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ABSTRACT
In nature, morphological diversity enhances functional diversity,

however, there is little swarm (collective) robotics research on the

impact of morphological and behavioral (body-brain) diversity that

emerges in response to changing environments. This study inves-

tigates the impact of increasingly complex task environments on

the artificial evolution of body-brain diversity in simulated robot

swarms. We investigate whether increasing task environment com-

plexity (collective behavior tasks requiring increasing degrees of

cooperative behavior) mandates concurrent increases in behav-

ioral, morphological, or coupled increases in body-brain diversity

in robotic swarms. Experiments compared three variants of col-

lective behavior evolution across increasingly complex task en-

vironments: two behavioral diversity maintenance variants and

body-brain diversity maintenance. Results indicate that body-brain

diversity maintenance yielded a significantly higher behavioral

and morphological diversity in evolved swarms overall, which was

beneficial in the most complex task environment.
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1 INTRODUCTION
Social insect societies are biological hallmarks of self-organization

and decentralized control [50], where complex interactions between

evolving organism behavior, morphology, and environment, have

resulted in the emergence of complex and diverse forms of social-

ity [16, 23]. Similarly, in artificial social systems such as swarm

robotics, various forms of collective behavior arise from coupled

dynamics between a robot’s morphology (sensory-motor config-

uration), behavior (controller output) and environment (task) [8].
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One perspective is that an agent’s morphological and behavioral

complexity must match its environment complexity [55]. However,

with varying examples in biology [36], it remains an open question

as to whether more complex task environments require agents with

more complex behaviors and morphologies [13, 48, 67].

Studies on artificial morphology-behavior (body-brain) evolu-

tion using simulated [12, 29] and physical [48, 67] evolutionary

robotics platforms have received significant research attention [15].

However, work investigating the impact of body-brain adaptation

in collective (swarm) robotic systems is less prevalent [10, 20, 24],

most likely due to the complexity of meaningfully distilling rela-

tionships between genotype (body-brain encodings) and phenotype

plasticity (body-brain couplings) from emergent collective behav-

iors [43]. In this context, phenotypic plasticity refers to a single

genotype producing multiple morphology-behavior couplings in

response to environmental conditions [28, 58, 65, 66].

Even though previous evolutionary robotics work [5, 29] has

demonstrated the importance of morphological adaptation (driven

by phenotypic plasticity) for increasing the robustness of adapted

behaviors, studies of how emergent morphological diversity im-

pacts evolving swarm-robotic behavior has received little research

attention [25]. Though, examples include self-assembly swarm ro-

botics systems comprising many individual functionally simple

robots that physically attach to each other [6, 34, 42] such as proof-

of-concept demonstrations using hundreds of Kilobots [11, 56, 59],
a mergeable nervous system [35] and a group mind [49], where

swarm-robotic behaviors emerge from self-organising neural con-

trollers interconnecting across hundreds of robots. Other examples

include multi-robot organisms [32] that adapt morphology via self-

organizing into various problem-solving forms, for example via

evolving functional specialization in various interacting body-parts

[2]. Within collective robotics (smaller swarm sizes), desired group

behaviors have been evolved via morphological adaptation that

switches sensors on and off, such that robots adapt to comple-

mentary sensory configurations [20, 24, 64]. Furthermore, while

previous evolutionary robotics work [3, 37, 38, 60] has also stud-

ied the impact of the environment on body-brain co-evolution,

there have been few studies that investigate environmental impact

on body-brain evolution in swarm-robotics [21, 45, 46]. Existing

studies on phenotypic plasticity in evolutionary swarm robotics

is divisible into two categories. First, where robot morphologies

are fixed and only controllers evolve and second, where each ro-

bot’s controller and morphology is coupled and evolved [15]. Using

fixed morphologies, there are few studies demonstrating that di-

verse environments conceivably produce diverse behaviors [17, 18].
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Otherwise, evolutionary swarm robotics work with evolvable

coupled controllers and morphologies is scarce and limited in scope

[52], where there is also a lack of studies on the impact of environ-

ment (task) complexity on phenotypic plasticity. Typically, experi-

menters set a specific environment and task and evolve robots for

the given combination. For example, most swarm-robotics studies

that include the task environment as an experimental parameter,

evolve behavioral diversity using predefined morphologies to solve

various collective behavior tasks [9, 18, 47, 61, 63]. This study is

also motivated by the notion that morphological diversity enhances

the overall problem-solving efficacy of swarm (collective) behaviors

as observed in social insect colonies [19]. For example, different

workers with different body shapes and sizes are more effective

at solving particular tasks, boosting the robustness of collective

behavior overall [26]. We thus hypothesize that morphological di-

versity within robotic swarms elicits similar benefits.

