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Resumo 

A toxoplasmose é uma doença causada por infeção do protozoário Toxoplasma 

gondii, normalmente assintomática e não-letal. Contudo, é perigosa para indivíduos 

imunossuprimidos e fetos. Os casos de infeção congenital podem levar à morte do 

feto. É assim necessário detetar a presença de infeção o mais precocemente possível. 

Os testes atualmente disponíveis são demorados, exigem pessoal altamente 

qualificado e são caros. A nanotecnologia tem mostrado um elevado potencial para 

resolver estes problemas em biossensores. Em particular, os bionanossensores 

baseados em nanopartículas plasmónicas de ouro têm demonstrado ser uma 

alternativa fiável em imuno-ensaios. Neste trabalho, utilizaram-se nanopartículas de 

ouro para desenvolver um ensaio simples e fiável para detetar a presença de 

anticorpos contra Toxoplasma gondii. Prepararam-se nanopartículas de ouro e 

modificaram-se com um péptido sintético, que tinha demonstrado anteriormente uma 

forte ligação a anticorpos contra Toxoplasma gondii. Os bionanoconjugados 

preparados foram caracterizados por espetroscopia de visível, Espalhamento de luz 

dinâmico (DLS) e Análise por Rastreamento de Nanopartículas (NTA). Os resultados 

obtidos mostram que os bionanoconjugados apresentam uma boa estabilidade coloidal 

e que poderão ser utilizados como sondas para deteção por espectroscopia de visível 

ou por espetroscopia Raman Aumentada pela Superfície 

Palavras-chave: Toxoplasmose, nanotecnologia, SERS, nanopartículas de ouro, 

nanoestrelas.   
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Abstract 

Toxoplasmosis is a disease caused by infection with the protozoan Toxoplasma 

gondii. The disease normally is asymptomatic and non-lethal. However, it is dangerous 

for immunosuppressed individuals and unborn foetus. In cases of congenital infections, 

it may lead to death of the foetus. It is thus critical to detect the presence of infection as 

early as possible. Currently available tests are time-consuming, require specialized 

techniques and are expensive. Nanotechnology has shown great potential to overcome 

these problems in bio-sensing. In particular, bionanosensors using the plasmonic 

particles of gold nanoparticles proved to be a reliable alternative in immuno-essays. In 

this work, we have used gold nanoparticles to develop a simple and reliable test to 

detect the presence of antibodies against Toxoplasma gondii. Gold nanoparticles were 

prepared and modified with a synthetic peptide, that has previously shown to strongly 

bind to antibodies against Toxoplasma gondii. The bionanoconjugates prepared were 

characterized by visible spectroscopy, Dynamic Light Scattering and Nanoparticle 

Tracking Analysis. The results obtained show that the bionanoconjugates present a 

good colloidal stability, and can be further used as probes for detection by visible 

spectroscopy and Surface Enhanced Raman Spectroscopy. 

 

Keywords: Toxoplasmosis, nanotechnology, SERS, gold nanoparticles, nanostars. 
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Introduction 

 

Toxoplasmosis – a protozoan threat to the unborn 

 Toxoplasmosis is a disease caused by infection by Toxoplasma gondii, an 

ubiquitous, facultatively heteroxenous, polyxenous protozoon that has evolved to 

develop several routes of dissemination within and between a panoply of hosts [1-4]. T. 

gondii has the capacity to infect nucleated cells of nearly all warm-blooded animals. 

Human infection via the T. gondii protozoon presents several possible routes such as : 

I) ingestion of infectious oocysts present in the environment (such as ingestion of food 

or water contaminated with feline faecal matter or interaction with soil or other 

contaminated materials such as litter boxes); II) ingestion of tachyzoites contained in 

animal products such as meat, primary offal, and blood from contaminated animals, 

tissue transplants and even unpasteurized milk; and III) vertical dissemination from 

mother to foetus via the placenta [1, 2, 5, 6]. 

 Toxoplasma gondii infection in humans is usually asymptomatic and non-

threatening to human beings due to the potential hosts innate immune system resisting 

the pathogens proliferation. However, in certain groups of people, such as in 

immunocompromised individuals, pacients under treatment with immunosuppressors or 

chemotherapy, and pregnant women, T. gondii is an opportunist pathogen [5, 7, 8]. 

Risks of developing encephalitis, myocarditis or pneumonitis is frequent in 

immunocompromised and cancer patients undergoing chemotherapy[8]; and in cases 

of infection during pregnancy, congenital infection with T. gondii have proven capable 

of provoking ocular damage [3, 4], which in some cases may even lead to severe sight 

damage or even total blindness, hydrocephalus and stillbirth in foetus [2, 7, 9, 10]. The 

infection path in pregnancy is shown in figure 1. 

 Thus, monitorization of toxoplasmosis infection during pregnancy is critical, 

since failure to do so can be lethal [2, 8, 9, 11-13]. The essays used nowadays for the 

detection of the protozoan originated disease include serological essays, essays for the 

detection of Toxoplasma-specific antibodies, such as Enzyme-linked Immunosorbent 

Assay (ELISA)[14-19], or biological biopsy by histological identification of the parasites 

[20]. However, such essays are time-consuming, require highly-qualified personnel, 

and expensive. In addition, these essays are prone to false positive results due to the 

way the immune system deals with the infection [21-23].  
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In acute infection, immunoglobulin G (IgG) is produced by the immune system and 

it can be detected as early as three days post-infection, serving as a marker for 

detection of acute infection. [15, 24-27]. After, the production of immunoglobulin M 

(IgM) begins, providing a long-term immune response. Due to such long-term immune 

by IgM response it becomes possible to distinguish an acute case of Toxoplasmosis 

and a case of a prior case of infection. In cases of acute infection both presence of IgG 

and IgM can be detected by immunoassays, however if only IgM can be detected by 

the same tests that means that infection has been established in a previous time, 

sometimes going as further as months or even years. It is in the case of acute 

infections during pregnancy that the disease can be dangerous to the unborn infant 

[28]. Infection prior to pregnancy is not dangerous to the foetus. Many of the current 

immuno-essays for the detection of infection via T. gondii are too wide in detection 

spectre, and are sensitive to IgM remaining in the hosts system, leading to the 

occurrence of false positives[25]. However, no guidelines for detection and reporting of 

T. gondii acute infections in pregnancy or immunosuppression exist, making the control 

and treatment of the cases difficult [29-31]. 

As such, the necessity of cheap and efficient tests, which in parallel present a fast 

response rate to the possibility of infection is on the rise. These would be a valuable 

tool to specifically detect cases that may be harmful for patients, whether unborn or 

not, so that faster and improved responses to such cases may be done. Amongst 

immunosuppressed cases and congenital cases, congenital cases are harder to detect 

since the mother presents no symptoms whatsoever, only the foetus being impacted.  
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Figure 1 – Visual schematization of the simplified method of infection of Toxoplasma gondii from an infected cat 

(the protozoan primary host) to the pregnant mother and the unborn foetus (secondary hosts). 

 

Therefore, a test catered for the use in possible infection in pregnancy is of the 

highest priority. 

 

Nanoparticles – Paul Ehrlich’s legendary magic bullet? 

Paul Ehrlich, winner of the 1908 Nobel Prize in medicine, in conjunction with Elie 

Metchnikoff, on his work in the field of Immunology, of which he is still considered by a 

great number of scientists one of the big pillars and fathers of, once had created an 

idea of a magical, yet simply scientifical, particle capable of healing almost every 

disease without repercussion, which he baptised as the “magic bullet”[32, 33]. Dr 

Ehrlich, amongst many other hypothesis and ideas, created the Therapia Magna 

Sterilizans, also known by many the “magic bullet”, which envisioned the use of a 

specific chemical substance that presented high affinity for pathogens and toxins in the 

human body, being able to treat the affected patients in doses high enough to treat 

them of their malady, but in concentrations low enough to be harmless to the patient 

[32-34]. 

 Nanotechnology borrows a lot from this concept, allowing to create systems that 

respond with incredible affinity to certain triggers, such as the presence of a pathogen 

or parts of it, and even non-infectious diseases such as cancer[35]. Upon detection of 

such triggers it may have a panoply of effects based on what it was specifically created 

for, being able to detect the diseases in cases of elaborations of sensors, or even 

release previously loaded drugs that are released upon certain stimuli characteristic to 

the malady being treated[27, 36-45]. As such, nanotechnology allows for a completely 

local treatment of the disease, allowing for an extreme reduction of such drug in other 

places and organs in the human body, where they could be harmful.  

