than the correlation length. Recovering the relation

between the length scales and the corresponding energy densities one can easily see that

these results are expected on purely physical grounds. In any case, it is not possible to have

solutions where α > ε, unless a rather unphysical behaviour is prescribed where F = 0.

As a final note, it should be mentioned that one may find mathematical solutions to

the evolution equations that are not physical by different reasons:

• The network characteristic velocity must be lower than the speed of light, that in

these units implies v < 1

• For an expanding universe, it is not expected the momentum parameter to vanish

• The correlation length cannot scale faster than t (or the comoving correlation length

faster than τ), since it would violate causality

These physics motivated bounds naturally decouple the solutions between physical and

mathematical solutions and these will be discussed in different chapters.





Chapter 3

Physical solutions

3.1 Introduction

The solutions will be presented in the following way. Firstly, energy and charge loss mech-

anisms will be neglected, in which case the network evolution is governed by the cosmic

expansion alone. Once these solutions are properly presented and discussed, energy loss

mechanisms will be introduced, but charge losses will still not be considered. This is easily

accomplished by setting g = 1, which, following the discussion at the end of the last chap-

ter, can also be interpreted as the asymptotic limit of any decaying charges and currents

solution or growing solutions where F′′ ̸= 0 and Equation 2.55 is verified. Finally, charge

losses will also be allowed to condition the network evolution. For simplicity, first the bias

function will be assumed to be constant, but not unitary. This is compatible with constant

charges and currents, or growing solutions where F′′ = 0 and Q2 and J2 evolve in similar

ways, meaning γ = δ = η. Finally, in the last section of this chapter the remaining growing

charge and current solutions will be presented, and in this case the bias function will be

assumed to carry an explicit time dependency given by:

g = g0τη (3.1)

In order to aid with the visualisation of the different solutions found, but also to validate

them, an application to solve numerically the system defined by Equation 2.50 was created.

This application will be used when suitable to illustrate the findings. It was also decided to

make the code available in a GitHub repo, that may be eventually populated with additional

scripts in the future, and an user friendly interface made available through Streamlit.

29

https://github.com/fnpimenta/CosmicStrings/tree/main
https://cosmic-strings.streamlit.app/
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3.2 Solutions without loss mechanisms

In this case, one may simply set c̃ = 0. The current equation can be used to clearly see that

in the absence of energy loss mechanisms any physical solution in an expanding universe

must be such that ε ≥ 1+ β. If one accepts the cases ε > 1+ β, then only decaying current

solutions are possible, which is not the case if the perfect balance ε = 1+ β ≤ 1 is assumed.

In fact, further investigations regarding the former show that no solutions are consistent

within that sub-branch and the macroscopical equations reduce to:

α = λ
[
v2

0τ2β − CKτ2(α−ε)+η
]

(3.2a)

β = C
[

kv

v0ξ0
τ−2β

(
1 + 2Kτ2(α−ε)+η

)
− 2λ

(
1 +Kτ2(α−ε)+η

)]
(3.2b)

γ = 2
(

v0kv

ξ0
− λ

)
(3.2c)

δ = 2
F′ + 2J2

0 τγF′′

F′ + 2Q2
0τδF′′

(
v0kv

ξ0
− λ

)
(3.2d)

ε = λv2
0τ2β

(
1 +Kτ2(α−ε)+η

)
− v0kv

ξ0
Kτ2(α−ε)+η (3.2e)

From a physical point of view, this condition implies that the linear bare energy scaling

with constant velocity that constitutes the canonical Nambu-Goto network evolution is still

a possible solution. It is also clear that under these assumptions the quantity Kτ2(α−ε)+η

plays a central role and that its value if completely fixed at − 1
2 for decaying velocity

solutions. In these cases, only solution A1 is possible.

Solution A1: Non decaying charge and current solution

1. Scaling solutions:

Lc = L0τλ/2 , ξc = ξ0τ1−λ , J2 = J2
0 τ4−6λ , v = v0τ−λ

L = L0τ3λ/2 , ξ = ξ0τ , Q2 = Q2
0τ4−6λ

2. Additional constraints:

λ =
v0kv

ξ0
=

2
3

, K = −1
2
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Although this solution is obtained here for a single expansion rate, it is actually compat-

ible with the slow expansion rate branch identified by Oliveira et al. [17], in the particular

case where s = 0. Although this may not be clear at first sight, it should be noted that for

s = 0 one of the constraints of the mentioned work fixes the charge value at Q0 = 1 and

the velocity equation there will asymptotically be reduced to:

v̇ = −1 − v2

2
(2Hv) ≈ −Hv −→ v0βtβ−1 = −λv0tβ−1 −→ λ = −β (3.3)

While this relation is similar to the one just identified, although expressed with respect

to the cosmic time, it should be noted that another constraint is identified making β =

1 − α = 1 − 3λ
2 , which when combined with the condition above yields:

λ =
3λ

2
− 1 −→ λ =

2
5

(3.4)

and a single expansion rate is allowed. Furthermore, it can still be noted that an expansion

rate of 2/5 when expressed with respect to cosmic time is equivalent to an expansion rate

of:

λt =
λτ

λτ + 1
=

2
5
−→ λτ =

2
3

(3.5)

which is exactly the same as in A1. If this solution is seen to be equivalent to the chiral

limit one, here it is not needed that Q2
0 = J2

0 , but it is required that:

K =
L2

0

ξ2
0

(
Q2

0 + J2
0

)
F′ =

Q2
0 + J2

0

F − 2Q2
0F′ F′ = −1

2
−→ J2

0 = − F
2F′ (3.6)

If the reasoning above was valid for decaying velocity solutions, it does not hold for constant

velocity ones, and these complete the set of physical solutions in the absence of energy loss

mechanisms. Firstly, it should be noted that all the solutions here must have a comoving

correlation length that scales linearly with conformal time (or, as mentioned before, physical

correlation length that scale linearly with physical time).

A particular set of solutions, valid for expansion rates such that v2
0 = 1/λ, is found in

the particular case where F′ = 0 and is given by A2. It should be noted that the condition

above implies that there is a lower bound for λ at λ > 1, and hence these solutions are not

realisable in the radiation era. Still within the sub-branch where F′ = 0, there is another

possible solution, A3, but that is only realisable for fast expansion rates (λ > 2), where

the current will still decay, but now the charge is allowed to persist. A final comment is

needed within these sub branch of solutions though, since some of them imply Q2
0 = J2

0 ,
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which is compatible with the chiral limit, but also F′ = 0, which is not the expected value

that would make the system of equations fully equivalent to the one studied by Oliveira

et al. [17].

Solution A2: General current and charge solution

1. Scaling solutions:

Lc = L0τ , ξc = ξ0τ , J2 = J2
0 τ4−2λ , v = v0

L = L0t , ξ = ξ0t , Q2 = Q2
0τ4−2λ

2. Additional constraints:

λ =
1
v2

0
> 1 ,

v0kv

ξ0
= 2 F′ = 0 ,

(
Q2

0 = J2
0

)(∗)
∗ Not applicable for λ = 2, or γ = δ = 0.

Solution A3: Decaying current and constant charge solution

1. Scaling solutions:

Lc = L0τ , ξc = ξ0τ , J2 = J2
0 τ4−2λ , v = v0

L = L0t , ξ = ξ0t , Q2 = Q2
0

2. Additional constraints:

λ =
1
v2

0
> 2 ,

v0kv

ξ0
= 2 F′ = 0 ,

A numerical simulation of the network evolution for different expansion rates and F′ = 0

is presented in Figure 3.1. For simulations S1 to S3, the initial network charge and current

for τ = 1, which should not be read as the asymptotic solution scale parameter, Q0 and

J0, were taken to be 0.2 and 0.1, respectively, and the constant charge solution is found.

On the other hand, simulation S4 was carried out from starting conditions with charge

and current equal to 0.1, and in this case the network evolves towards the decaying charge

and current sub-branch. Finally, and for completeness, it should still be mentioned that

although solution S1 started with a charge to current ratio of 2, the asymptotic solutions

presented as dashed lines are such that Q0 = J0, while the same does not happen for

simulation S2, where Q0 ̸= J0. This can be easily understood by noting that the growing
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FIGURE 3.1: Network evolution as obtained by numerically solving the generalised VOS
differential equations without charge or energy loss mechanisms and considering F′ = 0,

for different initial conditions and expansion rates (see Appendix B for details).

current sub-branch is only possible if Q0 = J0, and so the network finds its way into this

state.

Leaving aside the cases where F′ = 0, one can still identify solution A4, which is very

similar to A2. Here, however, the chiral condition does not have to hold and arbitrary

current and charge values are possible. Comparing both solutions, it can be seen that fast

expansion rates associated with decaying charges and currents are asymptotically equivalent

to the canonical Nambu-Goto case, but only the chiral limit is allowed when F′ = 0.

Solution A4: Decaying current and charge solution

1. Scaling solutions:

Lc = L0τ , ξc = ξ0τ , J2 = J2
0 τ4−2λ , v = v0

L = L0t , ξ = ξ0t , Q2 = Q2
0τ4−2λ

2. Additional constraints:

λ =
1
v2

0
> 2 ,

v0kv

ξ0
= 2 , ,
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Solution A5: Constant current and charge solution

1. Scaling solutions:

Lc = L0τ , ξc = ξ0τ , J2 = J2
0 τ4−2λ , v = v0

L = L0t , ξ = ξ0t , Q2 = Q2
0τ4−2λ

2. Additional constraints:

λ = 2 ,
v0kv

ξ0
= 2 , v2

0 =
1 + 2K
2 + 2K = 1 − 1

2 + 2K ,

Finally, a persisting charge and current solution is also found here for arbitrary values

of current and charge, as given by solution A5. It can be noted that both solutions are

similar to the ones obtained by Almeida and Martins [14] and by Oliveira et al. [17], in

the appropriate branch. Once more, a numerical example starting from arbitrary initial

conditions and different expansion rates is presented in Figure 3.2. For the lowest expansion

rate, the decaying velocity solution from A1 is obtained.
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FIGURE 3.2: Network evolution as obtained by numerically solving the generalised VOS
differential equations without charge or energy loss mechanisms and considering F′ ̸= 0,

for different initial conditions and expansion rates (see Appendix B for details).
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3.3 Solutions without charge loss mechanisms

If in the previous section both energy and charge losses have been neglected, by setting

c̃ = 0, here solutions with energy loss mechanisms are explored, which can be easily ac-

complished by setting c̃ ̸= 0 and g = 1. Following the discussion on the value of g, these

solutions should also be interpreted as possible solutions for networks with charge loss

mechanisms, but where the charge and current decay away. Additionally, setting g = 1

also has the consequence of keeping the velocity, charge and current equations the same as

before, while the current and correlation length now read:

α = λ
[
v2

0τ2β − CKτ2(α−ε)+η
]
+

c̃
2

v0

ξ0
τ1+β−ε (3.7a)

ε = λv2
0τ2β

(
1 +Kτ2(α−ε)+η

)
− v0kv

ξ0
Kτ2(α−ε)+η+1+β−ε +

c̃
2

v0

ξ0
τ1+β−ε (3.7b)

One thing that is already clear is that imposing 1 + β − ε < 0 will reduce the system of

equations to the previous cases, where no physical solutions were found. This means that

the full set of equations, subjected to the constraint 1 + β = ε, is given by:

α = λ
[
v2

0τ2β − CKτ2(α−ε)+η
]
+

c̃
2

v0

ξ0
(3.8a)

β = C
[

kv

v0ξ0
τ−2β

(
1 + 2Kτ2(α−ε)+η

)
− 2λ

(
1 +Kτ2(α−ε)+η

)]
(3.8b)

γ = 2
(

v0kv

ξ0
− λ

)
(3.8c)

δ = 2
F′ + 2J2

0 τγF′′

F′ + 2Q2
0τδF′′

(
v0kv

ξ0
− λ

)
(3.8d)

ε = λv2
0τ2β

(
1 +Kτ2(α−ε)+η

)
− v0kv

ξ0
Kτ2(α−ε)+η +

c̃
2

v0

ξ0
(3.8e)

Once more, it can be easily seen that decaying velocity solutions are only possible if

Kτ2(α−ε)+η = − 1
2 , which is the same condition as before. This can be easily understood,

since this constraint is obtained from the velocity equation alone, which is unaffected. Pro-

ceeding in a similar way as in the no losses cases, one can conclude that the only realisable

solution is the one expressed by solution B1, with constant charge and currents. The subtle

difference is that the allowed expansion rate is now found at:

λ =
2
3
− c̃

3
v0

ξ0
=

2
3 + c̃/kv

= λnl −
c̃
3

v0

ξ0
(3.9)

where λnl identifies the expansion rate found in the no loss regimes. Once more, if one

wants to express the corresponding expansion rate power law with respect to cosmic time
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will find:

λt =
λτ

λτ + 1
=

2
5 + c̃/kv

(3.10)

which is the same as the one found by Oliveira et al. [17] in the limit s → 0.

Solution B1: Non decaying charge and current solution

1. Scaling solutions:

Lc = L0τ1−λ , ξc = ξ0τ1−λ , J2 = J2
0 , v = v0τ−λ

L = L0τ , ξ = ξ0τ , Q2 = Q2
0

2. Additional constraints:

λ =
2
3
− c̃

3
v0

ξ0
=

2
3 + c̃/kv

, K = −1
2

,
v0kv

ξ0
= λ

Solution B2: General current and charge solution

1. Scaling solutions:

Lc = L0τ , ξc = ξ0τ , J2 = J2
0 τ4λv2

0−2λ , v = v0

L = L0t , ξ = ξ0t , Q2 = Q2
0τ4λv2

0−2λ

2. Additional constraints:

λ =
1/v2

0
1 + c̃/kv

,
kv

ξ0
= 2λv0 F′ = 0 ,

(
Q2

0 = J2
0

)(∗)
∗ Not applicable for γ = δ = 0.

Solution B3: Decaying current and constant charge solution

1. Scaling solutions:

Lc = L0τ , ξc = ξ0τ , J2 = J2
0 τ4λv2

0−2λ , v = v0

L = L0t , ξ = ξ0t , Q2 = Q2
0

2. Additional constraints:

λ =
1/v2

0
1 + c̃/kv

>
2

1 + c̃/kv
,

kv

ξ0
= 2λv0 F′ = 0 , v2

0 <
1
2
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Looking now for the constant velocity solutions, one finds once more that they can only

be realisable in regimes with linear scaling of the comoving lengths when expressed with

respect to conformal time. The solutions found here are given by B2 and B3, which can

be seen to be the natural extension of A2 and A3, respectively. For the general solution

B2, one can easily identify a critical velocity that dictates the fate of current and charges

at v2
c = 1/2. Once more, the expansion rate can be related to its no loss counterpart by:

λ =
1
v2

0

1
1 + c̃/kv

=
λnl

1 + c̃/kv
(3.11)

Combining this with the critical velocity, one finds a critical expansion rate at:

λc =
2

1 + c̃/kv
(3.12)

One the other hand, the constant charge solution is only compatible with decaying currents,

or v0 < vc. It should be noted that the relation between the asymptotic velocity and the

expansion rate presented in both B2 and B3 can be inverted to yield:

v0 =

√
kv

λ (kv + c)
(3.13)

which conveniently reduces to the no loss cases for c̃ = 0. As before, a numerical simulation

of the evolution governed by the full set of equations is presented in Figure 3.3, where in

all cases the same initial conditions used to produce the plots in Figure 3.1 have been
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FIGURE 3.3: Network evolution as obtained by numerically solving the generalised VOS
differential equations with energy loss mechanisms only and considering F′ = 0, for

different initial conditions and expansion rates (see Appendix B for details).
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FIGURE 3.4: On the left, a representation of the impact of the energy loss parameter on
the asymptotic velocity of the network. On the right, the critical expansion rate as a

function of both the energy loss parameter and the momentum parameter.

used, but it has been assumed that c̃ = 0.05. Clearly, for equivalent expansion rates, the

asymptotic velocities obtained are lower than in the case of no charge loss (or, in a different

perspective, the expansion rate compatible with a given network velocity is lower than

before). This effect may be more simply highlighted by performing a set of simulations for

varying values of the energy loss parameter c̃, while keeping the same expansion rate. In

Figure 3.4 are presented the asymptotic velocities obtained for c̃ ∈ [0, 2] and λ = 2, as well

as the expected values as computed from Equation 3.13 and the no loss limit (v =
√

λ−1).

