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Abstract. We investigate the k-closest pair problem in high dimensions,
that is finding the k ≥ 1 closest pairs of points in a set S ⊆ X in a
metric space (X ,dist). This is a fundamental problem in computational
geometry with a wide variety of applications, including network science,
data mining, databases, and recommender systems. We propose an exact
algorithm with a controllable failure probability, thus allowing the user
to specify the desired recall. Our algorithm has expected subquadratic
running time under mild assumption on the distance distribution, relying
only on the existence of a Locality Sensitive Hash family for the metric
at hand. We complement our theoretical analysis with an experimental
evaluation, showing that our approach can provide solutions orders of
magnitude faster than current state-of-the-art data structures designed
for specific metrics.

1 Introduction

In this paper we study the k-closest pair problem: Given a set S ⊆ X from a
metric space (X ,dist), the task is to identify k pairs of distinct points in S × S
that are closest to each other. Solving this problem has numerous applications,
for example in network science [29], data mining [22], and databases [21].

A näıve solution is to employ an all-to-all comparison between the points in S.
This will result in O(|S|2) distance comparisons; if S has n elements, the running
time will thus become quadratic. For metrics such as Manhattan distance or
Euclidean distance, there exist approaches for solving the closest pair problem in
d dimensions in time 2O(d)n logO(d) n [13,8], which lead to subquadratic running
times if the dimensionality d is small. However, these data structures suffer
from the well-known curse of dimensionality because they have an exponential
dependence on d.

To design scalable closest pair algorithms with subquadratic running time
guarantees, research settled on allowing the results to be approximate. In a
strong theoretical sense, this means that if the closest pair is at distance r,
then an algorithm guarantees to return a pair at distance at most cr for some
approximation factor c > 1 (with some small failure probability). As we will
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discuss in the related work section, many industry-strength solutions use the
word more loosely to refer to the inexactness of results. The generally accepted
measure of the quality of such approaches is their recall, i.e., the fraction of correct
pairs identified by the algorithm. These solutions usually do not give strong
guarantees on this quality measure. In this work, we propose a Locality-Sensitive
Hashing [18] (LSH) based solution with theoretical guarantees on the expected
achieved recall. In practice, this means that users only set two parameters: The
amount of memory available for the index, and the recall guarantee.

In this work, we propose an extension of the LSH-forest approach by Bawa
et al. [5] in the variant described by Aumüller et al. in [4]. In the latter work,
the authors describe a query algorithm that carries out a bottom-up traversal of
the LSH tries employed by the LSH forest with an adaptive stopping criterion.
In Section 3, we will describe a traversal approach to solve the k-closest pairs
problem. Intuitively, we first build build an LSH forest, which consists of L tries
indexing the dataset vectors according to their LSH hash codes. The closest pairs
are found by merging nodes in a bottom-up traversal of the trie, keeping track of
the best candidate pairs found so far. We prove that our algorithms adapt well
to the data distribution: Theorem 2 shows that up to some small additional cost
factors, the running time of the proposed algorithm is asymptotically equivalent
to an LSH-based clairvoyant algorithm that queries the part of the LSH forest
that minimizes the expected work by knowing the exact distance distribution.

In Section 4 we describe implementation choices surrounding the proposed
approach. For example, we store the trie as a flat array sorted by hash code to
support efficient merging of subtrees in the trie, make use of sketches to save
the expensive evaluation of distance computations, and discuss details of the
parallelization strategy both for index building and the bottom-up traversal. The
experimental evaluation is presented in Section 5 and compares our approach to
several industry-standard baselines such as Meta Research’ popular FAISS [19]
library. We show the competitiveness of our approach to these approaches, in
particular under the light that we compare the results to an intensive grid search
for best parameters for the other approaches, whereas our approach just takes
the available space and a recall guarantee as parameters.

