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Abstract 

 
Serverless computing is an area under cloud computing which does not require 

individual management of cloud infrastructure and services. It is the groundwork 

behind Function as a Service or FaaS cloud computing technique. FaaS provides a 

stateless event-driven orchestration of functions and services for applications 

deployed in the cloud, without having to manage the servers and other infrastructure 

resources. This event driven architecture is being well utilized to manage different 

web-applications and services. Machine learning can bring a unique challenge to 

serverless computing, as it involves high-intensive tasks which requires voluminous 

data. In such a scenario it becomes essential to optimize the cloud-deployment 

architecture to obtain accurate results efficiently. In addition, serverless computing 

suffers from drawbacks like cold start etc., which further increases the need of 

researching different serverless provisioning tools and techniques. This research 

work aims to deploy a machine learning model to detect real-time crisis, using 

various serverless computing resources provided by notable cloud vendors like 

Amazon Web Services (AWS) and Google Cloud Platform (GCP). It also compares 

among the various methodologies available and later aims to build a training 

platform for machine learning tasks. 

 

Index Terms – Serverless, AWS, Lambda, S3, EFS, EC2, VM, GCF 
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1. Introduction 
 

The evolution of Machine Learning and Artificial Intelligence have been a 

longstanding arduous process. It bears fruits in our technological milestones of 

today, wherein it is being heavily used to modernize our healthcare, business, 

education, and a lot of other sectors. Enabling computers to learn from patterns, 

Machine Learning has made it easy to make accurate and precise decisions. Today, 

different areas of Machine Learning are developing rapidly such as Natural 

Language Processing or NLP. NLP models are used to infer context from text, 

speech etc., and make decisions based on it. A good example of it is question answer 

prediction. Researchers have been able to build models like BERT, to accurately 

answer quizzes. They have been trained on a large corpus of articles, documents etc., 

from the internet and derive accurate answers based on the context of the question 

as well. Furthermore, AI models are bringing revolutionary changes when it comes 

to automation like self-driving cars etc.  

 

Machine Learning has brought forward tremendous changes in our day-to-day lives, 

but it is still a highly resource intensive technology. To train models, it takes a huge 

amount of CPU and GPU resources which are not unlimited. Especially when it 

comes to cost of these resources, it can play a huge overhead for companies and 

individuals who want to experiment and test these models for their use cases. 

Especially industries today heavily rely on outsourcing these resources which brings 

us to the advent of cloud computing. 

 

Cloud computing has made it easier for everyone to manage their resource 

requirements. Today, to host or run applications, databases etc., users can simply 

spin up servers in the cloud and utilize those. This has brought down the costs 
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associated with managing these infrastructure resources as most of the cost model is 

based on Pay-as-you-Go structure, whereby you pay only for the time the resources 

are being utilized for. Cloud providers like Amazon Web Services (AWS), Google 

Cloud Platform (GCP) or Azure have taken a great leap forward by also providing 

and managing resources for training and building machine learning models. These 

models can be highly resource and cost intensive, however, using distributed cloud 

networks and servers, users can bring those down drastically. Even starting from 

housing data in cloud rather than on-prem can add to the cost credits. Together with 

that, users are now running the models on cloud server like EC2 machines for AWS. 

Containerization allows developers to create and deploy applications faster and more 

securely. With traditional methods, code is developed in a specific computing 

environment which, when transferred to a new location, often results in bugs and 

errors. For example, when a developer transfers code from a desktop computer to a 

virtual machine (VM) or from a Linux to a Windows operating system. 

Containerization eliminates this problem by bundling the application code together 

with the related configuration files, libraries, and dependencies required for it to run. 

Today, users are using this technique to also deploy their machine learning models 

in the cloud.  

 

Serverless is an important cloud architecture. It falls within the FaaS or Function as 

a Service architecture model. In this framework users are not privy to the underlying 

infrastructure for their applications. Many cloud providers like AWS, Google and 

Azure provide serverless resources. One of the most used serverless resource is 

AWS Lambda which will be discussed further in this paper. Containerization is 

heavily used during this process of serverless orchestration of resources and will be 

discussed further as well. When it comes to machine learning, nothing is more 

beneficial than serving the models in real-time. This is where the serverless nature 
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of cloud computing can bring a lot of benefits. As resources are spun up 

automatically without manual intervention, machine learning tasks can be divided 

and addressed in a distributed way which could lead to faster rendering of results. 

