Demystifying DeFi MEV Activities in Flashbots Bundle

Zihao Li
The Hong Kong Polytechnic
University, China

Xiapu Luo®
The Hong Kong Polytechnic
University, China

Wenwu Yang
University of Electronic Science and
Technology of China, China

ABSTRACT

Decentralized Finance, mushrooming in permissionless blockchains,
has attracted a recent surge in popularity. Due to the transparency
of permissionless blockchains, opportunistic traders can compete
to earn revenue by extracting Miner Extractable Value (MEV),
which undermines both the consensus security and efficiency of
blockchain systems. The Flashbots bundle mechanism further ag-
gravates the MEV competition because it empowers opportunistic
traders with the capability of designing more sophisticated MEV
extraction. In this paper, we conduct the first systematic study on
DeFi MEV activities in Flashbots bundle by developing ACTLIFTER,
a novel automated tool for accurately identifying DeFi actions in
transactions of each bundle, and AcTCLUSTER, a new approach that
leverages iterative clustering to facilitate us to discover known/un-
known DeFi MEV activities. Extensive experimental results show
that ACTLIFTER can achieve nearly 100% precision and recall in
DeFi action identification, significantly outperforming state-of-the-
art techniques. Moreover, with the help of AcTCLUSTER, we obtain
many new observations and discover 17 new kinds of DeFi MEV
activities, which occur in 53.12% of bundles but have not been
reported in existing studies.

CCS CONCEPTS

« Security and privacy — Distributed systems security.
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1 INTRODUCTION

Decentralized Finance (DeFi) has attracted a recent surge in popu-
larity with more than 40B USD total locked value [10]. Since trans-
actions broadcasted in the underlying P2P network of blockchain
are globally visible, opportunistic traders can strategically adjust
the gas price to prioritize their transactions and earn extra revenue
from DeFi, which is known as the generic term Miner Extractable
Value (MEV) [40, 44, 47, 72, 82, 96, 98].

MEV competition undermines both the security and efficiency
of blockchain systems. First, it incentivizes financially rational val-
idators (miners in the context of PoW) to fork the chain, thereby
deteriorating the blockchain’s consensus security [40, 72]. Second,
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it aggravates network congestion (i.e., P2P network load) and chain
congestion (i.e., block space usage) because opportunistic traders
who compete for MEV opportunities prioritize their transactions
at the cost of considerable time delay for other transactions [40].

The Flashbots organization proposed the bundle mechanism
which enables opportunistic traders to design more sophisticated
MEYV extraction for profits, because it allows traders to submit a se-
quence of self-constructed and/or selected transactions as a bundle,
which can even include unconfirmed transactions broadcasted on
the P2P network. It was reported that compared to the vanilla Sand-
wich attacks, the bundle-based variants were more profitable [20].

However, little is known about DeFi MEV activities conducted
through the bundle mechanism. To demystify the status quo of
DeFi MEV activities in bundles, we aim at answering the following
questions, namely how prevalent are known DeFi MEV activities
in bundles? Are there new DeFi MEV activities that are unreported
before in bundles? If that is the case, how did they behave and how
prevalent are they? What are the differences between DeFi MEV
activities in bundles and other DeFi MEV activities? The answers
to these questions can help researchers have an in-depth under-
standing of DeFi MEV activities, e.g., the features of various MEV
activities and the robustness of today’s MEV mitigation techniques.

In this paper, we conduct the first systematic study on DeFi MEV
activities performed through Flashbots bundle. A DeFi MEV activity
usually consists of several DeFi actions, each of which refers to an
interaction between a trader and an individual function provided
by the contracts of DeFi applications. For example, a contract of
AMM (Automated Market Maker) should support the swap DeFi
action for exchanging different assets [91]. A cyclic arbitrage [82]
MEV activity involves multiple swap actions in different contracts
of AMMs with different prices for profits.

To characterize DeFi MEV activities, we need to first recog-
nize them according to their DeFi actions. Although existing stud-
ies [2, 18, 70-72, 82, 84, 85, 89] examined DeFi MEV activities and
their DeFi actions, they cannot conduct a systematic study on DeFi
MEV activities in Flashbots bundle because they suffer from two
limitations. First, the majority of them [18, 70-72, 82, 84, 85] focus
on a few DeFi applications and could not be easily extended to cover
other DeFi applications because they rely on considerable manual
efforts to derive the rules for recognizing DeFi actions according
to the specific events emitted by the contracts of DeFi applications
and their arguments (cf. Table 1). Thus, they will miss many DeFi
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Figure 1: Workflow of discovering DeFi MEV activities in
bundles. ACTLIFTER collects the bundles constructed by bun-
dle arbitrageurs and identifies DeFi actions in transactions
of each bundle. Inspecting DeFi actions in each bundle, Act-
CLUSTER facilitates us to discover DeFi MEV activities.
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actions in bundles. Although DeFiRanger [89] intends to address
this limitation by adopting an automated approach to recognize
DeFi actions, it suffers from inaccurate recognition of DeFi actions
as shown in §5.3. Second, none of them can recognize DeFi MEV
activities with unknown patterns of DeFi actions.

To address the aforementioned limitations, we design a new ap-
proach shown in Fig. 1 to discover known and unknown DeFi MEV
activities in bundles. We first collect bundles constructed by bundle
arbitrageurs via querying Flashbots’ APIs [15]. Then, to address the
first limitation, we propose ACTLIFTER (§3), a novel automated tool
for accurately identifying DeFi actions in the transactions of each
bundle. AcTLIFTER first recognizes the contracts that operate the
DeFi actions, the type of the DeFi actions, and the asset transfers
involved in the DeFi actions according to the captured events (§3.3),
then identifies DeFi actions according to the asset transfer patterns
of DeFi actions (§3.4). It is worth noting that only a one-off small
amount of manual effort is needed to collect events that will be
emitted while executing DeFi actions, and we provide scripts to
automate the process as much as possible (§3.2).

To address the second limitation, it is inevitable to involve man-
ual inspection to uncover new DeFi MEV activities. To reduce man-
ual efforts, we propose ACTCLUSTER (§4), a new approach that uses
representation learning [67] to derive distinguishable feature vec-
tors of bundles according to DeFi actions recognized by ACTLIFTER,
and leverages iterative clustering analysis [60] and our pruning
strategies to facilitate us to discover new DeFi MEV activities.

We conduct extensive experiments (§5) to evaluate the perfor-
mance of AcTLIFTER and use ACTCLUSTER to discover DeFi MEV
activities from 6,641,481 bundles (from the launch of the bundle
mechanism on Feb. 11, 2021 to Dec. 1, 2022). More precisely, we
evaluate the effectiveness of ACTLIFTER in identifying ten kinds
of common DeFi actions and compare it with two state-of-the-art
techniques, i.e., Etherscan [2] and DeFiRanger [89]. For a fair and
convincing comparison with ethical consideration, we spent more
than six months in collecting 1,358,122 transactions from Etherscan
to mitigate potential risks or negative effects. We queried one page
of Etherscan per 10 seconds, which is slower than the human click
speed, and manually solved the reCAPTCHA human authentica-
tion. The experimental results show that AcTLIFTER outperforms
existing techniques and achieves nearly 100% precision and recall.
Moreover, we discovered 17 new kinds of DeFi MEV activities and
three known DeFi MEV activities in bundles with the help of AcT-
CLUSTER, which reduced at least 24.2%, 97.8% and 98.8% of manual
efforts than three baseline strategies.

We further demonstrate how our approach (i.e., ACTLIFTER and
AcTCLUSTER) can enhance relays’ MEV countermeasures (§6.1),

Zihao Li et al.

Table 1: Comparison of AcTLIFTER and other methods

Methods SW AL RL LI NM NB LE BO AI RE
Qin et al. [72] v X o x v X X X X X X
Qin et al. [71] X X x v X X X x x X
Wang et al. [84] X X x v X X v v X X
Wang et al. [82] v X X x X X X X X X
Mev-explore [18] v X X v X X X X Xx X
Piet et al. [70] v v v X X X X Xx Xx X
Weintraub et al. [85] v X X v X X X X X X
Etherscan [2] v v v v VAR SEEVARD S ¢
DeFiRanger [89] v v v XX X X x X X
ACTLIFTER |l v v v v v v v v 7 /]

DeFi actions. SW: Swap, AL: AddLiquidity, RL: RemoveLiquidity, LI: Liquidation, NM: NFT-
Minting, NB: NFT-Burning, LE: Leverage, BO: Borrowing, Al: Airdrop, RE: Rebasing.

evaluate forking and reorganization (abbr. reorg) risks caused by

bundle MEV activities (§6.2), and evaluate the impact of bundle MEV

activities on blockchain users’ economic security (§6.3). Moreover,
we discuss three feasible usages of our approach in MEV studies,
supported by our experimental results and observations (§6.4).

In summary, this work makes the following contributions.

o First systematic analysis of DeFi MEV activities in bundles. To our
best knowledge, our work constitutes the first effort toward a
systematic analysis of DeFi MEV activities conducted through
Flashbots bundle mechanism after tackling two limitations.

o Novel approach for identifying DeFi actions. We propose ACTLIFTER,
a novel approach for automatically identifying DeFi actions
from transactions, which outperforms existing techniques and
achieves nearly 100% precision and recall.

o New approach for discovering bundle MEV activities. We propose
AcTCLUSTER, a new approach facilitating us to discover bundle
MEV activities with much less manual efforts. In particular, it
empowers us to discover 17 new kinds of DeFi MEV activities.

o New applications. We demonstrate the usages of our approach (i.e.,
ActLIrTER and AcTCLUSTER), including enhancing relays” MEV
countermeasures, evaluating forking and reorg risks caused by
bundle MEV activities, and evaluating the impact of bundle MEV
activities on blockchain users’ economic security. Additionally,
we discuss three feasible usages of our approach in MEV studies,
supported by our experimental results and observations.

We refer readers to [29] for our full paper version with the appendix.

2 BACKGROUND AND NOTATION

This section introduces DeFi applications and actions, Flashbots
bundle, and the notations used in this paper. For the basic concepts
of smart contracts, events, and ERC20/ERC721 standards, we re-
fer readers to other helpful studies [53, 63, 77]. Besides, the basic
concepts of representation learning can be found in Appendix L

2.1 DeFi Applications and Actions

We focus on ten core DeFi actions of popular DeFi applications
(i.e., AMM, Lending, NFT, and Rebase Token) involved in most
MEYV activities [47, 71, 72, 82, 84, 89, 96—98]. Each Defi action is
represented in the form Cpp;.actionsype(params), where Cper;, action;ype,
and params refer to the smart contract implementing the DeFi action,
the type and the parameters of the DeFi action, respectively.

AMM. It provides functions that allow traders to perform asset ex-
changes over liquidity pools automatically [91]. Traders can supply
or remove their assets with liquidity pools as liquidity providers,
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and pay a fee to liquidity providers when they exchange assets via

an AMM. We focus on three core DeFi actions supported by AMMs:

e A1l: Swap action AMM.Swap(x;: Asset;, xp: Assetz). It performs asset
exchange for a trader, which lets AMM receive x, amount of Asset;
and send out x, amount of Asset,.

o A2: AddLiquidity action AMM.AddLiquidity(x;: Assety, xp: Assely, ..., Xp:
Assety,) (n > 0). It lets AMM receive n assets from a liquidity provider.

o A3: RemOVELiquidity action AMM.RemoveLiquidity(x;: Asset;, x,: Assety, ...,
Xn: Assetn) (n > 0). It lets AMM return n» assets to a liquidity provider.

Lending. It provides loanable assets through collateralized de-

posits [6, 8, 9, 32, 86]. With a collateralized deposit, a borrower

can take loanable crypto assets from Lendings. It uses two kinds
of debt mechanisms [6, 8, 9], i.e., over-collateralization and under-
collateralization, meaning that borrowers can deposit collateral
assets with a higher (resp. lower) value than that of borrowed as-
sets. We focus on three major DeFi actions supported by Lendings:

e A4: Borrowing action Lending.Borrowing(x; : Asset; ). It lets a borrower
loan Asset; from Lending with the over-collateral deposit [84].

e A5: Leverage action Lending.Leverage(x;: Asset;). It lets a borrower
loan Asset; from Lending with the under-collateral deposit [84].

o A6: Liquidation action Lending Liquidation(x, : Assety, xy: Assety). It lets a
trader send the debt Asset; to Lending for repaying the debt asset
and receive the collateral Asset, from the Lending if the negative
price fluctuation of the collateral asset happens [71].

NFT (Non-Fungible Token). It provides unique tokens to repre-

sent someone’s ownership of specific crypto assets, e.g., CryptoKit-

ties, or a physical asset, like an artwork [43]. Most NFT contracts
follow the ERC721 standard [87]. We focus on two major DeFi
actions supported by NFT contracts:

e A7: NFT-Minting action Cpr.NFI-Minting(tokenldy, : Assetcy,,)- It lets
the NFT contract Cypr mint an NFT with the tokenld x;.

e A8: NFT-Burning action Cypr.NFT-Burning(tokenlds, : Assetc,,). It lets
the NFT contract Cyrr burn an NFT with the tokenld x;.

Airdrop. The airdrop is a promotional activity for bootstrapping

a cryptocurrency project by spreading awareness about the cryp-

tocurrency project [80]. A small amount of the cryptocurrency is

sent to active users for free when they retweet the post sent by the
project account. We focus on the following action:

o A9: Airdrop action Cpjygyep-Airdrop(x; : Asset;). It lets the contract
Cairdrop Send out the Asset; .

Rebase Token. Rebase Token follows a continuous rebasing about

the number of tokens in circulation (e.g., total supply in ERC20

standard) [3, 75]. For example, token holders’ balances increase
or decrease automatically according to the token’s price evolution
provided by price oracles [30]. We focus on the following action:

o A10: Rebasing action Cgepasing-Rebasing(). It lets token holders’ bal-
ances in Crepasing cONtract automatically increase or decrease.

2.2 Flashbots bundle

The Flashbots [16] designed the bundle mechanism in 2021. When
transactions broadcast over the P2P network, bundle arbitrageurs
can observe and analyze them, and include them into bundles along
with other transactions. Besides, bundle arbitrageurs can adjust
the order of transactions in bundles. Bundle arbitrageurs then send
bundles to trusted relays privately, such as relays of Flashbots [16],
Eden [13], and BloXroute [11]. The relays distribute bundles to

M ActlLifter

(event,,: action,,.) S-1) track asset S-2) recognize
transfers 1 (_DeFi actions
v

DeFi actions
in i

Bt "}
DeFi actions in transaction
action 1/|action 2| ** Jaction n

Figure 2: Overview of ACTLIFTER.
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connected miners privately. During the distribution, bundles cannot
be observed by other P2P peers, until bundles are included into
blocks. The connected miners will preferentially include the bundles
that are the most profitable to them into the head of their mining
blocks by calculating a bundle pricing formula [16].

