
Fast polynomial multiplication using matrix
multiplication accelerators with applications to

NTRU on Apple M1/M3 SoCs
Décio Luiz Gazzoni Filho1,2 , Guilherme Brandão3 and Julio López1

1 Universidade Estadual de Campinas (UNICAMP), Instituto de Computação, Campinas, Brazil
2 State University of Londrina, Department of Electrical Engineering, Londrina, Brazil

3 Independent Researcher, Londrina, Brazil

Abstract. Efficient polynomial multiplication routines are critical to the performance
of lattice-based post-quantum cryptography (PQC). As PQC standards only recently
started to emerge, CPUs still lack specialized instructions to accelerate such routines.
Meanwhile, deep learning has grown immeasurably in importance. Its workloads call
for teraflops-level of processing power for linear algebra operations, mainly matrix
multiplication. Computer architects have responded by introducing ISA extensions,
coprocessors and special-purpose cores to accelerate such operations. In particular,
Apple ships an undocumented matrix-multiplication coprocessor, AMX, in hundreds of
millions of mobile phones, tablets and personal computers. Our work repurposes AMX
to implement polynomial multiplication and applies it to the NTRU cryptosystem,
setting new speed records on the Apple M1 and M3 systems-on-chip (SoCs).
Keywords: PQC · NTRU · Apple Silicon · Accelerators

1 Introduction
In the 1990s, Shor [Sho97] described an efficient quantum algorithm to solve hard problems
(integer factorization and discrete logarithms) for classical computers, compromising many
existing cryptosystems. Post-quantum cryptography (PQC) seeks to develop new public-key
cryptosystems based on hard computational problems resistant to quantum attacks, such as
those based on lattices. Research into efficient implementation flourished as multiprecision
integer arithmetic gave way to polynomial multiplication modulo “small” (CPU word size)
integers for lattice-based schemes, introducing new challenges and performance tradeoffs.

In their Turing lecture [HP19], computer architecture pioneers Hennessy and Patterson
claim that “(a)n era without Dennard scaling, along with reduced Moore’s Law and
Amdahl’s Law in full effect means inefficiency limits improvement in performance to only
a few percent per year”, suggesting that further hardware improvements must come from
domain-specific architectures tailored to specific applications. This is seen in the addition of
SIMD extensions and special-purpose instructions (such as for symmetric cryptography and
binary polynomial multiplication) to CPUs, as well as increasingly popular accelerators such
as programmable graphics processing units (GPUs), FPGAs and others. Such developments
have opened up new research agendas for efficient implementation of cryptosystems.

The meteoric rise of artificial intelligence, machine learning and deep learning in
the 2010s, and their demand for teraflops-level linear algebra performance, led to an
introduction of domain-specific architectures such as tensor cores for NVIDIA’s GPUs

E-mail: decio.gazzoni@ic.unicamp.br,dgazzoni@uel.br (Décio Luiz Gazzoni Filho), brandaogbs@
gmail.com (Guilherme Brandão), jlopez@ic.unicamp.br (Julio López)

This work is licensed under a “CC BY 4.0” license.
Date of this document: 2024-01-10.

https://orcid.org/0000-0002-6001-2172
https://orcid.org/0000-0002-1911-5348
https://orcid.org/0000-0001-5139-0158
mailto:decio.gazzoni@ic.unicamp.br,dgazzoni@uel.br
mailto:brandaogbs@gmail.com
mailto:brandaogbs@gmail.com
mailto:jlopez@ic.unicamp.br
https://creativecommons.org/licenses/by/4.0/deed.en
https://creativecommons.org/licenses/by/4.0/deed.en

2 Fast polynomial multiplication . . . with applications to NTRU on Apple M1/M3 SoCs

[MCL+18], IBM Power ISA’s Matrix-Multiply Assist (MMA) [MBB+21], Intel’s Advanced
Matrix Extensions (AMX) [Int22], and ARMv9-A’s Scalable Matrix Extensions (SME)
[WMS22]. The first three have launched in production hardware in 2017, 2021 and 2023,
respectively, whereas the latter, to our knowledge, hasn’t shipped as of 2023. Although
less publicized, a matrix multiplication accelerator has shipped in hundreds of millions of
mobile phones, tablets and personal computers, specifically those made by Apple, starting
with the 2019 A13 system-on-chip (SoC) used in the iPhone 11 [Rod20, Section 7.6]. It is a
coprocessor named AMX (no relationship to Intel AMX), also present in newer generations
of Apple SoCs, such as the M-series powering ARM-based Apple personal computers.

Our work investigates repurposing AMX to accelerate the core polynomial multiplica-
tion routine of lattice-based post-quantum cryptosystems, by implementing NTRU [HPS98],
specifically the proposal [CDH+20] that advanced to round 3 of NIST’s PQC standard-
ization process [Nat17], for Apple’s M1 and M3 SoCs. Despite NIST’s preference for Ky-
ber [ABD+19], NTRU is standardized by IEEE Std 1363.1 [Ins09] and ASC X9.98 [Ame17].
It is also representative of a wider class of lattice-based schemes based on NTT-unfriendly
rings such as SABER [BMD+20] and FrodoKEM [BCD+16, ABD+21]; the latter is rec-
ommended by the German BSI [Bun21] and under standardization by ISO [Int23c]. In
case of cryptanalytic attacks on Kyber, NTRU may be the target of renewed interest.

A potential roadblock is that AMX is undocumented by Apple; programmers are
intended to access it via calls to Apple’s Accelerate framework [App23], which provides
accelerated versions of the industry-standard BLAS library [LHKK79] and the proprietary
BNNS neural network API. Fortunately, extensive reverse-engineering efforts [Joh22b,
Han23, Caw23] document AMX’s instruction set and performance characteristics, allowing
us to develop a full NTRU implementation with AMX-accelerated polynomial multiplication
routines, as presented in this paper. The authors were not involved in these reverse-
engineering efforts, working only with the information made public in these references.

