
San Jose State University San Jose State University

SJSU ScholarWorks SJSU ScholarWorks

Master's Projects Master's Theses and Graduate Research

Fall 2023

Serverless Architecture for Machine Learning Serverless Architecture for Machine Learning

Ikshaku Goswami

Follow this and additional works at: https://scholarworks.sjsu.edu/etd_projects

 Part of the Other Computer Engineering Commons

Recommended Citation Recommended Citation
Goswami, Ikshaku, "Serverless Architecture for Machine Learning" (2023). Master's Projects. 1336.
https://scholarworks.sjsu.edu/etd_projects/1336

This Master's Project is brought to you for free and open access by the Master's Theses and Graduate Research at
SJSU ScholarWorks. It has been accepted for inclusion in Master's Projects by an authorized administrator of SJSU
ScholarWorks. For more information, please contact scholarworks@sjsu.edu.

https://scholarworks.sjsu.edu/
https://scholarworks.sjsu.edu/etd_projects
https://scholarworks.sjsu.edu/etd
https://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F1336&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/265?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F1336&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects/1336?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F1336&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@sjsu.edu

Serverless Architecture for Machine Learning

A Project Report

Presented to

Dr. Robert Chun

Department of Computer Science

San José State University

In Partial Fulfillment

Of the Requirements for the Degree

Master of Science

By

Ikshaku Goswami

Dec 2023

2

© 2023
Ikshaku Goswami

ALL RIGHTS RESERVED

The Designated Project Committee Approves the Project Titled

Serverless Architecture for Machine Learning

by

Ikshaku Goswami

Approved for the Department of Computer Science

San Jose State University

December 2023

Department of Computer Science

Department of Computer Science

Dr. Robert Chun

Dr. Navrati Saxena

Dr. Thomas Austin Department of Computer Science

3

Acknowledgements

I extend my sincere gratitude to Dr. Robert Chun, my esteemed project advisor, for

his invaluable guidance, unwavering encouragement, and steadfast support

throughout the entire duration of this project. His expertise has been instrumental in

shaping the trajectory of my work.

I would also like to express my heartfelt thanks to Dr. Navrati Saxena and Dr.

Thomas Austin, esteemed members of my committee, for graciously agreeing to be

part of this academic journey. Their insightful guidance and constructive feedback

have significantly enriched the quality of my research.

My deepest appreciation goes to my family; their unwavering support and

understanding have been the bedrock of my perseverance. Without them, reaching

this milestone would not have been possible.

 4

Abstract

Serverless computing is an area under cloud computing which does not require

individual management of cloud infrastructure and services. It is the groundwork

behind Function as a Service or FaaS cloud computing technique. FaaS provides a

stateless event-driven orchestration of functions and services for applications

deployed in the cloud, without having to manage the servers and other infrastructure

resources. This event driven architecture is being well utilized to manage different

web-applications and services. Machine learning can bring a unique challenge to

serverless computing, as it involves high-intensive tasks which requires voluminous

data. In such a scenario it becomes essential to optimize the cloud-deployment

architecture to obtain accurate results efficiently. In addition, serverless computing

suffers from drawbacks like cold start etc., which further increases the need of

researching different serverless provisioning tools and techniques. This research

work aims to deploy a machine learning model to detect real-time crisis, using

various serverless computing resources provided by notable cloud vendors like

Amazon Web Services (AWS) and Google Cloud Platform (GCP). It also compares

among the various methodologies available and later aims to build a training

platform for machine learning tasks.

Index Terms – Serverless, AWS, Lambda, S3, EFS, EC2, VM, GCF

 5

TABLE OF CONTENTS

1. Introduction...8

 1.1 Problem Statement ...9

 1.2 Motivation …………………………………………………………………..10

2. Background……………………………………………………………………..11

3. Related Work…...19

4. Machine Learning………………………………………………………………25

5. Methodologies ..27

 5.1 Inference Architectures ……………………………………………………...28

 5.1.1 Single Lambda ...29

 5.1.2 Lambda and S3 ..31

 5.1.3 Lambda and EFS………..33

 5.1.4 Fargate………..35

 5.1.5 AWS vs GCP………..38

 5.2. Training Architecture ...40

6. Results...44

7. Future Scope ...45

8. Conclusion...46

References ..47

 6

List of Figures

Fig 1 – Cloud Computing Service Model ……………………………………………………….13

Fig 2 –Backend of a Serverless Application …………………………………………………….15

Fig 3 – Synchronous Lambda …………………………………………………………………...16

Fig 4 – Asynchronous Lambda ………………………………………………………………….17

Fig 5 – Cold start delay ………………………………………………………………………….18

Fig 6 – Total cost of AWS Lambda (AWS Pricing Calculator) ………………………………...18

Fig 7 – Scientific workloads on AWS Lambda …………………………………………………21

Fig 8 – Parallel machine learning using AWS Step Functions ………………………………….24

Fig 9 – Dataset …………………………………………………………………………………..25

Fig 10 – Disaster vs Non-Disaster Tweets ………………………………………………………26

Fig 11 – Word cloud of tweets …………………………………………………………………..27

Fig 12 – Training using a single lambda ………………………………………………………...30

Fig 13 – Inference for a lambda ………………………………………………………………....31

Fig 14 – S3 to Lambda ………………………………………………………………………….32

Fig 15 – Lambda and S3 response times ………………………………………………………..33

Fig 16 – Warming Lambda ……………………………………………………………………...33

Fig 17 – Lambda and EFS architecture ……………………………………………………….... 34

Fig 18 – Lambda and EFS response times ……………………………………………………... 35

Fig 19 – ECS Architecture ………………………………………………………………………37

Fig 20 – ECS Response Times vs Load …………………………………………………………38

Fig 21 – Training steps in serverless framework ………………………………………………. 41

Fig 22 – Training architecture for serverless framework …………………………………...….. 42

 7

List of Tables

Table 1 – Lambda vs GCF cost ………………………………………………………………….16

Table 2 – Lambda vs GCF timeout ……………………………………………………………...16

Table 3– Lambda vs Fargate …………………………………………………………………….18

Table 4 – Comparison of size and accuracies of GBC ………………………….........................28

