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Digital Vulnerabilities: A Statistical Analysis

by Filipe COSTA

With the increasing use of the internet and the digital world, cybercrime records have

accompanied this growth, with several categories of cybercrimes being reported such as

malware, ransomware or spyware. For the implementation of these cybercrimes it is nec-

essary that there are vulnerabilities in the systems for these tools to exploit them. In this

dissertation, the discovery of vulnerabilities was modeled using point process models

and extreme value theory. In addition, an alarm system was designed to detect days with

more vulnerabilities registed. In the point models, the non-linear marked Poisson model

obtained the best performance, confirming the behavior observed in the descriptive anal-

ysis. The model supported by extreme value theory, the POT model, was successful in

modeling the time of exceedances in the proposed threshold. Finally, the alarm system

performs better with the data grouped weekly. Several metrics were proposed for the

evaluation of the alarm system, where they suggest that the model has better predictive

capacity within 30 days.
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Vulnerabilidades Digitais: uma Análise Estatı́stica

por Filipe COSTA

Com a crescente utilização da internet e do mundo digital, os registos de cibercrime têm

acompanhado esse crescimento, sendo reportadas várias categorias de cibercrimes como

malwares, ransomwares ou spywares. Para a implementação de estes cibercrimes é ne-

cessário que existam vulnerabilidades nos sistemas para estas ferramentas os explorarem.

Nesta dissertação foram modeladas a descoberta das vulnerabilidades utilizando mode-

los de processos pontuais e de teoria de valores extremos. Além disso foi desenhado um

sistema de alarme para a deteção de dias com mais vulnerabilidades registadas. No mo-

delos pontuais, o modelo de Poisson marcado não linear obteve a melhor performance,

confirmando os comportamentos observados na análise descritiva. O modelo apoiado

em teoria de valores extremo, o modelo POT, foi bem sucedido na modelação do tempo

de excedência do limiar proposto. Por fim, o sistema de alarme tem um melhor desem-

penho com os dados agrupados semanalmente. Foram propostas várias métricas para

a avaliação do sistema de alarme, segundo as quais o modelo tem melhor capacidade

preditiva no espaço de 30 dias.
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Chapter 1

Introduction

The use of the Internet and its services has been increasing over the last decade, expanding

its influence and restructuring society and its behaviors. If we add the various emerging

needs due to the Covid-19 pandemic, companies and services accelerated their digital

transition even more. With these, the need to protect critical information such as credit

card numbers and personal data has grown over the years, as has the attempt to obtain

them. In Portugal and around the world, there has been a significant increase in cyber-

crime cases [11], such as phishing, malware, ransomware and fraud. According to the

World Economic Forum’s 2022 Risk Report [46], 85% of the world’s leaders in the WEF

Cybersecurity Leadership Community show concern about the growth of cyber-crime

cases, specifically ransomware, ranking them as a major public safety concern. Although

the risk of cyber-crime happening has never been so high, the number of professionals

and investigation has not kept up with the demand, with an estimated lack of 3 million

professionals in the area to investigate, correct and mitigate the various vulnerabilities

that affect the IT areas.

One type of cybercrime involves the creation of exploits to take advantage of vul-

nerabilities in software and systems infrastructure in order to gain unauthorized access,

remove service operability or obtain valuable information. This type of attacks are very

important to avoid as they can bring a lot of material and immaterial damage to the en-

tities that suffer them. Recent cases such as Vodafone, Sonae or TAP are examples of this

type of attack. Entities are interested in mitigating these events, either by strengthening

their security systems or reducing the number of attack vectors, which in this case include

vulnerabilities. In this dissertation we will focus on the study of the latter, that is, on the

1



2 DIGITAL VULNERABILITIES: A STATISTICAL ANALYSIS

vulnerability discovery process. There is already a lot of literature on this subject, mostly

based on empirical models [5][29] or differential equations [36].

This work has the objective of exploring and applying statistical frameworks to model

vulnerabilities, applying different approaches that offer different perspectives in each sit-

uation. The text is structured based on six chapters:

In Chapter I, a brief introduction to the topic is given,in the context of the cyber-crime

landscape in Portugal and in the world.

In Chapter II, necessary definitions for the rest of the dissertation are introduced, as

well as characteristics in their categorizations. In addition, it is briefly discussed the differ-

ent common approaches to vulnerability modeling. Finally, the considered databases in

this dissertation are described, offering some relevant information for further modeling.

In Chapter III, the topic of point processes is addressed. The concepts of simple and

marked Poisson point process are explored, in addition to the required conditions for

application. The model diagnoses that are applied in the rest of the dissertation are also

presented. Finally, the parameters for the model are estimated using the available data

and the results are discussed.

In Chapter IV, the classical extreme value theory is investigated, culminating in the

definition of a general model called POT, peak over thresholds. The modelling of the data

following this approach is presented, and its results are commented.

In Chapter V, the extreme value theory is applied again, but this time applied to dis-

crete structures. Thus, an alarm system is introduced in order to predict the occurrence of

an anomalous number of vulnerabilities. Various metrics are applied to this alarm system

and corresponding results are discussed.

Finally, in Chapter VI, all the results are clustered, and a general comment is made

comparing the performance of each approach. In addition, limitations in vulnerability

modeling are discussed, as well as future work that can be developed to overcome these

difficulties.



Chapter 2

State of Art

2.1 Some basic definitions

Throughout the evolution of computer security, the concept of vulnerability has also been

improved. However, there is no consensus among the community on the exact definition,

only suggestions from various organizations with influence in the area. For example,

CVE (Commum Vulnerability Enumeration) [13] defines vulnerability as “A weakness in

computational logic found in software and hardware components that, when exploited,

results in a negative impact on product confidentiality, integrity or availability”, while

NIST (National Institute of Standards and Technology) [34] defines it as “ A weakness in

an information system, security protocol, internal controls or implementation that could

be exploited by a threat source”. As the data gathered on this dissertation are all repre-

sented by CVE, we followed the definition of this organization.

In addition to the concept of vulnerabilities, there are other concepts that are equally

important for a clear understanding of this area. One of these is the vulnerability lifecycle.

The vulnerability lifecycle is defined as a series of events where a state and an associated

risk are reflected. In [41] the cycle is divided into four essential moments: vulnerability

discovery, vulnerability registration, patch release and exploit availability. Although an

overlap of events is often observed, it is important to have a clear distinction of definitions

between them. In this way, the four main events are defined as follows:

1. Vulnerability Discovery: In this event, the vulnerability is discovered for the first

time. Depending on who discovered it, this knowledge could be used for malicious

purposes.

3



4 DIGITAL VULNERABILITIES: A STATISTICAL ANALYSIS

2. Vulnerability Registration: First time the vulnerability information has been re-

ported by a reputable source. At this moment, the vulnerability has already been

studied by experts of risk analysis.

3. Launch of patch: From this moment on, the system is protected and the vulnerabil-

ity is removed.

4. Availability of an exploit: The occurrence of this event allows a person with access

to the exploit to be able to exploit the vulnerability.

It should be noted that the existence of a vulnerability does not mean the existence of an

exploit, and thus, compromise of the system. Therefore, the existence of a vulnerability

does not represent a risk in on itself, only if there is an exploit for the specific vulnerability.

Other important points to mention are the actors in the life cycle of vulnerabilities, which

vary according to their position and influence. Some of these actors are:

1. Vendor : Entity that produces the hardware/software and is responsible for keeping

it safe

2. Hacker * : Entity that discovers and/or releases exploits for vulnerabilities

3. Independent Organization: Entity that independently discovers and reports vul-

nerabilities

4. User: Product user

The various actors have different roles within the lifecycle and can strongly affect the se-

curity of a system. An example is, no matter how fast the vendor is to provide a patch for

the vulnerability in question, if the user does not update the software, the user’s system

will remain vulnerable to threats. It is possible to simulate the actions of each actor for a

given vulnerability through Markov models [1], but this will not be the focus of this work.

2.2 Vulnerabilities categorization

Due to the flexibility and different applications of the term vulnerability, it is necessary to

measure intrinsic properties in order to be able to make comparisons in different domains.

For this, there are several suggestions of universal categorizations and identifications that

*There are differences in the possible entities that can create an exploit or that gain access to them
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try to group the different vulnerabilities. NIST (National Institute of Standards and Tec-

nhonogy) is an American organization created in 1999 focused on identifying, defining

and cataloging publicly disclosed vulnerabilities. In this way, organizations can publish

discovered vulnerabilities so that cybersecurity professionals can easily identify and pri-

oritize common issues.

To distinguish between the various types of vulnerabilities, a categorization often used

in the industry is the CWE [16] (Commom Weakness Enumeration) . This community-

developed list of vulnerabilities was developed in 2006 and allows experts to categorize

vulnerabilities by type, whether they are software or hardware. An example is the top 25

most dangerous vulnerabilities of 2022 according to their category (figure 2.1)

FIGURE 2.1: Top 25 of most dangerous Software Weaknesses of 2022

Despite the different contexts and origins of vulnerabilities, one of the characteris-

tics relevant for processing and mitigation is the severity they would have if they were

exploited. Although severity often depends a lot on the context in which it appears, it

is possible to highlight characteristics that are independent of those contexts to obtain a

more objective view of them. For this, the FIRST [21] (Forum of Independent Report and

Security Teams) created in 2005 a vulnerability severity classification system: CVSS (Com-

mon Vulnerability Scoring System). This classification makes it possible to ≪capture the

main characteristics of the vulnerabilities and produce a numerical score that reflects the

severity≫. Over time, the criteria used in the classification were improved to respond to

changes in vulnerability landscapes. In the dataset analyzed here, two different versions

of this classification were used, version 2.0 and 3.1. Both versions divide the metrics into
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3 groups: base, temporal and environmental. The base metrics aim to represent the fun-

damental and intrinsic characteristics that are independent of context and time, while the

other two groups seek to explain the variable metrics. This rating uses a scale of 0 to 10.

The interconnection between the different types of metrics, regardless of version, fol-

lows the logic embedded in the figure 2.2: In the version 2.0, base metrics are defined by

FIGURE 2.2: CVSS equation metrics [15]

attack vector, access complexity, authentication and impact on confidentiality, integrity,

and availability. The attack vector defines the context where the exploit may be possible,

that is, the more remote the exploitation is possible, the higher the score will be. The at-

tack complexity reflects the conditions that the attack needs to have to be successful, the

fewer conditions are needed, the higher the score, while authentication describes the need

of privileges to be able to carry out the exploit. The remaining three impact metrics assess

the impact the vulnerability could have on three relevant areas: confidentiality, integrity,

and product availability.

