Theme Article: Special Issue on Software Engineering Education &

Training

Live is Life—Teaching Software Engineering

on Live Systems

Rolf-Helge Pfeiffer, IT University of Copenhagen, Denmark

Mircea Lungu, [T University of Copenhagen, Denmark

Paolo Tell, IT University of Copenhagen, Denmark

Abstract—The majority of resources in software engineering are spent on
maintenance and improvement of existing software. However, academic software
engineering education usually focuses heavily on tasks with lower consumption of
resources in practice, e.g., requirements engineering, system modeling,
green-field engineering, etc. In this article, we present the course “DevOps,
Software Evolution and Software Maintenance” that we developed and teach at IT
University of Copenhagen. It differs from similar courses in the field in that it
focuses student project work on maintenance and evolution of a live software
system that is under simulated load for two-thirds of the course period. Our goal
with this article is twofold: to encourage educators to incorporate the aspect of
evolution and maintenance of live systems into software engineering curricula;
and, to encourage practitioners to share cases of systems with captured
real-world workloads so that they can be integrated in simulations in education.

e perceive a mismatch between how soft-
ware engineering (SE) is often taught in
higher education and how it is applied in

industry.

A significant amount of contemporary systems are
not newly developed but evolve over time while being
used live in production and often the largest amount
of resources in SE projects is spent on maintenance
(60% according to [1], 75% according to [2], and
80% based on [3]). Contrarily, academic SE courses
are often structured around books like Sommerville’s
Software Engineering [4] or Bruegge’s Object-Oriented
Software Engineering [5] with projects focusing on
green-field development stressing requirements engi-
neering, system modeling, software design with re-
spective notations like UML, etc.

Other academics like Spinellis perceive this mis-
match too: “[SE education] often focuses on how to
single-handedly develop programs from scratch in a
single language and single execution environment, a
development style prevalent in the 1950s and 60s.

XXXX-XXX © 2023 IEEE
Digital Object Identifier 10.1109/XXX.0000.0000000

February

Published by the IEEE Computer Society

Nowadays, software development is typically a team-
based activity and most often involves extending and
maintaining existing systems written in a multitude
of languages for diverse execution environments” [6].
And, more pragmatically, practitioners describe the
mismatch: “in university, they teach you how to write
a 400-line program that solves a problem from A-
Z. You have a blank canvas, and you need to show
off your knowledge [...] In the end, you have a nice
solution to a straightforward problem [...] Professional
software developers work in groups [...] and more
often than not — it's fixing stuff rather than building it
from scratch.”

SE education not matching industry requirements
is against public interest. For example, the Danish
Government formulates the goal of higher education
as follows: ‘it is paramount, that we provide relevant
and high-quality educations that match industries re-
quirements.”

To increase practical relevance, educators are

1 https://vadimkravcenko.com/shorts/things-they-didnt-teach-you/
2https //www.regeringen.dk/nyheder/2018/maalsaetninger-for-de-
videregaaende-uddannelser/

IEEE Software

https://vadimkravcenko.com/shorts/things-they-didnt-teach-you/
https://www.regeringen.dk/nyheder/2018/maalsaetninger-for-de-videregaaende-uddannelser/
https://www.regeringen.dk/nyheder/2018/maalsaetninger-for-de-videregaaende-uddannelser/

switching towards project-based teaching covering
more realistic aspects of SE. Some ask students to
contribute to open-source software®#[7], while others
focus on industrial collaboration when teaching tech-
nologies and practices related to DevOps [8]. Some
teach software evolution and maintenance already in
introductory SE courses [9], others focus on deliv-
erability and deployability (CI/CD pipelines) [10], and
yet others focus on DevOps skills and related cloud
technologies [11], [12].

However, none of the courses mentioned above,
none of the ones identified in a recent meta-study [13],
and, to the best of our knowledge, no other academic
SE course include the aspects of maintenance and
evolution of live software systems — i.e., systems that
are in production and have to be updated and scaled
while being in use. The importance of this aspect
of modern software development is proven by the
adoption of DevOps practices in industry [14].