Related Work

LSH approaches. Locality-sensitive hashing [18] is the de-facto standard for pro-
viding theoretically sound algorithms for the approximate near neighbor problem.
Popular LSH functions include E2LSH [12] for Euclidean space, SimHash [9] and
Crosspolytope LSH [2] for inner product similarity (or cosine similarity) on the
unit sphere, and MinHash [6] and 1-bit MinHash [20] for set similarity under
Jaccard similarity. Traditionally, the LSH framework aims to solve the (c, r)-near
neighbor problem that requires to return a point at distance at most cr to a
query point if there exists a point at distance at most r (with some constant
probability). The k-NN problem can either be solved using a reduction to different
(c, r)-near neighbor problem instances [16], or via direct approaches such as the
LSH forest [5] and its variant [4] that we base our work on. In the database



Solving k-Closest Pairs in High-Dimensional Data 3

community, other directions to LSH-based indexing became very popular. These
approaches use locality-sensitive hash functions to project the data points to a
lower-dimensional space and index them using I/O-efficient tree data structures.
For example, LSBTree [24] projects the points to a lower dimension using LSH,
employs the Z-order to map points to a single value and indexes these values
using B-Trees. A more recent approach called PM-LSH [28] indexes the projected
points directly using the PM-Tree [23] without applying the Z-order.

Closest pair algorithms. One of the seminal papers on efficient solutions to
the closest pair problem in high-dimensional data is by Xiao et al. [26]. It
mainly focuses on Jaccard similarity but also discusses Cosine, Dice, and Overlap
similarity. At a high level, it maintains the input sets in a priority queue ordered
by an upper bound on the similarity it can attain with any other set, based on
prefix filtering. Sets are extracted in decreasing order of such an upper bound
and their similarity with other sets is computed by means of an inverted index
on the tokens. Several optimizations to this approach were introduced in the
recent paper [25]. Further improvements for sets under the overlap similarity are
discussed in [27]. In particular, they propose a variant of [26] that evaluates more
than one token for each point that is popped from the priority queue. While
this approach improves the performance in the case of the overlap similarity, the
authors discuss that for the Jaccard similarity it provides little benefit over [26].

For high-dimensional data using Euclidean distance, closest pairs can be found
both by the LSBTree [24] and by the more recent PM-LSH [28]. In particular,
LSBTree maintains a guess on the smallest k-th distance, and generates candidate
pairs from the points whose difference of Z-values is below a threshold derived from
the current guess. Another approach for the Euclidean distance was presented
in [7]. Using random projections, points are mapped on the real line, where
candidate pairs are generated from intervals of consecutive projections.

In general metric spaces, [15] provides a solution used on the count M-tree
index, a variant of the classical M-tree data structure [11].

2 Preliminaries

Consider a metric space (X ,dist), and let k > 0 be an input parameter. Let
S2 := {(s, s′) ∈ S × S | s 6= s′} be the set of distinct pairs in S.

Definition 1. The k-closest pairs in a set S ⊆ X are a sequence of distinct
pairs (r1, s1), . . . , (rk, sk) ∈ S2 such that: For all other pairs (r, s) ∈ S2 and for
all i ∈ {1, . . . , k}, dist(ri, si) ≤ dist(r, s).

Informally, the task is to find a set of k closest pairs of points in S. For k = 1,
this problem is called the closest pair problem.

Näıvely, the problem can be solved by enumerating all pairs of points in S2,
leading to O(|S|2) distance comparisons.

In this paper we present randomized algorithms with probabilistic guarantees.
This means that our algorithm receives two input parameters k and δ ∈ (0, 1).
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If a pair (r, s) ∈ S2 is a k-closest pair, then it is output by the algorithm with
probability at least 1− δ. If the quality of the solution is measured using recall,
the fraction of correct pairs reported by the algorithm, we expect a recall of 1− δ.

Definition 2 (Locality-Sensitive Hashing [18]). Let (X ,dist) be a metric
space, let T be a set, and let H be a family of functions h : X → T . For positive
reals r1, r2, q1, q2, with q1 > q2, H is (r1, r2, q1, q2)-sensitive if for x, y ∈ X and
h sampled uniformly at random from H we have that:

– dist(x, y) ≤ r1 ⇒ Pr[h(x) = h(y)] ≥ q1

– dist(x, y) ≥ r2 ⇒ Pr[h(x) = h(y)] ≤ q2

As a technical detail, we assume that the LSH family is monotonic, i.e., its collision
probability function is decreasing with the distance. Moreover, we assume that
we can evaluate the probability of collision at a certain distance.3 We denote
the collision probability function with p : R → [0, 1] and for ease of notation
use p(x, y) := p(dist(x, y)) for x, y ∈ X . Most popular LSH families have this
property, such as Euclidean LSH [12] for Euclidean space, random hyperplane
hashing [9] and Cross-Polytope hashing [2] for the d-dimensional unit sphere
under inner product similarity (or cosine similarity), or 1-bit MinHash described
by Li and König in [20] for set similarity under the Jaccard similarity. Since we
use LSH functions as a black-box, our results hold for all LSH families that have
this property and are not restricted to special cases.

In [4], Aumüller et al. introduced PUFFINN, a highly-optimized implementation
of an LSH-based k-nearest neighbor search algorithm. Their work builds upon the
LSH forest data structure of Bawa et al. [5] and the adaptive search mechanism
described by Dong et al. in [14]. Since our work extends their data structure, we
provide a recap of how their data structure works next. See [4] for more details.

Given a set S ⊆ X , two parameters L,K ≥ 1, and access to an LSH family
H, the data structure consists of a collection of L LSH tries of max depth K.
The LSH tries are indexed by j = 1, . . . , L. The jth LSH trie is built from the
set of strings

{(h1,j(x), . . . , hK,j(x)) | x ∈ S}. (1)

where hi,j ∼ H. The trie is constructed by recursively splitting S on the next
(ith) character until |S| ≤ i or i = K + 1 at which point we create a leaf node in
the trie that stores references to the points in S.

Example 1. Figure 1 gives an example with a small set of points in the Euclidean
plane, reporting the solution of a top-5 global join. The right hand side of the
figure gives an example for an LSH forest with L tries initialized with the dataset.
Each trie has depth K. Paths from the root to the leaves are labelled with the
hash values of the corresponding points. For instance, in the first trie point d has
hash value (0, 1), while point f has hash value (2, 2).

3 It will be evident from the analysis of the algorithms that an estimate on the collision
probability function will be sufficient in practice.
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Fig. 1: Left: A set of 12 points in the plane with ellipses marking the 5 closest
pairs. Right: L LSH tries of depth K with example distribution of points.

Given a query point q ∈ X and a failure probability δ, PUFFINN traverses each
trie j to find the leaf corresponding to the string (h1,j(q), . . . , hK,j(q)). Starting
from that, it traverses the tries in a bottom-up fashion and keeps track of the
current kth closest point x′k. Let p be the probability of a collision under random
choice of the LSH of two points at distance dist(q, x′k). If the current depth in
the tries is i, and ln(1/δ)/pi is smaller than the current index of the trie that is
inspected, the algorithm terminates and returns the closest k points as the answer
to the query. [4, Lemma 3] shows that the stopping criterion guarantees that each
point of the k nearest neighbors of q is found with probability at least 1−δ. Their
Lemma 4 states that the algorithm asymptotically inspects O(OPT) candidate
points in expectation, where OPT is the expected number of candidate points of
a “clairvoyant” LSH-based algorithm that knows the distance distribution.

3 Algorithm, Analysis, and Problem Difficulty

In the following, we describe our algorithm to compute k closest pairs, extending
the single query algorithm proposed in [4]. We first introduce some general
concepts.

The algorithm makes use of a priority queue to keep track of the current k
closest candidate pairs. This priority queue is implemented as a MaxHeap which
associates a pair of points (x, y) ∈ X 2 with their distance dist(x, y). The number
of elements in each priority queue will be at most k, i.e., if the priority queue
has k elements and we insert an element, the element with maximum priority is
removed. To make this assumption explicit, we call it a k-priority queue. Each
operation in such a priority queue can be implemented to run in time O(log k),
for example using a binary heap.