With regard to temporal metrics, this version provides three: exploitability, remedi-

ation level and confidence in disclosure. The first metric describes the current state of

the techniques that exploit this vulnerability, the remediation level determines if there

is a fix available and confidence in disclosure measures whether the vulnerability has

been confirmed by the seller itself. Environmental metrics measure severity in the con-

text where they occur. There are five environmental metrics: potential collateral damage,

target distribution and security requirements in the three areas considered (confidential-

ity, integrity and availability). Potential collateral damage, as the name suggests, shows

whether exploiting the vulnerability could lead to possible collateral damage. The scope

distribution measures the proportion of vulnerability in the system itself, i.e. whether the

vulnerability is system-wide and security requirements measure the importance of the

affected areas at the vendor. A graph with the different metrics by group is represented

in the figure 2.3. The equation that calculates the scores known for the possible values for
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FIGURE 2.3: CVSS metric groups for version 2.0 [15]

each metric is available in A .

In version 3.0, most metrics remain intact, while others are expanded. Most of the

changes are located in the base metrics, with the addition of user interaction and scope

metrics. The user interaction metric describes the need for some user, in addition to the

attacker, to be necessary for the exploit to be successful. Scope measures the ability of ex-

ploiting the vulnerability to reach other systems that are beyond the vulnerability itself.

Another relevant change is in the environmental metrics, where the relative importance

for the supplier is maintained, but modified base metrics are added where the objective

is to adapt them in the context of each entity. A graph with the different metrics added is

represented in the figure 2.4. In addition, the formula that joins all metrics is also signifi-

FIGURE 2.4: CVSS metric groups for version 3.0 [15]

cantly changed in A.

2.3 Common modulation techniques in vulnerability modeling

In the literature there are several approaches to vulnerability modeling. Models that focus

on modeling vulnerability discovery are called VDMs (Vulnerability Discovery Models).

Within these models, two larges groups can be considered: models based on the temporal

component and models based on effort [3]. The first type of models models vulnera-

bilities taking into account when they happened, while the second is based on external

factors such as the use of the software, its popularity, etc. Temporal modeling can be done

through S models [4] [5], which assume that the behavior of vulnerabilities follows the
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form of an S, differential equations [36] or through proposals for specific models [29]. In

addition, models also try to incorporate metrics adjacent to vulnerabilities such as their

severity [42]. There are also models that have the goal to simulate the process of dis-

covering and exploiting vulnerabilities by simulating information systems [38] or hidden

markov chains [1] [2]. Finally, there are also methods based on Machine learning, more

specifically on neural networks [32], which avoid the parametric restrictions of the previ-

ously mentioned models.

2.4 NVD Database

To better understand the context and evolution of public vulnerabilities recorded over the

years, we start by doing a brief exploratory analysis of the NVD database. The NVD [35]

(National Vulnerability Database) is an American database that serves as a comprehensive

repository/dictionary of recorded vulnerabilities. Created in 1999, this institution helped

redefine the vulnerability cataloging system. Nowadays, almost all the world’s software

creators with a lot of users report their vulnerabilities in this public database. Here are

stored the vulnerabilities identified with the CEV system, indexed by CVSS metric. There

are some complementary databases such as ”CVE details” [14], which provide informa-

tion such as the CWE and the number of exploits created, if any. The period analyzed in

this database includes data from 1988 to 2021, as this is the last year with complete data.

Through the figure 2.5 we can see how the number of registered vulnerabilities has

evolved over the years. It is important to note that there are approximately 3 periods of

FIGURE 2.5: Number of vulnerabilities registed at NVD



2. STATE OF ART 9

distinct behavior present in the figure: 1988-2005, 2005-2016 and 2016-2021. Between each

of the periods there is a significant increase between them, revealing different strategies

regarding the detection, recording and prevention of vulnerabilities. In this way, the sec-

tion of the different periods can be relevant for the further analysis of the data. In addition

to the publication date, it is possible to visualize other factors such as integrity or access

complexity over time to check its evolution overtime. In summary, it is possible to see

that, despite observing a greater number of vulnerabilities, these tend to be less critical.

A possible way for visualizing this behavior is through the vulnerability score, a metric

that incorporates, through the formula A.1, important information about a vulnerability

and helps in measuring its severity. In the figure 2.6 we can see an increase in records

of vulnerabilities with lesser severity in recent years, which may be evidence of greater

attention to this area.

FIGURE 2.6: Scores boxplot over the years

While a global view of all vulnerabilities is excellent for a broader view of the prob-

lem, each product will have its own characteristics that may or may not match the global

trend of the system. In this way, databases of singular products will also be studied to

understand specific behaviors that they may have.

2.5 Individual data bases

2.5.1 Android data base

The Android product was first introduced in 2008 and, since then, it has reshaped the

smartphone concept, being the most popular mobile phone operating system since 2012,
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competing with Apple’s IOS. With the popularity of the product, it is necessary that the

security of this operating system to be as recent as possible, to avoid attacks on the sen-

sitive information of their consumers. According to NVD, registered Android system

vulnerabilities can be seen in the figure 2.7. It should be noted that, again, there are dif-

FIGURE 2.7: Number of vulnerabilities registed at Android

ferent behaviors in the number of vulnerabilities recorded over time, more specifically in

the period 2010-2014 and in the period 2015-2020. During the prior period, there are very

few vulnerabilities registered (in the order of the tens) while in the later period they are

registered in the order of the hundreds, which justifies a separation of these periods. As

the analysis with more recent data is more interesting, we will only deal with Android

data in the period 2015-2020. Regarding the evolution of the score over time, it is pos-

FIGURE 2.8: Score type in Android
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sible to observe in the figure 2.8 that, in percentage terms, there is a notable decrease in

the most critical vulnerabilities and an increase in the smallest. Such behavior suggests

an improvement in the detection and prevention of vulnerabilities over the years con-

sidered. If we compare with the global trend of the data, the Android system seems to

behave similarly to the rest of the products. The Android system, as a product in con-

tinuous development, needs several changes to add new content and correct previously

developed errors. For this, the responsible for the product create patches, that is, periodic

updates where they obtain the necessary feedback to continue to develop in the direction

that the consumer prefers. Each update brings new content, and thus, new possibilities of

vulnerabilities. In this way, it may be interesting to visualize the number of vulnerabili-

ties with the information of these updates. This is represented in the figure 2.9, where we

can see some increases in the release of new updates, as represented in the vertical lines.

This information may be useful in modeling the data in later chapters. Another external

FIGURE 2.9: Cumulative vulnerabilities for Android data

factor that may influence the number of vulnerabilities is the influence of the product on

the market [3]. In this sense, according to [43], Android has a variation in the influence

on the mobile phone operating system market according to the figure 2.10. It should be

noted that there has been an approximately linear increase from 2010 to 2017, where it has

stabilized around 40 %.
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FIGURE 2.10: Market Share of Android

2.6 Note on modeling limitations

As mentioned in the section 2.1, there is a time difference between vulnerability discovery

and registration. This topic is well known in the literature [23], however, over the years,

information on this type of differences has become private, accessible only within the

entity itself and vulnerability and risk analysis entities. In such a way, it will be assumed,

for lack of more data, that the discovery time is equal to the registration time. This will be

one of the major limitations of the analysis carried out from now on.

With the aforementioned limitations and with the help of exploratory analysis, three

approaches were chosen: point processes due to the temporal counting nature of the data,

classical extreme value theory for an analysis of the most critical vulnerabilities and, fi-

nally, extreme value theory but in an aspect of avoiding estimating distribution functions

and using relevant statistics for the creation of models.



Chapter 3

Modelling through Point Processes

Among the approaches chosen, one starts with point processes. These processes are nat-

urally applied in these situations because the vulnerability record can be represented in a

timeline. The theory of point processes will be introduced, followed by some more popu-

lar models that best fit the described context. For this, [17] and [30] will be used as a basis,

also using references to [9].

3.1 Point Processes

There are several ways to define point processes, whether informal, historical or detailed

using measure0. theory. To avoid going too deeply into concepts of measure theory , all

proofs and technical definitions will be referred to chapter 9 of [17] and to [7] .

To define point processes with some rigor, let’s start by defining a space Ω with a σ-

Borel algebra B and B0 the class of bounded Borel sets. Being N the σ-algebra defined

by:

N = σ(
{

x ∈ N : n(xB) = m
}

: B ∈ B0, m ∈N0) (3.1)

then we can define a point process by 3.1.

Definition 3.1. A point process X defined on Ω is a measurable mapping defined on some

probability space (Ω,B,P) and taking values in (N,N ). The distribution PX of X is given

by PX(B) = P(
{

ω ∈ Ω : X(ω) ∈ B
}
) for B ∈ N . We shall sometimes identify X and PX

both as a point process.

13
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A definition that will be useful later is the measure µ. A measure µ(A) of a set A ⊆ Ω

can be expressed in the equation µ(A) =
∫

B ρ(ξ)dξ, where ρ is the intensity function of

the point process.

This mathematical basis allows the elaboration of point processes with several proper-

ties necessary for the construction of effective models. One of the simplest but fundamen-

tal processes as it serves as a base for the generalization to other processes is the Poisson

point process.

3.2 Poisson point processes

The definition of the Poisson point process can be done using different tools. For this

work it is only necessary an intuitive but rigorous vision to understand the fundamental

properties of this process. We will closely follow the approach taken by [9]. Let’s consider

a counting process where we wait Xn for the nth event to occur, where Xn is a random

variable in a probability space where there are no overlapping events. So we can define a

strictly increasing quantity Sn = X1 + .. + Xn that indicates the time of occurrence of an

nth event. If a finite number of events occur in finite time intervals, we can say that:

0 = S0(ω) < S1(ω) < ... , sup
n

Sn(ω) = ∞ (3.2)

or equivalently ,

X1(ω) < X2(ω) < ..., ∑
n

Xn(ω) = ∞ (3.3)

If conditions are met for each ω, these conditions will be called condition 0. Note that we

no longer impose restrictions on the variables Xn, whether they are identically distributed

or independent.

Another quantity that is also important is the number of Nt events that occur up to

time t defined as:

Nt = max[n : Sn ≤ t] (3.4)

It is possible to interconnect the quantities through the expression:

[Nt ≥ n] = [Sn ≤ t] (3.5)

From which it is deduce that

[Nt = n] = [Sn ≤ t < Sn+1] (3.6)
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This particular equation is important for other developments of theories such as in the

area of dynamical systems . If we assume the zero condition, it is possible to show that it

is equivalent to assume the independence of exponentially distributed variables Xn with

parameter α and that the increments are independent and follow a Poisson distribution:

P[Nt − Ns = n] = e−α(t−s)) (α(t− s))n

n!
(3.7)

where s < t. In fact, we can enumerate a relevant theorem to this study:

Theorem 3.2. If condition zero holds and [Nt : t ≥ 0] has independent increments and no fixed

discontinuities, then each increment has a Poisson distribution.

