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Abstract. This manuscript presents the premiere SISAP 2023 In-
dexing Challenge, which seeks replicable and competitive solutions in
the realm of approximate similarity search algorithms. Our aim is recall,
all while optimizing build time, search time, and memory consumption.
Using a subset of the deep features of a neural network model provided
by the LAION-5B dataset, the challenge posed three tasks, each with its
unique focus:

– Task A: Conduct classical approximate nearest neighbor search,
ensuring an average recall of at least 0.9 for 10-NN queries.

– Task B: Find a succinct binary embedding of the original data that
ensures high recall on the original data.

– Task C: Index and search binary representations from Task B.

Notably, an innovative and competitive binary mapping method emerged
from the challenge. It also spotlighted graph methods as the preferred
indexing technique for binary and real-valued high-dimensional vectors.
However, these methods have little room for improvement. Enhancing
memory efficiency, refining navigational strategies, and tackling the sec-
ondary memory challenge are pivotal next steps.

Keywords: Approximate nearest neighbor search · Indexing and search-
ing pipelines · Experimental comparison of search methods.

1 Introduction

Similarity search algorithms are pivotal for efficiently retrieving similar items
from vast datasets, underpinning tasks like information retrieval, multimedia in-
dexing, and pattern recognition. As machine learning, dense retrieval, and com-
puter vision become increasingly prevalent, similarity search methods must meet
the quality and computational demands of both applications and the systems
they run on.

The curse of dimensionality [3] dictates that all metric search algorithms
falter when confronted with high-dimensional datasets. This matter necessitates
adopting approximate or probabilistic methods to balance speed against quality.
Furthermore, there’s an opportunity to trade-off between construction time and
memory usage, leading to a variety of indexing solutions, each with its merits
and drawbacks.
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The SISAP Indexing Challenge4 seeks to identify efficient similarity search
algorithms that strike a balance between accuracy and practical constraints like
build time, search time, and memory consumption. To facilitate this, we devised
a test bed utilizing the LAION deep features English subset, segmented into 10M,
30M, and 100M benchmarks. Additionally, there are two query sets: public and
private, each comprising 10k vectors. The public queries were made available
during the call for papers, while the private ones were revealed post-submission
and evaluation.

2 The dataset

The LAION dataset, as detailed in [15], is an expansive public image collection
comprising both images and textual descriptors. It has proven instrumental in
training large visual and language deep-neural models, as cited in [4,13]. Ev-
ery image within the collection is paired with a URL handle, simplifying the
demonstration process. Moreover, the LAION consortium has made vector em-
beddings available using the Contrastive Language-Image Pre-Training (CLIP),
specifically harnessing the OpenCLIP architecture [4]. These deep features man-
ifest as 768-dimensional vectors, represented using 16-bit floating point numbers.
The CLIP architecture was initially introduced in [12].

We employed three subsets from the English segment of the LAION collection
(commonly referred to as LAION2B) as benchmarks. These subsets consist of 10,
30, and 100 million vectors, with vectors labeled as Not Safe for Work (NSFW)
duly excluded. Further insights regarding the selection and packaging of these
subsets can be found on the challenge’s companion site.

3 Task Descriptions

The Indexing Challenge focuses on nearest neighbor queries, specifically on ap-
proximate k nearest neighbor queries. We have established three tasks that em-
ulate various application scenarios, each catering to different needs in terms of
quality, speed, and memory.

A key aspect of this challenge is reproducibility. Submissions were accepted
in the form of Github repositories with operational Github Action (GHA) work-
flows.5 Teams crafted their solutions by meticulously setting and benchmarking
hyperparameters for each task and clearly detailing their choices in their GHA
entry point.

