Sing a song of Simplex*

Victor Shoup!

Offchain Labs
victor@shoup.net

January 11, 2024

Abstract. We flesh out some details of the recently proposed Simplex atomic broadcast protocol,
and modify it so that leaders disperse blocks in a more communication-efficient fashion. The resulting
protocol, called DispersedSimplex, maintains the simplicity and excellent latency characteristics of the
original Simplex protocol. We also present several variations, including one with “stable leaders” and
another that is “signature free”. We also suggest a number of practical optimizations and provide
concrete performance estimates that take into account not just network latency but also network
bandwidth limitations and computational costs.

1 Introduction

Byzantine fault tolerance (BFT) is the ability of a computing system to endure arbitrary (i.e.,
Byzantine) failures of some of its components while still functioning properly as a whole. One
approach to achieving BFT is via state machine replication [Sch90]: the logic of the system is
replicated across a number of machines, each of which maintains state, and updates its state is by
executing a sequence of transactions. In order to ensure that the non-faulty machines end up in
the same state, they must each deterministically execute the same sequence of transactions. This
is achieved by using a protocol for atomic broadcast.

In an atomic broadcast protocol, we have a committee of n parties, some of which are honest
(and follow the protocol), and some of which are corrupt (and may behave arbitrarily). Roughly
speaking, such an atomic broadcast protocol allows the honest parties to schedule a sequence of
transactions in a consistent way, so that each honest party schedules the same transactions in
the same order. Each party receives various transactions as input — these inputs are received
incrementally over time, not all at once. It may be required that a transaction satisfy some type of
validity condition, which can be verified locally by each party. These details are application specific
and will not be further discussed. Each party outputs an ordered sequence of transactions —
these outputs are generated incrementally, not all at once. One key security property of any secure
atomic broadcast protocol is safety, which means that each party outputs the same sequence of
transactions. Another key property of any secure atomic broadcast protocol is liveness. There are
different notions of liveness one can consider, but the basic idea is that the protocol should not get
stuck and stop outputting transactions.

Different protocols make different assumptions about the latency guarantees of the network and
the number of corrupt parties. Here, we assume that the number of corrupt parties is less than n/3,

* This paper has been evolving since first submitted to https://eprint.iacr.org/ on Dec. 13, 2023 under the orig-
inal title of “DispersedSimplex: simple and efficient atomic broadcast”. Since then, the stable leader and signature-
free variants have been added, as well as a number of practical optimizations and concrete performance estimates
that take into account not just network latency but also network bandwidth limitations and computational costs.

https://orcid.org/0009-0003-6996-5660
https://eprint.iacr.org/

and we consider protocols that are guaranteed to provide safety without any latency assumption,
and that are guaranteed to provide liveness only in intervals of “network synchrony”, in which the
latency is below a certain defined threshold. This is the partial synchrony model, introduced in
[DLS88]. The bound of n/3 on the number of corrupt parties is optimal in this model. Many quite
practical atomic broadcast protocols have been proposed in this model, starting with the classic
PBFT protocol [CL99], and this is still an area of active research.

In this paper, we consider the recently proposed Simplex atomic broadcast protocol [CP23]. Like
many other recent protocols in this space (such as HotStuff [YMR"18] and HotStuff-2 [MN23]),
Simplex is a leader-based, permissioned blockchain protocol: the protocol proceeds in slots (a.k.a.,
views, rounds), so that in each slot a leader proposes a block of transactions, and these blocks get
added to a tree of blocks chained together by cryptographic hashes, rooted at a special genesis
block. Over time, a path of committed blocks in this tree emerges — safety ensures that all parties
agree on the same path of committed blocks. In these protocols, leaders typically are rotated in each
slot — either in a round-robin fashion or using some pseudo-random sequence — which also has
the nice effect of mitigating against censorship of transactions. The protocol relies on authenticated
communication links and a PKI to support digital signatures (preferably aggregate or threshold
signatures for better communication complexity).

Simplex is a wonderfully simple, efficient, and elegant protocol. In this paper, we hope to add to
the Simplex story in a small way, mainly by showing how to improve its communication complexity.
First, we flesh out some missing (but crucial) details of the Simplex protocol that are needed to get a
protocol with acceptable communication complexity. Second, and more importantly, we modify the
protocol so that leaders disperse blocks in a more communication-efficient fashion, while maintaining
the simplicity and excellent latency characteristics of the protocol. We call this variation on the
Simplex protocol DispersedSimplex. We give a detailed analysis of DispersedSimplex (safety,
liveness, and performance), and compare it to Simplex, HotStuff, and HotStuff-2 (as well as the
ICC protocols in [CDH'21]). We also discuss a number of implementation details, and argue (based
on concrete micro-benchmarks and realistic assumptions on network behavior) that despite its
simplicity, in typical scenarios, and with committees of size up to 100 connected via a wide-area
network (WAN), DispersedSimplex should perform in practice as well as or better than many other
protocols (including PBFT and HotStuff). These arguments suggest that it would be worthwhile
to measure the actual performance of a real-world implementation (which we have not done). We
also present several variations, including one with “stable leaders” (which we argue should achieve
even better performance) and one that does not require any signatures at all (with roughly the
same communication complexity as if aggregate or threshold signatures were used, but somewhat
higher latency). Our presentation is fairly self contained — certainly, no knowledge of the Simplex
protocol itself is assumed, but some familiarity with similar protocols (like PBFT or HotStuff)
would be helpful.

2 The DispersedSimplex protocol

Like many other protocols in this area, the Simplex protocol iterates through slots (a.k.a., views,
rounds), where in each slot there is a designated leader who proposes a new block, which is chained
to a parent block, and two rounds of voting are used to commit the block. Moreover, to improve
latency, the protocol is “pipelined”, in the sense that it optimistically moves onto the next slot
as soon as the first round of voting succeeds, before the block for that slot is committed. Leaders

may be rotated in each slot, either in a round-robin fashion or using some pseudo-random sequence.
The DispersedSimplex protocol has the same structure as the Simplex protocol; however, instead of
broadcasting the block directly, the slot leader uses well-known techniques for information dispersal
to disseminate large blocks in a way that keeps the overall communication complexity low and avoids
a bandwidth bottleneck at the leader. In particular, the communication is balanced, meaning that
each party, including the leader, transmits roughly the same about of data over the network. Our
main insight (such as it is) is how the information dispersal can be interleaved with the proposal
phase and the first voting round so that no extra latency is incurred.

2.1 Preliminaries

We have a committee of n parties, P,..., P,, at most ¢ < n/3 of which are corrupt. We assume
the parties are connected by authenticated point-to-point channels.

We will not generally assume network synchrony. However, we say the network is §-synchronous
over an interval [a,b + 4] if every message sent from an honest party P at time ¢t < b to an honest
party @ is received by @ before time ¢ + 4. In this case, for all ¢ € [a, b], we say that the network is
d-synchronous at time t.

2.1.1 Signatures. We make use of an (n — t)-out-of-n threshold signature scheme (although
later, in Section 5.4, we discuss how to avoid signatures with concomitant tradeoffs). We refer to a
signature share and a signature certificate: signature shares from n — ¢ on a given message may be
combined to form a signature certificate on that message. This can be implemented as just a set of
signatures, or as an aggregate signature scheme (such as one based on BLS signatures [BLS01] as in
[BDN18]) or as a threshold version of an ordinary signature scheme (such as one again based on BLS
signatures as in [Bol03]). The second and third implementations will result in much more compact
threshold signatures. The third implementation requires a set-up phase to distribute shares of a
signing key; however, this set-up can be implemented using an atomic broadcast protocol (such as
DispersedSimplex) using one of the first two implementations, so that only a PKI set-up is required;
once this set-up phase is complete, the protocol can shift to using the third implementation.
The security property for such a threshold signature scheme may be stated as follows.

Quorum Size Property: It is infeasible to produce a signature certificate on a message m, unless
n—t —t' honest parties have issued signature shares on m, where ¢’ < ¢ is the number of corrupt
parties.