Fix a set S ⊆ X and two parameters L,K ≥ 1. First we build L LSH tries of
depth at most K as discussed in the previous section. For x, y ∈ S, let x ∼i,j y
if (h1,j(x), . . . , hi,j(x)) ∈ T i equals (h1,j(y), . . . , hi,j(y)) ∈ T i, i.e., x and y have
the same length-i prefix in the jth LSH trie. Let Si,j denote the partition of
points in S under the equivalence relation ∼i,j . Since a trie can be built in linear
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Algorithm 1: closest-pairs(k, δ)

1 PQ ← empty k-priority queue of unique (pair of points, dist)
2 for i← K,K − 1, . . . , 0 do
3 for j ← 1, 2, . . . , L do
4 foreach F ∈ Si,j do
5 foreach unchecked (x, y) ∈ F do
6 if PQ.max() ≥ dist(x, y) then
7 PQ.insert((x, y), dist(x, y))

8 if i == 0 ∨ (PQ.size() == k ∧ j ≥ ln(1/δ)/p(PQ.max())i) then
9 return PQ

time in the concatenated length of the input strings, cf. (1), we summarize the
properties of building the trie data structure as follows.4

Fact 1 Given K and L, building an LSH trie for n keys carries out O(nKL)
hash function evaluations to build the input strings, and takes time O(nKL) and
uses O(nL) words of space to build the L tries representing these strings.

Algorithm 1 describes the k-closest pair algorithm on a set S ⊆ X carried
out on an LSH trie data structure with parameters K,L ≥ 1. Given k ≥ 1 and
δ ∈ (0, 1), the algorithm initializes an empty k-priority queue. Using this data
structure, the algorithm keeps track of the k closest pairs of points so far. We
assume that S admits a total order (e.g., the indices of the keys in the set) and
identify two points x, y ∈ X as the pair (x, y) with x < y.

For i ← K, the algorithm carries out all-to-all comparisons in each of the
leaves, over all L tries. Next, the trie is traversed in a bottom-up fashion. For
each node n on level i in trie j, i.e., the node that represents one set F in Si,j ,
we carry out an all-to-all comparison between those (x, y) ∈ F that have not
been in the same subset in Si+1,j . After trie j has been explored, we check the
stopping criterion.

Example 2. Restricting Figure 1 to the first trie presented there, the algorithm
carries out 3 + 3 + 1 + 1 = 8 distance computation in the leaves of that trie.
On the level higher up, it carries out 3 + 3 + 6 + 2 = 14 distance comparisons.
We observe that S2,0 (the first trie at largest depth) has points {a, b, c} and {e}
as part of the partition, while S1,0 has the set {a, b, c, e} and S0,0 contains all
twelve points in a single set.

To implement Algorithm 1, the leaves, i.e., all sets in SK,j , are stored as sets
using hashing. When traversing the trie, all-to-all comparisons are carried out
between all pairs of child nodes and the sets are merged together. In this way, each

4 Note here that the keys are the hash codes of the points in S. In many cases, a hash
function can be evaluated in time O(d), but many other scenarios exist. For example
for set similarity, the MinHash value can be computed independently of the universe
size in the size of the set at hand.
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distance computation gives rise to two potential priority queue operations taking
O(log k) time. We charge the cost of merging the child nodes to these all-to-all
comparisons. Over all iterations of the nested loop, checking the termination
criterion takes time O(KL). We summarize this discussion in the following
corollary. We separate the potential expensive distance computations from all
other operations to make the statements more precise.

Corollary 1. Let S ⊆ X with |S| = n, and let K,L, k ≥ 1. Let C be the
number of pairs (x, y) for which a distance is computed in Line 6 of Algorithm 1
in an LSH forest of depth K with L tries. The algorithm can be implemented
to carry out O(C) distance computations and all other operations run in time
O(C log k +KL).

3.1 Analysis

For a dataset S ⊆ X , identify by the sequence OPT = ((x1, y1), . . . , (xk, yk)) a
sequence of k closest pairs, and denote the best candidates found by Algorithm 1
as OUT = ((x′1, y

′
1), . . . , (x′k, y

′
k)).

Theorem 1. Given S ⊆ X , k ≥ 1, and δ > 0. Then

Pr[(x, y) ∈ OUT ] ≥ 1− δ ∀(x, y) ∈ OPT.

