
Demonstrating Liability and Trust Metrics for
Multi-Actor and Dynamic Edge and Cloud

Microservices
Yacine Anser
Chrystel Gaber
Romain Cajeat

Jean-Philippe Wary
name.surname@orange.com

Orange Labs
Châtillon, France

Samia Bouzefrane
Méziane Yacoub
CEDRIC Lab, Cnam

Paris, France
name.surname@cnam.fr

Onur Kalinagac
Gürkan Gür

Zurich University of Applied
Sciences (ZHAW)

Switzerland
{kalo,gueu}@zhaw.ch

ABSTRACT
Transitioning 5G, edge and cloud computing towards service-
based architecture increases their complexity as they become
even more dynamic and intertwine more actors or delega-
tion levels. In this paper, we demonstrate the Liability-Aware
security manager Analysis Service (LAS), a framework that
uses machine learning techniques to compute liability and
trust indicators for service-based architectures such cloudmi-
croservices. Based on the commitments of Service Providers
and real-time observations collected by a Root Cause Analy-
sis (RCA) tool GRALAF, the LAS computes three categories
of liability and trust indicators, specifically, a Commitment
Trust Score, Financial Exposure, and Commitment Trends.

CCS CONCEPTS
• Networks → Cloud computing; • Social and profes-
sional topics→ Quality assurance.

KEYWORDS
Edge and cloud computing, Applications of machine learning,
Liability, Trust, Service Level Agreement (SLA)
ACM Reference Format:
Yacine Anser, Chrystel Gaber, Romain Cajeat, Jean-Philippe Wary,
Samia Bouzefrane, Méziane Yacoub, Onur Kalinagac, and Gürkan Gür.
2023. Demonstrating Liability and Trust Metrics for Multi-Actor

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
ACM MobiCom ’23, Oct 02-06, 2023, Madrid, Spain
© 2023 Association for Computing Machinery.
ACM ISBN 978-1-4503-9990-6
Version of Record: https://doi.org/10.1145/3570361.3614086

and Dynamic Edge and Cloud Microservices. In Proceedings of The
29th Annual International Conference on Mobile Computing and Net-
working (ACM MobiCom ’23). ACM, New York, NY, USA, 3 pages.
https://doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION
Microservice architecture is widely adopted for modern soft-
ware systems, providing scalability, flexibility, and easy main-
tenance [2]. By breaking down applications into smaller, in-
dependent services with well-defined APIs, microservices
enable faster development cycles and independent deploy-
ments. They are a cornerstone in the operators’ strategy to
transition 5G edge and cloud computing towards service-
based architecture. However, decomposing applications into
independent services results in a dynamic environment char-
acterized by active participation from various stakeholders
and hierarchical delegation of responsibilities. Consequently,
effective management of liability and trust within microser-
vices architecture presents a significant challenge that must
be tackled with. We contribute to address it by creating lia-
bility and trust indicators.

This demonstration shows a working prototype of the LAS
(LASM Analysis Service), a module of the Liability-Aware
Security Manager (LASM) presented in [3, 4]. The LAS com-
putes three categories of liability and trust metrics. The first
one is Commitment Trust Scores and aims at categorizing
the trust that an instance, all instances of a microservice or
all microservices of a provider will behave as expected by the
commitments taken in Service Level Agreement (SLAs). The
second category, Financial Exposure, measures the amount
of money that the overall microservice architecture provider
might potentially lose with the current composition of mi-
croservices given the SLA violation risk associated with each
one of them. Finally, the third category, Commitment Trends,
follows trends of SLA Violation Rates (SVR) and Commit-
ment Trust of an instance of microservice.

https://doi.org/XXXXXXX.XXXXXXX

ACM MobiCom ’23, Oct 02-06, 2023, Madrid, Spain

LAS LVS

GRALAF

Chaos mesh Liability & Trust
indicators

core-metadata

core-commanddevice-mqtt

UI

Edgex Core Service

MetricsMetrics

Kubernetes Cluster n°2 Kubernetes Cluster n°1 Grafana dashbord

Fault

Latency on communication channel with
core command ahs been breached with
at least 84.17% above the commitment

Figure 1: Overview of the demo setup
2 FRAMEWORK DESIGN

LASM Analysis Service (LAS)

ITSMultilayer Perceptron
(MLP)

Input Output

Self-Organizing Maps
(SOM)

K-means & Multilayer
Perceptron

SLA1
SLA2

.
SLAn

MTS

ITS-TV

SVR-
TV

SPTS

Data
Preparation

Obs1
Obs2

.
Obsn

Financial Exposure to
Penalty Risk Calculator

FEPR

SPTS : Service Provider Trust Score
ITS-TV : Instance Trust Score Trend Variation
SVR-TV : SLA Violation Rate Trend Variation
FEPR: Financial Exposure to Penalty Risk

SLAn : nth Service Level Agreement
Obsn : Observation of SLAn
ITS : Microservice Instance Trust Score
MTS : Microservice Trust Score

Labelled
datasets
for offline
training

Figure 2: Overview of LASM Analysis Service (LAS).