To investigate this we extend evolutionary swarm robotics re-

search [62], that applies decentralized Quality Diversity [54] (QD)

methods to evolve functional diversity (behavioral specialization

[9]) across simulated swarms without requiring geographical isola-

tion or division of labor mechanisms [22].

Our work applies three QD methods to evolve swarm behav-

ior across increasingly complex cooperative tasks. First, behavior

evolution with behavioral diversity maintenance, second, behavior

and morphology evolution with behavioral diversity maintenance,

and third, behavior and morphology with behavior-morphology

diversity maintenance. The goal is to find the most suitable swarm

controller design methods for the given task environments and

thus gain insight into environmental impact on evolving behavioral

and morphological diversity and the (task performance) benefits of

such diversity. Specifically: Is behavioral and morphological diversity
beneficial for evolving collective behavior across increasingly complex
task environments, where task complexity is the cooperation (between
individual robots) required to achieve optimal performance.

This question is also motivated by lack of behavior-diversity

maintenance methods to automate body-brain design for swarm-

robotics (collective behavior) tasks, where previous research has

demonstrated the benefits of behavior-diversity maintenance [14,

27, 30, 31, 54]. We present the EDQD, EDQD-M and Double-Map

EDQD-M methods (section 2), which hybridize the MAP-Elites [44]
and minimal Environment-driven Distributed Evolutionary Adapta-
tion (mEDEA) [7]methods, enabling swarm behavior evolutionwith

behavioral diversity maintenance, behavior and morphology with

behavioral diversity maintenance, and behavior and morphology

with behavior-morphology diversitymaintenance, respectively. The

efficacy of Double-Map EDQD-M, EDQD-M and EDQD is compared

with respect to collective behavior task performance, behavioral

and morphological diversity elicited across increasingly complex

task environments (section 3). The study’s main contribution is the

demonstrated effectiveness of the Double-Map EDQD-M method

for evolving beneficial swarm behavior and morphologies across

increasing task environment complexity.

2 METHODS
This study evaluates the EDQD (Environment Driven Quality Di-
versity) method [62] and also develops two extensions to EDQD in

order to evaluate swarm-robotic controller and morphology evo-

lution using a custom evolutionary embodied collective robotics

simulator
1
. The two derivative methods developed were named:

EDQD-M (robot morphology adaptation) and Double-Map EDQD-

M (coupled robot behavior-morphology adaptation). We chose to

extend the EDQD method as it has already been demonstrated for

successfully evolving behaviorally diverse robot swarms without re-

quiring explicit mechanisms for genotypic (reproductive) isolation

or division of labor [62], and has not been tested on increasingly

complex collective (swarm) behavior task environments.

2.1 Robot Controllers
Extending previous work [62], robots explore the environment for

their lifetime duration (table 2), using Artificial Neural Network
(ANN) controller behavior, where ANN behavior is adapted by

either EDQD, EDQD-M or Double-Map EDQD-M (sections 2.2, 2.3,

2.4). Each robot in the swarm used the same controller topology,

a fully connected feed-forward ANN comprising 33 sensory input

nodes (proximity, color, target-area detection), a 20 node hidden

layer, and 2 motor output nodes (table 2). Consistent with previous

work [7, 62], all nodes in the ANN used Sigmoidal activation units.

The two ANN outputs were the rotational and translational speed

of each robot (normalised to the range: [0, 1]) at each simulation

(robot lifetime) iteration. The sensory input nodes corresponded

to three forward-facing proximity sensors, one backward-facing

proximity sensor, and a bottom-facing target area detection sensor

(constantly active). Proximity sensors were primed to detect the

closest object in the environment, that is where the closer an object

is to the robot, the higher the sensor activation value (normalised to

the range: [0, 1]). For each forward and backward-facing proximity

sensor, there were seven object type (color) detection sensors that

would activate to discriminate between the colors of five resource

types, walls and other robots (table 2). Thus the periphery of the

robot comprised four sensor sets (each containing eight sensors),

and one downward-facing target-area detection sensor, where these

33 sensors corresponded to the ANN input layer. The controller

genotype adapted by EDQD, EDQD-M, or Double-Map EDQD-M

thus comprised 700 connection weights. Specifically, 33 input nodes

fully connected to 20 hidden nodes (33x20 connections), which in

turn were fully connected to two output nodes (20x2 connections).