Therefore, we have developed a project-based
course called “DevOps, Software Evolution and Soft-
ware Maintenance”, which we teach at IT University
of Copenhagen every spring since 2020. During this
course, students take over a legacy software sys-
tem running in a legacy production environment. It is
a Twitter-like minimal micro-blogging web-application.
Throughout the entire term, students evolve and main-
tain it. What differentiates our course from other aca-
demic SE courses is that we utilize a simulator for two-
thirds of the semester, which interacts with the stu-
dents’ systems. This simulator registers users, allows
them to tweet, follow each other, and performs other
actions. The simulator gradually increases load on the
students’ systems. Thereby, it serves as a catalyst for
software evolution and maintenance tasks.

When creating the course, our goal was to design
a subject covering the software life-cycle phases that
we believe are underrepresented in more “traditional”
academic courses. Based on our experiences in in-
dustrial SE, we wanted to let students experience
practice-oriented SE work in a safe environment while
developing, maintaining, and evolving a 24/7 system.

This article is relevant for educators or trainers
since we describe the course design and discuss chal-
lenges when teaching it. Practitioners get out of this
article how to support education of future colleagues by
sharing software together with usage data. Recruiters,
project managers, or team leaders, can use this article

3 https://avandeursen.com/2013/12/30/teaching-software-
architecture-with-github/
“https://gist.github.com/ruimaranhao/b2c64e906ac9abbcad02

Special Issue on Software Engineering Education & Training

to understand the skill set of graduates that completed
this course and that their project work can be used for
assessment of candidates in hiring procedures.

The course is setup around the case of a Twitter-like
minimal micro-blogging web-application, which we call
ITU-MiniTwit. The “background story” presented in the
first lecture is that in 2012 former students developed
a minimume-viable-prototype of ITU-MiniTwit directly in
a production environment without any documentation
or following any modern SE practices. Students (in
groups of usually five) take over, evolve, maintain,
and scale ITU-MiniTwit throughout the course (we call
these the student systems).

After several initial sessions, each group deploys
and operates their student system live in production
on publicly accessible Virtual Private Servers (VPSs).
Eventually, an automated program (called the sim-
ulator) simulates users interacting with the student
systems, i.e., users registering, tweeting, following, etc.

All course material is hosted online on GitHub.®
Each lecture introduces one or more topics, which
we typically illustrate or demonstrate on a prototyp-
ical case with an exemplary technology. For exam-
ple, we demonstrate packaging and deployment of
applications or components via Docker containers,
deployment to VPS on DigitalOcean, monitoring with
Prometheus and Grafana, cluster management via
Docker Swarm Mode, etc. However, students are free
to choose alternate technologies, programming lan-
guages, frameworks, tools, etc. if they can justify their
choices.

Figure 1 illustrates the course setup. The topics of
the 14 lectures are listed on the left with corresponding
topics of project work on the right. Small black squares
illustrate weekly lecture and exercise sessions. The
gray frame in the center illustrates the period in which
the student systems are live and under load of the
simulator. The plot illustrates the increasing number
of requests that the simulator sends to the students’
systems.

In the first session of the course, student groups,
take over a legacy version of ITU-MiniTwit — a Python
2 application based on Armin Ronacher’s original
MiniTwit application which used to be an example
application for the Python web-application framework

Shttps:/github.com/itu-devops/

February 2023

https://avandeursen.com/2013/12/30/teaching-software-architecture-with-github/
https://avandeursen.com/2013/12/30/teaching-software-architecture-with-github/
https://gist.github.com/ruimaranhao/b2c64e906ac9a6bcad02
https://github.com/itu-devops/

