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ABSTRACT

XAI-Driven CNN for Diabetic Retinopathy Detection

by Vikas Shenoy Pete

Diabetes, a chronic metabolic disorder, poses a significant health threat with

potentially severe consequences, including diabetic retinopathy, a leading cause of

blindness. In this project, we tackle this threat by developing a Convolutional Neural

Network (CNN) to support the diagnosis based on eye images. The aim is early

detection and intervention to mitigate the effects of diabetes on eye health. To

enhance transparency and interpretability, we incorporate explainable AI techniques.

This research not only contributes to the early diagnosis of diabetic eye disease but

also advances our understanding of how deep learning models arrive at their decisions,

fostering trust and clinical applicability in healthcare diagnostics.

Our results show that our CNN model performs exceptionally well in classifying

ocular images, attaining a 91% accuracy rate. Furthermore, we implemented explain-

able AI techniques, such as LIME (Local Interpretable Model-agnostic Explanations),

which improves the transparency of our model’s decision-making. The areas of interest

in the eye images were clarified for us by LIME, which enhanced our understanding

of the model’s predictions. The high accuracy and interpretability of our approach

demonstrate its potential for clinical applications and the broader field of healthcare

diagnostics.

Keywords - Convolutional Neural Networks, Explainable Artificial Intelli-

gence, Local Interpretable Model-agnostic Explanations, Medical Image

Classification.
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CHAPTER 1

Introduction

Reduced synthesis or use of insulin is a common long-term metabolic disease

known as diabetes, which has grown to be a significant global health concern [1].

Diabetes is a complex disease that significantly affects many organ systems, including

the eyes. As a result, its benefits extend well beyond regulating blood sugar levels

and overall wellness. One of the most severe consequences is diabetic retinopathy, a

disorder that poses a serious risk to vision and has emerged as a major issue in the

field of ophthalmology. Irreversible blindness could result from the condition if it is

not detected and treated in its early stages. In light of the seriousness of the condition

and the potentially disastrous consequences of a diabetic retinopathy diagnosis, this

project looks into the application of cutting-edge technology to enhance early detection

and, eventually, the standard of care for diabetics.

It is impossible to overestimate the effects of diabetic retinopathy. Millions of

people worldwide still suffer from diabetes, and the key to preventing vision loss

and enhancing the quality of life for those who are affected is early detection of

abnormalities in the eyes [2]. When diabetic retinopathy reaches an advanced stage, it

usually advances silently and frequently shows no symptoms at all. This emphasizes

how important it is to have a strong diagnostic tool that can spot anomalies while

they are still in the early stages[3]. Early intervention not only lessens the risk of

vision loss but also considerably lessens the psychological and financial strain that

advanced diabetic eye problems have on patients and healthcare systems. The quest

for early detection is extremely valuable as it can save people’s eyes from suffering

from the severe effects of diabetic retinopathy.

CNNs, or convolutional neural networks, have become a very useful technique

for classifying images. They are perfectly suited for jobs like medical image analysis
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because of their capacity to identify intricate patterns and features inside images.

CNNs will be used to examine a dataset of eye photographs in the context of diabetic

eye diagnosis in order to differentiate between photos that show normal eye conditions

and those that indicate anomalies connected to diabetes [4]. In order to guarantee the

CNN model’s high level of accuracy and dependability in its predictions, this research

will examine the model’s architecture, training, and optimization. Furthermore, an

essential part of this project will be using explainable AI approaches to make the

model’s decision-making process comprehensible. This will guarantee openness and

promote confidence in the model’s clinical applications.

The significance of interpretability and transparency is increased when CNNs are

used for medical diagnosis. It is essential to comprehend the model’s methodology,

particularly in a clinical context where the choices the model makes may have

an influence on patient care. Therefore, this project will incorporate explainable

AI techniques in tandem with CNN development to clarify the reasoning behind

the model’s predictions. This improves the reliability of the model and provides

information about the characteristics and patterns in the images that influence the

diagnosis. Healthcare professionals can validate and comprehend the diagnostic

recommendations when the decision-making process of CNNs is made interpretable,

which ultimately results in more informed and efficient clinical decisions. Advanced

machine learning and explainable AI together have the potential to transform the

diagnosis of diabetic eye disease, providing a glimmer of hope for those who suffer

from the condition and furthering the field of medical image analysis as a whole.

Taking into account the previously mentioned factors, this project tries to achieve

two major goals to build a trustworthy machine learning-based diagnosis tool. Creating

and refining a CNN model that can correctly categorize eye images into normal and

diabetes-related conditions is the main objective. In addition, by incorporating
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explainable AI techniques, the project seeks to improve the model’s decision-making

process’s transparency and interpretability. By doing this, it aims to close the

gap that exists between clinical practice and cutting-edge technology, guaranteeing

the accuracy and reliability of AI-based diagnostics. This effort is in line with the

pressing need for trustworthy early detection techniques for diabetic eye disease

and represents a breakthrough in the worldwide battle against vision-threatening

complications resulting from diabetes. The project’s outcomes hold the promise of

positively impacting healthcare and the lives of those afflicted by this prevalent chronic

condition.

The structure of this report is as follows. In Chapter 2, we lay a thorough founda-

tion for our research by reviewing relevant literature and introducing the principles of

Explainable AI (XAI). Then, in chapter 3, we discuss the overall methodology by first

introducing concepts of CNNs, and the theory behind the explainable AI techniques

and then finally covering the details of the experiments conducted. Then, in Chapter

4 we go over the various experimental results obtained from CNNs and XAI methods.

Finally, chapter 5 brings the work to a close and offers some suggestions for future

improvements, this is our final chapter
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CHAPTER 2

Background
2.1 Related Works

The field of medical image analysis has experienced a substantial transformation

due to the swift progress made in artificial intelligence and deep learning. The

incorporation of Convolutional Neural Networks (CNNs), which have proven to have

exceptional abilities in the analysis of complex medical images, is central to this

transformation. Explainable Artificial Intelligence (XAI) has become an important

field of study due to the inherent difficulties in deciphering the decisions made by these

deep learning models. In order to improve AI models’ dependability and credibility in

crucial applications like healthcare, XAI aims to make their decision-making processes

transparent.