Related works. Google’s Tensor Processing Unit is described in [JYP+17]. It achieves
a peak throughput of 92 TOPS/s and 15–30× faster neural network inference than CPUs
and GPUs of that era. [MBB+21] reports a 2× speedup by using MMA over regular vector
code for double-precision matrix multiplication in the POWER10 CPU.

Some works demonstrate speedups from NVIDIA tensor cores, including for PQC
schemes [MCL+18, WZF+22, LSH+22, LSZH22]. However, GPU architectures, being high-
throughput but high-latency, need aggressive batching (thousands to tens of thousands of
parallel KEM/signature operations) to realize their performance potential, severely limiting
applicable use cases. We view direct comparisons of batch and online implementations
(for CPUs and, as we shall show, AMX) as unfair, and refrain from doing so in this paper.

We found no references to Apple AMX in the scientific literature, and Apple does not
officially document AMX functionality or performance characteristics. We resort to reverse
engineering efforts of [Joh22b, Han23, Caw23], which we summarize in Section 3.

Lastly, we consider ARMv8-A implementations of NTRU. Karatsuba and Toom-
Cook algorithms are implemented in [NG21], achieving speedups on the M1 of up to
6.68× and 8.49× for encapsulation and decapsulation, respectively, versus the reference
implementation. [CCHY23] set new speed records for the HPS2048677 and HRSS701
parameter sets using the TMVP algorithm. They also optimized polynomial inversion and
constant-time sorting, speeding up key generation, encapsulation and decapsulation by
7.67×, 2.48× and 1.77×, respectively, compared to [NG21] on the Cortex-A72 core.

Our contributions. We present the first (to our knowledge) implementation targeting
AMX in the scientific literature, and also the first cryptographic implementation on a
CPU-coupled matrix multiplication accelerator; previous works targeted GPU tensor cores.

Décio Luiz Gazzoni Filho, Guilherme Brandão, Julio López 3

Unlike GPUs, CPU-coupled matrix multiplication accelerators (coprocessors or instruc-
tion set extensions) can achieve high throughput without sacrificing latency. Indeed, we set
new NTRU speed records on Apple M1/M3 SoCs, outperforming state-of-the-art NEON
implementations under conditions previously seen in CPU implementations only: latency
(cycle count) for a single execution of the scheme’s operations, with no batching at all.

SIMD extensions required a paradigm shift from a scalar to a vector (1D) view of
computation; matrix multiplication accelerators further shift towards a matrix (2D) view.
AMX’s peak throughput is only achieved for its main matrix (outer product1) operation;
vector operation throughput is similar to NEON. Also, its instruction set is rather limited,
seemingly designed to implement only a restricted set of algorithms. Our main contribution
is repurposing AMX for a new application (polynomial multiplication) while realizing its
performance potential; this required a deep rethinking of polynomial multiplier architectures
to expose two-dimensional parallelism, maximizing the ratio of matrix to vector operations
to reap as much of its throughput as possible. We conjecture that the techniques we
propose for AMX may be applicable to many similar accelerators soon to reach the market.

Our implementation is freely available at https://github.com/...2

2 Preliminaries
Notation. Let a(x) = a0 + a1x + . . . an−1xn−1. A “slice” of the i-th through j-th
coefficients (j ≥ i) of a(x) is written as ai:j(x) = aix

i + ai+1xi+1 + . . . + ajxj . Boldface
variable names refer to an associated row vector representation: ai:j = [ai, ai+1, . . . , aj].
Let xi:j = [xi, xi+1, . . . , xj]; then ai:j(x) = ai:jxT

i:j . Finally, i : k : j represents ranges with
a non-unit step of k; e.g. ai:k:j = [ai, ai+k, ai+2k, . . . , aj]. We also combine slice notation
with C’s array indexing notation, i.e. X[i : j] selects elements of index i, . . . , j of X.

The NTRU cryptosystem. Based on the pioneering work of [HPS98], NTRU [CDH+20]
is a key encapsulation mechanism (KEM) merging the previous NTRUEncrypt [CHWZ17]
and NTRU-HRSS-KEM [HRSS17b] proposals, providing the suggested NTRU-HPS and
NTRU-HRSS parameter sets, respectively. Based on structured lattices, it uses polynomial
arithmetic modulo xn − 1 for prime n with coefficients reduced either modulo 3 or a
power of two, q. The original cryptosystem [HPS98] is a partially correct, probabilistic
public-key encryption (PKE) scheme. The NIST submission uses the techniques of [HPS96]
to obtain a perfectly correct, deterministic PKE, and constructs a KEM using a generic
transformation from this PKE [HHK17] which is IND-CCA2 secure in the random oracle
model (ROM), and in the quantum-accessible ROM under a non-standard assumption.

Let Φ1 = x − 1 and Φn = xn−1 + xn−2 + . . . + 1, so that Φ1Φn = xn − 1. Let
S3 = Z3 /Φn; we define the canonical representative of an element in S3, denoted as S3, as
the polynomial of degree at most n− 2 with coefficients in {−1, 0, 1}.

Algorithms 2.1, 2.2 and 2.3 define the NTRU PKE, where most of the execution time is
spent; for a full description of the scheme, including the routine Samplef,g, see [CDH+20].
Lift(m), for m(x) a polynomial, is defined as S3(m) for HPS and Φ1 ·S3(m/Φ1) for HRSS
parameter sets. Algorithms 2.2 and 2.3 call for 1 and 3 polynomial multiplications in the
HPS parameter sets, and Lift adds an extra multiplication for each in HRSS. Algorithm 2.1
appears to use 5 polynomial multiplications, but polynomial inversion modulo q in line 3
is usually realized as modulo-2 inversion followed by 4 Newton iterations to lift the result
to Zq/(Φ1Φn). This calls for an additional 8 multiplications, for a total of 13.