2.2 EDQD
The EDQD method hybridizes the MAP-Elites [44] and minimal
Environment-driven Distributed Evolutionary Adaptation (mEDEA)

[7] methods. EDQD, as in previous work [7], uses a fitness mech-

anism [51] to regulate the trade-off between fitness function ex-

ploitation and environmental exploration (in this study, collective

gathering task behaviors). Differing from previous work [62], as

robots explore their environment they periodically broadcast (table
2), their behavioral map which is received and stored by all robots

within broadcast range. Such robot behavioral maps are termed

LocalMaps (figure 1, left), and contain a list of the fittest genotypes

1
The swarm-robotic simulator is available at: https://github.com/einstein07/AUTOFAC

https://github.com/einstein07/AUTOFAC
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Figure 1. Left: EDQD: Each generation, a random genotype (controller encoding) is selected from SelectMap − merging

the ReceivedMapList with the robot’s LocalMap. Right: Double-Map EDQD-M : Robots maintain two LocalMaps. LocalMap-1
is associated with behavior feature descriptors, LocalMap-2 is associated with morphology feature descriptors.

(genome, figure 1, left) corresponding to specific robot behaviors

(phenome, figure 1, left) previously evaluated for each robot. At

the end of each robot’s current lifetime (table 2), a genotype is ran-
domly selected from the SelectMap (which is formed by merging

the received maps with the robot’s own LocalMap, figure 1, left),
and a mutation operator (table 2) is applied to produce a new geno-

type which replaces the currently active genotype (robot behavior).

Applying EDQD to our swarm, robots store a 2D behavior map (Lo-
calMap, figure 1, left) defined by given behavioral dimensions of the

collective gathering task (section 3). Specifically, resource type col-

lected (table 2), and maximum Euclidean distance traversed by each

robot (during its lifetime). The EDQD method and its extensions:

EDQD-M and Double-Map EDQD-M, thus leveraged these behav-

ioral dimensions to promote the evolution of behavioral diversity

in terms of resource types collected and environment exploration.

2.3 EDQD-M
EDQD-M extends EDQD to enable morphological (sensor), in com-

pany with behavioral (controller), adaptation for each robot. Specifi-

cally, at the end of each generation, a random sensor type is selected

to undergo mutation. The mutation operator reduces the range of

a randomly selected sensor until it reaches a given sensor-morpho
threshold (table 2). Once the range falls below this threshold then

the given sensor becomes inactive, where sensor inactivity is re-

alised by an input of zero to the corresponding ANN sensory input

node. Similarly, if the mutation operator causes the sensor range to

exceed the sensor-morpho threshold, then an inactive sensor will re-

activate, reinstating the previous non-zero connection weight value

for the given ANN sensory input node. Note that the bottom-facing

target-area detection sensor (section 2.1) is excluded from morpho-

logical adaptation since robots must still be able to detect the target

area and complete their task. The swarm is morphologically homo-

geneous meaning the same sensor adaptations (sensors switched

on and off) are concurrently applied to all robots. Otherwise, the

EDQD-M controller adaptation process using the LocalMap is iden-

tical to EDQD (section 2.2, figure 1, left).

2.4 Double-Map EDQD-M
Double-Map EDQD-M extends EDQD to enable co-adaptation of

a robot’s morphology and behavior. Double-Map EDQD-M thus

uses two LocalMaps, where the first LocalMap is associated with

controller (behavior) related feature descriptors, and the second Lo-
calMap is associated with sensor (morphology) feature descriptors.

This second map is also defined by two (morphological) dimensions,

first the ratio of active sensor types, and second, the average range
of active sensors. As in EDQD and EDQD-M, at each generation

of the evolutionary process, parent genotypes are selected from

each SelectMap, to undergo mutation (figure 1, right). The resulting

offspring genotypes replace the robot’s current active behavior

(controller) and morphology (sensory configuration). However, the

selected morphology determines the corresponding controller, in

order that robot behavior and morphology are suitably matched.