In order to overcome the black-box nature of these models and attempt to make

their judgments comprehensible and justified, researchers have investigated a variety

of approaches for integrating XAI into CNNs, particularly in the context of medical

diagnostics. This methodology not only conforms to the ethical implications of utilizing

AI in delicate domains but also aids healthcare practitioners in comprehending and

establishing confidence in AI-supported diagnosis and interventions.

This chapter explores the latest research and developments on the integration

of XAI in CNN-based medical image analysis. The strategies it looks at range from

building CNN architectures from scratch with XAI integrated to fine-tuning pre-

trained models with explainability in mind. We hope to offer a thorough grasp of how

XAI is being applied to demystify CNN decisions in medical imaging by examining

these methods.

This summary will provide an understanding of the state-of-the-art approaches

currently in use, highlighting their advantages, disadvantages, and possible directions
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for further research. Studies that have used XAI to analyze different kinds of medical

images are included in our investigation, and we discuss the subtleties of each method

and how they apply to actual medical situations. An important step toward the use of

AI in healthcare that is more accountable, transparent, and efficient is the incorporation

of XAI into CNN models. We aim to provide a comprehensive understanding of this

quickly developing field by combining these recent developments, helping practitioners

and researchers better grasp the opportunities and difficulties associated with applying

XAI to medical image analysis using CNNs.

Convolutional Neural Networks (CNNs) and Explainable Artificial Intelligence

(XAI) are transforming medical image analysis by helping us comprehend and interpret

complex medical data in a way that has never been seen before. The use of CNNs

in medical imaging is primarily defined by three main strategies, as described in

the research done by Dutta et al. [5]: training CNNs from scratch, utilizing pre-

trained CNN features, and combining unattended pre-training with supervised fine-

tuning. This method emphasizes how important transfer learning is to improving the

effectiveness and precision of medical image classification. The study goes into more

detail about each tactic, looking at its benefits and drawbacks in different medical

imaging scenarios. As a result, it provides researchers and practitioners in the field

with a useful manual.

Furthermore, Volkov et al. [6] offer a thorough summary of the use of XAI

techniques in medical image analysis. It explores the current status of XAI technologies

with an emphasis on improving the interpretability and transparency of AI models,

especially CNNs, in medical settings. This paper explores promising future directions

in the field of XAI while highlighting its technical aspects and potential benefits, such

as increased trust among medical professionals and improved diagnostic accuracy.

Parallel to this, Moradi et al. [7] provides a comprehensive six-category XAI archi-
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tecture for classifying deep learning-based medical image analysis and interpretability

methods. This paper categorically outlines the different interpretability methods and

XAI approaches, underlining the importance of explanation and technical methods in

medical imaging. It elaborates on how these methods can be effectively applied in

real-world scenarios, offering detailed insights into their practical implications and

potential to improve patient outcomes.

Additionally, Dharshini et al. [8] explore the application of deep-learning convo-

lutional neural networks (DCNNs), which are frequently thought of as "black-box"

predictors, in medical imaging. This study emphasizes the emerging field of XAI and

its function in elucidating AI models’ decision-making processes, thereby promoting

trustworthiness and dependability in medical diagnosis and treatment planning. The

authors provide case studies that demonstrate how XAI has improved the inter-

pretability and acceptability of AI tools in clinical settings by clearly illuminating the

operation of DCNNs.

Additionally, Papanastasopoulos et al. [9] surveys more than 200 papers and

categorizes them using an XAI framework. This paper offers a comprehensive overview

of the state-of-the-art in medical imaging and offers insights into the trends and future

prospects for XAI. The survey underscores the swift expansion of XAI applications

within the field of medical imaging and pinpoints crucial domains requiring additional

investigation and enhancement, thereby steering forthcoming progress in this field.

Furthermore, Gilhuijs et al. [10] discusses how AI is widely used in a variety of

fields, including biomedical imaging. It emphasizes the significance of explainability

in AI applications in biomedical settings and makes the case that progress in the

field depends on our ability to comprehend AI decision-making processes. This paper

advocates for a more responsible approach to AI development and deployment by

discussing the ethical implications of AI in healthcare as well as the need for transparent
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algorithms in sensitive medical applications.

Yang et al. [11] emphasize the difficulties in creating CNNs from the ground up

and offer to fine-tune pre-trained CNNs as a workable substitute. This method takes

into account the variations between natural and medical images and suggests ways to

successfully modify CNNs for use in medical settings. The paper then examines several

case studies that show the applicability and efficacy of this strategy by showing how

it has significantly improved the analysis of intricate medical datasets.

Moreover, Tajbakhsh et al. [12] offers a thorough examination of CNN’s uses in

medical imaging, addressing topics like large-scale image processing and brain MRI

analysis. The various ways that CNNs can enhance medical image analysis procedures

are highlighted in this review. In order to handle the increasing complexity and

volume of medical data, it also addresses potential future directions for CNN research

in medical imaging, highlighting the necessity for more reliable, flexible, and effective

CNN architectures.

A novel diagnosis platform utilizing a DCNN was created in the study done by

Kshatri et al. [13] to help radiologists differentiate COVID-19 pneumonia from other

kinds. This method’s average accuracy was very high, demonstrating how XAI can

improve medical diagnostics and COVID-19 screening on a large scale. This study

illustrates the wider applications of XAI in public health, especially in situations

requiring quick responses, like pandemic outbreaks, in addition to proving the models’

technical viability.

2.2 Introduction to Explainable AI (XAI)

One of the most significant advances in the field of artificial intelligence is

explainable AI, or XAI for short. The need to close the gap between the decisions

made by AI models and human understanding has become increasingly apparent as
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these models especially complex machine learning models like deep neural networks

acquire more and more capabilities at a faster rate [14]. Interpretability is the crux

of the matter with AI systems. Although these sophisticated models have shown

incredible accuracy and predictive power in a variety of applications, they frequently

operate as ’black boxes,’ making it difficult to understand how they arrive at their

conclusions. There are significant ramifications for this lack of transparency. Knowing

and believing in the logic underlying AI-driven decisions is critical in domains where

AI is making critical decisions, such as autonomous systems, financial risk assessment,

and healthcare diagnosis [15]. Hence, explainable AI emerges in response to these

demands, providing a resolution to the enduring problem of rendering AI systems

more understandable, transparent, and morally upright.