Ethereum changed its consensus mechanism from PoW to PoS in
September 2022 [22]. In the context of PoS, validators are selected to
create new blocks and add blocks to the Ethereum blockchain, while
miners do these tasks in the context of PoW. After the Merge, the
Proposer-Builder Separation (PBS) [93] is introduced on Ethereum.
In PBS, the role of validators is divided into builders and proposers.
Specifically, builders create blocks with transactions from their
mempool [77] and proposers submit blocks to the blockchain.

Flashbots proposed MEV-Boost [25] in 2022, which supports bun-
dle mechanism in the context of PBS. In MEV-Boost, bundles are first
propagated from arbitrageurs to builders privately. After creating
blocks with bundles, builders submit blocks to relays privately with
promising payments to proposers. Relays then distribute received
blocks to connected proposers privately, and proposers finally pick
the block with the most payments to submit to the blockchain. Cur-
rently, Flashbots [16], Eden [13], and BloXroute [11] maintain their
builders and relays based on MEV-Boost. Besides, 68% of Ethereum
blocks are created and relayed by MEV-Boost [25] from the start-
ing date of MEV-Boost (Sep. 2022) to Jan. 2023 [26], and 77% of
MEV-Boost blocks (i.e., blocks that are created and relayed by MEV-
Boost) are from Flashbots [23]. Our studies shed light on DeFi MEV
activities in bundles, since in both the context of PoW and PoS: i)
arbitrageurs construct bundles, ii) bundles are relayed from arbi-
trageurs to validators/miners privately, and iii) validators/miners
submit the most profitable bundles to them into the blockchain.

2.3 Notation

DeFi action. It, denoted as A, represents an interaction between a
trader and a function provided by DeFi applications. We focus on
ten kinds of DeFi actions (A1-10 in §2.1).

DeFi actions in a transaction. A transaction can trigger the execu-
tion of multiple contracts, by invoking their functions via internal
transactions. Hence, multiple DeFi actions can be operated in a
transaction. We use A to denote a sequence of n (n > 0) DeFi actions
operated in a transaction, where A = [A;, A, .., A,]. Note that these
DeFi actions will be executed one by one in the order.

DeFi actions in a bundle. A bundle includes a sequence of m (m >
0) transactions, each of which can be signed by different accounts.
These transactions will be executed one by one in the order. We use
B =[Ay, Ay, .., A, ] to denote all the DeFi actions involved in a bundle.
Asset transfer. Since DeFi actions involve one or more asset trans-
fers according to their definitions [32, 75, 80, 84, 91], to identify
DeFi actions, we need to recognize asset transfers and match them
against asset transfer patterns of DeFi actions. We denote an asset
transfer as Asset.Transfer(From, To, Value), which means From transfers
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Figure 3: AcTLIFTER identifies a Swap action in a transaction.

Value amount of Asset to To, and we consider Asset, From, To, and Value
are parameters of asset transfers. We consider two kinds of assets,
i.e., crypto token and ETH, and distinguish them by the subscript
of Asset. For example, Assetgy,, refers to the ETH asset and Assetc
refers to the token asset maintained by the contract ¢. We focus on
ERC20 and ERC721 token assets, and our approach can be easily
extended to other token assets by recognizing asset transfers from
their standard events. We denote ERC721 token minting/burning
as Asset?l.Minting/Burning(From, To, Value), meaning that the contract ¢
mints/burns an NFT of Assetzm with the tokenld Value. With them,
we can recognize the NFT-Minting and NFT-Burning actions.
Execution trace of a transaction. It refers to a sequence of states
and opcodes executed in a transaction, denoted as ( (opo, o), (0p1, 1), s
(opn> sn) ). Each state s; is in the form of ( Stack;, Memory; ), where Stack;
and Memory; are the stack [88] variables and memory [88] variables,
respectively. The opcode op; is defined in [88]. For each opcode op;,
the state s; represents the execution environment [88] of op;, and
the state s;,; denotes the state after executing op;.

3 ACTLIFTER

3.1 Overview

As shown in Fig. 2, ACTLIFTER takes in transaction execution trace
and the mapping M between the signature of events and the type of
DeFi actions, which is constructed by a semi-automated preparation
process (§3.2), and then determines DeFi actions (A1-10 in §2.1) in
the transaction by two steps.

e S-1 (§3.3) It first locates the emitted events in the execution
trace whose signatures are in M. For each event, it outputs: i) the
contract that conducts the DeFi action and emits the event, ii)
the corresponding type of the DeFi action in M, and iii) the asset
transfers involved in the DeFi action.

® S-2 (§3.4) Given the information of each event (i.e., the contract,
the type of DeFi action, and the asset transfers), it recognizes the
corresponding DeFi action according to the asset transfer patterns
(§3.4) and outputs them.

Motivating example. Fig. 3 shows how AcTLIFTER identifies a
Swap action in a transaction, where there are four asset trans-
fers (i.e., D, @, ®), and (®), and the AMM 0x69d9 emits an event
Swap (500,187, 14,082.22) in @).

In S-1, AcTLIFTER first locates the event Swap (500,187, 14,082.22)
emitted in @ whose signature is in M, and then recognizes i) the
contract 0x69d9 since it emits the event in @), ii) the type of DeFi
action (i.e., Swap), and iii) the four asset transfers (i.e., @, @, @,
and (9) since their parameters are logged in the event, i.e., 500,187
and 14082.22. The outputs of S-1 are [(0x69d9, Swap, [D, @, ®, ®])]. In §-2,
ACTLIFTER recognizes the Swap action 0x69d9.Swap(500,187: HEX, 14082.22:
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Algorithm 1: S-1

Input: £, transaction execution trace

Input: M, mapping between the event signatures and the type of DeFi actions

Output: [(C, actiontype, assetTransfers)], C operates a DeFi action, actiontype is the DeFi
action’s type, and assetTransfers are asset transfers involved in the DeFi action

1 output « []

2 events = ParseEvents(t)

3 for event; € events do

4 if event,-sig € M then

5 C; = GetContract(event;, t)

6

7

8

9

actiontypei = GetActionType(eventisig, M)
assetTransfers; = GetAssetTransfers(event;, t)
output.append((Cj, actiongype,, assetTransfers;))
return output

10 Function GetAssetTransfers(event;, t):

1 retAssetTransfers « []

12 assetTransfersinTrace = GetAllAssetTransfers(t)
13 for assetTransferj € assetTransfersinTrace do

14 if IsLogged(assetTransferj,eventi, t) then

15 |  retAssetTransfers.append(asset Transfer))
16 return retAssetTransfers

UsDC) in the transaction according to the asset transfer patterns
of Swap action (§3.4) (i.e., the contract 0x69d9, which operates the
Swap action, receives HEX in () and sends out USDC in ©).
DeFiRanger [89] will report a false Swap action by pairing asset
transfers in @ and (3, because it only matches the first two asset
transfers that satisfy the criteria defined in [89], i.e., one account
receives and sends out different assets in two asset transfers.

3.2 Preparation

The majority of existing studies [18, 70-72, 82, 84] use specific
events to recognize DeFi actions, because smart contracts use events
to notify others (e.g., users, third-party tools) about their execution
(e.g., state changes) [94]. Motivated by these studies, we construct
a mapping M from the events to the corresponding type of DeFi ac-
tions by leveraging the event information from developers, which
is scattered in different places, such as each DeFi’s official web-
site, document, or source codes. We first develop a tool to collect
the descriptions of events or the code snippets and comments of
events from the websites of popular DeFi applications listed in
DeFiPulse [12] and Dapp.com [7]. Then, we manually confirm the
results to construct the mapping M.

More precisely, if a DeFi application provides documents, we
summarize the document template to extract the descriptions of
events in its documents. Our tool also checks whether the extracted
event indeed exists in the source codes of the DeFi. If a DeFi applica-
tion does not provide documents, our tool inspects its source code
to extract code snippets that define events (i.e., the keyword event
representing the start of an event definition, the event’s name, and
the definition of the event’s parameters) in Solidity or Vyper, the
comments of events, and functions that emit events.

Two authors read the information of extracted events indepen-
dently to determine whether the events correspond to DeFi actions
(Appendix A uses two examples to illustrate how we determine the
results.). After analyzing the collected information, they discuss
and adjust results with the help of a third author to resolve conflicts
for the sake of minimizing the impacts of human subjectivity.

The whole procedure of manual analysis cost around 18 hours.
We collect 32 and 56 events from the descriptions of events and
the code snippets, and the comments of events, respectively. Specif-
ically, we collect 37, 9, 12, 8, 3, 8, 7, and 4 different events for
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Table 2: Conditions of asset transfers

Table 3: Asset transfer patterns of ten DeFi actions

Conditions

¢1: From.CALL(To, Value) [ TX(From, To, Value)
¢z: (Value # 0) A (From # To)

Asset transfer type ‘

Ether transfer

Assetgher. Transfer(From, To, Value)
c1: C.Event(Transfer(From,To,Value))
c2: From & (0x00...00, C) A To & (0x00...00, C) A (Value # 0) A (From # To)
Token transfer

Assetc.Transfer(From, To, Value)
c1: C.Event(Transfer(From,To,Value))
cp: From € (0x00...00, C) A To & (0x00...00, C) A (C |= ERC721 standard)

AssetzZI,Minting(Frum, To, Value)
c1: C.Event(Transfer(From,To,Value))
¢z From ¢ (0x00...00, C) A To € (0x00...00, C) A (C |= ERC721 standard)

ERC721 token minting

ERC721 token burning

Asset7c21 .Burning(From, To, Value)

Swap, AddLiquidity, RemoveLiquidity, Liquidation, Leverage, Bor-
rowing, Airdrop, and Rebasing actions, respectively. Besides, we
leverage the standard Transfer event in ERC20 [45] to recognize
NFT-Minting and NFT-Burning actions, since the widely used con-
tract templates for NFT (e.g., OpenZeppelin [5] and chiru-labs [4])
emit the Transfer event during NFT minting and burning.

We further investigate the events in M to estimate how much
manual work we reduce compared to existing studies [18, 70-72, 82,
84]. To our best knowledge, previous studies conduct three steps to
derive rules for recognizing DeFi actions: i) find out specific events
that correspond to DeFi actions. ii) summarize how to recognize
DeFi actions from the arguments of the events. iii) find out extra
information (e.g., other events or storage variables) to assist in
recognizing DeFi actions if they fail in the ii) step. For the 88 events
in M, we find that 41 events can be used to recognize DeFi actions
according to the ii) step, and 47 events need extra manual work at
the iii) step. Compared to the previous studies, we only need to find
out the specific events that correspond to DeFi actions, and obviate
the need of the manual efforts for the last two steps.

3.3 StepS-1

Algorithm 1 presents the process of step S-1. Taking in transaction
execution trace and M, AcTLIFTER first locates the emitted events
whose signatures are in M. Then, for each event, ACTLIFTER identi-
fies and outputs the information of the corresponding DeFi action,
including Cper;, actionype, and params (A1-10 in §2.1).

More precisely, ACTLIFTER locates all emitted events in the trace
(Line 2) by retrieving the signature and parameters of events from
the execution state (i.e., Stack and Memory) of the opcodes used to log
events, i.e., L0G0-4 [14], and only keeps the events whose signatures
are in M (Line 3 and 4). ACTLIFTER also records the contracts that
log these events in the trace [14, 38, 39, 51, 58] (Line 5) and obtains
the type of the corresponding DeFi actions from M (Line 6).

Since param of a DeFi action is summarized from asset transfers in-
volved in the DeFi action, ACTLIFTER tracks asset transfers that are
logged by the events through the function GetAssetTransfers (Line
7). These asset transfers will be used to recognize DeFi actions in
S-2. We focus on recognizing four kinds of asset transfers described
in §2.3, namely Ether transfer, token transfer, and ERC721 token
minting/burning. Specifically, Ether can be transferred in two ways:
i) the sender is a smart contract and executes the CALL opcode [88]
by setting the recipient and the amount of transferred Ether as its
parameters in the stack, ii) the sender is an externally-owned account
(EOA) [42] and signs a transaction with setting the recipient and the
amount of transferred Ether as its parameters. Moreover, if a token

DeFi action type Asset transfer patterns
s Assety . Transfer(_,Cperi,x1) A Assety. Transfer(Cpep;,_.x2)
wap
Cperi-Swap(x, :Assety, xy:Assety)
o Assety . Transfer(_,Cperix1) A Assety. Transfer(_,Cperixz) A ... A Assety Transfer(_,CpeFisn)
AddLiquidity
Cperi-AddLiquidity(x, :Assety, x:Assety, .., xp:Asset)
C | Assety.Transfer(Cpep;,_x1) A Assety Transfer(Cpepi,_x2) A ... A Assety Transfer(Cpgpis_xn)
RemoveLiquidity
CpeFi-RemoveLiquidity(x; :Assety, Xp:Assety, ..., Xp :Assely )
Assety Transfer(Cpygi,_x1)
Leverage —
Cperi.Leverage(x; : Assety)
. Assety . Transfer(Cp,p;,_x1)
Borrowing S —
Cperi-Borrowing(x, : Asset; )
o Assety.Transfer(_, Cperi.x1) A Assety. Transfer(Cpop;._, x2)
Liquidation
Cperi.Liquidation(x, :Assety, x3:Assety)
Asset2!  Minting(_, _, x1)
L DeFi
NFT-Minting
Cperi-NFT-Minting(tokenldy, : AssetCpy, ;)
Assetl?!  Burning(_, _, x1)
. DeFi
NFT-Burning
Cperi-NFT-Burning(tokenldy, : Assetc,r.)
_ Assety Transfer(Cper_x1)
Airdrop R T Y
Cperi-Airdrop(x; : Assety )
Rebasing e
Cperi.Rebasing()

transfer, or an ERC721 token minting/burning occurs, an ERC20
standard Transfer event [45] will be emitted with the parameters
of the sender, the recipient, and the amount of transferred token
or the tokenld of minted/burnt ERC721 token, according to the
specification of ERC20 standard [45] and the widely used contract
templates for ERC721 (e.g., OpenZeppelin [5] and chiru-labs [4]).