Hence, a selected morphology comprising 𝐴 active and 𝐵 inactive

sensors, automatically re-configures the selected ANN controller so

as𝐴 sensory input nodes are active and 𝐵 are inactive. As in EDQD-

M (section 2.3), ANN connection weights remain active, where

robot sensory configuration (morphology) is adapted via switching

specific sensors on and off, and zero values are input to ANN in-

puts corresponding to switched off sensors. Double-Map EDQD-M

thus adapts both LocalMaps of each robot to encourage behavioral

and morphological diversity. This differs from EDQD and EDQD-

M, in that two maps are concurrently maintained and adapted,

where both robot behavior and morphology are subject to diversity

maintenance. Whereas, EDQD and EDQD-M, only accounted for be-

havioral diversity maintenance, and sensor adaptation in EDQD-M

was not subject to morphological diversity maintenance.

3 EXPERIMENTS
Experiments were conducted using a collective gathering task sim-

ulation implemented on RoboGen [1]. Experiments evaluate the

benefits of behavioral and morphological diversity in a robot swarm

to solve increasingly difficult collective gathering tasks (section 1),

where task difficulty is tuned by the number of robots required to

cooperatively transport a resource (table 2). Each experiment com-

pared the EDQD, EDQD-M, and Double-Map EDQD (sections 2.2,

2.3, 2.4) methods to adapt swarm behavior with behavioral diver-

sity maintenance, behavior and morphology (with behavioral diver-

sity maintenance), and behavior and morphology (with behavior-

morphology diversity maintenance), respectively (table 1). For each

experiment, a swarm of 100 robots and 50 resources were initialised



GECCO ’23, July 15–19, 2023, Lisbon, Portugal Sindiso Mkhatshwa and Geoff Nitschke

Table 1. Parameters for robot artificial neural network controllers adapted by Map-Elites component of EDQD, EDQD-M,

Double-Map EDQD-M swarm behavior-morphology adaptation methods.

Sensory input nodes 25

Hidden layer nodes 20

Motor output nodes 2

Node activation function Sigmoidal

Sensory input-Motor output weight range [0.0, 1.0]

Neuron weight range [-400, +400]

Mutation operator Gaussian (tuned 𝜎) [62]

Sigma range [0.001, 0.5]

Update sigma step 0.35

Mutation probability 0.34

Sensor-morpho threshold 0 (≤0: Sensor inactive; >0: Sensor active)
Map archive size 100

Number of dimensions per (behavior, morphology) map 2

Number of intervals per map-dimension 10

Table 2. Experiment parameters for EDQD, EDQD-M and Double-Map EDQD-M methods (applied to adapt swarm

behavior-morphology) and Collective gathering task (evaluating swarm adaptation methods) parameters.

A 0.08 x 0.08 x 0.08

B 0.50 x 0.50 x 0.08

Resource-types (size: x, y, z: meters) C 0.8 x 0.8 x 0.08

D 1.0 x 1.0 x 0.08

E 1.2 x 1.2 x 0.08

Infrared Proximity [0.0, 1.0]

Sensor types: Range Color [0.0, 1.0]

Target-area detector Bottom facing

1: Simple 30, 5, 5, 5, 5

Task environments (Resource types: A, B, C, D, E) 2: Medium 10, 10, 10, 10, 10

3: Difficult 5, 5, 5, 5, 30

A 1 robot

B 2 robots

Cooperation needed to move resource type C 3 robots

D 4 robots

E 5 robots

Run length (per experiment) 100 generations

Robot lifetime 10 000 (simulation iterations)

Swarm size 100 robots

Wait for assistance time (cooperative resource-pushing) Remaining lifetime

Initial robot & block position Random (Outside target-area)

Environment size | Target-area size (meters) 20 x 20 | 20 x 2
Robot LocalMap broadcast range Target-area size