As such, from a certain point of view, Paul Ehrlich can be considered as one of the 

fathers of nanomedicine, not for work he elaborated in the field, but because of this 

idea, and is highly associated with the field. As many people in the scientifical field 

know, all great theories and laws discovered started by a single idea, sometimes and 

idea that may have at its time be considered an impossible, impossibly idyllic, or even 
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crazy one. A single idea from a great mind is giving rise to numerous works of great 

value, for as the writer and poet Gioconda Belli once said “The world has always gone 

forward when people have dared to have crazy ideas.” 

Nanotechnology, not being the perfect magic bullet, allows for the preparation of 

nanoparticles and nanosystems with great promise and compatibility for usage in many 

types of scientific work, and they are extremely promising in the medical, biological, 

and biomedical fields, that times past could only be dreamed of in terms of combined 

efficiency, cost-efficiency, portability and even user interface for facility of use by 

medical and even common people to use easily and competently. However, it becomes 

necessary to understand why and how nanoparticles work. 

Nanoparticles, the fundamental component of nanotechnology, are particles with at 

least one dimension within 1 to 100 nanometers and may be made by a panoply of 

materials[34, 35]. Due to their reduced size, which allows for a larger surface area to 

volume ratio, and to their increased reactivity in chemical processes, amongst many 

other properties, nanoparticles exhibit a panoply of inherent chemical, physical and 

biological properties when compared with larger nanoparticles[46]. As for the materials 

that may be used in the synthesis of nanoparticles they may be distinguished and 

separated in 2 groups (Figure 2): I) organic nanoparticles, which synthesis basis are 

organic compounds such as proteins or lipids; this group normally presents high 

degradability and low toxicity, and are normally used as efficient drug vehicle systems 

to biological systems in biomedical areas[35, 47]; II) inorganic nanoparticles, which are 

normally created using as a basis metals[48] or metal oxides[49], or carbon[50]; such 

group normally present smaller sizes, and characteristics such as crystalline and 

amorphous structures, easily changeable morphologies, as shown in figure 3, to obtain 

better sensitivity and reactivity to certain environmental factors such as heat and 

electromagnetic radiation  amongst many others[35]. 
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Figure 2 – Visual representation of the different groups of materials that can be used as a basis for nanoparticle 

synthesis. Some characteristics such as surface morphology of nanoparticles may be seen. 

 

 

Figure 3 – Visual representation of the different morphologies that nanoparticles may present. The morphologies 

shown are shapes normally utilized in works using as a basis noble metal, such as in the present work.  
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In order to obtain nanoparticles, there are many methods of synthesis described in 

the literature; however, they can be all distributed between 2 groups of synthetic 

methods[35]: Top-down Methods[48, 51, 52], or Bottom-up Methods[53, 54] (Figure 4). 

 

 

Figure 4 – Visual representation of the different groups of synthesis methods for the creation of nanoparticles. 

 

 In the cases were top-down methods (also known as destructive methods) are 

used, a bulk material of relative high volume is reduced until the desired nanometric 

scale is obtained. Some examples of the most common top-down methods are 

nanolithography[52, 55], sputtering[56, 57], laser ablation[58], thermal 

decomposition[48], and mechanical milling[51]. 

Conversely, bottom-up methods (also known as constructive methods) are based 

on the growth of the nanomaterials from their atomic or molecular units to obtain the 

desired size and morphology of nanoparticles. Examples of most commonly used 

bottom-up methods are pyrolysis[59, 60], biosynthesis[61], sol-gel[53], spinning[54], 

and chemical vapour deposition[50]. 

After nanoparticle synthesis, the obtained particles should be carefully 

characterized as soon as possible and regularly, this due to the high potential of post-
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synthesis modification of the nanoparticles surface, such as surface functionalization 

and surface charge alteration[35]. Surface charge of nanoparticles normally presents 

itself as positive, negative, or zwitterionic, surface charge alters parameters such as 

nanoparticle-target interaction, dispersion amongst the nanoparticles via same-charge 

repulsion effects, and solution stability[35]. The surface of the nanoparticles may also 

be functionalized with a series of materials such as peptides, desoxyribonucleic acid 

(DNA), ribonucleic acid (RNA), antibodies, lipids, intermediary linker group and many 

more types of molecules[14, 18, 42, 62, 63]. Normally, such functionalization serves a 

purpose specifically tailored for the application. As an example, PEG is normally used 

when the synthesized nanoparticles are to be used in physiological and biological 

media, such as for in vivo injection for disease treatment[64-67]. This is due to the 

stealthing properties of this molecule, so the nanoparticles introduced in the biological 

system are not as easily detected by the immunological system of the receiver of the 

nanoparticle injection, and as a stabilizing agent that minimizes non-desirable 

binding[68-73]; in another example DNA, RNA and antibodies are utilized for the 

detection of specific diseases or genes, such as the identification of carcinogenic 

genes or parasite induced diseases[17, 67, 74-78]. 

 

Nanoparticles and toxoplasmosis – Is the creation of a mass 

immunoassay test for the detection of congenital toxoplasmosis 

possible? 

Utilizing the knowledge presented in chapter “Nanoparticles – Paul Ehrlich’s 

legendary magic bullet?” of the introduction, the question arises: could nanotechnology 

be utilized for the creation of a test that allows for an easy and inexpensive, yet 

effective detection of the parasite induced malady? 

To answer such question another must be answered first: since nanoparticles 

need a target to be detected or directed onto for tailored functionalization, does 

toxoplasmosis possess such target for detection? The answer is yes. During infection a 

series of peptides, with extremely variable functions are synthesized by the protozoan 

to allow its proliferation and survival, and one in specific, the Gra6II peptide[14, 15, 17, 

18, 79], which is a peptide that presents host infection properties, not only has been 

well studied in other works[79] Gra6II is derived from the Gra6 protein C-terminal end, 

and presents target epitopes to which, as observed in other studies, the antibodies 

synthesized by the hosts immune system bind to in a specific and sensitive way[15, 18, 
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79-82]. When an antibody detects the parasitic peptide, it does not detect the entirety 

of the peptide chain, it detects solely segments of such protein, which are called 

epitopes; the epitopes connect to a specific part of the antibodies, located in the 

terminal zone of the variable fragments of the antibodies, such binding zone is 

denominated as paratope[83-86] (figure 5).  

 

 

Figure 5 – Visual representation of an antibody, in specific and IgG. The antibody variable regions and the 

paratopes located at the terminus at the same have been identified. 

 

Therefore, when one of such sequences that functions as an epitope could be 

affixed onto nanoparticles, the antibodies would be able to bind to the nanoparticles as 

if it were a case of infection, leading to a binding of paratope to epitope, such as has 

been observed in a high number of other studies. With the appropriate nanoparticle 

material as a basis that presents a specific group of characteristics to be used as a 

detecting immunoassay, even more functionalities can be added. One group that 

exhibits tremendous potential are inorganic nanoparticles, such as noble metals. 

Specifically gold nanoparticles have been presented in literature as the ideal material 

for such studies[36, 37, 43, 87-95]. Gold nanoparticles show great potential due to its 
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interaction to visible light, which allows for the facilitations of usage of the 

immunoassay via the target user, and for a more accentuated quickness in obtaining 

results [37, 88-90, 93, 94, 96-100]. 

Gold nanoparticles can be functionalized with a Gra6II epitope, and used to detect 

the presence of anti-toxoplasmosis antibodies, such as immunoglobulin G (IgG) in 

cases of recent ongoing infection, or immunoglobulin M (IgM) in cases of infection at an 

earlier time frame. Work formerly made in this laboratory showed the great promise of 

the functionalization of nanoparticles with Gra6II epitopes for the detection of anti-

toxoplasmosis antibodies[77]. The basis of the test would be that upon the binding of 

epitope-paratope, a high avidity could be verified, meaning that the same antibody 

doesn’t necessarily connect to a sole nanoparticle, being totally possible for the 

connection of a sole antibody to 2 peptide functionalized nanoparticle[77]. As such, 

when in contact with T. gondii host infected serum an alteration in properties can be 

detected, in this case due to changes in colour of the nanoparticles. Such colour 

variation is attributed to the aggregation of the nanoparticles, which in turn alter the 

wavelength at which the attenuance peak appears. Such tests that rely in the 

nanoprobes aggregations to obtain results are normally denominated as “sandwich 

tests”[101-104] (Figure 6). Addition of salt to the test is a common practice to allow for 

an increase in effectiveness of the process. Upon all this, the production of gold 

nanoprobes functionalized with toxoplasmosis epitope peptides for the detection of 

toxoplasmosis via detection of anti-toxoplasmosis antibodies binding seems likely to 

present great potential for the detection of the potentially fatal cases of congenital 

toxoplasmosis, such as the work done by Sousa et al. [77]. Although, would the 

possibility of using a different shape, such as nanostars due to such shape being 

known for great potential in Surface-Enhanced Raman Scattering (SERS) tests, lead to 

an improved and easier manufacturing process, utilization by non-specific personnel 

and better overall satisfaction with the final product?  