Lecture Topics Project Work
Shell scripting, SSH, and SCP B week 1 B Refactoring to current OS
Packaging applications, containerization with Docker . week 2 . Refactoring to new tech. stack
Local and remote VMs [| B Deployment to remote server
ClicD B B Setup CI/CD system
What is DevOps and Configuration management B 'I:Avg. daily load] Continued development enter maintenance
Monitoring [| -é || Add monitoring
Software Quality, Maintainability, and TD . ; . Extend CI/CD with static analysis and tests
Logging, log analysis, and SLAs B ;] Add logging, create SLAs
Security of web-applications [| E‘ || Security assessment pen testing
Deployment strategies, scaling, and load balancing . E:E . Isolation of components into services
Deployment and scaling workshop B §=—=] Easter break maintenance continues
Infrastructure as Code [| E? || Encode infrastructure
Documentation of software and projects . §—= - Sunset system final documentation
146 req/min
Wrap-up B week 14] Write report

FIGURE 1: Overview of the 14 weeks elective course (7.5ECTS) with one combined four-hour teaching and
practice session per week (black squares). Lecture topics are on the left and project work topics on the right.
Centered is an illustration of the daily number of requests that the simulator sends to student systems.

Flask.? Here, “take over” means that all artifacts that
form the application are manually copied from a re-
mote legacy server running a deprecated Ubuntu OS
(12.04) with outdated dependencies. After taking over
the application, student groups have to put all these
files under version control (Git repository on GitHub)
and refactor it so that it can be executed on a current
Ubuntu Linux with Python 3, i.e., an exercise in adap-
tive maintenance. All subsequent tasks of project work
listed in Figure 1 are executed in these repositories and

6 https://github.com/pallets/flask/tree/
1592c53a664c82d9badac81fa0104af226cce5a7/examples/minitwit

February 2023

on the continuously refactored and evolving artifacts
that groups took over originally.

Our university does not offer a computing lab with
homogeneous environments for the students to work
on. To ease development in heterogeneous environ-
ments, already the second session introduces packing
and executing applications in Docker containers. Once
creation of VPS is introduced (session three), the
production environment for manual or locally scripted
deployments are remote servers.

In accordance with principles of DevOps and agile
development, we encourage students to work and
deploy continuously. To make work visible (one of
the DevOps principles [14]), we provide dashboards

Special Issue on Software Engineering Education & Training

https://github.com/pallets/flask/tree/1592c53a664c82d9badac81fa0104af226cce5a7/examples/minitwit
https://github.com/pallets/flask/tree/1592c53a664c82d9badac81fa0104af226cce5a7/examples/minitwit

All kinds of errors, which the simulator sees...

[ConnectionError
= =

[ReadTimeout

I follow 00000
register

[tweet

M unfollow 500000

100000 R L : . -

300000

M groupa
H groupb
Mgouwpe
group d
i group e
I group f
Hgroupg
group h
groupi
M group
M groupk
1 group |
group m
M groupn
M groupo
groupq
group t

I group b
W group e
Mgroupd
group e
1 group f
Hgroupg
Mgrouph
group i
group |
W group k
M group
[group m
group n
M group o
Hgroupq
group t

FIGURE 2: Dashboards visualizing: (top) types of er-
rors that the simulator received from student systems
within the first two weeks in 2022; (center) weekly
number of commits per group; and, (bottom) number
of releases per week per group. All dashboards are
from the course in 2022.

Special Issue on Software Engineering Education & Training

that visualize, e.g., the number of weekly commits per
group or the number of weekly releases per group, see
bottom of Figure 2. By week four, deployments happen
automatically via CI/CD chains created in project work.

From week five on, all student systems are consid-
ered to be live and “in production”. For the next weeks,
the simulator feeds events like persons registering,
tweeting, following each other, etc. to student systems.
To make that possible, students have to implement
a web-API for which they receive a specification and
an automated API test in week three. All subsequent
project work takes place while simulated users interact
with student systems. Note, besides simulated user
interactions, all student systems are publicly accessible
on the internet. Anyone can register and send mes-
sages during the live period on any student system.
Moreover, student groups interact with other group’s
systems to investigate feature completeness or quality.