This condition is important because the zero condition and the independence of in-

crements are sufficient for the increments to follow a Poisson distribution. It should be

noted that the increments following a Poisson distribution is not enough to formalize the

process, that is, the finite-dimensional distribution only defines part of a process. It is

necessary to define paths (equivalent to setting ω and varying t of the function Nt(ω))

to completely define the process. These paths were defined by the zero condition, hence

their importance for the process construction.

3.3 Marked point process

A possible generalization for a Poisson process [30] defined in space S is to associate to

each point of the Poisson process a random variable, called mark m, defined in space

M. Thus, the new process is defined in S∗ = {(X, m); X ⊆ S} in the space S × M. In

the specific case where the m marks belong to a space M = {1, 2, ..., N}, we call it a

multi-type Poisson process, a specific type of marked Poisson process. Although this

generalization is not complex, it allows introducing more variety to the process as marks

can be correlated with their locations or with each other. In addition, marks are able to

carry information about the locations xi that would not be possible otherwise.

The correlation between marks and location is an important factor in creating a process

that correctly reflects reality. In this sense, it is possible to present two types of marks:

1. Independent Marks: N has independent marks if the marks {mi} are mutually

independent random variables such that their distribution only depends on their

locations xi.
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2. Unpredictable Marks : N has unpredictable marks if the distribution of marks mi is

independent of location and other marks.

It is important to note that, in the construction of the marked Poisson process, the impor-

tance of respecting the restrictions of the base Poisson process, specifically independence.

This generalization would not be valid if these conditions do not hold.

3.4 Intensity estimation

A common method for estimating the intensity of a process through its points is through

likelihood maximization (MLE), ie, it seeks to maximize the likelihood function (or its

logarithm) of a process. For a non-homogeneous Poisson process with intensity λθ(x),

where θ is the parameter to be estimated, the logarithm function of the likelihood, up to a

constant, represented in 3.8:

log(Lθ) =
n

∑
i=1

log(λθ(xi))−
∫

W
λθ(u)du (3.8)

where W is the window where the data is. Despite the generality of this function, not

knowing the explicit relationship between intensity λθ(x) and the parameter θ, numerical

maximization may not behave correctly as well as there may exist several maximums. To

combat this problem it is usual to assume a loglinear relationship [7]between the intensity

and the θ parameter, especially in spatial or health problems.

In the Marked Poisson case we can divide the marked point process Y into sub pro-

cesses X(1), ..., X(M) where each sub process X(m) corresponds to the behavior of the m =

1, ..., M mark. For parameter estimation it is possible to adapt the expression 3.8 to the

marked process y =
{
(u1, m1), ..., (un, mn)

}
, getting the expression 3.9, up to a constant:

log(Lθ) =
n

∑
i=1

log(λθ(ui, mi))− ∑
m∈M

∫
W

λθ(u, m)du (3.9)

3.5 Model diagnostics

In order to understand the adequacy of the models for the behavior exhibited by the data,

several techniques, tests and metrics are used to evaluate the quantitative and graphic

evaluation of the models’ goodness of fit. In this dissertation, in addition to its applica-

tions, each technique will be described and the conditions of use will be identified.
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3.5.1 Probability plots

While quantitative diagnostic tests are more specific, graphical tests allow to visualize

how and where data is being best modeled. The graphical methods used in this disser-

tation are the quantile plots (QQ-plot). If we order the observations of a sample of the

uniform distribution in the form U(1) < ... < U(n), then we have that [40]:

E(Xj) =
j

n + 1
(3.10)

With this information, considering the sample X(n) from a distribution F, we can repre-

sent the ordered statistic X(k) against F−1( k
n+1 ), where we should get a direct proportional

relationship, independent of F.In fact, F−1( k
n+1 ) is actually the quantile k

n+1 of the F func-

tion, which can then be represented in a QQ-plot quantile graph.

3.5.2 Chi-square test

The Chi-square test is a test widely used in its application as a measure of the success

of model adjustment [40]. Its formalism in the application of point Poisson processes

consists in testing the null hypothesis that the intensity is of the form λθ(t) for certain

values of θ. For this, the space is divided into equal Bj quadrants with nj points in each

of these spaces. These points will be realizations of the Poisson process with average µj.

This average can be estimated using the estimated intensity of the model:

µ̂j =
∫

Bj

λ̂θ(t)dt (3.11)

Then we can calculate the test statistic:

X2 = ∑
j

(observed− expected)2

expected
= ∑

j

(nj − µ̂j)
2

µ̂j
(3.12)

Associating the statistic X2 with the distribution χ2 with m− p degrees of freedom, where

m is the number of quadrants and p the number of parameters in the model. The null hy-

pothesis H0 proposes that the model adequately fits the data, implying that the number

of points in each quadrant should be close to the expected number. Although the division

of the quadrants may be arbitrary, it is empirically recommended that there is no data cell

containing less than 5 observations, as this may impact the value of the statistic. Equiv-

alently, it is possible to calculate a p-value for the statistic, which is then compared with

the previously imposed level of confidence.
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3.5.3 Anderson-Darling test

The Anderson-Darling test is a non parametric test that was originally developed to mea-

sure the deviation of a sample from normality. This test is usually considered as an

alternative to the Kolmogorov-Smirnoff test, however different studies [19] show that

Anderson-Darling is more sensitive and stable for samples with different tail behaviors.

Darling and Pettit [6] generalized the test to compare two samples {X1, ..., Xn} and {Y1, .., Ym}

that come from distributions F and G, with empirical distribution function Fn and Gm, re-

spectively. The null hypothesis of the test becomes that the distributions F and G are

identical, thus obtaining the equation 3.13 :

AD =
nm
N

∫ ∞

−∞

{
Fn(x)− Gm(x)

}2

HN(x)
{

1− HN(x)
}dHN(x) (3.13)

where N = n+m and HN(x) is the distribution function of the combined samples HN(x) ={
nFn(x) + mGm(x)

}
/N. It is possible to simplify the expression 3.13 to the form 3.14:

AD =
1

mn

n+m

∑
i=1

(NiZ(n+m−ni))
2 1

iZ(n+m−i)
(3.14)

where Z(n+m) represents the ordered statistic of combined sample of the initial samples

{X1, ..., Xn} and{Y1, .., Ym} of size n and m, respectively. Furthermore Ni represents the

number of observations of Xn that are less than or equal to the ith observation of Z(n+m).

If the calculated statistic is greater than the critical value, defined in [6] and dependent

on the significance level α, then the null hypothesis that the two distributions are equal is

rejected. This is going to be one of the main statistics to be used to compare samples from

the model and the data.

3.5.4 Wald test

Even if an intensity is estimated, it is necessary to understand if the parameters that com-

pose it are relevant to the construction of the model. In this way we can submit the pa-

rameters to Wald’s tests. This test has the null hypothesis that each individual parameter

ϕ is zero, that is, we are testing whether this parameter is statistically different from zero.

The statistic of this model can be represented in the form:

√
W = z =

ϕ̂

se(ϕ̂)
(3.15)
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where se(ϕ̂) is the standard deviation calculated using MLE. This test is also called the Z

test because the statistic usually follows a normal distribution asymptotically. When the

statistic is greater than the critical value established by the confidence level 1− α, we can

then reject the null hypothesis, thus stating that the parameter ϕ is non-zero statistically.

3.5.5 Implementation

Regarding data analysis, the data will be modeled according to a simple (non-homogeneous)

Poisson process and a marked Poisson process, where the marks will be the score associ-

ated with each vulnerability. Previous studies [42] point to different behaviors depending

on the severity recorded, suggesting the best performance of the marked Poisson model.

Before the modeling itself, it is necessary to verify to what extent the data follows the

necessary requirements of the applied models. For this, it will be checked if there are

records of simultaneous vulnerabilities as well as the independence of the inter arrival

times. If there are simultaneous records of vulnerabilities, a possible approach would be

to consider these overlaps as clusters and consider a cluster or cox process, but this will

not be explored in this work (although a solution to the clustering problem is found using

another perspective proposed in chapter 4).If this problem exists, the model is reformu-

lated to model the days when vulnerabilities occurred not the individuals instances of

vulnerabilities, solving the overlapping problem. As there may be days where vulnera-

bilities of different severity are recorded, the points are shifted from their original position

by an insignificant amount (about 0.001 of a day). On the other hand, the independence

of the inter arrival times is not possible to solve without changing the nature of the data,

therefore the only thing that can be done is to simply model the dependence and discard

the Poisson models.

After verifying that the data follow the requirements, the intensities are estimated us-

ing the MLE method and all parameters are submitted to the Wald test at 5% significance

level. The parameters accepted in the models are those that are statistically different from

zero. As observed in the 3.4 intensities estimation chapter, the choice of the observation

window is a crucial factor for a correct estimation, because in addition to using informa-

tion from where there are points, it also uses where they are not. For that, the chosen

window must have as little non-relevant space as possible. One of the ways to guarantee

this condition is for the window to have the same dimension as the data plus one day in

the time component (x), the choice of dimension y is not relevant in this particular study.
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A particularity of stochastic models like the ones presented is the variability that exists in

the creation of a model instance, that is, simulating a model with the same intensity pa-

rameters results in different realizations. Therefore, all diagnostic tests applied to a model

will be slightly different due to different realizations being performed.

The software used for data modeling was the R [37], using the packages mentioned in

[44], [48], [24], [47], [39], [18] and [8]. In particular, the most used package in this section

was spatstat [8].

3.6 Statistical Analysis

3.6.1 Investigating Android Data

The first step to be considered is studying the independence of the inter arrival times. This

is equivalent to analyzing the dependence for the differentiated data,ie the differences

between data points, verifying with the graphs of ACF (autocorrelation fuction) and PACF

(partial autocorrelation function) represented in the figures 3.1a and 3.1b, respectively. As

(A) ACF plot (B) PACF plot

FIGURE 3.1: Correlation plots

seen in the 3.1 plot, there are some dependency peaks for certain lags in both graphs,

but they are not in significant numbers to talk about a dependency relationship between

arrival times. Thus, we can assume that the data respect the conditions required by the

models.

Under these conditions, the intensities were estimated for the simple Poisson model,

marked Poisson model and non-linear marked Poisson model. Graphical comparisons

such as QQ-plot comparisons are represented in B. Statistical tests are represented in table

3.1.