Under our assumption that the number of corrupt parties is strictly less than n/3, one can
easily establish the following standard property.

Quorum Intersection Property: It is infeasible to produce signature certificates on two distinct
messages m and m’, unless at least one honest party issued signature shares on both m and m/.

2.1.2 Information dispersal. We explicitly make use of well-known techniques for asyn-
chronous wverifiable information dispersal (AVID) techniques involving erasure codes and Merkle
trees (introduced in [CT05]). In particular, the payload of block will be encoded using an (n, n—2t)-
erasure code. Such an erasure code encodes a payload M as a vector of fragments f1,..., f,, any
n — 2t of which can be used to reconstruct m. Using a standard Reed-Solomon code, this leads to
a data expansion rate of (at most) roughly 3; that is, Y .| fi| = n/(n — 2t) - |M| < 3|M]|.

2.2 Protocol data objects
2.2.1 Blocks. A block B is of the form Block(v, h,7), where

— v =0,1,... is the slot number associated with the block (and we say B is a block for slot v),

— h is the hash of the B’s parent block, and

— r is the root of a Merkle tree for the erasure-code fragments fi,..., f, encoding B’s payload
M.

2.2.2 Support, commit, and complaint shares and certificates. A support share on a block
B = Block(v, h,r) from party P; is an object of the form SuppShare(B, 0}, fj, 7j), where o; is a valid
signature share from P; on the object Supp(B), and 7; is a correct validation path from the root
r to the leaf f; at position j. A support certificate on B is an object of the form SuppCert(B, o),
where o is a valid signature certificate on the object Supp(B).

A commit share on slot v from party P; is an object of the form CommitShare(v, o), where o;
is a valid signature share from P; on the object Commit(v). A commit certificate on v is an object
of the form CommitCert(v, o), where o is a valid signature certificate on the object Commit(v).

A complaint share on slot v from Pj is an object of the form ComplaintShare(v, o), where o is
a valid signature share from P; on the object Complaint(v). A complaint certificate on v is an object
of the form ComplaintCert(v, o), where o is a valid signature certificate on the object Complaint(v).

2.2.3 Payload reconstruction. Note that while a quorum of n — ¢t support shares for a block
B is required to construct a corresponding support certificate, we can reconstruct the payload of B
from a quorum of just n — 2t support shares, as follows. Using the fragments in these n — 2t support
shares, we reconstruct a tentative payload M’ from the fragments, compute fragments (f1,..., f}),
and compute the root 7’ of a Merkle tree for (fi,..., f}). If ¥’ = r, then the effective payload of
B is defined to be M’, and otherwise, the effective payload is defined to be L. Under collision
resistance for the hash function used for the Merkle trees, any n — 2¢ valid support shares for B
will yield the same effective payload — moreover, if B was constructed properly from a payload
M, the effective payload will be M (and therefore, an effective payload of L indicates that the
party that constructed the block B was malicious). This observation is the basis for the protocols
in [DW20,LLTW20,YPA"21]. Moreover, with this approach, we do not need to use anything like an
“erasure code proof system” (as in [ADVZ21]), which would add significant computational complex-
ity (and in particular, the erasure coding would have to be done using parameters compatible with
the proof system, which would likely lead to much less efficient encoding and decoding algorithms).

2.3 Subprotocols

We describe our protocol in terms of a main protocol and a few simple subprotocols. In our presen-
tation, these subprotocols are all running concurrently with each other and with the main protocol:
a single party can be thought of as running a local instance of the main protocol and each of the
subprotocols on different threads on the same CPU. However, this particular architecture is mainly
intended just for ease of presentation.

We describe first the data structures and logic of the subprotocols.

2.3.1 Support, commit, and complaint pools. Each party maintains a support pool, a com-
mit pool, and a complaint pool. Whenever a party receives a quorum of n — ¢ support, commit,
or complaint shares, and it does not already have a corresponding certificate, it will generate a
certificate, add it to the corresponding pool, and broadcast the certificate to all parties. Similarly,
whenever a party receives a support, commit, or complaint certificate, and it does not already have
a corresponding certificate, it will add it to the corresponding pool, and broadcast the certificate
to all parties.

2.3.2 Approved block pool. Each party also maintains an approved block pool. The approved
block pool always contains a tree of blocks, rooted at a special genesis block Bgen = (0,*,*).
Initially, the approved block pool only contains the genesis block. A block B = (v, h,r) is added to
the pool if

— the approved block pool contains a parent block B’ = (v/,-,) with v/ < v and h = Hash(B’);

— the support pool contains a support certificate for B;

— the party has received a quorum of n — 2t support shares for B, from which the party can
reconstruct the effective payload M of B as described above (note that we may have M = 1);

— M # 1 and satisfies some correctness predicate that may depend of the path of blocks (and
their payloads) from genesis to block B'.

Unlike the support, commit, and complaint pools, when a party adds a block to its approved block
pool, it does not broadcast anything to other parties. We say a block is approved by P if it belongs
to the approved block pool of P.

2.3.3 Block commitment. We say that a block B for slot v is explicitly committed by P if it
is approved by P and the commit pool of P contains a commit certificate for slot v. In this case,
we say that all of the predecessors of block B are implicitly committed by P. The genesis block is
always considered to be a committed block.

2.4 The main protocol

The logic of the main protocol for a party P; is described in Fig. 1. In the description, leader(v)
denotes the leader for slot v — as discussed above, leaders may be rotated in each slot, either
in a round-robin fashion or using some pseudo-random sequence. The details for generating and
validating block proposals are described below. In the main protocol, a party makes its decisions
based on the objects it its support, commit, complaint, and approved block pools (which are
maintained as described in Section 2.3) and the objects it has received from other parties over
authenticated channels. Note that a party will not issue a commit share in a slot if it has already
issued a complaint share in that slot — this rule is essential for safety. Also note that a party may
issue a support share in a slot even if it has already issued a complaint share in that slot — this
rule is not essential and the protocol would also provide both safety and liveness if a party chose
not to issue a support share in this case.

2.4.1 Generating block proposals. The logic for generating block proposal material B,
(f1,m1),...,(fn, ™) in slot v at line (x) is as follows:

,_[DispersedSimplex: main loop for party P; }

Blast — Bgen
forv=1,2,...
tstart < clock()
done < proposed < supported < complained < false
while not done do
wait until either:
there is a complaint certificate for slot v in the complaint pool =
done < true
there is an approved block B for slot v in the approved block pool =
if not complained then broadcast a commit share for v
done < true, Blast < B
not complained and clock() > tstart + A =
complained < true
broadcast a complaint share for slot v
leader(v) = P; and not proposed =
proposed < true

(*) generate block proposal material B, (fi,71),..., (fn,7n)
for i € [n]: send BlockProp(B, fi, ;) to P;
() not supported and received from leader(v) a valid block proposal BlockProp(B, f;,7;) =

supported < true
generate a signature share o; on Supp(B)
broadcast the support share SuppShare(B, o;, f;,7;)

Fig. 1. Logic for main loop of DispersedSimplex protocol for party P;

— compute h := Hash(B,g);

— build a payload M that validly extends the path in the block tree ending at Biagt;

— compute the erasure code fragments (fi,..., f,) of M;

— compute the Merkle tree for (f1,..., f,) with root r and validation paths m1,...,my;
— Set B := Block(v, h, 7).

2.4.2 Validating block proposals. To check if BlockProp(B, f;,7;) is a valid block proposal
from the leader in slot v at line (xx), party P; checks that each of the following conditions holds:

— B is of the form Block(v, h,r), where h = Hash(B’) for some (unique) approved block B’ =
Block(v', -,) in the approved block pool;

— v <

— the complaint pool contains complaint certificates for slots v/ +1,...,v — 1;

— m; is a correct Merkle validation path from the root r to the leaf f; at position j.