Robot LocalMap broadcast frequency 1 (per lifetime)

in random positions and orientations in a 3D environment (sim-
ple, medium and difficult task environments, table 2). Robots and

resources were initialized outside a target-area (where gathered

resources were delivered to). The collective gathering task used

to evaluate EDQD, EDQD-M, and Double-Map EDQD-M, entailed

running the swarm for one lifetime (10000 simulation iterations),

for 100 generations, where each generation represented a lifetime

(table 2). At the beginning of each run, robots and resources were

re-initialized in new random positions and orientations. The col-

lective gathering task required robots to explore the environment,

locate resources, and cooperatively move found resources to the

target-area. Each resource type (A, B, C, D, E) was distinguished by

its geometric size and thus required varying degrees of cooperation

for robots to move to the target-area (table 2). For EDQD, EDQD-

M and Double-Map EDQD-M, average (over 20 runs) swarm task

performance (quality) was the portion of resources pushed into

the target-area for all swarm lifetimes (per run: 100 generations).

Average behavior quality was normalised to: [0.0, 1.0] (section 4.3).

Also, for EDQD, EDQD-M, we calculate the behavioral diversity

as the number of distinct behaviors (occupied cells in the swarm’s

LocalMap) at the end of each run (100 generations). Average swarm
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Figure 2. Average Quality-Diversity (QD) score calculated from EDQD, EDQD-M and Double-Map EDQD final (end of

each run) behavior-maps for swarms evolved in simple, medium and difficult environments.

behavioral diversity is then taken over 20 runs of EDQD and EDQD-

M (section 4.1). Additionally, for Double-Map EDQD-M, we calcu-

late a swarm’s average morphological diversity (over 20 runs) as

the number of distinct morphologies (occupied cells in the swarm’s

second map) at the end of each run (section 4.2). To be consistent

with previous work [53], we also calculate the average (over 20

runs) Quality-Diversity (QD) score for behaviors evolved by EDQD,

EDQD-M and Double-Map EDQD-M. Since EDQD used fixed robot

morphologies, we calculated the QD score for behavior maps only

(EDQD, EDQD-M, and Double-Map EDQD-M, section 4.3).

4 RESULTS AND DISCUSSION
4.1 Quality-Diversity (QD) of Evolved Behaviors
Figure 3 (right) presents the average (over 20 runs) number of

unique behaviors in the swarm discovered per experiment. This

was calculated as the number of occupied cells in the LocalMap per

run (for EDQD, EDQD-M, and Double-Map EDQD-M). Statistical

tests (Mann-Whitney U-tests [33]) indicate no statistical signifi-

cance (p≥0.025) between the methods in the simple environment.

Both EDQD-M and Double-Map EDQD-M outperform EDQD in

the medium environment (p<0.025), with no statistical difference

between EDQD-M and Double-Map EDQD-M. Double-Map EDQD-

M outperforms the other methods in the difficult environment,

with no statistical difference between EDQD and EDQD-M. QD

behavioral maps (figures 4, 5, 6) evolved by the highest performing

swarm at the end of each run (table 2), provided an indication of the

swarm behavior and the quality of such behaviors, for gathering

each resource type in each task environment. Swarm behavior (and

thus diversity) was measured as the distance traversed, and portion

of each resource type gathered (transported) to the target-area (in

one robot lifetime, table 2). For each resource type, per environ-

ment, the average distance traversed (exploration behavior) has an

associated average task performance. Such QD maps thus provide

an indication of how effective evolved gathering behaviors are for

varying task difficulty (simple, medium, difficult).

In the difficult environment, swarms evolved by all methods

(figure 6), explore a low to medium distance (range: [0.05, 0.55]) and

gather relatively low portions of type C, D, and E resources (range:

[0.0, 0.2]), while a relatively higher portion of typeA and B resources

(range: [0.10, 0.95]) are gathered. Such swarms elicit a diverse be-

havior overall (exploring up to 55% of the environment, gathering

each resource type), where the highest quality swarm behavior was

in gathering resource types A and B (requiring no and two robot co-

operation, table 2). A high quality-diversity was especially evident

for Double-Map EDQD-M (figure 6, right), where the distance range

explored for type A and B resources was: [0.35, 0.55], and resource

types A and B gathered was: [0.65, 0.95]. Comparatively, for re-

source types A and B, EDQD and EDQD-M evolved swarms yielded

a quality range: [0.10, 0.60] for an explored area: [0.05, 0.45]. The be-

havioral diversity of Double-Map EDQD-M evolved swarms is also

evident in figure 3 (right), where a significantly (Mann-Whitney

U, p<0.025) higher average behavioral diversity was calculated in

comparison to EDQD and EDQD-M evolved swarms for the dif-
ficult environment. The capability of Double-Map EDQD-M for