 

1.1 Problem Statement 
 
This research project deals with developing machine learning inference and training 

architectures using core serverless offerings from AWS and GCP. These 

architectures will then be evaluated and ranked based on cost and time to train or 

execute. Furthermore, research will also be undertaken to build a training model 

using core AWS serverless resources like Elastic Container Service (ECS), to 

address its feasibility for real-world solutions. While the bulk of the focus is on 

researching serverless frameworks, the project also deals with critical machine 

learning tasks for building a model that can predict whether a given input text could 

be related to a disaster or not. Different sized models will be built, which would then 

be ran as a serverless service for inference or trained in cloud using serverless 

framework like ECS. 

1. 2 Motivation 
 
 Traditional machine learning techniques usually involve developing models and 

improving their results. As can be realized, these techniques can be complemented 

with serverless cloud computing. However, there are challenges involved in this 

framework. Particularly when it comes to constraints like data and memory limits of 

the serverless functions. Adding to this are other problems which will be discussed 

further like cold start of the functions. In view of these challenges and the benefit 

that can be drawn, the aim of this research project is to render real time models for 

crisis detection using serverless architecture from AWS and Google.  
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2. Background 
 

Cloud Computing 

Cloud computing as a technology is ubiquitous, with its growing presence felt as the 

adoption of internet becomes widespread. In essence, cloud computing leverages 

remote servers to provide resources like compute, infrastructure, software etc., using 

the internet. It unleashes scalability through its on-demand model and allows users 

to access and use any computing resource without having to invest or manage them 

extensively. Cloud computing has several key features, such as cost-effectiveness 

because users only pay for the resources they use, flexibility because users may scale 

resources up or down based on their needs, and accessibility because users can 

access data and apps from any location with an internet connection. There are a 

growing number of cloud providers like Amazon Web Services (AWS), Google 

Cloud Platform (GCP), Microsoft Azure etc. Typically cloud computing is 

categorized into three service models: Infrastructure as a Service (IaaS), Platform as 

a Service (PaaS), and Software as a Service (SaaS) 
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Fig 1 – Cloud Computing Service Model 

 

Infrastructure as a Service (IaaS): IaaS utilizes the internet to provide virtualized 

computing resources such as storage, virtual machines, networking components 

etc. Users do not have to deal with the hassle of managing these components as 

they are managed by the cloud providers, which saves a significant portion of their 

costs. Example – AWS Elastic Compute (EC2) virtual instances. 

 

Platform as a Service (PaaS): PaaS offers developers with a streamlined approach 

for creating applications and writing code by managing all the required underlying 

infrastructure orchestration. Example – Heroku, which is a cloud deployment tool, 

allows a straightforward deployment of code, scaling of infrastructure and database 

integration among others. 

 

Software as a Service (SaaS): SaaS uses the internet for the distribution of software 

applications. These applications can be accessible to users through a web browser, 

that removes the requirement for local installation and streamlines updates and 

maintenance. Example – Microsoft 365 suite. 
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Function as a Service (FaaS) 

Function as a Service (FaaS) or commonly referred to as Serverless Computing is 

another growing service model within cloud computing. It stems from IaaS and aims 

to further abstract out the orchestration and management of computing resources, 

specifically virtual machines like EC2 instances. For any developer, running EC2 

instances, maintaining them, and scaling them was always a pain-point as it not only 

involved incurring costs but also wasting valuable developer time. To tackle this, 

cloud providers like AWS, Azure, GCP have introduced the concept of FaaS, which 

are on-demand event-driven execution environments that gets automatically 

provisioned to run code. These functions are stateless in nature, with very limited 

run-time memory and storage limits. The highest allotted runtime memory is 10GB 

provided by AWS Lambda, which is AWS’s serverless offering. An example of 

serverless function usage could be an API call made to a lightweight service (say a 

service to send an automated email given a user sign up for a newsletter). In this case 

this microservice could be written as part of a serverless offering such as a Lambda 

function that gets automatically triggered when a user POST data to an API endpoint 

upon signing up for a newsletter. Below is a salient representation of the backend of 

an application built using serverless architecture. The noteworthy attribute is that the 

scaling of the function’s is taken care of by the cloud provider itself depending on 

the traffic. 

 



 14 

 
Fig 2 –Backend of a Serverless Application 

 

 

Most of the attributes of a serverless function are similar when compared across 

different cloud providers. Key differentiating factors are the runtime memory, cost 

and overall adoption of the technology. Here are some of the key salient features 

when it comes to serverless functions -  

 

Pay Per Use: 

Serverless functions like AWS Lambda or GCF, are based on the pay-per-use model. 