Among the many benefits of explainable AI is the improvement of trust and

accountability. As artificial intelligence (AI) applications become more and more

integrated into our daily lives, the decision-making processes they use must adhere to

ethical and legal requirements. XAI gives the tools to examine AI results and make

sure they are impartial, fair, and just by offering insights into the reasoning behind

particular decisions [16]. Transparency in AI has significant practical implications in

addition to these ethical ones. Validating and understanding AI-generated outputs

whether it’s a recommendation for investments or a life-saving medical diagnosis

benefits users and stakeholders. Furthermore, XAI makes it easier to identify and

correct model biases and discrepancies, which helps create AI solutions that are fairer

and more equitable [17]. The path to achieving XAI is characterized by continuous

innovation and research, but it holds the potential to transform the field of AI

applications and foster trust and accountability in the era of sophisticated machine

learning.
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2.2.1 Importance of Interpretability

In the field of artificial intelligence, interpretability is extremely important. This

is especially true in industries as vital as healthcare and finance, where AI applications

are essential to the processes that lead to decisions that have an immediate effect

on people and organizations. Understanding the process and reasoning behind an AI

system’s recommendation or prediction is not only valuable but also crucial in these

high-stakes domains [18].

The consequences of AI choices in healthcare are frequently life-or-death decisions.

Transparency in AI systems can be crucial for a variety of purposes, including disease

diagnosis, treatment planning, and risk assessment. Healthcare providers, physicians,

and patients need to understand the rationale behind the recommendations made by

these systems in addition to having faith in them. Medical professionals can trust

AI to be a helpful tool when making important decisions because of interpretability.

Additionally, it enhances patients’ overall experience by empowering them to be

knowledgeable about and confident in their healthcare journeys [19].

Moreover, interpretability is imperative in guaranteeing that AI models conform

to legal and ethical guidelines. It makes sure AI systems don’t discriminate based

on race, gender, or socioeconomic status by enabling the identification of biases.

Interpretability allows for the development of more equitable and just AI solutions by

highlighting any inconsistencies or unfairness in the model’s behaviour. Interpretability

is crucial, as demonstrated by the use of AI in areas like hiring and criminal justice,

where justice and transparency are primary concerns [20].

Furthermore, it is impossible to overestimate the contribution interpretability

makes to innovation and teamwork in these fields. Transparency in AI systems

facilitates more effective collaboration between researchers and practitioners from

different disciplines, bringing diverse perspectives that improve the robustness and
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equity of AI solutions [21]. Clear understanding enables this multidisciplinary approach,

which has the potential to advance AI applications and ultimately benefit society as a

whole.

Interpretability also complies with the growing public demand for accountability

and transparency in technology. There is a growing expectation for technology to

be not only efficient but also responsible and understandable as society grows more

aware of the potential risks and benefits of artificial intelligence. The significance of

interpretability is further highlighted by this shift in society, guaranteeing that AI

systems are created and implemented in a way that is not only technically sound but

also socially responsible and consistent with public values.

In conclusion, interpretability is a practical, ethical, and legal requirement for

AI applications. It is not just a convenience. A key component of AI deployment in

delicate industries like healthcare and finance, where decisions have a direct impact

on people’s lives and significant financial investments, is its role in empowering

stakeholders, guaranteeing ethical compliance, and promoting fair and unbiased AI

solutions.
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CHAPTER 3

Methodology
3.1 Convolutional Neural Networks

Convolutional neural networks, or CNNs, are a major advancement in machine

learning, especially in the area of image analysis. Deep neural networks, of which

CNNs are a subclass, were developed specifically to process and extract meaningful

information from visual data. They are therefore excellent for a variety of tasks,

including object detection and image classification. What sets CNNs apart from

traditional neural networks is their ability to automatically extract relevant features

from an image’s raw pixel values. Layers of convolution and pooling operations enable

the network to identify complex patterns, edges, textures, and higher-level visual

structures. Because of their hierarchical structure, CNNs can progressively collect

and process data at various levels of abstraction, which improves their capacity to

recognize minute details in [22]. Consequently, a plethora of cutting-edge applications,

including facial recognition software and medical image analysis, rely on CNNs as

their foundation, fundamentally altering the way people interact with and process

visual information.

At the heart of CNNs lies the concept of convolution, a fundamental operation that

mimics the human visual system’s ability to perceive features within images. CNNs

perform convolutions by swiping tiny filters, referred to as kernels, across the input

image in a methodical manner in order to identify unique patterns. Edges, corners,

and textures are a few examples of these patterns; these elements are fundamental for

identifying more intricate objects and structures. Convolution produces a feature map

that indicates where these patterns are found in the input data. These feature maps’

spatial dimensions are further reduced by pooling layers, which usually come after

convolution layers [23]. This helps to preserve crucial information while lightening
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the computational burden. CNNs are able to automatically learn and extract features

from images in situations where manual feature engineering would be impractical or

not feasible. This is made possible by the combination of convolution and pooling

operations.

Typically, convolutional neural networks (CNNs) have multiple layers, each of

which is responsible for processing and comprehending visual input in a particular

way. The fundamental layers of a CNN architecture consist of,

1. Input Layer: A CNN’s input layer is where data enters the system. It takes the

input image’s raw pixel values and provides the first set of data for network

processing. The input layer serves as the basis for later feature extraction and

classification, and its dimensions match those of the input images.

2. Convolutional Layers: Important components of CNNs, convolutional layers

identify patterns and features in the input data. These tiers utilize adaptive

filters that traverse the input and execute convolutions to recognize pertinent

attributes like borders, patterns, and intricate configurations. Multiple filters

are used by convolutional layers to capture distinct features at different spatial

scales.

3. Activation Layer: Activation Layers are vital because they add non-linearity to

the network. The ability of the network to model complex relationships within

the data depends on this non-linearity. Some examples of activation functions

generally, used are:

(a) The Rectified Linear Unit (ReLU), which substitutes zeros for negative

values to enable the network to learn complex patterns effectively, is one

12



of the most widely used activation functions in this layer. Beyond ReLU,

various activation functions are employed based on specific needs.

Figure 1: ReLU function from [24]

(b) The Sigmoid function reduces output values to a range of 0 to 1, making it

appropriate for binary classification tasks.

Figure 2: Sigmoid function from [24]

(c) For zero-centered data, the Hyperbolic Tangent (Tanh) function is suitable

since it maps values to a range between -1 and 1.

Figure 3: Tanh function from [24]
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(d) Leaky ReLU allows small, non-zero gradients for negative inputs, thereby

resolving the vanishing gradient issue with traditional ReLU

Figure 4: Leaky ReLU function from [24]

These varied activation functions give the network flexibility in defining its

non-linear activation properties, enabling it to adjust to various tasks and data

distributions.