Table 5 – Single Lambda for inference execution time ………………………………………....30

Table 6 – AWS vs GCP …………………………………………………………………………39

Table 7 – Analysis of serverless training ………………………………………………………..41

 8

1. Introduction

The evolution of Machine Learning and Artificial Intelligence have been a

longstanding arduous process. It bears fruits in our technological milestones of

today, wherein it is being heavily used to modernize our healthcare, business,

education, and a lot of other sectors. Enabling computers to learn from patterns,

Machine Learning has made it easy to make accurate and precise decisions. Today,

different areas of Machine Learning are developing rapidly such as Natural

Language Processing or NLP. NLP models are used to infer context from text,

speech etc., and make decisions based on it. A good example of it is question answer

prediction. Researchers have been able to build models like BERT, to accurately

answer quizzes. They have been trained on a large corpus of articles, documents etc.,

from the internet and derive accurate answers based on the context of the question

as well. Furthermore, AI models are bringing revolutionary changes when it comes

to automation like self-driving cars etc.

Machine Learning has brought forward tremendous changes in our day-to-day lives,

but it is still a highly resource intensive technology. To train models, it takes a huge

amount of CPU and GPU resources which are not unlimited. Especially when it

comes to cost of these resources, it can play a huge overhead for companies and

individuals who want to experiment and test these models for their use cases.

Especially industries today heavily rely on outsourcing these resources which brings

us to the advent of cloud computing.

Cloud computing has made it easier for everyone to manage their resource

requirements. Today, to host or run applications, databases etc., users can simply

spin up servers in the cloud and utilize those. This has brought down the costs

 9

associated with managing these infrastructure resources as most of the cost model is

based on Pay-as-you-Go structure, whereby you pay only for the time the resources

are being utilized for. Cloud providers like Amazon Web Services (AWS), Google

Cloud Platform (GCP) or Azure have taken a great leap forward by also providing

and managing resources for training and building machine learning models. These

models can be highly resource and cost intensive, however, using distributed cloud

networks and servers, users can bring those down drastically. Even starting from

housing data in cloud rather than on-prem can add to the cost credits. Together with

that, users are now running the models on cloud server like EC2 machines for AWS.

Containerization allows developers to create and deploy applications faster and more

securely. With traditional methods, code is developed in a specific computing

environment which, when transferred to a new location, often results in bugs and

errors. For example, when a developer transfers code from a desktop computer to a

virtual machine (VM) or from a Linux to a Windows operating system.

Containerization eliminates this problem by bundling the application code together

with the related configuration files, libraries, and dependencies required for it to run.

Today, users are using this technique to also deploy their machine learning models

in the cloud.

Serverless is an important cloud architecture. It falls within the FaaS or Function as

a Service architecture model. In this framework users are not privy to the underlying

infrastructure for their applications. Many cloud providers like AWS, Google and

Azure provide serverless resources. One of the most used serverless resource is

AWS Lambda which will be discussed further in this paper. Containerization is

heavily used during this process of serverless orchestration of resources and will be

discussed further as well. When it comes to machine learning, nothing is more

beneficial than serving the models in real-time. This is where the serverless nature

 10

of cloud computing can bring a lot of benefits. As resources are spun up

automatically without manual intervention, machine learning tasks can be divided

and addressed in a distributed way which could lead to faster rendering of results.

1.1 Problem Statement

This research project deals with developing machine learning inference and training

architectures using core serverless offerings from AWS and GCP. These

architectures will then be evaluated and ranked based on cost and time to train or

execute. Furthermore, research will also be undertaken to build a training model

using core AWS serverless resources like Elastic Container Service (ECS), to

address its feasibility for real-world solutions. While the bulk of the focus is on

researching serverless frameworks, the project also deals with critical machine

learning tasks for building a model that can predict whether a given input text could

be related to a disaster or not. Different sized models will be built, which would then

be ran as a serverless service for inference or trained in cloud using serverless

framework like ECS.

1. 2 Motivation

 Traditional machine learning techniques usually involve developing models and

improving their results. As can be realized, these techniques can be complemented

with serverless cloud computing. However, there are challenges involved in this

framework. Particularly when it comes to constraints like data and memory limits of

the serverless functions. Adding to this are other problems which will be discussed

further like cold start of the functions. In view of these challenges and the benefit

that can be drawn, the aim of this research project is to render real time models for

crisis detection using serverless architecture from AWS and Google.

 11

2. Background

Cloud Computing

Cloud computing as a technology is ubiquitous, with its growing presence felt as the

adoption of internet becomes widespread. In essence, cloud computing leverages

remote servers to provide resources like compute, infrastructure, software etc., using

the internet. It unleashes scalability through its on-demand model and allows users

to access and use any computing resource without having to invest or manage them

extensively. Cloud computing has several key features, such as cost-effectiveness

because users only pay for the resources they use, flexibility because users may scale

resources up or down based on their needs, and accessibility because users can

access data and apps from any location with an internet connection. There are a

growing number of cloud providers like Amazon Web Services (AWS), Google

Cloud Platform (GCP), Microsoft Azure etc. Typically cloud computing is

categorized into three service models: Infrastructure as a Service (IaaS), Platform as

a Service (PaaS), and Software as a Service (SaaS)

 12

Fig 1 – Cloud Computing Service Model

Infrastructure as a Service (IaaS): IaaS utilizes the internet to provide virtualized

computing resources such as storage, virtual machines, networking components

etc. Users do not have to deal with the hassle of managing these components as

they are managed by the cloud providers, which saves a significant portion of their

costs. Example – AWS Elastic Compute (EC2) virtual instances.

