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ABSTRACT
We consider the problem of computing differentially private ap-

proximate histograms and heavy hitters in a stream of elements. In

the non-private setting, this is often done using the sketch of Misra

and Gries [Science of Computer Programming, 1982]. Chan, Li, Shi,

and Xu [PETS 2012] describe a differentially private version of the

Misra-Gries sketch, but the amount of noise it adds can be large

and scales linearly with the size of the sketch: the more accurate

the sketch is, the more noise this approach has to add. We present

a better mechanism for releasing Misra-Gries sketch under (Y, 𝛿)-
differential privacy. It adds noise with magnitude independent of

the size of the sketch size, in fact, the maximum error coming from

the noise is the same as the best known in the private non-streaming

setting, up to a constant factor. Our mechanism is simple and likely

to be practical. We also give a simple post-processing step of the

Misra-Gries sketch that does not increase the worst-case error guar-

antee. It is sufficient to add noise to this new sketch with less than

twice the magnitude of the non-streaming setting. This improves

on the previous result for Y-differential privacy where the noise

scales linearly to the size of the sketch.

1 INTRODUCTION
Computing the histogram of a dataset is one of the most fundamen-

tal tasks in data analysis. This problem has been investigated thor-

oughly in the differentially private setting [3, 4, 12, 15, 17, 19, 21].

These algorithms start by computing the histogram exactly and then

adding noise to ensure privacy. However, in practice, the amount of

data is often so large that computing the histogram exactly would

be impractical. This is, for example, the case when computing the

histogram of high-volume streams such as when monitoring com-

puter networks, online users, financial markets, and similar. In that

case, we need an efficient streaming algorithm. Since the streaming

algorithm would only compute the histogram approximately, the

above-mentioned approach that first computes the exact histogram

is unfeasible. In practice, non-private approximate histograms are

often computed using the Misra-Gries (MG) sketch [23]. The MG

sketch of size 𝑘 returns at most 𝑘 items and their approximate

frequencies 𝑓 such that 𝑓 (𝑥) ∈ [𝑓 (𝑥) − 𝑛/(𝑘 + 1), 𝑓 (𝑥)] for all
elements 𝑥 where 𝑓 (𝑥) is the true frequency and 𝑛 is the length of

the stream. This error is known to be optimal [8]. In this work, we

develop a way of releasing a MG sketch in a differentially private

way while adding only a small amount of noise. This allows us to

efficiently and accurately compute approximate histograms in the

streaming setting while not violating users’ privacy. This can then

be used to solve the heavy hitters problem in a differentially private

way. Our result improves upon the work of Chan et al. [11] who

also show a way of privately releasing the MG sketch, but who

need a greater amount of noise; we discuss this below.

In general, the issue with making approximation algorithms dif-

ferentially private is that although we may be approximating a

function with low global sensitivity, the algorithm itself (or rather

the function it implements) may have a much larger global sen-

sitivity. We get around this issue by exploiting the structure of

the difference between the MG sketches for neighboring inputs.

This allows us to prove that the following simple mechanism en-

sures (Y, 𝛿)-differential privacy: (1) We compute the Misra-Gries

sketch, (2) we add to each counter independently noise distributed

as Laplace(1/Y), (3) we add to all counters the same value, also dis-

tributed as Laplace(1/Y), (4) we remove all counters smaller than

1 + 2 ln(3/𝛿)/Y. Specifically, we show that this algorithm satisfies

the following guarantees:

Theorem 11 (simplified). The above algorithm is (Y, 𝛿)-differentially
private, uses 2𝑘 words of space, and returns a frequency oracle 𝑓 with
maximum error of 𝑛/(𝑘 + 1) +𝑂 (log(1/𝛿)/Y) with high probability

for 𝛿 being sufficiently small.

A construction for a differentially private Misra-Gries sketch has

been given before by Chan et al. [11]. However, the more accurate

they want their sketch to be (and the bigger it is), their approach

has to add more noise. The reason is that they directly rely on the

global ℓ1-sensitivity of the sketch. Specifically, if the sketch has

size 𝑘 (and thus error 𝑛/(𝑘 + 1) on a stream of 𝑛 elements), its

global sensitivity is 𝑘 , and they thus have to add noise of magnitude

𝑘/Y. Their mechanism ends up with an error of 𝑂 (𝑘 log(𝑑)/Y) for
Y-differential privacy with 𝑑 being the universe size. This can be

easily improved to 𝑂 (𝑘 log(1/𝛿)/Y) for (Y, 𝛿)-differential privacy
with a thresholding technique similar to what we do in step (4) of
our algorithm above. This also means that they cannot get more

accurate than error Θ
(√︁

𝑛 log(1/𝛿)/Y
)
, no matter what value of 𝑘

one chooses. We achieve that the biggest error, as compared to the

values from the MG sketch, among all elements is 𝑂 (log(1/𝛿)/Y)
assuming 𝛿 is sufficiently small (we show more detailed bounds

including the mean squared errors in Theorem 11). This is the same

as the best private solution that starts with an exact histogram [21].

In fact, for any mechanism that outputs at most 𝑘 heavy hitters

there exists input with error at least 𝑛/(𝑘 + 1) in the streaming

setting [8] and input with error at least 𝑂 (log(min(𝑑, 1/𝛿))/Y) [4]
under differential privacy. In Section 6 we discuss how to achieve Y-

differential privacywith error𝑛/(𝑘+1)+𝑂 (log(𝑑)/Y). Therefore the
error of our mechanisms is asymptotically optimal for approximate

and pure differential privacy, respectively. The techniques used in

Section 6 could also be used to get approximate differential privacy,

but the resulting sketch would not have strong competitiveness
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guarantees with respect to the non-private Misra-Gries sketch,

unlike the sketch that we give.

Chan et al. [11] use their differentially private Misra-Gries sketch

as a subroutine for continual observation and combine sketches

with an untrusted aggregator. Those settings are not a focus of our

paper but our work can replace their algorithm as the subroutine

, leading to better results also for those settings. However, the

noise magnitude increases linearly in the number of merges. As

a side note, we show that in the case of a trusted aggregator, the

approach of [11] can handle merge operations without increasing

error. While that approach adds significantly more noise than ours

if we do not merge, it can with this improvement perform better

when the number of merges is very large (at least proportional to

the sketch size).

Another approach that can be used is to use a randomized fre-

quency oracle to recover heavy hitters. However, it seems hard

to do this with the optimal error size. In its most basic form [18,

Appendix D], this approach needs noise of magnitude Θ(log(𝑑)/Y),
even if we have a sketch with sensitivity 1 (the approach increases

the sensitivity to log(𝑑), necessitating the higher noise magnitude),

leading to maximum error at least Ω(log(𝑘) log(𝑑)/Y). [5] show a

more involved approach which reduces the maximum error com-

ing from the noise to Θ((log(𝑘) + log(𝑑))/Y), but at the cost of

increasing the error coming from the sketch by a factor of log(𝑑).
This means that even if we had a sketch with error Θ(𝑛/𝑘) and
sensitivity 1, neither of these two approaches would lead to optimal

guarantees, unlike the algorithm we give in this paper.

Relation to [7]. Essentially the same result as Theorem 11 has

been claimed in [7]. However, their approach ignores the discrep-

ancy between the global sensitivity of a function we are approxi-

mating and that of the function the algorithm actually computes.

Their mechanism adds noise scaled to the sensitivity of the exact

histogram which is 1 when a user contributes a single element

to the stream. But as shown by Chan et al. [11] the sensitivity of

the Misra-Gries sketch scales linearly with the number of counters

in the sketch. The algorithm from [7] thus does not achieve the

claimed privacy parameters. Moreover, it seems unlikely this could

be easily fixed – not without doing something along the lines of

what we do in this paper.

2 TECHNICAL OVERVIEW
Misra-Gries sketch. Since our approach depends on the properties

of the MG sketch, we describe it here. Readers familiar with the

MG sketch may wish to skip this. We describe the standard version;

in Section 5 we use a slight modification, but we do not need that

here.

Suppose we receive a sequence of elements from some universe.

At any time, we will be storing at most 𝑘 of these elements. Each

stored item has an associated counter, other elements have implic-

itly their counter equal to 0. When we process an element, we do

one of the following three updates: (1) if the element is being stored,

increment its counter by 1, (2) if it is not being stored and the num-

ber of stored items is < 𝑘 , store the element and set its counter to 1,
(3) otherwise decrement all 𝑘 counters by 1 and remove those that

reach 0. The exact guarantees on the output will not be important

now, and we will discuss them in Section 5.

Our contributions. We now sketch how to release an MG sketch

in a differentially private way.