3. MODELLING THROUGH POINT PROCESSES 21

Table of test statistics (p-value)
Model Chi-

Squared
A.D - Criti-
cal

A.D - High A.D -
Medium

A.D - Low

Simple 2.2e-16 0.06073 0.2383 0.4209 0.04967
Marked 2.2e-16 0.1487 0.3456 0.2257 0.2702
Non-
linear
Marked

2.2e-16 0.5272 0.4572 0.413 0.5093

TABLE 3.1: Table of test statistics

The output of the simple Poisson model is reproduced in the figure 3.2, and the equa-

tion 3.16 can be constructed based on these parameters:

FIGURE 3.2: Output of the simple Poisson model

λ̂s = exp(−11.76 + 4.1372 · 10−4t) (3.16)

where λ̂s is the intensity of the simple Poisson model and t is the number of days since

the first vulnerability recorded. Although the model is non- homogeneous, the value of

the time-dependent component is an order of magnitude smaller than the independent

component, leading to an almost homogeneous intensity. As a simple Poisson model, it is

assumed that the behavior is the same for all severities, with no distinction between them.

For model diagnoses, the p-values of the Anderson-Darling test are close to the threshold

established by the significance level. It should be noted that there are orders of magnitude

differences between the different severities.

Adding the formalism of marks to the simple Poisson model, we obtain the output in

the figure 3.3, being able to represent the model in the equation 3.17:

FIGURE 3.3: Output of the marked Poisson model
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λ̂s = exp(−11.41− 1.4778Ml− 0.14226Mm− 2.488 · 10−5t+ 1.003 · 10−3Mlt+ 4.749 · 10−4Mmt)

(3.17)

where Ml and Mm is an indicator function that is one when the observed severity is low

and medium, respectively. It should be noted that the terms t and Mm are not significant,

but the interaction between them is, so they will be necessary for the construction of a

coherent model. This model has critical severity as a benchmark, that is, the model is

based on observations with critical severity and estimates the difference in behavior for

the other severities. This is relevant because, for example, the term that corresponds to

the differences between critical and high severities is not significant, that is, the Wald test

does not reject the hypothesis that this term is different from zero. This means that there

is no significant evidence for different behaviors between critical and high severities. The

marks in this model are independent as they depend on the temporal quantity.

When we talk about statistical tests, there is an improvement over the previous model.

In addition the marked model obtained more uniform statistics for the various categories,

on average, closer to 1 than the simple model.

The evolution of data does not simply follow a linear trend, more particularly when

there are global advances in understanding and detecting vulnerabilities. This can be

incorporated, for example, by adding a non-linear component t2. The output of the non-

linear marked Poisson model is represented in the figure 3.4, building from this the equa-

tion 3.18:

FIGURE 3.4: Output of the non-linear marked Poisson model

λ̂s = exp(−11.96− 1.800Ml − 0.2823Mm − 0.2727Mh + 1.3960 · 10−3t− 6.3567 · 10−7t2+

1.248 · 10−3Mlt + 5.905 · 10−4Mmt + 5.0057 · 10−4Mht) (3.18)
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In this model, the indicator functions Ml and Mh are not significant, but they were added

because their interactions with time are significant. There is an order of magnitude dis-

parity between parameters where the time component is used because t is measured in

days. The marks in this model, like the previous one, are independent. Regarding the sta-

tistical tests, this model is the one that shows the best results, obtaining values close to 0.5

in the Anderson-Darling test. This indicates that there is more difficulty in distinguishing

the non-linear marked Poisson model from data than the rest.

Comparing the different graphical diagnoses presented in B for the three proposed

models, they corroborate the quantitative statistics. More specifically, the QQ-plots of the

marked non-linear model are much closer to the bisector of the odd quadrants than the

other models, with the simple model being the one that departs the most, especially in

the tails of the distributions.

3.6.2 Results

Poisson models are simple statistical models that allow to represent counting events quite

accurately. In this context, we apply three types of progressively more complex Pois-

son models: a simple model, a marked model and yet another marked non-linear model.

After verifying that the data can be assumed to satisfies the model constraints, the inten-

sities for the different models were estimated. Both graphical and quantitative diagnoses

suggest that the marked non-linear model is better suited to model these data.





Chapter 4

Modelling through Classic Extreme

Value Theory

Although it is possible to model the data as a whole, there are cases in which it will be

more interesting to analyze subsections of it. More specifically, in our particular case, there

is an intrinsic interest in the study and modeling of days when an abnormal number of

vulnerabilities are observed or when a vulnerability with critical impacts for the entity is

recorded. Generally, this type of observations may not follow the distribution of the other

data, thus requiring special treatment. In this way, we will apply extreme value theory

in this section. First, the extreme value theory in the context of independent variables

will be introduced. Next, the adaptation of the theory to stationary series and correlated

data will be presented as well as the models built on this basis. The theory section closely

follows [12] and [33], while the modeling part follows [28].

4.1 Extreme value theory (EVT) for independent variables

The extreme value theory is based on the study of asymptotic distributions of maxima

and/or minima of a set of observations. This statistic, formally defined as Mn, can be

written as:

Mn = max(X1, X2, ..., Xn) (4.1)

where Xn are random variables iid following an F distribution. The distribution of this

statistic can be derived for all n:

P {Mn ≤ z} = Pr {X1 ≤ z, X2 ≤ z, ..., Xn ≤ z} = Fn(z) (4.2)

25
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where we intend to study this distribution when n 7→ ∞. Normally, to avoid degeneracies,

the distribution of the normalized statistic M∗n = Mn−bn
an

is studied, where the appropriate

choice of an and bn will stabilize this statistic at the desired threshold.

One of the most important results in this theory was introduced by [22] and generally

proved by [25] where it is shown that when there is convergence of the distribution of the

statistic M∗n, it will be for one of the families of generalized extreme values (GEV). More

formally, the theorem can be written as:

Theorem 4.1 (Theorem of Generalized Extreme value distribution). If there is a set of con-

stants {an > 0} and {bn} such that

P
{

Mn − bn

an
≤ z

}
→ G(z) (4.3)

when n → ∞ for a non-degenerative distribution function G, then G is a member of the GEV

family,

G(z) = exp


[

1 + ξ(
z− µ

σ
)

]− 1
ξ

 (4.4)

defined on
{

z : 1 + ξ( z−µ
σ ) > 0

}
where −∞ < µ < ∞, σ > 0 and −∞ < ξ < ∞

This model has three parameters: a location parameter µ, a scale parameter σ and a

shape parameter ξ. The three families, known as those of Gumbel, Fréchet and Weibull,

are specific cases of values for these parameters, more specifically they correspond to

the cases ξ = 0, ξ > 0 and ξ < 0, respectively. The estimation of parameters, through

maximum likelihood for example, allows to know which family and tail behavior best

adapts to the data. It should be noted that the estimation of the sets of constants an and

bn is not relevant because, for large n, G( z−bn
an

) = G∗(z), that is, if the convergence is

verified for the statistic M∗n, then it also exists for Mn only with different parameters of

location and scale, making the problem practically the same when it comes to parameter

estimation.

An intuitive way to create a model would be to simply group the data into sequences

with n observations and choose only their maximum Mn. To estimate the extreme quan-

tiles, it would be enough to invert the equation 4.4:

zp =

µ− σ
ξ [1−

{
−log(1− p)

}−ξ
],

µ− σ log
{
−log(1− p)

}
,

f or ξ ̸= 0,

f or ξ = 0,
(4.5)
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where G(zp) = 1 − p. Usually zp is designated as the return level associated with the

return period 1/p , that is, the level zp is expected to be exceeded, on average, once for

every 1/p time levels. Return times are of particular importance in this dissertation and

will be discussed in more detail in the chapter 5.

4.1.1 Convergence analysis

The study of extreme values is only possible if the probability distribution convergence

P
{

Mn−bn
an
≤ z

}
= P {Mn ≤ un}, where un = z · an + bn is verified. Thus, it will be inter-

esting to study under what conditions this occurs. An essential theorem for the study of

convergence, especially in the dependence situation, can be summarized in the theorem

4.2:

Theorem 4.2. Let {X1, X2, ..., Xn} be random iid variavels with a commum distribution function

F. Chossing −∞ < τ < ∞ and let {un} be a sequence of number such that :

n(1− F(un))→ τ as n→ ∞ (4.6)

then

P {Mn ≤ un} → e−τ as n→ ∞ (4.7)

Using the notation xF = sup
{

x; F(x) < 1
}

, we can deduce a corollary of the theorem

4.2

Corollary 4.3. • Mn → xF (≤ ∞) with probability one as n→ ∞

• If xF < ∞ and F(xF−) < 1 and if for a sequence {un}, P {Mn ≤ un} → ρ as n → ∞,

then ρ = 1 or 0

With this theorem and corollary we can see that bounded and discrete distributions

will not satisfy the above conditions, converging to a degenerate function. This is why

GEVs cannot be applied directly to our discrete data and other methods will be explored

in the section 5. However, other more complex formulations of the extreme value theory

may be useful.
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4.2 EVT for dependent variables

Although the classical extreme value theory encompasses many real and interesting cases,

the fact that the variables are iid is a very strong assumption for temporal data. In this

way, the incorporation of some kind of data dependency will be necessary for the creation

of more realistic models. It is possible to build this theory in more detail, but for reasons

of brevity, more technical details can be consulted in [33].

4.2.1 Maximum stationary series

Although there are numerous ways to incorporate dependency into the data, one of the

most popular and simple ways will be to create a stationary process, that is, a process in

which the marginal distribution of observations does not vary with time and for which

the observations become almost independent the farther apart they are. This can be rep-

resented by the condition D(un), formalized in the definition 4.4 :

Definition 4.4. A stationary series X1, X2, ...Xn is said to satisfy the D(un) condition if, for

all i1 < ... < ip < j1 with ji − jp > l

∣∣∣Pr
{

Xi1 ≤ un, ..., Xip ≤ un, Xj1 ≤ un, ..., Xjq ≤ un

}
−

Pr
{

Xi1 ≤ un, ..., Xip ≤ un

}
Pr

{
Xj1 ≤ un, ..., Xjq ≤ un

}
≤ α(n, l) (4.8)

where α(n, l)→ 0 for some sequence ln such that ln/n→ 0 as n→ 0.

With this condition, we have a theorem similar to the theorem of the generalized dis-

tribution of extreme values for stationary series:

Theorem 4.5. Let {Xn} be a stationary sequence and {an} and {bn} given constants such that

P
{

Mn−bn
an
≤ z

}
converges to a non-degenerate distribution function G(z). Suppose that D(un)

is satisfied for un = z/an + bn for which real z. Then G(z) is part of the GEV family presented in

theorem 4.4

As the only difference between the theorem 4.5 and 4.1 is the condition D(un), it will

be interesting to investigate the relationship between a sequence of idd variables with

maximums Mn and a stationary process with the same marginal distribution with maxima

M∗n. Based on the theorem 4.2, it is possible to prove the theorem 4.6 :

Theorem 4.6. Let {X∗n} be a stationary process and {Xn} random iid variables with the same

marginal distribution. Defining Mn = max {Xn} and M∗n = max {X∗n}. Under conditions of
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convergence, i.e ,satisfying condition D(un)

P
{

Mn − bn

an
≤ z

}
→ G2(z) (4.9)

as n → ∞ for normalizing sequences {an > 0} and {bn} where G2 is a non-generate function if

and only if

P
{

M∗n − bn

an
≤ z

}
→ G1(z) (4.10)

where G2(z) = Gθ
1(z) for a constant θ such that 0 < θ ≤ 1.