Note that even if some of the conditions do not hold at a given point in time, they may hold at a
later point in time. When party P; sees a block proposal in slot v, it can check the stated conditions
— if these conditions fail due to the lack of an approved parent block or complaint certificate, these
conditions will need to be rechecked whenever a new block is added to the approved block pool or
a new complaint certificate is added to the complaint pool. We will discuss below (in Section 5.1)
how to efficiently implement the test that the complaint pool contains the necessary complaint
certificates using a data structure whose size is proportional to the gap between current slot and
the last committed slot so that the amortized cost of these tests is O(1) per slot.

3 Analysis

By abuse of terminology, we state security properties unconditionally — they implicitly assume the
security of the threshold signature scheme and the collision resistance of the hash functions used
to build Merkle trees and chain blocks together, and should be understood to hold with all but
negligible probability for all efficient adversaries.

3.1 Initial observations
We state some basic properties:

Uniqueness and Validity Property: Suppose that a block B for some slot v is approved by
a party. Then no other block for slot v can be approved by that party or any other party.
Moreover, if the leader for slot v is honest, B must have been proposed by that leader.

The first part follows from the Quorum Intersection Property, based on the fact an honest party
issues a support share for at most one block per slot. The second part follows from the Quorum
Size Property.

Completeness Property: If an object X appears in any pool (support, commit, complaint, ap-

proved block) then X (or its equivalent) will eventually appear in the corresponding pool of
every other party.! Moreover, if X appears in a party’s pool at a time ¢ at which the network
is d-synchronous, it will appear in every party’s pool before time t + 4.
For the support, commit, and complaint pools, this is clear. For the approved block pool, we are
relying on the Quorum Size Property: when a support certificate for B is added to the support
pool, at least n — 2t honest parties must have already broadcast support shares for B, which
contain B as well as fragments sufficient to reconstruct B’s payload.

Incompatibility of Complaint and Commit Property: It is impossible to produce both a
complaint and commit certificate for the same slot v.

This follows from the Quorum Intersection Property, based on the fact that in each slot, an
honest party will never issue both a complaint share and a commit share.

3.2 Safety

Safety follows immediately from the following lemma.

Lemma 3.1 (Safety). Suppose a party P explicitly commits a block B for slot v, and a block C
for slot w > v is approved by some party Q. Then B is an ancestor of C' in Q)’s approved block pool.

Proof. By the Incompatibility of Complaint and Commit Property, no complaint certificate for slot
v can be produced. Let C’ be the parent of C' and suppose w’ is the slot number of C’. Since C’
is in Q’s approved block pool, a support certificate for C’ must have been produced, which means
at least one honest party must have issued a support share for C’, which means v < w’ < w. The
inequality v < w’ follows from the fact that there is no complaint certificate for slot v, and an honest

party will issue a support share for C only if it has complaint certificates for slots w’ +1,...,w — 1.
If v = w’, we are done by the (first part of the) Uniqueness and Validity Property, and if v < w’,
we can repeat the argument inductively with C” in place of C. a

! Note that the “or equivalent” qualification is necessary to account for signature certificates, if these are not
necessarily unique.

3.3 Liveness

Liveness follows immediately from the following lemmas. The first lemma analyzes the optimistic
case where the network is synchronous and the leader of a given slot is honest, showing that the
leader’s block will be committed.

Lemma 3.2 (Liveness I). Consider a particular slot v > 1 and suppose the leader for slot v is
an honest party Q. Suppose that the first honest party P to enter the loop iteration for slot v does
so at time t. Further suppose that the network is §-synchronous over the interval [t,t+ 30] for some
d < A/3. Then the all honest parties will finish the loop iteration before time t + 36 by validating
Q’s proposed block B, and will eventually commit B. Moreover, if the network is §-synchronous
over the interval [t,t + 46], then all honest parties will commit the block B before time t + 44.

Proof. By the Completeness Property, before time ¢ + J, each honest party will enter the loop
iteration for slot v by time t + J, having either a complaint certificate for slot v — 1 or a approved
block for slot v — 1. So before time t + §, the leader @@ will propose a block B that extends a block
B’ with slot number v" < v. By the logic of the protocol, we know that) must have complaint
certificates for slots v/ +1,...,v — 1 at the time it makes its proposal. Again by the Completeness
Property, before time ¢t + 24, each honest party will have B’ and these complaint certificates in
their own pools, and moreover, will receive ()’s proposal before this time, and hence will broadcast
a support share for ()’s proposal by this time. Therefore, before time ¢ 4 39, each honest party will
have approved B. By the assumption that § < A/3, when each honest party has approved B, the
complaint condition will not have been met, and therefore, each honest party will issue a commit
share for v at this time. If the network remains §-synchronous, the commit shares will be received
by all honest parties before time ¢ + 44. O

The second lemma analyzes the pessimistic case, when the network is asynchronous or the
leader of a given round is corrupt. It says that eventually, all honest parties will move on to the
next round.

Lemma 3.3 (Liveness II). Suppose that the network is 6-synchronous over an interval [t,t+ A+
20], for an arbitrary value of §, and that at time t, some honest party is in the loop iteration for
slot v and all other honest parties are in a loop iteration for v or a previous slot. Then before time
t+ A+ 26, all honest parties finish the loop iteration for slot v.

Proof. By the Completeness Property, every honest party will enter the loop iteration for slot v
before time t + §. By time ¢t + § + A, every honest party will have either approved a block or
broadcast a complaint share for slot v. In either case, less than ¢ time units later all honest parties
will have either approved a block or obtained a complaint certificate for slot v, and hence will have
finished the loop iteration for slot v.

Finally, we note that in periods of asynchrony, for any slot v in which the leader @ is honest,
if any block is committed in slot v, it must have been the block proposed by . This follows from
the (second part of the) Uniqueness and Validity Property.

3.4 Complexity estimates

3.4.1 Communication complexity. We measure the communication complexity per slot. This
is the sum over all honest parties P and all parties @) of the bit-length of all slot-v-specific messages
sent from P to Q).

The communication complexity per slot of DispersedSimplex is easily seen to be

O(nB +n?(k + Xlogn)),
where

— [is a bound on the size of a block,

— K is a bound on the size of a threshold signature share or certificate,

— and A is a bound on the size of the hash function outputs used for Merkle trees and block
chaining.

Indeed, the cost breaks down as follows:

nf) for disseminating payload fragments,

n?logn - \) for disseminating Merkle paths,

2k) for disseminating signature shares and certificates,
2)\) for disseminating block hashes.

O(
— O(
- O(n
- O(n
If blocks are large, in particular, if 5 > n(k + Alogn), the communication complexity will be
dominated by the cost of disseminating the payload fragments.

Moreover, the communication load is balanced, meaning that each party, including the leader
for a slot, transmits roughly the same about of data over the network.

3.4.2 Latency. We may also measure various notions of latency. We define:

— optimistic proposal-commit latency: assuming the leader is honest, and that the network is
appropriately synchronous, the time it takes for the leader’s proposal to be committed by all
honest parties (same as the notion of “proposal confirmation time” in [CP23]);

— optimistic consecutive-proposal latency: assuming two consecutive leaders are honest, and that
the network is appropriately synchronous, the amount of time that elapses between when they
make their respective proposals (similar to the notion of “optimistic block time” in [CP23]).

If a given transaction is submitted to the system (i.e., to all parties), the sum of these two latencies
upper bounds the total time it takes for a tramsaction to be included in a proposal and then
committed. The optimistic consecutive-proposal latency also upper bounds what we might call the
optimistic reciprocal block throughput, the reciprocal of the rate at which blocks are are proposed
(and committed) in a steady state where all leaders are honest and the network is appropriately
synchronous.

For DispersedSimplex, just as for Simplex, we readily see that if the network is §-synchronous for
d < A/3, then the optimistic proposal-commit latency is 39 and the optimistic consecutive-proposal
latency is 29.