Consider two neighboring data streams 𝑆 = (𝑆1, · · · , 𝑆𝑛) and
𝑆 ′ = (𝑆1, · · · , 𝑆𝑖−1, 𝑆𝑖+1, · · · , 𝑆𝑛) for some 𝑖 ∈ [𝑛]. At step 𝑖 − 1, the
state of the MG sketch on both inputs is exactly the same.𝑀𝐺𝑆 then

receives the item 𝑆𝑖 while𝑀𝐺𝑆′ does not. This either increments

one of the counters of 𝑀𝐺𝑆 (possibly by adding an element and

raising its counter from 0 to 1) or decrements all its counters. In

ℓ1 distance, the vector of the counters thus changes by at most

𝑘 . One can show by induction that this will stay this way: at any

point in time, ∥𝑀𝐺𝑆 −𝑀𝐺𝑆′ ∥1 ≤ 𝑘 . By a standard global sensitivity

argument, one can achieve pure DP by adding noise of magnitude

𝑘/Y to each count. This is the approach used in [11]. Similarly,

we could achieve (Y, 𝛿)-DP by using the Gaussian mechanism [14]

with noise magnitude proportional to the ℓ2 sensitivity, which is

sup𝑆,𝑆′ ∥𝑀𝐺𝑆 −𝑀𝐺𝑆′ ∥2 ≤
√
𝑘 . We want to instead achieve noise

with magnitude 𝑂 (1/Y) at each count. To this end, we need to

exploit the structure of𝑀𝐺𝑆 −𝑀𝐺𝑆′ .

What we just described requires that we add the noise to the

counts of all items in the universe, also to those that are not stored

in the sketch. This results in the maximum error of all frequencies

depending on the universe’s size, which we do not want. However,

it is known that this can be easily solved under (Y, 𝛿)-differential
privacy by only adding noise to the stored items and then removing

values smaller than an appropriately chosen threshold [21]. This

may introduce additional error – for this reason, we end up with

error𝑂 (log(1/𝛿)/Y). As this is a somewhat standard technique, we

ignore this in this section, we assume that the sketches𝑀𝐺𝑆 and

𝑀𝐺𝑆′ store the same set of elements; the thresholding allows us to

remove this assumption, while allowing us to add noise only to the

stored items, at the cost of only getting approximate DP.

We now focus on the structure of𝑀𝐺𝑆 −𝑀𝐺𝑆′ . After we add to

𝑀𝐺𝑆 the element 𝑆𝑖 , it either holds (1) that𝑀𝐺𝑆 −𝑀𝐺𝑆′ is a vector

of all 0’s and one 1 or (2) that 𝑀𝐺𝑆 −𝑀𝐺𝑆′ = 1𝑘 1
. We show by

induction that this will remain the case as more updates are done

to the sketches (note that the remainders of the streams are the

same). We do not sketch the proof here, as it is quite technical.

How do we use the structure of𝑀𝐺𝑆 −𝑀𝐺𝑆′ to our advantage?

We add noise twice. First, we independently add to each counter

noise distributed as Laplace(1/Y). Second, we add to all counters

the same value, also distributed asLaplace(1/Y). That is, we release
𝑀𝐺𝑆 + Laplace(1/Y)⊗𝑘 + Laplace(1/Y)1𝑘 2

. Intuitively speaking,

the first noise hides the difference between 𝑆 and 𝑆 ′ in case (1)
and the second noise hides the difference in case (2). We now

sketch why this is so for worse constants: 2/Y in place of 1/Y. When

proving this formally, we use a more technical proof which leads

to the better constant.

We now sketch why this is differentially private. Let 𝑚𝑆 be

the mean of the counters in 𝑀𝐺𝑆 for 𝑆 being an input stream.

We may represent 𝑀𝐺𝑆 as (𝑀𝐺𝑆 −𝑚𝑆1,𝑚𝑆 ) (note that there is

a bijection between this representation and the original sketch).

We now argue that the ℓ1-sensitivity of this representation is < 2
(treating the representation as a 𝑘 + 1-dimensional vector for the

1
We use 1𝑘 the denote the dimension 𝑘 vector of all ones.

2
For 𝐷 being a distribution, we use 𝐷⊗𝑘 to denote the 𝑘-dimensional distribution

consisting of 𝑘 independent copies of 𝐷 .
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sake of computing the ℓ1 distances). Consider the first case. In that

case, the averages𝑚𝑆 ,𝑚𝑆′ differ by 1/𝑘 . As such,𝑀𝐺𝑆 −𝑚𝑆1
𝑘
and

𝑀𝐺𝑆′ −𝑚𝑆′1
𝑘
differ by 1/𝑘 at 𝑘 − 1 coordinates and by 1 − 1/𝑘 at

one coordinate. The overall ℓ1 change of the representation is thus

(𝑘 − 1) · 1
𝑘
+ (1 − 1/𝑘) + 1/𝑘 = 2 − 1/𝑘 < 2.

Consider now the second case when 𝑀𝐺𝑆 − 𝑀𝐺𝑆′ = 1𝑘 . Thus,
𝑀𝐺𝑆 −𝑚𝑆 = 𝑀𝐺 ′

𝑆
−𝑚𝑆′ . At the same time |𝑚𝑆 −𝑚𝑆′ | = 1. This

means that the ℓ1 distance between the representations is 1. Overall,
the ℓ1-sensitivity of this representation is < 2.

This means that adding noise fromLaplace(2/Y)⊗𝑘+1 to this rep-
resentation of𝑀𝐺𝑆 will result in Y-differential privacy. The result-

ing value after adding the noise is (𝑀𝐺𝑆 −𝑚𝑆1+Laplace(2/Y)⊗𝑘 ,
𝑚𝑆 + Laplace(2/Y)). In the original vector representation of𝑀𝐺𝑆 ,

this corresponds to𝑀𝐺𝑆 +Laplace(2/Y)⊗𝑘 +Laplace(2/Y)1𝑘 and,

by postprocessing, releasing this value is also differentially private.

But this is exactly the value we wanted to show is differentially

private!

3 PRELIMINARIES
Setup of this paper. We useU to denote a universe of elements.

We assume thatU is a totally ordered set of size 𝑑 . That is,U = [𝑑]
where [𝑑] = {1, . . . , 𝑑}. Given a stream 𝑆 ∈ UN wewant to estimate

the frequency in 𝑆 of each element ofU. Our algorithm outputs a

set 𝑇 ⊆ U of keys and a frequency estimate 𝑐𝑖 for all 𝑖 ∈ 𝑇 . The
value 𝑐 𝑗 is implicitly 0 for any 𝑗 ∉ 𝑇 . Let 𝑓 (𝑥) denote the true

frequency of 𝑥 in the stream 𝑆 . Our goal is to minimize the largest

error between 𝑐𝑥 and 𝑓 (𝑥) among all 𝑥 ∈ U.

Differential privacy. Differential privacy is a rigorous definition

for describing the privacy loss of a randomized mechanism intro-

duced by Dwork et al. [15]. Intuitively, differential privacy protects

privacy by restricting howmuch the output distribution can change

when replacing the input from one individual. This is captured by

the definition of neighboring datasets. We use the add-remove

neighborhood definition for differential privacy.

Definition 1 (Neighboring Streams). Let 𝑆 be a stream of
length 𝑛. Two streams 𝑆 and 𝑆 ′ are neighboring denoted 𝑆 ∼ 𝑆 ′

if there exists an 𝑖 such that 𝑆 = (𝑆 ′1, . . . , 𝑆
′
𝑖−1, 𝑆

′
𝑖+1, . . . , 𝑆

′
𝑛+1) or

𝑆 ′ = (𝑆1, . . . , 𝑆𝑖−1, 𝑆𝑖+1, . . . , 𝑆𝑛).

Definition 2 (Differential privacy [14]). A randomizedmech-
anismM : UN → R satisfies (Y, 𝛿)-differential privacy if and only
if for all pairs of neighboring streams 𝑆 ∼ 𝑆 ′ and all measurable sets
of outputs 𝑍 ⊆ R it holds that

Pr[M(𝑆) ∈ 𝑍 ] ≤ 𝑒Y Pr[M(𝑆 ′) ∈ 𝑍 ] + 𝛿 .

Samples from a Laplace distribution are used in many differen-

tial private algorithms, most notably the Laplace mechanism [15].

We write Laplace(𝑏) to denote a random variable with a Laplace

distribution with scale 𝑏 centered around 0. We sometimes abuse

notation and write Laplace(𝑏) to denote the value of a random

variable drawn from the distribution.

Definition 3 (Laplace distribution). The probability density
and cumulative distribution functions of the Laplace distribution

centered around 0 with scale parameter 𝑏 are 𝑓𝑏 (𝑥) = 1
2𝑏
𝑒−|𝑥 |/𝑏 , and

Pr[Laplace(𝑏) ≤ 𝑥] = 1
2𝑒

𝑥/𝑏 if 𝑥 < 0 and 1 − 1
2𝑒
−𝑥/𝑏 for 𝑥 ≥ 0.

4 RELATEDWORK
Chan et al. [11] shows that the global ℓ1-sensitivity of a Misra-Gries

sketch is Δ1 = 𝑘 . (They actually show that the sensitivity is 𝑘+1 but
they use a different definition of neighboring datasets that assumes

𝑛 is known. Applying their techniques under our definition yields

sensitivity 𝑘 .) They achieve privacy by adding Laplace noise with

scale 𝑘/Y to all elements in the universe and keep the top-𝑘 noisy

counts. This gives an expected maximum error of 𝑂 (𝑘 log(𝑑)/Y)
with Y-DP for 𝑑 being the universe size. They use the algorithm as

a subroutine for continual observation and merge sketches with an

untrusted aggregator. Those settings are not a focus of our paper

but our work can replace their algorithm as the subroutine when

approximate differential privacy is acceptable.