Proof. Fix a pair (x, y) that is part of the output. There are two ways that the
algorithm can return in Line 9. First, it can reach level 0, which means that it
carried out a linear scan of all pairs of points. Second, it can return because it
inspected the jth trie on level i and j ≥ ln(1/δ)/p(x′k, y

′
k)i. By the monotonicity

of the LSH, p(x′k, y
′
k) ≤ p(x, y), because dist(x′k, y

′
k) ≥ dist(x, y). The probability

that y did not collide with x in all j tries is(
1− p(x, y)i

)j ≤ (1− p(x, y)i
)ln(1/δ)/p(x′k,y

′
k)i

≤ exp
(
− ln(1/δ) · p(x, y)i/p(x′k, y

′
k)i
)

≤ exp(− ln(1/δ)) ≤ δ,

where the second-last inequality follows by the monotonicity of the LSH function,
and we also used the inequality 1− z ≤ exp(−z) for z ≥ 0.

While Corollary 1 tells us that the running time of the algorithm is asymp-
totically equivalent to the number of pairs that are compared to each other, it is
not clear how many such pairs will be inspected. To this end, let us define the
work of an optimal, clairvoyant LSH-based closest pair algorithm that knows the
distance distribution between all pairs of points. Let (xk, yk) be a k closest pair
of points of maximum distance. We define

OPT(L,K, k, δ) = min

{
ln(1/δ)

p(xk, yk)i

i+
∑
x,y∈S

p(x, y)i

∣∣∣∣∣ 0 ≤ i ≤ K, ln(1/δ)

p(xk, yk)i
≤ L

}
(2)
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as the expected cost of the LSH-based algorithm that knows the exact distance
distribution. The cost on level i includes that each pair of points in the top-k set
is found with probability at least 1− δ if we inspect j ≥ ln(1/δ)/p(xk, yk)i tries.
The expected cost of searching one LSH trie at depth i is i+

∑
x,y∈S p(x, y)i. In

our expression for the expected query time we use a unit cost model that counts
distance computations. As shown in Corollary 1, counting distance computations
is asymptotically equivalent to the running time of the algorithm.

The following theorem relates the running time of Algorithm 1 to the running
time of the optimal algorithm that knows the full distance distribution.

Theorem 2. Given a dataset S and parameters L,K, build the LSH trie data
structure for S. Given k and δ such that ln(k/δ) ≤ L, with probability at least
1− δ, Algorithm 1 computes the k closest pairs in S in expected time

O (OPT(L,K, k, δ/k) + L(k +K) + nKL) .

Before proceeding with the proof, we remark that the analysis compares the
expected time to the clairvoyant variant in the case that we set the failure
probability so low that the result is exact (with probability at least 1− δ).

Proof. From Fact 1, building the trie takes time O(nKL). Setting the failure
probability to δ/k, Algorithm 1 returns the exact k closest pairs with probability
at least 1 − δ using a union bound. Conditioning on this event, the algorithm

will stop at the largest i such that ln(k/δ)
p(xk,yk)i ≤ L. Denote this level with i′, and

let i∗ be the level used to minimize the work in (2). The expected running time
of Algorithm 1 can be bounded by the term

ln(k/δ)

p(xk, yk)i′

i′ + ∑
x,y∈S

p(x, y)i
′

+

(
L− ln(k/δ)

p(xk, yk)i′

)i′ + 1 +
∑
x,y∈S

p(x, y)i
′+1

 ,

(3)
where the first term bounds the work done on level i′, and the second term
bounds the work done on level i′+ 1 on the tries not inspected on the level above.
Let T contain all pairs in S2 that are not k closest pairs. We start by bounding
the first term of the summation and continue as follows:

ln(k/δ)

p(xk, yk)i′

i′ + ∑
x,y∈S

p(x, y)i
′

 ≤ L(k +K) +
ln(k/δ)

p(xk, yk)i′
∑

(x,y)∈T

p(x, y)i
′

(i)
≤L(k +K) +

ln(k/δ)

p(xk, yk)i∗
∑

(x,y)∈T

p(x, y)i
∗

≤ L(k +K) + OPT(L,K, k, δ/k),

where (i) follows from the monotonicity of the LSH collision probability function.
The theorem follows by observing that the second summand in (3) is at most a
factor of 1/p(xk, yk) = O(1) larger than the first term.
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We remark that the running time of Theorem 1 can be as high as O(n2) in
the worst case. This is true because of the general nature of the problem (for
example, by setting k =

(
n
2

)
), or because of the hardness of the data distribution.