This means users do not have to explicitly keep any of these serverless instances up 

anticipating traffic to their services. The functions automatically scale up based on 

incoming traffic, and the logic to do so can be provided by the user while doing the 

initial configuration of these functions. 
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Fully Managed Infrastructure: 

Maintaining bare-metal servers on-prem or managed instances in cloud could easily 

ramp up costs, as well as valuable time for a developer. Serverless functions bring 

significant cost-cutting benefits with respect to these. All the developers need to do 

is perform the initial configuration of these functions with the storage, memory 

needed, and rest will be taken care of by the cloud provider. 

 

Integration with Other Services: 

Besides serverless functions, cloud providers offer numerous other tools like 

databases, object storage models like S3 buckets, file systems, memcache etc. Since 

serverless functions are event-driven in nature, they can easily integrate with almost 

every other service/tool available within a providers’ ecosystem. 

 

Invocation Methods: 

Serverless functions support both synchronous and asynchronous style of 

invocations. Example – AWS Lambdas wait for a response in synchronous style 

while it is not the case in asynchronous executions. 

 

 
Fig 3 – Synchronous Lambda 
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Fig 4 – Asynchronous Lambda 

 

Cost and Time differences between AWS Lambda and GCF: 

While most features are similar between both Lambda and GCF, there are some key 

differences primarily surrounding the cost and timeout.  

 

Standard cost of Lambda and GCF 

Lambda 1 million invocations free 

per month. Up to 400k 

GB/seconds free 

Beyond free-tier 

$0.00001667 per 

GB/second 

GCF 2 million invocations free 

per month. Up to 400k 

GB/seconds free 

Beyond free-tier 

$0.0000004 per 

GB/second. CPU time is 

also calculated at $ 

$0.0000100 per second 

Table 1 – Lambda vs GCF cost 

 

Lambda costs are comparable to GCF. Usually, they are slightly lower when 

calculated overall, however GCF does allow slightly higher number of invocations 

which could potentially save costs. 
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Execution Differences 

Lambda 1000 concurrent function executions, 

timeout 15 minutes 

GCF 1000 concurrent executions, timeout 9 

minutes 

Table 2 – Lambda vs GCF timeout 

 

Lambda functions clearly outshine in their execution aspect allowing far higher 

timeouts on a single run. This is key to running machine learning inference tasks 

when compared to GCF as will be evident in the experiments performed. 

Besides many advantages, serverless function’s do suffer from some drawbacks 

which are listed below -  

 

Cold Start Problem: 

Cold start as the name sounds refers to the delay in dynamic infrastructure 

provisioning by the cloud providers when executing any task. By default, cloud 

providers provision containers where these tasks are run, and cold start refers to the 

delay in provisioning these containers. In AWS Lambda, every function or container 

lasts for a duration of 15 minutes, which means it stays warm for 15 minutes. Any 

calls made to this function during this time, would be executed far sooner than the 

initial task calls. Bahar et al in [20] describe this phenomenon in the following 

architecture diagram.  
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Fig 5 – Cold start delay 

As can be seen, it becomes imperative that cold start delays could significantly 

impact the overall execution times of any task. This paper will discuss ways to 

mitigate this cold start problem as well and suggest an architecture using some key 

AWS offerings. 

 

Besides serverless functions, another key serverless offering this paper discusses is 

AWS Elastic Container Service with Fargate. This paper discusses Fargate in detail 

and compares it with Lambda in terms of execution times. The equivalent of Fargate 

in a GCP is the Google Cloud Run. ECS in essence are docker containers, that can 

be provisioned dynamically like an AWS Lambda execution environment. It 

provides isolation of tasks, which is key in the architect of microservices. Since, 

lambdas inherently lacked capacity to run voluminous workloads, ECS becomes 

critical, as it provides both serverless execution and higher memory or storage. 

Fargate is an engine for ECS containers. It simplifies the deployment of these 

containers, by removing the need for developers to choose instancy type, managing 

scaling of these containers, or run other optimizations and maintenance tasks. 