Platform as a Service (PaaS): PaaS offers developers with a streamlined approach

for creating applications and writing code by managing all the required underlying

infrastructure orchestration. Example – Heroku, which is a cloud deployment tool,

allows a straightforward deployment of code, scaling of infrastructure and database

integration among others.

Software as a Service (SaaS): SaaS uses the internet for the distribution of software

applications. These applications can be accessible to users through a web browser,

that removes the requirement for local installation and streamlines updates and

maintenance. Example – Microsoft 365 suite.

 13

Function as a Service (FaaS)

Function as a Service (FaaS) or commonly referred to as Serverless Computing is

another growing service model within cloud computing. It stems from IaaS and aims

to further abstract out the orchestration and management of computing resources,

specifically virtual machines like EC2 instances. For any developer, running EC2

instances, maintaining them, and scaling them was always a pain-point as it not only

involved incurring costs but also wasting valuable developer time. To tackle this,

cloud providers like AWS, Azure, GCP have introduced the concept of FaaS, which

are on-demand event-driven execution environments that gets automatically

provisioned to run code. These functions are stateless in nature, with very limited

run-time memory and storage limits. The highest allotted runtime memory is 10GB

provided by AWS Lambda, which is AWS’s serverless offering. An example of

serverless function usage could be an API call made to a lightweight service (say a

service to send an automated email given a user sign up for a newsletter). In this case

this microservice could be written as part of a serverless offering such as a Lambda

function that gets automatically triggered when a user POST data to an API endpoint

upon signing up for a newsletter. Below is a salient representation of the backend of

an application built using serverless architecture. The noteworthy attribute is that the

scaling of the function’s is taken care of by the cloud provider itself depending on

the traffic.

 14

Fig 2 –Backend of a Serverless Application

Most of the attributes of a serverless function are similar when compared across

different cloud providers. Key differentiating factors are the runtime memory, cost

and overall adoption of the technology. Here are some of the key salient features

when it comes to serverless functions -

Pay Per Use:

Serverless functions like AWS Lambda or GCF, are based on the pay-per-use model.

This means users do not have to explicitly keep any of these serverless instances up

anticipating traffic to their services. The functions automatically scale up based on

incoming traffic, and the logic to do so can be provided by the user while doing the

initial configuration of these functions.

 15

Fully Managed Infrastructure:

Maintaining bare-metal servers on-prem or managed instances in cloud could easily

ramp up costs, as well as valuable time for a developer. Serverless functions bring

significant cost-cutting benefits with respect to these. All the developers need to do

is perform the initial configuration of these functions with the storage, memory

needed, and rest will be taken care of by the cloud provider.

Integration with Other Services:

Besides serverless functions, cloud providers offer numerous other tools like

databases, object storage models like S3 buckets, file systems, memcache etc. Since

serverless functions are event-driven in nature, they can easily integrate with almost

every other service/tool available within a providers’ ecosystem.

Invocation Methods:

Serverless functions support both synchronous and asynchronous style of

invocations. Example – AWS Lambdas wait for a response in synchronous style

while it is not the case in asynchronous executions.

Fig 3 – Synchronous Lambda

 16

Fig 4 – Asynchronous Lambda

Cost and Time differences between AWS Lambda and GCF:

While most features are similar between both Lambda and GCF, there are some key

differences primarily surrounding the cost and timeout.

Standard cost of Lambda and GCF

Lambda 1 million invocations free

per month. Up to 400k

GB/seconds free

Beyond free-tier

$0.00001667 per

GB/second

GCF 2 million invocations free

per month. Up to 400k

GB/seconds free

Beyond free-tier

$0.0000004 per

GB/second. CPU time is

also calculated at $

$0.0000100 per second

Table 1 – Lambda vs GCF cost

Lambda costs are comparable to GCF. Usually, they are slightly lower when

calculated overall, however GCF does allow slightly higher number of invocations

which could potentially save costs.

 17

Execution Differences

Lambda 1000 concurrent function executions,

timeout 15 minutes

GCF 1000 concurrent executions, timeout 9

minutes

Table 2 – Lambda vs GCF timeout

Lambda functions clearly outshine in their execution aspect allowing far higher

timeouts on a single run. This is key to running machine learning inference tasks

when compared to GCF as will be evident in the experiments performed.

Besides many advantages, serverless function’s do suffer from some drawbacks

which are listed below -

Cold Start Problem:

Cold start as the name sounds refers to the delay in dynamic infrastructure

provisioning by the cloud providers when executing any task. By default, cloud

providers provision containers where these tasks are run, and cold start refers to the

delay in provisioning these containers. In AWS Lambda, every function or container

lasts for a duration of 15 minutes, which means it stays warm for 15 minutes. Any

calls made to this function during this time, would be executed far sooner than the

initial task calls. Bahar et al in [20] describe this phenomenon in the following

architecture diagram.

 18

Fig 5 – Cold start delay

As can be seen, it becomes imperative that cold start delays could significantly

impact the overall execution times of any task. This paper will discuss ways to

mitigate this cold start problem as well and suggest an architecture using some key

AWS offerings.

Besides serverless functions, another key serverless offering this paper discusses is

AWS Elastic Container Service with Fargate. This paper discusses Fargate in detail

and compares it with Lambda in terms of execution times. The equivalent of Fargate

in a GCP is the Google Cloud Run. ECS in essence are docker containers, that can

be provisioned dynamically like an AWS Lambda execution environment. It

provides isolation of tasks, which is key in the architect of microservices. Since,

lambdas inherently lacked capacity to run voluminous workloads, ECS becomes

critical, as it provides both serverless execution and higher memory or storage.

Fargate is an engine for ECS containers. It simplifies the deployment of these

containers, by removing the need for developers to choose instancy type, managing

scaling of these containers, or run other optimizations and maintenance tasks.