We summarize two conditions (i.e., ¢; and ¢,) for identifying each

kind of asset transfer. ¢; checks whether an asset transfer occurs,
e.g., a sender transfers Ether to a recipient, or a Transfer event is
emitted. However, asset transfers, which do not trigger the actual
transfer of assets between the sender and the recipient, can pass
the check of ¢, (e.g., the transferred amount of asset is zero). Thus,
we use ¢, to filter out such asset transfers. Table 2 lists the four
types of asset transfers and their ¢, and ¢,, which are elaborated as
follows. Due to the page limit, we describe how we recognize Ether
transfers as follows, and introduce the rest in Appendix B.
o Ether transfer. In an Ether transfer Assetgspe,. Transfer(From, To, Value),
From sends Value amount of ETH to To. Hence, ¢; checks whether an
Ether transfer occurs in any of the two cases: i) From is a contract
and executes a CALL to transfer Value amount of Ether to 7o (ie.,
From.CALL(To, Value)), ii) From is an EOA account and signs a transaction
to send Value amount of Ether to To (i.e., TX(From, To, Value)). An Ether
transfer should also satisfy both requirements in ¢;: i) From and To
are different accounts (i.e., From # To), and ii) the transferred amount
Value is non-zero (i.e., Value # 0). Note that there is no actual transfer
of Ether between From and To if any requirement is violated.

For all asset transfers identified from the trace, we check whether
they are logged by events (Line 12-14). Specifically, we check whether
the event’s parameters contain the asset transfer’s parameters, since
an event takes parameters of an asset transfer as its parameters to
log the asset transfer. Asset transfers include four parameters, i.e.,
Asset, From, To, and Value. To check the first three parameters which
are of the address type [27, 37, 95], we determine whether there are
parameters of address type in the event, and values of the parame-
ters are the same as the first three parameters of the asset transfer.
The Value parameter denotes the amount of transferred asset, and
its type is a 256-bit unsigned integer [45, 88]. Since an event can
convert Value to another type (e.g., signed integers [27]) and use the



Algorithm 2: S-2

Input: [(C, actiontype. assetTransfers)], C operates a DeFi action, actiontype is the DeFi
action’s type, and assetTransfers are asset transfers involved in the DeFi action
Output: A, DeFi actions in a transaction
1 AeJ]
2 for (Cy, actionype,, assetTransfers;) € [(C, actiontype, assetTransfers)] do
3 A« null

4 if actiontype; € ("AddLiquidity", "RemoveLiquidity") then

5 ‘ A = GetActionOfNAssetTransfers(Cj, actiongype,. assetTransfers;)

6 else if actiontypei € ("Swap", "Liquidation") then

7 ‘ A = GetActionOf TwoAssetTransfers(Cj, actioniype;, assetTransfers;)
8 else if actiumypei € ("Rebasing") then

9 ‘ A = GetActionOfNullAssetTransfer(Cj, actiontype,, assetTransfers)
10 else

‘ A = GetActionOfOneAssetTransfer(C;, actiongype,. assetTransfers;)
12 if A # null then

13 | A.append(A)

14 return A

converted one as its parameter, we also check whether absolute
values of parameters in the event are the same as Value’s value.

3.4 StepS-2

Given the information (i.e., the contract that executes a DeFi ac-
tion, the DeFi action’s type, and asset transfers involved in the
DeFi action) collected in S-1, AcTLIFTER determines DeFi actions
according to their asset transfer patterns in S-2. Table 3 summa-
rizes asset transfer patterns of ten DeFi actions according to their
definitions [32, 75, 80, 84, 91]. We explain them and describe how
AcTLIFTER leverages patterns to recognize DeFi actions as follows.
e Swap. It involves two asset transfers in the transaction, where
the Cp,r; receives x; amount of asset Asset;, and sends out x, amount
of another asset Asset,.
o AddLiquidity/RemoveLiquidity. It involves » asset transfers in
the transaction. For each asset transfer, Cp.r receives (resp. sends
out) a different kind of asset Asset;, whose amount is x;.
o Leverage/Borrowing. It involves one asset transfer, where Cp.r;
sends out x; amount of Asset;.
o Liquidation. It involves two asset transfers in the transaction,
where the Cp.r; receives x; amount of Asser;, and sends out x, amount
of a different asset Asset,.
o NFT-Minting/NFT-Burning. It involves an ERC721 token mint-
ing (resp. burning), where Cp,r; mints (resp. burns) an NFT with the
tokenld x;.
e Airdrop. It involves one asset transfer, where Cp,r; sends out x;
amount of Asset;.
o Rebasing. Since no asset transfer is involved in the Rebasing
action, for the contract Cp,p that conducts the Rebasing action, we
check whether Cp,r; is an ERC20 or ERC721 token contract.
Algorithm 2 presents the process of S-2. ACTLIFTER takes in
a list of C, action;ype, and assetTransfers, and then recognizes the DeFi
action (Line 4-11) according to the asset transfer patterns in Table 3.
Finally, it outputs the recognized DeFi actions in a transaction (Line
14). Since different kinds of DeFi actions involve different numbers
of asset transfers, we divide them into four categories as follows.
First, for AddLiquidity and RemoveLiquidity actions that require
n asset transfers, we pick n asset transfers in a greedy fashion from
aTs; that match the patterns to recognize them (Line 6). Second, for
Swap and Liquidation actions that require two asset transfers, we
pick the first two asset transfers from aTs; that match the patterns
to recognize them (Line 8). Third, since Rebasing action does not

Zihao Li et al.

i) Bundle representation learning ii) Iterative bundle clustering

1st round 2ndround - 1st round 2nd round
/ N\
> Y &H o \
fo} [}
o0 @ % @ |
o)
Cbog o \% o]
Supervised p
learning
1
Feature representation

New DeFi MEV
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, activities

N

Feature extraction

Max pooling| |
A=y
__Bundle matrices
ActCluster
T il
DeFi actions DeFi MEV activities
in bundles in bundles

Figure 4: Overview of ACTCLUSTER

require asset transfers, for contract Cp.r that conducts the Rebas-
ing action, we check whether Cp,.r implements standard functions
defined in ERC20 or ERC721 [48]. Fourth, for the other five DeFi ac-
tions that require one asset transfer, we pick the first asset transfer
from aTs; that matches the patterns to recognize them (Line 12).

4 ACTCLUSTER

AcTCLUSTER aims at facilitating analysts to discover DeFi MEV
activities in bundles, especially the unknown ones, by analyzing
the semantic features involved in the sequences of DeFi actions
identified by AcTLIFTER. As shown in Fig. 4, it consists of two steps,
i.e., i) bundle representation learning (§4.1), which maps the raw
bundles to their feature vectors in a low-dimensional feature space,
and ii) iterative bundle clustering (§4.2), which discovers new kinds
of DeFi MEV activities via iteratively clustering feature vectors
of bundles. We repeat the two steps by conducting representation
learning with newly discovered DeFi MEV activities in the first step
and conducting the iterative clustering analysis in the second step,
until we cannot find new DeFi MEV activities.

The design rationale of AcTCLUSTER is fourfold. First, manual
efforts in inspecting DeFi actions in bundles are required to discover
new DeFi MEV activities. We cluster bundles with similar activities
to minimize the manual work. Second, there is a dilemma in the set-
ting of clustering granularity. Specifically, bigger but sparse clusters
may mix bundles containing different DeFi MEV activities together,
whereas smaller but denser clusters increase manual efforts in in-
specting bundles sampled from each cluster. We leverage iterative
clustering analysis [60] to address the dilemma, i.e., i) it gradually
improves the clustering granularity to facilitate the discovery of
relatively rare DeFi MEV activities. Besides, ii) it reduces the num-
ber of clusters that need to be manually inspected through bundle
pruning, which iteratively excludes bundles containing known and
discovered DeFi MEV activities from the bundle dataset.

Third, conventional clustering algorithms cannot be directly ap-
plied to raw bundles due to bundles’ heterogeneous format and
hierarchical data structure. To tackle this problem, we employ rep-
resentation learning [35] to automatically extract distinguishable
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features from raw bundles with the knowledge of all known and
discovered DeFi MEV activities. Unlike feature engineering, which
requires rich domain-specific knowledge, representation learning is
fully data-driven and task-oriented, obviating considerable manual
efforts for data study. Fourth, in the first round, we conduct the
representation learning with three known MEV labels collected
from existing studies. Inspired by previous studies [90, 100] that
improve model training’s efficiency and performance by scaling up
labels and iteratively training with dynamical label updating, after
each round, we extend new DeFi MEV activities to MEV labels and
conduct the representation learning to improve its representation
capabilities for DeFi MEV activities in bundles.

4.1 Bundle representation learning

We map bundles to low-dimensional feature vectors, based on which
the dissimilarity between two bundles can be quantified by the
distance between their feature vectors and thus clustering analysis
of bundles can be reasonably conducted.

Bundle Formatting. Raw bundles are in a heterogeneous format
since a bundle contains a variable number of transactions, each of
which contains a variable number of DeFi actions. To facilitate the
feature extraction, we express raw bundles in a unified format, i.e., a
bundle matrix with a fixed shape, because bundles in the format can
be directly processed by convolutional neural network (CNN) [50]
in an end-to-end fashion. Considering that bundles are organized in
a hierarchical structure, we construct a bundle matrix in a bottom-
up manner. Specifically, we first standardize the description of DeFi
actions as ten types of parameterized action blocks, corresponding
to each kind of DeFi action (A1-10 in §2.3). As shown in Fig. 5,
each DeFi action in a transaction will be expressed as an action
block, acting as a basic element to describe this transaction. Sequen-
tially concatenating action blocks corresponding to all DeFi actions
within a transaction yields the transaction block that expresses this
transaction. Recall that bundle is essentially a bunch of transactions.
We construct the bundle matrix to express a bundle by combining
transaction blocks corresponding to all transactions within it. We
elaborate more on their constructions in Appendix F.

Feature extraction. We extract features from bundle matrices
by taking advantage of a CNN. The reasons for choosing CNN
are threefold: i) a bundle can be regarded as a time series because
transactions within it are ordered. The temporal patterns involved
in a bundle have been characterized as spatial patterns in our matrix
representation of bundles. Thus, our task is suitable for CNN, which
is known to be effective and efficient in extracting features from
spatial patterns [50]. ii) typical time series analysis models are not
suitable for our tasks. First, transactions cannot be represented as
tokens as the input of typical models (e.g., Bert and Transformer).
Second, transactions consisting of various actions and parameters
are difficult to be compactly represented as feature vectors with
fixed size as the input of RNN and its variants (e.g., LSTM and GRU)
without information loss. iii) CNN processes data in parallel and
thus is efficient, e.g., CNN-based models even achieve state-of-the-
art performance in traffic analysis tasks [76], where samples are
represented as time series. As shown in Fig. 4, feature extraction is
implemented using stacked blocks consisting of a 2D CNN layer, a
dropout layer, and a max pooling layer. Such a network structure

facilitates feature extraction because i) the 2D CNN layer with
learnable kernels automatically captures informative features to
construct feature maps, ii) the dropout layer reduces the overfitting
risk, and iii) the max pooling layer downsamples feature maps to
highlight the most important feature. The input is a bundle matrix,
and the outputs are feature maps extracted by the last block.
Feature representation. To represent a bundle in a low-dimensional
feature space, we flatten its feature maps obtained via feature extrac-
tion and process them with three stacked fully connected (FC) layers.
The output of the last fully connected layer is the low-dimensional
feature vector of this bundle. Models for feature extraction and fea-
ture representation are trained by leveraging supervised learning
with the aid of all known MEV labels. Specifically, we construct a
multi-label classifier based on multilayer perceptron (MLP) [74] to
classify bundles in the feature space. We construct the initial MEV
labels by collecting three types of MEV DeFi activities from exist-
ing studies [47, 72, 82, 98], i.e., Sandwich Attack, Cyclic Arbitrage,
and Liquidation. After we discover new DeFi MEV activities in the
clustering analysis of each round, we extend our MEV labels with
them. MLP predicts the presence/absence of each label for a bundle.
Specifically, 1 (resp. 0) indicates the presence (resp. absence) of a
label. We specify the output layer of MLP as a sigmoid layer so
that outputs are normalized in the range of (0, 1). We choose Mean
Square Error (MSE) loss [79] to quantify the prediction error of MLP.
MLP and models for feature extraction and feature representation
are jointly trained by minimizing the MSE loss.

4.2 Iterative bundle clustering

Given the feature vectors of bundles, we characterize the dissim-
ilarity between bundles with the distance between their feature
vectors to facilitate the discovery of new DeFi MEV activities via
bundle clustering. We test five candidate clustering algorithms, in-
cluding hierarchical clustering [92], DBSCAN [92], K-means [92],
Mean Shift [92], and Birch clustering [92], and finally cherry-pick
DBSCAN for two reasons. First, it is more efficient than other al-
gorithms in handling large-scale datasets in our problem. Second,
DBSCAN does not need a pre-specified number of clusters.
DBSCAN is a density-based clustering algorithm. Its parameter
€ (i.e., the maximum distance between two samples for one to be
considered as the other’s neighborhood [92].) adjusts the lower
bound of cluster density. A larger € leads to bigger but sparse clus-
ters, where bundles corresponding to various DeFi MEV activities
may be mixed together. By contrast, a smaller € results in smaller
but denser clusters, enabling more fine-grained clustering analysis
in favor of distinguishing different DeFi MEV activities. However,
a side-effect is it substantially increases manual efforts because a
smaller € yields more clusters and we need to manually inspect
them to verify whether they contain unseen DeFi MEV activities. To
address the dilemma, we leverage the iterative clustering analysis
by conducting the following steps after representation learning in
each round until we cannot discover new DeFi MEV activities:
- I Filter out bundles that only contain DeFi actions that can make
up known and discovered DeFi MEV activities.
- I. Group bundles into clusters based on DBSCAN.
- III. Discover new DeFi MEV activities by sampling one bundle from
each cluster and manually inspecting them to determine whether
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their DeFi MEV activities are new. To avoid individual bias, we
involve three authors to jointly make a decision, achieving a con-
sensus on whether a DeFi MEV activity is new.

- IV. Reduce the parameter € by multiplying it by a decay factor
n = 0.5 to improve the resolution of clustering analysis.

Note that the number of bundles for clustering analysis decreases
in iterations since bundles associated with discovered DeFi MEV ac-
tivities are gradually filtered out. Besides, we reduce the parameter
€ of DBSCAN in iterations yielding smaller but denser clusters. It en-
ables us to conduct fine-grained clustering analysis for discovering
bundles containing unknown DeFi MEV activities.