It is also useful to look at the latency between proposals made between non-consecutive honest
leaders. That is, if leaders in slots v and v + k£ 4+ 1 are honest, but the k leaders in the intervening
slots are crashed or corrupt, how much time may elapse between the time the leader in slot v
makes its proposal and the time the leader in slot v 4+ k 4+ 1 makes its proposal. Let us call this the

optimistic k-gap proposal latency. For DispersedSimplex, just as for Simplex, this is 20 + k- (A+9).
If leaders are chosen at random, then the probability that there is a gap of size k between slots
with honest leaders decreases exponentially with k.

We note that DispersedSimplex protocol is optimistically responsive, meaning that it runs as
fast as the network will allow so long as leaders are honest.

3.5 Other costs and concrete estimates

In this section, we discuss other costs and make some concrete estimates for performance under
specific assumptions. We are generally interested in values of n up to around 100, where each of the
n parties is running commodity hardware and connected to a WAN with typical network bandwidth
and latency.

We first consider the computational cost of erasure coding. This should not have a significant
impact on the overall system performance, assuming one uses a reasonably good implementa-
tion of erasure coding algorithms. One such implementation is the reed-solomon-simd library at
https://github.com/AndersTrier/reed-solomon-simd, which is based on [LC12,LAHC16]. We
benchmarked this implementation with parameters corresponding to t = 32 and n = 3t +1 = 97
and payload sizes of 100KB and 1MB on a Macbook Pro with an Apple M1 Max CPU. The encoder
runs at a rate of nearly 2GB/s for both payload sizes. The decoder runs at a rate of about 250MB /s
for the 100KB payload and about 500MB/s per second for the 1MB payload. Generally, the en-
coder speed is independent of the payload size and the decoder speed increases with the payload
size (because fixed costs get amortized). At these speeds, it is very unlikely that the erasure coding
will be a bottleneck.

We next consider the computational cost of signature generation, verification, and aggregation.
Let us assume we use aggregate BLS signatures with the standard proof-of-possession mitigation
against rogue-key attacks, so that public keys and signatures are very cheaply aggregated by simply
adding them together. On the same hardware above, we benchmarked the blst library at https:
//github.com/supranational/blst. The cost of signing or verifying one BLS signature is well
under 1ms, and the cost of adding public keys and signatures in the aggregation process can be
effectively ignored (at least for quorums of size up to a few hundred). To aggregate many unverified
BLS signatures, a party P can very cheaply aggregate the unverified signatures and then verify
the result. If the aggregate verification fails, P will have to perform a much more expensive search
to find out which of the individual signatures were bad. However, once the bad signatures are
found, since the parties that contributed those signatures must be corrupt, P can simply ignore all
signatures (and indeed all messages) sent from these parties going forward. This works because we
are assuming the signatures are sent over authenticated channels (although P cannot publicly prove
their corrupt behavior, unless the BLS signatures are themselves authenticated using some cheaper
digital signature, such as EdDsa). Thus, over the long run, the cost of verifying and aggregating a
set of individual signatures is essentially just the cost of one BLS signature verification. Similarly,
when a party P receives an aggregate signature from another party, if the verification of that
aggregate signature fails, P can simply ignore that party going forward.

The other main computational cost to consider is that of hashing. On the same hardware
mentioned above, the openssl implementation of SHA256 runs at a speed of 2GB/s.

With these benchmarks, and additional assumptions on network bandwidth and latency, we
can estimate the performance (latency and throughput) of the protocol (in the optimistic setting).

10

https://github.com/AndersTrier/reed-solomon-simd
https://github.com/supranational/blst
https://github.com/supranational/blst

We shall assume network bandwidth of 1Gb/s (i.e., 125MB/s) and that the protocol is running
over a WAN, so that there is essentially no contention for network bandwidth among the parties.
Specifically, our assumption is that all parties can simultaneously transmit to the network at a rate
of 1Gb/s. We shall assume a network latency of 100ms (so it takes 100ms for a packet to travel
from P to Q once P has transmitted the packet, which is generally consistent with round-trip times
reported in https://www.cloudping.co/grid/p_90/timeframe/1D).

The protocol’s performance will depend on:

— transmission delay: the delay per slot induced by network bandwidth,
— propagation delay: the delay per slot induced by the network latency,
— computation delay: the delay induced by computation.

The optimistic consecutive-proposal latency is just the sum of these delays and throughput is the
block size 5 divided by the sum of these delays. Here, we will assume that § is the number of bytes
in a block. Of course, 8 also impacts transmission and computation delay.

We will make one small change to the protocol that will streamline its execution. Namely,
instead of using an (n,n — 2t)-erasure code, we will use an (n — 1,n — 2t — 1)-erasure code, and
adopt the convention that the leader does not hold a fragment. We note that with this change, the
encoding of a block is still at most 33 bytes, and that the above benchmarks for n = 97 are still
valid. With this change, the way the the block data flows through the network in a given slot is as
follows:

— the leader encodes a block of size 8 as a codeword of size =~ 3/, and transmits to each of the
n — 1 other parties its fragment, which has size &~ 3/3/n, so that the leader transmits a total of
~ 30 bytes across the network.

— each party other than the leader broadcasts its fragment of size ~ 33/n to the n — 2 other
parties (besides itself and the leader), so each such party transmits a total of ~ 3/ bytes across
the network.

Assuming fragments are sufficiently large, each fragment can be broken up into many packets,
and a simple “packet-switching pipeline” strategy can be used to minimize the transmission delay.
Specifically, the leader begins by sending to each other party P the first packet of P’s fragment,
then it sends to each other party P the second packet of P’s fragment, and so on; at the same
time, when a party P receives one packet of its own fragment from the leader, it immediately
broadcasts that fragment to all other parties. One sees that with this simple “packet-switching
pipeline” strategy, the transmission delay per slot is roughly 33 bytes divided by the network
bandwidth available to each party (without pipelining, it would be twice as much). With a network
bandwidth of 1Gb/s, this translates into a transmission delay per slot of about 25ms for every 1MB
of (original, unencoded) block data.

Next, consider propagation delay. This is twice the network latency, so 2-100ms = 200ms under
our assumptions. To make things more concrete, let us choose a block size that roughly balances
transmission and propagation delay, so a block size of SMB. With a block size this large, and for
n ~ 100, the size of each fragment is ~ 240KB, large enough to make the simple “packet-switching
pipeline” strategy feasible (with packets of size ~ 1K B, a party can transmit one packet to each
other party in time under 1ms).

Third, consider computation delay. There are several components to this:

11

https://www.cloudping.co/grid/p_90/timeframe/1D

— erasure coding: the leader encodes [bytes of data, and then each receiving party decodes and
encodes the same amount of data; with our given estimates (for n = 97), this takes 2 - 4ms +
16ms = 24ms. Using multiple cores, this could likely be reduced significantly.

— hashing: the leader hashes 38 bytes of data, and then each receiving party hashes the same
amount of data; with our given estimates, this takes 2 - 12ms = 24ms. However, the hashing
done by the leader can overlap entirely with the transmission delay (the hashing can be done
concurrently with the transmission of the fragments). For the receiving parties, in a typical
execution, of the 3 bytes of data they need to hash, at least 25 bytes of hashing can overlap
with the transmission delay (assuming the hashing is done as packets are received). If they
receive support shares from all other parties, no more hashing needs to be done. In the worst
case, they need to hash /3 bytes (after the re-encoding step), and with our given estimates, this
takes 4ms. Using multiple cores, this could likely be reduced even more.

— signing and aggregating: each party generates a support share and then forms a support cer-
tificate. With our given estimates, this takes a total of 2ms. However, the 1ms of time spent
forming a support certificate easily overlap the above 4ms of hashing time (assuming multiple
cores). We do not count here the cost of processing commit shares and certificates, as these can
be performed on a separate core.

This all adds up to a computation delay of 24ms + 4ms + 1ms = 29ms, and we will round this up
to 40ms to be conservative (although by exploiting multiple cores, it could be much less).

With these parameters, we estimate the total delay per slot as:

— 200ms transmission,
— 200ms propagation,

— 40ms computation.