Fargate ensures that developers can utilize AWS’ serverless platform to the

maximum benefit. The key differences between a lambda and Fargate is tabulated

in the following page –

 19

 AWS Lambda AWS Fargate

Execution environment Amazon Linux User defined (more

choices)

Memory 128 MB – 10GB 1GB – 30GB

CPU AWS controlled 0.25 – 4 vCPU

Disk Space 512 MB – 10 GB 20 GB – 200 GB

Max execution time 15 minutes No Limit

Max parallel executions 1000 500

Deployment Unit Zipped code/container Container
Table 3– Lambda vs Fargate

 20

3. Related Work

Serverless computing is a brand-new framework for running machine learning

models in the cloud. Most of the contemporary research focuses on improving the

inference response times. This means models are trained locally on-prem or

managed servers and uploaded in cloud storage. Inference tasks are then run on this

uploaded model. Chahal, Ojha, Ramesh and Singhal [1] performed a performance

and cost-based analysis on deploying a large Natural Language Processing model

using FaaS architecture. Their evaluation of improved performance in terms of

response times and cost of the FaaS platform, acts as a solid bed work for this

research project. In [1], the focus has been on using AWS Lambda to run inference

tasks on an Optical Character Recognition (OCR) model uploaded in cloud storage

EFS. The methodologies discussed in this paper, provide good guidance as to

reducing the total memory usage by an AWS Lambda function. The authors have

also found a strong correlation between response time of a function and the total

memory allocated to the function in run-time. Higher the memory allocated better

the results, albeit at a higher cost [1]. The cost of a FaaS platform can also be deduced

from most of the cloud vendor websites [2] – [5]. Overall, running inferences of

50,000,000 invocations for an AWS Lambda function with 256 MB of memory

(RAM) ranges anywhere between $100-$120.

 21

Fig 6 – Total cost of AWS Lambda (AWS Pricing Calculator)

The popularity of serverless architectures have also inspired the scientific

community to port applications running on a VM to a serverless container. Poletti

and Llorente [6], performed a detailed analysis between running an application, that

analyzes data from the European Space Agency’s Mars Express Orbiter in a

serverless platform and running it in a server. Their reimagined architecture works

with a Lambda that invokes a C-based executable when data is uploaded into an S3

bucket.

Fig 7 – Scientific workloads on AWS Lambda

 22

This new architecture had a significant impact on the execution times of the overall

inference model reducing it from 3.4k Milliseconds to 1.8k Milliseconds. For larger

image files (> 17MB), the response time reduced by over 200%. This alone should

serve as an inspiration for the research community to consider serverless as their go-

to platform.

While example studies above dealt mostly with AWS’ serverless offerings, there is

also work being done on the Google Cloud Platform. Google Cloud Functions or

GCF are the equivalent of Lambda functions. Perhaps the one positive differentiating

factor for GCF is that they do not require attaching an API Gateway separately as

they come prepackaged with an HTTP endpoint. This can potentially save us extra

cost, albeit minimum. Sahar [7] created an event driven model using GCF and

Google Pub/Sub architecture which is based on the Publisher-Subscriber framework.

For any real time streaming of data, like a real-time weather analysis model, pub/sub

architectures allow us to store events in a queue which further allows its processing

in a set order. In [7], the author deploys a deep learning model packaged using

Pythons’ Pickle library into Google Cloud Storage. The average execution times

were around 400ms, and memory utilization was around 230 MB which are below

the max limits defined for the Cloud Function. The Functions did do poorly when

load testing was strenuous, and this could potentially be improved using a container-

based approach as we will discuss below in our experimental methodologies.

Further work of deploying deep learning models have been done by Slominski et al

in [8], wherein they deployed models like TensorFlow and MXNet for image

classifications which are bigger in size. They obtained better results with warm

requests as compared to cold requests. The latency was around 3-4 seconds which is

 23

expected for warm requests however, they were higher for the cold requests. The

research work in [8] clearly shows a proportionality between the memory allotted to

a lambda and its execution times. As an example, the authors here allotted higher

1024MB for the lambda and it performed significantly better over 512 MB for an

overall model size of 100MB which would be loaded in run time. Their work does

provide a baseline when it comes to tuning the parameters of a lambda environment.

Jaafar et al in [9] have studied Machine Learning Operations (MLOps) in detail

based on existing research work around this area. MLOps deals with the

management of machine learning pipelines and models in cloud, including their

release and updates [9]. They have shown that while cold starts are a problem in

serverless computing, they are still better compared to executing workloads in a

managed virtual machine like EC2 instance. Research around this shows that costs

of up to 2.5-3.5x can be immediately saved in maintenance of EC2 instances.

Additionally, they have concluded that researchers and industry is moving machine

learning pipelines to a serverless architecture primarily to obtain the benefits of the

pay-per-use model. Kim et al in [10] use an event driven architecture for predicting

handwriting using the MNIST dataset. They have used docker registry to store their

models and dataset and used an event driven or API approach for serverless function

orchestration. Their results indicate that the serverless approach can guarantee

optimal response and running time, reduce the end-to-end delay of the machine

learning application and shows its capability to support distributed machine learning.

Sinuraya et al in [11] presents a unique case study of building a chatbot using NLP

and deploying it on a serverless architecture. The chatbot performed quite well with

an 89% precision score and less latency. Their model is based on webhooks and

Facebook API which can be translated to AWS Lambda and API Gateway.

 24

Coming to training machine learning models using a serverless framework. There

are significant challenges to the idea of training in a serverless model, especially

around the constraints of a serverless function not being intended to run intensive

tasks which require lot of memory. Runtime memory is limited, maximum of 10GB

which is clearly not sufficient to train most complex models. Despite these

challenges, Li et al in [12] designed a novel serverless architecture called SIREN for

deep reinforcement learning. They built a neural network-based job scheduler which

schedules training tasks on the lambda and dynamically allots the memory and

instance numbers. SIREN proves that it can reduce training time and cost by over

40% when compared to traditional training in EC2 or VM’s. Klimovic et al in [13]

have presented a model based on lambda called LambdaML for machine learning

training. Their results also show that the response times of a serverless model is less

while the costs incurred is not significantly lesser than the VM approaches (IAAS).