Figure 1 illustrates, that frequency of simulator
requests increases over time, which mimics a situation
in which student systems become increasingly popular.
The timed behavior of simulator request frequencies
is based on the database dump of HackerNews’ and
compressed to fit over 10 million requests into the time
frame of the course.

Together with sending user requests, the simulator
monitors responses that do not conform to its web-API
specification. The top of Figure 2 illustrates one of the
views of the course dashboards. Per group, it illustrates
the sum of all errors that the simulator observed while
interacting with the student systems during weeks five
and six in 2022. For example, it shows that the systems
of groups a, f, m, n, and o appear to respond not as
specified when receiving tweets and follow requests
or that Group k’s system was down (ConnectionError).
These dashboards illustrate potential issues and en-
able self-reflection in groups. Based on them, we start
each teaching session discussing statuses of student
systems and solutions to potential problems.

During the first weeks of live operation, students
have limited possibilities to detect and reason about
issues or security incidents. Once monitoring and log-
ging are setup and configured (weeks six and eight
respectively) students experience that the quality of
logged and monitored information has a direct in-
fluence on their ability to detect and reason about
potential issues or incidents. Typically, the logging and
monitoring improve over time, reflecting the lessons
from past shortcomings.

As the course progresses, load from the simula-

7 https:/news.ycombinator.com/

February 2023

https://news.ycombinator.com/

tor increases, which motivates addressing basic tech-
niques for scaling in weeks 10 and 11.

At the end of the course, after session 13, we stop
the simulator. This allows students to focus on wrap-
ping up, writing reports, and prevents them from having
unnecessary spending. Indeed, many of the services
that we rely on in this course would not normally be
free. However, we have selected services that offer free
tiers for students (e.g., the GitHub Student Developer
Pack® offers students a large amount of free credits,
including DigitalOcean).

The popularity of the course has increased from about
50 enrollments (2020) to roughly 80 (2022), a large
number for an elective course at our university.

In 2020 and 2022, we evaluated the course with
the Delphi method® [15], collecting up to three positive
and three negative statements per student. After data
cleaning, we receive 246 comments (2020: 148; 2022:
98). We clustered responses via a light thematic anal-
ysis and identified several recurring themes, which we
present with quotes from evaluations below.

Relevance and value. The course and the topics
covered are particularly appreciated as they are “very
relevant and useful [...] in the ‘real world”; “extremely
relevant for me as developer”; and, ‘“fan] excellent
overview [of] what devops is and which tasks are
waiting for one who proceeds in this career”. More
than 16% of the positive statements concern the rele-
vancy of the course, and the above are just a sample
of these consistent comments. Additionally, students
value the use of modern technologies. One says that
the course “feels very relevant. | am currently also
working with Docker, Prometheus, Grafana, etc. in my
part-time job!”; while another highlights that the course
“introduced many valuable tools that can be used in my
future career’.

Hands-on and practical. The experience of work-
ing on a live system, is continuously appreciated.
Students refer to it as a “great [...] hands-on course,
instead of just theory”; emphasizing how “the hands-on
approach of taking over an old system and revamping
it with new DevOps concepts worked really well for
learning”; and recognizing that it is “nice how practical
the course was, getting our hands dirty is a lot more
fun than watching someone else do it".

Fun and freedom. Besides being relevant and

8https://education.github.com/experiences/introﬁtofwebfdev
https://github.com/HelgeCPH/delphi_evaluator

February 2023

providing professional value, students appreciate the
course as “super fun class” and “fun project”. Others
state that: “the simulator was fun because it felt like
real users” Finally, students value ..J] freedom in
terms of choosing your tech stack” and consider it 7...]
awesome that you [are] allowed for experimentation’.

Workload and time pressure. Naturally, the
course is also very demanding. One states that it
is ‘[..] the 7.5 ECTS course | have spent the most
time on since | started”, while another mentions how
“the workload can be quite large which can lead to
prioritizing other courses”. Some students consider
the perceived support insufficient and problematic due
to the same freedom considered positive by others:
“everyone having different systems meant you could
not really get help with any technical problems”.