We designed four benchmarks from the LAION2B dataset, each with a dis-
tinct number of vectors: 300K for development and 10M, 30M, and 100M work-
loads designated for the challenge. Furthermore, we designed two sets of public

4 Official site of the challenge https://sisap-challenges.github.io/.
5 Github Actions is a continuous integration platform that enables continuous testing
of repositories within virtual machines.

https://sisap-challenges.github.io/
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and private queries. Teams were tasked with designing their solutions and de-
termining the hyperparameters based on the public query set. The private set
was subsequently used to re-test and rank all solutions on our system. We com-
puted gold standards for k nearest neighbor queries in public and private queries,
which is the foundation for calculating the recall score in the final results. Public
queries, along with their associated gold standards, were available from the com-
mencement of the challenge, while private ones were unveiled post-validation. We
expected teams to construct indexes that efficiently solve queries and excel un-
der the specific conditions and metrics defined for each task. All tasks revolved
around retrieving the approximate k = 10 nearest neighbors.6

During the challenge, Vladimir Mı́č (private communication) reported certain
anomalies he detected in the public gold standard. He highlighted numerous dis-
tance value ties at k and k+ 1 neighbors and instances of neighbors at distance
0, i.e., duplicates. Upon confirmation, we ascertained that these discrepancies
were likely due to the prevalence of near duplicates in the LAION database [20].
For the private query set, we implemented measures to curb these issues, uti-
lizing IEEE 754 floating point arithmetic to compute distance functions in the
gold standard and excluding query objects where the k and k + 1 neighbors
matched identically.7 The subsequent segments of this section delve deeper into
the intricacies of the tasks.

Task A: Searching the Original Embeddings Task A focuses on high-
throughput solutions with little loss in quality. The aim is to design the fastest
search algorithm that hits a recall of at least 0.9 (on average over all queries).
Teams adopted the strategy to build a single index and used a large collection
of search parameters for each subset size. A small catch is that only the best-
performing probe in the private query set gets to stay. Repositories should be
ready to run right out of the box with all the settings in place. Note that teams
likely used the public query set to fine-tune their settings.

Task B: Producing Binary Sketches This task concerns the succinct repre-
sentation of the original 768-dimensional real-valued vectors using fixed-length
binary strings. These have a much smaller memory footprint and allow efficient
distance calculations via SIMD instructions. The main goal of this task is to find
embeddings that, using Hamming distance and a linear scan, produce a higher
average recall than our baseline of 0.24. The baseline uses our current go-to
method based on permutation binary sketches [18].

Task C: Indexing and Searching on Binary Sketches For Task C, the
challenge seeks solutions that let us first index and then search using these binary
sketches while using the Hamming distance as our measuring stick. Participants
can use the embeddings they came up with in Task B or go with the baseline
embeddings. The benchmark? The fastest solutions with a recall close to ours,
meaning they should achieve or surpass a recall of 0.216, i.e., 90% of our baseline.

6 Gold standards incorporate results up to k = 1000.
7 This constraint was determined using the 100 million benchmark.
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4 Solutions Overview

This section describes the set of solutions to the SISAP Indexing Challenge. The
solutions use diverse programming languages: C++, Rust, Java, and some use
Python as a wrapper language. One baseline uses C++ with Python wrappers,
and the rest uses the Julia programming language. The teams used different
techniques to tackle the challenge: graph-based indexes, hashing-based indexes,
linear projections, reranking, combinatorial and numerical optimization, among
others.

4.1 Baselines

We included three baselines to compare with previous work: BL-SearchGraph,
BL-FAISS-HSNW, and Bruteforce. Note that the first two are far from triv-
ial solutions. The rest of this section describes our baselines and explains its
construction and searching hyperparameters.

Bruteforce. This is a straightforward solution. It is implemented as an ex-
haustive search using the SimilaritySearch.jl package. However, as with the
rest of our baselines, this approach takes advantage of the multithreading capa-
bilities of our running infrastructure. Unsurprisingly, a well-implemented brute
force algorithm can improve more sophisticated algorithms when the intrinsic
dimension of the data is high.