Additionally, it should also be noted that the critical expansion rate is now found below

the matter era threshold, and solutions in this epoch exhibit the same behaviour of the fast

expansion rates from the no loss cases. Finally, the deviation of the critical expansion rate

as a function of the energy loss and momentum parameter is also presented in Figure 3.4.

If solutions A2 and A3 have been properly generalised to B2 and B3, respectively, the

same happens for the cases A4 and A5, which find their counterpart in B4 and B5. It

may may be seen that the critical velocity is still the same as before, at v2
c = 1/2, and is

associated with an expansion rate given by λc = vckv/ξ0, which can also be rewritten as:

λcv2
c = 1 − c̃

2
vc

ξ0
= 1 − c̃

2
λc

kv
−→ λc =

2
2v2

c + c̃/kv
=

2
1 + c̃/kv

(3.14)

The expansion rate above is exactly the same as the expansion rate that allows current

and charges to be preserved, and lower than the value found in the absence of energy loss

mechanisms. Once more, a numerical solution is presented for different expansion rates

in Figure 3.5 for the conditions required by B1, B4 and B5, considering the same initial

conditions as in the no loss case and c̃ = 0.05. By comparison with the results presented in

Figure 3.2, one can easily see that the asymptotic velocities are now found at lower values.
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Solution B4: Decaying current and charge solution

1. Scaling solutions:

Lc = L0τ , ξc = ξ0τ , J2 = J2
0 τ4λv2

0−2λ , v = v0

L = L0t , ξ = ξ0t , Q2 = Q2
0τ4λv2

0−2λ

2. Additional constraints:

λ =
1/v2

0
1 + c̃/kv

>
2

1 + c̃/kv
, F′ ̸= 0 , v2

0 <
1
2

,

Solution B5: Constant current and charge solution

1. Scaling solutions:

Lc = L0τ , ξc = ξ0τ , J2 = J2
0 , v = v0

L = L0t , ξ = ξ0t , Q2 = Q2
0

2. Additional constraints:

λ = 2 − c̃
v0

ξ0
=

2
1 + c̃/kv

, λ =
v0kv

ξ0
, v2

0 = 1 − 1
2 + 2K ,
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FIGURE 3.5: Network evolution as obtained by numerically solving the generalised VOS
differential equations with energy loss mechanisms only and considering F′ ̸= 0, for

different initial conditions and expansion rates (see Appendix B for details).
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3.4 Solutions with constant bias function

Having explored the branches with and without energy losses, it is now time to complete

the analysis by explicitly incorporating the charge loss mechanisms. It should be recalled,

however, that a network where such mechanisms exist, but with decaying charge and cur-

rents, is compatible with the already studied solutions with g = 1, meaning that the

charge loss possibilities are not strictly confined to this section. Starting once again from

the current equation, it can be seen that another possibility emerges where solutions with

1 + β − ε > 0 may be realisable, as long as it is verified that 2ε − 2α − γ − · · · = 0, where

the dots stand for some particular dependence on δ, depending on its value and on F′ and

F′′. This condition will make the first and last terms perfectly balance each other. However,

further investigating the cases where 1 + β − ε ̸= 0 reveals that they are not compatible

with the full set of equations and hence it must be that ε = 1 + β. Making the adequate

substitutions, the equations now read:

α = λ
[
v2

0τ2β − CKτ2(α−ε)+η
]
+ g

c̃
2

v0

ξ0
(3.15a)

β = C
[

kv

v0ξ0
τ−2β

(
1 + 2Kτ2(α−ε)+η

)
− 2λ

(
1 +Kτ2(α−ε)+η

)]
(3.15b)

γ = 2
(

v0kv

ξ0
− λ

)
− ρc̃

v0ξ0

J2
0 L2

0

1 − g
F′ − 2Q2

0τδF′′ τ
−[2(α−ε)+γ] (3.15c)

δ = 2
F′ + 2J2

0 τγF′′

F′ + 2Q2
0τδF′′

(
v0kv

ξ0
− λ

)
− (1 − ρ)c̃

v0ξ0

Q2
0L2

0

1 − g
F′ + 2Q2

0τδF′′ τ
−[2(α−ε)+δ] (3.15d)

ε = λv2
0τ2β

(
1 +Kτ2(α−ε)+η

)
− v0kv

ξ0
Kτ2(α−ε)+η +

c̃
2

v0

ξ0
(3.15e)

Although it may not be apparent at first sight, the inclusion of the charge loss mechanisms

effectively prevents the solutions with constant velocity and F′ = 0 from forming. This can

be seen by noting that, were this to be true, then one would have from the characteristic

length equations that:

α = λv2
0τ2β + g

c̃
2

v0

ξ0
(3.16a)

ε = λv2
0τ2β +

c̃
2

v0

ξ0
(3.16b)

For constant values of g (but still considering g ̸= 1), the expressions above implies α ̸= ε,

while the consistency relation would also yield LcW = Lc
√

F − 2Q2F′ = Lc
√

F = ξc and

α = ε. This is clearly incompatible and hence all solutions must be such that F′ ̸= 0.
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The decaying velocity solutions must still respect the same conditions as before, but

now the presence of the charge loss mechanisms allows for different predicted behaviour as

dictated by both the current and charge equations. Perhaps the most relevant case is the

existence of a solution branch given by C1 where both quantities are allowed to grow over

time, as long as the expansion rate is sufficiently low such that:

λ <
2

3 + gc̃/kv
(3.17)

which one can easily see that reduces to the critical expansion rate already identified in

the previous sections by making the replacements g → 1 or c̃ → 0 to recover the critical

expansion rate from Section 3.3 or Section 3.2, respectively.

If solution C1 is not a clear generalisation of the decaying velocity solutions previously

found, the upper bound for the expansion rate is also based on the 2/3 value and in fact a

constant charge and current solution that generalises solution B1 is given by solution C2.

The constraint on ρ is particularly interesting since in the limit where Q2
0 = J2

0 it reduces

to:

ρ =
F′ − 2Q2

0F′′

2F′ (3.18)

which can easily be seen to be compatible with the chiral limit if one further imposes

F′′ = 0, yielding ρ = 1/2.

Solution C1: Growing charge and current solution

1. Scaling solutions:

Lc = L0τα , ξc = ξ0τ1−λ , J2 = J2
0 τη , v = v0τ−λ

L = L0τλ+α , ξ = ξ0τ , Q2 = Q2
0τη

2. Additional constraints:

λ <
2

3 + gc̃/kv
, K = −1

2
, η = 2 − 3λ − gc̃

v0

ξ0
> 0

α =
λ

2
+

gc̃
2

v0

ξ0
,

v0

ξ0
=

2 − λ

2kv + gc̃
,

(
ρ

1 − ρ
=

J2
0

Q2
0

)(∗)

∗ Only for F′′ = 0.
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Solution C2: Constant charge and current solution

1. Scaling solutions:

Lc = L0τ1−λ , ξc = ξ0τ1−λ , J2 = J2
0 , v = v0τ−λ

L = L0τ , ξ = ξ0τ , Q2 = Q2
0

2. Additional constraints:

λ =
2 + 2

(
1 − g

)
c/kv

3 +
(
3 − 2g

)
c/kv

, K = −1
2

, ρ ̸= 0

4
(

Q2
0 − J2

0

) Q2
0L2

0

ξ2
0

F′′ = 1 − ρ

(
F′ (Q2

0 + J2
0
)
+ 2Q2

0F′′ (Q2
0 − J2

0
)

J2
0(F′ − 2Q2

0F′′)

)

A word of caution should be placed here, though, since this solution is only realisable if

ρ ̸= 0 and different solutions emerges if ρ = 0 or ρ = 1, given by C3 and C4, respectively.

Here, the charge, or current, is still preserved, just like in C2, but now the current, or

charge, decays away. This effect can seen in Figure 3.6, where the same initial conditions

evolve towards different asymptotic solutions depending one the value of ρ. Finally, it

should also be noted that solution C2 is closely related to solution B1, and in fact reducing

to it in the limit g = 1.

Solution C3: Constant charge and decaying current solution

1. Scaling solutions:

Lc = L0τ1−λ , ξc = ξ0τ1−λ , J2 = J2
0 τγ , v = v0τ−λ

L = L0τ , ξ = ξ0τ , Q2 = Q2
0

2. Additional constraints:

λ =
2 + 2

(
1 − g

)
c/kv

3 +
(
3 − 2g

)
c/kv

, K = −1
2

, ρ = 0

γ = − 2(1 − g)c̃
kv + (1 − g)c̃

= − 4(1 − g)c̃
3kv + (3 − 2g)c̃

< 0
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Solution C4: Constant current and decaying charge solution

1. Scaling solutions:

Lc = L0τ1−λ , ξc = ξ0τ1−λ , J2 = J2
0 , v = v0τ−λ

L = L0τ , ξ = ξ0τ , Q2 = Q2
0τδ

2. Additional constraints:

λ =
2 + 2

(
1 − g

)
c/kv

3 +
(
3 − 2g

)
c/kv

, K = −1
2

, ρ = 1

δ = − 2(1 − g)c̃
kv + (1 − g)c̃

= − 4(1 − g)c̃
3kv + (3 − 2g)c̃

< 0
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FIGURE 3.6: Network evolution as obtained by numerically solving the generalised VOS
differential equations with energy and charge loss mechanisms considering the expan-

sion rate compatible with decaying velocities (see Appendix B for details).

If there are also solutions with decaying velocities, there is also a branch of solutions

where the network velocity is constant over the cosmological evolution. In these cases,

it still useful to separate a sub-branch where charge and current evolve in a similar way

(γ = δ), a sub-branch where charge dominates (δ > γ) and a sub-branch where current

dominates (γ > δ). In any case, all solutions are such that η = 2(ε − α) = 2(1 − α).

In the first sub-branch, there is a constant charge and current solutions, where the

current length scales linearly with conformal time, as given by C6.
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Solution C6: Constant charge and current solution

1. Scaling solutions:

Lc = L0τ , ξc = ξ0τ , J2 = J2
0 , v = v0

L = L0t , ξ = ξ0t , Q2 = Q2
0

2. Additional constraints:

λ =
2 − c̃/kv

(
1 − g

)
/K

1 + c̃/kv
, ρ =

J2
0

Q2
0 + J2

0

F′ − 2Q2
0F′′

F′

2
F′′

F′
Q2

0 − J2
0

Q2
0 + J2

0
= ρ

(
1

Q2
0
+

1
J2

0

F′ + 2Q2
0F′′

F′ − 2Q2
0F′′

)
− 1

Q2
0

Solution C7: Growing charge and current solution

1. Scaling solutions:

Lc = L0τα , ξc = ξ0τ , J2 = J2
0 τ2−2α , v = v0

L = L0τα+λ , ξ = ξ0t , Q2 = Q2
0τ2−2α

2. Additional constraints:

λ <
v0kv

ξ0
− ρc̃

v0ξ0

J2
0 L2

0

1 − g
2F′ ,

Q2
0

J2
0

=
1 − ρ

ρ
, F′′ = 0

α = λ
(

v2
0 − CK

)
+

gc̃
2

v0

ξ0
,

v0kv

ξ0
= 2λv2

0
1 +K
1 + 2K

η = 2
(

v0kv

ξ0
− λ

)
− ρc̃

v0ξ0

J2
0 L2

0

1 − g
F′ , 1 =

v0kv

2ξ0
+

c̃
2

v0

ξ0

Additionally, there are also two solutions where both current and charge grow over time,

as given by C7 and C8, which only differ on the value of F′′ that is also reflected in the

applicable constraints. It should be noted that there are two important constraints that

lead to the definition of the critical expansion rate whenever either charge or current are

constant, given by:

2
(

v0kv

ξ0
− λ

)
=

c̃
K

v0

ξ0

(
1 − g

)
(3.19a)

1 =
v0kv

2ξ0
+

c̃
2ξ0

(3.19b)
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Solution C8: Growing charge and current solution

1. Scaling solutions:

Lc = L0τα , ξc = ξ0τ , J2 = J2
0 τ2−2α , v = v0

L = L0τα+λ , ξ = ξ0t , Q2 = Q2
0τ2−2α

2. Additional constraints:

λ <
v0kv

ξ0
, Q2

0 = J2
0 , F′′ ̸= 0

α = λ
(

v2
0 − CK

)
+

gc̃
2

v0

ξ0
,

v0kv

ξ0
= 2λv2

0
1 +K
1 + 2K

η = 2 − 2α = 2
(

v0kv

ξ0
− λ

)
, 1 =

v0kv

2ξ0
+

c̃
2

v0

ξ0

1 = λv2
0 (1 +K)− v0kv

ξ0
K+

c̃
2

v0

ξ0

Solution C9: Constant charge and current solution

1. Scaling solutions:

Lc = L0τ , ξc = ξ0τ , J2 = J2
0 , v = v0

L = L0t , ξ = ξ0t , Q2 = Q2
0τδ

2. Additional constraints:

2
(

v0kv

ξ0
− λ

)
=

c̃v0

ξ0

1 − g
K ,

v0kv

ξ0
= 2λv2

0
1 +K

1 + 2K

δ =
F′ + 2J2

0 F′′

F′
c̃v0

ξ0

1 − g
K < 0 , 1 =

v0kv

2ξ0
+

c̃
2

v0

ξ0

λv2
0

1 +K
1 + 2K = 1 − c̃

2
v0

ξ0
, λ = 2 − c̃

v0

ξ0

(
1 − 1 − g

2K

)
λ =

2 − c̃/kv
(
1 − g

)
/K

1 + c̃/kv
, ρ = 1

If these, or equivalent expressions, hold, then the compatible expansion rate must be

such that:

λ =
2 − c̃/kv

(
1 − g

)
/K

1 + c̃/kv
(3.20)

It can be easily checked that for g = 1 the expansion rate from B5 is recovered.
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The sub-branch where current eventually dominates the evolution is simpler, in the sense

that in this case, a single solution is possible, as given by C9. In this case, ρ is required

to be unity, while the current is constant, the charge decays, and the current length scales

linearly. These restrictions remove the role of F′′ in further distinguishing between different

solutions.

Finally, the last sub-branch that is yet to be explored is dominated by charge over

currents. In this case, the value of F′′ is relevant once more, since it effectively decouples

between C10 and C11.