Fargate ensures that developers can utilize AWS’ serverless platform to the 

maximum benefit. The key differences between a lambda and Fargate is tabulated 

in the following page –  
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 AWS Lambda AWS Fargate 

Execution environment Amazon Linux User defined (more 

choices) 

Memory 128 MB – 10GB 1GB – 30GB 

CPU AWS controlled 0.25 – 4 vCPU 

Disk Space 512 MB – 10 GB 20 GB – 200 GB 

Max execution time 15 minutes No Limit 

Max parallel executions 1000 500  

Deployment Unit Zipped code/container Container 
Table 3– Lambda vs Fargate 
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3. Related Work 

 

Serverless computing is a brand-new framework for running machine learning 

models in the cloud. Most of the contemporary research focuses on improving the 

inference response times. This means models are trained locally on-prem or 

managed servers and uploaded in cloud storage. Inference tasks are then run on this 

uploaded model. Chahal, Ojha, Ramesh and Singhal [1] performed a performance 

and cost-based analysis on deploying a large Natural Language Processing model 

using FaaS architecture. Their evaluation of improved performance in terms of 

response times and cost of the FaaS platform, acts as a solid bed work for this 

research project. In [1], the focus has been on using AWS Lambda to run inference 

tasks on an Optical Character Recognition (OCR) model uploaded in cloud storage 

EFS. The methodologies discussed in this paper, provide good guidance as to 

reducing the total memory usage by an AWS Lambda function. The authors have 

also found a strong correlation between response time of a function and the total 

memory allocated to the function in run-time. Higher the memory allocated better 

the results, albeit at a higher cost [1]. The cost of a FaaS platform can also be deduced 

from most of the cloud vendor websites [2] – [5]. Overall, running inferences of 

50,000,000 invocations for an AWS Lambda function with 256 MB of memory 

(RAM) ranges anywhere between $100-$120. 
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Fig 6 – Total cost of AWS Lambda (AWS Pricing Calculator) 

 

The popularity of serverless architectures have also inspired the scientific 

community to port applications running on a VM to a serverless container. Poletti 

and Llorente [6], performed a detailed analysis between running an application, that 

analyzes data from the European Space Agency’s Mars Express Orbiter in a 

serverless platform and running it in a server. Their reimagined architecture works 

with a Lambda that invokes a C-based executable when data is uploaded into an S3 

bucket. 

 
Fig 7 – Scientific workloads on AWS Lambda 
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This new architecture had a significant impact on the execution times of the overall 

inference model reducing it from 3.4k Milliseconds to 1.8k Milliseconds. For larger 

image files (> 17MB), the response time reduced by over 200%. This alone should 

serve as an inspiration for the research community to consider serverless as their go-

to platform. 

 

While example studies above dealt mostly with AWS’ serverless offerings, there is 

also work being done on the Google Cloud Platform. Google Cloud Functions or 

GCF are the equivalent of Lambda functions. Perhaps the one positive differentiating 

factor for GCF is that they do not require attaching an API Gateway separately as 

they come prepackaged with an HTTP endpoint. This can potentially save us extra 

cost, albeit minimum. Sahar [7] created an event driven model using GCF and 

Google Pub/Sub architecture which is based on the Publisher-Subscriber framework. 

For any real time streaming of data, like a real-time weather analysis model, pub/sub 

architectures allow us to store events in a queue which further allows its processing 

in a set order. In [7], the author deploys a deep learning model packaged using 

Pythons’ Pickle library into Google Cloud Storage. The average execution times 

were around 400ms, and memory utilization was around 230 MB which are below 

the max limits defined for the Cloud Function. The Functions did do poorly when 

load testing was strenuous, and this could potentially be improved using a container-

based approach as we will discuss below in our experimental methodologies.  

 

Further work of deploying deep learning models have been done by Slominski et al 

in [8], wherein they deployed models like TensorFlow and MXNet for image 

classifications which are bigger in size. They obtained better results with warm 

requests as compared to cold requests. The latency was around 3-4 seconds which is 
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expected for warm requests however, they were higher for the cold requests. The 

research work in [8] clearly shows a proportionality between the memory allotted to 

a lambda and its execution times. As an example, the authors here allotted higher 

1024MB for the lambda and it performed significantly better over 512 MB for an 

overall model size of 100MB which would be loaded in run time. Their work does 

provide a baseline when it comes to tuning the parameters of a lambda environment. 

 

Jaafar et al in [9] have studied Machine Learning Operations (MLOps) in detail 

based on existing research work around this area. MLOps deals with the 

management of machine learning pipelines and models in cloud, including their 

release and updates [9]. They have shown that while cold starts are a problem in 

serverless computing, they are still better compared to executing workloads in a 

managed virtual machine like EC2 instance. Research around this shows that costs 

of up to 2.5-3.5x can be immediately saved in maintenance of EC2 instances. 