The submission includes four parameter sets: HPS2048509, HPS2048677, HPS4096821,
and HRSS701. The first three use fixed-weight sample spaces proposed by Hoffstein, Pipher,

1Also known as a rank-1 update, implemented e.g. by the BLAS [LHKK79] level 2 subroutine xGER.
2A GitHub repository will be made available following the paper’s publication.

https://github.com/...

4 Fast polynomial multiplication . . . with applications to NTRU on Apple M1/M3 SoCs

Algorithm 2.1 PKE.KeyGen: PKE keypair
generation
Input: seed
Output: (sk = (f, fp, hq), pk = h)

1: (f, g)← Samplef,g(seed)
2: fp ← (1/f) (mod 3, Φn)
3: v1 ← 1/(3gf) (mod q, Φn)
4: h← (v1(3g)2) (mod q, Φ1Φn)
5: hq ← (v1f2) (mod q, Φ1Φn)
6: return (sk = (f, fp, hq), pk = h)

Algorithm 2.2 PKE.Enc: PKE encryption
Input: h, (r, m)
Output: c

1: m′ ← Lift(m)
2: c← r · h + m′ (mod q, Φ1Φn)
3: return c

Algorithm 2.3 PKE.Dec: PKE decryption
Input: ((f, fq, hq), c)
Output: (r, m, fail)

1: v1 ← cf (mod q, Φ1Φn)
2: m0 ← v1fp (mod 3, Φn)
3: m1 ← Lift(m0)
4: r ← (c−m1)hq (mod q, Φn)
5: if (r, m0) ∈ Lr × Lm then

▷ See [CDH+20, Sections 1.2 and 1.3]
for definitions of Lr and Lm

6: return (r, m0, 0)
7: else
8: return (r, m0, 1)

Table 1: NTRU parameters and sizes (in bytes).

Parameter HPS2048509 HPS2048677 HPS4096821 HRSS701

(n, q) (509, 2048) (677, 2048) (821, 4096) (701, 8192)
Key sizes (public, private) 699, 935 930, 1234 1230, 1590 1138, 1450

Ciphertext sizes 699 930 1230 1138

and Silverman [HPS96, HPS98]; the last uses arbitrary-weight sample spaces proposed by
Hülsing, Rijneveld, Schanck, and Schwabe [HRSS17a]. Table 1 lists parameters and sizes.

3 Apple’s AMX coprocessor
AMX is a coprocessor from Apple to accelerate matrix multiplication operations, first
introduced in the Apple A13 SoC powering the iPhone 11 [Rod20]. All the information
in this section comes from reverse engineering efforts and analyses of Apple patents by
[Joh22b, Han23, Caw23], and is, by its nature, conjectural, although backed by extensive
functional and performance experiments. Throughout this section, we focus on the M1
AMX unit, as we found no information about changes in the recently released M3, although
our results of Section 5 indicate that M3 delivers increased AMX performance over M1.

3.1 Programmer’s model
AMX exposes 80 64-byte registers, split into eight X and eight Y registers (X0 to X7 and
Y0 to Y7), and 64 Z registers better viewed as rows of a matrix, denoted as Z[0], . . . , Z[63].
Figure 2, redrawn from an Apple patent [SBG+16, Figure 2], is a visualization of intended
register file organization. Some instructions can concatenate together either the X or Y
registers for bytewise addressing as 512-byte circular buffers, for which we use the slice
notation defined in Section 2. Figure 1 shows different X/Y register addressing notations.

X and Y are inputs and Z are outputs for most instructions, with a few exceptions. Data
cannot be moved between CPU and AMX registers directly; it must go through memory.

Décio Luiz Gazzoni Filho, Guilherme Brandão, Julio López 5

Bytes 0 . . . 63 64 . . . 127 128 . . . 447 448 . . . 512
Registers X0, Y0 X1, Y1 . . . X7, Y7

Slice notation X[0 : 31] X[32 : 63] . . . X[224 : 255]
(16-bit elements) Y[0 : 31] Y[32 : 63] Y[224 : 255]

Figure 1: Relationship between bytes, registers and slices in X and Y AMX registers.

X[0] X[1] · · · X[n]

Y[0] Z[0][0] += Y[0]X[0] Z[0][1] += Y[0]X[1] · · · Z[0][n] += Y[0]X[n]

Y[1] Z[1][0] += Y[1]X[0] Z[1][1] += Y[1]X[1] · · · Z[1][n] += Y[1]X[n]
...

...
...

. . .
...

Y[n] Z[n][0] += Y[n]X[0] Z[n][1] += Y[n]X[1] · · · Z[n][n] += Y[n]X[n]

Figure 2: AMX register file organization.

Different data types can be represented (8-, 16- or 32-bit integers, or 16-, 32- or 64-bit
floating-point values). Input/output lane widths may be identical or mixed in specific
combinations [Caw23]; in this paper we only use 16-bit inputs and outputs. The inputs to
outer product operations (Xi and Yi) are 32-element vectors of 16 bits each, resulting in a
32× 32 output matrix of 16-bit elements; this is smaller than Z’s available storage space
(16,384 out of an available 32,768 bits). In AMX, each row of the output matrix is mapped
to either the even or odd rows of Z, which are fully populated with output coefficients, as
the size of a row of Z (512 bits) matches the size of a row of the output matrix.

CPUs in a cluster can share an AMX unit through per-CPU replication of architectural
state [Joh22a, Han23]. Instructions are tagged with their source CPU to identify their copy
of the state; thus, multiple CPUs may interleave instruction execution [Han23]. Special
instructions (set/clr) control AMX’s enabled/disabled status for each thread [Caw23].