Solution C10: Constant charge and current solution

1. Scaling solutions:

Lc = L0τ , ξc = ξ0τ , J2 = J2
0 τγ , v = v0

L = L0t , ξ = ξ0t , Q2 = Q2
0

2. Additional constraints:

λ =
2 − c̃/kv

(
1 − g

)
/K

1 + c̃/kv
>

v0kv

ξ0

γ = 2
(

v0kv

ξ0
− λ

)
< 0 , F′′ ̸= 0 , ρ = 0

Solution C11: Constant charge and current solution

1. Scaling solutions:

Lc = L0τα , ξc = ξ0τ , J2 = J2
0 τγ , v = v0

L = L0τα+λ , ξ = ξ0t , Q2 = Q2
0τδ

2. Additional constraints:

c̃v0

ξ0

1 − g
K < 0 , ρ = 0 , F′′ = 0

γ = 2
(

v0kv

ξ0
− λ

)
, δ = γ − c̃v0

ξ0

1 − g
K

α = λ
(

v2
0 − CK

)
+

gc̃
2

v0

ξ0
, δ = 2 − 2α > 0
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In both cases, it must be that ρ = 0, which can be read as the opposite limit of C9. If

F′′ ̸= 0, then charge is not allowed to grow and must remain constant, while currents must

decay and the current length scales linearly, as given by C10. On the other hand, if F′′ = 0,

a more general solutions is found as given by C11. A numerical comparison of the different

possibilities is presented in Figure 3.7. A final comparison between two similar simulations,

but with different values for c̃ and g is presented in Figure 3.8, where the distinct scaling

of the current and correlation length can be easily seen. Note that the selected parameters

have the particularity of ensuring that:

λ1 =
2 + 2

(
1 − g1

)
c1/kv

3 +
(
3 − 2g1

)
c1/kv

(3.21a)

λ2 =
2 − c̃2/kv

(
1 − g2

)
/K

1 + c̃2/kv
(3.21b)

or, assuming K = −1/2 and kv to be the same in both situations:

2 + 2
(
1 − g1

)
c1/kv

3 +
(
3 − 2g1

)
c1/kv

=
2 + 2c̃2/kv

(
1 − g2

)
1 + c̃2/kv

(3.22)

The condition above ensures that the same expansion rate will be identifiable with the

compatible value with either decaying or constant velocities.
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FIGURE 3.7: Network evolution as obtained by numerically solving the generalised VOS
differential equations with energy and charge loss mechanisms considering expansion
rates compatible with constant velocities, but different charge and/or current behaviour

(see Appendix B for details).
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FIGURE 3.8: Network evolution as obtained by numerically solving the generalised VOS
differential equations considering different energy and charge loss parameters (see Ap-

pendix B for details).

3.5 Solutions with dynamical bias function

Having explored the branches with and without energy losses, it is now time to complete

the analysis by explicitly incorporating the bias function on charge and currents and hence

on conformal time.

Starting once again from the current equation, it can be seen that another possibility

emerges where solutions with 1 + β − ε > 0 may be realisable, as long as it is verified that

2ε− 2α−γ− · · · = 0, where the dots stand for some particular dependence on δ, depending

on the its value and on F′ and F′′. This condition will make the first and last terms to

perfectly balance each other. However, further investigating the cases where 1 + β − ε ̸= 0

reveal that they are not compatible with the full set of equations and hence it must be that

ε = 1 + β. Making the adequate substitutions, the equations now read:
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α = λ
[
v2

0τ2β − CKτ2(α−ε)+η
]
+ g0

c̃
2

v0

ξ0
τη (3.23a)

β = C
[

kv

v0ξ0
τ−2β

(
1 + 2Kτ2(α−ε)+η

)
− 2λ

(
1 +Kτ2(α−ε)+η

)]
(3.23b)

γ = 2
(

v0kv

ξ0
− λ

)
+ ρc̃

v0ξ0

J2
0 L2

0

g0

F′ − 2Q2
0τδF′′ τ

η−[2(α−ε)+γ] (3.23c)

δ = 2
F′ + 2J2

0 τγF′′

F′ + 2Q2
0τδF′′

(
v0kv

ξ0
− λ

)
+ (1 − ρ)c̃

v0ξ0

Q2
0L2

0

g0

F′ + 2Q2
0τδF′′ τ

η−[2(α−ε)+δ] (3.23d)

ε = λv2
0τ2β

(
1 +Kτ2(α−ε)+η

)
− v0kv

ξ0
Kτ2(α−ε)+η +

c̃
2

v0

ξ0
(3.23e)

In fact, looking more closely to the equations, it is clear that the characteristic length

equation can only be fulfilled if:

α = ε (3.24a)

λCK = g0
c̃
2

v0

ξ0
(3.24b)

since in any other case the diverging term on the right will always dominate. Although this

could not be an issue, the first constraint when used together with the correlation length

equation yields:

Kτη

(
λv2

0τ2β − v0kv

ξ0

)
+

c̃
2

v0

ξ0
= 0 (3.25)

which clearly cannot be fulfilled for η > 0, as is being assumed here.





Chapter 4

Comparison with numerical

simulations

4.1 Introduction

After studying the possible scaling solutions from an analytical point of view, it was con-

sidered adequate to provide some preliminary comparison against field theory numerical

simulations, which is the goal of this Chapter. The main objective is to characterise the

parameters that govern the evolution of the different parameters of interest, with partic-

ular attention given to the power law exponent of the scaling solutions. Additionally, the

branch of the analytical solutions that is currently being spanned by the simulations will

be identified. However, and because numerical simulations of cosmic strings networks is a

topic on its own, with inherent challenging topics, not only related to the simulation itself,

but also to the best diagnosis to characterise the results, a brief introduction is needed.

4.2 Numerical simulations of cosmic strings networks

Field theory numerical simulations present significant challenges and the reader is referred

to the work by Correia and Martins [21] and Correia [22] for extensive details on this matter.

Firstly, it should be mentioned that there are essentially two ways of simulating the

evolution of networks of strings. On one hand, in what may be read as a more macroscopic

approach, Nambu-Goto types of simulations are based on filament-like elements. Although

this approach may be justified as long as the string thickness is much smaller than its

length and has already been used by different and independent research groups [23–27], it

51
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also inevitably leaves out some important physical aspects of the microscopic physics at play,

such as a loop formation. On the other hand, strings may not be directly simulated, but

rather the fields whose configurations constitute the strings themselves. In this case, the full

microscopic physics is properly considered, but this comes at a much greater computational

cost, which manifests itself as lower dynamic range and/or spatial resolution. In any case,

and since the microscopic physics content is preserved, these type of simulations can be

easily generalised from simple abelian-Higgs models (see, for instance, [28]) to multiple fields

simulations [21], a task clearly hardly realisable in Nambu-Goto simulations. The results

that will be analysed here were obtained following the latter approach and conducted by

José Ricardo Correia, the main author of many of the references above.

It is important to note that while in Nambu-Goto simulations the relevant macroscopic

properties of the network can be easily estimated since the strings are well defined at all time

instants, the same does not happen for field theory simulations, where diagnosis criteria

whose focus is the correct interpretation of the fields’ configuration at a given time step and

their translation into macroscopic quantities also play an important role. The correlation

length, as measured by the typical string-to-string distance, for instance, can be estimated

from the box volume (V , for its physical size, or V, when expressed in number of cells used

for the simulation) and the string length (ℓ). While the former is known, the latter must

be estimated and this leads to two different approaches that are often applied [16]:

ξ̂L =

√
− µV

∑x Lx
(4.1a)

ξ̂W =

√
V

∑ Wij
(4.1b)

The first approach is founded on the fact that Lagrangian density evaluated at each lattice

cell (Lx) is negatively peaked at the strings and vanishes away from it [29], while the latter

is obtained simply by computing the gauge-invariant winding (Wij), that is non-null if a

string is piercing that particular cell. A similar analysis can be made for the remaining

quantities of interest and the reader is referred to the work by Correia and Martins [21],

but it should be clear that different choices may yield different estimators.

Finally, an important point should be made regarding the generation of the initial

conditions and their approach to the scaling regimes. As the defects width is typically

constant, but simulations are carried out in a box representing an expanding universe, they

would eventually become too short in comoving coordinates to ever be identified in the
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simulations [30]. To solve this issue, the coupling terms are often modified to account for

a dependence on the scale factor, hence allowing to properly resolve the defects. Another

issue is related to initial conditions themselves, which are often associated to an highly

excited state [31]. To help dissipate this energy excess, an artificial over-damped epoch with

exponential expansion, or a sufficiently faster power law, is typically prescribed. Although

this strategy does indeed allow for a faster approach to scaling, it also distorts the time

counting of the simulation, critical to identify the scaling regime properties. The most

relevant consequence for this work is that the different quantities of interest no longer scale

as ∝ τp, but rather as:

A(τ) = A0 (τ − τ0)
p (4.2)

where τ0 is a time offset that mimics the impact of the artificially over-damped period of

the simulations. It should be noted that for sufficiently high dynamic ranges this would

not be an issue, but as already mentioned, dynamic range is often a limitation of this type

of simulations.

4.3 Data description and inspection

Having presented a brief overview of the main concerns when performing numerical sim-

ulations of cosmic strings, the results may now be analysed. In this work 12 independent

simulations considering different initial conditions for 4 different expansion rates, making a

total of 48 time series, will be considered. The generated time series of all simulations are

presented in Figure 4.1 and Figure 4.2, grouped by initial conditions.

One can immediately see overall trends that are consistent between all simulations.

Firstly, the faster the expansion rate considered, the lower the network asymptotic velocity

and the charge. This comes with no surprise, as the highest expansion rates are expected to

be more efficient at erasing the defects. Additionally, the charge to current ratio (last row

in both figures) seem to be reasonably stable, specially for the lowest expansion rate, but

is not unity. Finally, the step-like behaviour identifiable in both charge and current time

series indicates that the simulations are on the verge of being able to properly track the

evolution of these macroscopical quantities. This is particularly relevant since it may distort

the results if one intends to combine the different "observations" into an expected value

and uncertainty level. To mitigate this issue a pre-processment of the data was carried

out where these plateaus were identified and smoothed out of the time series, leaving a
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FIGURE 4.1: Time series estimated from the numerical simulations 1 to 6 grouped by
initial conditions.
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FIGURE 4.2: Time series estimated from the numerical simulations 7 to 12 grouped by
initial conditions.
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more well behaved response to analyse, up until the onset of the last identified plateau,

which could not be properly accounted for. The results of all the simulations grouped by

expansion rate, as well as its mean value and 1σ region, are presented in Figure 4.3, for the

original data, and in Figure 4.4, for the smoothed data. For the remaining of this work,

only the latter will be used.

Mean evolution
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FIGURE 4.3: Raw time series estimated from the numerical simulations grouped by ex-
pansion rate.
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Mean evolution
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FIGURE 4.4: Smoothed time series estimated from the numerical simulations grouped
by expansion rate. The vertical dashed lines define the dynamic range limit assumed for

each simulation.

4.4 Preliminary parameters estimation

Having analysed and pre-processed the data series in the previous section, it is fundamental

to be able to extract from them the relevant parameters that may be compared against

the analytical solutions. In this section, this task will be handled by different approaches,

starting from a direct least squares fit and ending with a full MCMC analysis to better

constraint the parameters. In all cases, it should be recalled that the evolutionary model

that will be assumed is of the type:

A(τ) = A0 (τ − τ0)
p (4.3)

where τ0 is expected to be the same for all parameters within a given simulation, and even

for all simulations that share a common expansion rate, provided the over-damped epoch is

equivalent. The velocity is assumed to be constant and hence defined by a single parameter.
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From a visual inspection of the results, it was considered adequate to consider the period

starting at τ = 100, up until the dashed lines in Figure 4.4, where the solutions appear to

have reasonably converged.

The first approach was to simply fit a curve governed by Equation 4.3. There are,

however, two distinct possibilities: either to fit each realisation separately, or to consider

a single realisation from the mean evolution, where the dispersion around the mean value

is considered as an uncertainty. The results from the latter approach are presented in

Figure 4.5, while all the fitted parameters are presented in Figure 4.6. In this case, the fit

to each simulation is represented by a dot, while the horizontal line and the shaded region

were obtained from the overall fit.

It is interesting to note that fitting each realisation separately provides drastically dif-

ferent outcomes when compared to the overall fit. This can be at least partially explained

by noting that as different orders can be spanned by the data to be fitted, a single fit that

does not incorporate any uncertainty on the data points will tend to favour the highest

values. This is particularly relevant for the charge and current decays, where in Figure 4.5

a poorer agreement between fitted and observed data is clearly visible in the latest part

of the simulation. It should be noted that this may indicate that the network is not fully
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FIGURE 4.6: Power law exponent and scale factor for all expansion rates and initial con-
ditions.

converged yet and that the scaling exponents are actually varying during the dynamic range

under analysis. In any case, the time offset can be seen to be reasonably constant and lower

then 50 for all cases, which allow us to make a log-log fit considering the last part of the

simulations by making the approximation:

A(τ) = A0 (τ − τ0)
p ≈ A0τp −→ ln A ≈ ln A0 + p ln τ (4.4)

Simple error propagation under the Gaussian assumption can be easily used to estimate the

uncertainty in the offset at the x−axis interception into uncertainties into the scale factor.

The results are presented in Figure 4.7, where it can now be seen that the individual fits

as well as the mean fit are now much more consistent.

The simple least square analysis conducted until now to provide a first grasp into the

expected value of the power law exponent and scale factor of the different quantities of

interest has shown that a critical point was the fact that the simulations may, in principle,

exhibit a given offset in time. Here, we would like to have an alternative approach that does

not depend on the proper identification of this time offset. We note that the corresponding

quantity rate of change is given by:

Ȧ = A0 p (τ − τ0)
p−1 (4.5)
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FIGURE 4.7: Power law exponent and scale factor for all expansion rates and initial con-
ditions considering a log-log fit from τ = 250 onward.

meaning that the degeneracy between the power law exponent and the, unknown, time

offset, can be removed by writing:

A
Ȧ

=
1
p

τ − τ0

p
(4.6)

Although the procedure above should, in principle, provide robust estimates, it does rely

on the ability to properly estimate the time derivative of the different quantities of interest,

which may introduce uncertainties in the process. However, and since this linear relation is

expected to hold for any time offset and scaling exponent, the derivative may be computed

between points with a given time delay to minimise the uncertainties. Additionally, this

procedure allows us to analyse if the best fit power law exponent is actually evolving along

the simulation or not.

The results for the mean simulation of all the steps above is presented in Figure 4.8 and

Figure 4.9, where it has also been included a fit considering only the points for τ ≥ 250.
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FIGURE 4.8: Fits to the derivative estimators considering all the points.
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4.5 Markov Chain Monte Carlo methods

Finally, and to better understand the correlations between the different parameters of

the power law evolution defined by Equation 4.3, a simple code to run a Markov Chain

Monte Carlo (MCMC) analysis was developed. Since this is still unexplored in the present

document, it was considered that a previous theoretical description was firstly needed,

before presenting the results. It should ne noted that the description here is mostly adapted

from the previous work by Pimenta et al. [32].