5 EVALUATION

We implement AcTLIFTER and ACTCLUSTER in 7,832 lines of Python
code, maintain an archive Ethereum node, and conduct experiments
on a server with an Intel Xeon W-1290 CPU (3.2 GHz, 10 cores),
and 128 GB memory to answer four research questions. RQ1: How
is the performance of ACTLIFTER in identifying DeFi actions? RQ2:
Does AcTLIFTER outperform existing techniques with respect to
identifying DeFi actions? RQ3: How many kinds of new DeFi MEV
activities does AcTCLUSTER discover? RQ4: Does ACTCLUSTER
outperform other methods in reducing manual efforts?

5.1 Data collection

Trace collection. We invoke the debug.traceTransaction() [1]
API of our archive Ethereum node (which is synchronized to the
latest state) to get the transaction execution traces for ACTLIFTER.
Bundle collection. Since AcTCLUSTER needs the DeFi actions
identified by AcTLIFTER in each bundle, we collect bundles and
their transactions by querying the web API [15] provided by the
Flashbots [16], which displays all bundles and transactions in each
bundle mined in Ethereum and relayed by Flashbots. By download-
ing all bundles from the starting date of bundle mechanism (i.e., Feb.
11, 2021) to Dec. 1, 2022, we collect 6,641,481 bundles and 26,740,394
transactions in total and form a dataset denoted by Dg,,qp-

5.2 RQ1: Performance of ACTLIFTER

In S-1 (§3.3), after locating emitted events in M, ACTLIFTER recog-
nizes asset transfers involved in DeFi actions, if the asset transfers
are logged by the events. Specifically, if an event’s parameters con-
tain an asset transfer’s parameters, ACTLIFTER confirms that the
asset transfer is logged by the event. There are four parameters (i.e.,
Asset, From, To, and Value) in each asset transfer. Hence, ACTLIFTER can
choose a different number of parameters (e.g., the Value parameter or
all four parameters) of an asset transfer and determine whether the
parameters are in the event’s parameters. We evaluate ACTLIFTER
in terms of identifying DeFi actions with the following three con-
figurations and manually determine the number of true positives
(TP: a DeFi action is successfully identified), false positives (FP: a
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non-DeFi action is reported by mistake), and false negatives (FN: a
DeFi action is missed) due to the lack of dataset with ground-truth.

e c1. ACTLIFTER chooses Value of each asset transfer and confirms
whether the Value is in the event’s parameters.

e 2. ACTLIFTER chooses Value and Asset of each asset transfer, and
confirms whether they are both in the event’s parameters.

e 3. ACTLIFTER chooses all four parameters of each asset transfer,
and confirms whether they are all in the event’s parameters.

We also compute the precision, recall, and f-score [68]. Since
the number of transactions in Dg,,q is too large (> 10 million), we
sample 1,358,122 transactions from Dg,,q. for manual inspection
and form a dataset denoted by Drygps. To reduce unnecessary manual
efforts and mitigate the potential negative effect of human subjec-
tivity on determining TP/FP/EN, we first de-duplicate transactions
having the same execution traces, because ACTLIFTER will output
identical results for them. Since the number of transactions after
the trace-based de-duplication is still large (> 400,000), we further
de-duplicate transactions having the same emitted event sequences
(we will evaluate whether such de-duplication will cause errors in
the following.). After the event-based de-duplication, 41,090 trans-
actions are left for manual checking. Then, six authors manually
check these 41,090 transactions. Once we get the TP/FP/FN results
for a transaction, all de-duplicated transactions corresponding to
this transaction have the same TP/FP/FN results.

Since manual inspection is labor-intensive and might cause er-
rors, we conduct experiments to evaluate the quality of our TP/F-
P/FN results. First, we assess the performance of deduplication and
provide the confidence level of our results. We randomly sample
1000 de-duplicated transactions from the 41,090 transactions, and
find that all 1,000 transactions can be de-duplicated. Note that in
relation to the total population (> 1 million), our sample size has a
confidence interval of less than 0.27%, with 99.9% confidence. Sec-
ond, we compute two statistical measures (i.e., Fleiss’ Kappa [56]
and Krippendorff’s Alpha [57]) to assess whether our TP/FP/FN re-
sults from different authors reach a consensus. We randomly sample
500 transactions from the 41,090 transactions, and ask all six authors
to report their own results. Then, we compute the Fleiss’ Kappa
and Krippendorft’s Alpha to assess the reliability of their manual
results. The results are 0.9884 and 0.9948, respectively, showing
that six authors come to an almost perfect agreement.

Table 4 shows the performance of ACTLIFTER in identifying ten
DeFi actions with different configurations. The third column lists
the number of identified DeFi actions for each DeFi action. The
fourth - ninth columns list the number of TPs, FPs, and FNs, and the
values of precision, recall, and f-score for each DeFi action. It shows
that ACTLIFTER.; (i.e., ACTLIFTER with the c1 configuration) can ef-
fectively identify DeFi actions with nearly 100% precision and recall.
However, ACTLIFTER. misses 27,897 Swap actions. Manual inves-
tigation reveals that traders can receive assets from AMMs at zero
cost, hence there is only one asset transfer in the transaction. Since
AcTLIFTER identifies a Swap action by matching two asset transfers
(§3.4), ACTLIFTER.; cannot recognize the two asset transfers in
transactions, and misses identifying the 27,897 Swap actions in S-2
(§3.4). Such cases count for only 1.26% (27,897/(27,897+2,191,810))
of all DeFi actions, and ACTLIFTER.; can achieve a 98.74% recall
rate. Fig. 6 shows an example, where trader 0x777d invokes swap()
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Table 4: Performance metrics of ACTLIFTER in identifying
DeFi actions with different configurations

Table 5: Performance metrics of Etherscan, DeFiRanger, and
EVENTLIFTER in identifying DeFi actions

[ DeFiaction type | Techniques #Identified  #TP  #FP _ #FN _ Precision Recall F-score DeFi action type | Techniques  # Identified  # TP # TP #FN__ Precision Recall F-score
ACTLIFTER;1 2,156,198 2,156,198 0 27,897 100%  98.72% 99.36% Etherscan 1,983,869 1,983,869 0 200,226 100%  90.83% 95.20%
Swap AcTLIFTER;; 102,285 102,285 0 2,081,810  100%  4.68%  8.95% Swap DeFiRanger 1,760,236 1,356,586 403,650 827,509  77.07%  62.11% 68.79%
ACTLIFTER;3 58,978 58978 0 2125117  100%  270%  5.26% EventLIFTER 102,285 102,285 0 2081810  100%  468%  9.16%
ACTLIFTER¢1 8,056 8,056 0 0 100% 100%  100% Etherscan 4,964 4,964 0 3,092 100%  61.62% 76.25%
AddLiquidity ACTLIFTER2 45 45 0 8011 100%  056%  1.11% AddLiquidity DeFiRanger 24,234 4116 20,118 7,237 16.98%  36.25% 23.13%
ACTLIFTER.3 45 45 0 8011 100% 0.56% 1.11% EVENTLIFTER 45 45 0 8,011 100% 0.56% 1.11%
ACTLIFTER.| 6,839 6,839 0 0 100% 100% 100% Etherscan 2,629 2,629 0 4,210 100% 38.44%  55.53%
RemoveLiquidity | ACTLIFTERc; 1,198 1,198 0 5,641 100% 17,52% 29.81% RemoveLiquidity | DeFiRanger 12,289 1,143 11,146 8,270 9.3% 12.14% 10.53%
ACTLIFTERc3 1,198 1,198 0 5,641 100%  17.52% 29.81% EvenTLIFTER 1,198 1,198 [ 5,641 100%  17.52%  29.81%
ACTLIFTER¢1 1,635 1,635 0 0 100% 100% 100% Etherscan 527 527 0 1,108 100% 32.23% 48.75%
Liquidation ACTLIFTER2 496 496 0 1,139 100%  30.34%  46.56% Liquidation DeFiRanger o o - - - - -
ACTLIFTER3 496 496 0 1,139 100% 3034%  46.55% EVENTLIFTER 496 496 0 1,139 100% 30.34%  46.55%
AcTLIFTERe 16,795 1679 0 o 100% 100%  100% Etherscan 12,532 12,532 0 4,263 100%  74.62% 85.46%
NFT-Minting ACTLIFTER;; 16,795 16795 0 100%  100%  100% NFT-Minting DeFiRanger - - - - - - -
ACILIFTERgs 16,795 16795 0 0 100% 100%  100% EVENTLIFTER - - - - - - -
YT TrTERE 1,308 1,308 3 7 007 U007 ) Etherscan 1,190 1,190 [ 118 100%  90.98%  95.28%
NFT-Burning ACTLIFTER 1,308 1,308 0 0 100% 100%  100% NFT-Burning DeFiRanger N N N N - - -
ACTLIFTERc3 1,308 1,308 0 0 100%  100%  100% EvENILIETER . . . . . : :
ACTLIFTERc] 34 34 0 0 100% 100%  100% Leverage DE:;:;::
Leverage ACTLIFTER.2 33 33 0 1 100% 97.06% 98.51% EVENTLIFTER 33 33 0 1 100% 97.06% 98.51%
AT 33 53 g L 1007 BR07-067 M08 51% Etherscan 141 141 0 543 100%  2061% 34.18%
ACTLIFTER1 684 684 0 0 100% 100%  100% R D : _ ) | ) _ .
. g g
Borrowing ACTLIFTER; 191 191 0 493 100%  27.92%  43.66% P ————— o . @ 53 OB T R
ACTLIFTER¢3 191 191 0 493 100% 27.92% 43.66% TG » = = T n » "
ACTLIFTER.| 246 246 0 0 100% 100% 100% Airdrop DeFiRanger - - - - - - -
Airdrop ACTLIFTERc 40 40 0 206 100% 16.26% 27.97% EVENTLIFTER 40 40 0 206 100% 16.26% 27.97%
ACTLIFTER3 40 10 0 206 100%  16.26%  27.97% Etherscan . . . N = =
) ACTLIFTERc 15 15 0 0 100% 100%  100% Rebasing DeFiRanger i B B B . B B
Rebasing ACTLIFTER 2 15 15 0 0 100% 100%  100% e 15 15 0 0 100%  100%  100%
ACTIIFTERcs L L 0 0 100% 1007%  100% Etherscan 2,005,852 2,005852 0 213560 100%  90.38% 94.95%
ACTLIFTERe 2,191,810 2,191,810 0 27.897 100%  98.74% 99.37% Total DeFiRanger 1,796,759  1361,845 434914 843016  7579% 61.77% 68.06%
Total ACTLIFTER:2 122,406 122,406 0 2,097,301 100% 5.51% 10.45% EVENTLIFTER 104,303 104,303 0 2,097,301 100% 4.74% 9.05%
ACTLIFTERe3 79,099 79099 0 2,140,608  100%  3.56%  6.88%

of AMM 0xe967 (i.e., an AMM which supports asset exchanges
between MCC and WETH tokens) in (D in a transaction. Then AMM
0xe967 is aware of a difference of MCC between AMM 0xe967’s token
balance and AMM 0xe967’s reserve variables of MCC. Please note
that AMM 0xe967’s reserve variables of MCC are stored in AMM
0xe967’s contract with aiming of recording AMM 0xe967’s token
balance of MCC. AMM 0xe967 considers that the difference of MCC
is transferred by trader 0x777d, and trader 0x777d aims to buy WETH.
Hence, AMM 0xe967 transfers WETH to trader 0x777d in (2) and emits
a Swap event in (3. Since there is only one asset transfer in the
transaction, ACTLIFTER, considers there is no Swap action.
Unfortunately, ACTLIFTER.2 and ACTLIFTER.3 can only achieve
5.51% and 3.56% recall rates. Manual investigation reveals two rea-
sons for FNs. First, for the 27,897 Swap actions missed by ACTLIFTER,1,
both ACTLIFTER2 and ACTLIFTER,3 also missed the 27,897 Swap
actions by the same reason. Second, ACTLIFTER.2 and ACTLIFTER.3
missed recognizing 2,069,419 and 2,112,711 DeFi actions, because,
due to the configurations of ¢2 and ¢3, the asset transfers for iden-
tifying DeFi actions are filtered out. For the example in Fig. 3,
ACTLIFTER.2 and ACTLIFTER.3 filter out the two asset transfers in
@ and (@, because only the Value parameters of the two asset trans-
fers (i.e., 14,082.22 and 500,187) are logged by the Swap (500,187, 14,082.22)
event in @. Hence, ACTLIFTER.2 and ACTLIFTER.3 can not identify
the corresponding DeFi action, which is matched by the two asset
transfers in ) and (. By contrast, ACTLIFTER,; can recognize
asset transfers involved in DeFi actions (e.g., the two asset transfers
in @ and @), and hence it can identify the corresponding DeFi
actions. Since ACTLIFTER with the c1 configuration achieves nearly
100% accuracy and significantly outperforms ACTLIFTER under the

O @ call swap()
@ > (3) emit Swap event
—

0x777d (2 Transfer 0.091 WETH
Figure 6: An example of ACTLIFTER,;’s false negatives

0xe967

other two configurations, i.e, ACTLIFTER.2 and ACTLIFTER.3, we
run AcTLIFTER with the c1 configuration for other experiments.
Insight. When DeFi developers emit events to announce DeFi
actions, we find that most of them only publish the amount of trans-
ferred assets involved in DeFi actions without other parameters of
asset transfers (e.g., the type of asset). It may lead to potential risks
for traders in interacting with DeFis, because the same events may
be triggered by DeFi actions involving different kinds of assets and
thus traders will get confused or abused by adversaries.

Answer to RQ1: AcTLIFTER can achieve nearly 100% precision and
recall in identifying ten kinds of DeFi actions.

5.3 RQ2:Is ACcTLIFTER superior to others?

We compare AcTLIFTER with three baseline methods, including two
state-of-the-art techniques (i.e., Etherscan [2] and DeFiRanger [89]),
and EVENTLIFTER, a tool we developed for recognizing DeFi actions
from events’ arguments, because, as mentioned in §3.2, we find 41
events whose arguments can be leveraged to recognize DeFi actions.
We compare their performance in terms of identifying DeFi actions
for transactions in Dr,. Since Etherscan does not release DeFi ac-
tion results in its APIs, we queried their transaction pages to obtain
DeFi action results. Since DeFiRanger is also not available [89], we
re-implemented its DeFi action identification approach. Note that
DeFiRanger [89] only identifies AddLiquidity and RemoveLiquidity
actions that supply and withdraw single asset with AMM:s. For ex-
ample, if an AddLiquidity action supplies two assets Asset; and Asset,
to an AMM, DeFiRanger will identify two AddLiquidity actions that
supply Asset; and Asset, to the AMM, respectively. We still consider
that DeFiRanger identifies the true results, if their results can be
combined into the true DeFi actions.