This theorem implies that, if the dependent series converges, it is related to the limit

distribution of the independent series through the parameter θ, normally called extreme

index. Substituting the explicit expression 4.4 in the theorem 4.6, we verify that the func-

tion G1(ξ, µ, σ) differs from the function G2(ξ, µ∗, σ∗) only in the location and scale pa-

rameters, where µ∗ = µ− σ
ξ (1− θ−ξ) and σ∗ = σθξ . In fact, the introduction of depen-

dency between the data does not change the behavior of the tail of the distribution, it

simply introduces the formation of clusters. Another useful way of thinking about the

extremal index is to define it as θ =
{

limiting mean cluster size
}−1, that is, the extreme

index is the inverse of the average size of observed clusters. Consequently, the estimation

of this parameter may indicate whether the stationary series tends to form clusters at high

thresholds, which is relevant for the correct modeling of the data.

4.2.2 Convergence analysis

As in the iid case, the convergence analysis of the distributions is essential to verify under

which conditions we can apply the previously announced theorems. To maintain the

condition given in the 4.2 theorem, it is necessary to add a new constraint to maintain the

upper bound of the limit:

Definition 4.7. The condition D′(un) wil be said to hold for the stationary sequence {Xn}

and sequence {un} of constants if

lim
n→∞

sup n
[n/k]

∑
j=2

P
{

X1 > un, Xj > un

}
→ 0 as k→ ∞ (4.11)

where [] denotes the integer part

This new constraint ensures that there will not be multiple observations in a point

process of exceedances, a necessary condition for the construction of models such as the

Poisson process.
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4.3 Modelling using stationary series

Based on the theory and theorems of extreme value theory, it is possible to build several

models that offer different perspectives on how to treat observations. In this way, we will

explore three models: the block maximum model, the peak over threshold model and the

peak over threshold models through the lens of point processes.

4.3.1 Block Maximum model

The most intentional model based on the GEV theory will be the block maxima model.

This model consists of dividing the data into blocks of equal length and modeling the

maximums of these blocks with the GEV distributions. Choosing m blocks of size n is

crucial for a good model. In general, choosing a large n will lead to a better approximation

of the GEV distribution and little bias in the estimation of parameters, while a high m

brings more data to the estimation, leading to a smaller variance in the estimation of the

parameters. As previously seen in the theory, there is no difference in the GEV family

between the iid and dependent case, leading only to different estimations of the location

and scale parameters. However, the convergence rate for the GEV distribution is smaller

in the dependent case, nθ, than in the iid case, n, leading to a less accurate approximation.

4.3.2 Peak over threshold - POT model

Despite its simple conditions, the block maxima model condenses the observations into

their maxima, rendering the rest of the observations unusable, if they exist. To combat

this problem and use all available observations, another approach requiring the use of

thresholds can be used. Let’s start by analyzing the iid model and then generalize to

stationary series.

4.3.2.1 Iid case

Similar to GEV theory, we define a set {Xn} of iid variables with a common marginal dis-

tribution F. Choosing an arbitrary high threshold u and its exceedance y, we can describe

the stochastic behavior of extreme events in the conditional form:

P
{

X > u + y|X > u
}
=

1− F(u + y)
1− F(u)

, y > 0 (4.12)
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Taking advantage of the result given by the theorem 4.4, we can apply the conditional to

obtain the theorem 4.8

Theorem 4.8. According to the theorem 4.4, where for some large n P {Mn < z} ≈ G(z) where

G(z) is a member of the familiy GEV given by 4.4. Then, for large enough u, the distribution

function of (X− u), conditional on X > u is:

P
{

X ≤ u + y|X > u
}
≈ H(y) = 1− (1 +

ξy
σ + ξ(u− µ)

)−1/ξ (4.13)

defined on
{

y : y > 0 and 1 + ξy
σ+ξ(u−µ)

> 0
}

The family of functions given by the equation 4.13 is called Generalized Pareto Dis-

tributions (GPD). By the theorem 4.8 we can assume that if the maximums per blocks are

approximated by the GEV, then the threshold exceedances followed a GPD. Furthermore,

the GPD parameters are uniquely determined by the GEV, especially the tail parameter

ξ, which is the same for both distributions. The difference lies in the variability of the

parameters: a choice of block sizes n will change the parameters of the GEV, but not those

of the GPD, since ξ is invariant to the block size and the scale and location parameters

will offset each other .

4.3.2.2 Dependent case

As seen in the theory in 4.2, the difference between the iid and dependent case is in the

tendency of excess clusters when we introduce an extremal index θ < 1. This suggests

changes in the modeling of the GPD, as it needs the excesses to be independent. One of

the most used methods to get around the problem is Declustering. This method consists

of defining clusters of exceedances and identifying their maximums. So we can assume

that these will be independent, being able to model with the GPD. This method has its

limitations, namely being quite dependent on the criterion of cluster formation and the

loss of information in only considering the maximums of the clusters.

4.4 POT model - Point process perspective

Another different way of looking at modeling is to consider threshold exceedances as an

event in time and use a point process for modeling the occurrence of these events. The

basic theory of point processes has already been described in the chapter 3, so it will be
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introduced promptly. The point peak over threshold (POT) model can be summarized by

the theorem

Theorem 4.9. Let {Xn} be a set of iid random variavels for which there are sequences of constants

{an > 0} and {bn} such that

P
{

Mn − bn

an
≤ z

}
→ G(z) (4.14)

where

G(z) = exp


[

1 + ξ(
z− µ

σ
)

]− 1
ξ

 (4.15)

and let z− and z+ be the lower and upper endpoints of G, respectively. Then, the sequence of point

processes defined in R2

Nn =
{
(i/(n + 1), (Xi − bn)/an) : i = 1, ..., n

}
(4.16)

converges on regions A of the form (0, 1) × [u, ∞) for any u > z−, to a Poisson process with

intensity meausre on (t1, t2)× [z, z+) given by

Λ(A) = (t2 − t1)[1 + ξ(
z− µ

σ
)]−1/ξ (4.17)

The proof of this theorem can be seen in detail in [33] or more briefly in [12]. It is

important to note that the great advantage of this model lies in the independence of the

process parameters with the chosen threshold. This offers stability and flexibility to the

model that was not offered in previous models. In fact, it is possible to prove that the

block maxima and threshold exceedance model can be enclosed in the POT model, show-

ing its generality. The block maxima model is the particular case where Nn(Az) = 0 and

the threshold exceedance model is the conditional construction of the POT model. Al-

though the model is general, there are still assumptions in its construction that have to

be respected in order to ensure that it is a good choice for modeling real data. These

assumptions can be summarized in the following items:

1. The exceedances time follows a homogeneous Poisson process

2. Exceedances are idd and are independent of the time of exceedance

3. Exceedances follow a generalized Pareto distribution

Although this model is successful in several situations, the correlations that exist be-

tween points break the prepositions of the model. In this way, the POT model cannot be
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applied directly in our case. A possible solution is to decluster the series, as suggested in

the threshold excess model. The creation of clusters is a ad-hoc, depending on the condi-

tions of the series itself. In this work we will follow the ”runs” method. In this method,

the cluster is started with the first observation that exceeds the pre-established threshold.

The cluster is terminated only at the next occurrence of the threshold exceedance, except

when the distance between exceedances is smaller than a pre-set distance r.

4.5 Parameter estimation

The estimation of model parameters is an essential step in the modeling process itself.

Even if the model is adequate, the incorrect estimation of the parameters can mean the

failure of a particular model. In this way, the choice of the estimation method is as or

more important than the choice of the model itself. In the classical extreme value theory

there are several methods for estimation, each with its advantages and disadvantages.

In this work, the maximum likelihood method will be used. Although this method is

quite popular, there are specific limitations for GEV families since the cut-off points of the

distributions depend on its parameters. Thus, in [12] concludes that:

1. When the shape parameter ξ > −0.5, the maximum likelihood estimator is regular

2. When the shape parameter −1 < ξ < −0.5, the maximum likelihood estimator is

obtainable, but may not have regular properties

3. When the shape parameter ξ < −1, the maximum likelihood estimator is probably

not obtainable

With these restrictions in mind, the maximum likelihood logarithm function, for GEV

families with ξ ̸= 0 with a sample z1, ..., zm, is expressed in the equation 4.18

l(µ, σ, ξ) = −mlog(σ)− (1 + 1/ξ)
m

∑
i=1

log[1 + ξ(
zi − µ

σ
)]−

m

∑
i=1

[1 + ξ(
zi − µ

σ
)]−1/ξ (4.18)

and for ξ = 0,

l(µ, σ) = −mlog(σ)−
m

∑
i=1

(
zi − µ

σ
)−

m

∑
i=1

exp
{
−( zi − µ

σ
)

}
(4.19)
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For models that require GP, such as the POT model, the sampled logarithmic function{
y1, ..., yk

}
of k exceeds a threshold u will be expressed in the form 4.20:

l(σ, ξ) = −klog(σ)− (1 + 1/ξ)
k

∑
i=1

log(1 +
yiξ

σ
) (4.20)

or,

l(σ, ξ) = −klog(σ)− (σ−1)
k

∑
i=1

log(yi) (4.21)

where ξ ̸= 0 and ξ = 0, respectively

4.6 Modeling the Android data

In this work, the POT model will be used since it encapsulates all the other models previ-

ously explored. The first step in building the POT model is choosing a suitable threshold.

In the case study, due to the classification presented above, the limits are already pre-

defined. As the modulation of the most impacting cases are the ones of greatest interest,

the initial threshold chosen is 9 on the 0-10 scale of the vulnerability score, that is, the

most critical vulnerabilities.An extremal index estimated was 0.2764, indicating that there

is a cluster process in this data. After applying the ”runs” method of declustering to the

series of vulnerabilities, we chose only the maximum of these clusters of observations,

obtaining 88 extreme points. The clusters, represented by black bars, are represented in

the figure. 4.1

The objective of this declustering would be to break the dependencies that exist in

the occurrence of vulnerability clusters to obtain a homogeneous Poisson process with

the maximum of each cluster. This can be confirmed by looking at the figure 4.2, where

both ACF and PACF show no correlation between interarrival periods. This makes it

possible to apply the Poisson model to the time of exceedances. Similar to the chapter 3,

we can estimate the intensity of the model and verify its adequacy through graphic and

quantitative diagnoses.

Both diagnostic graphs 4.3 and 4.4 present a satisfactory model, with the Anderson-

Darling test obtaining a p-value of 0.34, thus corroborating the visual results.