3.2 Measuring the Difficulty of Closest Pairs

Ahle et al. [1] defined the expansion around the query as a difficulty measure to
bound the running time of an LSH-based adaptive query algorithm. Aumüller
and Ceccarello gave empirical evidence in [3] that the expansion predicts the
indexing difficulty of datasets well in general. For the closest pair problem, we
consider the following definition:

Definition 3. Given S ⊆ X and k, k′ ≥ 1 with k < k′, let ((xi, yi))(xi,yi)∈S2 be
a sequence of pairs (x, y) ∈ S2 ordered by their distance. Then contrastk|k′(S) :=
dist(xk′ ,yk′ )
dist(xk,yk) is the contrast of the kth to the k′th closest pair.

We use this definition of contrast to bound the running time of the optimal,
clairvoyant algorithm. By Theorem 1, this also provides a bound on the expected
running time of Algorithm 1.

Lemma 1. Given S ⊆ X with |S| = n, an LSH family H, integers K,L, k ≥ 1,
and δ > 0, let c∗ = contrastk|2k(S). Let p1, p2 be the collision probability of the

k and 2k closest pair, respectively, for H. Let ρ = ρ(c∗) = log(1/p1)
log(1/p2) and assume

that L = Ω
(
n2ρ/kρ

)
. Then OPT(K,L, k, δ) = O

(
n2ρk1−ρ ln(1/δ)

)
.

Proof. Let S′ be the set of all pairs that are not among the 2k closest pairs. As
discussed before, the expected cost on level i of the clairvoyant algorithm is

ln(1/δ)

pi1

i+
∑
x,y∈S

p(x, y)i

 ≤ ln(1/δ)

pi1

i+ 2k +
∑

(x,y)∈S′
p(x, y)i


≤ ln(1/δ)

pi1

(
i+ 2k +

(
n

2

)
pi2

)
.

Setting i = log(n2/k)
log(1/p2) ,

(
n
2

)
pi2 ≤ k and 1/pi1 = (n2/k)

log 1/p1
log 1/p2 = n2ρ/kρ.

For Euclidean space, ρ(c) = 1/c2, so their exists a level for the clairvoyant

algorithm with subquadratic expected running time O(n2/c2k1−1/c2 ln(1/δ)). As
shown in Theorem 2, Algorithm 1 has the same asymptotic running time up to
logarithmic factors. Note that c ≥

√
2 yields sublinear running time, because the

build time of the trie data structure is disregarded. The expected running time
of Algorithm 1 is at least Õ(nKL) for building the trie.

If the contrast is small, the space requirement on L in Lemma 1 is large.
Let c∗ be the smallest value of c such that L ≥ n2ρ(c∗)/kρ(c

∗), and let d∗ be
the distance of a k-th closest pair. We can carry out the same analysis as
in the proof of Lemma 1. In each trie, we have expected cost k for the k
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closest pairs, and we expect to see no more than
(
n
2

)
p(c∗d∗)i ≤ k pairs at

distance larger than c∗d∗ for the choice i = blog(L)/ log(1/p1)c. Each pair with
a distance in [d∗, c∗d∗] collides with probability at most pi1, so overall all tries we
expect to see each pair once. Thus, the expected number of pairs inspected is
O ((Lk +Nc∗,d∗(S)) ln(1/δ)) = O

((
n2ρ(c∗)k1−ρ(c∗) +Nc∗,d∗(S)

)
ln(1/δ)

)
, where

Nc∗,d∗(S) is the number of pairs with distance in [d∗, c∗d∗].

4 Implementation Choices

Our algorithms are implemented in the framework provided by PUFFINN [4].