SERS tests present themselves as a great method of detection of biological 

molecules, being those peptides[62, 67, 76, 105], antibodies[35, 36, 38, 39, 106, 107], 

DNA or RNA strands[14, 42, 63, 108], amongst many others. SERS tests which utilize 

noble nanoparticles as a basis for detection presents identification of targets analytes, 

without to the need to utilize complex chemistry techniques, time-consuming-steps or 

the utilization of fluorescent label molecules, while rivalling the sensitivity of other 

fluorescence-based detection techniques[37, 109, 110]. 
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Morphologically, the main difference between nanospheres and nanostars is the 

presence of sharp branches that are formed from the spherical gold core. Such 

modifications allow for the nanostars to be ideal contenders for application in SERS 

immunoassays[37, 89, 90, 93, 100]. The presence of such branches allows for the 

creation of “hot spots”, which confers an enhancement of the electromagnetic field 

(EM) of the nanoparticles, which in turn leads to an enhancement to the nanoparticles 

plasmonic field when compared to nanospheres[111-114]. Plasmonic field refers to 

focalized oscillations of electron density related to fixed positive ions in the metallic 

nanoparticles (Figure 7), different plasmonic fields lead to different plasmon band. 

Plasmon band, also referred to as surface plasmon resonance (SPR), refers to the 

capacity of the particle to absorb and scatter energy from light sources, especially at 

certain wavelengths of the light spectrum, whether it be from lasers or even from light 

sources as solar energy. When specific wavelengths of radiation are introduced to the 

nanoparticles an electronic excitation occurs, absorbing and scattering light at a much 

higher efficiency than identical sized and morphologically non-plasmonic particles[109]. 

Anti-

toxoplasmosis 

epitope antibody 

Figure 6 – Visual representation of a sandwich test immunoassay utilizing as a basis toxoplasmosis 

epitope peptide functionalized gold nanoparticles for the detection of anti-toxoplasmosis antibodies. Upon the 

addition of salt and infected serum (from which the anti-toxoplasmosis antibodies is localized) particles will 

aggregate and the sandwich test will be completed 

Toxoplasmosis 

epitope peptide 
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Figure 7 – Visual representation of the 2 points of EM focalization (presented in blue). The anisotropic nanostars 

(presented in yellow) present a high intensity EM focalization in the tips of the branches and a low intensity EM 

focalization in the metallic core of the nanoparticle. 

 

When utilized in immunoassays, SERS type tests normally are incorporated in 

microfluidic systems, such as Lateral Flow Immunoassays (LFIAs) [115-118]. LFIAs are 

easy to use and cheap point of care systems that allow for the creation of a robust, 

rapid in results obtainment, specific and sensitive to the target molecules, while still 

being user-friendly and specific result development equipment free. Such tests when 

combined with the SERS capabilities of gold nanoparticles, present a much quicker 

response than normally utilized tools for toxoplasmosis identification, needing only a 

few minutes for result obtainment while at the same time being a single step 

technique[119-121]. 

The LFIA test would work by the introduction of a solution were the serum of the 

patient is contained in a specific orifice, after that the solution would permeate into the 

membrane and over time diffuse over it. At a certain point the solution would enter in 

contact with the created nanoprobes bond to the membrane of the LFIA microfluidics 

test. Then in the “sandwich test”, also known as direct assays, the analyte, in this work 

it being the anti-toxoplamosis antibodies, would react with the epitope of the synthetic 

Gra6II peptide epitope bond to the nanoparticles, leading to an aggregation of 

nanoprobes[122, 123]. Such aggregation would lead to either a visual change of colour 

of the bar would signify a positive result, i.e. a case of infection, while if the colour of 

the bar remained unaltered the test would be negative, i.e. no infection evidence is 

observed[77]. This type of test allows also for the use of concomitant detection bands, 
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and as explained before, the quantification of IgG and IgM and their comparation 

allows for the clarification in case of infection[24, 26, 27, 38, 40, 124]. If infection is of 

an acute nature, the presence of both IgG and IgM at the same time, i.e. two positive 

results, would be verifies, and therefore dangerous for the unborn child; however, if 

only the IgM band presents itself as positive it would mean that the infection is not of an 

acute nature, and therefore not dangerous for the unborn. If both bands do not present 

any change, i.e. are both positive, there is and never was an infection of T. gondii for 

the patient in question. 

In this work, the possibility of utilization of gold nanospheres and gold nanostars as 

nanoprobes in LFIA sensors for the detection and quantification of anti-toxoplasmosis 

antibodies is analysed and compared. 
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Materials and Methods 

 

Materials  

The following reagents were used: gold (III) chloride solution, 30 % wt. Au in dilute 

hydrochloric acid (HCl), from Sigma-Aldrich, Portugal: tri-sodium citrate di-hydrate PA-

ACS, >99%, from Panreac Applichem, Germany; silver nitrate, 99.9999%; Sigma-

Aldrich, Portugal; L-ascorbic acid, TraceSELECT®, ≥99.9998%; Fluka Analytical 

(Portugal); hydrochloric acid 37%, Fisher Chemical, Loughborough, UK; nitric acid 65% 

for analysis, ISO; Panreac Applichem, Germany; potassium phosphate dibasic ACS 

reagent, ≥98%; Sigma-Aldrich, Portugal; potassium phosphate monobasic ACS 

reagent, ≥99%; Sigma-Aldrich, Portugal; 2-(2-[2-(11-mercapto-undecyloxy)-ethoxy]-

ethoxy)-ethoxy-acetic acid (PEG (HS-(CH2)11EG3OCH2-COOH)), >95%, Prochimia 

Surfaces Sp. Z.o.o., Poland; 1-ethyl-3-[3-(dimethylamino)propyl]carbodiimide (EDC), 

BRAND, N-Hydroxysuccimimide (NHS), BRAND; GRA6 II antibody (peptide sequence: 

LHPGSVNEFDF), >95%, Caslo ApS, Denmark. 

 All chemicals and reagents were of the highest purity available. Ultrapure water 

(18.2 MΩ ・cm at 25 °C, Milli-Q®) was used to preparate all solutions, unless stated 

otherwise. 

 

Synthesis of 15 nm gold nanospheres 

All glassware was treated with aqua regia to remove metal residues. Aqua regia is 

a strong acid created from a ratio of 3:1 of hydrochloric acid:nitric acid (nitric acid 

should always be added to the nitric acid and never the other way around); aqua regia 

presents a high risk to the user if inhaled, ingested or having direct contact with due to 

its high corrosivity; safety guides should always be accessed before any handling of 

aqua regia and appropriate personal protective equipment such as a lab coat, 

protective eyewear, neoprene or butyl gloves, protective mask and neoprene apron 

should be used in use to guarantee personal safety [125]. After the aqua regia wash, 

the glassware was thoroughly washed with deionized water and, finally with ultrapure 

water (18.2 MΩ ·cm at 25 °C, Milli-Q). 

Fifteen nm Gold nanospheres (AuNPs) were synthesized by the Turkevich-Frens 

method[126-128]. 0.2020 g of trisodium citrate di-hydrate was dissolved in 100 mL of 
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ultrapure water in a 250 mL Erlenmeyer and brought to reflux. 69.2 mL of gold (III) 

Chloride solution (HAuCl4) was added to the solution stirred at 1150 rpm. Immediately 

after the addition of HAuCl4, stirring was reduced to 700 rpm. After 5 minutes, the 

heating was turned off and the solution was left to cool to room temperature. The 

resulting suspension was stored at 4 °C. 

 

Synthesis of 50 nm gold nanospheres 

For synthesis of gold nanoparticles (AuNP), firstly a citrate solution (2.2 mM) was 

prepared via dissolution of 0.0971 g of trisodium citrate 2-hydrate in 150 mL of ultra-

pure water. The citrate solution was then put under stirring of 750 rpm, and heated in a 

paraffin oil bath until the solution reached 100ºC. The system was fitted with a 

condenser with running water, a flask cap, and a cap/adaptor with a thermometer. 