4. Pooling (Subsampling) Layers: Pooling layers follow convolutional layers and

serve to downsample the feature maps produced earlier. Pooling layers assist

in controlling computational complexity while preserving crucial information

by lowering spatial dimensions [25]. To downsample the data, max pooling and

average pooling are popular methods.

5. Fully Connected Layers: Fully connected layers connect every neuron in one

layer to every neuron in the subsequent layer. Based on the features retrieved by

preceding layers, these layers allow the network to generate high-level predictions.

Fully connected layers combine extracted features in classification tasks to

identify the most likely class for the input data.

6. Output Layer: The output layer produces the final classification or prediction.

The number of classes in a classification task is reflected in the number of

neurons in this layer. In order to calculate class probabilities and base the
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final prediction on the probability with the highest value, softmax activation is

frequently utilized.

3.2 Theoretical Foundations of Explainable AI Techniques
3.2.1 Local Interpretable Model-Agnostic Explanations (LIME)

LIME, or local interpretable model-agnostic explanations, is a potent method in

the area of explainable AI (XAI). The goal of LIME is to provide clear and under-

standable justifications for the predictions generated by intricate machine learning

models. It works especially well when a model produces complicated or "black-box"

output that is challenging to interpret. LIME’s model independence is one of its

most noteworthy qualities. It applies to any machine learning model, regardless of

the architecture or underlying algorithm. LIME is a flexible tool for interpretability

across various models and domains because of its adaptability.

The various steps involved in LIME are as follows:

1. Local Interpretability: The foundational idea of LIME’s methodology is local

interpretability. When an explanation is needed for a particular prediction,

LIME concentrates on the immediate area around the data point of interest.

Rather than trying to explain the entire behaviour of the model, this local

perspective makes sure that the explanation is specific to the particular features

of each instance.

2. Data Perturbation and Sampling: LIME introduces controlled changes to the

data point’s features in order to perturb it and produce explanations. A newly

created dataset reflecting the local variations surrounding the instance is the

outcome of this perturbation process. To evaluate the effect of various feature

combinations on the model’s predictions, randomness in data perturbation must

be introduced. The perturbed data space is effectively explored through the
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application of sampling techniques.

3. Surrogate Model Creation: Using the perturbed data space as a guide, LIME

builds a surrogate model that roughly mimics the behaviour of the complex AI

model. This stand-in model is typically a linear model that is chosen for its

interpretability. The surrogate model’s coefficients are meticulously calibrated

to accurately represent the impact of every characteristic on the AI model’s

forecasts for the particular case [26]. Because of its model-agnostic nature, LIME

can be used with a wide range of machine-learning models.

4. Locally Faithful and Interpretable explanations: The LIME process culminates in

explanations that are both locally faithful and interpretable. These justifications

provide a clear understanding of the reasons behind the AI model’s decision-

making for the particular data point in question by highlighting the contributions

of individual features to the particular prediction.

After establishing the theoretical foundation of LIME, we now explore the mathematical

foundation. For every X, there exists an interpretable binary vector of dimension

d’, denoted by X’. The presence or absence of a word (also known as the Bag of

Words) is the interpretable vector X’ for text data. The presence or lack of an image

patch or superpixel in image data is represented by the interpretable vector X’. A

contiguous patch of comparable pixels is all that a superpixel is. In tabular data, we

perform feature binning if the feature is real-valued, and X’ is the one-hot encoding of

that feature if it is categorical. Any comprehensible model, such as decision trees or

linear models, is the surrogate model 𝑔 ∈ 𝐺. Ω(𝑔) is a measure of surrogate model

complexity. For instance, in the linear model, complexity rises with the number of

non-zero weights. In a similar vein, the model’s complexity rises with the decision

tree’s depth [27].
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Next, Π𝑥(𝑍) would be proximity calculation linking x and z, where Π𝑥 is

the measure of the locality of X. Local fidelity states that the surrogate func-

tion g() should resemble f() as much as possible in the vicinity of X. The degree

to which the function g() approximates f() is indicated by the Loss function Λ(𝑓, 𝑔,Π𝑥).

𝜖(𝑥) = argmin
𝑔∈𝐺

Λ(𝑓, 𝑔,Π𝑥) + Ω(𝑔), (1)

Λ(𝑓, 𝑔,Π𝑥) = argmin
𝑧,𝑧′∈𝑍

Π𝑥(𝑧)(𝑓(𝑧)− 𝑔(𝑧′))2, (2)

where Π𝑥(𝑧) = exp
(︁
−𝐷(𝑥,𝑧)2

𝜎2

)︁
is an exponential kernel, and g(z’) = (𝑤𝑔)z’, z’ is an

interpretable feature corresponding to z.

3.3 XAI in Healthcare

One of the most promising industries to use Explainable AI (XAI) is the healthcare

sector. With the development of sophisticated machine learning models, XAI is

essential for tackling important opportunities and problems in the healthcare industry.

Enhancing the Diagnostic Accuracy is one such chance.

XAI has the power to fundamentally alter medical diagnosis, making it a disruptive

force in the healthcare industry. One of the most intriguing applications of XAI in

medicine is the analysis of medical imaging data from modalities like MRIs, CT scans,

and X-rays. These diagnostic tools are vital for detecting a wide range of diseases,

including diabetes, cancer, fractures, heart issues, and neurological conditions. Many

stakeholders rely on the decisions made by AI models to be understandable, even

though these models have demonstrated an impressive ability to process and interpret

these images.

For radiologists and clinicians, interpretability is synonymous with trust and

validation. It is insufficient for an AI model to produce a diagnosis on its own when it

offers a quick evaluation of a medical image. Healthcare workers must comprehend
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how the model arrived at its conclusion in order to seamlessly integrate AI into clinical

workflows. They look for process transparency, and interpretability offers the required

context. By carefully examining the areas of interest in an image and understanding

the characteristics or patterns that influenced the AI’s judgment, radiologists and

clinicians can diagnose patients with greater confidence and knowledge. In the end, this

collaborative approach to medical diagnosis produces more accurate and trustworthy

diagnoses by fusing the knowledge of medical specialists with the analytical capabilities

of AI.