evolving diverse behaviors effective in the difficult (versus simple
and medium) environments is also supported by no significant dif-

ference (Mann-Whitney U, p>0.025) between behavioral diversity

of EDQD, EDQD-M, and Double-Map EDQD-M evolved swarms

in the simple and medium environments (figure 3, right). This is

supported by QD maps for simple and medium task environments

(figures 4, 5). In simple and medium environments, evolved swarms

explored environment portions in the range [0.05, 0.95], with type

A and B resources gathered (range: [0.1, 0.95]), and type C, D, and

E resources gathered (range: [0.05, 0.65]).

4.2 Quality-Diversity of Evolved Morphologies
Given that EDQD and EDQD-M did not include explicit morpho-

logical diversity maintenance mechanisms, the average morpho-

logical diversity of Double-Map EDQD-M evolved swarms was

significantly higher (Mann-Whitney U, p<0.025) than EDQD and

EDQD-M evolved swarms (figures 7, 8, 9). However, the efficacy

of Double-Map EDQD-M, for evolving morphological diversity

yielding high-quality swarm behavior was evidenced for all task en-

vironments. That is, Double-Map EDQD-M evolved swarms elicited

average active sensor portions and ranges from 0.1 to 1.0. The

highest quality (>90%) was yielded for 65-95% sensor activity with

sensors operating between 85% and 100% of maximum range (fig-

ures 7, 8, 9, right). Verifying Double-Map EQDD-M evolved sensor
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Figure 3. Left: Average task performance (quality) for swarms evolved by each method per environment. Right: Average

behavioral diversity of swarms evolved by each method per environment.

Figure 4. Quality-diversity of evolved behaviors in the simple task environment. Quality is swarm task performance.

Behavioral diversity is the portion of environment explored to gather each resource type.

Figure 5. Quality-diversity of evolved behaviors in the medium task environment. Quality is swarm task performance.

Behavioral diversity is the portion of environment explored to gather each resource type.

activity and ranges enabled effective swarm behaviors, comparable

morphological diversity was observed in EDQD-M evolved swarms

in all environments (figures 7, 8, 9, middle). Relating morpholog-

ical and behavioral diversity elicited for Double-Map EDQD-M

evolved swarms, the sensor configurations (active sensors and av-

erage ranges) presented in figures 7, 8, 9 elicited the behavioral

diversity presented in figures 4, 5, 6. Where, for a given task en-

vironment, the highest quality of a specific sensory configuration

(morphology) is the highest quality elicited by a specific behavior



The Impact of Morphological Diversity in Robot Swarms GECCO ’23, July 15–19, 2023, Lisbon, Portugal

Figure 6. Quality-diversity of evolved behaviors in the difficult task environment. Quality is swarm average task

performance. Behavioral diversity is the portion of environment explored to gather each resource type.

Figure 7. Quality-diversity of evolved morphologies in the simple task environment. Quality is swarm task performance.

Morphological diversity is the number of sensors active and sensor range per robot in the swarm.

Figure 8. Quality-diversity of evolved morphologies in the medium task environment. Quality is swarm average task

performance. Morphological diversity is the number of sensors active and sensor range per robot in the swarm.

(in the same task environment). For example, in the difficult envi-
ronment, swarms evolved the behavior to gather ≈90% of type A

resources via exploring ≈50% of the environment (figure 6, right),

corresponding to a specific swarm sensory configuration: ≈70% of

sensors active operating at 90% of maximum range (figure 9, right).

These results support the benefits of morphological and behav-

ioral diversity maintenance in concert with behavior-morphology

adaptation. Observing EDQD-M and Double-Map EDQD-M evolved

sensory configurations, we note that, for the simple and medium
task environments, the highest quality for specific morphologies

is consistently higher than the highest quality for these same mor-

phologies in EDQD-M evolved swarms (figures 7, 8, middle, right).

For the difficult task environment, the higher quality morphology

evolved by Double-Map EDQD-M was also higher than the high-

est quality morphology evolved by EDQD-M but slightly different
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Figure 9. Quality-diversity of evolved morphologies in the difficult task environment.Quality is swarm task performance.