Table 5 shows the results of Etherscan, DeFiRanger, and EVENTLIFTER.

The third - ninth columns list the number of identified DeFi actions,
TPs, FPs, and FNs, and the values of precision, recall, and f-score



for different kinds of DeFi actions. We next present reasons why
three baseline techniques generate FP and FN cases.

Etherscan. Etherscan achieved 100% precision for the identifica-
tion of 7 kinds of DeFi actions but generated incomplete results.
For example, Etherscan missed identifying a Swap action in the
transaction [21], where the trader exchanges COMP for WETH with
the AMM oxba12. Both AcTLIFTER and DeFiRanger can correctly
identify this Swap action. Since Etherscan does not disclose how
they identify DeFi actions, we cannot know why Etherscan failed.
DeFiRanger. DeFiRanger led to both incomplete and inaccurate
results in identifying three kinds of actions. The root causes are
twofold: i) DeFiRanger identifies DeFi actions by matching ERC20
token transfers [89], and thus it cannot identify DeFi actions in-
volving Ether transfers. ii) Heuristics, defined by DeFiRanger [89],
are inaccurate. For example, DeFiRanger identifies Swap actions by
only matching the first two token transfers, and in the two matched
token transfers one account receives and sends out different as-
sets. However, token transfers, which are irrelevant to DeFi actions,
can also satisfy these heuristics. Hence, DeFiRanger will wrongly
match the irrelevant token transfers and report wrong DeFi actions.
For the example in Fig. 3, DeFiRanger identifies an incorrect Swap
action by matching two irrelevant token transfers in @ and (.
EVENTLIFTER. EVENTLIFTER only achieved 4.74% recall rate and
missed identifying 2,097,316 DeFi actions. It shows that the 41 kinds
of events only count for a small proportion (i.e., 4.74%) of all emitted
events whose signatures are in M.

Answer to RQ2: AcTLIFTER can significantly outperform the state-
of-the-art techniques, other baseline methods, and two variants of
AcCTLIFTER in identifying DeFi actions.

5.4 RQ3: DeFi MEV activities discovery

The representation learning of AcTCLUSTER leverages three initial
MEV labels, i.e., Sandwich Attack, Cyclic Arbitrage, and Liquidation,
to map each bundle matrix to the low-dimensional feature space in
the first round (§4.1). We generate the initial MEV labels for each
bundle in Dg, g by using heuristics from Qin et al. [72]. As a result,
813,188, 1,334,207, and 14,263 bundles are labeled as Sandwich
Attack, Cyclic Arbitrage, and Liquidation, respectively. Besides,
two parameters are used in iterative bundle clustering (§4.2) of
AcTCLUSTER, i.e., €, which is used to adjust the lower bound of
cluster density in DBSCAN [92], and 1, which is the delay factor of
€. The values of € and 1 are selected by grid search [81] with the
target of minimizing required manual efforts (i.e., the amount of
bundles manually inspected) to discover MEV activities. Specifically,
we first make a set of candidate values for € and 5, and then perform
the iterative bundle clustering (§4.2) with each pair of parameters on
a small set of (i.e., 5,000) bundles in Dg,, 4. Finally, we compare the
amount of bundles manually inspected in iterative bundle clustering
(§4.2), and determine 16 and 0.5 for € and 7, respectively.

We train on all our data (i.e., 6,641,481 bundles in Dg,,4.) With
MEV labels. After each round in AcTCLUSTER, we add the newly
discovered MEV activities into the MEV labels, and conduct the
representation learning (§4.1) of the next round with the extended
MEYV labels. After repeating the steps of AcTCLUSTER (§4) four
rounds and analyzing 2,035 bundles manually, we discover 17 new
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txa: 1) RAM Rebasing

2) Swap 0 ETH for 22,625.15 RAM

trader, 3 Swap 22,625.15 RAM for 42.61 ETH 0x395¢

Figure 7: An example of Rebasing Backrun Arbitrage

kinds of DeFi MEV activities summarized in Table 6. We describe
one as follows, and introduce the rest in Appendix E.

¢ Rebasing Backrun Arbitrage (RBA). It involves two transac-
tions in a bundle. The former executes a Rebasing action, which
causes a difference between the AMM’s Rebase token balance and
the AMM’s reserve variables. The Rebase token balance is stored in
the contract of Rebase token, and the reserve variables are stored
in the contract of AMM with recording the AMM’s Rebase token
balance. The latter executes a Swap action to trade the Rebase to-
ken and obtains profits from the difference of Rebase token. For
example, Fig. 7 shows the two transactions in the first bundle of
the 12,147,015 block. In the first transaction, the RAM token executes
a Rebasing action, and it causes the RAM token balance of the AMM
0x395c to increase by 22,625.15. However, the AMM 0x395c still uses
its old RAM token balance (i.e., the reserve variables) before the Re-
basing action to calculate how much the traders should pay [30]. In
the second transaction, after giving the trader the 22,625.15 RAM, the
AMM 0x395c finds its RAM token balance does not decrease. Hence,
the trader; does not need to pay for ETH. The trader; then swaps
the 22,625.15 RAM for 42.61 ETH to earn profits of 42.61 ETH.

We also evaluate whether our results can generalize to new MEV
activities. We first train our model on a small set of (i.e., 20,000)
bundles in Dg,,4,, and then evaluate our trained model on different
validation sets [67] (i.e., other bundle sets randomly sampled from
Dgunde)- It shows that our trained model achieves similar accuracy
(difference < 5% ) in classifying MEV labels on different validation
sets. It means that our model could generalize to different sets of
bundles. As new DeFi MEV activities can cause concept drift [49]
in bundles (an open problem in machine learning) and might affect
the accuracy of our model, Users can retrain [49] our model with
new MEV activities. We evaluated the retraining cost of our model,
and the result shows that it is reasonable (Appendix J).

Answer to RQ3: AcTCLUSTER empowers us to discover 17 new kinds
of DeFi MEV activities in bundles. Besides, our results can generalize
to new types of DeFi MEV activities.

5.5 RQ4:Is AcTCLUSTER superior to others?

To evaluate how much manual effort can be reduced by ActCrus-
TER. We compare it with three baseline strategies. It is worth noting
that the three baseline strategies are selected with ablating compo-
nents of AcTCLUSTER. Hence, by comparing with the three baseline
strategies, we can also evaluate to which extent the components of
AcTCLUSTER benefit the procedure of MEV activity discovery.

e AcTCLUSTER™ . It ablates the updating of labels of newly dis-
covered MEV activities in model training of bundle representation
learning (§4.1). We only conduct the representation learning (§4.1)
with the initial three MEV labels (§4.1), and conduct the iterative
clustering analysis by repeating the same four steps in §4.2, until
we find all 17 DeFi MEV activities.

o Intuitive clustering analysis. It ablates both the iterative bundle
clustering (§4.2), and the updating of labels of newly discovered
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Table 6: Descriptions for the 17 kinds of new DeFi MEV activities in bundles

‘ DeFi MEV activity
Swap Backrun Arbitrage
‘ Liquidity Backrun Arbitrage

Liquidity Sandwich Arbitrage
‘ Multi-layered Burger Arbitrage
Liquidity-swap Trade

| Partial Cyclic Arbitrage
Backrun Cyclic Arbitrage

‘ Hybrid Arbitrage
Failed Arbitrage

‘ Non-cyclic Swap Trade
Rebasing Backrun Arbitrage

‘ Airdrop-swap Trade
Bulk NFT-Minting

‘ NFT Reforging
Airdrop Claiming

‘ NFT-Minting-swap Trade
Loan-powered Arbitrage

Description

On the same AMM, the arbitrageur just backruns another trader’s Swap action by a Swap action, and earns profits from the pulled-up price.

On the same AMM, the arbitrageur backruns another trader’s AddLiquidity/RemoveLiquidity action by a Swap action, and earns profits from the pulled-up price.
On the same AMM, the arbitrageur frontruns and backruns another trader’s Swap action by AddLiquidity and RemoveLiquidity actions, and earns profits from
the trader’s exchange fee.

On the same AMM, the arbitrageur frontruns and backruns other traders’ Swap actions by Swap actions, and earns profits from the pulled-up price.

On the same AMM, the trader both performs a Swap action, and performs the AddLiquidity or RemoveLiquidity actions. The trader aims to supply, withdraw,

or trade assets at the expected prices.

The arbitrageur performs Swap actions among AMMs to earn profits from the unbalanced prices, and part of the Swap actions can form a loop one by one.

The arbitrageur backruns another trader’s Swap/AddLiquidity/RemoveLiquidity action, and performs Cyclic Arbitrage to earn profits from the unbalanced prices.
There are at least two kinds of MEV activities of known MEV activities in a bundle. There exists a transaction contained in all these MEV activities.

The arbitrageur suffers the financial loss, when the arbitrageur aims to obtain profits by Sandwich Attack or Cyclic Arbitrage activities.

The trader only performs the non-cyclic Swap actions, and aims to trade on the AMMs at the expected prices.

The arbitrageur backruns a Rebasing action by a Swap action, and earns profits from the price differences of the Rebase token.

The trader first claims the airdrop rewards, then sells the received rewards to an AMM by a Swap action.

The NFT contract mints NFTs in bulk, and it aims to increase the maintained NFTs at the expected blockchain state.

The NFT contract reforges an NFT to update the asset represented by the NFT.

The trader only claims and receives airdrop rewards.

The trader first receives an NFT minted by NFT contract, then sells the minted NFT to an AMM by a Swap action.

The arbitrageur loans assets from Lending under the over/under-collateral deposit, then uses the loaned assets to conduct MEV activities, e.g., Cyclic Arbitrage.

MEV activities in model training of bundle representation learning
(§4.1). We apply the DBSCAN algorithm to all bundles in Dg,q
once to find different kinds of DeFi MEV activities. Then, we sample
one bundle from each cluster, and determine whether it contains
new DeFi MEV activities. Since we aim to compare ACTCLUSTER
with the best performance of the intuitive clustering analysis, we
adjust the e parameter of the DBSCAN clustering algorithm to find
all 17 kinds of DeFi MEV activities.

e Random sampling analysis. It ablates the whole process of
AcTCLUSTER. We sample one bundle from Dg,, . randomly, and
determine whether it contains discovered DeFi MEV activities. If
that is the case, we exclude all bundles containing the corresponding
DeFi MEV activities from Dg,,4.. Note that the excluded bundles
only contain DeFi actions that can form the corresponding DeFi
MEYV activities. We repeat the random sampling analysis until we
find all 17 kinds of new DeFi MEV activities.

For each strategy, we record the number of bundles to be in-
spected for discovering all 17 kinds of new DeFi MEV activities.
Our experimental results show that AcTCLUSTER ™, intuitive cluster-
ing analysis, and random sampling analysis, require us to manually
analyze 2,874, 108,962, and 176,255 bundles, respectively. Compared
to them, AcTCLUSTER can reduce 29.2%, 98.1% and 98.8% of manual
efforts for discovering DeFi MEV activities, respectively.

Answer to RQ4: AcTCLUSTER outperforms three baseline strategies
in reducing manual efforts during discovering DeFi MEV activities.

6 APPLICATIONS OF OUR APPROACH

We use three applications to demonstrate usages of our approach
(i.e., AcTLIFTER and AcTCLUSTER), including enhancing relays’
MEV countermeasures (§6.1), evaluating forking and reorg risks
caused by MEV activities in bundles (§6.2), and evaluating the im-
pact of MEV activities in bundles on blockchain users’ economic
security (§6.3). Moreover, we discuss three feasible usages of our ap-
proach, supported by experimental results and observations (§6.4).

6.1 Enhancing MEV countermeasures in relays

As the most popular platforms implementing MEV countermea-
sures in practice [93], relays that distribute bundles to miners/val-
idators can filter out bundles including known MEV activities [24]

(e.g., relays [11, 28] block sandwich attacks). However, these re-
lays [11, 28] rely on handcrafted heuristics [19] to detect and filter
out the bundles containing known MEV activities. Hence, these
relays can fail to counter bundles only containing unknown MEV
activities because these bundles can fail heuristics of these relays.
We develop a tool named MEVHUNTER based on our approach to
enhance relays to counter bundles containing new MEV activities.
Specifically, MEVHUNTER takes in a bundle of transactions as in-
put, and identifies the kinds of MEV activities (including known
and our newly discovered MEV activities) exist in the bundle. For
each transaction in the bundle, MEVHUNTER utilizes ACTLIFTER to
recognize DeFi actions in it. Besides, for each kind of MEV activity
discovered by AcTCLUSTER, we summarize heuristics to identify it
like others [47, 72, 85]. For each kind of MEV activity, the heuristics
describe DeFi actions that a bundle arbitrageur has to perform to
accomplish the corresponding MEV activity. By checking whether
the DeFi actions in the bundle satisfy our summarized heuristics,
MEVHUNTER identifies MEV activities in the bundle.

To evaluate how MEVHUNTER enhance MEV countermeasures in
relays, we use it to inspect MEV activities for all bundles in Dg,g,-
The experimental results show that 31.81% (2,112,344/6,641,481)
bundles contain known MEV activities (i.e., Sandwich Attach, Cyclic
Arbitrage, and Liquidation), and 53.12% (3,527,655/6,641,481) bun-
dles contain our newly discovered DeFi MEV activities. Among the
3,527,655 bundles, 3,182,363 bundles only contain new DeFi MEV
activities. The experimental results indicate that, MEVHUNTER can
enhance relays to additionally identify 3,182,363 (47.92%) bundles
only containing the 17 kinds of new MEV activities. We further
investigate new MEV activities in bundles, e.g., the number of con-
tracts directly invoked by the EOA account to perform new MEV
activities. Our empirical results show that new MEV activities are
commonly used in bundles (cf. Appendix G for details).
Summary: Our approach can enhance MEV countermeasures in
relays to discover more MEV activities in bundles, and filter out more
bundles (relayed by them) containing MEV activities.