Patients, too, stand to benefit significantly from the interpretability offered by

XAI in medical imaging. The results of diagnostic procedures have the potential to

change people’s lives. A medical image could show that there is a serious ailment that

needs to be treated right away, or it could show that there is a less serious problem

that just needs to be watched over. In either scenario, patients need to know why

they were given a specific diagnosis. By providing patients with an understanding

of the logic underlying the AI’s judgments, XAI empowers them. Patients are more

confident in the suggested treatment plan as a result of this increased transparency.

When patients can understand the reasoning behind medical advice, they are more

likely to trust it. Maintaining patient compliance, lowering anxiety, and fostering a

positive patient experience all depend on this trust.

In essence, XAI fosters a partnership between medical professionals, patients,

and AI systems, with the common goal of achieving the most accurate and beneficial

medical diagnoses. XAI’s contribution to improving diagnostic precision extends

beyond the field of medical imaging. It covers a wide range of healthcare scenarios,

such as the interpretation of laboratory test results, patient outcome prediction

using predictive analytics, and even the detection of possible drug interactions. XAI

positions itself as a driving force behind more accurate, responsible, and transparent
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healthcare practices by offering a transparent and easily understandable explanation

for its decisions.

3.4 Experimental Setup
3.4.1 Dataset

The Ocular Disease Intelligent Recognition (ODIR) database, a structured oph-

thalmic repository with 5,000 patient records, was obtained from Kaggle for this

research [28]. The patient’s age, gender, colour fundus photos of both the left and

right eyes, and the diagnostic keywords supplied by the doctors are among the some

of the details included in these records.

The purpose of this dataset is to depict a "real-life" set of patient data that

Shanggong Medical Technology Co., Ltd. gathered from various Chinese hospitals

and medical facilities. These institutions use a variety of cameras on the market,

including Canon, Zeiss, and Kowa, to take fundus images, which produce images with

different resolutions.

The key fields within the dataset are, the left-eye retinal fundus images are

identified by the "Left-Fundus" field in the ODIR dataset. The "Right-Fundus"

field has retinal fundus images, just like the "Left-Fundus," but they depict the view

from the right eye in this instance. Then, descriptive terms or phrases related to

the diagnostic conclusions found in the left-eye retinal images are entered into the

"Left-Diagnostic Keywords" field. The terms or phrases in the "Right-Diagnostic

Keywords" field, like in the "Left-Diagnostic Keywords," are descriptive and related

to the diagnostic results found in the retinal images of the right eye.

ODIR addresses a range of ocular conditions, such as hypertension, age-related

macular degeneration (AMD), glaucoma, and diabetic retinopathy. The dataset has

two subsets: one for the left eye and one for the right. The distribution of ocular

diseases within the dataset is shown visually in the graph below. It provides insight
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into the makeup of the medical photos used in the study by illuminating the prevalence

of different eye conditions.

Figure 5: Dataset distribution

3.4.2 Data Preprocessing

In the process of preparing the ocular dataset for analysis and machine learning,

it became evident that two key categories, ’Diabetic’ and ’Normal,’ held the majority

of images. Several data preprocessing procedures were applied to these images in

recognition of the significance of these categories. The initial goal was to correctly

categorize the pictures using the diagnostic keywords connected to every single eye

image. Images of the left and right eyes that were categorized as "Normal Fundus"

were located and extracted using diagnostic keywords. One result of the process was

a list of image names classified as "Normal."Images of the left and right eyes were

separated and their labels bearing the diagnostic term "retinopathy" were extracted.

Consistent with the "Normal" images, this process additionally generated a list of

image names labelled as "Diabetic."This categorization procedure attempted to treat

left and right images as distinct entities, rather than grouping individual images into

the "Diabetic" and "Normal" categories. This made it possible to analyze the dataset

in a more specialized and focused way.

Next, in order to prepare our ocular dataset for machine learning analysis, data

normalization is an essential preprocessing step. All of the images’ pixel values must
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be rescaled to a common range, usually between 0 and 1. Because it guarantees

that biases in our machine learning model are not introduced by pixel intensity

variations across different images, this process is essential. Images with higher pixel

values are kept from controlling the learning process by levelling the playing field

for the model through data normalization. This is a crucial step because consistent

feature interpretation is crucial in the analysis of medical images. Stabilizing the

training process with the help of normalized data also contributes to more dependable

outcomes.

To standardize the dimensions of every image in our ocular dataset, we also

performed data resizing in addition to data normalization. Every image was resized

to 224 x 224 pixels, which was the standard size. This resizing has useful advantages

in addition to guaranteeing that the images can be fed into a convolutional neural

network (CNN). Consistently sized images reduce the processing burden during

training, resulting in a more efficient and controllable process. The 224x224 pixel size

is a compromise between limiting computational resources and maintaining enough

image detail for precise classification. This preprocessing stage helps our machine

learning model to be more robust and efficient overall, which makes it capable of

handling a variety of ocular images.

Figure 6: Dataset visulization
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Figure 7: Dataset Imbalance

Due to the imbalanced distribution of diabetic and normal images, we sought

to address this issue through data augmentation. The diabetic image category

contained fewer samples compared to the normal category, which could potentially

lead to a bias in the model’s predictions. To mitigate this, we employed data

augmentation techniques to artificially increase the size of the diabetic image dataset.

This process involved generating new, slightly modified versions of existing diabetic

images, effectively expanding the dataset and balancing the number of samples between

the two categories. The augmented images retained the key characteristics necessary

for accurate classification while introducing variability that aids in training a robust

model.

Figure 8: Dataset after oversampling
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3.4.3 CNN Training

To train and evaluate our Convolutional Neural Network (CNN), we carefully

split our dataset into three subsets: the training set, the testing set, and the validation

set. The training set, which gets 70% of our dataset, serves as the foundation for the

learning process of our model. This is a typical machine learning procedure. Using

the training set, CNN can recognize underlying patterns and features in the images.

To evaluate the model’s generalization to new, unseen data, we also reserve 20% of

the dataset as the testing set, which serves as an unobserved benchmark. Finally, a

10% portion of the dataset was dedicated to the validation set, which is crucial for

hyperparameter tuning and model selection. This separation strategy ensures that

our CNN is trained, validated, and tested on distinct data subsets, contributing to

robust and reliable performance evaluation.