They have presented a tradeoff between the FaaS and IaaS cloud computing

architectures which is worth applying in this project as well.

Parallelizing machine learning training is also a key research agenda. Parallel

hyperparameter tuning in [14] by Silva et al, shows a lot of promise in benchmarking

serverless training approaches particularly running them in a distributed fashion.

Data parallelism like batching a large dataset and using machine learning ideas such

as mini-Batch Gradient Descent to update parameters is a key research idea used in

this paper. The architecture built in [14] could be remodeled using AWS Batch jobs

for orchestration and is being discussed in the later sections of this paper.

 25

Fig 8 – Parallel machine learning using AWS Step Functions

Mishra et al in [15] also described a parallel training model using a dedicated

parameter server for model parameter updates. Their concept is also based on mini-

BGD approach mentioned above and looks at different data storage techniques like

S3, DynamoDB, Memcache. Memcache was overall costlier however, also had the

fastest training times. They also discuss the latency effects of training models and

using intermediate data storage and DynamoDB seems to have the highest latency

compared to S3 and Memcached. In addition to the above resources, this paper also

investigates the potential impact of using a networked file system like AWS Elastic

File Storage for data storage and retrieval and its effect on the response times.

 26

4. Machine Learning

While the focus of this research is to build and compare different serverless

architectures for a machine learning problem, it is also essential to talk about the

different machine learning tasks undertaken to build the model.

Data Gathering

The dataset for this research was collected from open-source websites Kaggle [22]

and crisisNLP [23]. It pertains to Tweets collected from Twitter which have been

classified into two categories “Disaster” or “Not Disaster”. The dataset consists of

over 100k tweets with 4 fields namely id, location, text, and target. Each record has

a unique id represented by the id field. Target labels the tweets to either of the two

categories “Disasters” or “Not Disaster”.

Fig 9 – Dataset

EDA

The training and test data consists of over 100k tweets. 43% of tweets in the

training data related to disasters while the rest were non-disasters.

 27

Fig 10 – Disaster vs Non-Disaster Tweets

Data Cleaning

Several data cleaning tasks were performed like removing punctuation, removing

hyperlinks, numbers, and brackets from the text. Additionally, the text was

transformed to lower case for consistency.

Following is a word cloud of the keywords from both disasters and non-disasters

tweets.

Fig 11 – Word cloud of tweets

Total Tweets

Disasters Non-Disasters

 28

Data Preprocessing

Tokenization – Post data cleaning, each text in the corpus was tokenized into

separate strings. Each line of text was tokenized for each paragraph and each word

was tokenized for each line of text.

Stopwords Removal – Later, common stop words in English like articles the, an, a

etc., were removed from the tokenized text.

Stemming and Lemmatization – In this case both stemming, and lemmatization were

performed on the text corpus. Stemming and lemmatization are both used as text

normalization techniques. Stemming was faster in this case.

Text Vectorization – Since machine learning models take numeric inputs, the text

corpus was vectorized using TF-IDF Vectorizer.

Machine Learning Model

Gradient Boosting Classifier

This research used a Gradient Boosting Classifier (GBC) model to determine

whether tweets are related to catastrophes. The ability of the GBC, a potent ensemble

learning method, to progressively construct decision trees, each making up for the

shortcomings of the one before it, led to its selection. Using variables like location,

text content, and binary indicators for disasters, our model performed well in

identifying subtle patterns in the dataset. To attain the best possible model

performance, hyperparameter optimization was carefully considered. The larger the

depth of each tree (max_depth) and the number of estimators (n_estimators) played

a crucial role in determining the complexity and size of the model. Increasing the

 29

number of estimators resulted in a more expressive model that could capture

complex patterns in the dataset, but at the cost of a larger model size. In addition,

changing the maximum depth made it possible to comprehend feature interactions

more deeply, which affected how interpretable the final model was. The max_depth

and estimator were adjusted to ensure that larger model sizes could be obtained, as

the goal of this research was not to create the most nuanced and balanced model

possible. As a result, 121MB, 458MB, and 1034MB models were made. The ensuing

accuracy results were as follows:

Size Accuracy

121 MB 82.1%

458 MB 88%

1034 MB 96%

Table 4 – Comparison of size and accuracies of GBC

 30

5. Methodologies

5.1 Inference Architectures

This section deals with experimenting with different inference architectures for the

machine learning models built in the previous stage. The models were trained locally

and uploaded into different cloud storage units, and their latencies in each case has

been compared through load testing.

5.1.1 Single Serverless Function (Worker)

In this first experiment, the focus was to allow a single serverless function, run both

as a machine learning training model, and perform inference tasks. This way a clear

baseline could be set when using a single function as a worker. Research into

serverless function’s shows that they are only capable of running small tasks as part

of the event-driven paradigm with only 15 minutes of available runtime. The

analysis done concurs with this.

Case 1 – Training

In this case, a single worker (single AWS Lambda) was used for training a model

discussed in 4 above. The estimators and maximum depth were kept low, since

lambdas can only support up to 10GB RAM and 10GB storage. All the required data,

and third-party python modules were loaded as a lambda layer. Lambda layers are a

central storage for common external libraries for lambda functions, so that they can

be made available in run-time. The architecture with AWS is shown in the following

page.

 31

Fig 12 – Training using a single lambda.

This architecture for training a model performed rather poorly. Running with 8GB

RAM, on a dataset with size 25MB, the lambda took almost 12 minutes to train. For

lower RAM, it timed out in every case.

Case 2 – Inference Tasks

In this case the model and its required third-party libraries are loaded as a lambda

layer in AWS. A lambda function is used to execute the inference tasks. The analysis

is as shown in the below table. Higher RAM allotment results in better execution

times as can be seen below.