6.2 Evaluating forking and reorg risks caused
by bundle MEV activities

Prior studies [40, 61, 72, 96] report that financially rational miners
are incentivized to deliberately fork and reorganize the blockchain



to gather revenues from MEV activities. Hence, we evaluate forking
and reorg risks in blockchain consensus security caused by known
and new MEV activities in bundles (i.e., bundle MEV activities)
by measuring how many revenues miners can gather from bundle
MEV activities. Our methodology for determining miners’ revenues
from known and new MEV activities in bundles in Dg,,4. involves
two steps. First, we recognize bundles containing known and new
MEYV activities by using MEVHUNTER as discussed in §6.1. Second,
following methods in [61], we determine miners’ revenues from
bundle MEV activities by using miners’ revenues from correspond-
ing bundles. Miners’ revenues from bundles consist of two parts:
i) gas fees for transactions in bundles, and ii) Ether transfers to
miners in bundles (both of them are publicly available through the
web API [15]). To facilitate analysis, we combine miners’ revenues
from bundle MEV activities per block, and form a dataset denoted
DY Dgevenues because miners’ revenues from bundle MEV activities
contained in the same block will cumulatively incentivize miners
to fork and reorganize the blockchain. As a result, miners receive
revenues from bundle MEV activities in 1,791,891 blocks. In block
14,953,916, miners received the highest revenues from bundle MEV
activities as 1,584.4 Ether (792.2 times the block reward).

To further investigate how bundle MEV activities incentivize
miners to fork and reorganize the blockchain, by adapting the MDP
framework [72], we quantify the minimum mining power of miners
incentivized to fork and reorganize the blockchain for gathering
revenues in Dgeyenye- Specifically, the MDP framework employs a
Markov Decision Process [96] for miners to identify whether to fork
and reorganize the blockchain or not, with a given mining power on
various revenues. The results are shown in Fig. 8, where each point
(%, y) in the red line indicates that, miners’ revenues from bundle
MEV activities in a block (which are x times the block reward) will
incentive miners with no less than y mining power to fork and
reorganize the blockchain for gathering the revenues. Besides, in
Fig. 8, we display the distribution of miners’ revenues from bundle
MEV activities in blocks in Dgeyenye With binning in twelve intervals.
Fig. 8 shows that 1,403 blocks incentivize miners with no less than
10% mining power to fork and reorganize the blockchain. Moreover,
the miners’ revenues from bundle MEV activities in block 14,953,916
can incentivize a miner with only 0.06% mining power to fork and
reorganize the blockchain, highlighting the severe of forking and
reorg risks caused by MEV activities in bundles.

Ethereum changed its consensus mechanism from PoW to PoS
in September 2022 [22], and the new PoS consensus mechanism is
under the forking and reorg risks undertaken by validators [41].
Besides, several studies [65, 66] propose various attacks to decrease
the cost for launching forking and reorg for Ethereum blockchain.
Considering that validators collect the same revenues from bundle
MEV activities as miners [16, 25], we believe that bundle MEV
activities still endanger the consensus security in the context of PoS
by incentivizing validators to fork and reorganize the blockchain.
Summary: Bundle MEV activities endanger the consensus security by
incentivizing miners/validators to fork and reorganize the blockchain
for gathering revenues from bundle MEV activities.
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Figure 8: The minimum mining power of a miner incen-
tivized for forking and reorg to gather miners’ revenues from
a block, and the distribution of miners’ revenues in blocks.

6.3 Evaluating impact of bundle MEV activities
on blockchain users’ economic security

To explore the impact of bundle MEV activities on blockchain users’
economic security, we use the Granger causality test [46, 78] to
examine the range of later blocks in which users’ transactions are
delayed due to bundle MEV activities in prior blocks. In the context
of PoW, delayed waiting time is one of the major economic security
issues for users caused by MEV activities [61, 72]. For instance, it
prolongs users’ transactions to be exposed to arbitrageurs, thereby
enhancing arbitrageurs to design and engage in more profitable
MEV activities (e.g., Sandwich Attack and Cyclic Arbitrage). The
Granger causality test is a statistical hypothesis test to determine
whether the changes in one time series cause changes in another
time series, and it is widely employed in the fields of economics, po-
litical science, and epidemiology [46, 78]. We capture the two parts
of data examined for our Granger causality test in the following.
Transaction waiting times. We define the waiting time of a trans-
action as the duration that the transaction remains in mempools
of miners/validators before being submitted to blockchain. To cap-
ture transaction waiting times, we utilize the three-month waiting
time dataset (from Jul. 20, 2021 to Oct. 27, 2021) released by [61].
Additionally, we obtained a nine-day waiting time dataset for trans-
actions from Mar. 14, 2023 to Mar. 22, 2023 by implementing the
same methods as [61] (cf. Appendix K for details). We use median
values of transaction waiting times in each block to account for the
variation of transaction waiting times in blocks, which is more tol-
erant of outliers than the mean and standard deviation [61]. Finally,
we combine waiting times from two time periods to form a new
dataset denoted by Dyaiting, which includes the 25th, 50th, and 75th
quartiles of waiting times per block (where the 25th, 50th, and 75th
quartiles of waiting times are sorted in ascending order).
Extractable value. Following the methods in [61], we estimate
the extractable value of bundle MEV activities by using revenues of
miners/validators from bundle MEV activities (§6.2). It benefits us
in estimating the extractable value of bundle MEV activities even if
assets in MEV activities do not have price information for calculat-
ing the extractable value [61, 72]. Please note that Dyyng includes
waiting times for two periods. For the first period (i.e., from Jul. 20,
2021 to Oct. 27, 2021), we obtain the extractable value of bundle
MEYV activities in blocks by using corresponding results in Dgeyenye
(86.2). Moreover, to obtain the extractable value of bundle MEV
activities in blocks for the second period (i.e., from Mar. 14, 2023
to Mar. 22, 2023), we first capture bundles from the web API [15],
and then use the methods in §6.2 to obtain the extractable value of
bundle MEV activities in blocks. Finally, we combine two parts of
results to form a new dataset denoted by Dy,
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Figure 9: Bundle MEV activities in blocks cause the delayed
transaction waiting times in the next x-th block, if the corre-
sponding p-value is smaller than 0.05.

Our Granger causality test serves to examine the range of later
blocks in which the waiting times of users’ transactions are pro-
longed by prior bundle MEV activities. Inspired by the lagged
Granger causality analysis [46], we achieve this purpose by lagging
x block (1 < x < 50) of data in Dy, and conducting the Granger
causality test for the data in Dygiing and x-lagged data in Dygy,. If
the p-value of corresponding Granger causality test is smaller than
0.05, we confirm that bundle MEV activities cause the increase of
corresponding transaction waiting times in the later x-th block (at
the 5% level of significance [46, 78]). Our results are illustrated in
Fig. 9. It shows that bundle MEV activities cause the increase of
transaction waiting times at the 25th, 50th, and 75th quartiles in
next 0, 2, and 30 blocks, respectively. Hence, it indicates that bundle
MEV activities in blocks cause delayed waiting times of transactions
in later blocks. Please note that, since miners/validators prioritize
transactions with higher fees [61, 69], transactions with lower fees
are commonly positioned in the back of the block [61, 69]. Hence,
our results also indicate that the further back in the block a trans-
action will be positioned (i.e., the transaction has a lower fee), the
more continuous delay that bundle MEV activities cause on its
waiting time. We validate our results by measuring the correla-
tion between bundle MEV activities and transaction waiting times
via correlation tests (e.g., Spearman [64]). Our results show that
Spearman coefficients between bundle MEV activities in blocks
in Dy, and transaction waiting times at the 25th, 50th, and 75th
quartiles in blocks in Dyyiing are 0.230, 0.233, and 0.214, respectively.
It indicates that as the extractable value of bundle MEV activities
increases, transaction waiting times in blocks correspondingly in-
crease [64]. Hence, the results provide further evidence of bundle
MEYV activities on delaying transaction waiting times.

Summary: Bundle MEV activities endanger blockchain users’ eco-
nomic security by delaying users’ transactions in later blocks.

6.4 Other feasible applications

e Our approach can automatically uncover the evolving strategies
of arbitrageurs (e.g., [33]) for extracting MEV from new DeFi appli-
cations in practice. As a result, our approach uncovered 17 new MEV
strategies on five kinds of popular DeFi applications (i.e., AMM,
Lending, NFT, Airdrop, and Rebase Token) in §5.4. Compared to us,
existing studies [31, 33, 96, 98] only manually design strategies for
extracting MEV from a few DeFi applications that are well-studied
(e.g., AMM). The new strategies discovered by our approach can
motivate researchers to further explore the design space of MEV
strategies. We use [31] as an example to illustrate how our uncov-
ered MEV strategies can facilitate relevant studies [31, 33, 96, 98]
to design new strategies to extract MEV from these applications.
Specifically, in Rebase Backrun Arbitrage (RBA in §5.4), we found

that an arbitrageur can backrun a Rebase token to steal assets in
AMMs with zero cost. Please note that [31] explores possible MEV
activities on AMMs by only manually modeling AMMs. Our find-
ings on RBA can help [31] design new MEV strategies for AMMs
(e.g., RBA) by including the modeling of the Rebase token.

e Considering the fast-growing amount of bundles (e.g., there are
more than 6,641,481 bundles and 26,740,394 transactions in bundles
until Dec. 2022), our approach can be used to detect and discover
MEV activities in bundles continuously. As a result, by automati-
cally analyzing 6,641,481 bundles, our approach detected 2,112,344
bundles containing known MEV activities, and 3,182,363 bundles
only containing new MEV activities (§6.1). Compared to us, exist-
ing work [40, 47, 61, 72] on quantifying MEV activities involves
lots of manual efforts. Our approach can benefit relevant stud-
ies [40, 47, 61, 72] through using our approach and its results. For
instance, [72] can leverage our approach to detect MEV activities,
and then leverage its results to conduct an in-depth study (e.g., [72]
investigated arbitrageurs’ strategies in MEV activities).

e Our approach can recognize stealthy attacks. Stealthy attacks
are launched by attackers via exploiting bundles. Without bundles,
attackers have to broadcast their transactions in the P2P network,
and their transactions may also be attacked by other attackers. Our
approach recognized three stealthy attacks in Dg,, g (cf. details in
Appendix H) through AcTCLUSTER when we leveraged AcTCLus-
TER to discover DeFi MEV activities (§5.4). Although Zhou et al. [99]
reported stealthy attacks, our approach distinguishes them in three
points: i) different from Zhou et al. [99] that collected attacks from
literature and confirmed stealthy ones manually, our approach can
automatically recognize stealthy attacks through AcTCLUSTER by
recognizing outliers; ii) Given the fast-growing amount of bun-
dles, the emerging new DeFi applications, and the evolving MEV
strategies, our approach empowers the continuous detection and
recognition of stealthy attacks, whereas Zhou et al. [99] only col-
lected stealthy attacks from literature; iii) Our approach categorizes
stealthy attacks by clustering them in AcTCLUSTER, whereas Zhou
et al. [99] manually categorized two types of stealthy attacks.

7 THREATS TO VALIDITY

Due to the lack of ground-truth dataset, we manually analyze DeFi
actions identified by AcTLIFTER and baseline techniques (e.g., Ether-
scan and DeFiRanger). Since manual inspection is labor-intensive,
we did not check whether there is any DeFi action missed by all
techniques, and thus the result of false negatives might be affected.
In the future, we will involve more efforts to inspect all 6,641,481
bundles to detect FNs missed by all techniques.

It raises threats to validity that we do not analyze all relays’
bundles in blockchains, since different relays on a chain and relays
on different chains have different strategies for relaying bundles
(e.g., whether to follow censorship [24]). However, these strategies
do not change how bundle arbitrageurs perform MEV activities
(e.g., manipulating transactions’ positions). Hence, our approach
can be generalized to bundle MEV studies in the wider ecosystem.
Moreover, we have analyzed multiple relays’ bundles. It is worth
noting that, for relays disclosing bundles relayed by them, Flashbots
will collect their bundles and list them in Flashbots’ web API [15].
Hence, the bundles collected in §5.1 also contain bundles relayed



by other disclosed bundle relays, e.g., Eden [13]. In future work, we
will investigate relays that do not disclose their relayed bundles.

The completeness for representing DeFi actions in bundles into
the low-dimensional feature space (§4) and labeling bundles with
MEV activities in the feature space (§4) cannot be provably guaran-
teed due to the lack of ground truth. Thus, MEV activities involving
other DeFi actions (that are not in A1-10 in §2.1) can be missed as
false negatives. Although our ten manually selected DeFi actions
(which are heavily involved in MEV activities) are by no means
complete, our approach can be easily extended to discover more
new DeFi MEV activities by including more kinds of DeFi actions.
In future work, we will inspect more kinds of DeFi actions.

The delayed transactions can result from various factors such as
MEYV activities, P2P network congestion [61], and gas fee volatility
of transactions [61]. Our Granger causality test (§6.3) determines
that bundle MEV activities can contribute to the delay of users’
transactions. In future work, we will explore to what extent these
factors contribute to increase delays of users’ transaction.

While collecting DeFi actions from Etherscan (§5.3), we have
taken ethical considerations by limiting our collection of DeFi ac-
tions to a slow pace (i.e., querying one page per ten seconds) and
manually solving the reCAPTCHA human authentication. How-
ever, our collection of DeFi actions from Etherscan still goes against
Etherscan’s terms [2], and it potentially raises questions about the
ethicality of the collection process for DeFi actions from Etherscan.

8 RELATED WORK

We introduced four categories of closely-related work.

DeFi action identification. Majority of existing studies [18, 70—
72, 82, 84, 85] only focus on a few DeFi applications and could not
cover other DeFi applications. We compared them in §1 and §3.2.
Etherscan [2] identifies 7 kinds of DeFi actions, and DeFiRanger [89]
automatically recognizes DeFi actions. However, both of them suffer
inaccurate results, and our approach outperforms them (§5.3).
Design on extracting MEV. Eskandari et al. [44] introduce the
front-running taxonomy. Zhou et al. [96] generate profitable MEV
activities by interacting with AMMs. Zhou et al. [98] formalize
Sandwich Attacks with crafted Swap actions on AMMs. Several
studies (e.g., [33, 73]) model specific kinds of MEV activities, and
determine optimal parameters to maximize the revenue of extract-
ing MEV. None of them can be used to conduct a systematic study
on DeFi MEV activities, because they cannot recognize DeFi MEV
activities with unknown patterns of DeFi actions.