BL-FAISS-HNSW. This baseline uses the HNSW index from FAISS.8 The
Hierarchical Navigable Small World (HNSW) index, see [8], is a graph-based
index using a hierarchical structure to navigate the graph efficiently. It is created
iteratively, adding one new object at a time. The ith element is inserted by adding
edges from the ith element to a set of M approximate nearest neighbors using
the graph containing the previous i − 1 objects; the hierarchy is maintained
throughout the construction. The search algorithm consists of navigating the
graph greedily using two priority queues. The first is the result set of size ef,
and the second is a candidate list to prioritize the navigation. The search is
conducted in rounds: The not-yet-visited current closest point to the query is
inspected at each round. The search finishes when it is impossible to improve
the result set during the navigation. Due to its flexibility, the HNSW index is
the de-facto standard in the industry; most vector databases also implement
it. According to standard benchmarks [1], it is one of the faster metric indexes
known. As a baseline, we set its parameters as follows. We set the M = 32 for
all subsets and the ef parameter as 40 for construction. At the search stage, we
probe with the following ef values: 32, 64, 128, 256, and 512.

8 https://faiss.ai/.

https://faiss.ai/
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BL-SearchGraph. This baseline uses the SearchGraph index from Julia’s pack-
age SimilaritySearch.jl, see [17,16]. This index is a graph-based index simi-
lar to the HNSW, but instead of a hierarchy, it uses a small sample of disjoint
neighbors to get fast navigation. The construction is also based on connecting
the ith element with its neighbors, but it is simplified since there is no hierar-
chy. In contrast to HNSW, it uses variable-size neighborhoods using shrinking
heuristics based on the Spatial Access Trees [10], with an upper bound defined
as M = O(log i). It uses Beam Search (BS) as a search algorithm. The search
stores candidates in a priority list of maximum size (beam size) and also limit
what is considered to be inserted into the beam using a parameter 0 < ∆ < 2;
the result set is populated during the navigation, and the search finishes when
the result set does not improve and the beam is empty. It supports single-pass
automatic index optimization for a given quality score. It is a flexible alternative
that supports automatic optimization and user-defined metrics, the latter due
to Julia’s just-in-time compiler. As a baseline, it was constructed with 0.9 as ob-
jective recall and a neighborhood size of M = log1.5 i. During the search stage,
we varied the optimized ∆ parameter in the range ∆/1.052 ≤ ∆′ < 2 growing
exponentially in a 1.05 factor.

4.2 Teams solutions

Six teams submitted a candidate for evaluation; one team (HIOB) targeted all
three tasks, one team (SWANN) focused on indexing binary sketches (Task C),
the remaining teams (UTokyo, CRANBERRY, LMI, HSP) focused on efficient
retrieval in the standard setting (Task A). Teams used their implementations
and modifications or tuning of well-known approximate nearest neighbor search
libraries.

UTokyo. This approach proposes a pipeline of dimensionality reduction, database
subsampling, and entry point optimization to solve Task A. The pipeline is de-
signed for graph-based indexes and optimizes the computational requirements
in terms according to specified accuracy, runtime, and memory requirements. It
employs black-box optimization for parameter tuning. In particular, the authors
optimized a Navigating Spreading-out Graph (NSG) [7] with a neighborhood of
32 as index for their submission. More details are given in [11].

CRANBERRY. This approach combines several search techniques in a three-
stage pipeline: data partitioning, candidate filtering, and reranking. The input
database is divided into a Voronoi partition. The search algorithm locates the
nearest partitions to the query to retrieve a list of potentially similar vectors.
Then, 512-bit sketches and 24-dimensional prefixes of vectors are used to re-
duce the candidate list; an early termination strategy accompanies the filtering.
The list of candidates is reranked using the original distance, that is, the 768-
dimensional CLIP vectors and the cosine distance. CRANBERRY is designed to
solve Task A. More details are found in [9].
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SWANN. This approach uses a collection of tries together with the bit-sampling
locality-sensitive hashing scheme [2]. Their solution targets Track C (indexing
binary vectors). During index building, each binary vector is hashed K ·L times,
and each block of length-K bit strings is used to insert the vector into one out
of L tries. The query vectors are hashed and looked up in the trie during the
search. If too few candidates are found on the leaf level, the search is dynamically
expanded to cover larger parts of the trie. More details are given in [14].