3.2 Programming interface
AMX instructions are inserted into the CPU’s instruction stream, and once no longer
speculative, are dispatched to AMX via the CPU’s store units [Han23]. They are encoded
as A64 instructions within a reserved opcode space [Caw23]; given A64’s fixed 32-bit
instruction encoding, only 10 bits remain, 5 of which encode the instruction’s opcode.
The remaining 5 bits either encode the index of a scalar 64-bit register through which
parameters are passed, or an immediate. This layout is shown in Figure 3. [Caw23]
provides preprocessor macros to emit AMX instructions, with an intrinsics-like syntax.

31 10 9 5 4 0
0000 0000 0010 0000 0001 00 opcode register/immediate

Figure 3: AMX instruction encoding.

3.3 Instruction set
We now list all known AMX instructions, reviewing those used by our polynomial multipli-
cation implementation, as well as parameters of interest; for an exhaustive specification, see
[Caw23]. We propose a taxonomy of instructions in Table 2, categorized by functionality.

6 Fast polynomial multiplication . . . with applications to NTRU on Apple M1/M3 SoCs

Table 2: A taxonomy of AMX instructions. Opcodes given in base 10.

Instruction Type Mnemonics(Opcode) Description

Loads and stores ldx(0), ldy(1), stx(2), sty(3),
ldz(4), stz(5), ldzi(6), stzi(7)

Data movement between
memory and AMX registers

Extract extrh(8), extrx(8),
extrv(9), extry(9)

Data movement within
the AMX register file

First generation
matrix/vector

fma64(10), fms64(11),
fma32(12), fms32(13),

mac16(14), fma16(15), fms16(16)

Outer or pointwise products
with accumulation/subtraction

Second generation
matrix and vector

vecint(18), vecfp(19),
matint(20), matfp(21)

Outer or pointwise products
with accumulation/subtraction

Miscellaneous set(17), clr(17), genlut(22) Context switching, lookup tables

We first consider loads and stores. The least-significant 56 bits of their 64-bit argument
are treated as a pointer to the source/target memory address; remaining bits encode
parameters as per Table 3. While many other instructions can address X/Y registers at
arbitrary byte positions, loads and stores require aligning to the start of a register (64-byte
boundary); register indices are encoded in bits 58–56 of the argument (or 61–56 for Z
rows). Memory accesses can be 64 bytes (bit 62 = 0) or 128 bytes (bit 62 = 1) wide.

Table 3: Parameters for AMX load and store instructions.

Bits ldx, ldy, stx, sty ldz, stz
63
62 Load/store single register (0) or pair of consecutive registers (1)

61–59 Z-row index (0 to 63)58–56 Register index (0 to 7)
55–0 Least significant 56 bits of pointer

We illustrate [Caw23]’s macros with an example of a load from an array with base
address v to register X4. We show a version using just their macros, a second using helper
macros defined by us, and a simplified notation used in the algorithms of Section 4:

C notation C notation, our helper macros Algorithm notation

AMX_LDX((uint64_t)v | 4 << 56); AMX_LDX(AMX_PTR(v) | LDX_REG(4)); X4 ← ldx(v[0 : 31])

We now briefly review other instructions, listing only functionalities of interest. Due to
the default role of X and Y as input and Z as output registers, at times data must be moved
from Z to X or Y, for which we use the extrh instruction. Its basic operation is copying a
chosen row of Z to a byte-addressable 64-byte slice of either X or Y; it also supports other
functionalities not required by us. For a visualization of extrh in use, refer to Figure 4.
Our algorithmic notation for an example operation of extracting Z[63] to Y0 is:

Y0 ← extrh(Z[63])

The main AMX arithmetic instruction we use is mac16, which supports vector and
matrix modes. Let x, y, z be 32-element vectors of 16-bit integers. Vector-mode mac16
computes pointwise multiply-accumulates (MACs): z ← z + x ◦ y, where + is vector
addition and ◦ is the Hadamard (pointwise) product. Concretely, z is a row of Z, and x
and y are 32-element slices of X and Y. Each of x, y, z can be optionally “skipped” to realize

Décio Luiz Gazzoni Filho, Guilherme Brandão, Julio López 7

different operations: vector addition (z← z + x or z← z + y), Hadamard product without
accumulation (z← x ◦y), or copying x or y to z, i.e. the extrh instruction in reverse. We
now define an algorithmic notation, using an example computation of z← z + x (skipping
the y input), in which we choose z to be the first row (i.e. that of index 0) of Z and x to
be elements 64 to 95 of X (i.e. bytes 128 to 191, or equivalently, the full X2 register):

Z[0]← mac16(Z[0] + X[64 : 95])

Let Z be a 32×32 matrix, and x and y be 32-element (row) vectors. Matrix-mode mac16
realizes an outer product operation with accumulation, as shown in Figure 2: Z← Z+yT x.
Concretely, the operands x, y, Z are mapped to slices of X and Y, and even or odd rows of
Z, respectively. As with vector-mode mac16, operands can be skipped, although skipping Z
appears to be the only sensible possibility, which disables accumulation. It is also possible
to partially skip either the X or Y registers (i.e. select only a range of elements within
each register for the computation). Consider an example operation of computing the outer
product YT

0 X0 (i.e. elements 0 to 31 of each of these registers), which are accumulated
with, and saved to, the even rows of Z, while updating only columns 0 to 15 of the output
matrix, using the partial X skip feature. Our algorithmic notation for this operation is:

Z[0 : 2 : 62]← mac16(Z[0 : 2 : 62] + YT
0 X0, columns = 0 : 15)