To complete the POT modelling, it is still necessary to model the exceedances them-

selves. There is, however, the problem that the information about the exceedances, that

is, the severity, is represented on a limited scale bounded by the value 10. This will natu-

rally lead to unexpected behavior for values of severity at the upper end, precisely where
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FIGURE 4.1: Clusters graphic representation. The clusters are defined by each grey rect-
angle

(A) ACF plot (B) PACF plot

FIGURE 4.2: Correlation plots

the observations of interest are located. If we try to model a GPD on these excesses, we

get meaningless results. The most plausible alternative would be to replace the severity

with a quantity that is directly correlated but not bounded. One of these quantities could

be the potential losses to the entity if the vulnerability were exploited. This information

was public information until the mid-2010s, where, with the growing importance of sys-

tems security, it became confidential information. Without these data it is impossible to

complete the POT model satisfactorily.
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FIGURE 4.3: Comparation between the model and observed data

FIGURE 4.4: QQ-plot between the model and obversed data

4.7 Results

In this chapter, the classical extreme value theory was introduced, as well as adaptations

for the introduction of dependence. The POT model is introduced as a possible gen-

eralization of other models as well as its restrictions. To satisfy the model conditions, a

declustering process is performed for the exceedances. The time of exceedances is success-

fully modeled using a Poisson model, supported by graphical and quantitative diagnostic

tests. Exceedances are not possible to be modeled by a GPD as they have an associated
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upper bound. This creates unexpected behavior in modeling the extreme value function.

One way of circumventing the problem itself is to not estimate the distribution function

directly but other important statistics that are associated with it. This will be done in the

next section.





Chapter 5

Modelling through EVT for discrete

data

5.1 Introduction

Another possible perspective on the problem is to avoid estimating the distribution of

the F data and to use other adequate statistics in order to obtain the desired information.

One of these statistics, commonly used in the extreme values approach, is the return level.

Return level, which was introduced in the section 4 is a relevant statistics when we want

to know tail behaviors such as rare or extreme events, important for various sectors such

as risk analysis, flood studies or epidemiological studies. More specifically, the return

level seeks to answer the question of what is the threshold zt, associated with a set of

variables (X1, .., Xt) with marginal distribution F, where we expect to see a value greater

than zt occurred in t times, corresponding to solving the equation 5.1:

E(
t

∑
i=1

1(Xt > zt)) = 1 (5.1)

Since the variables iid have a marginal distribution F, we can rewrite the equation 5.1 in

the 5.2 :

F(zt) = 1− 1
t

(5.2)

Thus, we can see that the threshold zt is just a quantile p with p = 1− 1
t

In the context of extreme value theory, the return level is a well documented and per-

ceived measure, especially in the continuous case where large sample sizes are available.

There the asymptotic behavior of the tail can be modeled through a particular distribution

39
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on some parameters. In a GEV model, through the block maximum method, it is possible

to obtain an exact expression for return levels, thus obtaining a natural estimation through

the estimated parameters of the model:

ẑt = µ̂− σ̂

ξ̂
[1− (−log(1− 1/t))ξ̂ ] (5.3)

In the same way, we can use a threshold exceeding model (POT) to get a exact expression

of the return levels, estimating it naturally by using that equation 5.4:

ẑt = ẑ∗ +
σ̂ + ξ̂(ẑ∗ − µ)

ξ̂
[(t ˆ̄F(z∗))−ξ̂ − 1] (5.4)

using a GPD that fits the conditioned tail P(X > Z|X > z∗) choosing a fixed threshold z∗.

However, when dealing with discrete variables, as in our case, or with small sample sizes,

the assumptions for building models in EVT do not hold [33], forcing us to look for other

solutions. Fortunately it is possible to work around this problem not by estimating exactly

the return level zt, but an upper limit bt.Although this upper limit is not guaranteed to be

very close to the return level zt, in the context in which we present ourselves, this will not

be a problem because, even if the knowledge of the approximate number of vulnerabilities

at a given time is valuable information, a pessimistic view of this value is enough to make

informed decisions in order to mitigate the possible effects of vulnerabilities.

5.1.1 Estimation of the upper limit of return level

The following derivations closely follow [27]. The inequality that allows estimating the

upper bound is the Markov inequality written as follows:

F̄(z) ≤ E(h(X))

h(z)
(5.5)

where F̄(z) = 1− F(z), z > 0 and h a positive and increasing function in a latter sense.

The study of different candidates for the h function has been extensively applied, leading

to different bounds such as the Chernoff or moment bounds [27]. However, it is possible

to construct a function h that is simple and provides a better alternative than the afore-

mentioned bounds. Let h(z) = u(z)v(F(z)), where u and v represent non-negative and

non-decreasing functions defined on [0, ∞) and [0, 1], respectively. In the particular case

where u(x) = xα and v(x) = xβ, with integer α and β positive, we obtain the PWM (prob-

ability weight moments), introduced in [31]. Thus, we can rewrite the 5.6 equation in the
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form:

zt ≤ bt(u, v), bt(u, v) = u←[
tθ(u, v)

v(1− 1/t)
] (5.6)

where θ(u, v) = E(u(X)v(F(X))) and u← is the generalized inverse of u . The moment

θ(u, v) is the main parameter in this estimation, as it is the only one dependent on X, that

is, on the data. Some properties of this moment are important to be studied, especially

when it comes to convergence properties. This process is well documented in [27]. To

estimate the return level, it will be necessary to estimate θ(u, v) and choose the respective

functions u and v so that the estimate reaches the real value as close as possible. A simple

way to estimate θ(u, v) is through the equation 5.7:

1
n

n

∑
i=1

u(Xi)v(F(Xi)) (5.7)

But as we do not know the F distribution, we resort to an L statistic, that is, a linear

combination of order statistics, thus obtaining:

θ̂n(u, v) =
1
n

n

∑
i=1

u(Xi)v(
i
n
) (5.8)

In this way, choosing appropriate u and v, we can then estimate the return levels. The

family of these functions is only restricted to non-decreasing and positive functions, so

the possible choices are vast. As mentioned above, a simple but effective choice is to

choose u(x) = xα and v(x) = xβ, with α and β positive integers, making the momentum

estimation of the form::

θ̂n(α, β) =
1
n

n

∑
i=1

(Xi)
α(

i
n
)β (5.9)

and the upper bound estimation:

b̂t(α, β) = [
tθ̂(α, β)

(1− 1/t)β
]

1
α (5.10)

With the information of the upper limits of the return levels, it is possible to build a system

where we associate a return time to an observation and verify, in the future, if there is

a point that exceeds the initial observation within the return time. This is possible if we

assume independence (or low correlation) because we can say that E(∑T
i=1 1(Xi ≥ Xt0)) =

1 , that is, we only expect an observation greater than Xt during [t, t + bt] .
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5.1.2 Implementation

As described in the previous section and following [26], the alarm system can be summa-

rized in the following steps:

1. Estimate return times b̂t taking into account vulnerability records

2. Assign to each observation xt a return time b̂t

3. For each new observation xt0 , check if there are previous observations xt where t0 ≤

t + b̂t and sound the alarm if xt < xt0

It should be noted that, for the estimation of θ̂n and consequent b̂t, it is necessary to choose

the parameters α and β for each of the times considered. Naturally we want our upper

bound to be as small as possible, so we must numerically find:

(α̂, β̂) = argmin[b̂t(α, β) : α ∈ [ε, αmax], β ∈ [ε, βmax]] (5.11)

where ε is a value close to zero. The choice of αmax and βmax hugely influences the results

and is heavily dependent on data [10]. In this way, it will be important to focus first on

an adequate choice of these parameters to succeed in the correct estimation of the return

times and, therefore, of the alarm system as a whole.

These variables will be optimal when their increase does not change the behavior of

the return levels, that is, when there is stabilization of the process. This search process

can be done through a grid search, that is, an intensive search where we analyze all com-

binations of parameters within a pre-established limit. When increasing the parameters

does not bring changes to the return levels, then αmax and βmax will be the minimum of

the parameters where this phenomenon was observed.

The software used for data modeling was R core team [37], adapting the code provided

by [10].

5.2 Modeling Android data

For Android data, a grid search of values between one and ten was performed for each of

the parameters. At the beginning of the search, that is, in the 5.1a graph, the return levels

have a linear behavior, which is uncharacteristic behavior for this quantity. Increasing the

parameter βmax to 5 (graph 5.1b) did not significantly change the behavior. Alternatively,

when parameter αmax was increased to 5 (graph 5.1c), it revealed a logarithmic behavior,
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which is expected. There are no different results by increasing further the parameter βmax

or αmax from these values, which suggests that the process has stabilized. Thus, the values

of αmax and βmax 5 and 1, respectively, were chosen. Another factor that can be decisive

(A) αmax = 1 and βmax = 1 (B) αmax = 1 and βmax = 5

(C) αmax = 5 and βmax = 1 (D) αmax = 10 and βmax = 1

FIGURE 5.1: Grid search plots

for the good performance of the model is the grouping of the data. If no data aggregation

is done, we will have many consecutive days where few vulnerabilities are observed or

not observed at all, which can influence the alarm system in unwanted ways. On the

other hand, vulnerabilities with different impacts have different behaviors, which may

justify implementation for critical vulnerabilities only. In this way, the alarm system was

considered in four cases: all daily and weekly vulnerabilities, as well as only daily and

weekly critical vulnerabilities. It is possible to observe the estimated return levels for

the different data groupings (figure 5.2). All of these exhibit similar behaviors, just on

different scales. A possible interpretation of the graphs 5.2 would be, for example, is

expected to wait 500 days to observe approximated 180 vulnerabilities for daily, or wait

200 weeks to observe approximated 80 critical vulnerabilities for weekly data. Applying

the alarm system to the data described above we obtain the following results represented

in the figure 5.3:
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(A) Return levels for daily data (B) Return levels for critical daily data

(C) Return levels for weekly data (D) Return levels for critical weekly data

FIGURE 5.2: Return levels for different aggregated data

The daily alarm system (figure 5.3a) in addition to creating few alarms for the vulnera-

bilities present, these are generally not concentrated close to those of the days when more

vulnerability records occurred. Worse happens for the daily critical alarm system (figure

5.3b), where there were only 3 alarms, where only one of them is close to the relevant

days for the study. The opposite is observed for the weekly alarm system. In addition to

more alarms being observed (figure 5.3c), these are more condensed near the days with

the highest vulnerability peaks. The same can be said of the critical weekly alarm system

(figure 5.3d) which, despite registering fewer alarms than when considering all the data,

these are still close to the relevant days.
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(A) Alarm system for daily data

(B) Alarm system for critical daily data

(C) Alarm system for weekly data (D) Alarm system for critical weekly data

FIGURE 5.3: Alarme system for different agregrated data

5.3 Metrics

Although the simple direct comparison between the alarm and the vulnerabilities gives a

good idea on how adequate the alarm system was to detect them, it does not correctly or

accurately represent the circumstances in which the alarms will be useful for the entities in

question nor does it tell us the advantages and disadvantages of grouping the data. More

specifically, the alarm system must be able to predict (within a time window) where the

greatest number of vulnerabilities occur, in order to warn the entity to be more careful in
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that period of time. Therefore, a numerical comparison between the alarm systems must

be consider. For this purpose, two metrics are proposed: a binary and a general metric.