An Industry-relevant Course

When planning the course, before its first iteration
in 2020, we discussed the syllabus with two con-
sultants from a consultancy' focusing on DevOps
and continuous delivery. Furthermore, we informally
gather feedback from our industrial guest lecturers
on the relevancy of the course each year. So far,
we discussed the course with seven guest lecturers
who work as consultants for Eficode, Accenture, and
the Implement Consulting Group. They value that it is
one of the few courses in the country that teaches
DevOps concepts and related technologies, while —
importantly — allowing students to experience software
engineering and the effects of their decisions in a more
realistic environment.

This course does not only decrease the gap be-
tween industrial practice and academic education, it
also makes students more effective in subsequent
courses and projects as it increases the quality in their
production of software. For example, we know that stu-
dents that took this course establish automatic CI/CD
chains in proceeding courses to automate builds, tests,
and static analysis thereby increasing productivity and
quality of their projects.

A Safe Place to Practice

Students learn and gather experience in a realistic
but safe manner in which even disastrous events like
complete loss of user data can occur and serve as a
learning experience.

10https://www.eficode.com/pragma

Special Issue on Software Engineering Education & Training

https://education.github.com/experiences/intro_to_web_dev
https://github.com/HelgeCPH/delphi_evaluator
https://www.eficode.com/praqma

For example, in multiple iterations of the course,
some groups had their databases (those storing user
information, tweets etc.) encrypted and held to ransom
due to exposure of vulnerable default configurations.
Similarly, multiple groups completely lost data stored
in databases either due to inappropriate storage of
data within ephemeral containers or due to erroneous
overwriting during updates of the live system, e.g.,
when setting up automatic deployments.

Even though such experiences are unpleasant to
the respective groups and may cause frictions in
project work, they result in important class conversa-
tion followed by the application of mitigation strategies,
e.g., backups, increased security hardening. Further-
more, they serve as learning experiences that trigger
— as we believe — long-lasting changes in the student
awareness.

Promoting System Thinking

Every year, students become aware of the impact of
their design decisions on their system performance.
A common issue groups face is the modeling of data
based on premature assumptions, e.g., which data
is important and should be supported by database
indexes. Over time, students learn that the “real-world”
used by the simulator differs from initial assumptions
and the performance of their systems gradually de-
creases.

Similarly, even though likely obvious to experienced
professionals, students experience the effect of hosting
their systems in data centers on the other side of the
globe, which generally results in response times that
are considered “unacceptable” by the simulator. This
triggers for instance the necessity to move systems
to other data centers or cloud vendors, which in turn
exposes directly the quality of encapsulation of system
components and their deployability.

Fostering Cost Awareness

Being responsible for evolving and maintaining a sys-
tem in a live environment directly highlights the costs
associated with software. Depending on the design
and resources required of student systems, groups
might run out of free credits, e.g., on DigitalOcean,
which triggers saving strategies to share costs among
accounts.

For example, groups that deploy their systems as
loosely coupled Docker containers and encode infras-
tructure as code usually experience that they can move
their systems with no or minimal modifications even
between cloud vendors. Also, groups that specify their
infrastructure as code save costs by “hibernating” their

Special Issue on Software Engineering Education & Training

systems until demonstrations in the exams.

The effect of design decisions to operational cost
cannot be experienced by discussing software quality
in terms of design patterns, architectural properties, or
code quality.

A Space for Varying Skills and Motivations
We observe that some groups find it more challenging
than others to cope with the project workload and the
number of new concepts presented weekly. However,
our simulation has proven to be modest enough to
be handled with various levels of technical skills and
motivation.

For example, we see all kinds of student sys-
tems ranging from simple web-applications that are
deployed on the smallest available VPSs with possibly
a load balancer in front'" to applications that are
deployed as services onto self-managed Kubernetes
clusters.