MEYV evaluation. Existing studies only quantify known MEV ac-
tivities, and cannot discover unknown MEV activities. Torres et
al. [47] measure three types of front-running. Daian et al. [40] eval-
uate the front-running under the gas price auction. Qin et al. [72]
quantify five kinds of MEV activities. For known MEV activities,
several studies [62, 70, 71, 82, 83, 85] evaluate their impact, users’
perceptions of them, and their prevalence in private transactions.
MEYV mitigation. Researchers propose countermeasures to miti-
gate threats caused by known MEV activities, and our insights from
new DeFi MEV activities can contribute to them. One solution is
to guarantee the transaction order fairness (e.g., [54, 55]) so that
validators/miners and traders cannot modify transaction positions
to extract MEV. Other studies propose new blockchain platforms or
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applications to prevent front-running [36, 52, 59, 97]. Furthermore,
several studies [34, 53, 93] systematize countermeasures against
the front-running, transaction reordering manipulation, and MEV,
and discuss the corresponding attacks and open challenges.

9 CONCLUSION

We conduct the first systematic study on DeFi MEV activities in
Flashbots bundle by developing ACTLIFTER, a novel automated
tool for accurately identifying DeFi actions in transactions, and
AcTCLUSTER, a new approach that leverages iterative clustering
to facilitate the discovery of DeFi MEV activities. Our experimen-
tal results show that ACTLIFTER achieves nearly 100% accuracy in
identifying DeFi actions, significantly outperforming existing tech-
niques. With the help of AcTCLUSTER, we discover 17 new kinds
of DeFi MEV activities, which occur in 53.12% of bundles but have
not been reported. Moreover, we demonstrate that AcTLIFTER and
AcTCLUSTER are very useful in MEV studies by six applications.
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A EXAMPLE OF EVENT EXTRACTION

Fig. 10a shows Uniswap’s [30] descriptions of Swap event. We con-
firm it corresponds to a Swap action by its descriptions in Line 8.
Fig. 10b shows code snippets and comments of another Swap event
and swap function from Smoothy (https://smoothy.finance/). We
confirm it corresponds to a Swap action by comments in Line 2 and
the two functions which will trigger asset transfers in Line 5 and 6.

event Swap {
address indexed sender,
uint amount@In,
uint amountlIn,
uint amounteOut,
uint amountiOut,
address indexed to}
// Emitted each time a swap occurs via swap function.

® NG s W N o

(a) descriptions of Swap event in Uniswap’s document

event Swap{...};
//* @dev Swap a token to another.
function swap(...){

_transferIn(infoIn, bTokenInAmount);
_transferOut (infoOut, bTokenOutAmount, adminFee);
emit Swap(...);}

NG s wN o

(b) code snippets and comments of Swap event in Smoothy’s codes

Figure 10: Event information of Uniswap and Smoothy.

B RECOGNIZE ASSET TRANSFERS

o Token transfer. In a token transfer Assetc.Transfer(From, To, Value), From
sends Value amounts of Assetc to To. Hence, ¢;, denoted as C.Event(Transfer(
From,To,Value)), checks whether a token transfer occurs when a Transfer
event is emitted by ¢ with the parameters of From, To, and Value. A
token transfer should satisfy three requirements in c: i) From is
not the zero address and C’s address (i.e., From € (0x00..00, C)), and To
is also not the zero address and C’s address (i.e., To € (0x00..00, C)).
This requirement is based on the widely used templates for ERC20
and ERC721 (e.g., OpenZeppelin [5] and chiru-labs [4]). In their
templates, the zero address and the address of ¢ are used for token
minting and burning. ii) the amount of transferred token Value is
non-zero (i.e., Value # 0), and iii) From and To are different addresses
(i.e., From # To). Note that there is no actual asset transfer between
From and To if any of the last two requirements are violated.

e ERC721 token minting/burning. In an ERC721 token minting

721 Minting(From, To, Value) (resp. AssetZZI.Buming(From,

(resp. burning) Asset;”".

To, Value)), the ERC721 token contract ¢ mints (resp. burns) an NFT

with the tokenld value. Hence, ¢;, denoted as C.Event(Transfer(From,To,Value)),
checks whether an ERC721 token minting (resp. burning) occurs

when C emits a Transfer event with the parameters of From, To, and

Value. An ERC721 token minting (resp. burning) should satisfy two

requirements in c,: i) From (resp. To) is the zero address or C’s address

(i.e., From (resp. To) € (0x00...00, C)), and To (resp. From) is not the zero

address and C’s address (i.e., To (resp. From) ¢ (0x00...00, C)). This re-
quirement is based on the widely used templates for ERC721 (e.g.,

OpenZeppelin [5] and chiru-labs [4]). In their templates, the zero

address and ¢’s address are used for ERC721 token minting and

burning. ii) ¢ implements standard functions defined in ERC721

(i.e., C | ERC721 standard), and thus, Assetc is an ERC721 asset.
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C ALTERNATIVE APPROACH OF ACTLIFTER.

To evaluate the effectiveness of collected events in M, we created
two variants of ACTLIFTER. ACTLIFTER,; replaces M (§3.2) with
other information collected more automatically, i.e., contract ad-
dresses of DeFi applications. Besides, in S-1, ACTLIFTER,; recog-
nizes asset transfers involved in DeFi actions, if the contract ad-
dresses of DeFi applications receive or send assets in the asset
transfers. Then ACTLIFTER,; identifies DeFi actions in S-2. To ob-
tain the contract addresses, we queried the APIs of graph, which
provides blockchain data to developers [17]. ACTLIFTER,y ignores
M, only recognizes all asset transfers in transactions in S-1, and
identifies DeFi actions in S-2.

We compare ACTLIFTER with its two variants by 500 transactions.
It shows that ACTLIFTER,; reports 7 false actions, because asset
transfers can simultaneously satisfy asset transfer patterns of differ-
ent kinds of actions, and a DeFi contract can perform different kinds
of actions. By only using address information, ACTLIFTER,; cannot
distinguish DeFi actions performed by the contract. ACTLIFTER,
reports 87 false actions performed by non-DeFi contracts due to
wrongly pairing asset transfers, because ACTLIFTER, identifies
DeFi actions only according to asset transfer patterns. By contrast,
AcTLIFTER correctly identifies all DeFi actions with M.

D FREQUENCY OF EVENTS IN M

To ensure comprehensive and reliable results, we further assess
whether all 88 events in M (§3.2) occur in Dg,q,. Fig. 11 displays
the frequency of each event in M (§3.2) that occurs in Dg,,q.. We
find that all 88 events are covered, with 64 of them (72.7%) occur-
ring at least 100 times in Dpg,,g,. Additionally, the results indicate
that methods (e.g., [18, 70-72, 82, 84, 85] in Table 1) relying on
several specific events to identify DeFi actions will miss reporting
a significant number of DeFi actions.

E NEW MEV ACTIVITIES IN BUNDLES

We discover 17 kinds of new DeFi MEV activities in bundles, which
are summarized in Table 6. For a more thorough understanding
of them, we refer readers to the previous helpful studies [47, 71,
82] which provide basic descriptions for the three known MEV
activities, i.e., Sandwich Attack, Cyclic Arbitrage, and Liquidation.

E.1 Multi-layered Burger Arbitrage (MBA)

It involves more than three transactions in a bundle. The first and
last transactions are emitted by the arbitrageur as 4, and A,, and
all the other transactions are emitted by other traders as v;,...V,,
where n > 1. All v; and A, aim to trade X asset for Y asset in the
same AMM, and A, aims to trade Y for X with the same AMM. The
Multi-layered Burger Arbitrage is similar to Sandwich Attack [72],
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@ (1) Swap 305,786.11 XYO for 1.52 ETH
txa: >

trader; 0xa986

(2) Swap 32.06 ETH for 4,129,738.30 XYO

0xa986
N
(3) Swap 4,129,738.30 XYO for 9.80 ETH
trader, (© Swap 4,129, or —

0xd78a

Figure 13: An example of Failed Arbitrage

txy: @ (1) AddLiquidity 588,235 MARSH and 55 ETH R

trader; 0x9c5d
O (2) Swap 250 ETH for 481,899 MARSH .
trader, 0x9c5d

Figure 14: An example of Liquidity Backrun Arbitrage

except that there are more than one transaction in the middle of 4,
and 4, transactions. All v; are used to pull up the price of v in the
AMM, and further improve the arbitrageur’s revenue. For example,
an arbitrageur performed the Multi-layered Burger Arbitrage in
the first bundle of the 12,753,463 block [20]. In the bundle, there
are 4 victim transactions. The four victim transactions all trade ETH
for F9 with AMM 0x459e. The arbitrageur earns 1.16 ETH as profits
by the A; and 4, in the bundle.

E.2 Liquidity Sandwich Arbitrage (LSA)

It involves three transactions. The first and third transactions are
signed by the trader; as A, and 4,, and the second transaction is
signed by tradery as v. The v aims to trade X asset for Y asset in an
AMM, 4; and 4, aim to supply and withdraw x and Y assets with
the same AMM. Different from Sandwich Attack [72], Liquidity
Sandwich Arbitrage does not aim to pull up the price of the traded
assets like Y when v executes, but the trader; aims to be the lig-
uidity provider to earn the exchange fee for the swapping in v. In
fact, v can set the slippage protection parameter [52] to require
the minimum amount of received assets, if trader; conducts the
Sandwich Attack, the slippage protection parameter can trigger and
the execution of v will revert. Hence the Sandwich Attack gains
no profits. For example, Fig. 12 shows the three transactions in the
first bundle of the 12,702,238 block. In the first and third transac-
tions, the trader; supplies and withdraws USDC and ETH with the
AMM ox8ads, respectively, and in the second transaction, traders
trades USDC for ETH in the AMM @x8ad5. According to the price in
Etherscan [2] of ETH and USDC on the day of mining the 12,702,238
block, trader; earns profits of 18637.5 USD.

Insight. The observation from LSA yields the security insights
for MEV countermeasures implemented in the contracts (e.g., slip-
page protection [52], atomic routing [97], and optimal slippage
setting [52]]). More precisely, these MEV countermeasures rely on
the parameters in contracts to defend against MEV (e.g., failing
the transactions where parameters are triggered). However, bundle
arbitrageurs can still maximize their revenue without triggering

the MEV protection mechanisms implemented in the contracts, be-
cause bundle arbitrageurs can manipulate the order of transactions
in their bundles to make their arbitrage transactions and victim
transactions execute in bundle arbitrageurs’ expected order.

E.3 Backrun Cyclic Arbitrage (BCA)

It involves two transactions. In the first one, trader; performs Swap,
AddLiquidity, or RemoveLiquidity actions, the actions trigger the
unbalanced prices among the AMMs [72]. In the second one, traders

O (1) AddLiquidity 466,270.37 USDC and 394.86 ETH
w G aquidty R
trader; 0x8ad5
O (2) Swap 1,000,136.80 USDC for 516.61 ETH .
w @D
trader, 0x8ad5
¢ é (3) Removeliquidity 890,229.49 USDC and 175.20 ETH
X3!
trader; 0x8ad5

Figure 12: An example of Liquidity Sandwich Arbitrage

backruns the former transaction to gain profit among the AMMs
by Cyclic Arbitrage.

E.4 Failed Arbitrage (FA)

For the Failed Arbitrage, the arbitrageur aims to obtain profits
by performing Sandwich Attack or Cyclic Arbitrage in a bundle,
and suffers the financial loss. For example, Fig. 13 shows the two
transactions in the second bundle of the 12,516,458 block. In the
first transaction, trader; trades XYO for ETH in AMM 0xa986. In the
second transaction, trader; aims to conduct the Cyclic Arbitrage to
backrun the first transaction in the AMM 0xa986. Unfortunately,
the trader, suffers the financial loss of 22.26 (32.06-9.8) Ether due
to trading XYO for ETH in the AMM o0xd78a.

E.5 Hybrid Arbitrage (HA)

For the Hybrid Arbitrage, there are at least two kinds of MEV activi-
ties of the three known MEV activities (i.e., Sandwich Attack, Cyclic
Arbitrage, and Liquidation) in a bundle. Besides, the occurrence
of transactions of the MEV activities is crossed. Hybrid Arbitrage
activities are the cases when arbitrageurs perform multiple kinds
of MEV activities in a bundle. Besides, to minimize the transaction
fee cost, arbitrageurs merge multiple kinds of MEV activities into
a single transaction. For example, in a transaction, an arbitrageur
first performs a Liquidation activity to receive the collateral assets,
and then uses received assets to perform a Cyclic Arbitrage activity.

E.6 Swap Backrun Arbitrage (SBA)

It involves two transactions. The former executes a Swap action to
exchange X asset for Y asset in an AMM which pulls up ¥’s price,
and the latter backruns the former transaction by exchanging v
asset for X asset in the same AMM to sell Y at the higher price than
without the former transaction.

E.7 Liquidity Backrun Arbitrage (LBA)

It involves two transactions. The former executes an AddLiquid-
ity/RemoveLiquidity action on an AMM which causes the unbal-
anced prices between AMMs, and the latter executes a Swap action



O
t: @ (1) Swap 2.93 ETH for 2.22 MKR .

trader; 0x987d

Figure 15: An example of Non-cyclic Swap Trade

(@) (1) Swap 24,982.02 PENDLE for 4.48 ETH @
o @ - @

trader, (2) AddLiquidity 25,017.98 PENDLE for 4.48 ETH 0x3792

Figure 16: An example of Liquidity-swap Trade

to trade the corresponding assets on the same AMM to obtain prof-
its from the price differences. For example, Fig. 14 shows the two
transactions in the first bundle of the 12,141,301 block. In the for-
mer transaction, trader; supplies MARSH and ETH to the AMM 0x9c5d.
In the latter transaction, traders performs a Swap to trade ETH for
MARSH with the same AMM. According to the price in Etherscan [2]
of MARSH and ETH on the day of mining the 12,141,301 block, in the
latter transaction, the trader, trades ETH for MARSH which are worth
738,060 and 3,504,910.65 USD, respectively.

E.8 Liquidity-swap Trade (LT)

For the Liquidity-swap Trade, there exists a transaction that a trader
both trades assets on AMMs and performs the AddLiquidity or
RemoveLiquidity actions on AMMs. There are two cases for the
Liquidity-swap Trade, i) the trader trades assets and supplies the
traded assets into an AMM at the expected price, ii) the trader
withdraws assets from an AMM and trades the returned assets. For
example, Fig. 16 shows the transaction in the second bundle of
the 13,521,679 block, the trader trades PENDLE for ETH and supplies
PENDLE and the traded ETH to the AMM 0x3792. By the transaction,
the trader becomes the liquidity provider at the expected price of
assets in the AMM 0x3792.