Trie data structure. We focus on supporting the Cosine and the Jaccard similarity.
For these two similarity functions we choose as hash functions 1-bit MinHash [20]
and SimHash [9], respectively. Both these hash functions output single bits: it is
thus very natural to represent the strings of hash values described in Section 2 as
bitstrings, packing the bits into machine words. We also support more complex
hash functions such as Crosspolytope-LSH [2]. For this LSH family, we view the
output hash code (which is an integer {0, . . . , 2d − 1}) as a length-dlog d + 1e
bitstring and concatenate a small number of hash functions. For intermediate
positions in the trie, i.e., those where we use only part of the output of a single
LSH, we estimate the collision probabilities by sampling. Since evaluating O(nKL)
hash values is time-demanding, PUFFINN supports the tensoring and pooling
approach described by Christiani in [10].

By viewing the output of the LSH as a bitstring, we can optimize the trie
implementation. Rather than using a pointer-based implementation, we store
point indices, paired with the corresponding bitstring hash values, in a flat array.
The array is then sorted lexicographically by hash value, leading to a more
compact and cache efficient data structure. Furthermore, to speed up index
construction we rely on radix-sorting, given that the bitstring hash values can
be also interpreted as integers. In this implementation of the trie, the nodes in
the same subtrie at a given depth i are all the consecutive entries of the array
sharing the same length-i prefix.

Sketching Finally, to further prune similarity computations we use sketching with
a similar setup as the original PUFFINN paper [4]. Each point is associated with a
different 64-bit sketch in each repetition, computed using either 1-bit MinHash or
SimHash, depending on the similarity function. Consider now two colliding points
x and y, and let sk be the highest distance of any pair currently in the k-heap to
be possibly updated, if d(x, y) < sk. Let τ be the expected number of different
bits in the sketches of points at distance sk. Before evaluating the similarity of x
and y, we first check the number of different bits in the corresponding sketches: if
such difference is larger than τ , the similarity between x and y is not computed
at all. This has the effect of reducing the number of similarities being evaluated,
at the cost of slightly reducing the recall of the algorithm.

In the following, we refer to the implementation of our algorithms as PUFFINN-join.
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dataset n dimensions RC @ 100 RC @ 10 000 c. @ 100 c. @ 10 000

DeepImage 10 000 000 96 7 615.56 2 343.25 1.25 1.31
Glove 1 193 514 200 38.04 5.15 1.33 1.29
DBLP 2 773 660 4 405 478 22.52 7.83 1.15 1.33
Orkut 2 732 271 8 730 857 20.97 2.99 1.39 1.36

Table 1: Datasets used in the experimental evaluation. The last two columns
report the relative contrast at 100 pairs and 10 000 pairs [17].

5 Evaluation

This section reports on the results of our experiments, which are tailored to
answer the following questions: (Q1) How does our approach compare with the
state of the art? (Q2) How does the amount of available memory influence the
performance of our algorithm? (Q3) What is the relationship between intrinsic
dimensionality measures and the performance of the algorithm?

Experimental Setup. Experiments were run on 2x 14-core Intel Xeon E5-2690v4
(2.60GHz) with 512GB RAM using Ubuntu 16.10 (kernel 4.4.0). The code is
available at https://github.com/Cecca/puffinn, along with all the scripts to
suitably preprocess the datasets.

We focus our evaluation on two metrics: the running time and the recall.

Datasets. Information about the datasets used in this evaluation is reported in
Table 1. In particular, we consider two datasets with cosine similarity (Glove
and DeepImage) and two datasets under Jaccard similarity (DBLP and Orkut).

In particular, for all datasets we report a summary of the Relative Contrast [17]
— i.e. the ratio between the average distance and the k-th distance — which
will be useful in interpreting the results [3]. In particular, we expect DeepImage
to be easier than Glove, and both to be easier than the two Jaccard datasets.
Furthermore, the relative contrast of DeepImage is extremely high. This means
that the top pairs of globally closest points are much closer than the average
pair, meaning that this dataset is expected to be considerably easier than the
others for the global top-k problem.

Baselines. Under the Jaccard similarity we compare with XiaoEtAl [26], whereas
for the cosine similarity5 we consider the LSB-Tree approach [24, Algorithm CP3]
Furthermore, for cosine similarity we consider a baseline that uses the HNSW
implementation provided by FAISS [19], querying the k-nearest neighbors of each
point and then selecting the k closest among the resulting pairs.