5.3.1 Binary metric

The binary metric proposes a zone immediately close to the alarm where it would be

more useful to detect amounts of abnormal vulnerabilities. More specifically, we classify

a good alarm if it precedes, within the fixed window, an observation with vulnerabilities

above a pre-established threshold. As the observations with more vulnerabilities are of

greater interest, we studied the effect of the threshold chosen through four high quantiles

closely(0.90,0.95,0.975 and 0.99) and represented lower threshold more spaced (from 0.20

to 0.90 by spaces of 0.1).

One way of representing this metric is to create pseudo confusion matrices for each

threshold and for each window size considered. These confusion matrices are constituted

by the number of alarms that precede vulnerabilities within the chosen range (true posi-

tives), number of alarms that do not precede vulnerabilities within the chosen range (false

positives) and by the number of vulnerabilities above the threshold that were not detected

( false negatives). Thus, we can evaluate classic metrics such as sensitivity. It is impor-

tant to note that, for a fairer comparison between groups of data, the range of acceptance

regions are equal for weekly and daily data.

Instead of comparing confusion matrices, another way of proceeding is to represent

these statistics through a Precision-Recall (PR) curve, that is, a comparison of the quality

of hits (precision) against the amount of hits (recall).Classically the precision is defined by

the equation 5.12 :

P =
TP

TP + FP
(5.12)

,where TP are true positives and FP false positives, while Recall is defined by the equation

5.13:

R =
TP

TP + FN
(5.13)

where FN are the false negatives. This curve is popular for comparisons of unbalanced

data as it gives primacy to positive classification by varying the cut-off point. As our

model is not probabilistic, the classical definition of a cut-off point is not applicable. How-

ever, it is possible to redefine the cut-off point by associating it with a quantile of vulnera-

bilities, as described above. Thus, it is possible to draw the PR curve for the alarm system,
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for each window size considered.

(A) PR Curve for daily data (B) PR curve for critical daily data

(C) PR curve for weekly data (D) PR curve for critical weekly data

FIGURE 5.4: PR curves for various type of agreggated data

As far as data aggregation is concerned, the behavior of PR curves is different depend-

ing on the type of data being dealt with. It can be seen that for the weekly data (figure

5.4c and 5.4d), the curves present a higher precision than the daily ones (figure 5.4a and

figure 5.4b). When comparing the plots where all the data are incorporated (figure 5.4a

and figure 5.4c) with only the critical ones (figure 5.4b and figure 5.4d), the former have

higher accuracies. Thus, following the results of this metric, the most useful aggregation

will be the weekly one with all available data, represented in the figure 5.4c.

The difficulty in interpreting this metric is finding a compromise between the flexibil-

ity and predictability of the model, that is, choosing the acceptance window in order to

have good results with relevant information. This choice is a recurring problem in differ-

ent contexts, particularly in clinical settings. Within this area, the choice of when to apply

diagnosis or treatment to patients who are likely to be sick, especially if it could harm

the patient, is crucial. Previous studies [45] in this area propose a method of aid for this

choice called net benefict. This metric has a simple composition, being only the difference

between the ratio of true positives and false positives, influenced by the chosen cut-off
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point:

NB =
TP
N
− FP

N
· pc

1− pc
(5.14)

where NB is the net benefict, TP are the true positives, FP the false negatives, N the

number of vulnerabilities and pc the chosen cut-off point. Comparing the model’s net

benefict curve with baseline curves (in which case there is an alarm on each day and in a

case in which there is no alarm), we can observe the cut-off points where the alarm has

better performance. In addition, if we compare different acceptance windows, we help

the decision to choose this one. First, we will compare clusters to corroborate the results

presented in the PR curves. For a fair comparison between clusters, acceptance windows

of identical size were chosen.

(A) NB curve for daily data (B) NB curve for critical daily data

(C) NB curve for weekly data (D) NB curve for critical weekly data

FIGURE 5.5: NB curves for various type of agreggated data

Observing the NB curves, we noticed that in none of the data clusters the curve of

the estimated model exceeds the upper baseline model, which means that none of the

models would be better, according to this metric, than the model in which an alarm was

triggered every day. All comparisons that were observed in the PR curves can also be

observed in the NB curves, that is, the clustering with all the data (figure 5.5a and 5.5c)

fits better than than only critical data (figure 5.5b and 5.5d) and alarms with weekly data

(figure 5.5c and 5.5d) have better performance than the daily (figure 5.5a and 5.5b), since
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the curve have higher values. One of the particularities of this metric is the sensitivity to

cut-off points. It is possible to observe this property in high cut-off points, more notable

in the data grouped weekly where there is a growth in the metric near the cut-off of 0.9.

Finally, different acceptance windows will be compared to help in the decision of choosing

a better acceptance window. As an example, only data grouped weekly with activation

windows between [3,5] will be analyzed (in C they are analyzed between [2,6]).

(A) NB curve with accepting window size
of 3 weeks

(B) NB curve with accepting window size
of 4 weeks

(C) NB curve with accepting window size
of 5 weeks

FIGURE 5.6: NB curves for various window sizes

Observing the graphs in the figure 5.6, it is possible to see that there is an improvement

in the metric with the increase of the acceptance window, as expected. The new informa-

tion gained from these charts is that there is a greater jump in performance from the third

to the fourth week, not being registered such an impressive gain from the fourth to the

fifth week. This suggests that the increase from the fourth week onwards does not justify

the loss of model predictability that occurs with the increase in the acceptance window.
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5.3.2 General metric

The continuous metric aims to classify the system as a whole, giving more importance

to alarms that predate large amounts of recently recorded vulnerabilities. This can be

obtained through the following formula 5.15:

mc =
n

∑
a

πl,iπw,i

n
(5.15)

, where an average of the sum of products is calculated between the weights associated

with the location of the alarm in relation to each vulnerability πl,i and the number of vul-

nerabilities registered at that point πw,i, for each of the registered alarms a. The weights

πl,i and πl,i are scaled to the unity, being close to 1 when vulnerabilities are close to alarm,

decaying normally, or when the number of observed vulnerabilities is close to the ob-

served maximum, respectively. These scalings cause the proposed metric to vary between

1 and 0.

Table for general metric

Data Grouping

Type

Accepting win-

dow of 1 week

Accepting win-

dow of 2 week

Accepting win-

dow of 3 week

Accepting win-

dow of 4 week

Daily 0.0391 0.0845 0.1185 0.1404

Critical daily 0 0 0 0.0376

Weekly 0.0275 0.09085 0.1272 0.1571

Critical Weekly 0.1209 0.1238 0.1620 0.2032

In this metric, we see that grouping the critical daily data is not suitable for this alarm

system, while the grouping through the critical weekly data seems to behave better. For

all data types, daily grouping is better than weekly only when the reach is 1 week, with

weekly being better for subsequent larger windows. It should also be noted that, from a

range of 3 weeks with the exception of critical data, all groupings are of the same order of

magnitude.

5.4 Results

It can be seen that the two proposed metrics highlight different qualities that are intended

for an ideal alarm system. Taking this into account, the two metrics suggest that weekly

data is a better choice than daily ones, disagreeing only on whether to perform the model
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only with critical data or not. In addition, the alarm system takes extreme values into

account and incorporates all observations in its model, characteristics that were not ob-

served in other models mentioned above. However, it is important to note that there are

limitations associated with the proposed model, namely being heavily dependent on the

observed data and being static in time, thus being vulnerable to changes, whether sudden

or gradual, in the conditions and environment of the observed data.





Chapter 6

Conclusion and future work

In this dissertation, three different approaches were conducted that explored different

characteristics of vulnerabilities. It was possible to model the vulnerabilities using point

processes, where the most successful models were those where extra information about

the vulnerabilities was incorporated, such as their severity. In addition, the inclusion of

non-linear terms with time helped to obtain a better performance. These results coincide

with the information taken from the descriptive analysis, where different behaviors were

observed in vulnerabilities with different severities in addition to non linear behaviors

over time.

With regard to modeling through classical extreme value theory, the POT model was

applied, obtaining satisfactory results in the declustering process as well as in the mod-

eling of inter arrival times. However, it was not possible to complete the model as the

exceedances are limited, thus not being possible to apply a GPD. With additional infor-

mation about the possible losses of entities given a vulnerability, this modeling could be

completed, revealing critical information for interested entities.

Finally, the extreme value theory was applied again, this time without trying to esti-

mate (or approximate) distribution functions, using only useful statistics from this theory.

Using the return times, it was possible to build an alarm system to detect anomalous num-

bers of registered vulnerabilities. By grouping the data weekly, it was possible to build a

satisfactory alarm system with a predictive capacity of 1 month. This allows the system

to alert the entity of the possibility of an anomalous record of vulnerabilities in the next

month. Several metrics were applied to the alarm system to measure its predictability and

help in choosing its parameters.

53
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Although it is possible to model vulnerabilities, there are several limitations and as-

sumptions that have been made. One of these limitations is the fact that the vulnerability

registration date is considered to be the same when it was first discovered. There is a lot

of literature that confirms that this assumption is false, so this analysis will have to be

done with these types of data. Another limitation associated with the previous one is the

lack of public details of some relevant data, such as information on possible losses from

exploiting the vulnerability. This type of information is sensitive to each entity and is only

disclosed within the closed circle of risk analysts. In any case, the inclusion of these data

in this analysis would allow finalizing the POT model and building other more complex

models.

This dissertation was developed by using only the Android dataset. Other datasets

like IOS, Windows7, Internet Explorer can and will be explored in future developments.

For future work, it would be natural to expand the Poisson point models to cluster

methods such as the Cox model. The alarm system built in this dissertation can be im-

proved if the estimation of an upper limit for the return time is more accurate. In addition,

the incorporation of other metrics such as SEID [20], may provide other information about

the performance of alarm systems.