RAM Time (minutes)

2GB 3

4GB 1.8

8GB 0.9

Table 5 – Single Lambda for inference execution time

 32

The table in the previous page shows that running data intensive tasks directly on a

serverless function without any external storage is not ideal. For lambdas with a

2GB RAM, inference tasks took almost 3 minutes in some cases to return a result.

Some of the requests were also dropped which can be seen below –

Fig 13 – Inference for a lambda

 33

5.1.2 Serverless Functions and Object Storage

Bulk of the current research into serverless machine learning deals with this form of

inference architecture. In this method, an outside bucket is used to store the machine

learning model. The necessary libraries are loaded in run time as lambda layers. Most

of the research [1] – [3] preferred this architecture because of its simplistic form, as

well as lesser costs since an object storage model is cheap compared to other forms

of storage like a database or networked file system. Its advantage over the previous

architecture discussed is the freedom to store much larger models, albeit keeping the

serverless function’s RAM and storage in consideration.

Fig 14 – S3 to Lambda

This model does however, run into cold start problems. In this research, it is shown

that keeping the lambda warm (essentially keeping its state of execution running)

can hold significant benefits in lowering the execution times for inference.

 34

Fig 15 – Lambda and S3 response times

Different techniques can be followed for keeping a lambda warm. In this research,

an AWS eventbridge rule to trigger this lambda periodically.

Fig 16 – Warming Lambda

5.1.3 Serverless Functions and Network File Storage (NFS)

In this section, focus was on improving the latencies seen previously in the case of

object storage models. A distributed network file storage system can be easily

mounted across several serverless functions at run-time. This file system can also be

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

3 : 1 5 3 : 2 0 3 : 2 5 3 : 3 0 3 : 3 5 3 : 4 0 3 : 4 5 3 : 5 0 3 : 5 5 4 : 0 0 4 : 0 5 4 : 1 0 4 : 1 5 4 : 2 0 4 : 2 5 4 : 3 0 4 : 3 5 4 : 4 0 4 : 4 5 4 : 5 0 4 : 5 5 5 : 0 0

LAMBDA RESPONSE TIMES
Cold Start Warm Start

M

 35

shared among multiple instances or containers, and the underlying NFS protocol

makes it suitable for low-latency shared access.

The architecture in this case is almost like previous use-cases, with the notable

difference being the file system. In the diagram below, AWS Elastic File Storage or

EFS is used in conjunction with a lambda function. The EFS stores the pre-built

model, as well as other third-party libraries required by the model during run-time.

Fig 17 – Lambda and EFS architecture

The average response times significantly improve in both cold and hot start for the

lambda functions. The chart in the following page highlights the same.

 36

Fig 18 – Lambda and EFS response times

While this architecture performed better over the object-storage one in 5.1.3, due

consideration must be put on the following points –

1. An NFS model is costlier compared to an object storage model. It is also costly

for frequent access, which in this case is true. NFS like EFS in AWS will cost 2x

compared to object storage S3, which virtually ends up costing nothing.

2. NFS should be preferred for lower file sizes with more frequent access

requirements [21]. It should also be noted that object storage models are used for

WORM (Write Once Read Many) operations, while an EFS allows frequent writes

with locking which is beneficial as will be discussed in the sections below.

0

200

400

600

800

1000

1200

1400

1600

10:00
10:05

10:10
10:15

10:20
10:25

10:30
10:35

10:40
10:45

10:50
10:55

11:00
11:05

11:10
11:15

11:20
11:25

11:30
11:35

11:40
11:45

11:50

Lambda Response Times
Cold Start

M

 37

5.1.4 Proposed Architecture

As observed in previous sections, developers must consider trade-offs when using

an object storage system compared to a distributed network file system. To tackle

this uncertainty, this section investigates utilizing more recent advances in serverless

container orchestration, particularly using AWS Fargate.

AWS Fargate provides a serverless compute engine to spin up ECS containers at

scale on-demand. Developers are only required to provide the task definition, which

includes parameters such as the type of container image (Windows, Linux, etc.), and

CPU and memory requirements. The underlying orchestration maintenance of these

instances is completely taken care of by the cloud provider. This type of architecture

is ideal for machine learning since the primary requirement is higher computing

resources like RAM and CPU. The architecture is shown in the following page. For

running an inference model, a trained model is pre-built into a container image and

uploaded to the Elastic Container Registry (ECR), which is a repository of AWS-

hosted containers, from which Fargate spins up multiple containers based on demand

and requirement. Each container then runs the inference jobs.

Fig 19 – ECS Architecture

 38

Significant improvements were observed, with much better scaling of containers.

The average execution times for an inference task were observed to be around

600ms for a single container instance. As the number of invocations increased,

Fargate started spinning up more containers to tackle the traffic, which further

reduced the response times. The following is the representation of the same

analysis. With more containers available to tackle higher loads, response times

are faster. This can also be configured based on the amount of CPU utilization,

where if the CPU utilized in a single container is over 50%, Fargate can spin up

more containers. This architecture performs significantly better than the previous

ones discussed, and one of the reasons for this can be attributed to low-latency

persistent storage in the case of ECS containers compared to an NFS or object

storage.

Fig 20 – ECS Response Times vs Load

 39

5.1.5 AWS vs GCP

When it comes to GCP, it also provides similar resources for inference models like

AWS as shown above. The GCP equivalent of Fargate is Cloud Run. Cloud run

performed like Fargate in terms of response times of inference tasks. On average, a

single container took around 700ms, and the scale-up of containers was also quite

comparable to AWS Fargate. Following is the GCP architecture of the proposed

model.

Fig 21 – Google Cloud Run

The table below highlights few key differences between GCF and Lambda

functions observed during the experiments, when attached with an object storage

system for access to the model and third-party libraries.