This translates to a throughput of 8MB every 440ms, so about 18MB per second. The optimistic
consecutive-proposal latency is 440ms and the optimistic proposal-commit latency is that plus
about 100ms, so about 540ms.

To get a better understanding of this setting, consider the following example timeline. Suppose
that at time ¢ a leader starts transmitting the packets of a block. By time (roughly) ¢ 4+ 100ms the
other parties start echoing these packets. By time (again, roughly) ¢ + 200ms the leader finishes
transmitting packets and transmits the remaining elements of its block proposal. By time ¢ 4 300ms
all of these packets and remaining elements have been echoed by the other parties; moreover, by
this same time, the other parties have validated the block proposal and have broadcast a signature
share on a corresponding support message. By time ¢ + 400ms, the other parties have received all
the fragments and other data they need, and then perform 40ms of computation to finish the slot
with an approved block by time ¢ + 440ms.

Note that all of the above estimates are essentially independent of n. Indeed, the component of
propagation and computation delay that depends on n will be a very small fraction of the total for
block sizes of at least 1MB and for n up to several hundred.

Later in Section 5.3 we will discuss a variation of DispersedSimplex that supports “stable
leaders”, and we will argue that this leads to even better performance.

12

4 Comparison to other protocols

4.1 Simplex

As already mentioned above in Section 3.4.2, the optimistic proposal-commit latency (36) and
the optimistic consecutive-proposal latency (29) of DispersedSimplex are the same as for Simplex.
A proper comparison of the communication complexity of DispersedSimplex and Simplex is not
really possible. This is because description of Simplex in [CP23] is a bit problematic: taking the
description of the protocol in Section 2.1 of [CP23] literally, the size of the message in slot v is
actually proportional to v, but elsewhere (in particular in Section 3.4 of [CP23]) it is suggested that
messages are much smaller (but without any details). DispersedSimplex is optimistically responsive,
just like Simplex.

4.2 HotStuff and HotStuff-2

We may also compare DispersedSimplex to HotStuff [YMR 18] and the recently proposed improve-
ment HotStuff-2 [MN23].

4.2.1 Latency. HotStuff-2 has an optimistic proposal-commit latency of 56 while HotStuff has
a an optimistic proposal-commit latency of 7§. Pipelined versions of these protocols can achieve an
optimistic consecutive-proposal latency 20. Thus, (pipelined versions of) HotStuff and HotStuff-2
have the same optimistic consecutive-proposal latency of DispersedSimplex, but have worse opti-
mistic proposal-commit latency (which is just 36 for DispersedSimplex).

We note that HotStuff and HotStuff-2 are optimistically responsive, just like DispersedSimplex
and Simplex.

4.2.2 Communication complexity. The reported communication complexity of HotStuff and
HotStuff-2 is
O(n(B+ r+ A)).

Recall that 8 bounds the block size, x the signature share/certificate size, and A\ the hash size.
For small blocks, specifically if § < n(k + Alogn), this communication complexity is better than
that of DispersedSimplex, which is O(n3 +n?(k+ Alogn)), as we discussed above in Section 3.4.1.
However, this reported communication cost does not actually take into account the cost of reliable
block dissemination. In these protocols, the leader is (apparently) supposed to simply send its
proposed block to each party — at least, that is what is written in [YMR'18].

This creates two problems. First, there is no mechanism specified that ensures that all honest
parties obtain the payloads of committed blocks. Naive mechanisms in which parties simply poll
other parties for missing blocks can easily degenerate into O(n?3) communication complexity: all
corrupt parties could simply ask for a block from all honest parties. If information dispersal tech-
niques are used to ensure data availability, this would again make the communication complexity
quadratic in n. So at best, the communication complexity of these protocols is better only for small
blocks and only assuming corrupt parties do not misbehave too much.

Second, if the description in [YMR™18] is taken literally, the communication load in HotStuff
(and apparently HotStuff-2) is very unbalanced. This can create a communication bottleneck at the
leader. Indeed, as demonstrated empirically in [MXC*16,SDPV19], it seems that for systems with

13

moderate network size (n up to a hundred or so) and large block sizes, taking care to disseminate
blocks to all parties in a way that does not create a bottleneck at the leader is more important
in practice than worrying about the quadratic dependence on n in the communication complexity.
In contrast, as mentioned above in Section 3.4.1, the communication load of DispersedSimplex is
balanced. That is, each party, including the leader, transmits roughly the same about of data over
the network. Thus, while in HotStuff (and HotStuff-2), the leader has to transmit O(nf) bytes
across the network, in DispersedSimplex, the leader (and every party) transmits O(3) bytes across
the network.

4.2.3 Concrete estimates. It would be interesting to perform a careful empirical investigation
to compare the real-world performance of DispersedSimplex and (pipelined) HotStuff/HotStuff-2
under various parameter settings. However, we can attempt to make a “back of the envelope”
calculation, similar to what we did in Section 3.5. With the parameters we used there (1Gb/s
network bandwidth and 100ms network latency), the propagation delay per slot would be the
same, so about 200ms, and the computation delay would be less. As for the transmission delay, if
the block size is 8 bytes, then in each slot the leader has to transmit a total of nj bytes across the
network. As a specific example, let us say n ~ 100, so the transmission delay would be about 800ms
for every 1MB of block data. This is obviously much worse than the 25ms per 1MB of block data
for DispersedSimplex. With these estimates, the best possible throughput that could be achieved
is 1.25MB of block data per second. More concretely, suppose we set the block size to 1IMB. So
ignoring computation delay (which is just a few ms), the throughput is about 1MB per second
(vs 18MB for DispersedSimplex), the optimistic consecutive-proposal latency is 1s (vs 440ms for
DispersedSimplex), and (for HotStuff-2) the optimistic proposal-commit latency is that plus about
300ms, so about 1.3s (vs 540ms for DispersedSimplex).

In the above calculations, we saw that for an unbalanced protocol like HotStuff (or PBFT), as n
increases, the throughput should decrease, and the latency should increase, while in a balanced pro-
tocol like DispersedSimplex, throughput and latency should not depend very much on n. This type
of behavior has been confirmed experimentally in papers such as [MXC*16,SDPV19], although not
for the exact protocols considered here. Also, while we focused on throughput and latency, there
are other costs to consider — namely, the monetary (or other) costs associated with transmitting
a certain amount of data. These costs are directly proportional to the overall communication com-
plexity, and it is indeed true that erasure coding does inflate these costs by a factor of 3. Another
factor to potentially consider is the fact that for a balanced protocol like DispersedSimplex, the
rate at which each party is transmitting is fairy constant, while for protocols like HotStuff, it is
very bursty.

4.2.4 A tension between timeouts. Another issue with HotStuff-2 is that in addition to a
timeout analogous to the value A used in DispersedSimplex, there is a waiting period A’ used by
the leader in some situation to ensure that is becomes aware of any “hidden locks” held by other
parties that would prevent its proposal from being accepted (and thus lose the liveness property).
Now, it is a well-established technique that a system might choose an initial timeout A-value, but
parties might adjust this value upwards if progress is not being made for a while (which would deal
with situations where the network becomes significantly slower than the design parameter for an
extended period). One could obviously implement such a technique in both DispersedSimplex and
HotStuff-2. Note that parties make these decisions locally and may end up with (very) different

14

values of A. However, to preserve liveness in HotStuff-2, the leader would have to adjust A" as well
as A. Unfortunately, if the leader’s value of A’ becomes too large relative the timeout A-values of
the other parties, the other parties will time out before the leader makes its proposal. It is not clear
if this is a significant problem in practice, but it is worth pointing it out as a potential problem.
In contrast, in a protocol such as DispersedSimplex, if some parties have a A-value that is “too
large”, this will not impact liveness — it will only impact what we called above the “optimistic
k-gap proposal latency”, that is, the latency between proposals made between consecutive honest
leaders separated by k corrupt leaders.