To achieve the best outcome for every set of features, CNN has multiple hyper-

parameters that can be optimized. We utilize the Grid Search module found in the

sklearnlibrary to find these. To achieve this, we first give several different values for

each parameter we wish to tune. After that, the module runs a comprehensive search

using every possible combination of the parameters. The most accurate combination

gets chosen. The fact that it finds the best combination by doing cross-validation over

five folds for each combination is also very helpful. In other words, the training set fed

into GridSearch will verify the various combinations across five distinct intermediate

test sets derived from the original training set. This module’s cross-validation feature

helps make the results more reliable and broadly applicable, as our experiments

typically involve fewer samples per label. The parameters that we tested for the

various classifiers are displayed in the Table below.
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Table 1: Hyperparameters Tested

Hyperparameter Tested Values
Learning Rate 0.1, 0.01, 0.001
Epochs 40, 50, 60
Activation Functions Tanh, ReLU
Optimizer Adam, SGD

3.4.4 LIME

An important factor in improving the interpretability and transparency of our

CNN model is LIME. In the context of our ocular disease classification experiments, we

explore the useful implementation of LIME in this section.The LIME model provides

us with a robust framework for producing interpretable, localized explanations for

each individual prediction. We utilize LIME to get insights into why our model

makes specific predictions for particular instances by picking particular examples

from our dataset, like fundus images. The process entails creating perturbed samples

and perturbing the chosen instance. We use our CNN model, which is in charge of

classifying ocular diseases, to predict both the perturbed samples and the original

instance. Next, LIME builds a surrogate model that approximates the intricate CNN

behaviour in a nearby neighbourhood surrounding the selected instance. We can

decipher the surrogate model’s coefficients and feature importances, providing insight

into the variables that shaped the model’s choice for the chosen example.

Several useful advantages of LIME are demonstrated in our experiments,

1. Interpretability: It improves our comprehension of our CNN model’s decision-

making process by giving us concise, understandable explanations for each

prediction.

2. Transparency: The use of LIME improves our deep learning model’s transparency,

making it more dependable and approachable, especially in the field of medicine.
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CHAPTER 4

Results
4.1 CNN Evaluations

Figure 9: Model Accuracy Figure 10: Model Loss

Four important performance metrics were tracked during the training phase of

our Convolutional Neural Network (CNN) model: training accuracy and loss, as well

as validation accuracy and loss on an independent dataset. These measures are crucial

for assessing the model’s effectiveness and spotting any overfitting or underfitting

problems.

Our CNN successfully learned to identify patterns and features in the ocular

images as evidenced by the training accuracy and validation accuracy both increased

steadily throughout the training process. This improvement is a testament to the

model’s capacity to capture the complexities of the dataset. Simultaneously, we

observed the training loss and validation loss, which quantify the difference between

the expected and true labels in corresponding data sets. The model’s capacity to

reduce errors and enhance its predictive accuracy was demonstrated by the steady

decline in both kinds of losses during training.

An extensive assessment of the model’s performance in differentiating between

diabetic and normal eye images can be found in the classification report table below.

This report is a crucial tool for assessing the model’s ability to correctly identify each
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class. Here, recall indicates the model’s ability to correctly classify every image in the

correct target class, whereas precision gauges the model’s accuracy of its prediction for

the target class. The F1-score, a reasonable measure of overall accuracy, is obtained

by taking the harmonic mean of recall and precision. With a precision of 0.91 for

both classes, the model correctly classifies images as "Normal" or "Diabetes" 91% of

the time. In contrast, the recall for the "Diabetes" class is 0.93 and for the "Normal"

class is 0.90. This means that the model correctly identifies 90% of real "Normal"

images and 93% of real "Diabetes" images. Furthermore, the F1 scores are 0.92 and

0.91 for the "Diabetes" class and the "Normal" class, respectively. Last but not least,

the model’s overall accuracy of 0.91 shows that it can correctly categorize 91% of

the images into the relevant classes. When combined, these metrics show how well

the model can classify images, suggesting that it could be a valuable tool for medical

image analysis pertaining to diabetic retinopathy.

Table 2: Classification Report

Precision Recall F1-score Support
Normal 0.91 0.93 0.92 1071
Diabetes 0.92 0.91 0.91 1199
Accuracy 0.91 2270

The confusion matrix provides a comprehensive examination of the model’s

predictions, showing the percentage of cases correctly classified as "Normal" or

"Diabetes," in addition to the cases that were misclassified. It assists in determining

misclassifications and evaluating the accuracy of the model. It shows how many false

negatives were incorrectly classified as the opposite class, how many false positives

were incorrectly classified as "Diabetes" when they were actually "Normal," how

many false negatives were incorrectly classified as "Normal" when they were actually

"Diabetes," and how many true positives were correctly classified as either "Normal"
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or "Diabetes."

Out of the 1199 total "Normal" images, 1097 were correctly classified as "Normal",

on the other hand, 102 cases of "Normal" as "Diabetes," representing a 9% error rate.

A 92% success rate was achieved for the ’Diabetes’ class, with 983 cases correctly

identified. An 8% misclassification rate for this category was achieved by mistakenly

labelling 88 cases as "Normal". This shows that the model predicts the data for both

classes with a high degree of accuracy, but it also shows that there are false positives

and false negatives, pointing to potential areas for improvement, especially in lowering

the number of cases that are misdiagnosed.

Figure 11: Confusion Matrix

4.1.1 CNN Sensitivity Evaluation

Sensitivity is a crucial indicator of a model’s clinical utility in medical data

analysis, especially when it comes to identifying conditions like diabetic retinopathy.

Sensitivity in this context refers to the model’s capacity to accurately distinguish

"true positives"—cases of diabetic eye conditions—from the total number of cases that

27



are actually diagnosed with the disease. Sensitivity is computed as follows:

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 = 𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠/(𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠+ 𝐹𝑎𝑙𝑠𝑒𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠) (3)

In order to accurately diagnose patients and provide them with the care they

need, high sensitivity is crucial in medical diagnostics. As can be seen by looking at

the high recall rate of 0.93 for the ’Diabetes’ class, our CNN model showed excellent

sensitivity. This shows that the model correctly detected 93% of the real cases of

diabetes, which is an important reduction in the possibility of missing patients who

require medical attention. Even so, there are some false negatives, which emphasizes

the continuous difficulty in reaching perfect diagnostic accuracy. The sensitivity is

not perfect. Effective medical image analysis is centred on striking a balance between

maximizing true positive rates and minimizing false negatives.