Once the temperature was reached, 1mL of a 25 mM HAuCl4 was added and left 

under stirring and boiling under the same conditions for 10 minutes. The HAuCl4 was 

made via dilution of 86.5 mL of HAuCl4 stock solution. After 10 minutes have come to 

pass the solution should now have a pink/ruby red tone, and the solution is cooled 

down until it reaches 90ºC, having now been obtained nuclei/seeds for growth of 

nanoparticles. 

To proceed with the synthesis, upon the solution reaching 90ºC and having the 

temperature reaching stability; 2 more additions of 25 mM HAuCl4 solution were made, 

and after each addition 30 minutes resting synthesis time under heat and stirring is 

needed. At this point, 55 mL of sample is to be removed and 53 mL of ultra-pure water 

and 2mL of a 60 mM sodium citrate solution was added. Again, 2 extra additions of 1 

mL of 25 mM HAuCl4 with 30 minutes resting time under stirring and heating were 

made. 

Upon all steps being concluded, the solution was left to cool down to room 

temperature. Once cooled down the solution was transferred into a storage flask and 

left to rest overnight. Whenever not in use the solution was stored in the fridge at 4ºC. 
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Gold Nanostars Synthesis 

To synthesize gold nanostars, ultra-pure water was added to and Erlenmeyer and 

placed under stirring of 900 rpm, in a cold bath of temperature between 1 to 3° C. 

Then, quickly yet carefully all reagents were added to the centre of solution, following 

an order of 1.445 M of HAuCl4, previously synthetized AuNP solution, and finally a 

simultaneous addition of 200 mM ascorbic acid and 8 mM silver nitrate. Both the 

solution of ascorbic acid and silver nitrate were made fresh immediately before the 

addition of such reactants, and before the simultaneously addition of ascorbic acid and 

silver nitrate the stirring was increased to maximum. When all reagents were added, 

the stirring speed was set to 900 rpm and left to react for 5 minutes. All volumes of the 

reactants were calculated considering the concentration of the gold nanostars utilized 

as seeds, the concentrations of the reactants used and a final concentration of 

nanostars of 0.17 nm. 

 

Gold nanospheres and gold nanostars characterization 

Visible spectra were obtained in a UV-Vis spectrophotometer GENESYS 10S UV-

Vis, Thermo Scientific, using optical glass cells, with 1 cm optic pass (Hellma), at room 

temperature. AuNPs were diluted 4 times with ultra-pure water, while for AuNS a 

dilution factor of 5 was used for characterization of non-functionalized and PEGylated 

nanoparticles; for AuNP-PEG-Gra6II and AuNP-PEG-Gra6II a dilution of 150 L of 

nanoparticle solution was diluted in 850 L of ultra-pure water. When characterizing 

nanoparticles specific parameters were used: the scan started at 200 nm of wavelength 

and ended at 1000 nm of wavelength, attenuance value was used as measurement 

mode, for the vertical axis a value of 0 and 1 were respectively used for the minimum 

vale and maximum value, finally threshold of 0.01 value of attenuance and a peak pick 

was set for the maximum of each peak. Calculations for the determination of diameter 

and concentration of the spherical nanoparticles were based on the relations based by 

Haiss et al. [129]. 

Dynamic light scattering (DLS) and electrophoretic light scattering (ELS) 

measurements were performed in a Zetasizer Nano Series Nano – ZS; Malvern 

Instruments. using disposable cells (Malvern DTS1070). For DLS measurements the 

equipment presented a laser angle of 173° Backscatter (NIBS default), with a general-

purpose analysis model. For each sample 5 measurements of 11 runs each were 
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made. For ELS measurements the equipment presented an 12.8° angle between the 

scattering beam and laser beam that passes through the centre of the sample, the 

Smoluchowski approximation model was utilized for the calculations via Henry 

calculations. For each sample 5 measurements were made, presenting them a number 

of runs between a minimum of 10 runs and maximum of 100 runs. Dilutions were the 

same as used in UV-Vis characterization. 

NTA (Malvern NTA Nanosight NS300) was in suspensions obtained by diluting the 

suspension of non-functionallized nanostars or PEGylated nanostars 100-200 times 

and 50-100 times for non-functionalized nanospheres and PEGylated nanospheres. 

The dilutions used for Gra6II conjugated nanospheres and Gra6II conjugated 

nanostars were the same dilution: a dilution of 50 L of nanoparticle solution was 

diluted in 950 L of ultra-pure water. For signal acquisition the equipment’s camera 

value was set to a level of 10 and screen gain to a value of 10, 5 repetitions of data of 

60 seconds each were taken for qualitative analysis, all measurements were made at 

25° C and when complete exported.  

 

PEG Functionalization 

PEG functionalization of the nanoparticles was made by incubation of 5 mL of the 

suspension with 0.300 mol/L PEG (HS-(CH2)11EG3OCH2COOH) in ratios 1:500 to 

1:57800), for 1 hour, under stirring at 300 RPM. A functionalization control, in which no 

PEG was added was also made. After incubation, the samples were washed one time 

by centrifugation (mini spin, MiniSpin® series), for 10 minutes, at 2500 g and 

resuspension in 2mL Phosphate Buffer 2 mM, pH 7. Controls were subjected to the 

same procedure, but they were resuspended in 2 mL of ultra-pure water. All samples 

were stored at 4 °C.  

 

Gra6II Functionalization 

Gra6II synthetic peptide functionalization of the PEG functionalized nanoparticles 

was made via creation of a medium solution of nanoparticles + Phosphate Buffer pH 7 

2mM (to the point that final concentration of nanoparticles would be equal to 0.2 nM 

was achieved). That same Nanoparticle/buffer medium was put in ice and addition of 

EDC at a concentration of 1 mM and of NHS at a concentration of 1mM was made, 
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following a ratio of 1:2 of EDC:NHS. Following such addition, the mixture was removed 

from ice and put under incubation for 15 minutes at approximately 300 RPM. After 

incubation, the samples were washed by one centrifugation (mini spin, MiniSpin® 

series), for 10 minutes at 2500 g for nanospheres and approximately 1300 g for 

nanostars, and resuspension was made via removing the supernatant and redispersing 

the pellet in phosphate buffer pH8 2mM, until half of final volume is attained. 

Gra6 II:Nanoparticles ratios of 1000; 5000; 7500; 10000; 25000 and 50000 were 

created via addition of previously calculated volumes of Gra6II to the solutions created 

post centrifugation. Such calculations were made based on the concentration of 

nanoparticles in solution and the concentrations of Gra6 II available (in this work the 

concentrations used were of 0.396 mM and 0.0396 mM). After the peptide addition, the 

solution was let to incubate with a mixture of the nanoparticle solution previously 

obtained, ultrapure water, phosphate buffer pH7 2 mM and the Gra6 II peptide, for 2 

hours under an agitation of approximately 450 RPM. After incubation the solution of 

each eppendorfs was washed by one centrifugation (mini spin, MiniSpin® series), for 

10 minutes at 2500 g for nanospheres and approximately 1300 g for nanostars, 

followed by a removing of the supernatant and redispersion of the obtained pellet in 

phosphate buffer pH7 2mM until a final volume equal to the initial volume was attained. 

 Control samples were also made: 1) a blank control (no addition of EDC/NHS and 

Gra6 II, and no centrifugations were made) entitled from now on as CS, and 2) an 

EDC/NHS control (no Gra6 II addition steps were made) entitled from now on as CF. 

For characterization via UV-Vis, DLS, and ELS dilutions of 150 L of nanoparticle 

solution dispersed in 850 L of phosphate buffer pH7 2mM were used; for NTA 

dilutions of 50 L nanoparticle solution in 950 L of phosphate buffer pH7 2mM were 

used. 
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Results and Discussion 

 

1.50 nm Nanospheres synthesis and 

functionalization 

 

1.1 Non-toxic and surfactant-free synthesis of 

approximately 50 nm nanospheres – A step-by-step 

creation. 

 

The first ever synthesis of colloidal gold utilizing citrate as a reduction agent was 

first introduced by Turkenvich et al. in 1951 [130] and later improved by Frens et al. 

approximately 2 decades later[131, 132].  In this reaction, hot gold (III) (HauCl4) 

solution and trisodium citrate are the reactants, having the trisodium citrate a double 

function as both a reducing agent, allowing the gold (III) to be transformed into gold (0) 

(Au3+ ions -> Au0 ions), and as a stabilizing agent [133]. When the Au3+ ions are 

reduced into neutral Au0 ions, the solution reaches a point of gold saturation, which 

leads to the deposition of noble metal particles[134], and the creation of gold 

nanoseeds, normally referred to as merely seeds. Citrate is reduced to 3-ketoglutaric 

acid and carbon dioxide. These side products can be removed using washing by 

centrifugation. 