Böhler and Kerschbaum [7] worked on differential private heavy

hitters with no trusted server by using secure multi-party com-

putation. One of their algorithms adds noise to the counters of a

Misra-Gries sketch. They avoid adding noise to all elements in the

universe by removing noisy counts below a threshold which adds

an error of 𝑂 (log(1/𝛿)/Y). This is a useful technique for hiding

differences in keys between neighboring sketches that removes the

dependency on 𝑑 in the error. Unfortunately, as stated in the intro-

duction their mechanism uses the wrong sensitivity. The sensitivity

of the sketch is 𝑘 .If the magnitude of noise and the threshold are in-

creased accordingly the error of their approach is 𝑂 (𝑘 log(𝑘/𝛿)/Y).
If we ignore the memory restriction in the streaming setting,

the problem is the same as the top-𝑘 problem [10, 13, 22, 25]. The

problem we solve can also be seen as a generalization of the sparse

histogram problem. This has been investigated in [3, 4, 12, 21].

Notably, Balcer and Vadhan [4] provides a lower bound showing

that for any (Y, 𝛿)-differentially private mechanism that outputs

at most 𝑘 counters, there exists input such that the expected error

for some elements is Ω(min(log(𝑑/𝑘)/Y, log(1/𝛿)/Y, 𝑛)) (assuming

Y2 > 𝛿). The noise that we add in fact matches the second branch

of themin over all elements.

A closely related problem is that of implementing frequency

oracles in the streaming setting under differential privacy. This has

been studied in e.g. [18, 24, 31]. These approaches do not directly re-

turn the heavy hitters. The simplest approach for finding the heavy

hitters is to iterate over the universe which might be unfeasible.

However, there are constructions for finding heavy hitters with

frequency oracles more efficiently (see Bassily et al. [5]). However,

as we discussed in the introduction, the approach of [5] leads to

worse maximum error than what we get unless the sketch size is

very large and the universe size is small.

The heavy hitters problem has also received a lot of attention

in local differential privacy, starting with the paper introducing

the RAPPOR mechanism [16] and continuing with [5, 9, 26, 28–

30]. This problem is practically relevant, it is used for example by

Apple to find commonly used emojis [2]. The problem has also been

recently investigated when using cryptographic primitives [32].

[6, 27] have recently given general frameworks for designing

differentially private approximation algorithms; however, if used

naively, they are not very efficient for releasing multiple values

3



(not more efficient than using composition) and they are thus not

suitable for the heavy hitters problem.

5 DIFFERENTIALLY PRIVATE MISRA-GRIES
In this section, we present our algorithm for releasing Misra-Gries

summaries. We say that two input streams 𝑆1, 𝑆2 are neighboring if

one can be obtained from the other by removing one element. This

definition is convenient in that it allows us to use the algorithm

even if the input length is not public knowledge.

We first present our variant of the non-private Misra-Gries

sketch in Algorithm 1 and later show how we add noise to achieve

(Y, 𝛿)-differential privacy. The algorithmwe use differs slightly from

most implementations of MG in that we do not remove elements

that have weight 0 until we need to re-use the counter. This will

allow us to achieve privacy with slightly lower error.

At all times,𝑘 counters are stored as key-value pairs.We initialize

the sketch with dummy keys that are not part ofU. This guarantees

that we never output any elements that are not part of the stream,

assuming we remove the dummy counters as post-processing.

The algorithm processes the elements of the stream one at a

time. At each step one of three updates is performed: (1) If the next

element of the stream is already stored the counter is incremented

by 1. (2) If there is no counter for the element and all𝑘 counters have

a value of at least 1 they are all decremented by 1. (3) Otherwise,
one of the elements with a count of zero is replaced by the new

element.

In case (3) we always remove the smallest element with a count

of zero. This allows us to limit the number of keys that differ be-

tween sketches for neighboring streams as shown in Lemma 5. The

choice of removing the minimum element is arbitrary but the order

of removal must be independent of the stream so that it is con-

sistent between neighboring datasets. The limit on differing keys

allows us to obtain a slightly lower error for our private mechanism.

However, it is still possible to apply our mechanism with standard

implementations of MG. We discuss this in Section 5.1.

Algorithm 1:Misra-Gries (MG)

Input :Positive integer 𝑘 and stream 𝑆 ∈ UN
1 𝑇 ← {𝑑 + 1, . . . , 𝑑 + 𝑘 } // Start with 𝑘 dummy counters

2 𝑐𝑖 ← 0 for all 𝑖 ∈ 𝑇
3 foreach 𝑥 ∈ 𝑆 do
4 if 𝑥 ∈ 𝑇 then // Branch 1

5 𝑐𝑥 ← 𝑐𝑥 + 1
6 else if 𝑐𝑖 ≥ 1 for all 𝑖 ∈ 𝑇 then // Branch 2

7 𝑐𝑖 ← 𝑐𝑖 − 1 for all 𝑖 ∈ 𝑇
8 else // Branch 3

9 Let 𝑦 be the smallest key satisfying 𝑐𝑦 = 0

10 𝑇 ← (𝑇 ∪ {𝑥 }) \ {𝑦 }
11 𝑐𝑥 ← 1

12 end
13 end
14 return𝑇, 𝑐

The same guarantees about correctness hold for our version of

the MG sketch, as for the original version. This can be easily shown,

as the original version only differs in that it immediately removes

any key whose counter is zero. Since the counters for items not in

the sketch are implicitly zero, one can see by induction that the

estimated frequencies by our version are exactly the same as those

in the original version. We still need this modified version, as the

set of keys it stores is different from the original version, which

we use below. The fact that the returned estimates are the same

however allows us to use the following fact

Fact 4 (Bose et al. [8]). Let 𝑓 (𝑥) be the frequency estimates
given by an MG sketch of size 𝑘 for 𝑛 being the input size. Then for
all 𝑥 ∈ U, it holds 𝑓 (𝑥) ∈ [𝑓 (𝑥) − 𝑛/(𝑘 + 1), 𝑓 (𝑥)], where 𝑓 (𝑥) is
the true frequency of 𝑥 .

Note that this is optimal for any mechanism that returns a set

of at most 𝑘 elements. This is easy to see for an input stream that

contains 𝑘 +1 distinct elements each with frequency 𝑛/(𝑘 +1) since
at least one element must be removed.

We now analyze the value of𝑀𝐺𝑆 −𝑀𝐺𝑆′ for 𝑆, 𝑆
′
being neigh-

boring inputs. We will then use this in order to prove privacy. As

mentioned in Section 4, Chan et al. [11] showed that the ℓ1-sensitivy

for Misra-Gries sketches is 𝑘 . They show that this holds after pro-

cessing the element that differs for neighboring streams and use

induction to show that it holds for the remaining stream. Our analy-

sis follows a similar structure.We expand on their result by showing

that the sets of stored elements for neighboring inputs differ in at

most two keys when using our variant of Misra-Gries. We then

show how all this can be used to get differential privacy with only

a small amount of noise.

Lemma 5. Let 𝑇, 𝑐 ← MG(𝑘, 𝑆) and 𝑇 ′, 𝑐 ′ ← MG(𝑘, 𝑆 ′) be the
outputs of Algorithm 1 on a pair of neigboring streams 𝑆, 𝑆 ′ such that
𝑆 ′ is obtained by removing an element from 𝑆 . Then |𝑇 ∩𝑇 ′ | ≥ 𝑘 − 2
and all counters not in the intersection have a value of at most 1.
Moreover, it holds that either (1) 𝑐𝑖 = 𝑐 ′

𝑖
− 1 for all 𝑖 ∈ 𝑇 ′ and 𝑐 𝑗 = 0

for all 𝑗 ∉ 𝑇 ′ or (2) there exists an 𝑖 ∈ 𝑇 such that 𝑐𝑖 = 𝑐 ′
𝑖
+ 1 and

𝑐 𝑗 = 𝑐 ′
𝑗
for all 𝑗 ≠ 𝑖 .

Proof. Let 𝑆 ∼ 𝑆 ′ be pair of neighboring streams where 𝑆 ′ is
obtained by removing one element from 𝑆 . We show inductively

that the Lemma holds for any such 𝑆 and 𝑆 ′. Let 𝑤 = 𝑇 −𝑇 ′ and
𝑤 ′ = 𝑇 ′ − 𝑇 denote the set of keys that are only in one sketch.

Let 𝑐0 and 𝑐 ′0 denote the smallest element with a zero count in the

respective sketch when such an element exists. Then at any point

during execution after processing the element removed from 𝑆 the

sketches are in one of the following states:

(S1) 𝑇 = 𝑇 ′ and 𝑐𝑖 = 𝑐 ′
𝑖
− 1 for all 𝑖 ∈ 𝑇 .

(S2) There exist 𝑥1, 𝑥2 ∈ U such that 𝑤 = {𝑥1} and 𝑤 ′ = {𝑥2},
𝑐𝑥1 = 0, 𝑐 ′𝑥2

= 1 and 𝑐𝑖 = 𝑐 ′
𝑖
− 1 for all 𝑖 ∈ 𝑇 ∩𝑇 ′.

(S3) 𝑇 = 𝑇 ′ and there exists 𝑥1 ∈ U such that 𝑐𝑥1 = 𝑐 ′𝑥1
+ 1 and

𝑐𝑖 = 𝑐 ′
𝑖
for all 𝑖 ∈ 𝑇 \ {𝑥1}.