Parameter choices. For our approach we set the memory given to the index in
the range 256MB to 32GB, by powers of two, corresponding to up to L ≈ 2000,
depending on the dataset, for fixed K = 24. As for the target recall, we set it to

5 We omit PM-LSH [28] as its closest-pair implementation is unavailable and as we were
unsuccessful in both implementing it ourselves and in reaching out to the authors.

https://github.com/Cecca/puffinn
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Table 2: Running times. Missing values are for runs that timed out after 8 hours.
The last column reports the time for the index construction (not applicable to
XiaoEtAl), which is also included in the total time reported in the other columns

Total time (s) for different k indexing (s)
dataset algorithm 1 10 100 1 000 10 000

Glove
faiss-HNSW 68.1 132.8 551.7 - - 63.8
LSBTree 18.2 136.7 2028.4 2127.4 959.3 3.1
PUFFINN 5.0 5.0 5.0 5.1 6.3 4.7

DeepImage
faiss-HNSW 299.7 533.8 2632.9 - - 255.4
LSBTree 112.0 93.4 114.6 176.2 368.6 13.6
PUFFINN 37.2 37.5 37.1 37.4 37.4 18.9

DBLP
XiaoEtAl 9.3 14.0 9.8 12.1 58.3 0.0
PUFFINN 4.9 4.9 4.9 4.9 5.0 4.2

Orkut
XiaoEtAl 118.0 122.0 142.3 1170.3 - 0.0
PUFFINN 24.7 24.8 24.7 24.5 73.3 23.9

0.8, 0.9, and 0.99. For HNSW we test M ∈ [32, 48], efConstruction ∈ [100, 500],
efSearch ∈ [k8, k16] for a top-k join. For LSB-Tree we test m up to 8, whereas
XiaoEtAl takes no parameters. We remark that this is one of the most relevant
differences between our approach and the state of the art: while we can specify
a desired target recall, all other approaches require to experiment with several
combinations of parameters before finding a configuration suitable for the desired
quality level.

Comparison with baselines. In the first set of experiments we measure the running
time required by different algorithms to achieve recall at least 0.9. The results are
reported in Table 2. On all datasets, PUFFINN-join runs faster than the baselines.
Furthermore, observe that for k ≤ 1000 the running time of our algorithm remains
basically unaffected by the number of pairs returned. This is because all of the
runtime, in this setup, is spent building the index, which is independent of the
value of k. Finally, observe that compared to LSBTree, our approach is orders of
magnitude faster.

Space/time tradeoffs. In Figure 2 we report the space/time tradeoff of our algo-
rithm, at recall 0.9 and k ∈ {100, 10 000} . In particular, we report on the total
time (Figure 2a), which is comprised of the time to build the index (Figure 2b),
and the time to run the join (Figure 2c). The top row of plots reports the results
for k = 100, the bottom row for k = 10 000.

Observe that the indexing time (Figure 2b) increases with the space given to
the index, as expected. Furthermore, we have the Jaccard-similarity datasets being
processed more slowly than the cosine-similarity datasets: this is a consequence
of the longer time required to compute MinHash compared to SimHash.

For k = 100, on all datasets, the best performance is attained by the configu-
rations using the least space. The reason is in the high relative contrast values of
the 100th top pair (see Table 1), which imply that in the few repetitions required
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(a) Total time (b) Indexing time (c) Join time

Fig. 2: Space/time tradeoff of our algorithm at guaranteed recall 0.9 and k ∈
{100, 10 000}, for the global top-k problem.

to confirm the top pairs there are few other collisions to check. In fact, the index
construction time dominates the join time (Figure 2c) by a large margin.

In contrast with this for k = 10 000 we have that for Orkut increasing the
memory usage gives better performance. In fact, the 10 000th pair of this dataset
has relative contrast of just about 3, meaning that our approach requires either
many repetitions or short hash values to confirm it: using more memory allows
to use more repetitions on longer hashes, thus reducing the number of collisions
to be evaluated. Using too little memory makes the join part of the algorithm
dominate on the index construction part, enabling the tradeoff that is observed
in the figure.
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