HIOB. This approach is based on creating binary sketches of a vector database
explicitly designed for cosine similarity. The binarization is made through hy-
perplanes, i.e., encoding where the vector lies. The random sample consensus in-
spires the initialization of the set of encoding hyperplanes, RANSAC [5]. Then,
the encoders are refined by maximizing bit independence and bit balance for
binary sketches on the unit sphere. The iterative optimization process improves
sketch quality through orthogonalization and is made in small batches, similar
to stochastic gradient descent. In each iteration, a displacement vector is com-
puted to update some hyperplanes. The bit assignments are recomputed after
each batch. In the search stage, the bit-vectors under hamming distance are used
to calculate a candidate list of size n⋆, this process is computed with a brute
force procedure since the authors found no improvement on using HNSW or
faiss [19]. The candidate set is reranked with the original database objects and
cosine distance to get the k nearest neighbors.

We used the specified hyperparameters for each task and subset. For Task A
and C, we used 256, 192, and 128 bit-vectors for 10M, 30M, and 100M subsets,
respectively. The n⋆ parameter is increased with the dataset for Task A, going
from more than a thousand to 60,000. Task B uses 1024-bit vectors with n⋆ = k.
Task C is similar to task A, but n⋆ = k. More details are given in [19].

LMI. The Learned Metric Index uses an architecture of interconnected learned
models; the LMI demonstrates notable performance characteristics, often sur-
passing traditional methods in terms of efficiency and effectiveness. Central to
the LMI is a tree structure that harnesses machine learning, particularly neu-
ral networks, to shrink the search space, facilitating a sequential search among
significantly fewer objects than the original dataset. This is followed by a more
time-intensive bucket-level sequential search within identified data partitions.
The distances between objects are ascertained through a trained neural network,
resulting in a probability distribution matrix that captures object-category rela-
tionships. The approach is adaptable, with the procedure iterating over matrix
columns based on similarity, treating the exact count as a parameter. The ap-
proach is more useful with the help of a GPU or TPU, which was not considered
for this challenge.

HSP. The HSP team performed several modifications and tuning to the HNSW
index, specifically on the hnswlib.9 The authors reduced the memory require-
ments by hacking how the database is loaded and maintained in memory. This

9 Official site of the hnswlib project https://github.com/nmslib/hnswlib.

https://github.com/nmslib/hnswlib
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Table 1. Task A results for all LAION subsets. Entries are sorted by best rank in the
10M subset. Query time is measured in seconds for the entire query set. OOM label
means for out of memory and NR for not run.

10M 30M 100M

Team Build Search Rank Build Search Rank Build Search Rank
time time time time time time

HSP 1h 21m 0.34 1 4h 16m 0.49 1 17h 15m 0.51 1
UTokyo 38m 0.49 2 2h 35m 0.71 2 OOM - -
BL-SearchGraph 13m 0.61 3 53m 1.09 4 5h 55m 1.67 2
BL-FaissHNSW 16m 0.74 4 33m 0.86 3 4h 48m 21.40 3
HIOB 7m 35.89 5 8m 89.97 5 13m 247.01 4
CRANBERRY 1h 57m 107.05 6 5h 49m 192.02 6 17h 29m 589.76 5
LMI 7h 4m 450.25 7 NR - - NR - -
Bruteforce 0m 2,415.75 8 0m 9,010.50 7 NR - -

change allowed them to reduce the construction time by half. Another customiza-
tion removes unnecessary functionality directed to vector databases and other
search engines. The authors performed a broad ablation study and hyperparam-
eter optimization to obtain a competitive setup for the challenge. Interestingly,
one of the most critical parameters is the construction ef, which interchanges
construction time by search quality. Note that construction was previously re-
duced, resulting in a net moderate increase in the building time. The parameters
M = 20 and ef= 800 (construction) of the HSNW were determined to be the
best choices for the provided workloads. The search state iterates on different
values ef from 10 to 1000. The HSP team designed their solution for Task A.
More details are given in the accompanying paper [6].