4.3 ICC

The Simplex protocol bears a passing resemblance to the ICC protocols ICC in [CDH*21]. The
main difference is that for the ICC protocols, if the leader for a slot v is perceived to fail, then
instead of simply timing out, a (somewhat complicated) fail-over mechanism is triggered that will
eventually approve a proposal for slot v from a different party. Latency and communication costs
in the optimistic setting for protocols ICCO and ICC1 in [CDH'21] are very similar to that of
Simplex. We note that protocol ICC2 in [CDH*21] employs information dispersal techniques to
get better communication complexity, but at the expense extra latency. Thus, DispersedSimplex is
both simpler and more efficient than that any of the ICC protocols.

5 Other topics

5.1 Implementing the block proposal validation logic

To validate a proposal for a block B in slot v whose parent is a block B’ in slot v/, a party needs
to check if its complaint pool contains complaint certificates for slots v' + 1,...,v — 1. Here is a
simple, practical way to do this.

Suppose that when a party enters the loop iteration for slot v, the highest slot number for which
it has committed is veom. We know by the Incompatibility of Complaint and Commit Property, there
can never be a complaint certificate for slot veom. So the party can maintain two data structures.

— A doubly linked list of those slots in the range {vcom,...,v — 1} for which it does not have a
complaint certificate, in order from lowest to highest.

— A lookup table from {vcom,-..,v — 1} to nodes in this doubly linked list — this table could just
be a dynamic, circular array.

Then, the party can perform the following operations:

— Whenever a new complaint certificate appears for a slot in the range {vcom, ..., v—1}, it accesses
the corresponding node via the lookup table and removes it from the linked list.

— When the value of veom or v is increased, it updates both the lookup table and linked list in the
obvious way.

For each slot, a constant amount of work is performed to maintain this data structure. Moreover,
at any point in time, a party can find in constant time the highest slot number v* < v for which it
has complaint certificates for slots v* +1,...,v — 1.

15

5.2 Simple variations
We mention here a few simple variations of DispersedSimplex.

— Choice of parent block. In the protocol, the leader in slot v proposes a new block whose parent
is Bpreyv. In fact, the leader is free to choose as the parent block any block B’ for a slot v’
such that v < v and the leader’s complaint pool contains complaint certificates for each slot
o +1,...,0—1.

— Mowing on from bad blocks. In the protocol, in managing the approved block pool, when a party
reconstructs the payload and finds that it is bad (either L or otherwise invalid), it effectively
just ignores the block and the slot will eventually time out. In a variation, parties could choose
to move on to the next slot right away. To do this, we also have to modify the protocol in two
ways. First, each party should record the fact that is there was bad block in a given slot. Second,
the logic for block proposal validation should change, so that instead of checking that we have
a complaint pool contains complaint certificates for each slot v/ +1,...,v — 1, we check that for
each of these slots, we either saw a bad block or we have a complaint certificate.

— Optimizing small payloads. For small payloads, instead of erasure coding the payload and dis-
persing fragments, the leader could just disperse the payload directly. A support share would
also contain the payload as well.

5.3 Stable leaders

In many settings, it makes sense to keep a leader that is doing a good job in place for an extended
number of slots. There are a number of advantages to this. One advantage is with respect to
the most common type of failure, when a party is temporarily crashed or rebooting. In this case,
whenever such a crashed party is selected as leader, the protocol has to wait sufficiently long to
“time out” and move to the next slot, effectively wasting the equivalent of a few slots. In contrast, if
a leader by default stays in place for, say, 1000 slots, when we come to a crashed leader, we will still
waste the equivalent of a few slots, but this will be a much smaller percentage of all slots. Another
advantage is that if transactions are being submitted to the system by external clients, then (just
as in classical PBFT) these transactions can typically just be sent to a stable leader (but may be
sent to other parties as well if censorship is suspected). Yet another advantage, as we will discuss
below, is that a stable leader can drive the protocol even faster, achieving both higher throughput
and lower latency.

The Simplex protocol has such a very natural internal logic to it that the logic for maintaining
stable leaders suggests itself almost immediately. Let us say that by default a leader will stay in
place for a certain number of consecutive slots, which we call an epoch. For example, one epoch
might be 1000 consecutive slots.

— So that we can move to the next epoch as soon as we detect a faulty leader, we shall adopt
the convention that a complaint certificate for a slot v effectively covers the rest of the epoch
containing v.

— In order to maintain safety, this means that any party that issues a complaint share for a slot v
must abstain from issuing a commit certificate in slot v and all remaining slots of the interval
containing v.

— This means that once one honest party issues a complaint share for a slot v, it may not be
possible to commit a block in slot v or in any of the remaining slots of the interval containing
v, even though blocks may continue to be supported and approved.

16

— Therefore, in order to maintain liveness, we introduce logic that prevents parties from moving
too far ahead of the slot of the last committed block in an epoch.

,_[StableDispersedSimplex: main loop for party P; }

Biast < Bgen, v <1
repeat forever
tstart < clock()
done < proposed < supported < complained < false
if v = begin(v) then complainedInEpoch + false // mnew epoch
while not done do
wait until either:
there is a complaint certificate in the complaint pool for any slot in [begin(v)..v] =
done < true, v < end(v) + 1 // go to next epoch
there is an approved block B for slot v in the approved block pool and
(v =end(v) or there is a commited block for all slots in [begin(v)..v — k]) =
if not complainedInEpoch then broadcast a commit share for v
done + true, v < v+ 1, Blast < B // go to next slot
not complained and (complainedInEpoch or clock() > tstars + A) =
complained < complainedInFEpoch < true
broadcast a complaint share for slot v

// The rest is the same as in Fig. 1
leader(v) = P; and not proposed =
proposed <— true
generate block proposal material B, (fi,71),..., (fn,7n)
for ¢ € [n]: send BlockProp(B, fi, m;) to P;
not supported and received from leader(v) a valid block proposal BlockProp(B, f;,m;) =
supported < true
generate a signature share o; on Supp(B)
broadcast the support share SuppShare(B, o;, f;, 7;)

Fig. 2. Logic for main loop of StableDispersedSimplex protocol for party P;

The details of our protocol, which we call StableDispersedSimplex, are in Fig. 2. Note that for
any slot number v, begin(v) denotes the first slot number of the epoch containing v, while end(v)
denotes the last slot number in an epoch. The value k is a constant parameter, which can be set to
1 or any other small positive integer. The logic to go to the next slot on seeing an approved block
ensures that the approved blocks do not get more than & slots ahead of the committed blocks (and
if the network is well behaved and the leader is honest, it should never get more than 1 slot ahead).
The protocol makes use of the identical subprotocols for maintaining support, commit, complaint,
and approved block pools. The logic for generating block proposals is identical to that in the basic
protocol. The logic for validating block proposals is the same as in the basic protocol, except that
instead of checking that the complaint pool contains complaint certificates for slots v’ +1,...,v—1,
it checks that it contains complaint certificates that effectively cover this interval — that is, for
each w € [v'+1..v— 1], there exists a complaint certificate for a slot u such that w € [u..end(u)].
It is an easy exercise to generalize the data structures and algorithms in Section 5.1 to work in this
setting. One sees that this protocol is identical to the basic protocol if all epochs are of size 1. We
leave the safety and liveness analysis to the reader.

17

Just as we mentioned in Section 2.4, the protocol would also provide both safety and liveness
even if we imposed the rule that a party does not issue a support share if it has already issued a
complaint share (and this rule would be imposed for the remainder of the epoch). We note also
that the “moving on from bad blocks” variation in Section 5.2 could also be adopted here, except
that such a bad block would would effectively cancel the remainder of the epoch.

Note that the complaint mechanism can also be used to dislodge a leader that is producing
committed blocks that consistently do not satisfy some “quality” metric (this includes apparent
censorship), or perhaps is producing approved blocks at a rate that is consistently slow (but not
slow enough to trigger a normal timeout).

5.3.1 Improved performance through stability. As mentioned above, performance can be
improved by having stable leaders. To see how, let us return to the concrete example in Section 3.5,
with the parameters used there: n &~ 100 parties connected over a WAN, 1Gb/s bandwidth, 100ms
latency, and an 8MB block size.