During group formation, we recommend students
to discuss motivation and skills to allow everybody to
have a fun and instructive experience.

Being responsible for a hands-on course with simu-
lated live environment is challenging. In this section,
we focus on educators and trainers and discuss what
to be mindful of when teaching a similar course. We
focus on what is required on top of executing “regular’
lectures and exams.

Developing a Live Simulator

Developing simulations is difficult and time consuming.
Our simulation is an artificially generated API load test
spanning ten weeks based on a scenario in which hy-
pothetical users register (user names generated using
US census data), send hypothetical tweets (simple lan-
guage model trained on all Sherlock Holmes books),
un-/follow each other randomly, and in which the fre-
quency of actions increases over time. Writing code
that generates such a simulation is time consuming'2
and it is case-specific.

" https://www.digitalocean.com/community/tutorials/how-to-create-
a-high-availability-setup-with-heartbeat-and-reserved-ips-on-ubuntu-
16-04

2\ are happy to share the simulator upon request. However, it

is not shared publicly such that it does not influence the students’
solutions.

February 2023

https://www.digitalocean.com/community/tutorials/how-to-create-a-high-availability-setup-with-heartbeat-and-reserved-ips-on-ubuntu-16-04
https://www.digitalocean.com/community/tutorials/how-to-create-a-high-availability-setup-with-heartbeat-and-reserved-ips-on-ubuntu-16-04
https://www.digitalocean.com/community/tutorials/how-to-create-a-high-availability-setup-with-heartbeat-and-reserved-ips-on-ubuntu-16-04

Developing (Legacy) Case Systems

Besides the initial legacy version of ITU-MiniTwit that
students take over in the beginning, case-based learn-
ing requires cases for sessions that illustrate respective
topics. Currently, we have eight repositories under the
course organization on GitHub'® with adapted cases
that illustrate, e.g., how to containerize ITU-MiniTwit,
how to deploy it on VPSs, or how to add monitoring.
Developing and maintaining such cases takes time
and is an investment, which makes changing cases
in future harder.

Additionally, developing legacy systems like the
initial version of ITU-MiniTwit, i.e., software that looks
as if written more than a decade ago, is actually quite
hard. Amongst others, package repositories of end-
of-life Linux distributions are offline and deprecated
versions of library dependencies have to be unearthed.

Adapting to Class Size
Scaling the class up to 80 students requires teachers
to carefully assess resources before semester start.

Our teaching assistants and sometimes we our-
selves meet the student groups weekly and discuss
project statuses.

However, not only the human resources have to
be scaled, but also the computational resources as
a failure in the simulator would break the students’
learning experience. Consequently, we run a pre-
simulation prior to the actual simulation with dummy
student systems just to assure that our infrastructure
is capable to handle the actual scenario. This pre-
simulation requires time for organization, execution,
monitoring, and validation.

Maintaining a Simulated Live Environment

As teachers, we are responsible for keeping a 24/7
simulator operational next to preparing and running
lectures. Usually this does not consume excessive time
during the term, but requires time before each new
iteration of the course, e.g., VPSs have to be instanti-
ated. We encoded the simulator setup via Vagrantfiles,
Bash, and Python scripts. However, regular software
maintenance tasks like update of dependencies and
environments to recent versions have to be performed.
Such seemingly small changes can have unforeseen
consequences. For example, we experienced in 2021
that a combination of Python interpreter with a library
caused a memory leak, which broke the simulator due

13 https://github.com/itu-devops

February 2023

to excessive memory consumption. This lead to late
night debugging sessions to circumvent the issue.

Targeting Heterogeneous Environments

Most students work using their laptops, which have het-
erogeneous hardware, which can make sessions that
require virtualization software like Docker or VirtualBox
challenging.

From a teaching perspective, we decided to tackle
that challenge by targeting a single environment (most
current Ubuntu LTS version). We encourage students
to setup a corresponding environment on their com-
puters. This is an imperfect solution from the students’
perspective since certain computers, like the new ARM
Macs cannot yet host it natively.