 

 

𝑁a3C6H5O7 (trisodium citrate) + 3H
+  
                
→       C6H8O7 (citric acid) + 3Na

+ 

 

          2 HAuCl4 (hydrochloroauric acid) + 3 C6H8O7 (citric acid)
               
→     2Au +

 3C5H6O5 (3 − ketoglutaric acid) + 8HCl + 3 CO2 

 

In this work, a seed-growth method was used for the nanospheres synthesis. The 

aforementioned seeds are used as crystallization nuclei in further steps of synthesis, 

allowing for a more controlled size and shape of the final product. After a seed creation 

step, growth-enabling solutions containing more HauCl4 and trisodium citrate are added 

as needed. The newly introduced and reduced gold particles are then assembled at the 
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surface of already established Au seeds, due to changes induced into the solution via 

temperature decrease which does not allow new seeds to form. The growth steps can 

be repeated until the desired size is obtained. It is to note that this type of synthesis is 

extremely sensitive to external stimuli. Not only the reactant ratios should be as exact 

as possible, for even small changes to the ratios, such as the ratio between gold 

molecules and trisodium citrate may lead to different sizes and concentrations of gold 

nanoparticles [135], such as higher ratios of trisodium citrate:Gold nanoparticle leading 

to an increase in size and polydispersity[126]. Stimuli such as temperature are also to 

be controlled during the whole duration of the synthesis, for differences in its value may 

lead to differences in the final product. Example of that is the temperature for the 

obtainment of gold nanoseeds is around or above 100° C, however, for the growth 

steps the temperature used is around 90° C, as such temperature allows for the growth 

of the nanoparticles in size but does not allow for the creation of new seeds[36, 126]. 

Yet, such refinements allow for a specific tailoring for the sizes and concentration of 

gold nanoparticles one wants to obtain, giving a great advantage in the use of such 

method when obtainment of specific sizes is desired.  

 The final colloidal suspensions of nanospheres were characterized by UV-vis 

and DLS, to confirm that the desired properties were obtained. The results are shown 

in Figure 8, and Tables 1 and 2. In this work, nanospheres normally presented a range 

between 47 to 50 nm of diameter post-synthesis and concentrations that ranged from 

10 to 15 nM (nmol*dm-3), which were approximately the sizes we were looking for, 

when measured via UV-Vis spectrophotometry. Via UV-Vis it is possible to obtain the 

size of metal nuclei of the nanoparticles, without a significant contribution from the 

capping corona[129].  
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Figure 8 – Representative UV-Vis spectrum of gold nanoparticles of ≈ 50 nm, in aqueous suspension.  

With the presented figure some key characteristics are possible to be observed: I) 

the spectrum presents a peak at approximately 525 nm, which is a the characteristic 

wavelength for 50 nm diameter nanospheres; II) the band presented in the figure is 

narrow, which indicates a low dispersion of sizes; III)  no more peaks or elevations of 

the graphical curve are detected at higher wavelengths, which indicates that no 

significative aggregation of nanoparticles was observed. As such, its possible to infer 

that a monodisperse solution of nanoparticles of 50 nm of diameter was successfully 

obtained [128].  

 

Table 1: Diameter and concentration of the AuNPs obtained from UV-Vis spectra. 
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Sample name  Gold Nanospheres Step-by-step Synthesis 

Maximum attenuance 0.5931 

Wavelength at maximum 
attenuance 527 nm 

Attenuance value at l = 450 nm 0.2958 

Diameter (nm) 46 

Concentration (nM) 0.15 
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Concurrently to the analysis via UV-Vis spectrophotometer, DLS and ELS 

measurements were also performed. to determine hydrodynamic diameter, 

polydispersity index (PDI) and, and zeta potential. The results are shown in Table 2. 

 

Table 2: Dynamic light scattering (DLS) and electrophoretic light scattering (ELS) characterization of AuNPs. 

 

 

Table 3: Table representing the two synthesis of nanospheres of size approximately 50 nm. In the table the 

deviation values are presented as a way to show the repeatability of the synthesis obtained.

 

 

First of all, in DLS analysis the average particle size is normally bigger to the 

particle size obtained via UV-Vis, because while UV-Vis indirectly measures the 

diameter of the gold metallic core of the nanoparticles, DLS measures the average 

hydrodynamic diameter of the nanoparticles, i.e. it includes the capping agent and the 

hydration layer[136, 137]. DLS also measures the size dispersion of the samples as 

polydispersion index, PDI. Monodisperse samples have PDI values lower than 

0.2[128]. Higher values indicate nanoparticle aggregation. Nanoparticle aggregation is 

very important to avoid, since it can lead to incomplete functionalization of the 

nanoparticles, and thus lower efficiency in their utilization for a SERS type test 

employing biological samples. Finally, zeta potential is a measure of the electrical 

charge at the surface of the particles; such charges become of great importance when 

functionalizing and employing the nanoparticles, being needed to have in mind the 

charges of the reactants in functionalization or of the molecules in the medium so that 

the desired reactions may work in the most favourable way possible[138, 139].  

As seen in table 2, the data obtained in our analysis both in UV-Vis, DLS and ELS 

present the expected results, with PDI values below 0.200. Therefore, it becomes 

possible to say that such nanoparticles present great prospects for next 

functionalization steps. However, before further functional functionalization for the 

creation of our desired nanoprobes may continue, an additional step is needed: the 

Sample lMax nm (lMax) l450 Size (nm) Concentration (nM)

AuNP VT 0.620 525 0.303 52 0.11

AuNP VT II 0.593 527 0.296 46 0.15

Deviation Values 0.0133 1 0.00352 2.833 0.0197

UV-VIS

DLS  and ELS Data 

Sample name Gold Nanospheres Step-by-step Synthesis 

Particle Average size (nm) 40.93 41.64 42.02 42.48 42.62 

Polydispersion Index 0.133 0.150 0.160 0.152 0.154 

Particle Zeta Potential (mV) -33.7 -35.4 -36.7 -37.7 -38.6 
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substitution of trisodium citrate as a protector group, for a new protector group that not 

only binds in a stronger way to the nanoparticles, but that also allows for a higher 

protection to them, be it's in reactions but also in physiological media[140-142]. 

 

1.2 PEG as a capping and functionalization group for 

nanospheres – an amphiphilic capping agent 

  

As mentioned before, trisodium citrate in solution did not only reduce the Au3+ ions 

into neutral Au0 particles, but also serves as a protecting agent to the newly 

synthesized nanospheres. However, for the preparation of the nanoprobes, the citrate 

protective group on the synthesized nanospheres must be substituted by a PEG group 

(Figure 9), leading to a step of PEG functionalization, also known as PEGylation. This 

step is required because: i) the utilized PEG presents a thiol group (-SH), which allows 

the molecule to bind much more strongly to the gold nanoparticles due the high binding 

affinity verified between gold and -SH, allowing then a higher protective power for any 

chemical impurities in the solution[108, 143-146]; ii) the utilized PEG in this work 

presents a terminal carboxylic group (-COOH), which is of high importance for the 

successful binding between the nanoparticles and Gra6II due to it presenting a terminal 

amine group (-NH2)[16, 79, 147]. Such importance and mechanics of such step will be 

further detailed ahead in the chapter “Functionalization of PEGylated nanospheres via 

EDC/NHS activation – creation of a gold nanoprobe for detection of Toxoplasmosis”; 

(iii) PEG molecules present a high biocompatibility in biological and physiological 

medium due to its capacity to reduce non-specific binding of proteins and other 

biomolecules, while acting as a stealthing agent[68, 71-73, 148], in other words, it 

allows for the nanoparticles to remain in physiological and biological mediums for 

higher periods of time, without any significant interactions with proteins in the media, 

making them as perfect candidates for use when utilizing biological and physiological 

material. 
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Figure 9 – Structural formula of the SH-PEG-COOH molecule used. 