E.9 Partial Cyclic Arbitrage (PCA)

For the Partial Cyclic Arbitrage, there exists a transaction that
performs multiple Swap actions among AMMs. Part of the Swap
actions can fit into a single cycle one by one in the transaction. The
Partial Cyclic Arbitrage distinguishes the Cyclic Arbitrage, because
Cyclic Arbitrage only considers the transactions in which all the
Swap actions fit into a single cycle.

E.10 Non-cyclic Swap Trade (NST)

For the Non-cyclic Swap Trade, the transactions in bundles only
perform the Swap actions among AMMs. Besides, there are no
known MEV activities, i.e., Sandwich Attack, Cyclic Arbitrage, and
Liquidation, no the other 9 kinds of DeFi actions, and no other 16
kinds of new MEV activities. The trader who performs the Non-
cyclic Swap Trade in a bundle aims to trade on the AMMs at the
expected price. For example, Fig. 15 shows the transaction in the
first bundle of the 12,244,578 block. The trader; only trades ETH for
MKR with the AMM 0x987d. According to the price in Etherscan [2] of
ETH and MKR on the day of mining the 12,244,578 block, the trader;
trades ETH for MKR which are worth 7,356.07 and 8,375.68 USD,
respectively. Hence, trader; obtains profits as 1,019.61 USD.

Zihao Li et al.

E.11 Bulk NFT-Minting (BN)

It only involves transactions that mint NFTs. There are two cases
for the Bulk NFT-Minting, i) the NFT contract mints multiple NFTs
in a single transaction, ii) the NFT contract mints multiple NFTs
among multiple transactions. For example, there is one transaction
in the second bundle of the 13,336,591 block, and the VIXEN NFT
contract mints 20 NFTs.

E.12 NFT Reforging (NR)

It involves one transaction, where the NFT contract first burns one
NFT and then remints the NFT with the same tokenld and the spe-
cific asset represented by the NFT is updated. For example, the tenth
bundle at 14,579,991 block contains one transaction, where the re-
solved address of the ENS NFT with the name blockchainpolice.eth
is updated to address 0x6669.

E.13 Airdrop Claiming (AC)

For the Airdrop Claiming, a trader only claims airdrop rewards in
transactions of a bundle.

E.14 NFT-Minting-swap Trade (NT)

It involves a transaction where a trader first receives a minted NFT,
then the trader conducts asset exchange to sell the minted NFT to
an AMM.

E.15 Loan-powered Arbitrage (LA)

It involves a transaction where an arbitrageur first loans assets
from Lending under the over/under-collateral deposit, then uses
the loaned assets to conduct MEV activities, e.g., Cyclic Arbitrage.

E.16 Airdrop-swap Trade (AT)

It involves a transaction, where a trader both claims the airdrop
rewards and sells the received assets to an AMM by swapping.

F BUNDLE FORMATTING

e Action block. An action block consists of parameters to char-
acterize the corresponding type of action. It is a matrix where a
column vector corresponds to either a parameter or a separator.
Specifically, the first column vector of each action block is the action
header and it represents the action type with one-hot encoding. The
second column vector acts as a separator between the action header
and other parameters, and all entries in it equal to —1. We index
all addresses involved in a transaction in chronological order and
represent them using their indices instead of the original addresses.
We also index different assets according to their popularity. It is
worth noting that the transferred amounts of assets are normalized
in the range [—1, 1] to avoid huge differences in parameter scale.
e Transaction block. It is comprised of meta information of a
transaction and all actions in it. The first (resp. second) column
vector of a transaction block represents the sender (resp. recipient)
of this transaction. The last column vector records asset changes for
different addresses after the transaction. Between the second and
last column vectors, action blocks are sequentially concatenated
and connected by separators.
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Figure 18: Number of tokens involved in new MEV activities.
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Figure 17: Number of contracts invoked directly by arbi-
trageurs to perform new DeFi MEV activities.

o Bundle matrix. It is constructed by combining all transaction
blocks within a bundle. Transaction blocks are arranged in chrono-
logical order to reflect the temporal patterns related to DeFi actions
in a bundle. Successive transaction blocks are separated by two
separators. The height of bundle matrices equals the length of the
column vector, whereas the width of bundle matrices can be vari-
able depending on the number of encapsulated transaction blocks.
To facilitate feature extraction and feature representation, we fix
the width of bundle matrices by specifying the maximum width.
The bundle matrix will be truncated if its width exceeds the maxi-
mum width, otherwise, it will be padded with —1 entries to fit the
maximum width.

G PREVALENCE OF NEW MEV ACTIVITIES

Table 8 shows the number of bundles for each kind of MEV activities.
The first row lists the type of DeFi MEV activities, and the second
row lists the number of bundles containing corresponding DeFi
MEV activities.

e The number of bundles that contain different counts of new
MEYV types. 3,459,988 bundles only contain one kind of new MEV

activities while 63,851 (resp. 3,816) bundles contain two (resp. three)
kinds of new MEV activities.

e The number of contracts that are directly invoked by the EOA
account of arbitrageurs to perform new DeFi MEV activities. In
Fig. 17, each cross (x,y) indicates that y contracts are invoked
by arbitrageurs to conduct no more than x MEV activities in all
bundles. It shows that 62.14% (12,539/20,178) of contracts are in-
volved in new DeFi MEV activities only once. Table 9 lists the top 5
contracts that are involved in new DeFi MEV activities. The first,
second, and third rows list the contract addresses, the number of
involved MEV activities, and the labels in Etherscan, respectively.
The first contract is labeled as MEV Bot by Etherscan, and the
first contract is directly invoked by arbitrageurs to conduct 11.18%
(394,374/3,527,655) of bundles containing new DeFi MEV activities.
The other four contracts are labeled as AMM routers by Etherscan.
It shows that the bundle arbitrageurs can calculate the parameters
to perform MEV activities offline, and directly invoke the AMM
routers to perform MEV activities.

® The number of tokens used to perform new DeFi MEV activities by
arbitrageurs. In Fig. 18, each cross (x, y) indicates that y tokens are
involved in no more than x MEV activities in all bundles. It shows
that 42.88% (11,628/27,118) of tokens are involved in new DeFi MEV
activities only once. Table 7 lists the top 10 tokens involved in

Table 7: Top 10 tokens involved in new MEV activities
Token ‘WETH USDC USDT WBTC DAI BNT SHIB LINK APE SUSHI
# MEV
activities

3,034,387 730,832 344,353 195,240 162,178 80,408 55,607 54,569 45371 42,014

new DeFi MEV activities. The first and second rows list the tokens,
and the number of involved MEV activities. It shows that WETH is
involved in most of the new DeFi MEV activities (i.e., 86.02%).

® The number of transactions in each bundle. In Fig. 19, each cross
(x,y) indicates that y bundles contain no more than x transac-
tions. 61.74% bundles have only one transaction. Besides, the fourth
bundle in the 13,143,462 block mined by F2Pool contains the most
amount of transactions (i.e., 1,067). In the bundle, F2Pool distributes
ETH to different EOA accounts for distributing mining revenues!.
o The number of events in each transaction of bundles. In Fig. 20,
each cross (x, y) indicates that y transactions contain no more than
x events. For 54.31% transactions there is no more than one event
in it, and for 31.81% (8,506,831/26,740,394) transactions there is
no event. We find that the transaction? emits the most amount of
events (i.e., 6,364). In the transaction, an NFT contract mints 6,363
NFTs. For each minted NFT, the contract emits a Transfer event.
FP/FN rates. We further evaluate the FP/FN rates for the results
of new DeFi MEV activity in Table 8. Due to the lack of ground
truth for MEV activities, we can only evaluate the FP/FN by manu-
ally checking each bundle. Since to manually analyze all bundles
are labor-intensive, we choose to sample bundles from D4, and
manually evaluate the FP/FN results of the sampled bundles. Specif-
ically, for each kind of MEV activity, we sample 20 bundles from
bundles which contain such kind of MEV activity, and we sample
20 bundles from bundles that do not contain the MEV activity. The
results show that there is no FP or FN for results of new DeFi MEV
activities in our sampled bundles.

Uhttps://f2pool.io/mining/guides/how-to-mine-ethereumpow/
20xa90088¢0...af1b5911
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Table 8: Number of bundles for each kind of DeFi MEV activities

‘ MEV type ‘ SA CA LI SBA LBA  ILSA MBA LT PCA

BCA HA FA NST RBA AT BN NR AC NT LA ‘

‘#bundles ‘813,188 1,334,207 14,263 162,375 5,045 12,830 3,654 5,578 65,670

46,771 70,413 46,784 3,160,094 54 128 16,327 218 2,388 562 2,470‘

SA: Sandwich Attack, CA: Cyclic Arbitrage, LI: Liquidation, SBA: Swap Backrun Arbitrage, LBA: Liquidity Backrun Arbitrage, LSA: Liquidity Sandwich Arbitrage, MBA: Multi-layered Burger Arbitrage, LT: Liquidity-swap
Trade, PCA: Partial Cyclic Arbitrage, BCA: Backrun Cyclic Arbitrage, HA: Hybrid Arbitrage, FA: Failed Arbitrage, NST: Non-cyclic Swap Trade, RBA: Rebasing Backrun Arbitrage, AT: Airdrop-swap Trade, BN: Bulk
NFT-Minting, NR: NFT Reforging, AC: Airdrop Claiming, NT: NFT-Minting-swap Trade, LA: Loan-powered Arbitrage.

Table 10: Three DeFi incidents found during the procedure
of discovering DeFi MEV activities

Transaction Financial losses (USD) | Description
0xa9alb8ea...d7ffe61e 18.8M Cream Finance exploitation
0x7cc7d935...9840da22 24.5M xToken exploitation
0x5a6¢108d...dc3bfc1f 42.2K RigoBlock whitehat rescue

1 /// @dev Allows owner to set allowances to multiple approved

tokens with one call.

2 function setMultipleAllowances(...) {...}

3 ...

4 /// @dev Allows owner to operate on exchange through extension.

5 function operateOnExchange(...) onlyOwner {...}

Figure 21: Code snippets of RigoBlock contract.

Table 9: Top 5 contracts involved in new MEYV activities

‘ Contract 0xa57b..décf  0x7a25..488d 0x68b3...fc45 0xe592...1564 0xd9el...8b9f
# MEV activities 394,374 229,723 186,143 145,930 137,818
Label MEV Bot Uniswap Router  Uniswap Router Uniswap Router ~ Sushiswap Router

H THREE STEALTHY ATTACKS IN BUNDLES

- Cream Finance exploitation. The root cause is that Cream
Finance does not set the reentrancy protection and AMP has a reen-
trancy vulnerability. Specifically, AMP contains a hook function
tokensReceived of ERC777 (https://eips.ethereum.org/EIPS/eip-777)
standard, and the hook function can trigger the execution of the at-
tacker’s contract. The attacker exploited the reentrancy vulnerabil-
ity in AMP token contract, and re-loaned assets from Cream Finance.
Specifically, the adversary first borrowed AMP from Cream Finance,
and then exploited the reentrancy vulnerability in AMP token con-
tract to re-borrow ETH from Cream Finance. Finally, the adversary
received profits due to multiple loans with single collateral.

- xToken exploitation. The root cause is that xToken mints xSNXa
with relying on the price of SNX in Uniswap. The attacker conducted
an indirect price manipulation attack [89] on xToken. Specifically,
the attacker first borrowed SNX from flash loans, and sold the SNX
to Uniswap aiming at tanking SNX’s price. Then, the attacker used
ETH to mint xSNXa at the tanked price of SNX. Finally, the attacker
burned xSNXa and claimed SNX tokens. The attacker paid back the
flash loans and exchanged the remaining SNX into ETH as profits.
- RigoBlock whitehat rescue. Fig. 21 shows the code snippets
of the RigoBlock. The comments at Line 1 and 4 show that the
two functions, i.e., setMultipleAllowances and operateOnExchange,
should be only invoked by owner. But, the developers miss setting
the onlyowner modifier [27] for the first function although onlyOwner
modifier is set for the second function at Line 5. The vulnerability
allows non-owners to invoke the first function and set allowances
for approved tokens to them. Before the attack transaction, the
whitehat invoked the first function and set allowances for them.

Then in the attack transaction, the whitehat drained out six kinds of
assets from RigoBlock, and exchanged all of them into ETH. After
the attack transaction, the whitehat communicated with RigoBlock
in Twitter and returned the ETH to RigoBlock.

I BACKGROUND ON REPRESENTATION
LEARNING

Representation learning is a class of machine learning methods
to automatically discover the features for constructing classifiers
or other predictor variables [35, 67]. Representation learning is
fully data-driven and task-oriented, obviating considerable man-
ual efforts for data study and manually extracting features (e.g.,
feature engineering) [35, 67]. There are two main types of represen-
tation learning, namely supervised representation learning and un-
supervised representation learning [35]. Supervised representation
learning learns features from labeled data, such as neural networks,

multi-layer perceptrons, and supervised dictionary learning [35].
Unsupervised representation learning learns features from unla-

beled data, such as unsupervised dictionary learning, independent
component analysis, automatic coding, matrix factorization [35].

J RETRAINING COST OF OUR MODEL

o The cost of MEV labeling for bundles. The MEV activities in
bundles can be automatically labeled by summarizing heuristics
like existing studies [47, 72, 82] to detect known and discovered
MEV activities, and hence the MEV labeling is high-efficient.

e The computational cost of training the model. The training
of our model only costs a few minutes (< 1 hour) on our server (i.e.,
Intel Xeon W-1290 CPU with 10 cores at 3.2 GHz).

K COLLECTING WAITING TIMES

We reused methods in [61] to obtain a nine-day waiting time dataset
for transactions from Mar. 14, 2023, to Mar. 22, 2023. Specifically,
for a transaction T¥, its waiting time = T%ck - T;)gmpaol’ where Tgl’gck
is the time when 7X is mined, and Tfnfmpool is the time when Tx first
appears in the mempools of miners/validators. With the following
methods in [61], we estimate the earliest time when our nodes
monitor a transaction as the T%mpwl of this transaction. To estimate
the time when transactions first appear as precise as possible, we
increase the connectivity of our nodes to the Ethereum P2P network
by three methods [61]: i) deploy our nodes to be geographically
distributed, ii) configure our nodes with a maximum peer limit of
1,000, and iii) make our nodes to connect to well-known nodes [61].
We further estimate the time when the transaction appeared in a

block as the 71 | of this transaction following methods in [61].


https://etherscan.io/tx/0xa9a1b8ea288eb9ad315088f17f7c7386b9989c95b4d13c81b69d5ddad7ffe61e
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