Table 6 – AWS vs GCP

Lambda GCF

Faster performance Slower in experiment

Higher learning curve Lesser learning curve

Need additional API GW attached Packaged HTTP endpoint (simpler)

Takes 3k MS on average Takes 5k MS on average

15 min timeout 9 min timeout

 40

5.2 Training Architecture

Data parallelism and parallel hyperparameter tuning are some of the most researched

topics in machine learning. Similar ideas can be utilized in the case of training a

machine learning model in serverless framework. In [6], Kudva et al showed the

same using a single parameter server to store the updated hyperparameters for a

neural network model. The emergence of batch framework in serverless and

serverless container orchestration at-scale, particularly in AWS, is investigated here

for its feasibility as a training platform.

In this architecture, AWS Batch jobs are investigated. GCP also has tools like

DataPrep however, AWS Batch is cheaper and more evolved, and developers only

pay for services like ECS when attached to AWS Batch. There is no charge for using

Batch itself as it facilitates executing tasks in batches on containers. This simplifies

the machine learning training process, because now data can be batched prior to

feeding into a container for training. Batching data reduces the requirement to pay

for greater computing resources like RAM or vCPU for a single instance. Combining

these batch results for purposes like hyperparameter tuning or model update itself

could significantly reduce the overall training duration using a serverless framework.

The alternative is to train in-silo on a single instance, while batching allows to map

and combine tasks for a more nuanced model.

In this experiment, an attempt is made to understand the feasibility of parallelizing

data for hyperparameter tuning using different AWS services. The steps are listed

on the following page –

 41

Fig 22 – Training steps in serverless framework

The architecture is shown in the following page -

 42

Fig 23 – Training architecture for serverless framework

Analysis of the runtimes of the model is presented in the below table. As evident,

costs are the bare minimum while training a model, given the computing power

allotted. It is certain that for much larger use cases, more computing needs to be

made available for lower train times.

Experiment Batch Size #of Iterations H/W Time Cost (Only

containers)

1 ½ of total

tweets

50 1vCPU,

2GB

memory

~ 75

minutes

~ $4/hr

2 ¼ of total

tweets

50

1vCPU,

4GB

memory

~ 35

minutes

~$4/hr

3 1/5 of total

tweets

50 2vCPU,

4GB

memory

~ 18

minutes

~ $6/hr

Table 7 – Analysis of serverless training

 43

6. Results

Based on the methodologies discussed above, the key results for this research are

listed below in two categories – Inference and Training

Inference:

For inference-based architectures, the serverless framework can significantly reduce

the cost of running simple event-driven responses for a machine learning model.

Lambda functions or GCF could be used in conjunction with external storage

systems, such as Network File Storage EFS, to provide a low latency-based scalable

platform. However, in this research, based on response times and cost to operate, it

can be concluded that running serverless containers like ECS on Fargate can be

better. Additionally, it allows far greater computing for at-par or lower costs than a

serverless function itself.

Training:

Training machine learning models using a serverless architecture holds numerous

challenges. The key challenge is to combine training outputs for hyperparameter

tuning or generating ensemble models. In this research, AWS Batch was investigated

to create a data parallel platform to run training tasks. From the results obtained,

allotting a greater number of containers with around 4GB of memory holds strong

potential to reduce overall training duration. This is key when considering larger

models like image recognition or large language models.

 44

7. Future Scope

The research offers more possibilities for investigation in the future. First, by

running resource-intensive jobs using serverless frameworks, such as image

recognition models, there is a chance to improve their availability. This change

reduces the expenses of using traditional servers while relieving developers of

infrastructure management, which could result in more effective workflows.

Architectures for parallel hyperparameter adjustment in serverless frameworks are a

further line of inquiry. Although it looks promising for improving model

performance, merging model weights without running into the risk of accidental

overrides is challenging. Furthermore, there is room to investigate if models or data

may be stored in-memory caches offered by certain cloud providers, which offers a

possible way to improve system performance in general. The efficiency and

capacities of serverless architectures in machine learning applications could be

improved in these future directions.

 45

8. Conclusion

In conclusion, integrating machine learning with serverless computing significantly

improves the effectiveness of training, scalability, and deployment of models. A

serverless framework's capability to scale dynamically in response to variations in

demand while supplying a significant amount of processing capacity is

invaluable for carrying out inference operations and training large-scale machine

learning models.

While there are obvious shortcomings, such as the computational constraints of

serverless frameworks, research into distributed serverless architectures is prompted

by these challenges. This provides opportunities to address and mitigate these

constraints, enabling the large-scale application of the fundamental concepts

presented in this paper, especially when training more complex machine learning

models. A new era of efficient and scalable applications in the field is about to

begin, thanks to the potential that the combination of machine learning and

serverless computing is poised to unlock.

 46

References

[1] D. Chahal, R. Ojha, M. Ramesh and R. Singhal, "Migrating Large Deep

Learning Models to Serverless Architecture," 2020 IEEE International

Symposium on Software Reliability Engineering Workshops (ISSREW),

Coimbra, Portugal, 2020, pp. 111-116, doi: 10.1109/ISSREW51248.2020.00047.

[2] AWS Lambda Functions, 2023, [online] Available:

https://www.amazon.com/lambda/

[3] IBM Cloud Functions, 2023, [online] Available:

https://cloud.ibm.com/fiunctions

[4] Azure Functions, 2023, [online] Available: https://azure.microsoft.com/en-

us/solutions/serverless/

[5] Google Cloud Functions, 2023, [online] Available:

https://cloud.google.com/serverless

[6] J. L. Vázquez-Poletti and I. M. Llorente, "Serverless Computing: From Planet

Mars to the Cloud," in Computing in Science & Engineering, vol. 20, no. 6, pp.

73-79, 1 Nov.-Dec. 2018, doi: 10.1109/MCSE.2018.2875315.