 

Due to PEG having a stronger binding strength to the nanoparticle than citrate, the 

PEG molecules substitute the citrate molecules in the surface of the nanoparticles 

forming a covalent bond[65, 71, 73, 140, 141]. The citrate capped nanoparticles were 

incubated in the presence of PEG, and centrifugations post incubation and pellet 

resuspension in buffer allows for the removal of citrate from the system. Several ratios 

of PEG:AuNP were analysed to better utilize the PEG molecule and its protective 

capacity. From the results obtained via UV-Vis spectrophotometry it becomes possible 

to conclude: 1) Amongst the samples that were centrifuged the CF presents a 

significative descent in attenuance value. This may be indicative of some stronger 

protection properties that PEG exerts in the AuNP when compared with using citrate as 

a protection group; 2) the introduction of different ratios of PEG:AuNP leads to different 

attenuance values of different samples, as can be clearly verified in the graph with the 

sample ratio of 57800. This means that different concentration ratios of PEG:AuNP can 

lead different results (Figure 10 and figure 11), therefore a careful selection of which 

ratios to advance the work with is also needed. 
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Figure 10 – Graphic obtained via UV-Vis spectrophotometer of all samples of concentration ratios of PEG:AuNP 

(500, 1000, 5000, 20000, 57800) and controls (CF and CS (Blank)). All samples used the same dilution for the 

characterization, meaning that in the CF sample there was a loss of nanoparticle material. 

 

When analysing the DLS and ELS characterization parameters values (figure 11), 

it becomes possible to further extend not only our understanding of how the PEG 

molecules reacted with our AuNP, but also give us further information to allow for a 

good choice of ratios to use for further work.  

No significant changes in AuNP-PEG hydrodynamic size were seen, which is in 

accordance with other works which indicate that PEG molecules in gold nanoparticles 

do not affect its hydrodynamic size [95]. Yet, most notable is the substantial changes in 

PDI amongst samples. First the PDI increasing slightly and then decreases, leading to 

smaller values of PDI to be observed in the concentration ratio of 57800, which present 

values that prove themselves of good value to further use in future protocols due to 

being not only the smallest PDI value obtained but also being a value under 0.2, which 

presents itself in literature as a good value while maintaining the highest value of 

attenuance. Zeta potential values also presented small differences, this may be due to 

action of the PEG, leading to an increase of the zeta potential of the AuNP-PEG; 

however, increasing the PEG concentration ratios causes a decrease in the Zeta 

potential. Such may be due to the fact that the more concentrated PEG becomes in the 

surface of the nanoparticles, the less of the interior of the molecules becomes 
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positioned in a manner that may change the surface charge of the AuNP-PEG 

complex.  

Upon analysing the data, the concentration ratio of 57800 was selected as the one 

to be used. This due to I) it’s low PDI value overall obtained via DLS and ELS analysis 

concomitantly with the identifiable lack of aggregation of nanoparticles via UV-Vis 

spectrophotometry, and II) the peak attenuance value obtained UV-Vis, which indicates 

a superior capacity to serve as optical test base for a SERS type test due to the higher 

attenuance value obtained in comparison with the other used samples, suggesting a 

superior optical signal response to alteration to the nanoparticles, such as target 

molecules binding relatively to the remaining samples.  
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Figure 11 – Visual representation compilation of the most important characterization parameters data obtained via 

DLS (particle average hydrodynamic size (11b) and PDI (11c)), ELS (particles zeta potential (11d)) and UV-Vis (peak l 

value obtained (11a), utilizing the tables average values for each parameter analysed post-PEGylation process. Such 

was done to simplify the process of data analysis in cases of large disparities of values amongst the same parameters. 

In the PDI graph a bar identifying the 0.2 value was added to facilitate the identification of remarkable PDI values. 

 

 

1.3 Functionalization of PEGylated nanospheres via 

EDC/NHS activation for Gra6II binding – creation of a gold 

nanoprobe for detection of Toxoplasmosis. 
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 After the PEGylation step, now comes the question of how to bind the Gra6II 

synthetic peptide. Many solutions are available to do such, however, one technique in 

specific has been used in several fields of nanotechnology especially those pertaining 

to the creation of nanoparticle-based disease detection tests and similar nanoparticle-

based tests, being those that technique of carbodiimide chemistry, also known as 

EDC/NHS chemistry binding. 

 EDC/NHS chemistry serves as a mediator linker between the AuNP-PEG which 

presents a -COOH group and Gra6II which presents an -NH2 group[44, 62, 75, 76, 149-

151]. The EDC is added first and reacts with the carboxyl moiety to form an 

intermediate compound, O-acylisourea[76]. The intermediary compound is highly 

reactive, and reacts extremely fast with an electron donor, i.e., a nucleophile, being 

such nucleophile either a primary amine, such as the one present in the Gra6II peptide, 

or an oxygen atom from the water used as a dispersant medium[76]. It’s due to that 

reactivity that NHS is used in a second step reaction, allowing for a much more stable 

intermediary compound, improving peptide coupling efficiency[75, 149, 151]. The NHS 

reacts with the EDC and forms an ester, more specifically an amine reactive NHS 

ester, that stays attached much strongly to the AuNP-PEG due to this intermediary 

being hydrophilic and hydrolysing in a much more slowly way relatively to O-

acylisourea, allowing for a much more stable intermediate compound[76, 149]. When 

the Gra6II peptide is later introduced into reaction medium, its primary amine 

nucleophile rapidly hydrolyses the intermediary ester, and allows the formation of a 

covalent amine bond[76], as can be seen in figure 12. 
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Figure 12 – Scheme of the steps of AuNP functionalization. Each reactant addition and intermediary compound is 

represented on the image. 

 

After preliminary testing, the selected final volumes of EDC and NHS to be used 

for the functionalization of the AuNP-PEG used in this work was obtained. 

Due to the nature of the mechanisms of actuation of EDC/NHS technique, it may 

lead to aggregation of nanoparticles when used in excessive concentrations. As such 

the samples are to be measured via UV-Vis to verify the best concentrations to used 

(figure 13). In this work a final concentration of EDC of 3 M and a final concentration 

of NHS of 6 M were used, presenting the best values amongst the tested 

concentrations. Via figure 13 it becomes possible to observe that amongst the two final 

concentrations studied, the selected one presents two crucial selection factors: I) the 

selected concentration of 3 M of EDC and 6 M of NHS presents the best peak 

attunement value, for presenting the higher attenuance value and low aggregation 

potential; and II) the selected concentration does not present significant aggregation as 

can be verified in the graph obtained, however it becomes possible to verify that 

clusters of aggregation are becoming more liable to appear in higher concentrations of 
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the pair of reactants, therefore higher concentrations are not advised to be further 

studied, and to avoid aggregation. 

 

   

 

 

Figure 13 –UV-Vis spectra of the preliminary tests of concentrations off EDC and NHS to be used. 2 final 

concentrations of the pair of reactants (EDC and NHS) were made, always with a ratio of EDC:NHS of 1:2. The final 

concentrations utilized were: 1) 3 M of EDC and 6 M of NHS, and: 2) 1 nM of EDC and 2 nM of NHS. 

 

 Once the most appropriate concentrations was selected, the covalent binding of 

Gra6II to the AuNP-PEG was performed. Anew, tests were made at different 

concentrations of Gra6II:AuNP, being such concentrations: 1000; 5000; 7500; 10000; 

25000; 50000. Two controls were used, such as in previous tests, the CS and CF 

controls (figure 14, figure 15, and figure 16). 
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Figure 14 – Graphic obtained via UV-Vis of AuNP-PEG post EDC chemistry and successive Gra6II binding. 
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Figure 15 – Visual representation compilation of the most important characterization parameters data obtain via 

DLS (particle average hydrodynamic size (15b) and PDI (15c)), ELS (particle zeta potential (15d)) and UV-Vis (peak l 
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value obtained (15d)), utilizing the tables average values for each parameter analysed post EDC chemistry and Gra6II 

binding to the AuNP-PEG. The CS control corresponds to the values obtained previously in sample 57800 ratio 

presented in the chapter “Usage of PEG as a protector and functionalization group for nanospheres – an amphiphilic 

protector”, this due to the fact that such ratio was the one selected to proceed to the peptide binding phase. 

 

  

Figure 16 – Data obtained post NTA characterization. The utilized characterization parameters analysed where 

nanoparticle hydrodynamic size mean and nanoparticle hydrodynamic size mode. 

 

  

 

By analysing the values in figure 15, it became possible to select the most 

appropriate ratios of Gra6II to use. A small decrease in the peak l value obtained in 

the PEGylated nanoparticles presenting Gra6II functionalization (AuNP-PEG-Gra6II) 

when compared to the CS control (which is the AuNP-PEG ratio 57800 presented in 

the last chapter), such being a possible indication that binding of Gra6II was 

successful.  