It is also necessary to consider the model’s sensitivity in light of its overall

performance metrics, such as F1-score and precision. With a precision of 0.91, the

model is 91% accurate 91% of the time when it classifies an image as "Diabetic." On

the other hand, the marginally reduced recall of the ’Normal’ class at 0.90, which

also indicates the sensitivity of the model in recognizing normal cases, implies that

there is room for improvement in accurately recognizing every normal case. The

model’s balanced performance in terms of accuracy and reliability is confirmed by the

F1 scores for both classes, which are near the precision and recall values. However,

as the confusion matrix illustrates, the existence of false positives and negatives

indicates a crucial area requiring additional refinement. Continuous efforts to improve

these metrics, including sensitivity, are essential in medical imaging, where the cost

of misdiagnosis can be high. Although our CNN model’s sensitivity level offers a

promising starting point, it also emphasizes the necessity of ongoing improvements in

model validation and training in order to improve the model’s diagnostic accuracy.
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4.2 LIME Evaluations

This section explores the evaluation results obtained from LIME for correct and

incorrect classifications of our CNN model.

4.2.1 Correct Predictions

This section examines CNN’s prediction of accurately classifying diabetic ocular

conditions. The third image shows how the highlighted areas in the mask match the

actual features in the eye image by combining the LIME mask with the original.

Figure 12: Positive pixels of Correct classification

Moving on in the same diabetic image, the second image in Figure 13 displays

the LIME mask, which highlights areas in the original image’s top left and bottom

where the CNN identified unfavourable features. Despite this, our model identified

the image as a diabetic eye with success. Ultimately, the third image provides a

comprehensive view of the regions that affected the model’s classification decision by

combining the LIME mask with the original image. This illustrates how CNN can

still produce precise classification even in cases where specific image regions point to

a different classification.
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Figure 13: Negative pixels of Correct classification

4.2.2 Incorrect Predictions

In this section, we explore the CNN’s analysis of a diabetic eye that was in-

correctly classified as normal. The first image in Figure 14 is the original image of

another diabetic eye, again acting as the unmodified baseline for our analysis. The

regions that had a positive influence on the Convolutional Neural Network (CNN)

model’s classification of the image as a normal eye are indicated by the top pixels

in the second image of the figure below. The CNN identified these areas as having

strong characteristics linked to a normal eye, which resulted in the model classifying

them incorrectly. The phrase "positive impact" denotes that these areas showed

characteristics that CNN considered typical of a normal eye when it conducted its

analysis.

Figure 14: Positive pixels of Incorrect classification
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Figure 15: Negative pixels of Incorrect classification

Then, in Figure 15, the mask image highlights the 3 corner regions of the eye

which negatively affected the CNN in its incorrect classification. These regions were

identified by the CNN to have contained features associated with a diabetic eye.

However, despite the presence of these features, CNN decided to classify the eye

as normal, potentially due to the limited influence of these corner regions on the

overall classification decision. This intriguing finding emphasizes CNN’s intricate

decision-making process and emphasizes the significance of comprehending both the

image’s positive and negative aspects that influence its ultimate classification.

In cases where doctors diagnose images as normal but CNN classifies them as

diabetic, medical professionals should investigate the areas that CNN flags more

closely. The reason for this reevaluation is that the AI may have identified early

warning indicators of diabetes that may have been missed by the doctors. This kind of

examination may reveal disease indicators in their early stages, which if missed could

result in postponing treatment. On the other hand, when a doctor diagnoses a patient

with diabetes but the CNN classifies the image as normal, analyzing these differences

can offer important insights for fine-tuning the AI model. Medical professionals can

provide additional information to the AI to help it learn more by pointing out the

precise characteristics or patterns that it missed. Through this iterative process of
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incorporating expert feedback, the accuracy of the AI model is continuously improved

as it evolves to more closely resemble the complex understanding that doctors bring

to diagnoses.

Both methods use the AI’s analytical power to enhance and supplement med-

ical knowledge while reinforcing the comprehensiveness of clinical evaluations. By

identifying and treating diabetic conditions in their early stages, this collaborative

approach combining AI and human judgment could result in more precise diagnoses

and prompt interventions, improving patient treatment.
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CHAPTER 5

Conclusion and Future Works

In this work, we conducted a thorough investigation into Convolutional Neural

Networks (CNNs) for the purpose of classifying images related to eye diseases. Using

the power of CNNs, we developed a robust model that can distinguish between

images of normal and diabetic retinopathy with high reliability. The outcomes of

our experiments demonstrated potential and validated the utility of CNNs in the

healthcare sector, with a 91% classification accuracy. Furthermore, we investigated

Explainable Artificial Intelligence (XAI) by demonstrating our model’s decision-making

process using LIME (Local Interpretable Model-agnostic Explanations). LIME’s astute

examination of the image’s regions of interest allowed for a deeper understanding of

the model’s predictions. By doing this, we were able to pinpoint regions where positive

and negative pixel contributions were present, deciphering the complex patterns the

model was using to classify data. We also found examples of both accurate and

inaccurate labelling by the model in LIME. Through pixel contribution visualization,

we were able to discern the model’s strong points and weak points and learn why

specific predictions were made. This sophisticated comprehension lays the path for

upcoming enhancements and performance adjustments of the model.

There are numerous directions that future research and development could go

as we advance. First off, our model has proven to be capable of binary classifying

images of normal and diabetic retinopathy. The crucial next step is to increase

its capacity to manage multi-class classifications, which include a range of ocular

conditions. Furthermore, there is potential for our model to be implemented more

widely in healthcare facilities. Integration with clinical workflows would be necessary

for real-world deployment in order to guarantee smooth communication between

medical personnel and the AI system. This entails attending to security and privacy
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issues as well as following legal mandates. Our work also provides an avenue to

investigate further XAI methods in the context of interpretable AI. We can improve

our model’s transparency and clinicians’ depth of insight by exploring and applying

cutting-edge interpretability techniques.

In summary, our study not only makes a significant contribution to the field of

ocular disease image classification but also emphasizes how crucial interpretability is

for AI-driven medical interventions. We have made progress toward clearer and more

accurate diagnoses by fusing the power of CNNs with XAI, which will ultimately help

patients and medical professionals combat visual impairments.
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APPENDIX A

Undersampling Experiment

A.1 Data Preprocessing

The model’s capacity to distinguish between "normal" and "diabetic" eye images

was improved earlier in the project when we used data augmentation. One of the

oversampling techniques on our unbalanced dataset produced a balanced dataset, which

ultimately produced positive results. In order to attain a balanced representation of

both classes in our dataset, we are currently investigating the effects of undersampling

as a substitute approach.