In the example timeline we gave there, if the leader starts transmitting the packets of a block
at time ¢, then by time (roughly) ¢ + 200ms the leader stops transmitting, but the other parties
will not finish the slot until time (again, roughly) ¢ + 440ms. With a constantly rotating leader,
the leader for the next slot will wait until this time before it begins transmitting the packets of
its block. However, a stable leader can start transmitting these packets already at time ¢ + 200ms.
Indeed, between time ¢ and ¢t + 200ms, it could have gathered the transactions for its next block
(and even performed the erasure encoding of that block), so that it can start transmitting the
these packets right away at time ¢ + 200ms. By time ¢ + 400ms all of these packets will have been
transmitted by the leader, and by time ¢ + 500ms all of these packets will have been echoed by all
other parties; moreover, by the same time, the previous block should already have been approved
(this should have happened already at time ¢ 4+ 440ms), and so the other parties have all the data
they need to validate the block proposal and will broadcast a signature share on a corresponding
support message. Thus, throughout an epoch, we basically get another level of pipelining, with the
leader starting a new slot every 200ms. Moreover, throughout an epoch when the leader is honest
and the network is well behaved, all parties will essentially fully utilize their network bandwidth
all of the time. Achieving all this assumes multi-threading on a few cores.

This translates to a throughput of 8MB every 200ms, so about 40MB per second. The optimistic
consecutive-proposal latency is 200ms and the optimistic proposal-commit latency is that plus about
100ms, so about 300ms.

Finally, we note that while the stable leader may nearly saturate its upload bandwidth, it is
not consuming very much download bandwidth, which leaves plenty of bandwidth available for
downloading transactions that are submitted directly to the stable leader by external clients.

5.4 A signature-free variant

It is perhaps worth pointing out that Simplex, as well as DispersedSimplex, can be implemented
without any threshold signatures at all. In this implementation, the only cryptographic assumptions
needed are authenticated communication links and collision resistant hash functions (used for block
chaining in both Simplex and DispersedSimplex and for Merkle trees in DispersedSimplex). The
price to pay, however, is some extra latency. In this section, we sketch how this may be done in a
fairly simple and modular fashion.

18

The basic idea is to use the “echo/ready” logic of Bracha’s reliable broadcast protocol [Bra87]
in place of threshold signatures. The general idea is this:

— To issue a signature share on a message m, a party broadcasts the object Echo(m).

— Whenever a party receives the same object Echo(m) from n — ¢ distinct parties, or the same
object Ready(m) from ¢ + 1 distinct parties, he broadcasts the object Ready(m) (if he has not
done so already).

— Whenever a party receives the same object Ready(m) from n — ¢ distinct parties, he reports out
a signature certificate on m.

The analogs of the Quorum Size Property and Quorum Intersection Property hold here as well:

Quorum Size Property: If some honest reports out a signature certificate on a message m, then
n — t — t' honest parties must have issued signature shares on m, where ¢’ < t is the number of
corrupt parties.

Quorum Intersection Property: If some honest party reports out a signature certificate on m
and some honest party reports out a signature certificate on m’ # m, then at least one honest
party must have issued signature shares on both m and m’.

Another property enjoyed by this logic is a completeness property, which says that if one honest
party reports out a signature certificate on a message m at time ¢, then eventually all honest parties
will do so (and before time 2§ if the network is d-synchronous over [¢,t + 24]).

The above logic can be incorporated into the management of the support, commit, and complaint
pools in Section 2.3.1. These pools keep track of those which certificates have been reported out,
and this information is used to manage the approved block pool as in Section 2.3.2, to commit
blocks as in Section 2.3.3, and to implement the logic of the main protocol as in Section 2.4. This
all works because the only thing that a party in the original protocol did with a certificate was to
(i) keep track of which certificates it had obtained obtained, and (ii) ensure that all other parties
obtained the same certificates.

5.4.1 Safety and liveness. In terms of the analysis of the safety and liveness properties of the
resulting protocol, the only changes are as follows:

— In the completeness property in Section 3.1, the statement regarding the timing of the delivery
of object X should read as follows: if X appears in a party’s pool time t and the network is
0-synchronous over [t,t + 28], then X it will appear in every party’s pool before time t 4 24.

— Lemma 3.1 holds without change.

— Lemmas 3.2 and 3.3 hold if we replace the assumption that the network is d-synchronous by
the assumption that it is (d/2)-synchronous.

5.4.2 Communication complexity. The communication complexity is the same as reported
in Section 3.4.1, but with x := 1.

5.4.3 Latency. If we consider the latency metrics discussed in Section 3.4.2, then all of the la-
tency bounds essentially double. In particular, if the network is d-synchronous, then for Dispersed-
Simplex, as well as for Simplex, the optimistic proposal-commit latency is 60 and the optimistic

19

consecutive-proposal latency is 40. These estimates take into account the fact that if an honest
leader makes a proposal at time ¢, then all parties will receive the proposal by time ¢ + d; however,
the other parties may need to wait until time ¢ 4+ 26 to obtain the data needed to validate the pro-
posal (the support or complaint certificate for the previous slot) as they wait for Bracha’s “ready
amplification” logic to run its course.

As discussed in Section 3.4.2, the optimistic consecutive-proposal latency upper bounds the
optimistic reciprocal block throughput, the reciprocal of the rate at which blocks are proposed (and
committed) in a steady state where all leaders are honest and the network is appropriately syn-
chronous. In this setting, the optimistic reciprocal block throughput is actually bounded by = 34.
To see this, let us define p, to be the time at which the slot-v leader proposes a block B,, and s,
to be the time at which the following event happens: either

— all honest parties have issued a support share for B, or
— some honest party approves B,.

With this definition, and by Bracha’s “echo/ready” logic, we see that by time s, + 20, all honest
parties will have approved B,. We have

Spt1 < Sy + 30. (1)

To see this, note that by time s, + 2§ all honest parties, including the slot-(v + 1) leader, will have
approved B,, and so by time s, + 34 all honest parties have either issued a support share for B,
or approved B,41. We also clearly have

Po < 5u. (2)

In addition, we have
sy < py + 26, (3)

which again follows from Bracha’s “echo/ready” logic. Therefore, if the leaders in slots v,v +
1,...,v + k are all honest, we have

Ptk < Spyk (from (2))
= Py — Pv T Sutk
<Py — (8y —20) + syy (from (3))
= Dv + 20 + (Sptk — Sv)
<py+20+3kd (from (1)),

which implies (for large k) that the optimistic reciprocal block throughput is bounded by ~ 34.

5.4.4 Stable leaders. The above technique can clearly be used to make the StableDispersed-
Simplex protocol in Section 5.3 signature free as well. In this setting, the optimistic reciprocal block
throughput can be reduced from =~ 3§ to ~ 25. Moreover, the very fact that the leader is stable
makes the notion of optimistic reciprocal block throughput more relevant. The main idea is the
observation that a stable leader need not wait until it has reported out a support certificate for
one block before proposing the next block (in contrast, if the leader is constantly rotating, the next
leader must wait to report out either a timeout or support certificate for the previous slot, in order
to maintain liveness). Instead, we can impose the following pipelined proposal rule: the leader will
propose block B, ;1 in slot v + 1 upon

20

— receiving support-echo objects for B, from n — t distinct parties, or
— receiving support-ready objects for B, from ¢ + 1 distinct parties.

This proposal rule ensures that at the time the leader proposes B,1, at least n —t — ¢’ honest
parties have issued support shares for B, (and hence have already approved B,,_1). Thus, the leader
does not run too far ahead of the other honest parties.

With the values p, and s, defined as above, the inequalities (2) and (3) hold just as before.
Based on the pipelined proposal rule, it is not hard to see that p,11 < s, + 6. From this, we see
that

Sp+1 < max{sy + 28, py+1 + 0} < sy + 20.

Therefore, by reasoning similar to that used above, we see that
Potk < po +2(k +1)6,

which implies (for large k) that the optimistic reciprocal block throughput is bounded by = 20.