[7] S. Jambi, "Serverless Machine Learning Platform: A Case for Real-Time

Crisis Detection over Social Media," 2022 Second International Conference on

 47

Computer Science, Engineering and Applications (ICCSEA), Gunupur, India,

2022, pp. 1-6, doi: 10.1109/ICCSEA54677.2022.9936459.

[8] V. Ishakian, V. Muthusamy and A. Slominski, "Serving Deep Learning

Models in a Serverless Platform," 2018 IEEE International Conference on Cloud

Engineering (IC2E), Orlando, FL, USA, 2018, pp. 257-262, doi:

10.1109/IC2E.2018.00052.

[9] A. Barrak, F. Petrillo and F. Jaafar, "Serverless on Machine Learning: A

Systematic Mapping Study," in IEEE Access, vol. 10, pp. 99337-99352, 2022,

doi: 10.1109/ACCESS.2022.3206366.

[10] T. P. Bac, M. N. Tran and Y. Kim, "Serverless Computing Approach for

Deploying Machine Learning Applications in Edge Layer," 2022 International

Conference on Information Networking (ICOIN), Jeju-si, Korea, Republic of,

2022, pp. 396-401, doi: 10.1109/ICOIN53446.2022.9687209.

[11] E. Handoyo, M. Arfan, Y. A. A. Soetrisno, M. Somantri, A. Sofwan and E.

W. Sinuraya, "Ticketing Chatbot Service using Serverless NLP Technology,"

2018 5th International Conference on Information Technology, Computer, and

Electrical Engineering (ICITACEE), Semarang, Indonesia, 2018, pp. 325-330,

doi: 10.1109/ICITACEE.2018.8576921.

[12] H. Wang, D. Niu and B. Li, "Distributed Machine Learning with a Serverless

Architecture," IEEE INFOCOM 2019 - IEEE Conference on Computer

Communications, Paris, France, 2019, pp. 1288-1296, doi:

10.1109/INFOCOM.2019.8737391.

 48

[13] Jiawei Jiang, Shaoduo Gan, Yue Liu, Fanlin Wang, Gustavo Alonso, Ana

Klimovic, Ankit Singla, Wentao Wu, and Ce Zhang. 2021. Towards

Demystifying Serverless Machine Learning Training. In Proceedings of the 2021

International Conference on Management of Data (SIGMOD '21). Association

for Computing Machinery, New York, NY, USA, 857–871.

https://doi.org/10.1145/3448016.3459240

[14] L. Feng, P. Kudva, D. Da Silva and J. Hu, "Exploring Serverless Computing

for Neural Network Training," 2018 IEEE 11th International Conference on

Cloud Computing (CLOUD), San Francisco, CA, USA, 2018, pp. 334-341, doi:

10.1109/CLOUD.2018.00049.

[15] D. Chahal, M. Mishra, S. C. Palepu, R. K. Singh and R. Singhal, "Pay-as-

you-Train: Efficient ways of Serverless Training," 2022 IEEE International

Conference on Cloud Engineering (IC2E), CA, USA, 2022, pp. 116-125, doi:

10.1109/IC2E55432.2022.00020.

[16] T. P. Bac, M. N. Tran and Y. Kim, "Serverless Computing Approach for

Deploying Machine Learning Applications in Edge Layer," 2022 International

Conference on Information Networking (ICOIN), Jeju-si, Korea, Republic of,

2022, pp. 396-401, doi: 10.1109/ICOIN53446.2022.9687209.

[17] Eoin Shanaghy; Peter Elger, AI as a Service: Serverless machine learning

with AWS, Manning, 2020.

 49

[16] D. Chahal, M. Mishra, S. C. Palepu, R. K. Singh and R. Singhal, "Pay-as-

you-Train: Efficient ways of Serverless Training," 2022 IEEE International

Conference on Cloud Engineering (IC2E), CA, USA, 2022, pp. 116-125, doi:

10.1109/IC2E55432.2022.00020.

[17] A. Kaplunovich and Y. Yesha, "Automatic Tuning of Hyperparameters for

Neural Networks in Serverless Cloud," 2020 IEEE International Conference on

Big Data (Big Data), Atlanta, GA, USA, 2020, pp. 2751-2756, doi:

10.1109/BigData50022.2020.9378280.

[18] M. Kiran, P. Murphy, I. Monga, J. Dugan and S. S. Baveja, "Lambda

architecture for cost-effective batch and speed big data processing," 2015 IEEE

International Conference on Big Data (Big Data), Santa Clara, CA, USA, 2015,

pp. 2785-2792, doi: 10.1109/BigData.2015.7364082.

[19] Qian, L., Luo, Z., Du, Y., Guo, L. (2009). Cloud Computing: An Overview.

In: Jaatun, M.G., Zhao, G., Rong, C. (eds) Cloud Computing. CloudCom 2009.

Lecture Notes in Computer Science, vol 5931. Springer, Berlin, Heidelberg.

https://doi.org/10.1007/978-3-642-10665-1_63

[20] P. Vahidinia, B. Farahani and F. S. Aliee, "Cold Start in Serverless

Computing: Current Trends and Mitigation Strategies," 2020 International

Conference on Omni-layer Intelligent Systems (COINS), Barcelona, Spain,

2020, pp. 1-7, doi: 10.1109/COINS49042.2020.9191377.

[21] Harisree, L. B. Rao, S. Nikhil and R. Srinivasan, "Relevancy of Replacing

NFS with Storage Buckets in EDA Industry," 2022 IEEE Women in Technology

 50

Conference (WINTECHCON), Bangalore, India, 2022, pp. 1-4, doi:

10.1109/WINTECHCON55229.2022.9832296.

[22] Kaggle for data analysis, 2023, [online] Available https://www.kaggle.com/

[23] CrisisNLP for data, 2023, [online] Available https://crisisnlp.qcri.org/

	Serverless Architecture for Machine Learning
	Recommended Citation

	tmp.1703009389.pdf.Qwlr4