The DLS and ELS data also seems to verify such; I) the average size of 

nanoparticles obtained seem slightly bigger than the ones obtained in the PEGylation 

experiments, however such change is not significant enough to delineate conclusions 

with a high certainty; II) a small increase in PDI was verified, which is expected of a 

successful addition of peptide. This is due that the addition of peptide leads to a 

decrease in monodispersity, for the peptide binding is not equal in manner in all gold 

nanoparticles, not only position wise, but also concentration of peptide:nanoparticle is 

not the same for each nanoparticle, thus leading to the verified decrease in 

monodispersity, which in turn is represented via a higher value in PDI; III) modifications 

in the zeta potential of the nanoparticles, in specific a decrease in surface charge, this 
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could be due to the amino-acid charges of the synthetic peptide that are located in an 

exterior and are modifying the overall surface charge, which would only be possible 

with a correct binding of peptide sequences to the nanoparticle. 

A concomitant analysis via NTA was made to cross-analyse with the results 

obtained. Overall the results are of good consistency, amongst themselves and the 

DLS and ELS obtained results, even having into account some outliers amongst mean 

and mode results, that may be result from the high disparity amongst the mean and 

mode verified in the CS control, which may be a consequence of the time passed 

between the synthesis and utilization of the nanoparticles, for the stability and shelf-life 

of the nanoparticles is dependent of such parameters as time, temperature, pH and 

many others. 

Therefore, it seems that the results overall are good, however considering time 

and budget constraints a small number of ratio concentrations needs to be selected for 

further experimentation. As such, the concentration ratios selected were the ones 

corresponding to the ratio 5000 and the ratio 50000, to better understand if onwards 

experiments may present differences between a small concentration ratio and a high 

concentration ratio of Gra6II:AuNP (figure 17). 

With the ratios selected new samples only utilizing such ratio were made, to verify 

the selection of the ratios and creation of batches for further studies. 
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Figure 17 – Visual representation compilation of the results obtained of the newly selected concentration ratios via 

UV-Vis (17a), DLS (17b and 17c) and ELS (17d). Once again, the CS control corresponds to the AuNP-PEG ratio 57800 

used in the peptide binding process via EDC/NHS chemistry. 

 

Results of the same type between the CS control and then samples as before 

were obtained: I) a slight decrease in the peak l value could be observed; II) a slight 

increase in the particle average size is not only also again identified, but is also more 

prominent; and finally, III) the PDI suffered, as expected, a small increase in value. 

The results now obtained present themselves as a good basis for onwards works. 

 

1. Nanostars synthesis and 

functionalization 

 

2.1 Nanospheres versus nanostars – from lightning rods 

to shining stars. 

 

Gold nanostars (AuNS) also present highly controllable morphology during 

synthesis via control of AgNO3, which functions as a regulator of the direction of growth 

of the branches of the nanostars and L-Ascrobic Acid, which functions as a growth 

agent[126]. Such reflects into a highly tunable plasmon resonance (SPR), for the 

control of the growth of the branches change the way the nanostars interact with the 

surrounding environment[88, 89]. In consequence, highly tunable localized surface 

plasmon resonance (LSPR), is an effect that define noble metal-based 

nanostructures[92, 95, 109, 152, 153]. LSPR differs from SPR due to LSPR being an 

extremely localized oscillation in solely the nanostructure and their hotspots, while SPR 

being an oscillation amongst the metallic-dielectric interface[109, 154]. As such, LSPR, 

when compared to SPR, presents a shorter field decay[155, 156], signifying a reduction 

to sensitivity of interferences from the medium refractive index fluctuations while also 

providing therefore, a much more increased sensitivity to changes on the noble metal 

(in this work, gold) nanostructures. Due to such, noble metals such as gold and silver 

present a high potential for the creation of nanoassays based on optical properties of 

the metallic nanomaterials in a panoply of areas. 

Such tunability to LSPR is also capable to reach near infra-red (NIR) 

wavelengths[95], which is optimal for biological applications, supplementing to the 
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already described positive points that demark nanoprobes based immunoassays, as 

the one presented in this work, as optimal candidates for the elaboration of disease 

and pathogenic infections in humans and animals, in a much more expeditious and 

cost-efficient manner than many of the techniques available at this present time. 

As such the optical responses of AuNS are extremely complex, for the existent 

anisotropic morphology caused by the branches in the nanoparticles[157, 158]. These 

branches lead to a presence of 2 simultaneous focalizations of EM existing 

simultaneously (figure 18):  higher intensity EM localized in the tips of the AuNS and, 

lower intensity EM localized in the metallic core[155, 159, 160], being such theorized to 

be identifiable by the presence of 2 distinct LSPR bands, which are represented in 

spectrophotometry techniques as the existence of 2 peaks of different values. These 2 

bands normally present values of wavelength approximately between 650-900 nm for 

the higher intensity band, and 500-600 nm for the lower intensity band[155, 160, 161]. 

Such enhancement and focalization of electric field on the tips of the branches leads to 

what is denominated as the “lightning rod effect”[162] and is theorized to be 

responsible for the optical signal amelioration of SER activity[155]. 

 

Figure 18 – Visual representation of the 2 points of EM focalization (presented in blue). The anisotropic nanostars 

(presented in yellow) present a high intensity EM focalization in the tips of the branches and a low intensity EM 

focalization in the metallic core of the nanoparticle. 

 

For such reasons it is possible to assume that theoretically AuNS may prove to be 

a better alternative for the creation of the nanoprobes to be used in a SERS type 

immunoassay test for the identification of Toxoplasmosis anti-Gra6II antibodies in 

serum, due to their ameliorated optical signal strength when compared to AuNP. 
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2.2 Gold nanostars synthesis using a seed-mediated 

method – pressure makes diamonds and chemistry makes 

stars. 

 

AuNS synthesis utilizes AuNPs of approximately 15 nm as a basis [67, 135]. To 

that basis additions of HAuCL4, to be reduced to allow for the addition of gold particles 

to the already synthesised seeds, and a duo of L-ascorbic acid and Silver Nitrate 

(AgNO3) that are used at the same time, being that the L-ascorbic acid acts as the 

reducing agent of the gold (III) into gold (0) (as explained in chapter “Non-toxic and 

surfactant-free synthesis of approximately 50 nm nanospheres – A step-by-step 

creation.”) and AgNO3 acts as an interloper via the creation of the anisotropic branch 

growth in the nanoparticles, which characterize AuNS morphology.  

A precautionary note should be added that L-ascorbic acid and AgNO3 should 

always be added at the same time, for if the Ag+ ions, originating from the AgNO3, are 

introduced too soon to the medium, silver chloride salt will precipitate and no nanostars 

be added upon addition of L-ascorbic acid[135]. In the same manner, if Ag+ ions are 

introduced too late in the medium, most of the gold will have become reduced and has 

already deposited itself and formed larger spheres from the addition of L-ascorbic acid, 

becoming then the function of Ag+ ions compromised, and no branches being 

successfully synthesized[135]. Environmental external stimuli such as pH, temperature 

and others should be highly controlled. During this work some changes in protocol for 

the nanostars had to be made, such as temperature. Initially the synthesis for gold 

nanostars was made at room temperature, however that proved ineffective to obtain 

reproducibility of synthesis, being such normal according to literature[110]. Seeing as 

reproducibility of nanostars synthesis increases as the ambient temperature 

decreases[135], therefore after the original protocol was altered so the synthesis was 

made in a cold bath consisting of water and ice, which would set the temperate at 

approximately 1 to 3 ° C. 

Therefore, such used technique allows for the formation of a surfactant-free AuNS 

synthesis that presents high plasmon tunability. 

In figure 19 the graph obtained via UV-Vis, with the characteristics intrinsic to 

nanostars may be observed. 
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Figure 19 - UV-Vis graph obtained post-UV-Vis spectrophotometry of gold nanostars immediately post-synthesis. 

In the graph it becomes possible to verify the characteristics of a successful nanostar synthesis:  2 LSPR peaks are 

observed, the first at a wavelength approximately of 500 nanometres and another at a wavelength of 800 nanometres, 

which represent respectively the LSPR wavelengths characteristic of the nanostar nuclei and the nanostar branches 

tips. 

 

2.3 PEG as a capping agent for nanostars – 

Nanospheres vs nanostars. 