Morphological diversity is the number of sensors active and sensor range per robot in the swarm.

(≈70% versus 90% of sensors active in EDQD-M, figure 9, middle,

right). Also, in the difficult environment, the benefits of morpholog-

ical diversity (Double-Map EDQD-M) are further evidenced by an

accompanying significantly higher behavioral diversity (compared

to EDQD and EDQD-M). That is, the highest quality Double-Map

EDQD-M evolved behaviors (gathering resource type A) exceeded

the highest quality EDQD and EDQD-M evolved behaviors (≈0.9
versus 0.6 versus 0.5 maximum task performance, respectively, fig-

ure 6). In the medium environment, Double-Map EDQD-M elicited

similar (though less pronounced benefits) over EDQD and EDQD-

M. Specifically, the maximum quality (for gathering resource type

A) of Double-Map EDQD-M versus EDQD was ≈0.9 versus 0.75

versus 0.75, respectively figure 6). In the simple environment, the

maximum quality of Double-Map EDQD-M versus EDQD versus

EDQD-M (also for gathering resource type A), was comparable.

4.3 Task-Performance and Quality-Diversity
Task performance (quality) averages are calculated as the maximum

portion of resources (range: [0.0, 1.0]) gathered over all swarm life-

times (100 generations per run), averaged over 20 runs (figure 3, left).

Statistical tests
2
(Mann-Whitney U-tests [33]) indicate that EDQD-

M outperforms the other methods in the medium environment

(Mann-Whitney U, p<0.025), while there is no statistical difference

between methods in the simple and difficult environments. Figure

2 presents the average (over 20 runs) Quality-Diversity score of the

final EDQD, EDQD-M, and Double-Map EDQD-M behavioral maps

at the end of each run, where an average QD score is calculated for

the 20 runs of each method. As in related work [53], the QD score

is measured as the total quality across all filled grid-cells within the

QD behavioral map (where higher quality means a higher portion

of resources gathered during the swarm’s lifetime). A high aver-

age QD score thus represents swarms with a high degree of both

behavioral (EDQD, EDQD-M) or behavior-morphology (EDQD-M

Double-Map) diversity and a correspondingly high average quality.

Specifically, we observe the benefits of Double-Map EDQD-M as

task difficulty increases. That is, after 100 evaluations (generations)

in the simple environment, Double-Map EDQD-M yields the lowest

2
The 𝑝 values for all statistical tests are available online: https://github.com/Impact-

of-morphological-Diversity/GECCO2023.

average QD score. In themedium environment Double-Map EDQD-

M yields the second lowest average QD score. However, in the diffi-

cult environment Double-Map EDQD-M yields the highest average

QD score (figure 2). This evidence supports the benefits of increased

behavior (and morphological) diversity enabled by Double-Map

EDQD-M, and the suitability of this method for evolving swarms

in task environments of increased difficulty is also supported by

the QD maps for evolved behaviors (section 4.1) and morphologies

(section 4.2). Related evolutionary robotics work [4, 37–41, 57] sup-

ports this notion of increased behavior-morphology diversity that

in turn elicits quality (task performance) benefits as the robot’s

task environment complexity (difficulty) increases. However, few

studies have investigated the benefits of diversity in controller-

morphology adaptation across increasingly complex environments

and then only for simple single robot ambulation tasks [37, 38].

This study’s key contribution was thus elucidating the benefits of

behavior-morphology diversity in collective behavior (cooperative)

tasks solved by robotic swarms.

5 CONCLUSIONS
The objective of this study was to ascertain the value of behavioral

and morphological diversity in robot swarms. Overall results indi-

cated that the Double-Map EDQD-M method, evolving both swarm

behavior and morphology with mechanisms for behavioral and

morphological diversity maintenance, was demonstrated as benefi-

cial as environment complexity (task difficulty) increased. These

benefits were demonstrated as a higher Quality-Diversity (QD) for

the most difficult task, and the highest task performance overall

(behavioral quality) for medium and difficult tasks. The study thus

contributes evidence for the benefits of evolutionary swarm-robotic

methods that include explicit mechanisms for behavioral and mor-

phological diversity maintenance, where such swarms must adapt

across increasingly complex task environments.
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