4.5.1 Theoretical background

The core definition of an MCMC analysis is the ability to sample a given probability

distribution. In this case, the desired probability function is associated to a given hypothesis

or model, Hi, conditioned to the observational data (or, in this case, numerical simulations

outputs), Dobs, and some previous information, I. Using the product rule in probabilities,

it can be shown that the probability density function of interest, P(Hi|Dobs ∩ I), is given

by:

P(Hi|Dobs ∩ I) =
P(Hi|I)× P(Dobs|Hi ∩ I)

P(Dobs|I)
(4.7)

It is customary to identify the probabilities above as the prior distribution (P(Hi|I)), con-

taining the previous belief that a particular hypothesis is true from some previous (not

related to the data) information, the likelihood, containing the probability of obtaining

the observed data from the hypothesis and previous information (P(Dobs|Hi ∩ I)), usually

represented as L(Hi), and the posterior distribution function, which essentially updates

the prior information from the data. The prior and posterior names are easily understood

as they represent the probability of the hypothesis being true, before and after considering

the new data. Further extending this reasoning, the hypothesis can still depend on some

model parameters, θ, in which case, the posterior distribution for the parameters is:

P(θ|D ∩ I) =
P(θ|I)× P(D|θ∩ I)

P(D|I) ∝ P(θ|I)× P(D|θ∩ I) = P(θ|I)×L(θ) (4.8)

where it has been tacitly assumed that the model chosen is, indeed, the true model. Under

this assumption, the question is no longer what model best fits the data, but which are the

most probable parameters to it (in this case, θ).

As the model parameter space size increases, the characterisation of the posterior dis-

tribution is more easily obtained by Markov Chain Monte Carlo (MCMC), rather then by
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directly searching the parameter space. The main idea behind this method is to construct

samples that respect a given distribution taking random walks over the parameter space,

where the new sample (of parameters) θi+1 depends solely on the previous step, θi, and on

the transition probability, formalised by p(θi+1|θi). If the initial period, that is strongly

affected by the particular initial conditions of the walk, is rejected, the samples obtained

do follow the posterior distribution p(θ|D ∩ I). In this work, an algorithm based on the

Metropolis-Hastings algorithm (MH) [33, 34] has been used, iterating over the following

steps:

1. An initial value is chosen within the parameter space θi = θ1

2. A proposed value for θi+1, Γ, is generated from a proposal distribution, usually taken

as a multivariate Gaussian function with prescribed mean and covariance function.

3. The metropolis ratio is computed, defined as r =
p(Γ|I)
p(θi|I)

L (Γ)

L (θi)

q(θi|Γ)
q(Γ|θi)

, being q the

proposal distribution.

4. A random number U is generated from an uniform distribution in the interval 0 to 1.

5. If r ≥ U, then the proposal is accepted and θi+1 = Γ, otherwise θi+1 = θi.

4.5.2 Implementation

To properly implement the MH algorithm the likelihood function must be defined so that

the Metropolis ratio may be computed. In this case, and taking into account all the available

simulations, it may be written, for n data points assumed to be independent, as:

L(θ) = 1

(2π)n/2 |det C|1/2 exp
[
−1

2
ϵC−1ϵT

]
≈ 1

(2π)n/2 ∏i σi
exp

[
−1

2 ∑
i

(
ϵi

σi

)2
]

(4.9)

where θ contains all the relevant model properties (in this case, scale factor, power law

exponent and time offset), ε is the error vector obtained as the difference between the

predictions of Equation 4.3, when the model properties are θ, and simulated values, and C

is the covariance matrix. The last equality follows from assuming the covariance matrix to

be diagonal with non vanishing elements given by the standard deviation, σi, of the different

realisations.

Having the likelihood function, only the prior distributions are required to implement

the MH algorithm. In this work, these have been assumed to be uniform in a given range
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for the power law exponent and time offset, while for the scale factor, a modified Jeffreys

prior was defined as [35]:

p(Φi,j|I) ∝
1

Φi,j + ϕmin
(4.10)

Note that while the Metropolis ratio reduces to the likelihood ratio for the time offset and

power law exponent, it does not do so for the scale factor, where the prior distribution

should be explicitly considered.

Additionally, fixed length chains have been constructed starting by a random value

between predefined limit ranges for the different model, based on the results obtained in

Section 4.4. It has also been assumed independent one dimensional Gaussian distributions

for each parameter as proposal distributions, with a standard deviation that was updated

for the first half of the chain at every U steps by the recursion relation:

σ̂k
i = σ̂k−1

i + (Âk
r − Ar)× 10int[log σ̂k

i ] (4.11)

where σ̂i is the standard deviation associated with the proposal distribution of the model

parameter i, Âk
r is the estimated acceptance rate from the U points and Âr is the intended

acceptance rate, that has been defined as 0.3, in accordance with results obtained in [36].

After running steps 1 to 5 of the MH algorithm, the convergence of each model parameter

chain should be tested. In this work, an adaptation of the Gelman and Rubin statistics [37]

taken from the work by Brinckmann and Lesgourgues [38] was used, where each full chain

is divided into 3 smaller ones that are then used to estimate the potential scale reduction

factor.
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4.5.3 Results

Having presented the main principles and the code properties developed, the MCMC anal-

ysis were performed taking into account the correlation, charge and current behaviours and

the following model parameters:

• 3 power law exponents (one for each quantity of interest), with a corresponding uni-

form prior

• 3 scale factor (one for each quantity of interest), with a corresponding Jeffreys prior

• 1 time offset

The velocity evolution was not considered in this analysis, since it will be mostly insensitive

to the time offset. In all the corner plots that will be presented, the quantities related to the

correlation length, charge and current, will be displayed in blue, red and green, respectively.

Starting from the radiation epoch simulations, the results considering the full time series

(τ ≥ 100) or only the last part of it (τ ≥ 250) are presented in Figure 4.10 and Figure 4.11.

Although it can be seen that the correlation length power law exponent is constrained

differently in both cases, it is also true that this does not seem to impact significantly on

the decaying results for charge and current, but reflecting itself in the charge and current

scale factor. Although ideally only the upper part of the time series would be used, in the

faster expansion rates this is precisely the region that is poorly sampled by the simulations,

but if it is assumed that the power law governing their evolution are mostly unaffected by

the correlation length, then lower τ may be used. The results for the remaining expansion

rates are presented in Figure 4.12 and Figure 4.13 (considering τ > 100) and Figure 4.14

(considering τ > 250).
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FIGURE 4.10: Corner plots for the radiation epoch simulations considering τ > 100.
From left to right, the proportionality factor and the power law exponent for the correla-
tion length (in blue), charge (in red) and current (in green), and the time offset (in yellow).
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FIGURE 4.11: Corner plots for the radiation epoch simulations considering τ > 250.
From left to right, the proportionality factor and the power law exponent for the correla-
tion length (in blue), charge (in red) and current (in green), and the time offset (in yellow).
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FIGURE 4.12: Corner plots for the fastest expansion rate simulations considering τ >
100. From left to right, the proportionality factor and the power law exponent for the
correlation length (in blue), charge (in red) and current (in green), and the time offset (in

yellow).
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FIGURE 4.13: Corner plots for the matter epoch simulations considering τ > 100. From
left to right, the proportionality factor and the power law exponent for the correlation

length (in blue), charge (in red) and current (in green), and the time offset (in yellow).
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FIGURE 4.14: Corner plots for the slowest expansion rate simulations considering τ >
250. From left to right, the proportionality factor and the power law exponent for the
correlation length (in blue), charge (in red) and current (in green), and the time offset (in

yellow).
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4.6 Comparison with analytical solutions

Having tested different approaches to constrain the power laws that are compatible with

the simulated results, it is now time to try to relate them to the previously identified from

an analytical approach. Before doing so, it is convenient to summarise the results obtained

until now. In Figure 4.15 and Table 4.1 are presented the estimates obtained from the

different methods for the different expansion rates.

From these results, some major trends may be identified. Firstly, although some dis-

persion is found in the proportionality factors identified, the power law exponents for the

different quantities are mostly compatible. Additionally, it seems clear that all the solutions

are mostly consistent with a constant velocity and decaying charge and currents. This last

aspect, in particular, implies a network that is asymptotically compatible with g = 1, leav-

ing as possible analytical counterparts solutions B2 and B4. In these cases, it will always

be that η = 4λv2
0 − 2λ = λ

(
4v2

0 − 2
)
. It should be noted that although the velocity was

seen to still exhibit some evolution over the explored dynamic range, an upper bound can

be obtained from these solutions at:

v2
0 =

1
λ (1 + c̃/kv)

≤ 1
λ

(4.12)
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TABLE 4.1: Fitted power law parameters for the different expansion rates and ap-
proaches.
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FIGURE 4.16: Representation of the different relations expected based on the analytical
solutions. The black and grey points represent the fitted value of each quantity and the
expected value based on the analytical solution. For the top left panel, the charge decay
rate varies between -2.5 (blue limit) and -1 (red limit). For the bottom left panel, the
asymptotic velocity varies between 0 (blue limit) and 2/3 (red limit). For the bottom

right panel, the expansion rate varies between 0.5 (blue limit) and 3.25 (red limit).

where it has been assumed c̃ ≥ 0. It can immediately be seen that the critical case is the

highest expansion rate, which would yield v2
0 ≤ 1/3, but this condition is verified in all

simulations, even in the slowest ones.

If this upper bound is clearly respected, the relation between the network velocity, the

charge (or current) decay rate and the expansion rate is not, as can be seen from Figure 4.16,

where the relations have been expressed by successively fixing each of the parameters, while

allowing the remaining ones to vary. The black and grey points represent the fitted value of

each quantity and the expected value based on the analytical solution, respectively. As can

be seen, the fitted values are not compatible with the analytical predictions, which may be

stated either as a network where the strings have too high velocities, for the rate at which

they are loosing charge and current (top left panel on Figure 4.16), or a network that is

loosing charge and current just too fast, for the typical velocities it exhibits (bottom left

panel on Figure 4.16).

It should be noted that these deviations may be hardly associated to the identification

uncertainties, as these are also the best constraint parameters, but other sources of error

may still be found, in particular:
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FIGURE 4.17: Comparison between the results obtained from a 20483 box and the results
obtained considering the same time period and the same portion of the available data

from a 40963 box.

• The solutions under analysis have still not reached the scaling regime, implying that

higher dynamic ranges are needed

• Some of the hypothesis of the generalised VOS model are not adequate, in particular

the exclusive dependence of the momentum parameter on the velocity

• The numerical estimators used to map the field simulations into the macroscopical

quantities of interest exhibit some bias that carries an implicit time dependence

To check if the lack of dynamic range could be the source of the deviations, numeri-

cal simulations considering a 40963 box were analysed. The comparison of the estimates

obtained are presented in Figure 4.17, where two different approaches have been followed.

On one hand, the time period corresponding to the original 20483 box has been used (blue

points). On the other hand, the red points were obtained by considering the same portion

of the simulation, meaning the second half of the available points. This latter approach

could not be used for the two fastest expansion rates, since it was no longer possible to

detect any charge or current there. Since the results are mostly compatible in all analysis,

the lack of dynamic range may be excluded as the source for the deviations, where it can

play, at most, a sub-dominant role.

Taking now a closer look to the generalised VOS model assumptions, it can be seen that

the energy loss parameter c̃ is assumed to be constant, while the momentum parameter was

assumed to be dependent on the velocity only, which allowed us to treat it like a constant

too. However, a first estimate for the ratio c̃/kv can be obtained from the fitted parameters
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FIGURE 4.18: Estimates for c̃/kv (on the left) and, assuming the a Nambu-Goto type of
behaviour for kv, for c̃ (on the right).

as:

c̃/kv =
1

λv2
0
− 1 =

1 − λv2
0

λv2
0

(4.13)

If one further assumes the analytical solution for the Nambu-Goto strings momentum pa-

rameter given by [39]:

kv =
2
√

2
π

(
1 − v2

) (
1 + 2

√
2v3
) 1 − 8v6

1 + 8v6 (4.14)

then Equation 4.13 can even be used to place constraints on c̃ itself. The results for

both estimates are presented in Figure 4.18, where the upper and lower bounds have been

computed from the maximum and minimum velocity values within the dynamic range

under analysis*. It is interesting to note that there appears to exist a relation between

these parameters and the expansion rate, which may partially explain the different results.

For this to explain the velocity excess (or charge decay rate excess), it must be that at least

one out of c̃ and kv has a dependency on the charge in the network.

*This choice was motivated by the previous realisation that the velocity may still have not fully con-
verged, in which case taking the uncertainty as the time series standard deviation would be misleading.
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Another possibility is that a near-scaling solutions was obtained. To better understand

this claim, the equations for decaying charge are here recovered as:

α = λv2
0 +

c̃
2

v0

ξ0
τ1−ε (4.15a)

0 =
kvv0

ξ0
τ−ε − 2λv2

0τ−1 (4.15b)

γ = 2
(

v0kv

ξ0
τ1−ε − λ

)
(4.15c)

δ = 2
(

v0kv

ξ0
τ1−ε − λ

)
(4.15d)

ε = λv2
0 +

c̃
2

v0

ξ0
τ1−ε (4.15e)

where the adequate form for constant velocities has been used. A true solution must be

such that ε = 1, but relaxing that slightly, it may be seen that we may have ε > 0, but

not necessarily unity. On a different perspective, we may still have ε = 1, but drop the

identification kvv0/ξ0 = 2λv2
0 and assume that the velocity equation would be essentially

satisfied still. In any case, it is still true that:

δ = 2
(

v0kv

ξ0
− λ

)
= 4

kv

c̃

(
ε − λv2

0

)
− 2λ (4.16)

where we have made use of the correlation length equation to provide a relation for the

asymptotic velocity and ξ0:

kvv0

ξ0
=

2kv

c̃

(
ε − λv2

0

)
(4.17)

implying:

c̃
kv

= 4
1 − λv2

0
δ + 2λ

(4.18)

Although this formulation shares most of the features from the true scaling regime, the

relation δ = 4λv2
0 − 2λ does not need to be satisfied anymore and the network may essen-

tially exhibit any asymptotic velocity, eventually more dependent on the initial conditions

then on the network evolution.

Finally, as already discussed, as important as the simulations themselves are the diag-

nosis criteria. It may happen that either the velocity or the charge estimator, or even both,

present some bias that translates itself into an additional time dependence. For instance,

the charge estimator weighting functions depend on the fields value, and this may lead to
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FIGURE 4.19: Characterisation of the identified possible bias sources. On the left, the
estimate bias impact on the charge estimator, assuming the velocity estimator is correct.
On the centre and right panels, the characterisation of the velocity excess, assuming the
charge estimator to be correct, expressed as an additive constant or proportionality factor.

effectively include a bigger region around the strings for higher energy states, or lower sim-

ulation times. In this case, one could expect that the charge would appear to be decaying

away faster then it really does, just by the fact that smaller and smaller portions of the

box charge are being associated with the strings. This issue could be tackled by repeating

the analysis considering different estimators and studying its influence in the response, but

a first estimate of the expected bias may be obtained by computing what would this hid-

den temporal dependence has to look like, if this is to explain the deviations encountered.

To evaluate this effect, two different analysis were conducted. Firstly, it was assumed the

velocity estimator to be correct, while the charge could carry an hidden time dependence.

In this case, the estimated decay (δ̂) rate would actually be such that:

δ̂ = δ + δb −→ δb = δ̂ − δ = δ̂ −
(

4λv2
0 − 2λ

)
(4.19)

where δ is the analytical solution, and has been replaced by its representation in terms of

the expansion rate and the asymptotic velocity, and δb is the hidden time dependence due

to the estimator bias. On a different perspective, it was assumed that the charge estimator

is correct, but the estimated velocity (v̂0) contained an additional term, ∆vb, that may

alternatively be written as a fraction (κv) of the true value:

v̂2
0 = v2

0 + ∆v2
b = κvv2

0 = κv
δ + 2λ

4λ
(4.20)

In Figure 4.19 are presented the results for the different bias estimators. Although no

definite answer may be given and only additional simulations may shed some light into the

true nature of the bias, if it exists at all, it seems that the velocity excess is well related to

the expansion rate.