5 Results and discussions

Evaluation setup. Following the GHA setup, we prepared docker Linux images.
The evaluation was conducted on 2x Intel(R) Xeon(R) CPU E5-2690 V4 CPUs
(28 cores, 56 hyperthreads) workstation with 512GiB of RAM. The original
dataset resided on a 1TB SSD, but all solutions loaded data vectors and index
data structures in memory. We encouraged participants to use multithreading
or multiprocessing in the construction and searching stages to take advantage of
the hardware—all participants except team SWANN employed multithreading.
We enforced a time limit of 24 hours for building the index and running the
query workload.

Task A. Table 1 shows the results of Task A. As mentioned in §3, all teams built
a unique index. We recorded the build time and, for each set of hyperparameters,
the search time accumulated over 10k queries. From these timings, we present
the shortest search time that exceeded the recall requirement.
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Table 2. Task B results. Recall values for 1024-dimensional bit-vectors.

Team Recall

10M 30M 100M

HIOB 0.55 0.57 0.58
Baseline 0.24 0.24 0.25

Table 3. Task C results: Indexing binary vectors. The reference recall for bruteforce
is around 0.24. Displayed are the top-performing parameters that surpass a recall of
0.216.

10M 30M 100M

Team Build Search Rank Build Search Rank Build Search Rank
time time time time time time

BL-SearchGraph 5m 0.10 1 14m 0.36 1 2h 6m 1.09 1
HIOB 7m 36.56 2 8m 90.35 2 - - -
Bruteforce 0m 74.51 3 0m 246.95 3 0m 816.93 2
SWANN 3m 159.82 4 12m 717.54 4 1h 3m 3794.05 3

All solutions worked on the 10M subset, and this performance is used to sort
the table; five worked on 30M, and only three on 100. The HSP team presents the
top-performing solution in all subsets. It achieved search times below a second,
which put it in the tens of thousands of queries per second. On the downside,
it has one of the most costly constructions. UTokyo performs the second best,
having a better trade with construction time but having memory issues and being
unable to run the 100M benchmark. Focusing on build time, team HIOB has an
order of magnitude shorter build times but provides rather slow searches. Entries
marked as NR were not run due to diverse causes, like very high computational
resources or not given hyperparameters.

Task B. Results of the second task are presented in Table 2. Here, the recall
is used as the main performance score. Only the HIOB team participated, sur-
passing significantly our baseline by a factor of more than two. Interestingly,
the 1024-dimensional bit-vectors are faster to compute and contain more metric
information than approaches like PCA for the same given memory.

Task C. Table 3 shows the performance in Task C. Here, two teams were able to
submit. The HIOB team uses the same configuration as in Task A but without
reranking the results on the binary embedding using the original vectors. Since
HIOB uses just 128-bit vectors for 100M, see §4, it achieves a lower recall behind
the accepted threshold (AT). Using more bits improves their result quality at the
cost of the search time. The SWANN team marked all entries beyond the AT,
but its solution did not take advantage of the multicore architecture and was
run in a single thread. Thus, they can improve their performance significantly if
they solve queries in parallel.
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6 Conclusions

The SISAP 2023 Indexing Challenge’s first edition was a successful event that
brought together researchers worldwide to work on the problem of approximate
similarity search. The challenge becomes a trigger for innovative methods; several
indexing methods for vector spaces emerged, along with binary mappings, and
indexes for the binary Hamming space, as well as insights into the strengths and
weaknesses of different approaches.

One of the most notable findings of the challenge was the emergence of a
new binary mapping method that is both competitive and efficient. The chal-
lenge highlighted the importance of graph-based indexing techniques for real-
valued and binary high-dimensional vectors. While the methods developed in
the SISAP 2023 Indexing Challenge represent a significant step forward, there
is still room for improvement. Future work should enhance memory efficiency,
refine navigational strategies, and tackle the secondary memory challenge.

The SISAP 2023 Indexing Challenge was a valuable opportunity to advance
the state of the art in approximate similarity search. The challenge’s findings
will interest researchers and practitioners working in various fields, including
information retrieval, machine learning, and computer vision.
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