Additionally, they have concluded that researchers and industry is moving machine 

learning pipelines to a serverless architecture primarily to obtain the benefits of the 

pay-per-use model. Kim et al in [10] use an event driven architecture for predicting 

handwriting using the MNIST dataset. They have used docker registry to store their 

models and dataset and used an event driven or API approach for serverless function 

orchestration. Their results indicate that the serverless approach can guarantee 

optimal response and running time, reduce the end-to-end delay of the machine 

learning application and shows its capability to support distributed machine learning. 

Sinuraya et al in [11] presents a unique case study of building a chatbot using NLP 

and deploying it on a serverless architecture. The chatbot performed quite well with 

an 89% precision score and less latency. Their model is based on webhooks and 

Facebook API which can be translated to AWS Lambda and API Gateway. 
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Coming to training machine learning models using a serverless framework. There 

are significant challenges to the idea of training in a serverless model, especially 

around the constraints of a serverless function not being intended to run intensive 

tasks which require lot of memory. Runtime memory is limited, maximum of 10GB 

which is clearly not sufficient to train most complex models. Despite these 

challenges, Li et al in [12] designed a novel serverless architecture called SIREN for 

deep reinforcement learning. They built a neural network-based job scheduler which 

schedules training tasks on the lambda and dynamically allots the memory and 

instance numbers. SIREN proves that it can reduce training time and cost by over 

40% when compared to traditional training in EC2 or VM’s. Klimovic et al in [13] 

have presented a model based on lambda called LambdaML for machine learning 

training. Their results also show that the response times of a serverless model is less 

while the costs incurred is not significantly lesser than the VM approaches (IAAS). 

They have presented a tradeoff between the FaaS and IaaS cloud computing 

architectures which is worth applying in this project as well. 

 

Parallelizing machine learning training is also a key research agenda. Parallel 

hyperparameter tuning in [14] by Silva et al, shows a lot of promise in benchmarking 

serverless training approaches particularly running them in a distributed fashion. 

Data parallelism like batching a large dataset and using machine learning ideas such 

as mini-Batch Gradient Descent to update parameters is a key research idea used in 

this paper. The architecture built in [14] could be remodeled using AWS Batch jobs 

for orchestration and is being discussed in the later sections of this paper. 
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Fig 8 – Parallel machine learning using AWS Step Functions 

 

Mishra et al in [15] also described a parallel training model using a dedicated 

parameter server for model parameter updates. Their concept is also based on mini-

BGD approach mentioned above and looks at different data storage techniques like 

S3, DynamoDB, Memcache. Memcache was overall costlier however, also had the 

fastest training times. They also discuss the latency effects of training models and 

using intermediate data storage and DynamoDB seems to have the highest latency 

compared to S3 and Memcached. In addition to the above resources, this paper also 

investigates the potential impact of using a networked file system like AWS Elastic 

File Storage for data storage and retrieval and its effect on the response times. 
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4. Machine Learning 
 

While the focus of this research is to build and compare different serverless 

architectures for a machine learning problem, it is also essential to talk about the 

different machine learning tasks undertaken to build the model.  

 

Data Gathering 

The dataset for this research was collected from open-source websites Kaggle [22] 

and crisisNLP [23].  It pertains to Tweets collected from Twitter which have been 

classified into two categories “Disaster” or “Not Disaster”. The dataset consists of 

over 100k tweets with 4 fields namely id, location, text, and target. Each record has 

a unique id represented by the id field. Target labels the tweets to either of the two 

categories “Disasters” or “Not Disaster”. 

 

 
Fig 9 – Dataset 

 

EDA 

The training and test data consists of over 100k tweets. 43% of tweets in the 

training data related to disasters while the rest were non-disasters. 
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Fig 10 – Disaster vs Non-Disaster Tweets 

 

Data Cleaning 

Several data cleaning tasks were performed like removing punctuation, removing 

hyperlinks, numbers, and brackets from the text. Additionally, the text was 

transformed to lower case for consistency. 

 

Following is a word cloud of the keywords from both disasters and non-disasters 

tweets. 

 
Fig 11 – Word cloud of tweets 

Total Tweets

Disasters Non-Disasters
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Data Preprocessing 

Tokenization – Post data cleaning, each text in the corpus was tokenized into 

separate strings. Each line of text was tokenized for each paragraph and each word 

was tokenized for each line of text. 

 

Stopwords Removal – Later, common stop words in English like articles the, an, a 

etc., were removed from the tokenized text. 

 

Stemming and Lemmatization – In this case both stemming, and lemmatization were 

performed on the text corpus. Stemming and lemmatization are both used as text 

normalization techniques. Stemming was faster in this case. 