Based on our experiences with developing and teach-
ing a course that incorporates operation and mainte-
nance of live software, we have three main recommen-
dations for various roles in the SE community:

For educators, trainers. To adequately prepare
students for their professional careers, we recommend
that evolution and maintenance of live systems should
be integrated into course work. In case no real-world
usage data is available, simulated usage data that puts
load on systems can be used to facilitate teaching.

For practitioners. To contribute to adequate ed-
ucation of future software engineers, we recommend
software systems are shared publicly together with rep-
resentative usage data. Finding suitable case systems
that can be used in teaching is quite difficult. Finding
respective usage data, i.e., how users interacted with
live systems that can be used to “replay” certain sce-
narios is virtually impossible.

Additionally, project based courses with live sys-
tems like ours allow for involvement from industry, e.g.,
in roles like advisors, assessors, or by providing skills
demanded in real-world DevOps.

For recruiters, project managers, team lead-
ers. When hiring new employees, recruiters, project
managers, team leaders, etc., can use a candidate’s
project that was developed in this course to gauge
a candidate’s capabilities. That is, besides grades or
certificates, the ability to reinstantiate a live system and
it's demonstration can form a basis for assessment or
a case in job interviews.

In this article, we describe the design of the course
“DevOps, Software Evolution and Software Mainte-
nance” that we developed and teach at IT University of

Special Issue on Software Engineering Education & Training

https://github.com/itu-devops

Copenhagen. The course is different from similar SE
courses in that it focuses project work on maintenance
and evolution of a live software system that is under
simulated load for two-thirds of the course period.

Students evaluate this course to be a fun and
challenging experience, practitioners consider the skills
that students acquire to be relevant.

With this article, we aim to encourage educators to
incorporate the aspect of evolution and maintenance
of live systems into SE curricula, and we aim to
encourage practitioners to share cases of systems with
captured real-world workloads to allow their integration
in education.

We thank Jens Egholm Pedersen for his contributions
to earlier iterations of this course, especially on the
sessions on logging and monitoring, and we thank all
our teaching assistants for their valuable contributions.

1. R. L. Glass, “Frequently forgotten fundamental facts
about software engineering,” IEEE software, vol. 18,
no. 3, pp. 112-111, 2001.

2. R. Stephens, Beginning Software Engineering. Wiley,
2022.

3. T. M. Pigoski, Practical software maintenance: best
practices for managing your software investment.
Wiley Publishing, 1996.

4. 1. Sommerville, Software Engineering. Pearson Edu-
cation, 2016.

5. B. Bruegge and A. Dutoit, Object-Oriented Software
Engineering Using UML, Patterns, and Java: Pearson
New International Edition. Pearson Education, 2013.

6. D. Spinellis, “Reading, writing, and code: The key
to writing readable code is developing good coding
style.,” Queue, vol. 1, no. 7, pp. 84-89, 2003.

7. J. Buchta, M. Petrenko, D. Poshyvanyk, and V. Ra-
jlich, “Teaching evolution of open-source projects in
software engineering courses,” in 2006 22nd IEEE
International Conference on Software Maintenance,
pp. 136-144, IEEE, 2006.

8. K. Kuusinen and S. Albertsen, “Industry-academy
collaboration in teaching devops and continuous de-
livery to software engineering students: towards im-
proved industrial relevance in higher education,” in
2019 IEEE/ACM 41st International Conference on
Software Engineering: Software Engineering Educa-
tion and Training (ICSE-SEET), pp. 23-27, IEEE,
2019.

Special Issue on Software Engineering Education & Training

9. V. Rajlich, “Software evolution and maintenance,”
in Future of Software Engineering Proceedings,
pp. 133—144, 2014.

10. A. Capozucca, N. Guelfi, and B. Ries, “Design of
a (yet another?) devops course,” in Software En-
gineering Aspects of Continuous Development and
New Paradigms of Software Production and Deploy-
ment: First International Workshop, DEVOPS 2018,
Chateau de Villebrumier, France, March 5-6, 2018,
Revised Selected Papers 1, pp. 1-18, Springer,
2019.