(S4) There exist 𝑥1, 𝑥2 ∈ U such that 𝑤 = {𝑥1} and 𝑤 ′ = {𝑥2},
𝑐𝑥1 = 1, 𝑐 ′𝑥2

= 0 and 𝑐𝑖 = 𝑐 ′
𝑖
for all 𝑖 ∈ 𝑇 ∩𝑇 ′.

(S5) There exist 𝑥1, 𝑥2, 𝑥3 ∈ U such that 𝑐𝑥1 = 𝑐 ′𝑥1
+1,𝑤 = {𝑥2},

𝑤 = {𝑥3}, 𝑐𝑥2 = 0, 𝑐 ′𝑥3
= 0 and 𝑐𝑖 = 𝑐 ′

𝑖
for all 𝑖 ∈ 𝑇 ∩𝑇 ′\{𝑥1}.

(S6) There exist 𝑥1, 𝑥2, 𝑥3, 𝑥4 ∈ U such that 𝑤 = {𝑥1, 𝑥2} and
𝑤 ′ = {𝑥3, 𝑥4}, 𝑐𝑥1 = 1, 𝑐𝑥2 = 𝑐 ′𝑥3

= 𝑐 ′𝑥4
= 0, 𝑐𝑖 = 𝑐 ′

𝑖
for all

𝑖 ∈ 𝑇 ∩𝑇 ′ and 𝑥4 = 𝑐 ′0.
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Let 𝑥 = 𝑆𝑖 be the element in stream 𝑆 which is not in stream 𝑆 ′.
Since the streams are identical in the first 𝑖−1 steps the sketches are
clearly the same before step 𝑖 . If there is a counter for 𝑥 in the sketch

we execute Branch 1 and the result corresponds to state S3. If there

is no counter for 𝑥 and no zero counters we execute Branch 2 and

the result corresponds to state S1. Otherwise, the 3rd branch of the

algorithm is executed and 𝑐0 is replaced by 𝑥 which corresponds to

state S4. Therefore we must be in one of the states S1, S3, or S4 for

𝑇, 𝑐 ←MG(𝑘, (𝑆1, . . . , 𝑥𝑖 )) and 𝑇 ′, 𝑐 ′ ←MG(𝑘, (𝑆 ′1, . . . , 𝑥
′
𝑖−1)).

We can then prove inductively that the Lemma holds since the

streams are identical for the elements (𝑆𝑖+1, . . . , 𝑆𝑛). We have to

consider the possibility of each of the branches being executed

for both sketches. The simplest case is when the element has a

counter in both sketches and Branch 1 is executed on both inputs.

This might happen in all states and we stay in the same state after

processing the element. But many other cases lead to new states.

Below we systematically consider all outcomes of processing

an element 𝑥 ∈ U when the sketches start in each of the above

states. When processing each element, one of the three branches

is executed for each sketch. This gives us up to 9 combinations to

check, although some are impossible for certain states. Furthermore,

when Branch 3 is executed we often have to consider which element

is replaced as it leads to different states. We refer to 𝑇, 𝑐 and 𝑇 ′, 𝑐 ′

as sketches 1 and 2, respectively.

State S1: If 𝑥 ∈ 𝑇 then 𝑥 ∈ 𝑇 ′ and Branch 1 is executed for both

sketches. Similarly, if Branch 2 is executed for sketch 1 it must also

be executed for sketch 2 as all counters are strictly larger. Therefore

we stay in state S1 in both cases. It is impossible to execute Branch

3 for sketch 2 since all counters are non-zero by definition. As such

the final case to consider is when 𝑥 ∉ 𝑇 and there is a counter with

value 0 in sketch 1. In this case, we execute Branch 3 for sketch 1

and Branch 2 for sketch 2. This result in state S4.

State S2: If 𝑥 ∈ 𝑇 we execute Branch 1 on sketch 1 and there

are two possible outcomes. If 𝑥 ≠ 𝑥1 we also execute Branch 1 on

sketch 2 and remain in state S2. If 𝑥 = 𝑥1 we execute Branch 2 on

sketch 2 in which case there are no changes to 𝑇 or 𝑇 ′ but now
𝑐𝑥 = 1 and 𝑐𝑖 = 𝑐 ′

𝑖
for all 𝑖 ∈ 𝑇 ∩ 𝑇 ′. As such, we transitioned to

state S4.

Since 𝑐𝑥1 = 0 by definition Branch 2 is never executed on sketch

1 and Branch 3 is never executed on sketch 2 as all counters are

non-zero. If 𝑥 = 𝑥2 Branch 3 is executed on sketch 1 and Branch 1

is executed for sketch 2. If 𝑐0 = 𝑥1 the sketches have the same keys

after processing 𝑥 and transition to state S1, otherwise if 𝑐0 ≠ 𝑥1
the sketches still differ for one key and remain in state S2.

Finally, if Branch 3 is executed on sketch 1 and Branch 2 is

executed on sketch 2 we again have two possibilities. In both cases,

the sketches store the same count on all elements from𝑇 ∩𝑇 ′ after
processing 𝑥 . If 𝑐0 = 𝑥1 it is removed from 𝑇 and replaced by 𝑥

with 𝑐𝑥 = 1 which corresponds to state S4. If 𝑐0 ≠ 𝑥1 we must have

that 𝑐0 ∈ 𝑇 ∩𝑇 ′. The two sketches differ on exactly two keys after

processing 𝑥 . One of the two keys stored in sketch 2 that are not in

sketch 1 must be the minimum zero key since the elements 𝑐0 and

𝑥2 now have counts of zero in sketch 2 and 𝑐0 was the minimum

zero key in 𝑇 ∩𝑇 ′. Therefore we transition to state S6.

State S3: The simplest case is 𝑥 ∈ 𝑇 since then 𝑥 ∈ 𝑇 ′ and
Branch 1 is executed for both sketches. If Branch 2 is executed for

sketch 1 and 𝑐 ′𝑥1
≠ 0 Branch 2 is also executed for sketch 2. For

both cases, we remain in state S3. Instead, if 𝑐 ′𝑥1
= 0 Branch 3 is

executed for sketch 2. Since all counters are decremented for sketch

1 and 𝑥1 is replaced in sketch 2 we transition to state S2. Lastly, if

Branch 3 is executed for sketch 1 it is also executed for sketch 2

and there are two cases. If the same element is removed we remain

in state S3. Otherwise, if 𝑥1 is replaced in sketch 2 we transition to

state S4.

State S4: Since sketch 2 contains a counter with a value of zero

in the remaining states Branch 2 is never executed. If Branch 1 is

executed for both sketches we stay in the same state as always

but if 𝑥 = 𝑥1 Branch 1 is executed for sketch 1 and Branch 3 is

executed for sketch 2. If 𝑐 ′0 = 𝑥2 then𝑇 = 𝑇 ′ after processing 𝑥 and

we transition to state S3. If 𝑐 ′0 ≠ 𝑥2 another element is removed

from sketch 2 which must also have a count of zero in sketch 1 and

we go to state S5.

If Branch 2 is executed on sketch 1 we know that 𝑐 ′𝑥2
must be

the only zero counter in sketch 2. Therefore it does not matter if

Branch 1 or 3 is executed on sketch 2. For both cases, we set 𝑐𝑥 = 1
and the sketches differ in one key which corresponds to state S2.

Finally, if Branch 3 is executed on sketch 1 we again have two

cases that lead to the same state. If 𝑥 = 𝑥2 or 𝑐 ′0 = 𝑥2 the current

counter 𝑐 ′𝑥2
is replaced but the counter that was replaced in sketch

1 remains in sketch 2. Otherwise, we have 𝑐0 = 𝑐 ′0 and we update

the same counter in sketches 1 and 2. Therefore we remain in state

S4 in both cases.

State S5: Since by definition both sketches contain counters

with a value of zero, the second branch is never executed while in

this state. If 𝑥 ∈ 𝑇 ∩𝑇 ′ we remain in the same state as always. We

have to consider the cases where 𝑥 = 𝑥2, 𝑥 = 𝑥3, and 𝑥 ∉ 𝑇 ∪𝑇 ′.
The resulting state depends on the elements that are replaced in the

sketch. For 𝑥 = 𝑥2 we transition to state S3 if 𝑐 ′0 = 𝑥3 and remain

in state S5 otherwise. The same argument shows that we transition

to state S3 or S5 based on 𝑐0 if 𝑥 = 𝑥3. When 𝑥 ∉ 𝑇 ∪𝑇 ′ we execute
Branch 3 on both sketches. We transition to state S3 only if 𝑐0 = 𝑥2
and 𝑐 ′0 = 𝑥3 since otherwise both sketches still have a zero counter

that is not stored in the other sketch and we stay in state S5.

State S6: Similar to state S5, the second branch is never executed

from this state. Here we have to consider the five cases where

𝑥 ∈ 𝑇 ∩𝑇 ′, 𝑥 = 𝑥1, 𝑥 = 𝑥2, 𝑥 ∈ 𝑤 ′, and 𝑥 ∉ 𝑇 ∪𝑇 ′. We know that

𝑥4 is replaced whenever 𝑥 ∉ 𝑇 ′. If 𝑥 ∈ 𝑇 ∩𝑇 ′ we execute Branch
1 on both sketches and remain in state S6. If 𝑥 = 𝑥1 we transition

to state S5 and for 𝑥 = 𝑥2 we transition to state S4. When 𝑥 ∈ 𝑤 ′
there are two possibilities. We always have 𝑐𝑥 = 𝑐 ′𝑥 after updating.