Chapter 5

Conclusions

5.1 Summary

In this thesis the complex evolution of charged cosmic strings network have been studied.

Although in a first approach this evolution was studied from a reduced order analytical

model, it was later compared to the output of complex numerical simulations, kindly made

available by José Ricardo Correia. Both these approaches, as well as the needed theoretical

background to gained deeper insight into topological defects, defined the structure and

organisation of this thesis.

In Chapter 2 topological defects formation and the processes that may allow to devel-

oped charged strings in a cosmological context from the symmetry breaking phase transition

of complex fields were introduced and briefly illustrated with some toy models. Addition-

ally, and because solving the full field theory equations is not feasible in purely analytical

terms, the reduced order model that is generalised VOS model, where the network evolu-

tion properties are condensed in a relatively short number of macroscopic quantities, was

also introduced. Finally, the so-called scaling solutions for the differential equations of

the analytical models were defined, as well as a brief discussion regarding their physical

interpretation.

Having the problem properly formalised, Chapter 3 is fully devoted to presenting the

solutions branches with a clear physical interpretation (the purely mathematical ones are

presented, for consistency, in Appendix A). Here, additional energy and/or charge loss

mechanisms, that in the analytical model framework manifest themselves as additional

parameters, are successively introduced, and the corresponding solutions discussed and

compared to previous works by [14, 15] and [17]. To aid the visualisation of the identified

79
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solutions, a user-friendly interface was also developed and used to produce the plots that

illustrate the network evolution based on numerically solving the macroscopical differential

equations for different conditions.

At this point, several solutions branches had already been identified, and it was consid-

ered appropriate to compare their predictions to the output of full field theory simulations,

and this if the focus of Chapter 4. Since this topic had not been covered yet, a brief intro-

duction to the simulation of strings network is provided, and only then the results properly

explored. After a preliminary data evaluation and analysis, different approaches were used

to characterise the different quantities evolution.

5.2 Main contributions

In the previous section a brief description of the contents of each chapter was provided, but

some conclusions and analysis should be particularly highlighted here, in particular to the

qualitative behaviour of the evolution for different conditions.

Firstly, when no energy loss mechanism were considered, it was clear that, assuming

F′ ̸= 0 three distinct types of solutions emerged, that could be easily related to the ones

identified by Almeida and Martins [14], provided one makes the adequate associations

between charge and small-scale structure, and to the ones identified by Oliveira et al. [17]

for the chiral limit, provided one takes the limit s → 0 in these. This identification is

presented in Table 5.1, where the power law exponents taken from [14, 17] were converted

to express scaling solutions with respect to conformal time and comoving lengths, noting a

general power law ∝ tζt , where ζt = a + bλt, corresponds to:

ζτ =
ζt

1 − λt
=

a + bλt

1 − λt
=

a
1 − λt

+ bλτ = a (1 + λτ) + bλτ = a + (a + b)λτ (5.1)

where the indexes t and τ have been used to clearly indicate if the corresponding parameter

is evaluated with respect to physical or conformal time, respectively. It is interesting to

note that the decaying velocity solution obtained by Almeida and Martins [14], although

associated with a slightly different expansion rate, shows that the small scale structure

plays the role of the charge in our model. In particular, it should be noted that while the

small scale parameter, µ, evolves as 2 − 3λ, its square would evolve as 4 − 6λ, which is

exactly the same dependence that we have found.

In fact, for fast expansion rates, it was found that the charge and current will always

decay, while the network velocity is kept constant, a regime that finds its limit at the matter
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TABLE 5.1: Comparison of the solutions obtained in Chapter 3 with those obtained by
Oliveira et al. [17] and Almeida and Martins [14], for the chiral and wiggly models, re-
spectively, without energy loss mechanism. The power law exponents have been ex-

pressed with respect to conformal time and comoving distances.

Chapter 3 Oliveira [17] Almeida [14]

λ α β γ δ ε λ α β γ ε λ α β γ ε

A1
2
3

λ

2
−λ 4 − 6λ 4 − 6λ 1 − λ < 2

λ

2
λ − 2

2
0

λ

2
<

1
2

λ

2
−λ 2 − 3λ 1 − λ

A2 > 1 1 0 4 − 2λ 4 − 2λ 1
2 1 0 0 1 2 1 0 0 1

> 2 1 0 4 − 2λ 1 > 2 1 0 0 1

A3 > 2 1 0 4 − 2λ 0 1 > 2 1 0 4 − 2λ 1 > 2 1 0 0 1

A4 > 2 1 0 4 − 2λ 4 − 2λ 1 > 2 1 0 4 − 2λ 1 > 2 1 0 0 1

A5 2 1 0 0 0 1 2 1 0 0 1 2 1 0 0 1

epoch expansion rate, where charge and current are allowed to subsist. It was also possible

to find subtle variations of these solutions, where charges are allowed to survive, or even

grow, by imposing F′ = 0*. It is interesting to note that a generalisation of the decaying

velocity solutions found by Oliveira et al. [17] here is only found for a very particular

expansion rate, lower than the radiation epoch one*. Finally, it should be noted that the

universe expansion plays an important role here, since in its absence, and still assuming no

additional energy loss mechanism, one would only find frozen network solutions.

Once the network is allowed to lose energy, here parameterised by c̃, even the non

expanding universe solutions exhibit some evolution. There, and although charge, current

and velocity are still constant, but the correlation length now increases over time, which is

the natural manifestation of a network losing energy. On the other hand, the expanding

universe solutions are also a generalised version from the ones previously identified. The

most distinct features here are the lower asymptotic velocities that come with the increase

of c̃ and the deviation of the critical expansion rate, previously compatible with the matter

epoch, to lower values. Additionally, it should be noted that while these solutions are valid

for networks with no charge losses (by setting g = 1), it was also argued, based on the work

by Rybak et al. [20], that the decaying charge and current solutions are also a possible limit

of any network, since these are asymptotically equivalent to a network with g = 1. Once

more, one can easily relate these solutions to the ones obtained by Oliveira et al. [17] and

Almeida and Martins [14], with the appropriate adaptations, as presented in Table 5.2 and

Table 5.3. It should be noted that the charge decay law of Oliveira et al. [17] may not look

*See the limitations and future developments for further discussion on this matter.
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TABLE 5.2: Comparison of the solutions obtained in Chapter 3 with those obtained by
Oliveira et al. [17] for the chiral limit model, with energy loss mechanism. The power law
exponents have been expressed with respect to conformal time and comoving distances.

Chapter 3 Oliveira [17]

λ α β γ δ ε λ α β γ ε

B1
2

3 + c̃/kv
1 − λ −λ 0 0 1 − λ <

2
1 + c/kv

1 + c̃/kv

2
λ

1 + c̃/kv

2
λ − 1 0

1 + c̃/kv

2
λ

B2 1/v2
0

1 + c̃/kv
1 0 4λv2

0 − 2λ 4λv2
0 − 2λ 1

2
1 + c/kv

1 0 0 1

>
2

1 + c/kv
1 0

4
1 + c/kv

− 2λ 1

B3 >
2

1 + c̃/kv
1 0 4λv2

0 − 2λ 0 1 >
2

1 + c/kv
1 0

4
1 + c/kv

− 2λ 1

B4 >
2

1 + c̃/kv
1 0 4λv2

0 − 2λ 4λv2
0 − 2λ 1 >

2
1 + c/kv

1 0
4

1 + c/kv
− 2λ 1

B5
2

1 + c̃/kv
1 0 0 0 1

2
1 + c/kv

1 0 0 1

TABLE 5.3: Comparison of the solutions obtained in Chapter 3 with those obtained by
Almeida and Martins [14] for the wiggly model, with energy loss mechanism. The power
law exponents have been expressed with respect to conformal time and comoving dis-

tances.

Chapter 3 Almeida [14]

λ α β γ δ ε λ α β γ ε

B1
2

3 + c̃/kv
1 − λ −λ 0 0 1 − λ <

1
2 + ce f f /ke f f

ce f f /ke f f

1 + ce f f /ke f f
+

1 − ce f f /ke f f

2 + 2ce f f /ke f f
λ −λ

2 −
(

3 + ce f f /ke f f

)
λ

1 + ce f f /ke f f
1 − λ

B2 1/v2
0

1 + c̃/kv
1 0 4λv2

0 − 2λ 4λv2
0 − 2λ 1

2
1 + ce f f /ke f f

1 0 0 1

>
2

1 + c/k
1 0 0 1

B3 >
2

1 + c̃/kv
1 0 4λv2

0 − 2λ 0 1 >
2

1 + c/k
1 0 0 1

B4 >
2

1 + c̃/kv
1 0 4λv2

0 − 2λ 4λv2
0 − 2λ 1 >

2
1 + c/k

1 0 0 1

B5
2

1 + c̃/kv
1 0 0 0 1

2
1 + ce f f /ke f f

1 0 0 1

the same as ours at first sight, but, referring back to B2 to B5, it can be seen that:

4λv2
0 − 2λ =

4
1 + c̃/kv

− 2λ (5.2)

Finally, the full general model with arbitrary values for c̃ and g exhibited more complex

solutions where, for adequate choice of parameters, the charge and/or current may actually

exhibit very distinct behaviours. These solutions were typically associated with more and

more complex constraints on the relations between the different model parameters. For a

non expanding universe, however, solutions under these conditions are always associated

with constant velocities, but may exhibit constant or growing charges, but not decaying

ones, while still requiring F′ ̸=0 and F′′ = 0.

In parallel to the identification of the solutions themselves, there are also some relevant

outputs that may be used in future works. On one hand, although the scripts specially

developed to aid the visualisation of the network evolution based on the analytical model

differential equations do not contain any particularly challenging feature, they may still be

useful to illustrate and test some aspects of the generalised VOS model. On the other hand,
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the different approaches used to study the output of the filed theory numerical simulations,

and in particular the MCMC code adapted from the work by Pimenta et al. [32], can be

further explored to better constrain the model parameters and compare future simulation

outputs.

5.3 Limitations and future developments

If up until now special attention was given to the relevant outputs of this work, there are

also some relevant limitations that should be properly attended in future works.

Firstly, it was clear that although most approaches used to characterise the numerical

simulations output were compatible with one another, specially when referring to the decay

or growth rates of the different parameters, and the qualitative behaviour of the network

was similar to some of the previously identified analytical solutions, the details were not.

The source of these deviations could not be completely identified and further simulations,

possibly with different estimators, are required to provide a definite answer.

On the other hand, these deviations can also be read in the opposite way and actually

be a smoking gun of inadequate model assumptions in the construction of the analytical

model itself. In particular, it is important to understand if the momentum parameter may

carry some relation to the characteristic charge of the network, and not only to the velocity.

Another possibility was already hidden in the comparisons with the solutions studied by

Oliveira et al. [17], where an additional model parameter, s, was used to characterise the

charge gradient and that is absent here.

Finally, some solutions with distinct features were found by imposing F′ = 0. Although

there is nothing fundamentally wrong with such imposition, the analytical model relating

the total energy, correlation length and charge relation may be extended to account for

higher order derivatives.





Appendix A

Mathematical solutions

A.1 Introduction

The solutions that have been presented in Chapter 3 have systematically left out some pos-

sible branches for physical reasons, namely by requiring the network velocity to be strictly

lower than 1 at all times, or by making the implicit assumption that for an expanding

universe it is not expected that the momentum parameter may vanish. Here, these as-

sumptions will be relaxed and a new set of solutions listed that may be natural extensions

of their physical counterpart, or completely different. Firstly, the ultra-relativistic regime

will be explored by explicitly setting v0 = 1, implying C = β = 0, and only after that the

momentum parameter will be set to kv = 0. In each of these analysis, it will be assumed

that only one of the physical interpretations is modified, and so this chapter ends with the

analysis of the cases where both v0 = 1 and kv = 0.
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A.2 Vanishing momentum parameter

Firstly, if the momentum parameter is allowed to vanish, even for expanding universes, the

equations reduce to:

α = λ

[
v2

0τ2β − C
L2

0J 2
0

ξ2
0

F′τ2(α−ε)+η

]
+

gc̃
2

v0

ξ0
τ1+β−ε (A.1a)

β = −2Cλ

(
1 +

L2
0J 2

0

ξ2
0

F′τ2(α−ε)+η

)
(A.1b)

γ = −2λ − ρc̃
v0ξ0

J2
0 L2

0

1 − g
F′ − 2Q2

0τδF′′ τ
1+β+ε−2α−γ (A.1c)

δ = −2λ
F′ + 2J2

0 τγF′′

F′ + 2Q2
0τδF′′ − (1 − ρ)c̃

v0ξ0

Q2
0L2

0

1 − g
F′ + 2Q2

0τδF′′ τ
1+β+ε−2α−δ (A.1d)

ε = λv2
0τ2β

(
1 +

L2
0J 2

0

ξ2
0

F′τ2(α−ε)+η

)
+

c̃
2

v0

ξ0
τ1+β−ε (A.1e)

In particular, it should be noted that the, physical, solutions for a non-expanding universe

are contained within this class of solutions, by making λ → 0. It should be noted that for

these solutions it will always be that β = 0, while the remaining equations are:

α =
gc̃
2

v0

ξ0
τ1−ε (A.2a)

γ = −ρc̃
v0ξ0

J2
0 L2

0

1 − g
F′ − 2Q2

0τδF′′ τ
1+ε−2α−γ (A.2b)

δ = −(1 − ρ)c̃
v0ξ0

Q2
0L2

0

1 − g
F′ + 2Q2

0τδF′′ τ
1+ε−2α−δ (A.2c)

ε =
c̃
2

v0

ξ0
τ1−ε (A.2d)

It should be clear that without any loss mechanism (c̃ = 0), every single quantity of interest

will remaining constant. Additionally, if c̃ ̸ 0, but g = 1, then α = ε, but δ = γ = 0.

A.2.1 No losses

If all loss mechanism are neglected, by setting c̃ = 0, it immediately follows that the

current will always decay as −2λ. Two solutions emerge that where both length scales

are kept constant, while the velocity decays, as given by V1 and V2. Once more, the

difference between them is on the charge behaviour. Additionally, there are also solutions

with constant velocities, as given by V3, but these may only happen for K = −1 and hence

F′ ̸= 0. This case is the adequate limit for a non expanding universe.
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Solution V1:

1. Scaling solutions:

Lc = L0 , ξc = ξ0 , J2 = J2
0 τ−2λ , v = v0τ−2λ

L = L0τλ , ξ = ξ0τλ , Q2 = Q2
0τ−2λ

2. Additional constraints:(
Q2

0 = J2
0

)∗
Only for F′ = 0

Solution V2:

1. Scaling solutions:

Lc = L0 , ξc = ξ0 , J2 = J2
0 τ−2λ , v = v0τ−2λ

L = L0τλ , ξ = ξ0τλ , Q2 = Q2
0

2. Additional constraints:

F′ = 0

Solution V3:

1. Scaling solutions:

Lc = L0τλ , ξc = ξ0 , J2 = J2
0 τ−2λ , v = v0

L = L0τ2λ , ξ = ξ0τλ , Q2 = Q2
0τ−2λ

2. Additional constraints:

K = −1
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A.2.2 No charge losses

If one now set g = 1, the current will still decay as −2λ. The remaining equations to be

solved are:

α = λ

[
v2

0τ2β − C
L2

0J 2
0

ξ2
0

F′τ2(α−ε)+η

]
+

c̃
2

v0

ξ0
τ1+β−ε (A.3a)

β = −2Cλ

(
1 +

L2
0J 2

0

ξ2
0

F′τ2(α−ε)+η

)
(A.3b)

γ = −2λ (A.3c)

δ = −2λ
F′ + 2J2

0 τγF′′

F′ + 2Q2
0τδF′′ (A.3d)

ε = λv2
0τ2β

(
1 +

L2
0J 2

0

ξ2
0

F′τ2(α−ε)+η

)
+

c̃
2

v0

ξ0
τ1+β−ε (A.3e)

Here, one may still find the decaying velocity solutions previously defined by V1 and V2

to be generalised to V4 and V5. Additionally, one may still find two additional solutions,

V6 and V7, depending on the value of the expansion rate and the energy loss parameter.