Figure A.16: Dataset after undersampling

We lowered the quantity of "normal" eye images from 5675 to 3000 for each

category, as shown in Figure A.16, to put them on par with the "diabetic" images.

The ’normal’ class images were chosen at random to achieve this, guaranteeing

that each image had an equal chance of being included and preserving the sample’s

diversity. The balanced dataset that is produced, as shown, should give a more

accurate representation of the model’s performance because it is not skewed by the

previously asymmetric class distribution.
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A.2 CNN training

We used grid search for thorough hyperparameter optimization in the CNN

model’s training phase, which is similar to our approach when investigating oversam-

pling techniques. The table below displays the range of hyperparameters that we

experimented with, which includes changes to the activation functions, optimizers,

epochs, and learning rate. Five-fold cross-validation was used to make sure that the

performance of our model was robustly validated. By dividing the dataset into five

parts and iteratively using one part for training and the other for validation, this

technique made it easier to evaluate the consistency and efficacy of the model across a

variety of data samples. The combination of hyperparameters that yielded consistently

promising accuracy and f-1 score across all folds was chosen.

Table A.3: Hyperparameters Tested

Hyperparameter Tested Values
Learning Rate 0.1, 0.01, 0.001
Epochs 30, 40, 50
Activation Functions Tanh, ReLU
Optimizer Adam, SGD

A.3 Results

A.3.1 CNN Evaluations

Our A.17 accuracy graph shows an initial positive trend in the CNN results, with

training and validation accuracies increasing over time but reaching a plateau in the

80%–86% range. This pattern indicates that although the model performs well in

terms of initial generalization, it reaches a performance ceiling of approximately 86%

accuracy. Our figure A.17, loss graph shows a consistent decline in both the training

and validation losses. Together, this suggests that the model is capable of learning

until a particular moment.
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Figure A.17: Model Accuracy Figure A.18: Model Loss

As per the classification report below, our CNN model exhibits a moderate level

of effectiveness. Its precision, recall, and F1-score all fall within the low 80s for both

the ’Normal’ and ’Diabetic’ categories. Specifically, the ’Diabetic’ class exhibits an

F1-score of 0.83 over 624 images, whereas the ’Normal’ class yields an F1-score of 0.82

over 576 images with a precision of 0.82 and recall of 0.81. Furthermore, the model

can predict 83 out of every 100 images with an accuracy of 83% overall. Though these

numbers suggest a well-balanced model, the scores in the 80s also indicate our model

requires improvement, particularly in medical image classification where higher scores

are crucial.

Table A.4: Classification Report

Precision Recall F1-score Support
Normal 0.82 0.81 0.82 576
Diabetes 0.83 0.84 0.83 624
Accuracy 0.83 1200

A visual and numerical depiction of the CNN model’s performance in classifying

images as "Normal" or "Diabetic" can be found in the confusion matrix shown in

Figure A.19. 109 photos were mistakenly labelled as "Diabetic" (false positives), with

a normalized value of 0.18, whereas 515 correctly identified (true positives) out of

40



the total images classified as "Normal," according to the matrix. On the other hand,

the ’Diabetic’ class contained 475 images that were correctly identified as ’Diabetic’

(true negatives), with a normalized value of 0.83, and 101 incorrectly classified as

’Normal’ (false negatives). This breakdown shows a higher true positive rate for both

classes, but it also shows a significant percentage of false positives and negatives,

indicating that although the model is reasonably accurate, its precision and recall

could be enhanced.

Figure A.19: Confusion Matrix

A.3.2 LIME Evaluations

A.3.2.1 Correct Predictions

In this section, we explore the CNN’s prediction of correctly classified diabetic

eye. The first image of Figure A.20 displays the original diabetic eye image from the

dataset and will be used as the unaltered baseline for our analysis. Our LIME mask

highlights the regions in the second image, mainly on the right side, where the CNN

41



found positive features associated with diabetic retinopathy in the original image.

Figure A.20: Positive pixels of Correct classification

Proceeding with the diabetic image, the second image in Figure A.21 shows the

LIME mask, emphasizing regions in the top right and bottom of the original image

where the CNN detected unfavorable features. In spite of this, our model successfully

recognized the image as a diabetic eye. Finally, by fusing the LIME mask with

the original image, the third image offers a thorough perspective of the areas that

influenced the model’s classification choice.

Figure A.21: Negative pixels of Correct classification

A.3.2.2 Incorrect Predictions

We examine CNN’s analysis of a diabetic eye that was mistakenly identified

as normal in this section. In the second image of the Figure A.22, the top right,

top left, and bottom right pixels represent the regions that positively impacted the

model’s classification of the image as a normal eye. The model misclassified these
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areas because the CNN determined that they had strong characteristics associated

with a normal eye. The term "positive impact" indicates that during CNN’s analysis,

these areas displayed traits that were thought to be typical of a normal eye.

Figure A.22: Positive pixels of Incorrect classification

Next, the mask image in Figure A.23’s second image draws attention to the

upper and lower left eye regions, which had a negative impact on CNN’s inaccurate

classification. CNN determined that these areas included characteristics typical of a

diabetic eye. CNN chose to classify the eye as normal despite the presence of these

features, possibly as a result of these regions’ limited impact on the final classification

choice.

Figure A.23: Negative pixels of Incorrect classification

Conclusively, our investigation into CNN models utilizing LIME analysis, sup-

ported by an undersampling approach, has yielded significant knowledge regarding the

characteristics that are most significant in classifying eye images into two categories:
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"Normal" and "Diabetic." Our comprehension of the internal workings of the model

has improved with the identification of the critical pixels that both favorably and

unfavorably influence the decisions made by the model. On the other hand, the 80–85%

range is where the overall accuracy and associated performance metrics—like recall,

precision, and F1-score—have stabilized. These are respectable numbers overall, but

they don’t meet the high standards for accuracy that are common in the medical field,

where incorrect classification can have particularly costly consequences. Notably, our

prior work with oversampling produced better results, suggesting that oversampling is

more effective than undersampling in this particular situation. In the context of eye

image classification, where error margins are small and accuracy is highly valued, this

comparison unequivocally suggests that oversampling is the better method.
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