If 𝑐0 = 𝑥2 the sketches will share 𝑘 − 1 keys and transition to state

S4. If 𝑐0 ≠ 𝑥2 then another element that has a count of zero in both

sketches is replaced in sketch 1. We know that either this element

or the remaining zero-valued element of𝑤 ′ must be the smallest

zero-valued element in sketch 2. Therefore we remain in state S6.

The final case to consider is when 𝑥 ∉ 𝑇 ∪𝑇 ′. In this case Branch,

3 is executed for sketch 2 and 𝑥4 is replaced with 𝑥 in𝑇 ′. If 𝑐0 = 𝑥2
we transition to state S4. Otherwise, either 𝑥3 or the element that

was replaced from sketch 1 must be the minimum element with a

count of zero in sketch 2. As such, we remain in state S6. □

Next, we consider how to add noise to release the Misra-Gries

sketch under differential privacy. Recall that Chan et al. [11] achieves

privacy by adding noise to each counter which scales with 𝑘 . We
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avoid this by utilizing the structure of sketches for neighboring

streams shown in Lemma 5.We sample noise fromLaplace(1/Y) in-
dependently for each counter, but we also sample one more random

variable from the same distribution which is added to all counters.

Small values are then discarded using a threshold to hide differ-

ences in the sets of stored keys between neighboring inputs. This

is similar to the technique used by e.g. [21]. The algorithm takes

the output from MG as input. We sometimes write PMG(𝑘, 𝑆) as
a shorthand for PMG(MG(𝑘, 𝑆)).

Algorithm 2: Private Misra-Gries (PMG)

Parameters :Y, 𝛿 > 0

Input :Output from Algorithm 1:𝑇, 𝑐 ← MG(𝑘, 𝑆)
1 𝑇 ← ∅ Sample [ ∼ Laplace(1/Y)
2 foreach 𝑥 ∈ 𝑇 do
3 𝑐𝑥 ← 𝑐𝑥 + [ + Laplace(1/Y)
4 if 𝑐𝑥 ≥ 1 + 2 ln(3/𝛿)/Y then
5 𝑇 ← 𝑇 ∪ {𝑥 }
6 𝑐𝑥 ← 𝑐𝑥

7 end
8 end
9 return𝑇, 𝑐

We prove the privacy guarantees in three steps. First, we show

that changing either a single counter or all counters by 1 does

not change the output distribution significantly (Corollary 7). This

assumes that, for neighboring inputs, the set of stored elements is

exactly the same. By Lemma 5, we have that the difference between

the sets of stored keys is small and the corresponding counters

are ≤ 1. Relying on the thresholding, we bound the probability of

outputting one of these keys (Lemma 8). Finally, we combine these

two lemmas to show that the privacy guarantees hold for all cases

(we do this in Lemma 9).

Lemma 6. Let us have 𝑥, 𝑥 ′ ∈ R𝑘 such that one of the following
three cases holds

(1) ∃𝑖 ∈ [𝑘] such that |𝑥𝑖 − 𝑥 ′𝑖 | = 1 and 𝑥 𝑗 = 𝑥 ′
𝑗
for all 𝑗 ≠ 𝑖 .

(2) 𝑥𝑖 = 𝑥 ′
𝑖
− 1 for all 𝑖 ∈ [𝑘].

(3) 𝑥𝑖 = 𝑥 ′
𝑖
+ 1 for all 𝑖 ∈ [𝑘].

Then we have for any measurable set 𝑍 that

Pr[𝑥 + Laplace⊗𝑘 (1/Y) + Laplace(1/Y)1𝑘 ∈ 𝑍 ]

≤ 𝑒Y Pr[𝑥 ′ + Laplace(1/Y)⊗𝑘 + Laplace(1/Y)1𝑘 ∈ 𝑍 ]

Proof. We first focus on the simpler case (1). It holds by the

law of total expectation that

Pr[𝑥 + Laplace(1/Y)⊗𝑘 + Laplace(1/Y)1𝑘 ∈ 𝑍 ] =

𝐸𝑁∼Laplace(1/Y)
[
Pr[Laplace(1/Y)⊗𝑘 ∈ 𝑍 − 𝑥 − 𝑁1𝑘 |𝑦]

]
≤

𝑒Y𝐸𝑁∼Laplace(1/Y)
[
Pr[Laplace(1/Y)⊗𝑘 ∈ 𝑍 − 𝑥 ′ − 𝑁1𝑘 ) |𝑦]

]
=

𝑒Y Pr[𝑥 ′ + Laplace(1/Y)⊗𝑘 + Laplace(1/Y)1𝑘 ∈ 𝑍 ]
where to prove the inequality, we used that for any measurable set

𝐴, it holds Pr[Laplace(1/Y)⊗𝑘 ∈ 𝐴] ≤ 𝑒Y Pr[Laplace(1/Y)⊗𝑘 ∈
𝐴 − 𝜙] for any 𝜙 ∈ R𝑘 with ∥𝜙 ∥1 ≤ 1 (see [15]). Specifically, we

have set 𝐴 = 𝑍 − 𝑥 − 𝑁1𝑘 and 𝜙 = 𝑥 − 𝑥 ′ such that ∥𝜙 ∥1 = 1.

We now focus on the cases (2), (3). We will prove below that for

𝑥, 𝑥 ′ satisfying one of the conditions (2), (3) and for anymeasurable

𝐴,𝑍 and 𝑁1 ∼ Laplace(1/Y)⊗𝑘 , it holds

Pr[𝑥 + 𝑁1 + Laplace(1/Y)1𝑘 ∈ 𝑍 |𝑁1 ∈ 𝐴]

≤𝑒Y Pr[𝑥 ′ + 𝑁1 + Laplace(1/Y)1𝑘 ∈ 𝑍 |𝑁1 ∈ 𝐴]

This allows us to argue like above:

Pr[𝑥 + Laplace(1/Y)⊗𝑘 + Laplace(1/Y)1𝑘 ∈ 𝑍 ] =

𝐸
𝑁1∼Laplace(1/Y)⊗𝑘

[
Pr[𝑥 + 𝑁1 + Laplace(1/Y)1𝑘 ∈ 𝑍 |𝑁1]

]
≤

𝑒Y𝐸
𝑁1∼Laplace(1/Y)⊗𝑘

[
Pr[𝑥 ′ + 𝑁1 + Laplace(1/Y)1𝑘 ∈ 𝑍 |𝑁1]

]
=

𝑒Y Pr[𝑥 ′ + Laplace(1/Y)⊗𝑘 + Laplace(1/Y)1𝑘 ∈ 𝑍 ]

which would conclude the proof. Let 𝑔 : R→ R𝑘 be the function

𝑔(𝑎) = 𝑎1𝑘 and define 𝑔−1 (𝐵) = {𝑎 ∈ R|𝑔(𝑎) ∈ 𝐵} and note that 𝑔

is measurable. We focus on the case (2); the same argument works

for (3) as we discuss below. It holds

Pr[𝑥 + 𝑁1 + Laplace(1/Y)1𝑘 ∈ 𝑍 |𝑁1 ∈ 𝐴] =

Pr[Laplace(1/Y)1𝑘 ∈ 𝑍 − 𝑥 − 𝑁1 |𝑁1 ∈ 𝐴] =
Pr[Laplace(1/Y) ∈ 𝑔−1 (𝑍 − 𝑥 − 𝑁1) |𝑁1 ∈ 𝐴] =

Pr[Laplace(1/Y) ∈ 𝑔−1 (𝑍 − 𝑥 ′ − 1𝑘 − 𝑁1) |𝑁1 ∈ 𝐴] =
Pr[Laplace(1/Y) ∈ 𝑔−1 (𝑍 − 𝑥 ′ − 𝑁1) − 1|𝑁1 ∈ 𝐴] ≤
𝑒Y Pr[Laplace(1/Y) ∈ 𝑔−1 (𝑍 − 𝑥 ′ − 𝑁1) |𝑁1 ∈ 𝐴] =

𝑒Y Pr[Laplace(1/Y)1𝑘 ∈ 𝑍 − 𝑥 ′ − 𝑁1 |𝑁1 ∈ 𝐴] =

𝑒Y Pr[𝑥 ′ + 𝑁1 + Laplace(1/Y)1𝑘 ∈ 𝑍 |𝑁1 ∈ 𝐴] .

To prove the inequality, we again used the standard result that for

anymeasurable𝐴,Pr[Laplace(1/Y) ∈ 𝐴] ≤ 𝑒Y Pr[Laplace(1/Y) ∈
𝐴 − 1] holds. The same holds for 𝐴 + 1; this allows us to use the

exact same argument in case (3), in which the proof is exactly the

same except that −1 on lines 4,5 of the manipulations is replaced

by +1. □

Corollary 7. Let𝑇, 𝑐 and𝑇 ′, 𝑐 ′ be two sketches such that𝑇 = 𝑇 ′

and one of following holds:

(1) ∃𝑖 ∈ 𝑇 such that |𝑐𝑖 − 𝑐 ′𝑖 | = 1 and 𝑐 𝑗 = 𝑐 ′
𝑗
for all 𝑗 ≠ 𝑖 .

(2) 𝑐𝑖 = 𝑐 ′
𝑖
− 1 for all 𝑖 ∈ 𝑇 .