Finally, one may still find a constant velocity solution, given by V8, which is once more the

adequate limit for a non expanding universe.

Solution V4:

1. Scaling solutions:

Lc = L0 , ξc = ξ0 , J2 = J2
0 τ−2λ , v = v0τ−2λ

L = L0τλ , ξ = ξ0τλ , Q2 = Q2
0τ−2λ

2. Additional constraints:

λ >
1
2

,
(

Q2
0 = J2

0

)∗
Only for F′ = 0
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Solution V5:

1. Scaling solutions:

Lc = L0 , ξc = ξ0 , J2 = J2
0 τ−2λ , v = v0τ−2λ

L = L0τλ , ξ = ξ0τλ , Q2 = Q2
0

2. Additional constraints:

λ >
1
2

, F′ = 0

Solution V6:

1. Scaling solutions:

Lc = L0τ1−2λ , ξc = ξ0τ1−2λ , J2 = J2
0 τ−2λ , v = v0τ−2λ

L = L0τ1−λ , ξ = ξ0τ1−λ , Q2 = Q2
0τ−2λ

2. Additional constraints:

λ =
c̃v0

2ξ0
≤ 1

2
,

(
Q2

0 = J2
0

)∗
, ,

Only for F′ = 0

Solution V7:

1. Scaling solutions:

Lc = L0τ1−2λ , ξc = ξ0τ1−2λ , J2 = J2
0 τ−2λ , v = v0τ−2λ

L = L0τ1−λ , ξ = ξ0τ1−λ , Q2 = Q2
0

2. Additional constraints:

λ =
c̃v0

2ξ0
≤ 1

2
, F′ = 0 , ,
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Solution V8:

1. Scaling solutions:

Lc = L0τ1+λ , ξc = ξ0τ , J2 = J2
0 τ−2λ , v = v0

L = L0τ1+2λ , ξ = ξ0t , Q2 = Q2
0τ−2λ

2. Additional constraints:

K = −1 , c̃ =
2ξ0

v0
, ,

A.2.3 With charge losses

Finally, the most general case should now be analysed. Starting once again with the

decaying velocity solutions, we find solutions with constant charge and constant length

scales and β < −1, given by V9, for ρ ̸= 0, or V10, for ρ = 0.

Solution V9:

1. Scaling solutions:

Lc = L0 , ξc = ξ0 , J2 = J2
0 τ1−2λ , v = v0τ−2λ

L = L0τλ , ξ = ξ0τλ , Q2 = Q2
0

2. Additional constraints:

β < −1 , ρc̃
v0ξ0

J2
0 L2

0

1 − g
2Q2

0F′′ = 1 , ρ ̸= 0 ,

Solution V10:

1. Scaling solutions:

Lc = L0 , ξc = ξ0 , J2 = J2
0 τ−2λ , v = v0τ−2λ

L = L0τλ , ξ = ξ0τλ , Q2 = Q2
0

2. Additional constraints:

β < −1 , ρ = 0 , ,
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There are also solutions with decaying velocities, but also decaying charges, as given

by V11 and V12, for F′ = 0. If, however, we have F′ ̸= 0, we may have solutions V13, for

ρ = 0, V14, for ρ = 1, or V15, for any other value of ρ.

Solution V11:

1. Scaling solutions:

Lc = L0 , ξc = ξ0 , J2 = J2
0 τ1/2−λ , v = v0τ−2λ

L = L0τλ , ξ = ξ0τλ , Q2 = Q2
0τ1/2−λ

2. Additional constraints:

β < −1 , F′ = 0 , ,

2λ − ρc̃
v0ξ0

J2
0 L2

0

1 − g
2Q2

0F′′ = 2λ
J2

0

Q2
0
+ (1 − ρ)c̃

v0ξ0

Q2
0L2

0

1 − g
2Q2

0F′′

λ = ρc̃
v0ξ0

J2
0 L2

0

1 − g
2Q2

0F′′ −
1
2

Solution V12:

1. Scaling solutions:

Lc = L0 , ξc = ξ0 , J2 = J2
0 τ−2λ , v = v0τ−2λ

L = L0τλ , ξ = ξ0τλ , Q2 = Q2
0τ1/2−λ

2. Additional constraints:

β < −1 , F′ = 0 , ρ = 0 ,

λ =
1
2
+ (1 − ρ)c̃

v0ξ0

Q2
0L2

0

1 − g
2Q2

0F′′ <
1
2
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Solution V13:

1. Scaling solutions:

Lc = L0 , ξc = ξ0 , J2 = J2
0 τ−2λ , v = v0τ−2λ

L = L0τλ , ξ = ξ0τλ , Q2 = Q2
0τ1−2λ

2. Additional constraints:

β < −1 , F′ ̸= 0 , ρ = 0 ,

c̃
v0ξ0

Q2
0L2

0

1 − g
F′ = −1

Solution V14:

1. Scaling solutions:

Lc = L0 , ξc = ξ0 , J2 = J2
0 τ1−2λ , v = v0τ−2λ

L = L0τλ , ξ = ξ0τλ , Q2 = Q2
0τ−2λ

2. Additional constraints:

β < −1 , F′ ̸= 0 , ρ = 1 ,

c̃
v0ξ0

J2
0 L2

0

1 − g
F′ = −1

Solution V15:

1. Scaling solutions:

Lc = L0 , ξc = ξ0 , J2 = J2
0 τ1−2λ , v = v0τ−2λ

L = L0τλ , ξ = ξ0τλ , Q2 = Q2
0τ1−2λ

2. Additional constraints:

β < −1 , F′ ̸= 0 , ,

(1 − ρ)c̃
v0ξ0

Q2
0L2

0

1 − g
F′ = −1 ,

1 − ρ

ρ
=

J2
0

Q2
0
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There is another branch with decaying velocities, but where it is always verified that

2(α − ε) + η = 0. The different solutions come with different charge behaviour. Growing

charge solutions, as given by V16 and V17, are only possible if F′′ ̸= 0. On the other hand,

solutions with constant charge are given by V18 and V19, where the current is also kept

constant or decays. The decaying charge solutions within this sub-branch are only found

by ρ = 1 and are given by V20, where the current is now kept constant.

Solution V16:

1. Scaling solutions:

Lc = L0τα , ξc = ξ0τ1+β , J2 = J2
0 τη , v = v0τ−2λ(1+K)

L = L0τα+λ , ξ = ξ0τ1−λ(1+2K) , Q2 = Q2
0τη

2. Additional constraints:

η = −2λ − ρc̃
v0ξ0

J2
0 L2

0

1 − g
F′ > 0 , F′ ̸= 0 ,

1 − ρ

ρ
=

J2
0

Q2
0

α = −λK+
gc̃
2

v0

ξ0
, F′′ = 0

Solution V17:

1. Scaling solutions:

Lc = L0τα , ξc = ξ0τ1+β , J2 = J2
0 τ−2λ , v = v0τ−2λ(1+K)

L = L0τλ , ξ = ξ0τ1−λ(1+2K) , Q2 = Q2
0τδ

2. Additional constraints:

δ = −2λ − ρc̃
v0ξ0

J2
0 L2

0

1 − g
F′ > 0 , F′ ̸= 0 , ρ = 0

α = −λK+
gc̃
2

v0

ξ0
, F′′ = 0
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Solution V18:

1. Scaling solutions:

Lc = L0τα , ξc = ξ0τ1+β , J2 = J2
0 , v = v0τ−2λ(1+K)

L = L0τλ , ξ = ξ0τ1−λ(1+2K) , Q2 = Q2
0

2. Additional constraints:

λ = −ρc̃
2

v0ξ0

J2
0 L2

0

1 − g
F′ − 2Q2

0F′′ , F′ ̸= 0 , α = −λK+
gc̃
2

v0

ξ0

4λ
(

Q2
0 − J2

0

)
= c̃

v0ξ0

Q2
0L2

0
(1 − g)

1 − ρ

(
1 +

Q2
0

J2
0

F′ + 2Q2
0F′′

F′ − 2Q2
0F′′

)

Solution V19:

1. Scaling solutions:

Lc = L0τα , ξc = ξ0τ1+β , J2 = J2
0 τ−2λ , v = v0τ−2λ(1+K)

L = L0τλ , ξ = ξ0τ1−λ(1+2K) , Q2 = Q2
0

2. Additional constraints:

λ = − c̃
2

v0ξ0

Q2
0L2

0

1 − g
F′ , F′ ̸= 0 , α = −λK+

gc̃
2

v0

ξ0
, ρ = 0

Solution V20:

1. Scaling solutions:

Lc = L0τα , ξc = ξ0τ1+β , J2 = J2
0 , v = v0τ−2λ(1+K)

L = L0τλ , ξ = ξ0τ1−λ(1+2K) , Q2 = Q2
0τδ

2. Additional constraints:

F′ ̸= 0 , α = −λK+
gc̃
2

v0

ξ0
, F′ = 0

ρ = 1 , λ = − c̃
2

v0ξ0

J2
0 L2

0

1 − g
F′ , δ = −2λ

F′ + 2J2
0 F′′

F′
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Finally, there is another sub-branch of constant velocity solutions, but where it is needed

K = −1, implying F′ ̸= 0. These cases are only possible if the correlation length scales

linearly. Once more, we may have decaying charge solutions, as given by V21, in which case

the characteristic length also scales linearly. For constant charges, we may once more have

constant currents, as given by V22, or decaying ones, as given by V23. It is still possible

to have growing charges, as long as F′′ = 0, as given by solution V24 and V25. Only the

last two are possible for a non expanding universe.

Solution V21:

1. Scaling solutions:

Lc = L0τ , ξc = ξ0τ , J2 = J2
0 , v = v0

L = L0t , ξ = ξ0t , Q2 = Q2
0τδ

2. Additional constraints:

K = −1 , ρ = 1 , λ = 1 − g

δ = −2λ
F′ + 2J2

0 F′′

F′ , λ = − c̃
2

v0ξ0

J2
0 L2

0

1 − g
F′

Solution V22:

1. Scaling solutions:

Lc = L0τ , ξc = ξ0τ , J2 = J2
0 , v = v0

L = L0t , ξ = ξ0t , Q2 = Q2
0

2. Additional constraints:

F′ ̸= 0 , λ = −ρc̃
2

v0ξ0

J2
0 L2

0

1 − g
F′ − 2Q2

0F′′ , λ = 1 − g

2λ

(
2Q2

0 − 2J2
0

F′ + 2Q2
0F′′

)
= (1 − ρ)c̃

v0ξ0

Q2
0L2

0

1 − g
F′ + 2Q2

0F′′ − ρc̃
v0ξ0

J2
0 L2

0

1 − g
F′ − 2Q2

0F′′
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Solution V23:

1. Scaling solutions:

Lc = L0τ , ξc = ξ0τ , J2 = J2
0 τ−2λ , v = v0

L = L0t , ξ = ξ0t , Q2 = Q2
0

2. Additional constraints:

F′ ̸= 0 , α = −λK+
gc̃
2

v0

ξ0
, λ = 1 − g , ρ = 0

λ = − c̃
2

v0ξ0

Q2
0L2

0

1 − g
F′

Solution V24:

1. Scaling solutions:

Lc = L0τλ+g , ξc = ξ0τ , J2 = J2
0 τη , v = v0

L = L0τ2λ+g , ξ = ξ0t , Q2 = Q2
0τη

2. Additional constraints:

η = −2λ − ρc̃
v0ξ0

J2
0 L2

0

1 − g
F′ > 0 , F′ ̸= 0 ,

1 − ρ

ρ
=

J2
0

Q2
0

η = 2 − 2(λ + g) , F′′ = 0 , λ < 1 − g

Solution V25:

1. Scaling solutions:

Lc = L0τλ+g , ξc = ξ0τ , J2 = J2
0 τ−2λ , v = v0

L = L0τ2λ+g , ξ = ξ0t , Q2 = Q2
0τδ

2. Additional constraints:

δ = −2λ − ρc̃
v0ξ0

J2
0 L2

0

1 − g
F′ > 0 , F′ ̸= 0 , ρ = 0

δ = 2 − 2(λ + g) , F′′ = 0 , λ < 1 − g
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A.3 Ultra-relativistic solutions

Having studied the cases where the moment the momentum parameter is allowed to vanish,

even for expanding universes, it is now time to analyse the cases where the network velocity

is such that v0 = 1. In these cases, it immediately follows that β = C = 0, hence simplifying

significantly the equations to be solved:

α = λ +
gc̃
2

1
ξ0

τ1−ε (A.4a)

γ = 2
(

kv

ξ0
τ1−ε − λ

)
− ρc̃

1
ξ0

ξ2
0

J2
0 L2

0

1 − g
F′ − 2Q2

0τδF′′ τ
1+ε−2α−γ (A.4b)

δ = 2
F′ + 2J2

0 τγF′′

F′ + 2Q2
0τδF′′

(
kv

ξ0
τ1−ε − λ

)
− c̃

ξ0

ξ2
0

Q2
0L2

0

(1 − ρ)(1 − g)
F′ + 2Q2

0τδF′′ τ1+ε−2α−δ (A.4c)

ε = λ
(

1 +Kτ2(α−ε)+η
)
− kv

ξ0
Kτ2(α−ε)+η+1−ε +

c̃
2

1
ξ0

τ1−ε (A.4d)

where the velocity equation is not presented anymore as it is trivially respected. A particular

distinct feature of these solutions is that one may find cases where 1 + β − ε = 1 − ε < 0,

since the velocity equation does not place any additional constraints anymore, but it is true

that solutions with ε < 1 are excluded.

A.3.1 No losses

Once more, the analysis starts neglecting all loss mechanisms by setting c̃ = 0. This

hypothesis as the immediate consequence of fixing α = λ, while the remaining equations

reduce to:

γ = 2
(

kv

ξ0
τ1−ε − λ

)
(A.5a)

δ = 2
F′ + 2J2

0 τγF′′

F′ + 2Q2
0τδF′′

(
kv

ξ0
τ1−ε − λ

)
(A.5b)

ε = λ +Kτ2(α−ε)+η

(
λ − kv

ξ0
τ1−ε

)
(A.5c)

Once more it is clear that solutions where ε < 1 are not possible. The cases where both

characteristic and correlation length scale at the same rate, either by imposing F′ = 0 or

having decaying charge solutions, as in solution U1, while constant charge solutions are still

possible within the F′ = 0 sub-branch, as given by solution U2. Both these solutions are

possible for expansion rates higher than the radiation epoch value, λ > 1.
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Solution U1:

1. Scaling solutions:

Lc = L0τλ , ξc = ξ0τλ , J2 = J2
0 τ−2λ , v = 1

L = L0τ2λ , ξ = ξ0τ2λ , Q2 = Q2
0τ−2λ

2. Additional constraints:

λ > 1 ,
(

Q2
0 = J2

0

)∗
,

∗ Only for F′ = 0.