Note also that with this pipelining, if one also takes into account transmission and computational
delays, this version of the protocol should be able to sustain exactly the same level of throughput
discussed in Section 5.3.1 (under the same assumptions).

Acknowledgments

Thanks to Benjamin Chan and Rafael Pass for helpful discussions on the Simplex protocol. Thanks
to Ed Felten for suggesting the “packet-switching pipeline” strategy in Section 3.5.

References

ADVZ21. N. Alhaddad, S. Duan, M. Varia, and H. Zhang. Succinct erasure coding proof systems. Cryptology ePrint
Archive, Paper 2021/1500, 2021. https://eprint.iacr.org/2021/1500.

BDN18. D. Boneh, M. Drijvers, and G. Neven. Compact multi-signatures for smaller blockchains. Cryptology
ePrint Archive, Paper 2018/483, 2018. https://eprint.iacr.org/2018/483.

BLSO01. D. Boneh, B. Lynn, and H. Shacham. Short signatures from the Weil pairing. In C. Boyd, editor,
Advances in Cryptology - ASIACRYPT 2001, 7th International Conference on the Theory and Application
of Cryptology and Information Security, Gold Coast, Australia, December 9-13, 2001, Proceedings, volume
2248 of Lecture Notes in Computer Science, pages 514-532. Springer, 2001.

Bol03. A. Boldyreva. Threshold signatures, multisignatures and blind signatures based on the gap-diffie-hellman-
group signature scheme. In Y. Desmedt, editor, Public Key Cryptography - PKC 2003, 6th International
Workshop on Theory and Practice in Public Key Cryptography, Miami, FL, USA, January 6-8, 20083,
Proceedings, volume 2567 of Lecture Notes in Computer Science, pages 31-46. Springer, 2003.

Brag7. G. Bracha. Asynchronous byzantine agreement protocols. Inf. Comput., 75(2):130-143, 1987.

CDH™21. J. Camenisch, M. Drijvers, T. Hanke, Y.-A. Pignolet, V. Shoup, and D. Williams. Internet computer
consensus. Cryptology ePrint Archive, Report 2021/632, 2021. https://ia.cr/2021/632.

CL99. M. Castro and B. Liskov. Practical byzantine fault tolerance. In M. I. Seltzer and P. J. Leach, editors,
Proceedings of the Third USENIX Symposium on Operating Systems Design and Implementation (OSDI),
New Orleans, Louisiana, USA, February 22-25, 1999, pages 173-186. USENIX Association, 1999. URL
https://dl.acm.org/citation.cfm?id=296824.

CP23. B. Y. Chan and R. Pass. Simplex consensus: A simple and fast consensus protocol. Cryptology ePrint
Archive, Paper 2023/463, 2023. https://eprint.iacr.org/2023/463.
CTO05. C. Cachin and S. Tessaro. Asynchronous verifiable information dispersal. In P. Fraigniaud, editor, Dis-

tributed Computing, 19th International Conference, DISC 2005, Cracow, Poland, September 26-29, 2005,
Proceedings, volume 3724 of Lecture Notes in Computer Science, pages 503-504. Springer, 2005.

21

https://eprint.iacr.org/2021/1500
https://eprint.iacr.org/2018/483
https://ia.cr/2021/632
https://dl.acm.org/citation.cfm?id=296824
https://eprint.iacr.org/2023/463

DLS8S.

DW20.

LAHCI6.

LC12.

LLTW20.

MN23.

MXCt16.

Sch90.

SDPV19.

YMR*18.

YPA'21.

C. Dwork, N. A. Lynch, and L. J. Stockmeyer. Consensus in the presence of partial synchrony. J. ACM,
35(2):288-323, 1988.

S. Dolev and Z. Wang. SodsBC: Stream of distributed secrets for quantum-safe blockchain. In 2020 IEEE
International Conference on Blockchain (Blockchain), pages 247-256, Los Alamitos, CA, USA, 2020. IEEE
Computer Society.

S. Lin, T. Y. Al-Naffouri, Y. S. Han, and W. Chung. Novel polynomial basis with fast Fourier transform
and its application to Reed-Solomon erasure codes. IEEE Trans. Inf. Theory, 62(11):6284-6299, 2016.

S. Lin and W. Chung. An efficient (n, k) information dispersal algorithm for high code rate system over
Fermat fields. JEEE Commun. Lett., 16(12):2036-2039, 2012.

Y. Lu, Z. Lu, Q. Tang, and G. Wang. Dumbo-MVBA: Optimal multi-valued validated asynchronous
byzantine agreement, revisited. In Y. Emek and C. Cachin, editors, PODC ’20: ACM Symposium on
Principles of Distributed Computing, Virtual Event, Italy, August 3-7, 2020, pages 129-138. ACM, 2020.
D. Malkhi and K. Nayak. Extended abstract: HotStuff-2: Optimal two-phase responsive BFT. Cryptology
ePrint Archive, Paper 2023/397, 2023. https://eprint.iacr.org/2023/397.

A. Miller, Y. Xia, K. Croman, E. Shi, and D. Song. The honey badger of BFT protocols. In E. R.
Weippl, S. Katzenbeisser, C. Kruegel, A. C. Myers, and S. Halevi, editors, Proceedings of the 2016 ACM
SIGSAC Conference on Computer and Communications Security, Vienna, Austria, October 24-28, 2016,
pages 31-42. ACM, 2016.

F. B. Schneider. Implementing fault-tolerant services using the state machine approach: A tutorial. ACM
Comput. Surv., 22(4):299-319, 1990.

C. Stathakopoulou, T. David, M. Pavlovic, and M. Vukoli¢. Mir-BFT: High-throughput robust bft for
decentralized networks, 2019. arXiv:1906.05552, http://arxiv.org/abs/1906.05552.

M. Yin, D. Malkhi, M. K. Reiter, G. G. Gueta, and I. Abraham. HotStuff: BFT consensus in the lens of
blockchain, 2018. arXiv:1803.05069, http://arxiv.org/abs/1803.05069.

L. Yang, S. J. Park, M. Alizadeh, S. Kannan, and D. Tse. DispersedLedger: High-throughput byzantine
consensus on variable bandwidth networks, 2021. arXiv:2110.04371, http://arxiv.org/abs/2110.04371.

22

https://eprint.iacr.org/2023/397
http://arxiv.org/abs/1906.05552
http://arxiv.org/abs/1803.05069
http://arxiv.org/abs/2110.04371

	Sing a song of Simplex
	1 Introduction
	2 The DispersedSimplex protocol
	2.1 Preliminaries
	2.1.1 Signatures.
	2.1.2 Information dispersal.

	2.2 Protocol data objects
	2.2.1 Blocks.
	2.2.2 Support, commit, and complaint shares and certificates.
	2.2.3 Payload reconstruction.

	2.3 Subprotocols
	2.3.1 Support, commit, and complaint pools.
	2.3.2 Approved block pool.
	2.3.3 Block commitment.

	2.4 The main protocol
	2.4.1 Generating block proposals.
	2.4.2 Validating block proposals.

	3 Analysis
	3.1 Initial observations
	3.2 Safety
	3.3 Liveness
	3.4 Complexity estimates
	3.4.1 Communication complexity.
	3.4.2 Latency.

	3.5 Other costs and concrete estimates

	4 Comparison to other protocols
	4.1 Simplex
	4.2 HotStuff and HotStuff-2
	4.2.1 Latency.
	4.2.2 Communication complexity.
	4.2.3 Concrete estimates.
	4.2.4 A tension between timeouts.

	4.3 ICC

	5 Other topics
	5.1 Implementing the block proposal validation logic
	5.2 Simple variations
	5.3 Stable leaders
	5.3.1 Improved performance through stability.

	5.4 A signature-free variant
	5.4.1 Safety and liveness.
	5.4.2 Communication complexity.
	5.4.3 Latency.
	5.4.4 Stable leaders.

	Acknowledgments
	References