Appendix A

Equations for CVSS metric

FIGURE A.1: Equation for base calculation for CVSS in version 2.0
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FIGURE A.2: Equation for temporal calculation for CVSS in version 2.0

FIGURE A.3: Equation for environmental calculation for CVSS in version 2.0
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FIGURE A.4: Equation for base calculation for CVSS in version 3.0

FIGURE A.5: Equation for Temporal calculation for CVSS in version 3.0

FIGURE A.6: Equation for Modified impact Sub-Score (MISS) calculation for CVSS in
version 3.0

FIGURE A.7: Equation for Environmnetal calculation for CVSS in version 3.0
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FIGURE A.8: Numerical values for version 3.0



Appendix B

Diagnose plots

FIGURE B.1: Diagnose plots for Critical simple Poisson model

FIGURE B.2: Diagnose plots for High simple Poisson model
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FIGURE B.3: Diagnose plots for Medium simple Poisson model

FIGURE B.4: Diagnose plots for Low simple Poisson model

FIGURE B.5: Diagnose plots for Critical marked Poisson model

FIGURE B.6: Diagnose plots for High marked Poisson model
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FIGURE B.7: Diagnose plots for Medium marked Poisson model

FIGURE B.8: Diagnose plots for Low marked Poisson model

FIGURE B.9: Diagnose plots for Critical non linear marked Poisson model

FIGURE B.10: Diagnose plots for High non linear marked Poisson model
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FIGURE B.11: Diagnose plots for Medium non linear marked Poisson model

FIGURE B.12: Diagnose plots for Low non linear marked Poisson model



Appendix C

NB curves

FIGURE C.1: NB curve with accepting window size of 2 weeks

FIGURE C.2: NB curve with accepting window size of 6 weeks
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[11] CNC (2021). Relatório riscos e conflitos 2021. Technical report, Centro Nacional de

Cibersegurança. [Cited on page 1.]

[12] Coles, S. (2004). An Introduction to Statistical Modeling of Extreme Values. Springer

Series. [Cited on pages 25, 32, and 33.]

[13] CVE (2022). Common Vulnerabilities and Exposures. https://cve.mitre.org/index.

html[Acessed : March 2022]. [Cited on page 3.]

[14] CVE Details (2022). CVE Details. https://www.cvedetails.com/[Acessed : March

2022]. [Cited on page 8.]

[15] CVSS (2022). Common vulnerability scoring system SIG. https://www.first.org/

cvss[Acessed : March 2022]. [Cited on pages xv, 6, and 7.]

[16] CWE (2022). Common weakness enumeration. https://cwe.mitre.org/[Acessed :

March 2022]. [Cited on page 5.]

[17] Daley, D. J. and Vere-Jones, D. (2005). An introduction to the theory of Point Processes.

Springer. [Cited on page 13.]

[18] Dowd, C. (2022). twosamples: Fast Permutation Based Two Sample Tests. R package

version 2.0.0. [Cited on page 20.]

[19] Engmann, S. and Cousineau, D. (2011). Comparing distributions: The two-sample

anderson-darling test as an alternative to the kolmogorov-smirnoff test. Journal of ap-

plied quantitative methods, pages 1–17. [Cited on page 18.]

[20] Ferro, C. and Stephenson, D. (2011). Extremal dependence indices: Improved verifi-

cation measures for deterministic forecasts of rare binary events. Weather and Forecast-

ing - WEATHER FORECAST, 26. [Cited on page 54.]

[21] FIRST (2022). Forum of Independent Report and Security Teams. https://www.first.

org/[Acessed : March 2022]. [Cited on page 5.]

https://cve.mitre.org/index.html
https://cve.mitre.org/index.html
https://www.cvedetails.com/
https://www.first.org/cvss
https://www.first.org/cvss
https://cwe.mitre.org/
https://www.first.org/
https://www.first.org/


BIBLIOGRAPHY 67

[22] Fisher, R. A. and Tippett, L. H. C. (1928). Limiting forms of the frequency distribution

of the largest or smallest member of a sample. Mathematical Proceedings of the Cambridge

Philosophical Society, 24(2):180–190. [Cited on page 26.]

[23] Frei, S., May, M., Fiedler, U., and Plattner, B. (2006). B.: Large-scale vulnerability

analysis. Association for Computing Machinery, pages 1–9. [Cited on page 12.]

[24] Gilleland, E. and Katz, R. W. (2016). extRemes 2.0: An extreme value analysis pack-

age in R. Journal of Statistical Software, 72(8). [Cited on page 20.]

[25] Gnedenko, B. (1943). Sur la distribution limite du terme maximum d’une serie

aleatoire. Annals of Mathematics, 44(3). [Cited on page 26.]

[26] Guillou, A., Kratz, M., and Le Strat, Y. (2010). An extreme value theory approach for

the early detection of time clusters with application to the surveillance of salmonella.

Statistics in medicine, 33(28), pages 5015–5027. [Cited on page 42.]

[27] Guillou, A., Naveau, P., Diebolt, J., and Ribereau, P. (2009). Return level bounds

for discrete and continuous random variables. TEST, 18:584–604. [Cited on pages 40

and 41.]

[28] J.McNeil, A., Frey, R., and Embrechts, P. (2005). Quantitative Risk Management: Con-

cepts, Techniques and Tools. Princenton University Press. [Cited on page 25.]

[29] Joh, H. (2011). Quantitative Analysis of Software Vulnerabilities. PhD thesis, Colorado

State University. [Cited on pages 2 and 8.]

[30] Kingman, J. F. C. (1993). Poisson Processes, volume 3. The Clarendon Press Oxford

University Press. [Cited on pages 13 and 15.]

[31] Landwehr, J., Matalas, N., and Wallis, J. (1979). Probability weighted moments com-

pared with some traditional techniques in estimating gumbel parameters and quan-

tiles. Water Resources Research, 15. [Cited on page 40.]

[32] Movahedi, Y., Cukier, M., and Gashi, I. (2020). Predicting the discovery pattern of

publically known exploited vulnerabilities. IEEE Transactions on Dependable and Secure

Computing, PP:1–10. [Cited on page 8.]

[33] M.R.Leadbetter, Lindgren, G., and Rootzén, H. (2012). Extremes and related properties

of random sequences and processes. Springer New York, NY. [Cited on pages 25, 28, 32,

and 40.]



68 DIGITAL VULNERABILITIES: A STATISTICAL ANALYSIS

[34] NIST (2022). National Institute of Standards and Technology. https://www.nist.

gov/[Acessed : March 2022]. [Cited on page 3.]

[35] NVD (2022). Nation Vulnerability Database. hhttps://nvd.nist.gov/[Acessed :

March 2022]. [Cited on page 8.]

[36] Pokhrel, N. R., Khanal, N., Tsokos, C., and Pokhrel, K. (2020). Cybersecurity: a pre-

dictive analytical model for software vulnerability discovery process. Journal of Cyber

Security Technology, 5. [Cited on pages 2 and 8.]

[37] R Core Team (2022). R: A Language and Environment for Statistical Computing. R Foun-

dation for Statistical Computing, Vienna, Austria. [Cited on pages 20 and 42.]

[38] Rajasooriya, S., Tsokos, C., and Kaluarachchi, P. (2016). Stochastic modelling of vul-

nerability life cycle and security risk evaluation. Journal of Information Security, 07:269–

279. [Cited on page 8.]

[39] Ribatet, M. and Dutang, C. (2022). POT: Generalized Pareto Distribution and Peaks Over

Threshold. R package version 1.1-10. [Cited on page 20.]

[40] Rice, J. A. (2007). Mathematical Statistics and Data Analysis. Duxbury. [Cited on

page 17.]

[41] Shahzad, M., Shafiq, M., and Liu, A. (2012). A large scale exploratory analysis of

software vulnerability life cycles. In Proceedings - International Conference on Software

Engineering, pages 771–781. [Cited on page 3.]

[42] Shukla, A., Katt, B., and Nweke, L. (2019). Vulnerability discovery modelling with

vulnerability severity. In 2019 IEEE Conference on Information and Communication Tech-

nology, pages 1–6. [Cited on pages 8 and 19.]

[43] Stat Counter Global Stats (2022). Operating system market share worldwide. https:

//gs.statcounter.com/os-market-share[Acessed : March 2022]. [Cited on page 11.]

[44] Stoffer, D. and Poison, N. (2022). astsa: Applied Statistical Time Series Analysis. R

package version 1.15. [Cited on page 20.]

[45] Vickers, A. J., Van Calster, B., and Steyerberg, E. W. (2016). Net benefit approaches

to the evaluation of prediction models, molecular markers, and diagnostic tests. BMJ,

352. [Cited on page 47.]

https://www.nist.gov/
https://www.nist.gov/
hhttps://nvd.nist.gov/
https://gs.statcounter.com/os-market-share
https://gs.statcounter.com/os-market-share


BIBLIOGRAPHY 69

[46] WFE (2022). Global risks report 2022. https://www.weforum.org/reports/global-

risks-report-2022[Acessed : March 2022]. [Cited on page 1.]

[47] Wickham, H. (2016). ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New

York. [Cited on page 20.]

[48] Wickham, H., François, R., Henry, L., and Müller, K. (2022). dplyr: A Grammar of Data

Manipulation. R package version 1.0.9. [Cited on page 20.]

https://www.weforum.org/reports/global-risks-report-2022
https://www.weforum.org/reports/global-risks-report-2022

	Acknowledgements
	Abstract
	Resumo
	Contents
	List of Figures
	1 Introduction
	2 State of Art
	2.1 Some basic definitions
	2.2 Vulnerabilities categorization
	2.3 Common modulation techniques in vulnerability modeling
	2.4 NVD Database
	2.5 Individual data bases
	2.5.1 Android data base

	2.6 Note on modeling limitations

	3 Modelling through Point Processes
	3.1 Point Processes
	3.2 Poisson point processes
	3.3 Marked point process
	3.4 Intensity estimation
	3.5 Model diagnostics
	3.5.1 Probability plots
	3.5.2 Chi-square test
	3.5.3 Anderson-Darling test
	3.5.4 Wald test
	3.5.5 Implementation

	3.6 Statistical Analysis
	3.6.1 Investigating Android Data
	3.6.2 Results


	4 Modelling through Classic Extreme Value Theory
	4.1 Extreme value theory (EVT) for independent variables
	4.1.1 Convergence analysis

	4.2 EVT for dependent variables 
	4.2.1 Maximum stationary series
	4.2.2 Convergence analysis

	4.3 Modelling using stationary series
	4.3.1 Block Maximum model
	4.3.2 Peak over threshold - POT model
	4.3.2.1 Iid case
	4.3.2.2 Dependent case


	4.4 POT model - Point process perspective
	4.5 Parameter estimation
	4.6 Modeling the Android data
	4.7 Results

	5 Modelling through EVT for discrete data
	5.1 Introduction
	5.1.1 Estimation of the upper limit of return level
	5.1.2 Implementation

	5.2 Modeling Android data
	5.3 Metrics
	5.3.1 Binary metric
	5.3.2 General metric 

	5.4 Results

	6 Conclusion and future work
	A Equations for CVSS metric
	B Diagnose plots
	C NB curves
	Bibliography