Solution U2:

1. Scaling solutions:

Lc = L0τλ , ξc = ξ0τλ , J2 = J2
0 τ−2λ , v = 1

L = L0τ2λ , ξ = ξ0τ2λ , Q2 = Q2
0

2. Additional constraints:

λ > 1 , F′ = 0 ,

It should be noted that the solutions above are only possible for expansion rates such

that λ > 1. On the other hand, for λ = 1, solutions where the charge and current may

exhibit any type of behaviour, depending on the relation between kv and λ may still be

found, as given by U3, or solutions where the current decays, but the charge is conserved,

as given by U4. The solutions for F′ ̸= 0 are given by U5, but in this case charge and

current must decay.
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Solution U3:

1. Scaling solutions:

Lc = L0τ , ξc = ξ0τ , J2 = J2
0 τη , v = 1

L = L0t , ξ = ξ0t , Q2 = Q2
0τη

2. Additional constraints:

λ = 1 , F′ = 0 , η = 2
(

kv

ξ0
− 1

)
, Q2

0 = J2
0

Solution U4:

1. Scaling solutions:

Lc = L0τ , ξc = ξ0τ , J2 = J2
0 τη , v = 1

L = L0t , ξ = ξ0t , Q2 = Q2
0

2. Additional constraints:

λ = 1 , F′ = 0 , η = 2
(

kv

ξ0
− 1

)
< 0

Solution U5:

1. Scaling solutions:

Lc = L0τ , ξc = ξ0τ , J2 = J2
0 τη , v = 1

L = L0t , ξ = ξ0t , Q2 = Q2
0τη

2. Additional constraints:

λ = 1 , F′ ̸= 0 , η = 2
(

kv

ξ0
− 1

)
≤ 0 ,
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Finally, and for low expansion rates such that λ < 1, only growing charge and current

solutions are possible, as given by U6.

Solution U6:

1. Scaling solutions:

Lc = L0τλ , ξc = ξ0τ , J2 = J2
0 τ2(1−λ) , v = 1

L = L0τ2λ , ξ = ξ0t , Q2 = Q2
0τ2(1−λ)

2. Additional constraints:

λ <
kv

ξ0
= 1 , F′ ̸= 0 , K = −1 ,

(
Q2

0 = J2
0

)∗
Only for F′′ ̸= 0

A.3.2 No charge losses

Having presented the solutions in the absence on any energy or loss mechanism, it is now

time to turn to the cases where energy losses are explicitly considered, by setting g = 1. In

this case, the system of equations reads:

α = λ +
c̃
2

1
ξ0

τ1−ε (A.6a)

γ = 2
(

v0kv

ξ0
τ1−ε − λ

)
(A.6b)

δ = 2
F′ + 2J2

0 τγF′′

F′ + 2Q2
0τδF′′

(
v0kv

ξ0
τ1−ε − λ

)
(A.6c)

ε = λ
(

1 +Kτ2(α−ε)+η
)
− kv

ξ0
Kτ2(α−ε)+η+1−ε +

c̃
2

1
ξ0

τ1−ε (A.6d)

from where it is clear that ε < 1 solutions are not possible once more. Additionally, solutions

U1 and U2, that share the common feature ε = λ > 1, are still a possible solution here.

The linearly scaling solutions, though, are now found for a lower expansion rate, as given

by U7 and U8, that can be seen to extend solutions U3 and U4, respectively, and reduce

to them for c̃ = 0. On the other hand, the proper generalisation of solutions U5 and U6 is

given by U9 and U10.
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Solution U7:

1. Scaling solutions:

Lc = L0τ , ξc = ξ0τ , J2 = J2
0 τη , v = 1

L = L0t , ξ = ξ0t , Q2 = Q2
0τη

2. Additional constraints:

λ = 1 − c̃
2ξ0

, F′ = 0 , η = 2
(

kv

ξ0
− λ

)
, Q2

0 = J2
0

Solution U8:

1. Scaling solutions:

Lc = L0τ , ξc = ξ0τ , J2 = J2
0 τη , v = 1

L = L0t , ξ = ξ0t , Q2 = Q2
0

2. Additional constraints:

λ = 1 − c̃
2ξ0

, F′ = 0 , η = 2
(

kv

ξ0
− λ

)
< 0

Solution U9:

1. Scaling solutions:

Lc = L0τ , ξc = ξ0τ , J2 = J2
0 τη , v = 1

L = L0t , ξ = ξ0t , Q2 = Q2
0τη

2. Additional constraints:

λ = 1 − c̃
2ξ0

, F′ ̸= 0 , η = 2
(

kv

ξ0
− λ

)
≤ 0 ,
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Solution U10:

1. Scaling solutions:

Lc = L0τα , ξc = ξ0τ , J2 = J2
0 τ2(1−α) , v = 1

L = L0τα+λ , ξ = ξ0t , Q2 = Q2
0τ2(1−α)

2. Additional constraints:

λ <
kv

ξ0
= 1 − c̃

2ξ0
, F′ ̸= 0 , K = −1 ,

(
Q2

0 = J2
0

)∗
α = λ +

c̃
2ξ0

, 1 =
c̃

2ξ0
+

kv

ξ0

Only for F′′ ̸= 0

A.3.3 With charge losses

Finally, it is important to identify the solutions with arbitrary energy and charge loss, by

setting g ̸= 1. Here, it is convenient to decouple once more between solutions where the

correlation length is allowed to grow faster than the linear scaling and the ones where it

scales linearly. For the first ones, we have solutions for both F′ = 0 and F′ ̸= 0, while the

latter ones are only compatible with F′ ̸= 0.

Starting by assuming F′ = 0 and ε > 1, we find solutions where both charge and current

decay and solutions where the current decays, but not the charge, as given by solutions U11

and U12. For the particular case where ρ = 0, solution U13 is possible, which is similar to

U11, but with different additional constraints.
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Solution U11:

1. Scaling solutions:

Lc = L0τλ , ξc = ξ0τλ , J2 = J2
0 τη , v = 1

L = L0τ2λ , ξ = ξ0τ2λ , Q2 = Q2
0τη

2. Additional constraints:

λ > 1 , F′ = 0 , η = −2λ +
ρc̃
ξ0

ξ2
0

J2
0 L2

0

1 − g
2Q2

0F′′ < 0

λ >
ρc̃
ξ0

ξ2
0

J2
0 L2

0

1 − g
4Q2

0F′′

4λ
(

Q2
0 − J2

0

)
F′′ L2

0
ξ0

=
c̃

Q2
0

1 + ρ

(
Q2

0 − J2
0

J2
0

) (1 − g
)

Solution U12:

1. Scaling solutions:

Lc = L0τλ , ξc = ξ0τλ , J2 = J2
0 τη , v = 1

L = L0τ2λ , ξ = ξ0τ2λ , Q2 = Q2
0

2. Additional constraints:

λ > 1 , F′ = 0 , η = −2λ +
ρc̃
ξ0

ξ2
0

J2
0 L2

0

1 − g
2Q2

0F′′ < 0

λ >
ρc̃
ξ0

ξ2
0

J2
0 L2

0

1 − g
4Q2

0F′′

Solution U13:

1. Scaling solutions:

Lc = L0τλ , ξc = ξ0τλ , J2 = J2
0 τ−2λ , v = 1

L = L0τ2λ , ξ = ξ0τ2λ , Q2 = Q2
0τ1/2−λ/2

2. Additional constraints:

λ = 1 +
c̃
ξ0

ξ2
0

Q2
0L2

0

1 − g
Q2

0F′′ > 1 , F′ = 0 , ρ = 0
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On the other hand, solutions where F′ ̸= 0 are also possible. For arbitrary ρ, we must

have λ > 1 and both current and charge decaying as 1 − λ, as given by solutions U14.

There is another possibility, however, that is only possible ρ = 0 and that is given by U15,

where the current always decays as −2λ and the charge must decay as 1 − λ

Solution U14:

1. Scaling solutions:

Lc = L0τλ , ξc = ξ0τλ , J2 = J2
0 τ1−λ , v = 1

L = L0τ2λ , ξ = ξ0τ2λ , Q2 = Q2
0τ1−λ

2. Additional constraints:

λ = −ρc̃
ξ0

ξ2
0

J2
0 L2

0

1 − g
F′ − 1 > 1 , F′ ̸= 0 ,

1 − ρ

ρ
=

Q2
0

J2
0

Solution U15:

1. Scaling solutions:

Lc = L0τλ , ξc = ξ0τλ , J2 = J2
0 τ−2λ , v = 1

L = L0τ2λ , ξ = ξ0τ2λ , Q2 = Q2
0τ1−λ

2. Additional constraints:

λ = − c̃
ξ0

ξ2
0

Q2
0L2

0

1 − g
F′ − 1 > 1 , F′ ̸= 0 , ρ = 0

Finally, one may also have solutions where causality could still be satisfied, implying

that the correlation length scales as fast as possible, ε = 1. In these cases, it must be that

F′ ̸= 0, which places additional constraints on the relation between α, ε and δ. In fact, for

non growing charges and arbitrary values of ρ, it will always be that δ = γ = 0, as given

by U16. There are, however, some particular solutions, given by U17 and U18, for the limit

values of ρ = 0 or ρ = 1, respectively, where only one of them decays, while the other is

kept constant.
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Solution U16:

1. Scaling solutions:

Lc = L0τ , ξc = ξ0τ , J2 = J2
0 , v = 1

L = L0t , ξ = ξ0t , Q2 = Q2
0

2. Additional constraints:

λ =
kv

ξ0
− (1 − g)

c̃
2ξ0K

= 1 − gc̃
2ξ0

< 1(
kv

ξ0
− λ

)(
Q2

0 − J2
0

)
=

c̃
ξ0

ξ2
0

J2
0 L2

0

1 − g
4F′′

(
ρ

F′ + 2Q2
0F′′

F′ − 2Q2
0F′′ − (1 − ρ)

J2
0

Q2
0

)

Solution U17:

1. Scaling solutions:

Lc = L0τ , ξc = ξ0τ , J2 = J2
0 τγ , v = 1

L = L0t , ξ = ξ0t , Q2 = Q2
0

2. Additional constraints:

λ = 1 − gc̃
2ξ0

< 1 , γ = 2
(

kv

ξ0
− λ

)
, ρ = 0

λ =
kv

ξ0
− c̃

ξ0

ξ2
0

Q2
0L2

0

1 − g
2F′ >

kv

ξ0

Solution U18:

1. Scaling solutions:

Lc = L0τ , ξc = ξ0τ , J2 = J2
0 , v = 1

L = L0t , ξ = ξ0t , Q2 = Q2
0τδ

2. Additional constraints:

λ = 1 − gc̃
2ξ0

< 1 , λ =
kv

ξ0
− c̃

ξ0

ξ2
0

J2
0 L2

0

1 − g
2F′

δ = 2
F′ + 2J2

0 F′′

F′

(
kv

ξ0
− λ

)
< 0 , ρ = 1
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Finally, we may have growing charge solutions, for low expansion rates, λ < 1 − gc̃
2ξ0

.

However, here F′′ plays an important role. If F′′ = 0, we may have solutions U19 and U20,

where charge and current exhibit similar behaviour, or where charge grows slower than the

current, respectively. There are also two particular solutions, for an expansion rate that is

given by λ = kv/ξ0, where U21 should replace U20, and for ρ = 0, given by U22. There

are also solutions where F′′ vanishes. These cases are only possible if δ = γ > 0, as given

by U23.

Solution U19:

1. Scaling solutions:

Lc = L0τα , ξc = ξ0τ , J2 = J2
0 τη , v = 1

L = L0τα+λ , ξ = ξ0t , Q2 = Q2
0τη

2. Additional constraints:

λ < 1 − gc̃
2ξ0

< 1 , η = 2
(

kv

ξ0
− λ

)
− ρc̃

ξ0

ξ2
0

J2
0 L2

0

1 − g
F′

1 − ρ

ρ
=

Q2
0

J2
0

, α = λ +
gc̃
2ξ0

= 1 − η

2

Solution U20:

1. Scaling solutions:

Lc = L0τα , ξc = ξ0τ , J2 = J2
0 τγ , v = 1

L = L0τα+λ , ξ = ξ0t , Q2 = Q2
0τδ

2. Additional constraints:

λ < 1 − gc̃
2ξ0

< 1 , γ = 2
(

kv

ξ0
− λ

)
,

α = λ +
gc̃
2ξ0

= 1 − η

2
, λ ̸= kv

ξ0

δ = 2
(

kv

ξ0
− λ

)
− (1 − ρ)c̃

1
ξ0

ξ2
0

Q2
0L2

0

1 − g
F′
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Solution U21:

1. Scaling solutions:

Lc = L0τα , ξc = ξ0τ , J2 = J2
0 , v = 1

L = L0τα+λ , ξ = ξ0t , Q2 = Q2
0τδ

2. Additional constraints:

λ =
kv

ξ0
= 1 − c̃

2ξ0
< 1 − gc̃

2ξ0
< 1 , g < 1

δ = −(1 − ρ)c̃
1
ξ0

ξ2
0

Q2
0L2

0

1 − g
F′ > 0 , α = λ +

gc̃
2ξ0

= 1 − η

2

Solution U22:

1. Scaling solutions:

Lc = L0τα , ξc = ξ0τ , J2 = J2
0 τγ , v = 1

L = L0τα+λ , ξ = ξ0t , Q2 = Q2
0τδ

2. Additional constraints:

λ < 1 − gc̃
2ξ0

< 1 , η = 2
(

kv

ξ0
− λ

)
δ = 2

(
kv

ξ0
− λ

)
+

c̃
ξ0

ξ2
0

Q2
0L2

0

1 − g
F′ , α = λ +

gc̃
2ξ0

= 1 − η

2

Solution U23:

1. Scaling solutions:

Lc = L0τα , ξc = ξ0τ , J2 = J2
0 τη , v = 1

L = L0τα+λ , ξ = ξ0t , Q2 = Q2
0τη

2. Additional constraints:

λ < 1 − gc̃
2ξ0

< 1 , η = 2
(

kv

ξ0
− λ

)
, α = λ +

gc̃
2ξ0

= 1 − η

2

λ <
kv

ξ0
, J2

0 = Q2
0
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A.4 Ultra-relativistic solutions with vanishing momentum param-

eter

Having studied the cases where v0 = 1 or kv = 0, it is now time to analyse the cases where

both conditions hold. In these cases, it will always be that β = C = 0 and the equations

reduce to:

α = λ +
gc̃
2

1
ξ0

τ1−ε (A.7a)

γ = −2λ − ρc̃
1
ξ0

ξ2
0

J2
0 L2

0

1 − g
F′ − 2Q2

0τδF′′ τ
1+ε−2α−γ (A.7b)

δ = −2λ
F′ + 2J2

0 τγF′′

F′ + 2Q2
0τδF′′ − (1 − ρ)c̃

1
ξ0

ξ2
0

Q2
0L2

0

1 − g
F′ + 2Q2

0τδF′′ τ
1+ε−2α−δ (A.7c)

ε = λ
(

1 +Kτ2(α−ε)+η
)
+

c̃
2

1
ξ0

τ1−ε (A.7d)

A.4.1 No losses

Starting once more by the no loss scenario (c̃ = 0), it may easily be seen that the character-

istic length will always scale with the expansion rate, while the current will decay twice as

fast. The charge behaviour, however, may be identical to the current, or, in the particular

case where F′ = 0, may persist over time, as given by solutions UV1 and UV2. In any case,

it will always be that ε = α = λ

Solution UV1:

1. Scaling solutions:

Lc = L0τλ , ξc = ξ0τλ , J2 = J2
0 τ−2λ , v = 1

L = L0τ2λ , ξ = ξ0τ2λ , Q2 = Q2
0τ−2λ

2. Additional constraints:(
Q2

0 = J2
0

)∗
, ,

Only for F′ = 0
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Solution UV2:

1. Scaling solutions:

Lc = L0τλ , ξc = ξ0τλ , J2 = J2
0 τ−2λ , v = 1

L = L0τ2λ , ξ = ξ0τ2λ , Q2 = Q2
0

2. Additional constraints:

F′ = 0 , ,

A.4.2 No charge losses

Proceeding now for the no charge losses by setting g = 1, the system of equations is given

by:

α = λ +
c̃
2

1
ξ0

τ1−ε (A.8a)

δ = −2λ
F′

F′ + 2Q2
0τδF′′ (A.8b)

ε = λ (1 +Kτη) +
c̃
2

1
ξ0

τ1−ε (A.8c)

Since growing charge solutions are clearly excluded, it will always be that α = ε, and the

current will always decay as −2λ. If the correlation length scales faster than linearly, then

solutions UV1 and UV2 are recovered. However, there are two additional solutions where

both characteristic lengths scales linearly, as given by UV3 and UV4, once more depending

on the charge behaviour. These solutions only happen for a specific expansion rate.