 

Text Vectorization – Since machine learning models take numeric inputs, the text 

corpus was vectorized using TF-IDF Vectorizer. 

 

Machine Learning Model 

Gradient Boosting Classifier 

This research used a Gradient Boosting Classifier (GBC) model to determine 

whether tweets are related to catastrophes. The ability of the GBC, a potent ensemble 

learning method, to progressively construct decision trees, each making up for the 

shortcomings of the one before it, led to its selection. Using variables like location, 

text content, and binary indicators for disasters, our model performed well in 

identifying subtle patterns in the dataset. To attain the best possible model 

performance, hyperparameter optimization was carefully considered. The larger the 

depth of each tree (max_depth) and the number of estimators (n_estimators) played 

a crucial role in determining the complexity and size of the model. Increasing the 
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number of estimators resulted in a more expressive model that could capture 

complex patterns in the dataset, but at the cost of a larger model size. In addition, 

changing the maximum depth made it possible to comprehend feature interactions 

more deeply, which affected how interpretable the final model was. The max_depth 

and estimator were adjusted to ensure that larger model sizes could be obtained, as 

the goal of this research was not to create the most nuanced and balanced model 

possible. As a result, 121MB, 458MB, and 1034MB models were made. The ensuing 

accuracy results were as follows: 

 

Size Accuracy 

121 MB  82.1% 

458 MB 88% 

1034 MB 96% 

Table 4 – Comparison of size and accuracies of GBC 
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5. Methodologies 
 
5.1 Inference Architectures 
 
This section deals with experimenting with different inference architectures for the 

machine learning models built in the previous stage. The models were trained locally 

and uploaded into different cloud storage units, and their latencies in each case has 

been compared through load testing. 

 

5.1.1 Single Serverless Function (Worker) 

In this first experiment, the focus was to allow a single serverless function, run both 

as a machine learning training model, and perform inference tasks. This way a clear 

baseline could be set when using a single function as a worker. Research into 

serverless function’s shows that they are only capable of running small tasks as part 

of the event-driven paradigm with only 15 minutes of available runtime. The 

analysis done concurs with this. 

 

Case 1 – Training 

In this case, a single worker (single AWS Lambda) was used for training a model 

discussed in 4 above. The estimators and maximum depth were kept low, since 

lambdas can only support up to 10GB RAM and 10GB storage. All the required data, 

and third-party python modules were loaded as a lambda layer. Lambda layers are a 

central storage for common external libraries for lambda functions, so that they can 

be made available in run-time. The architecture with AWS is shown in the following 

page. 
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Fig 12 – Training using a single lambda. 

 

This architecture for training a model performed rather poorly. Running with 8GB 

RAM, on a dataset with size 25MB, the lambda took almost 12 minutes to train. For 

lower RAM, it timed out in every case.  

 

Case 2 – Inference Tasks 

In this case the model and its required third-party libraries are loaded as a lambda 

layer in AWS. A lambda function is used to execute the inference tasks. The analysis 

is as shown in the below table. Higher RAM allotment results in better execution 

times as can be seen below. 

  

RAM Time (minutes) 

2GB 3 

4GB 1.8 

8GB 0.9 

Table 5 – Single Lambda for inference execution time 
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The table in the previous page shows that running data intensive tasks directly on a 

serverless function without any external storage is not ideal.  For lambdas with a 

2GB RAM, inference tasks took almost 3 minutes in some cases to return a result. 

Some of the requests were also dropped which can be seen below –  

 

 
Fig 13 – Inference for a lambda 
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5.1.2 Serverless Functions and Object Storage 
 
Bulk of the current research into serverless machine learning deals with this form of 

inference architecture. In this method, an outside bucket is used to store the machine 

learning model. The necessary libraries are loaded in run time as lambda layers. Most 

of the research [1] – [3] preferred this architecture because of its simplistic form, as 

well as lesser costs since an object storage model is cheap compared to other forms 

of storage like a database or networked file system. Its advantage over the previous 

architecture discussed is the freedom to store much larger models, albeit keeping the 

serverless function’s RAM and storage in consideration. 

 

 
Fig 14 – S3 to Lambda 

 

This model does however, run into cold start problems. In this research, it is shown 

that keeping the lambda warm (essentially keeping its state of execution running) 

can hold significant benefits in lowering the execution times for inference. 

 



 34 

 
Fig 15 – Lambda and S3 response times 

 

Different techniques can be followed for keeping a lambda warm. In this research, 

an AWS eventbridge rule to trigger this lambda periodically. 