When the “columns” parameter is omitted, it is understood that all columns of the
output matrix are updated. It should be clear, from the operation performed, whether
vector- or matrix-mode mac16 is intended. A caveat: although within the context of AMX,
the Y registers are best understood as column vectors, our choice of notation takes a to
be a row vector, and thus aT as a column vector, throughout the paper. We extend this
convention to AMX’s X and Y registers, and thus write outer products in the form YT

i Xj .
Finally, vecint is a vector (pointwise) instruction which generalizes vector-mode mac16;

in particular, a single instruction can compute z← z+x+y, attaining twice the throughput
as vector-mode mac16, a fact which we’ve used to speed up some of our algorithms. As an
example, this is how we denote an example operation of 16-bit integer addition of elements
16 to 47 of the X register (i.e., bytes 32 to 95 of X, incorporating elements of both X0 and
X1) with elements 0 to 31 of the Y register (i.e. Y0), accumulating to Z[1]:

Z[1]← vecint(Z[1] + X[16 : 47] + Y[0 : 31])

3.4 Performance considerations
The M1 has two AMX coprocessors, one per core cluster (performance and efficiency),
implementing a second generation of AMX instructions [Caw23]. It runs at the same clock
speed as the cores and accesses memory via the L2 cache [Joh22b]. It supports out-of-order
execution independently of the CPU, with buffers for 28 to 32 operations [Joh22b].

Outer product latency and throughput is discussed in [Joh22b] for floating-point
operations. The performance cluster’s AMX unit has an array of pipelined MAC units with
4-cycle latency, capable of executing one 32- or 64-bit outer product operation per cycle, or
a 16-bit operation every two cycles. To achieve maximum performance, inter-instruction
data dependencies must be avoided; either by using multiple accumulators, i.e. different
subsets of Z as a destination (such as even and odd rows), or by issuing instructions from
different CPUs, due to independent per-CPU AMX register files (see Section 3.1).

AMX microbenchmarking code is supplied in [Caw23]. We have run this code on an M1-
based laptop, and report selected throughput figures, restricted to single-threaded results,
presumably running on the AMX performance-cluster unit. Multiply-accumulates (MACs)
count as 2 operations, and we report best-case scenarios, often using multiple accumulators;
performance may degrade, significantly in certain cases, if fewer accumulators are used.

8 Fast polynomial multiplication . . . with applications to NTRU on Apple M1/M3 SoCs

Outer products achieve up to 3.05 TFLOPS/s throughput with 16-bit floating-point
data or mixed-lane integer arithmetic (8- and 16-bit operands); throughput drops to 1.53
TOPS/s for pure 16-bit integer arithmetic. In vector mode, up to 381 GFLOPS/s is
achievable with floating-point or mixed 8-/16-bit integer MACs, dropping to 191 GOPS/s
for pure 16-bit integer arithmetic. Replacing MACs with additions or multiplications alone
further halves throughput. As a comparison, peak NEON throughput on M1 performance
cores for 16-bit integer data is 204.8 GOPS/s for MACs and 102.4 GOPS/s for additions
or multiplications alone, based on the microarchitectural investigations of [Joh22a].

Thus, AMX’s peak throughput is ≈ 8× higher for matrix (outer product) operations
versus vector operations, whose peak performance approaches NEON’s. That is, outer
products are much cheaper than vector operations. Throughout the paper, we consistently
strive to reduce vector operation count, which are the bottleneck of our computations.

While our implementation takes the usual constant-time precautions (foregoing branches
and memory accesses conditional/indexed on secret data), it implicitly relies on constant-
time execution of AMX instructions. Recently, ARM and Intel have started guaranteeing
data-independent timing for some instructions [ARM, Int23b, Int23a]. Given AMX’s lack
of official documentation, it is impossible to obtain such assurances, although experiments
in Section 5.1 suggest AMX displays data-independent timing. The previous lack of
constant-time guarantees for CPUs hasn’t prevented implementors from striving for, and
achieving in practice, implementations with apparent constant-time characteristics, and
may have played a key part in incentivizing manufacturers to provide such guarantees. Our
paper is a first step in that direction for CPU-coupled matrix-multiplication accelerators.

4 Implementing polynomial multiplication on AMX
We now describe our AMX implementation of schoolbook multiplication in Z216/(xn− 1).

4.1 Basic block: multiplication of 32-coefficient slices
The basic block of our implementation multiplies slices of 32 coefficients from each input
polynomial. We define a specific notation for polynomial slices starting at indices that are
a multiple of 32: a32k:32k+31(x) = ak(x) (note boldface k). We also define a notation for
the product of 32-coefficient polynomial slices: ck,l(x) = ak(x)bl(x). To clarify, we have:

ck,l(x) = (a32kx32k + . . . + a32k+31x32k+31)(b32lx
32l + . . . + b32l+31x32l+31)

= c32(k+l)x
32(k+l) + . . . + c32(k+l)+62x32(k+l)+62,

where cm =
∑

i+j=m aibj . As before, ck,l is the associated row vector representation.
Throughout the rest of Section 4, we resort to examples using a hypothetical 1/8-size AMX
unit for space reasons. Boldface indices will then refer to 4-coefficient slices as appropriate
for these examples, rather than 32-coefficient slices for full AMX; thus, ak would refer to
a4k:4k+3. It will be clear from the context whether we refer to 4- or 32-coefficient slices.