(3) 𝑐𝑖 = 𝑐 ′
𝑖
+ 1 for all 𝑖 ∈ 𝑇 .

Then for any measurable set of outputs 𝑍 , we have:

Pr[PMG(𝑇, 𝑐) ∈ 𝑍 ] ≤ 𝑒Y Pr[PMG(𝑇 ′, 𝑐 ′) ∈ 𝑍 ]

Proof. Consider first a modified algorithm PMG′ that does
not perform the thresholding: that is, if we remove the condition

on line 4. It can be easily seen that 𝑃𝑀𝐺 ′ only takes the vector 𝑐

and releases 𝑐 + Laplace(1/Y)⊗𝑘 + Laplace(1/Y)1𝑘 . We have just

shown in Lemma 6 that this means that

Pr[PMG′(𝑇, 𝑐) ∈ 𝑍 ′] ≤ 𝑒Y Pr[PMG′(𝑇 ′, 𝑐 ′) ∈ 𝑍 ′]

for any measurable 𝑍 ′.
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Let 𝜏 (𝑥) = 𝑥 for 𝑥 ≥ 1 + 2 ln(3/𝛿)/Y and 0 otherwise. Since

PMG(𝑇, 𝑐) = 𝜏 (𝑃𝑀𝐺 ′(𝑇, 𝑐)), it then holds

Pr[PMG(𝑇, 𝑐) ∈ 𝑍 ] = Pr[𝑃𝑀𝐺 ′(𝑇, 𝑐) ∈ 𝜏−1 (𝑍 )] ≤
𝑒Y Pr[PMG′(𝑇 ′, 𝑐 ′) ∈ 𝜏−1 (𝑍 )] = 𝑒Y Pr[PMG(𝑇 ′, 𝑐 ′) ∈ 𝑍 ]

as we wanted to show. □

Lemma 8. Let 𝑇, 𝑐 and 𝑇 ′, 𝑐 ′ be two sketches of size 𝑘 and let
𝑇 = 𝑇 ∩𝑇 ′. If we have that |𝑇 | ≥ 𝑘 − 2, 𝑐𝑖 = 𝑐 ′

𝑖
for all 𝑖 ∈ 𝑇 , and for

all 𝑥 ∉ 𝑇 , it holds 𝑐𝑥 , 𝑐 ′𝑥 ≤ 1. Then for any measurable set 𝑍 , it holds

Pr[PMG(𝑇, 𝑐) ∈ 𝑍 ] ≤ Pr[PMG(𝑇 ′, 𝑐 ′) ∈ 𝑍 ] + 𝛿

Proof. LetPMG′(𝑇, 𝑐) denote amechanism that runsPMG(𝑇, 𝑐)
and performs postprocessing by discarding any elements not in𝑇 . It

is easy to see that (𝑎) Pr[PMG′(𝑇, 𝑐) ∈ 𝑍 ] = Pr[PMG′(𝑇 ′, 𝑐 ′) ∈ 𝑍 ]
since the input sketches are identical for all elements in𝑇 . Moreover,

for any output𝑇, 𝑐 ← PMG(𝑇, 𝑐) for which𝑇 ⊆ 𝑇 , the postprocess-
ing does not affect the output. This gives us the following inequal-

ities: (𝑏) Pr[PMG(𝑇, 𝑐) ∈ 𝑍 ] ≤ Pr[PMG′(𝑇, 𝑐) ∈ 𝑍 ] + Pr[𝑇 ⊈
𝑇 ] and (𝑐) Pr[PMG′(𝑇 ′, 𝑐 ′) ∈ 𝑍 ] ≤ Pr[PMG(𝑇, 𝑐) ∈ 𝑍 ] + Pr[𝑇 ′ ⊈ 𝑇 ].
Combining (𝑎) − (𝑐), we get the inequality Pr[PMG(𝑇, 𝑐) ∈ 𝑍 ] ≤
Pr[PMG(𝑇 ′, 𝑐 ′) ∈ 𝑍 ] + Pr[𝑇 ⊈ 𝑇 ] + Pr[𝑇 ⊈ 𝑇 ′].

As such, the Lemma holds if Pr[𝑇 ⊈ 𝑇 ] +Pr[𝑇 ′ ⊈ 𝑇 ] ≤ 𝛿 . That

is, it suffices to prove that with probability at most 𝛿 any noisy

count for elements not in 𝑇 is at least 1 + 2 ln(3/𝛿)/Y. The noisy
count for such a key can only exceed the threshold if one of the

two noise samples added to the key is at least ln(3/𝛿)/Y. From
Definition 3 we have Pr[Laplace(1/Y) ≥ ln(3/𝛿)/Y] = 𝛿/6. There
are at most 4 keys not in 𝑇 which are in 𝑇 ∪ 𝑇 ′ and therefore at

most 6 noise samples affect the probability of outputting such a

key (the 4 individual Laplace noises and then the 2 global Laplace

noises, one for each sketch). By a union bound the probability that

any of these samples exceeds ln(3/𝛿)/Y is at most 𝛿 . □

We are now ready to prove the privacy guarantee of Algorithm 2.

Lemma 9. Algorithm 2 is (Y, 𝛿)-differentially private for any 𝑘 .

Proof. The Lemma holds if and only if for any pair neighboring

of neighboring streams 𝑆 ∼ 𝑆 ′ and any measurable set 𝑍 we have:

Pr[PMG(𝑇, 𝑐) ∈ 𝑍 ] ≤ 𝑒Y Pr[PMG(𝑇 ′, 𝑐 ′) ∈ 𝑍 ] + 𝛿,

where 𝑇, 𝑐 ←MG(𝑘, 𝑆) and 𝑇 ′, 𝑐 ′ ←MG(𝑘, 𝑆 ′) denotes the non-
private sketches for each stream.

We prove the guarantee above using an intermediate sketch that

“lies between” 𝑇, 𝑐 and 𝑇 ′, 𝑐 ′. The sketch has support 𝑇 ′ and we

denote the counters as 𝑐 . By Lemma 5, we know that |𝑇 ∩ 𝑇 ′ | ≥
𝑘 − 2. We will now come up with some conditions on 𝑐 such that if

these conditions hold, the lemma follows. We will then prove the

existence of such 𝑐 below. Assume that 𝑐𝑖 = 𝑐𝑖 for all 𝑖 ∈ 𝑇 and

𝑐 𝑗 ≤ 1 for all 𝑗 ∈ 𝑇 ′ \𝑇 . Lemma 8 then tells us that

Pr[PMG(𝑇, 𝑐) ∈ 𝑍 ] ≤ Pr[PMG(𝑇 ′, 𝑐) ∈ 𝑍 ] + 𝛿.

Assume also that one of the required cases for Corollary 7 holds

between 𝑐 ′ and 𝑐 . We have

Pr[PMG(𝑇 ′, 𝑐) ∈ 𝑍 ] ≤ 𝑒Y Pr[PMG(𝑇 ′, 𝑐 ′) ∈ 𝑍 ] .

Therefore, if such a sketch 𝑇 ′, 𝑐 exists for all 𝑆 and 𝑆 ′ the lemma

holds since

Pr[PMG(𝑇, 𝑐) ∈ 𝑍 ] ≤ Pr[PMG(𝑇 ′, 𝑐) ∈ 𝑍 ] + 𝛿
≤ 𝑒Y Pr[PMG(𝑇 ′, 𝑐 ′) ∈ 𝑍 ] + 𝛿 .

It remains to prove the existence of 𝑐 such that 𝑐𝑖 = 𝑐𝑖 for all

𝑖 ∈ 𝑇 and 𝑐 𝑗 ≤ 1 for all 𝑗 ∈ 𝑇 ′\𝑇 and such that one of the conditions

(1) − (3) of Corollary 7 holds between 𝑐 and 𝑐 ′. We first consider

neighboring streams where 𝑆 ′ is obtained by removing an element

from 𝑆 . From Lemma 5 we have two cases to consider. If 𝑐𝑖 = 𝑐 ′
𝑖
− 1

for all 𝑖 ∈ 𝑇 ′ we simply set 𝑐 = 𝑐 . Recall that we implicitly have

𝑐𝑖 = 0 for 𝑖 ∉ 𝑇 . Therefore the sketch satisfies the two conditions

above since 𝑐𝑖 = 𝑐𝑖 for all 𝑖 ∈ U and condition (2) of Corollary 7

holds. In the other case where 𝑐𝑖 = 𝑐 ′
𝑖
+ 1 for exactly one 𝑖 ∈ 𝑇

there are two possibilities. If 𝑖 ∈ 𝑇 ′ we again set 𝑐 = 𝑐 . When 𝑖 ∉ 𝑇 ′

there must exist at least one element 𝑗 ∈ 𝑇 ′ and 𝑗 ∉ 𝑇 with 𝑐 ′
𝑗
= 0.

We set 𝑐 𝑗 = 1 and 𝑐𝑖 = 𝑐𝑖 for all 𝑖 ≠ 𝑗 . In both cases 𝑐𝑖 = 𝑐𝑖 for all

𝑖 ∈ 𝑇 and 𝑐 𝑗 is at most one for 𝑗 ∉ 𝑇 . There is exactly one element

with a higher count in 𝑐 than 𝑐 ′ which means that condition (1) of

Corollary 7 holds.