 

In AuNS the mechanism of functionalization works in the same manner that of the 

nanospheres, as the same type of PEG, specifically an SH-PEG-COOH, is utilized. The 

thiol group in the PEG molecule allows the PEG to bind to the surface of the gold 

nanostars[36, 78, 94, 144, 146]. However, a significant alteration that could be verified 

was the concentration ratios of PEG:AuNS. When using concentration ratios equal or 

superior to 50000, the particles would aggregate during incubation, being the 
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precipitation of nanostars aggregation visible at the bottom of the container. This 

signifies that nanostars present a higher sensibility to chemical aggregation when in 

reaction with other molecules, which has been reported before[98].  As such, different 

concentration ratios had to be utilized instead, being such concentration ratios of 500, 

1000, 5000, 20000, 30000, 40000 and 50000 of PEG:AuNS. CS and CF controls were 

also utilized in all studies, being the characteristics of such controls the same as the 

ones in chapter “1.2 Usage of PEG as a protector and functionalization group for 

nanospheres – an amphiphilic protector.”. 

 Only concentration ratio 50000 presented slight visual aggregation. Upon analysis 

it became apparent that the saturation limit before any kind of aggregation of nanostars 

was a concentration ratio of 40000. As such, due to the saturated limit of the 

nanospheres being a concentration ratio of 57800, a concentration ratio of 40000 was 

selected for further studies done with nanostars. As such, comparison amongst the two 

morphologies is easier is both are in the same state of relative saturation. 

The UV-Vis resulting graph may be seen in figure 20 and figure 21. 

 

 

Figure 20 - UV-Vis graph obtained post-UV-Vis spectrophotometry of the different concentrations ratio of 

PEG:AuNS post-PEGylation. In the graph it becomes possible to verify that although the attenuance value suffered a 

slight decrease in value upon the PEGylation process, the shape of the obtained band and the location of the peak 

wavelength value only changes slightly (the peak wavelength value passed from 800 nm in the CS to 788 nm in the 
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concentration ratio of 40000). The reduction in the attenuance values of the samples CF and 40000 may be explained 

due to the high sensibility of the nanostars, there is a possibility that some material was lost, leading to such decrease in 

attenuance. 
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Figure 21 – Visual representation compilation of the results obtained of the selected concentration ratios 

comparable to the saturation levels verified in the nanospheres previously synthesized, obtained via UV-Vis (10a), DLS 

(21b and 21c) and ELS (21d).  

 

Also noticeable is the fact that in figure 20, when compared with sample CS, the 

remainder samples present a lower value of attenuance, however concomitantly the 

values in figure 21 do not present a possibility of aggregation, as the PDI values are 

low in 21c and the standard deviation verified in 21b are low. Therefore, the decrease 

in values are probably due to a loss of material during the protocol. 
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2.4. Functionalization of PEGylated nanostars via 

EDC/NHS activation for Gra6II binding – Does shape really 

matter? 

The functionalization of the nanostars was made in the same way as the 

functionalization of the nanospheres, EDC and NHs were used as linkers for the 

binding of the Gra6II peptide to the nanostars via incubation. 

The method used for both the carbodiimide chemistry and the Gra6II bond to the 

nanoparticle were reproduced exactly as in chapter “1.3 Functionalization of PEGylated 

nanospheres via EDC/NHS activation for Gra6II binding – creation of a gold nanoprobe 

for detection of Toxoplasmosis.”, with the sole exception of the utilization of PEGylated 

nanostars instead of PEGylated nanospheres. The chemical processes and 

mechanism are also the same as explained in chapter 1.3. 

After the functionalization with the synthetic peptide, one major difference was 

noted, while the nanospheres maintained their red colour throughout the process, the 

nanostars after the Gra6II functionalization step presented a colour alteration from blue 

to transparent, yet no aggregation points were present post-centrifugation. Yet, the 

sample was analysed via UV-Vis. However, upon analysis the graph did not present 

any band that was characteristic of nanoparticles of any kind, as seen in figure 22.  
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Figure 22 - UV-Vis graph obtained post-UV-Vis spectrophotometry of the different concentrations ratio of the gold 

nanostars post-Gra6II functionalization. It is possible to verify that no nanoparticles are detected by the UV-Vis 

spectrophotometer. 

However, after characterization via DLS, ELS, as seen in figure 23, and NTA, 

figure 24, nanoparticles were detected in the transparent medium, however of higher 

size. As such, it proves that the nanostars did not precipitate after centrifugation and 

were still present in the samples. 

A possibility that the nanostars aggregated into dimers and higher level aggregates 

during Gra6II incubation, and as such a shift in the emitted light wavelength to 

energetic levels outside of the one of visible light is not to be excluded. 
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Figure 23 – Characterization via DLS (figures 23a and 23b) and ELS (figure 23c). It is noteworthy to see that 

values present significant differences such as in: a) the values of size are much more higher than before 

functionalization, which may add to the theory that during the chemical reaction formation of dimer and higher degree of 

agglomerations has occurred; b) PDI present high values, which goes in concordance with the bars that represent the 

standard deviation seen in a); c) Zeta potential values show a higher value of alteration than what expected, such being 

in concordance with the possibility of nanoparticle alteration during chemical reaction during incubation of the synthetic 

peptide.  
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Figure 24 – Characterization of AuS-PEG-Gra6II ratios of Gra6II:AuNS of 1000, 10000 and 50000 via NTA. It is 

possible to verify in the images that several populations of sizes, each signifying a peak in the graph, exist not only in a 

high number, but the sizes themselves are of a higher value than what should be expected. Such results also seem to to 

suggest that aggregation of nanoparticles is present in solution, 

10000 

50000 



FCUP 
Development of sensors type LFIA for the detection and quantification of anti-toxoplasmosis antibodies 

46 

 
 

 

Conclusion 

Nanospheres presented throughout the functionalization process, from synthesis 

to Gra6II functionalization, stable values of characterization, chemical stability, and 

shelf life. Nanosphere synthesis presented itself with good reproducibility, and 

manipulation of nanospheres for functionalization did not pose any kind of obstacle. 

However, nanostars synthesis presented a difficult task due to nanostars being 

much more sensible to external stimuli. Not only are the ratios amongst reactants and 

growth agents much more precise than their spherical counterparts, but stimuli such as 

pH, temperature and other environmental stimuli have to be highly controlled so the 

synthesis may work. Example of such is temperature, even at room temperature 

disparities amongst synthesis can be seen, however at lower temperatures the 

reproducibility amongst synthesis increases. Nanostars also presented a higher 

sensibility to physical and mechanical stimuli, such as centrifugations, needing lower 

centrifugations speed due to otherwise presenting a higher possibility of aggregation.  

Another important fact to be analysed is the fact that the basis for this test is the 

visual colorimetric component, where the presence or absence of the target antibodies 

is characterized by a colour altering aggregation of the nanoprobes. For the 

nanospheres this condition would prove no problem due to no change in colour during 

the entire work was noted at a significant level being seen. According to established 

work [77], the characteristic red colour of nanoparticles when in presence of the target 

antibodies and salt leads to a change of colour to blue which can be seen in the naked 

eye, if the test is executed correctly. However, when using the same ratios and 

concentrations of reactants that were used in nanospheres in this work resulted in 

already slightly aggregated samples, and the colour of the solution began changing 

from blue to transparent during Gra6II incubation protocol. This poses as a problem for 

the development of LFIA sensors, as the colorimetric change of the band without aid of 

external equipment is necessary. Such would, therefore, also prove a complication for 

the speed of obtainment of results and the facility of use for non-trained personnel. 

 Therefore, while theoretically nanostars are presented as a superior option as 

nanoprobes for the elaboration of SERS based LFIA tests for disease detection when 

compared to nanospheres, more work should be done to determine what ratios and 

concentrations to use so that the nanostars could act as nanoprobes in LFIA tests. 
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´Due to their higher sensitivity when compared to nanospheres, shelf life 

comparation between tests made utilizing nanospheres as nanoprobes and nanostars 

as nanoprobes should be made to determine not only which one could be stored for 

longer periods of time, but also at which conditions storages should be made. 

Unfortunately, serological tests were not possible to be executed to test the 

utilization of the synthesized nanospheres for detection of anti-toxoplasmosis 

antibodies in serum, due to the lack of infected serum. 

In conclusion, while nanostars theoretically present a superior capacity as 

nanoprobes due to their morphology and signal enhancement capabilities than 

nanospheres, in practice more work needs to be done to optimize the nanostars as a 

probe for the elaboration of a LFIA type test immunoassay.  

For now, nanospheres present an easier path for the elaboration of such tests and 

have already presented good potential to be utilized in point of care systems LFIA 

sensors. Yet, with some work and optimizations to nanostars functionalization 

protocols, their incorporation in LFIA sensors would be possible, and should not yet be 

disregarded, for the detection and quantification of anti-toxoplasmosis antibodies, due 

to their intrinsic signal enhancing characteristics of nanostars. 
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