 

 
Fig 16 – Warming Lambda 

 

5.1.3 Serverless Functions and Network File Storage (NFS) 
 
In this section, focus was on improving the latencies seen previously in the case of 

object storage models. A distributed network file storage system can be easily 

mounted across several serverless functions at run-time. This file system can also be 
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shared among multiple instances or containers, and the underlying NFS protocol 

makes it suitable for low-latency shared access. 

 

The architecture in this case is almost like previous use-cases, with the notable 

difference being the file system. In the diagram below, AWS Elastic File Storage or 

EFS is used in conjunction with a lambda function. The EFS stores the pre-built 

model, as well as other third-party libraries required by the model during run-time. 

 

 
Fig 17 – Lambda and EFS architecture 

 

 

The average response times significantly improve in both cold and hot start for the 

lambda functions. The chart in the following page highlights the same. 
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Fig 18 – Lambda and EFS response times 

 

While this architecture performed better over the object-storage one in 5.1.3, due 

consideration must be put on the following points –  

1. An NFS model is costlier compared to an object storage model. It is also costly 

for frequent access, which in this case is true. NFS like EFS in AWS will cost 2x 

compared to object storage S3, which virtually ends up costing nothing. 

2. NFS should be preferred for lower file sizes with more frequent access 

requirements [21]. It should also be noted that object storage models are used for 

WORM (Write Once Read Many) operations, while an EFS allows frequent writes 

with locking which is beneficial as will be discussed in the sections below.  
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5.1.4 Proposed Architecture 
 
As observed in previous sections, developers must consider trade-offs when using 

an object storage system compared to a distributed network file system. To tackle 

this uncertainty, this section investigates utilizing more recent advances in serverless 

container orchestration, particularly using AWS Fargate. 

 

AWS Fargate provides a serverless compute engine to spin up ECS containers at 

scale on-demand. Developers are only required to provide the task definition, which 

includes parameters such as the type of container image (Windows, Linux, etc.), and 

CPU and memory requirements. The underlying orchestration maintenance of these 

instances is completely taken care of by the cloud provider. This type of architecture 

is ideal for machine learning since the primary requirement is higher computing 

resources like RAM and CPU. The architecture is shown in the following page. For 

running an inference model, a trained model is pre-built into a container image and 

uploaded to the Elastic Container Registry (ECR), which is a repository of AWS-

hosted containers, from which Fargate spins up multiple containers based on demand 

and requirement. Each container then runs the inference jobs. 

 

 
Fig 19 – ECS Architecture 
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Significant improvements were observed, with much better scaling of containers. 

The average execution times for an inference task were observed to be around 

600ms for a single container instance. As the number of invocations increased, 

Fargate started spinning up more containers to tackle the traffic, which further 

reduced the response times. The following is the representation of the same 

analysis. With more containers available to tackle higher loads, response times 

are faster. This can also be configured based on the amount of CPU utilization, 

where if the CPU utilized in a single container is over 50%, Fargate can spin up 

more containers. This architecture performs significantly better than the previous 

ones discussed, and one of the reasons for this can be attributed to low-latency 

persistent storage in the case of ECS containers compared to an NFS or object 

storage.  

 

 
Fig 20 – ECS Response Times vs Load 
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5.1.5 AWS vs GCP 
 
When it comes to GCP, it also provides similar resources for inference models like 

AWS as shown above. The GCP equivalent of Fargate is Cloud Run. Cloud run 

performed like Fargate in terms of response times of inference tasks. On average, a 

single container took around 700ms, and the scale-up of containers was also quite 

comparable to AWS Fargate. Following is the GCP architecture of the proposed 

model. 

 

 
Fig 21 – Google Cloud Run 

 

The table below highlights few key differences between GCF and Lambda 

functions observed during the experiments, when attached with an object storage 

system for access to the model and third-party libraries. 

 
Table 6 – AWS vs GCP  

Lambda GCF 

Faster performance Slower in experiment 

Higher learning curve Lesser learning curve 

Need additional API GW attached Packaged HTTP endpoint (simpler) 

Takes 3k MS on average Takes 5k MS on average  

15 min timeout 9 min timeout 
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5.2 Training Architecture 
 
Data parallelism and parallel hyperparameter tuning are some of the most researched 

topics in machine learning. Similar ideas can be utilized in the case of training a 

machine learning model in serverless framework. In [6], Kudva et al showed the 

same using a single parameter server to store the updated hyperparameters for a 

neural network model. The emergence of batch framework in serverless and 

serverless container orchestration at-scale, particularly in AWS, is investigated here 

for its feasibility as a training platform. 