If 𝑆 is obtained by removing an element from 𝑆 ′ the cases from
Lemma 5 are flipped. If 𝑐𝑖 − 1 = 𝑐 ′

𝑖
for all 𝑖 ∈ 𝑇 and 𝑐 ′

𝑗
= 0 for 𝑗 ∉ 𝑇

we set 𝑐𝑖 = 𝑐𝑖 if 𝑖 ∈ 𝑇 and 𝑐𝑖 = 1 otherwise. It clearly holds that

𝑐𝑖 = 𝑐𝑖 for all 𝑖 ∈ 𝑇 and 𝑐 𝑗 ≤ 1 for all 𝑗 ∉ 𝑇 . Since 𝑐𝑖 = 𝑐 ′
𝑖
+ 1 for all

𝑖 ∈ 𝑇 ′ condition (3) of Corollary 7 holds. Finally, if 𝑐𝑖 + 1 = 𝑐 ′
𝑖
for

exactly one 𝑖 ∈ 𝑇 ′ we simply set 𝑐 = 𝑐 . 𝑐𝑖 = 𝑐𝑖 clearly holds for all

𝑖 ∈ 𝑇 and condition (1) of Corollary 7 holds between 𝑐 and 𝑐 ′. □

Next, we analyze the error compared to the non-private sketch.

We state the error in terms of the largest error among all elements

of the sketch. Recall that we implicitly say that the count is zero

for any element not in the sketch.

Lemma 10. Let 𝑇, 𝑐 ← PMG(𝑇, 𝑐) denote the output of Algo-
rithm 2 for any sketch 𝑇, 𝑐 with |𝑇 | = 𝑘 . Then with probability at
least 1 − 𝛽 we have

𝑐𝑥 ∈
[
𝑐𝑥 −

2 ln
(
𝑘+1
𝛽

)
Y

− 1 −
2 ln

(
3/𝛿

)
Y

, 𝑐𝑥 +
2 ln

(
𝑘+1
𝛽

)
Y

]
for all 𝑥 ∈ 𝑇 and 𝑐𝑥 = 0 for all 𝑥 ∉ 𝑇 .

Proof. The two sources of error are the noise samples and the

thresholding step. We begin with a simple bound on the absolute

value of the Laplace distribution.

Pr

[
|Laplace(1/Y) | ≥ ln((𝑘 + 1)/𝛽)

Y

]
=

2 · Pr
[
Laplace(1/Y) ≤ − ln((𝑘 + 1)/𝛽)

Y

]
= 𝛽/(𝑘 + 1) .

Since 𝑘 + 1 samples are drawn we know by a union bound that

the absolute value of all samples is bounded by ln((𝑘 + 1)/𝛽)/Y
with probability at least 1 − 𝛽 . As such the absolute error from

the Laplace samples is at most 2 ln((𝑘 + 1)/𝛽)/Y for all 𝑥 ∈ 𝑇

since two samples are added to each count. Removing noisy counts

below the threshold potentially adds an additional error of at most
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1 + 2 ln(3/𝛿)/Y. It is easy to see that 𝑐𝑥 = 0 for all 𝑥 ∉ 𝑇 since the

algorithm never outputs any such elements. □

Theorem 11. PMG(𝑘, 𝑆) satisfies (Y, 𝛿)-differential privacy. Let
𝑓 (𝑥) denote the frequency of 𝑥 ∈ U in 𝑆 and let 𝑓 (𝑥) denote the
estimated frequency of 𝑥 from the output of PMG(𝑘, 𝑆). For any
element 𝑥 with 𝑓 (𝑥) = 0 we have 𝑓 (𝑥) = 0 and with probability at
least 1 − 𝛽 we have for all 𝑥 ∈ U that

𝑓 (𝑥) ∈
[
𝑓 (𝑥) −

2 ln
(
𝑘+1
𝛽

)
Y

− 1 − 2 ln(3/𝛿)
Y

− |𝑆 |
𝑘 + 1 , 𝑓 (𝑥) +

2 ln
(
𝑘+1
𝛽

)
Y

]
Moreover, the algorithm outputs all 𝑥 , such that 𝑓 (𝑥) > 0 and

there are at most 𝑘 such elements. For any fixed 𝑥 ∈ 𝑈 , the mean

squared error is 𝐸 [(𝑓 (𝑥) − 𝑓 (𝑥))2] ≤ 3
(
1 + 2+2 ln(3/𝛿)

Y + |𝑆 |
𝑘+1

)2
.

PMG(𝑘, 𝑆) uses 2𝑘 words of memory.

Proof. The space complexity is clearly as claimed, as we are

storing at any time at most 𝑘 items and counters. We focus on

proving privacy and correctness.

If 𝑓 (𝑥) = 0 we know that 𝑥 ∉ 𝑇 where 𝑇 is the keyset after

running Algorithm 1. Since Algorithm 2 outputs a subset of 𝑇 we

have 𝑓 (𝑥) = 0. The first part of the Theorem follows directly from

Fact 4 and Lemmas 9 and 10.

We now bound the mean squared error. There are three sources

of error. Let 𝑟1 be the error coming from the Laplace noise, 𝑟2 from

the thresholding, and 𝑟3 the error made by the MG sketch. Then

𝐸 [(𝑓 (𝑥) − 𝑓 (𝑥))2] = 𝐸 [(𝑟1 + 𝑟2 + 𝑟3)2] ≤ 3(𝐸 [𝑟21 ] + 𝐸 [𝑟
2
2 ] + 𝐸 [𝑟

2
3 ])

by equivalence of norms (for any dimension 𝑛 vector 𝑣 , ∥𝑣 ∥1 ≤√
𝑛∥𝑣 ∥2). The errors 𝑟2, 𝑟3 are deterministically bounded 𝑟2 ≤ 1 +

2 ln(3/𝛿)/Y and 𝑟3 ≤ |𝑆 |/(𝑘+1). 𝐸 [𝑟21 ] is the variance of the Laplace
noise; we added two independent noises each with scale 1/Y and
thus variance 2/Y2 for a total variance of 4/Y2. This finishes the
proof. □

5.1 Privatizing standard versions of
Misra-Gries

The privacy of our mechanism as presented in Algorithm 2 relies

on our variant of the Misra-Gries algorithm. Our sketch can contain

elements with a count of zero. However, elements with a count of

zero are removed in the standard version of the sketch. As such,

sketches for neighboring datasets can differ for up to 𝑘 keys if one

sketch stores 𝑘 elements with a count of 1 and the other sketch is

empty. It is easy to change Algorithm 2 to handle these implemen-

tations. We simply increase the threshold to 1 + 2 ln
(
𝑘+1
2𝛿

)
/Y since

the probability of outputting any of the 𝑘 elements with a count of

1 is bounded by 𝛿 .

5.2 Tips for practitioners
Here we discuss some technical details to keep in mind when im-

plementing our mechanism.

The output of the Misra-Gries algorithm is an associative array.

In Algorithm 2 we add appropriate noise such that the associative

array can be released under differential privacy. However, for some

implementations of associative arrays such as hash tables the order

in which keys are added affects the data structure. Using such an

implementation naively violates differential privacy but it is easily

solved either by outputting a random permutation of the key-value

pairs or using a fixed order e.g. sorted by key.

We present our mechanism with noise sampled from the Laplace

distribution. However, the distribution is defined for real numbers

which cannot be represented on a finite computer. This is a known

challenge and precision-based attacks still exist on popular imple-

mentations [20]. Since the output ofMG is discrete the distribution

can be replaced by the Geometric mechanism [19] or one of the

alternatives introduced in [4]. Our mechanismwould still satisfy dif-

ferential privacy but it might be necessary to change the threshold

in Algorithm 2 slightly to ensure that Lemma 8 still holds.

Lastly, it is worth noting that the analysis for Lemma 8 is not tight.

We bound the probability of outputting a small key by bounding

the value of all samples by ln(3/𝛿)/Y which is sufficient to guaran-

tee that the sum of any two samples does not exceed 2 ln(3/𝛿)/Y.
This simplifies the proof and presentation significantly however

one sample could exceed ln(3/𝛿)/Y without any pair of samples ex-

ceeding 2 ln(3/𝛿)/Y. A tighter analysis would improve the constant

slightly which might matter for practical applications.

6 PURE DIFFERENTIAL PRIVACY
In this section, we discuss how to achieve Y-differential privacy. We

cannot use our approach from Section 5 where we add the same

noise to all keys because the set of stored keys can differ between

sketches for neighboring datasets. Instead, we achieve privacy by

adding noise to all elements ofU scaled to the ℓ1-sensitivity. Chan

et al. [11] showed that the sensitivity of Misra-Gries sketches scales

with the number of counters. We show that a simple postprocessing

step reduces the sensitivity of the sketch to 2 and the worst-case

guarantee of the sketch is still 𝑛/(𝑘 + 1) where 𝑛 = |𝑆 |. This allows
us to achieve an error of 𝑛/(𝑘 + 1) +𝑂 (log(𝑑)/Y).

The ℓ1-sensitivity scales with the size of the sketch since the

counts can differ by 1 for all 𝑘 elements between neighboring

datasets. This happens when the decrement step is executed on

a given input one fewer or one more time than on a neighboring

input. We get around this case by post-processing the sketch before

adding noise. We first run the Misra-Gries algorithm on the stream

but we count how many times the counters were decremented.