11. H. B. Christensen, “Teaching devops and cloud com-
puting using a cognitive apprenticeship and story-
telling approach,” in Proceedings of the 2016 ACM
conference on innovation and technology in com-
puter science education, pp. 174—179, 2016.

12. 1. Alves and C. Rocha, “Qualifying software engineers
undergraduates in devops-challenges of introducing
technical and non-technical concepts in a project-
oriented course,” in 2021 IEEE/ACM 43rd Interna-
tional Conference on Software Engineering: Software
Engineering Education and Training (ICSE-SEET),
pp. 144-153, IEEE, 2021.

13. M. Kuhrmann, J. Nakatumba-Nabende, R.-H. Pfeif-
fer, P. Tell, J. Klinder, T. Conte, S. G. MacDonell,
and R. Hebig, “Walking through the method zoo:
does higher education really meet software industry
demands?,” in 2019 IEEE/ACM 41st International
Conference on Software Engineering: Software Engi-
neering Education and Training (ICSE-SEET), pp. 1—
11, IEEE, 2019.

14. G. Kim, J. Humble, P. Debois, J. Willis, and N. Fors-
gren, The DevOps handbook: How to create world-
class agility, reliability, & security in technology orga-
nizations. |IT Revolution, 2021.

15. C. M. Goodman, “The delphi technique: a critique,’
Journal of advanced nursing, vol. 12, no. 6, pp. 729—
734, 1987.

" Rolf-Helge Pfeiffer is an Assistant
Professor at the IT University of Copenhagen in the
Research Center for Government IT. His research in-
terests and teaching are in the areas of software engi-
neering, software quality, software quality metrics, and
technical debt. Prior to his academic career, he worked
as a software engineer and team lead at the Danish

February 2023

Meteorological Institute, where he was responsible for
development and maintenance of 24/7 remote sensing
software systems.

T Mircea Lungu is an Associate Pro-
fessor in computer science at the IT University of
Copenhagen. His research interests and his teaching
are focused on software visualization, tools for the
analysis and steering of software evolution, and human
computer interaction, and personalized learning envi-
ronments. He is the main author and maintainer of the
API for zeeguu.org, a research system live since 2018
that supports language learners in studying text and
vocabulary in a hyper-personalized manner.

Paolo Tell is an Associate Profes-
sor of Software Engineering at the IT University of
Copenhagen’s Computer Science department, Den-
mark. His research and teaching are centered on
industry-academia collaborations. His research foci in-
clude software processes and software process im-
provement, teamwork, computer-supported coopera-
tive work, and (globally) distributed software engineer-
ing. Prior to his academic carrer, he worked, among
others, as software engineer involved in the develop-
ment of an aircraft simulator.

February 2023 Special Issue on Software Engineering Education & Training

	COURSE DESCRIPTION
	EVALUATION
	OBSERVATIONS & REFLECTIONS
	An Industry-relevant Course
	A Safe Place to Practice
	Promoting System Thinking
	Fostering Cost Awareness
	A Space for Varying Skills and Motivations

	CHALLENGES
	Developing a Live Simulator
	Developing (Legacy) Case Systems
	Adapting to Class Size
	Maintaining a Simulated Live Environment
	Targeting Heterogeneous Environments

	RECOMMENDATIONS & CONCLUSION
	ACKNOWLEDGMENTS
	REFERENCES
	REFERENCES
	Biographies
	[width=1in,height=1.25in,clip,keepaspectratio]ropf.jpgRolf-Helge Pfeiffer
	[width=1in,height=1.25in,clip,keepaspectratio]mlun.pngMircea Lungu
	[width=1in,height=1.25in,clip,keepaspectratio]pate.pngPaolo Tell