We first note that the outer product bT
l ak generates the required partial products;

shifting each row produces the usual multiplication parallelogram. We then perform
sum-reduction of partial products in each column (an operation which we refer throughout
the rest of Section 4 as flattening to avoid confusion with polynomial reduction) to obtain
ck,l. This can be visualized by considering an analogous operation in a hypothetical
1/8-size AMX unit, operating on 4-coefficient slices starting at the constant coefficient:

a3 a2 a1 a0
b0 a3b0 a2b0 a1b0 a0b0
b1 a3b1 a2b1 a1b1 a0b1
b2 a3b2 a2b2 a1b2 a0b2
b3 a3b3 a2b3 a1b3 a0b3

Left shift
i-th row by
i positions−−−−−−−→

a3b0 a2b0 a1b0 a0b0
a3b1 a2b1 a1b1 a0b1

a3b2 a2b2 a1b2 a0b2
a3b3 a2b3 a1b3 a0b3

Décio Luiz Gazzoni Filho, Guilherme Brandão, Julio López 9

We then flatten the parallelogram by sum-reduction of columns and multiplication by
the corresponding power of x to obtain a3b3x6 +(a2b3 +a3b2)x5 + . . .+(a0b1 +a1b0)x+a0b0.

On AMX, outer products are easily realized by loading ak and bl to slices of the X
or Y registers, and executing the matrix-mode mac16 instruction. By default, results are
accumulated with the current values of Z, although there is a flag to skip current contents
of Z, so as to realize multiplication without accumulation. The result occupies half of the Z
register file, either the odd or even rows of Z; we assume the latter for the sake of example.

To realize shifts and flattenings, we initialize the two ends of a 3-register-wide slice of
X (say X0 and X2) as well as Z[1], the first odd row of Z, with zeros. For each even row of
Z except the first, we use the extrh instruction to extract it to the remaining X register
of the slice (X1 in this example). Recall that AMX allows addressing any 64-byte slice of
the full 512-byte X register; we use this feature to select slices containing the appropriate
number of zero 16-bit values to realize the desired shifting. These slices are used as input
to a pair of vecint or vector-mode mac16 instructions, performing additions only, in order
to accumulate the least significant coefficients to Z[0], and the most significant coefficients
to Z[1]. Figure 4 illustrates this operation, again on a hypothetical 1/8-size AMX unit.

a0b0

a0b1

a0b2

a0b3

a1b0

a1b1

a1b2

a1b3

a2b0

a2b1

a2b2

a2b3

a3b0

a3b1

a3b2

a3b3

a0b0 a1b0+
+a0b1

a2b0+
+a1b1

a3b0+
+a2b1

a3b1

0 0 0

a0b0 a1b0+
+a0b1

a2b0+
+a1b0+
+a0b2

a3b0+
+a2b1+
+a1b2

a3b1+
+a2b2 a3b2 0 0

a0b0 a1b0+
+a0b1

a2b0+
+a1b0+
+a0b2

a3b0+
+a2b1+
+a1b2+
+a0b3

a3b1+
+a2b2+
+a1b3

a3b2+
+a2b3 a3b3

0

a0b1

a0b2

a0b3

a1b1

a1b2

a1b3

a2b1

a2b2

a2b3

a3b1

a3b2

a3b3

a0b1

a0b2

a0b3

a1b1

a1b2

a1b3

a2b1

a2b2

a2b3

a3b1

a3b2

a3b3

a0b1

a0b2

a0b3

a1b1

a1b2

a1b3

a2b1

a2b2

a2b3

a3b1

a3b2

a3b3

0 0 0 0 0 0 0 0a0b1 a1b1 a2b1 a3b1

0 0 0 0 0 0 0 0a0b2 a1b2 a2b2 a3b2

0 0 0 0 0 0 0 0a0b3 a1b3 a2b3 a3b3

Figure 4: Full multiplication process of 4-coefficient polynomial slices on a hypothetical
1/8-size AMX unit. The sequence of operations starts from the leftmost state of the
Z registers (result of the outer product operation) and follows the arrows, representing
different states of Z and the relevant part of X. Thick arrows indicate an extrh operation
of the thick-bordered row of Z to X, while dotted arrows indicate an accumulation of each
dotted slice of X with a corresponding row (0 or 1) of the target Z registers.

Performance is further improved by working on pairs of even rows of Z, extracting one
to X and the other to Y. As discussed in Section 3.3, a single vecint can accumulate slices
of both X and Y registers to the desired Z row. Microbenchmarks indicate that vecint, on
its own, achieves twice the arithmetic throughput of addition with X or Y alone; however,
this improvement is not fully realized as there appears to be contention with resources
used to execute extrh, and moreover, microbenchmarks suggest there is a penalty for
unaligned accesses to the X and Y registers, as required to shift the input operands.

Algorithm 4.1 formalizes this procedure for polynomial multiplication of 32-coefficient
slices. The reader may wish to review notations in Sections 2 and 3, in particular Figure 1.

10 Fast polynomial multiplication . . . with applications to NTRU on Apple M1/M3 SoCs

Algorithm 4.1 PolyMul32×32(ck,l, ak, bj): modulo-216 multiplication of two 32-
coefficient polynomials using AMX.
Input: ak, bl (arrays of 32-coefficient slices of a and b)
Output: ck,l (array of 63 coefficients of ck,l(x) = ak(x)× bl(x))
Notes: since AMX stores 64 bytes (in this case, 32 coefficients of 16 bits each) at a time,

output array must be allocated with enough space for 64 coefficients
1: X0, X2, Y0, Y2 ← ldx([0 0 . . . 0]) ▷ load array of 32 zeros to each indicated register
2: X1, Y1 ← ldx(ak), ldy(bl)
3: Z[0 : 2 : 62]← mac16(YT

1 X1)
4: X1 ← extrh(Z[2])
5: Z[0]← vecint(Z[0] + X[31 : 62])
6: Z[1]← X[63 : 94] ▷ implement using e.g. mac16 with Y and Z skipped
7: for i ∈ {2, 4, 6, . . . , 30} do
8: X1, Y1 ← extrh(Z[2i]), extrh(Z[2(i + 1)])
9: Z[0]← vecint(Z[0] + X[32− i : 63− i] + Y[31− i : 62− i])

10: Z[1]← vecint(Z[1] + X[64− i : 95− i] + Y[63− i : 94− i])
11: ck,l[0 : 31], ck,l[32 : 63]← stz(Z[0]), stz(Z[1])

4.2 Polynomial multiplication by product-scanning of basic blocks
We turn to the issue of realizing a full multiplication of n-coefficient inputs. Since NTRU
requires n to be prime, and the basic block of Section 4.1 works on 32-coefficient slices, we
work around this issue by zero-padding input polynomials to n′ = 32⌈n/32⌉ coefficients.