Solution UV3:

1. Scaling solutions:

Lc = L0τ , ξc = ξ0τ , J2 = J2
0 τ−2λ , v = 1

L = L0t , ξ = ξ0t , Q2 = Q2
0τ−2λ

2. Additional constraints:

λ = 1 − c̃
2ξ0

,
(

Q2
0 = J2

0

)∗
, ,

Only for F′ = 0
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Solution UV4:

1. Scaling solutions:

Lc = L0τ , ξc = ξ0τ , J2 = J2
0 τ−2λ , v = 1

L = L0t , ξ = ξ0t , Q2 = Q2
0

2. Additional constraints:

λ = 1 − c̃
2ξ0

, F′ = 0 , ,

A.4.3 With losses

The last cases to be analysed are the general loss cases, where g ̸= 1, with the full system

of equations:

α = λ +
gc̃
2

1
ξ0

τ1−ε (A.9a)

γ = −2λ − ρc̃
1
ξ0

ξ2
0

J2
0 L2

0

1 − g
F′ − 2Q2

0τδF′′ τ
1+ε−2α−γ (A.9b)

δ = −2λ
F′ + 2J2

0 τγF′′

F′ + 2Q2
0τδF′′ − (1 − ρ)c̃

1
ξ0

ξ2
0

Q2
0L2

0

1 − g
F′ + 2Q2

0τδF′′ τ
1+ε−2α−δ (A.9c)

ε = λ
(

1 +Kτ2(α−ε)+η
)
+

c̃
2

1
ξ0

τ1−ε (A.9d)

where one may once more decouple between ε > 1 and ε = 1 solutions. If the correlation

length scales linearly, there is a branch of solutions with F′′ = 0 where charge and current

may exhibit the same behaviour, as given by UV5, or where charge or current dominate,

given by UV6 and UV7, respectively, depending on the value of ρ.
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Solution UV5:

1. Scaling solutions:

Lc = L0τα , ξc = ξ0τ , J2 = J2
0 τ2(1−α) , v = 1

L = L0τα+λ , ξ = ξ0t , Q2 = Q2
0τ2(1−α)

2. Additional constraints:

λ =
2ξ0 − c̃

2ξ0 (1 +K)
, F′ ̸= 0

α = λ +
gc̃
2ξ0

=
c̃

2ξ0

(
2ξ0/c̃ − 1

1 +K + g
)

, F′′ = 0

γ = −2λ − ρc̃
1
ξ0

ξ2
0

J2
0 L2

0

1 − g
F′ ,

1 − ρ

ρ
=

Q2
0

J2
0

Solution UV6:

1. Scaling solutions:

Lc = L0τα , ξc = ξ0τ , J2 = J2
0 τ−2λ , v = 1

L = L0τα+λ , ξ = ξ0t , Q2 = Q2
0τ2(1−α)

2. Additional constraints:

λ =
2ξ0 − c̃

2ξ0 (1 +K)
, ρ = 0 , F′ ̸= 0

α = λ +
gc̃
2ξ0

=
c̃

2ξ0

(
2ξ0/c̃ − 1

1 +K + g
)

, F′′ = 0

δ = −2λ − c̃
1
ξ0

ξ2
0

Q2
0L2

0

1 − g
F′ > −2λ , c̃

1 − g
F′ < 0
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Solution UV7:

1. Scaling solutions:

Lc = L0τα , ξc = ξ0τ , J2 = J2
0 , v = 1

L = L0τα+λ , ξ = ξ0t , Q2 = Q2
0τ−2λ

2. Additional constraints:

λ =
2ξ0 − c̃

2ξ0 (1 +K)
= − c̃

ξ0

ξ2
0

J2
0 L2

0

1 − g
2F′ , ρ = 1 , F′ ̸= 0

α = λ +
gc̃
2ξ0

=
c̃

2ξ0

(
2ξ0/c̃ − 1

1 +K + g
)

, F′′ = 0

There is also another set of solutions, with F′′ ̸= 0 where charge cannot grow. If it is

constant, then solutions UV8 or UV9 are possible, where the current length scales linearly

but present distinct current behaviour. If the charge decays, then only solution UV10 is

possible, where the current is constant.

Solution UV8:

1. Scaling solutions:

Lc = L0τ , ξc = ξ0τ , J2 = J2
0 , v = 1

L = L0t , ξ = ξ0t , Q2 = Q2
0

2. Additional constraints:

λ =
2ξ0 − c̃

2ξ0 (1 +K)
= 1 − gc̃

2ξ0
= − ρc̃

2ξ0

ξ2
0

J2
0 L2

0

1 − g
F′ − 2Q2

0F′′ , F′ ̸= 0

4λF′′
(

Q2
0 − J2

0

)
= c̃

1 − g
ξ0

ξ2
0

Q2
0L2

0

[
1 − ρ

2F′

F′ − 2Q2
0F′′

]
, F′′ ̸= 0
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Solution UV9:

1. Scaling solutions:

Lc = L0τ , ξc = ξ0τ , J2 = J2
0 τ−2λ , v = 1

L = L0t , ξ = ξ0t , Q2 = Q2
0

2. Additional constraints:

λ =
2ξ0 − c̃

2ξ0 (1 +K)
= 1 − gc̃

2ξ0
= − c̃

2ξ0

ξ2
0

Q2
0L2

0

1 − g
F′ , F′′ ̸= 0

ρ = 0 , F′ ̸= 0

Solution UV10:

1. Scaling solutions:

Lc = L0τ , ξc = ξ0τ , J2 = J2
0 , v = 1

L = L0t , ξ = ξ0t , Q2 = Q2
0τδ

2. Additional constraints:

λ =
2ξ0 − c̃

2ξ0 (1 +K)
= 1 − gc̃

2ξ0
= − c̃

2ξ0

ξ2
0

J2
0 L2

0

1 − g
F′ , F′′ ̸= 0

δ = −2λ
F′ + 2J2

0 F′′

F′ , F′ ̸= 0 , ρ = 1

Finally, there is still a branch of solutions where the correlation length scales faster then

allowed by causality, in which case it will always be that α = λ, meaning the current length

will scale with the expansion rate. If F′ = 0, then so will the correlation length, and so in

these cases λ > 1. Here, current and charge may behave similarly, as given by UV11, or

solutions where the charge is preserved, but the current decays, as given by UV12. On the

other hand, if F′ ̸= 0 the only possible solution is given by UV13, where both charge and

current decay away.
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Solution UV11:

1. Scaling solutions:

Lc = L0τλ , ξc = ξ0τλ , J2 = J2
0 τη , v = 1

L = L0τ2λ , ξ = ξ0τ2λ , Q2 = Q2
0τη

2. Additional constraints:

η =
1 − λ

2
= −2λ +

ρc̃
ξ0

ξ2
0

J2
0 L2

0

1 − g
2Q2

0F′′ < 0 , F′ = 0

λ =
ρc̃
3ξ0

ξ2
0

J2
0 L2

0

1 − g
Q2

0F′′ −
1
3

λ
(

Q2
0 + J2

0

)
=

1 − g
4F′′

ξ2
0

Q2
0L2

0

c̃
ξ0

(
1 + ρ

Q2
0 − J2

0

J2
0

)

Solution UV12:

1. Scaling solutions:

Lc = L0τλ , ξc = ξ0τλ , J2 = J2
0 τγ , v = 1

L = L0τ2λ , ξ = ξ0τ2λ , Q2 = Q2
0

2. Additional constraints:

γ = −2λ +
ρc̃
ξ0

ξ2
0

J2
0 L2

0

1 − g
2Q2

0F′′ = 1 − λ < 0 , F′ = 0

λ =
ρc̃
ξ0

ξ2
0

J2
0 L2

0

1 − g
2Q2

0F′′ − 1

Solution UV13:

1. Scaling solutions:

Lc = L0τλ , ξc = ξ0τλ , J2 = J2
0 τ1−λ , v = 1

L = L0τ2λ , ξ = ξ0τ2λ , Q2 = Q2
0τ1−λ

2. Additional constraints:

λ = −ρc̃
1
ξ0

ξ2
0

J2
0 L2

0

1 − g
F′ − 1 , F′ ̸= 0 ,

Q2
0

J2
0

=
1 − ρ

ρ



Appendix B

Numerical simulation details

Simulations from Figure 3.1

TABLE B.1: Network properties for the simulations in Figure 3.1.

λ F F′ F′′ kv c̃ g ρ

S1 1.5

1 0 0.1 0.25 0 - -
S2 2

S3 3

S4 3

TABLE B.2: Time series properties for the simulations in Figure 3.1 (all the amplitude
values have been multiplied by 100).

L ξ Q J v

Li L0 α ξi ξ0 ε Qi Q0 γ Ji J0 δ vi v0 β

S1

10

5.1 1.00

20

10.2 1.00 20 15.5 1.00

10

15.5 1.00

50

81.6 0.00

S2 4.4 1.00 8.8 1.00 20 10.6 0.00 0.6 0.00 70.7 0.00

S3 3.6 1.00 7.2 1.00 20 10.0 -2.17 0.2 0.00 57.7 0.00

S4 3.6 1.00 7.2 1.00 10 0.2 -2.17 0.2 -2.17 57.7 0.00
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Simulations from Figure 3.2

TABLE B.3: Network properties for the simulations in Figure 3.2.

λ F F′ F′′ kv c̃ g ρ

S1 2/3

1 -0.5 0 0.10 0.0 - -
S2 2

S3 3

TABLE B.4: Time series properties for the simulations in Figure 3.2 (all the amplitude
values have been multiplied by 100).

L ξ Q J v

Li L0 α ξi ξ0 ε Qi Q0 γ Ji J0 δ vi v0 β

S1

5
5.5 0.33

8.7
9.6 0.33

200
200 0.00

100
100 0.00

57.7
64.0 -0.67

S2 2.8 1.00 3.5 1.00 6.7 0.00 3.3 0.00 69.5 0.00

S3 2.4 1.00 2.9 1.00 2.4 -2.01 1.2 -2.01 57.7 0.00

Simulations from Figure 3.3

TABLE B.5: Network properties for the simulations in Figure 3.3.

λ F F′ F′′ kv c̃ g ρ

S1 1.5

1 0 0.1 0.25 0.05 1 -
S2 1.67

S3 2

S4 2

TABLE B.6: Time series properties for the simulations in Figure 3.3.

L ξ Q J v

Li L0 α ξi ξ0 ε Qi Q0 γ Ji J0 δ vi v0 β

S1

10

5.6 1.00

20

11.2 0.97 20 2.8 0.33

10

2.2 0.33

50

74.5 0.00

S2 5.3 1.00 10.6 0.97 20 11.7 0.00 1.7 0.00 70.7 0.00

S3 4.8 1.00 9.7 0.97 20 10.0 -0.66 1.1 0.00 64.5 0.00

S4 4.8 1.00 9.7 0.97 10 1.1 -0.66 1.1 -0.66 64.5 0.00
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Simulations from Figure 3.5

TABLE B.7: Network properties for the simulations in Figure 3.5.

λ F F′ F′′ kv c̃ g ρ

S1 0.57
1 -0.5 0 0.10 0.05 1 -S2 2

S3 3

TABLE B.8: Time series properties for the simulations in Figure 3.5.

L ξ Q J v

Li L0 α ξi ξ0 ε Qi Q0 γ Ji J0 δ vi v0 β

S1

5

5.4 0.43

8.7

9.3 0.43

200

200 0.0

100

100 0.0

50

53.2 -0.57

S2 3.5 1.00 4.3 1.00 34.1 -1.33 17.0 -1.33 57.7 0.00

S3 2.9 1.00 3.5 1.00 17.6 -3.33 8.8 -3.33 47.1 0.00

Simulations from Figure 3.6

TABLE B.9: Network properties for the simulations in Figure 3.6.

λ F F′ F′′ kv c̃ g ρ

S1

0.66 1 -0.5 0.0 0.10 0.1 0.1
0

S2 0.5

S3 1

TABLE B.10: Time series properties for the simulations in Figure 3.6.

L ξ Q J v

Li L0 α ξi ξ0 ε Qi Q0 γ Ji J0 δ vi v0 β

S1

20 9.05 0.34 20 9.05 0.34 50
99.0 0.00

50
208.8 -0.62

7 31.2 -0.66S2 50.0 0.00 208.8 0.00

S3 50.0 -0.62 99.0 0.00



118 EVOLUTION OF CURRENT CARRYING COSMIC STRINGs

Simulations from Figure 3.7

TABLE B.11: Network properties for the simulations in Figure 3.7.

λ F F′ F′′ kv c̃ g ρ

S1

0.65 1 -0.5 0.0 0.10 0.5 0.9
0

S2 0.5

S3 1

TABLE B.12: Time series properties for the simulations in Figure 3.7.

L ξ Q J v

Li L0 α ξi ξ0 ε Qi Q0 γ Ji J0 δ vi v0 β

S1

10 11.1 1.00 10 12.2 1.00 10
63.4 0.00

10
11.9 -0.63

10 40.8 0.00S2 31.7 0.00 31.7 0.00

S3 11.9 -0.63 63.4 0.00

Simulations from Figure 3.8

TABLE B.13: Network properties for the simulations in Figure 3.8.

λ F F′ F′′ kv c̃ g ρ

S1 0.66 1 -0.5 0.0 0.10
0.1 0.1

0.5
S2 0.3 0.9

TABLE B.14: Time series properties for the simulations in Figure 3.8.

L ξ Q J v

Li L0 α ξi ξ0 ε Qi Q0 γ Ji J0 δ vi v0 β

S1 20
9.1 0.34

20
9.1 0.34

50
50.0

0.00 50
50.0

0.00 7
31.2 -0.66

S2 1.9 1.00 1.9 1.00 48.8 48.8 9.7 0.00
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