 

In this architecture, AWS Batch jobs are investigated. GCP also has tools like 

DataPrep however, AWS Batch is cheaper and more evolved, and developers only 

pay for services like ECS when attached to AWS Batch. There is no charge for using 

Batch itself as it facilitates executing tasks in batches on containers. This simplifies 

the machine learning training process, because now data can be batched prior to 

feeding into a container for training. Batching data reduces the requirement to pay 

for greater computing resources like RAM or vCPU for a single instance. Combining 

these batch results for purposes like hyperparameter tuning or model update itself 

could significantly reduce the overall training duration using a serverless framework. 

The alternative is to train in-silo on a single instance, while batching allows to map 

and combine tasks for a more nuanced model.   

 

In this experiment, an attempt is made to understand the feasibility of parallelizing 

data for hyperparameter tuning using different AWS services. The steps are listed 

on the following page –  
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Fig 22 – Training steps in serverless framework 

 

 

The architecture is shown in the following page -  
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Fig 23 – Training architecture for serverless framework 

 

Analysis of the runtimes of the model is presented in the below table. As evident, 

costs are the bare minimum while training a model, given the computing power 

allotted. It is certain that for much larger use cases, more computing needs to be 

made available for lower train times. 

Experiment Batch Size #of Iterations H/W Time Cost (Only 

containers) 

1 ½ of total 

tweets 

50 1vCPU, 

2GB 

memory 

~ 75 

minutes 

~ $4/hr 

 

2 ¼ of total 

tweets 

50 

 

1vCPU, 

4GB 

memory 

~ 35 

minutes 

~$4/hr 

3 1/5 of total 

tweets 

 

50 2vCPU, 

4GB 

memory 

 

~ 18 

minutes 

 

~ $6/hr 

 

Table 7 – Analysis of serverless training 
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6. Results 
 

Based on the methodologies discussed above, the key results for this research are 

listed below in two categories – Inference and Training 

 

Inference: 

For inference-based architectures, the serverless framework can significantly reduce 

the cost of running simple event-driven responses for a machine learning model. 

Lambda functions or GCF could be used in conjunction with external storage 

systems, such as Network File Storage EFS, to provide a low latency-based scalable 

platform. However, in this research, based on response times and cost to operate, it 

can be concluded that running serverless containers like ECS on Fargate can be 

better. Additionally, it allows far greater computing for at-par or lower costs than a 

serverless function itself.  

 

Training: 

Training machine learning models using a serverless architecture holds numerous 

challenges. The key challenge is to combine training outputs for hyperparameter 

tuning or generating ensemble models. In this research, AWS Batch was investigated 

to create a data parallel platform to run training tasks. From the results obtained, 

allotting a greater number of containers with around 4GB of memory holds strong 

potential to reduce overall training duration. This is key when considering larger 

models like image recognition or large language models. 
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7. Future Scope 

 

The research offers more possibilities for investigation in the future. First, by 

running resource-intensive jobs using serverless frameworks, such as image 

recognition models, there is a chance to improve their availability. This change 

reduces the expenses of using traditional servers while relieving developers of 

infrastructure management, which could result in more effective workflows. 

 

Architectures for parallel hyperparameter adjustment in serverless frameworks are a 

further line of inquiry. Although it looks promising for improving model 

performance, merging model weights without running into the risk of accidental 

overrides is challenging. Furthermore, there is room to investigate if models or data 

may be stored in-memory caches offered by certain cloud providers, which offers a 

possible way to improve system performance in general. The efficiency and 

capacities of serverless architectures in machine learning applications could be 

improved in these future directions. 
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8. Conclusion 

 

In conclusion, integrating machine learning with serverless computing significantly 

improves the effectiveness of training, scalability, and deployment of models. A 

serverless framework's capability to scale dynamically in response to variations in 

demand while supplying a significant amount of processing capacity is 

invaluable for carrying out inference operations and training large-scale machine 

learning models. 

 

While there are obvious shortcomings, such as the computational constraints of 

serverless frameworks, research into distributed serverless architectures is prompted 

by these challenges. This provides opportunities to address and mitigate these 

constraints, enabling the large-scale application of the fundamental concepts 

presented in this paper, especially when training more complex machine learning 

models. A new era of efficient and scalable applications in the field is about to 

begin, thanks to the potential that the combination of machine learning and 

serverless computing is poised to unlock. 
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