In principle, we could apply Algorithm 4.1 to each slice and accumulate results using
vector instructions to realize a full-size multiplication. However, we propose a different
architecture, based on blockwise product scanning with lazy sum-reduction, to increase the
balance of faster matrix (outer product) to slower vector (extraction/addition) operations.
We again illustrate with a small example for a hypothetical 1/8-size AMX unit, multiplying
8-coefficient input polynomials split into 4-coefficient slices as in Section 4.1.

The parallelogram of Figure 5 consists of 4 outer products: bT
0a0, bT

1a0, bT
1a0 and

bT
1a1. It is seen in Figure 5(b) that bT

1a0 and bT
0a1 are aligned columnwise and can be

accumulated (by matrix addition) prior to shifting and flattening; that is, shifting and
flattening are performed lazily. In general, outer products of the form bT

j ai and bT
l ak are

aligned, and can be accumulated, if i + j = k + l. Note that matrix addition does not need
to be performed explicitly in AMX, as the outer product instructions accumulate with the
existing contents of the Z registers at no extra cost. The accumulation procedure is shown
as Algorithm 4.2, a subroutine of our polynomial multiplication algorithm given later.

Algorithm 4.2 AccumulateOuterProducts(a, b, j, r): accumulate outer products
bT

l ak such that k + l = j to Z[r : 2 : 62 + r], where r = 0 or 1.
1: X1, Y1 ← ldx(a[32j : 32j + 31]), ldy(b[0 : 31])
2: Z[r : 2 : 62 + r]← mac16(YT

1 X1)
3: for 1 ≤ l ≤ j do
4: k ← j − l ▷ Thus: k + l = j
5: X1, Y1 ← ldx(a[32k : 32k + 31]), ldy(b[32l : 32l + 31])
6: Z[r : 2 : 62 + r]← mac16(Z[r : 2 : 62 + r] + YT

1 X1)

We now consider a full-size AMX unit and realistic polynomial sizes, say n′ coefficients.
The naïve approach suggested at the beginning of this section would call for (n′/32)2 =
O(n2) applications of Algorithm 4.1, that is O(n2) outer products and shifts/flattenings,
plus extra operations to combine the results to obtain the desired polynomial multiplication

Décio Luiz Gazzoni Filho, Guilherme Brandão, Julio López 11

a0b0

a0b1

a0b2

a0b3

a1b0

a1b1

a1b2

a1b3

a2b0

a2b1

a2b2

a2b3

a3b0

a3b1

a3b2

a3b3

a0b4

a0b5

a0b6

a0b7

a1b4

a1b5

a1b6

a1b7

a2b4

a2b5

a2b6

a2b7

a3b4

a3b5

a3b6

a3b7

a4b0

a4b1

a4b2

a4b3

a5b0

a5b1

a5b2

a5b3

a6b0

a6b1

a6b2

a6b3

a7b0

a7b1

a7b2

a7b3

a4b4

a4b5

a4b6

a4b7

a5b4

a5b5

a5b6

a5b7

a6b4

a6b5

a6b6

a6b7

a7b4

a7b5

a7b6

a7b7

−→(a)

a0b0

a0b1

a0b2

a0b3

a1b0

a1b1

a1b2

a1b3

a2b0

a2b1

a2b2

a2b3

a3b0

a3b1

a3b2

a3b3

a4b0

a4b1

a4b2

a4b3

a5b0

a5b1

a5b2

a5b3

a6b0

a6b1

a6b2

a6b3

a7b0

a7b1

a7b2

a7b3

a0b4

a0b5

a0b6

a0b7

a1b4

a1b5

a1b6

a1b7

a2b4

a2b5

a2b6

a2b7

a3b4

a3b5

a3b6

a3b7

a4b4

a4b5

a4b6

a4b7

a5b4

a5b5

a5b6

a5b7

a6b4

a6b5

a6b6

a6b7

a7b4

a7b5

a7b6

a7b7

−→

(b)

a0b0

a0b1

a0b2

a0b3

a1b0

a1b1

a1b2

a1b3

a2b0

a2b1

a2b2

a2b3

a3b0

a3b1

a3b2

a3b3

a4b0 + a0b4

a4b1 + a0b5

a4b2 + a0b6

a4b3 + a0b7

a5b0 + a1b4

a5b1 + a1b5

a5b2 + a1b6

a5b3 + a1b7

a6b0 + a2b4

a6b1 + a2b5

a6b2 + a2b6

a6b3 + a2b7

a7b0 + a3b4

a7b1 + a3b5

a7b2 + a3b6

a7b3 + a3b7

a4b4

a4b5

a4b6

a4b7

a5b4

a5b5

a5b6

a5b7

a6b4

a6b5

a6b6

a6b7

a7b4

a7b5

a7b6

a7b7

−→

(c)

a7b7

a7b6

a6b7

a7b5

a6b6

a5b7

a7b4

a6b5

a5b6

a4b7

a6b4

a5b5

a4b6

a7b3 + a3b7

a5b4

a4b5

a7b2 + a3b6

a6b3 + a2b7

a4b4

a7b1 + a3b5

a6b2 + a2b6

a5b3 + a1b7

a7b0 + a3b4

a6b1 + a2b5

a5b2 + a1b6

a4b3 + a0b7

a6b0 + a2b4

a5b1 + a1b5

a4b2 + a0b6

a3b3

a5b0 + a1b4

a4b1 + a0b5

a3b2

a2b3

a4b0 + a0b4

a3b1

a2b2

a1b3

a3b0

a2b1

a1b2

a0b3

a2b0

a1b1

a0b2

a1b0

a0b1

a0b0

(d)