That is, we count the number of times Branch 2 of Algorithm 1 was

executed and denote this count as 𝛾 . The Misra-Gries algorithm

decrements the counters at most ⌊𝑛/(𝑘 + 1)⌋ times. We use this fact

by first adding 𝛾 and then subtracting 𝑛/(𝑘 + 1) from each counter

in the sketch. We then remove all elements with negative counters.

Although we increase the error of the sketch for some datasets,

the worst-case error guarantee is still the same as each count has

been decremented by at most 𝑛/(𝑘 + 1). Next, we show how this

post-processing step reduces the ℓ1-sensitivity to 2.
Let 𝑆 ∼ 𝑆 ′ denote any pair of neighboring streams where 𝑆 ′

is obtained by removing one element from 𝑆 . Consider the effect

of running the following procedure on the Misra-Gries sketches

for both streams (1) add 𝛾 and 𝛾 ′ to the counters of MG𝑆 and

MG𝑆′ , respectively (2) subtract |𝑆 |/(𝑘 + 1) from the counters in

both sketches (3) remove any negative counters from both sketches.

It can be shown that the new sketches are either identical or differ

by 1 in a single counter. Specifically, we may use the argument
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from the proof of Lemma 5 to argue that we end in one of the 6

states introduced in that proof before running the procedure. One

may verify that the claim holds in all 6 states. Specifically, we get

𝛾 = 𝛾 ′ + 1 in the first 2 states and 𝛾 = 𝛾 ′ for the final 4 states. The
post-processing step we introduced in the previous paragraph uses

the length of the stream which differs by 1 between 𝑆 and 𝑆 ′. As
such, there is an additional difference of 1/(𝑘 + 1) for each counter.

The ℓ1-sensitivity is bounded by 2 since 1 + 𝑘/(𝑘 + 1) < 2.
We achieve Y-differential privacy by adding noise to our new

sketch. We essentially use the same technique as Chan et al. [11] but

the noise no longer scale linearly in 𝑘 as the sensitivity is bounded

by 2. Specifically, we add noise sampled from Laplace(2/Y) inde-
pendently to the count of each element from U and release the

top-𝑘 noisy counts. A simple union bound shows us that with prob-

ability at least 1 − 𝛽 the absolute value of all samples is bounded

by 2 ln(𝑑/𝛽)/Y. Note that it might be unfeasible to actually sample

noise for each element whenU is large; we refer to previous work

on how to implement this more efficiently [4, 11, 12].

It is worth noting that the low sensitivity of the post-processed

sketch can also be utilized under (Y, 𝛿)-differential privacy. We

can use an approach similar to [21]. They add noise to all non-

zero counters and remove noisy counts below a threshold to hide

small counters. This would require a threshold with a small de-

pendence on 𝑘 as neighboring sketches might disagree on all keys.

However, [3] extended the technique to real-valued vectors by

probabilistically rounding elements with a value less than the ℓ1-

sensitivity. If we apply their technique directly we get a threshold

of 4 + 2 ln(1/𝛿)/Y. This approach has error guarantees that match

those from Theorem 11 up to constant factors. However, this ap-

proach has worse guarantees than Algorithm 2 when comparing

to the non-private Misra-Gries sketch. By Lemma 10 the error of

Algorithm 2 is𝑂 (log(1/𝛿)/Y) with high probability (for sufficiently

small 𝛿). Here the error is 𝑛/(𝑘 + 1) + 𝑂 (log(1/𝛿)/Y) since we

subtract up to 𝑛/(𝑘 + 1) from the counters before adding noise.

7 PRIVATIZING MERGED SKETCHES
In practice, it is often important that we may merge sketches. This

is for example commonly used when we have a dataset distributed

over many servers. Each dataset consists of multiple streams in

this setting, and we want to compute an aggregated sketch over

all streams. We say that datasets are neighboring if we can obtain

one from the other by removing a single element from one of the

streams. If the aggregator is untrusted we must add noise to each

sketch before performing any merges. This is the setting in [11]

and we can run their merging algorithm. However, since we add

noise to each sketch the error scales with the number of sketches.

In particular, the error from the thresholding step of Algorithm 2

scales linearly in the number of sketches for worst-case input. In

the rest of this section, we consider the setting where aggregators

are trusted and we want to output a differentially private merged

sketch.

Agarwal et al. [1] introduced the following simple merging algo-

rithm in the non-private setting. Given two Misra-Gries sketches

𝑇1, 𝑐1 ← MG(𝑘, 𝑆1) and 𝑇2, 𝑐2 ← MG(𝑘, 𝑆2) they first compute

the sum of all counters 𝑐1 + 𝑐2. There are up to 2𝑘 counters at this

point. They subtract the value of the 𝑘+1’th largest counter from all

elements. Finally, any non-positive counters are removed leaving

at most 𝑘 counters. They show that merged sketches have the same

worst-case guarantee as non-merged Misra-Gries sketches. That is,

if we compute a Misra-Gries sketch for each stream (𝑆1, . . . , 𝑆𝑚)
and merge them into a single sketch, the frequency estimate of all

elements is at most 𝑁 /(𝑘 + 1) less than the true frequency. Here

𝑁 is the total length of all streams. This holds for any order of

merging and the streams do not need to have the same length.

Unfortunately, the structure between neighboring sketcheswhere

either a single counter or exactly 𝑘 counters differ by 1 breaks down
whenmerging. Therefore we cannot run Algorithm 2 on the merged

sketch. However, as we show below, the global sensitivity of merged

sketches is independent of the number of merges. The sensitivity

only depends on the number of counters. We first show a property

for a single merge operation; this will allow us to bound the sensi-

tivity for any number of merges. Note that unlike in the previous

section, we do not limit the number of keys that differ between

sketches and we do not store keys with a count of zero.

Lemma 12. Let𝑇1, 𝑐1,𝑇 ′1, 𝑐
′
1 and𝑇2, 𝑐2 denote Misra-Gries sketches

of size 𝑘 and denote the sketches merged with the algorithm above
as 𝑇, 𝑐 ← Merge(𝑇1, 𝑐1,𝑇2, 𝑐2) and 𝑇 ′, 𝑐 ′ ← Merge(𝑇 ′1, 𝑐

′
1,𝑇2, 𝑐2).

If 𝑇 ′1 ⊆ 𝑇1 and 𝑐1𝑖 − 𝑐 ′1𝑖 ∈ {0, 1} for all 𝑖 ∈ 𝑇1 then at least one of
the following holds (1) 𝑇 ′ ⊆ 𝑇 and 𝑐𝑖 − 𝑐 ′𝑖 ∈ {0, 1} for all 𝑖 ∈ 𝑇 or (2)
𝑇 ⊆ 𝑇 ′ and 𝑐 ′

𝑖
− 𝑐𝑖 ∈ {0, 1} for all 𝑖 ∈ 𝑇 ′.

Proof. Let 𝑐 and 𝑐 ′ denote the merged counters before subtract-

ing and removing values. Then clearly 𝑐𝑖 − 𝑐 ′𝑖 ∈ {0, 1} for all 𝑖 ∈ U.

Therefore we have that 𝑐𝑘+1 − 𝑐 ′𝑘+1 ∈ {0, 1} where 𝑐𝑘+1 deenotes

the value of the 𝑘 + 1’th largest element in 𝑐 . Note that it does not

matter if the 𝑘 + 1’th largest value is a different key. Let 𝑐 and 𝑐 ′

denote the counters after subtracting the 𝑘 + 1’th largest element.

if 𝑐𝑘+1 = 𝑐 ′
𝑘+1 we subtract the same value from each sketch and we

have 𝑐𝑖 − 𝑐 ′𝑖 ∈ {0, 1} for all 𝑖 ∈ U. If 𝑐𝑘+1 − 𝑐 ′𝑘+1 = 1 we subtract

one more from each count in 𝑐 and we have 𝑐 ′
𝑖
− 𝑐𝑖 ∈ {0, 1} for all

𝑖 ∈ U. □

Corollary 13. Let (𝑆1, . . . , 𝑆𝑚) and (𝑆 ′1, . . . , 𝑆
′
𝑚) denote two sets

of streams such that 𝑆𝑖 ∼ 𝑆 ′
𝑖
for one 𝑖 ∈ [𝑚] and 𝑆 𝑗 = 𝑆 ′

𝑗
for any

𝑗 ≠ 𝑖 . Let𝑇, 𝑐 and𝑇 ′, 𝑐 ′ be the result of merging Misra-Gries sketches
computed on both sets of streams in any fixed order. Then 𝑐 and 𝑐 ′

differ by 1 for at most 𝑘 elements and agree on all other counts.

Proof. It is clearly true for sketches of a pair of neighboring

datasets by Lemma 5. It holds by induction after each merging

operation by Lemma 12. □

Since the ℓ1-sensitivity is 𝑘 we can use the algorithm in [11] that

adds noise with magnitude 𝑘/Y to all elements inU and keeps the

top-𝑘 noisy counts. If we only add noise to non-zero counts we

can hide that up to 𝑘 keys can change between neighboring inputs

with a threshold. The two approaches have expected maximum

error compared to the non-private sketch of 𝑂 (𝑘 log(𝑑)/Y) and
𝑂 (𝑘 log(𝑘/𝛿)/Y), respectively.
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