Figure 2 highlights the components of the LAS frame-
work. It uses labelled datasets provided by risk management
experts, and the SLAs committed by Service Providers to
generate the microservice Instance Trust Score (ITS), Mi-
croservice Trust Score (MTS) and Service Provider Trust
Score (SPTS). To achieve this, it uses a Multi-Layer Percep-
tron (MLP) - a fully connected feedforward Artificial Neural
Network (ANN), and k-means clustering. The LAS computes
the Financial Exposure to Penalty Risk (FEPR), inspired by
investment metrics [5]. Finally, two types of Commitment
Trends are generated. Using a different type of ANN known
as a Self-Organizing Map (SOM) [7], the LAS tracks the
changes of the ITS and the SLA Violation Risk over time.
This generates two other outputs, namely the Instance Trust
Score Trend-Variation (ITS-TV) and the SLA Violation Risk
Trend-Variation (SVR-TV).

3 SET-UP AND SCENARIO
Figure 1 illustrates the setup for the demonstration, consist-
ing of two Kubernetes clusters. The first cluster hosts the
LAS and the LVS (LASM Visualization Service), which is a
module based on Grafana used to display the indicators. In

the second cluster, we deploy Edgex, an open source frame-
work that facilitates device and application interoperability
at the edge of the IoT network [1]. The Edgex service is
divided into four sub-services, Each service consists of mi-
croservices. For the demonstration, we focused on the core
service. In order to calculate the MTS and the SPTS, we de-
ploy Edgex across two additional clusters, resulting in three
separate instances. Additionally, we deploy Chaos Mesh, an
open-source platform that simulate various failure scenarios.
The LAS receives service metrics from the GRALAF (Graph-
Based Liability Analysis Framework) described in [6]. The
provider of core service committed to three SLAs namely
availability (𝑆𝐿𝐴0), latency (𝑆𝐿𝐴1), and error rate (𝑆𝐿𝐴2). In
this demonstration, we are going to deliberately violate this
SLAs and monitor the progression of the liability and trust
indicator on the Grafana dashboard. For that, we use chaos
variables provided by Chaos Mesh. These variables include
network outages, memory and CPU stress, latency injection,
and pod termination events. Table 1 exhibits a representative
sample within the scenario demonstrated with the evolution
of the ITS. intially, the service achieves a steady state, meet-
ing all SLAs. Subsequently, we initiate service degradation
by violating the SLAs. As the service degrades further, the
ITS decreases. During the demonstration, we’ll introduce
complex scenarios by disturbing the three instances. Par-
ticipants can explore MTS, SPTS, and ITS-TV using a SOM
map.

Table 1: A scenario’s representative sample (TW : Time
Window, Comply : as expected, ↓ : lower than expected,
↑ : higher than expected)

TW0 TW1 TW2 TW3 TW4 TW5

𝑆𝐿𝐴0 Comply Comply 0.0053% ↓ Comply 0.0053% ↓ Comply
𝑆𝐿𝐴1 Comply 13% ↑ Comply 48% ↑ Comply 10% ↑
𝑆𝐿𝐴2 Comply Comply Comply Comply 13% ↑ 9% ↑
ITS High Medium Low Low Low Low

REFERENCES
[1] 2022. EdgeX Foundry homepage. https://www.edgexfoundry.org.

https://www.edgexfoundry.org

ACM MobiCom ’23, Oct 02-06, 2023, Madrid, Spain

[2] Nuha Alshuqayran, Nour Ali, and Roger Evans. 2016. A Systematic
Mapping Study in Microservice Architecture. In 2016 IEEE 9th Inter-
national Conference on Service-Oriented Computing and Applications
(SOCA). 44–51. https://doi.org/10.1109/SOCA.2016.15

[3] Yacine Anser, Chrystel Gaber, Jean-Philippe Wary, Sara Nieves Matheu
García, and Samia Bouzefrane. 2022. TRAILS: Extending TOSCA NFV
profiles for liability management in the Cloud-to-IoT continuum. In 2022
IEEE 8th International Conference on Network Softwarization (NetSoft).
321–329. https://doi.org/10.1109/NetSoft54395.2022.9844027

[4] C. Gaber, J. S. Vilchez, G. Gür, M. Chopin, N. Perrot, J.-L. Grimault,
and J.-P. Wary. 2020. Liability-Aware Security Management for 5G.
In 2020 IEEE 3rd 5G World Forum (5GWF) (2020-09). 133–138. https:

//doi.org/10.1109/5GWF49715.2020.9221407
[5] Philippe Jorion and GARP (Global Association of Risk Professionals).

[n. d.]. Financial Risk Manager Handbook. John Wiley & Sons. Google-
Books-ID: uGgrMwDfBRsC.

[6] Onur Kalinagac, Wissem Soussi, and Gürkan Gür. 2023. Graph Based
Liability Analysis for the Microservice Architecture. In Proceedings
of the 18th International Conference on Network and Service Manage-
ment (Thessaloniki, Greece) (CNSM ’22). International Federation for
Information Processing, Laxenburg, AUT, Article 51, 3 pages.

[7] T. Kohonen. 1990. The self-organizing map. Proc. IEEE 78, 9 (Sept.
1990), 1464–1480. https://doi.org/10.1109/5.58325 Conference Name:
Proceedings of the IEEE.

https://doi.org/10.1109/SOCA.2016.15
https://doi.org/10.1109/NetSoft54395.2022.9844027
https://doi.org/10.1109/5GWF49715.2020.9221407
https://doi.org/10.1109/5GWF49715.2020.9221407
https://doi.org/10.1109/5.58325

	Abstract
	1 Introduction
	2 Framework Design
	3 Set-up and Scenario
	References