Figure 5: Transformations of the multiplication parallelogram for 8-coefficient polynomials
for efficient implementation on a hypothetical 1/8-size AMX unit. Dotted lines enclose
each outer product of 4-coefficient slices. Starting from the regular parallelogram (a),
the i-th row is shifted right by i mod 4 positions (i.e. the reverse of the shifting step of
Figure 4) to obtain (b), revealing how two outer products are aligned. In (c), these two
outer products are summed prior to left-shifting the i-th row by i positions in the last
state shown, (d). The final result is obtained by flattening each column (not shown).

result. The advantage of lazy shifting/flattening is clear from extrapolation of Figure 5:
we see that it results in 2(n′/32)− 1 = O(n) matrices of dimension 32× 32 in the third
step of the process (Figure 5(c)), which are shifted (Figure 5(d)) and flattened (not shown)
to obtain the final polynomial multiplication result. While we still compute the same
amount of outer products, (n′/32)2 = O(n2), they are considerably cheaper than shifts
and flattenings realized by AMX vector instructions, of which only O(n) are required.

Moving on to practical implementation issues, the Z register, where outer products
accumulate, can only store two 32 × 32 matrices, one in the even rows and another in
the odd rows. Careful sequencing of shift and flattening operations is needed to avoid
spills and reloads of Z’s contents. Consider the flattened parallelogram in Figure 5(d),
which is split into three sub-parallelograms, each corresponding to one of three matrices
of Figure 5(c), formed from accumulating outer products; we denote them, from right
to left, as M0, M1 and M2, respectively. Working through the final flattening step (i.e.
sum-reduction of columns, not shown in the figure), from the rightmost column towards
the leftmost one, we see that the first columns (0 to 3) contain only elements from M0. As
we move left, columns 4 to 6 contain elements from M0 and M1; column 7 from M1 only;
columns 8 to 10 from M1 and M2; and columns 11 to 14 from M2 only. A general pattern
emerges: each column contains either elements from Mj only, or from Mj and Mj+1.

This suggests a structure for our polynomial multiplication algorithm, described in terms
of full-size (n′ coefficients) input polynomials. Formalizing the concept from the previous
paragraph, we define Mj =

∑
k+l=j bT

l ak; the computation of each Mj is performed by
Algorithm 4.2. We first compute M0 and M1, storing them in the even and odd rows of Z,
respectively, as needed to perform shifts and flattenings to obtain the first 64 coefficients
c0, . . . , c63 of c(x) = a(x)b(x), a procedure we formalize as Algorithm 4.3. We now compute
M2 overwriting the even rows of Z, and use both M1 (still available in the odd rows of
Z) and M2 to obtain the next 32 coefficients of c(x), i.e. c64, . . . , c95, by the procedure of

12 Fast polynomial multiplication . . . with applications to NTRU on Apple M1/M3 SoCs

Algorithm 4.4. The pattern continues for j = 3, . . . , 2(n/32)− 3 with Mj overwriting even
or odd rows of Z, according to whether j is even or odd, respectively, and using Mj−1 and
Mj to compute c32j , . . . , c32j+31 using Algorithm 4.4. Finally, the case j = 2(n′/32)− 2 is
handled by a third procedure, Algorithm 4.5, which computes the final batch of coefficients
of c(x) from Mj−1 and Mj . We formalize the complete procedure as Algorithm 4.6.

Algorithm 4.3 FlattenFirstTwoBlocks(c): sum-reduction of columns from the two
least significant multiplication sub-parallelograms.
Input: Z[0 : 2 : 62] = bT

0a0 and Z[1 : 2 : 63] = bT
0a1 + bT

1a0 (implicitly)
Output: c[0 : 63] (coefficients of x0 through x63 of the polynomial multiplication result)
Notes: assumes X0 = Y0 = [0, 0, . . . , 0]

1: X1, X2 ← extrh(Z[2]), extrh(Z[3])
2: Z[0], Z[1]← mac16(Z[0] + X[31 : 62]), mac16(Z[1] + X[63 : 94])
3: for i ∈ {2, 4, 6, . . . , 30} do
4: X1, X2 ← extrh(Z[2i]), extrh(Z[2i + 1])
5: Y1, Y2 ← extrh(Z[2i + 2]), extrh(Z[2i + 3])
6: Z[0]← vecint(Z[0] + X[32− i : 63− i] + Y[31− i : 62− i])
7: Z[1]← vecint(Z[1] + X[64− i : 95− i] + Y[63− i : 94− i])
8: c[0 : 31], c[32 : 63]← stz(Z[0]), stz(Z[1])

4.3 Integrated reduction modulo xn − 1
The algorithms of Section 4.2, culminating in Algorithm 4.6, multiply polynomials of n×n
coefficients and return the full result with 2n− 1 coefficients. In NTRU, the result must
be reduced modulo xn − 1, a special form which allows efficient implementation as a post-
processing step using e.g. NEON instructions, but also allowing reduction to be merged
with multiplication in an integrated procedure, reducing the number of shifting/flattening
operations by ≈ 50% compared to Algorithm 4.6, improving performance considerably.

To exemplify the integrated procedure, we again resort to a hypothetical 1/8-size AMX
unit, now performing polynomial multiplication modulo x10− 1, which illustrates the main
issues faced with larger polynomials on a full-size AMX unit. Although 10 coefficients are
enough to represent polynomial inputs and outputs for this case, note that each block in
this hypothetical 1/8-size AMX unit perfoms to a 4× 4 outer-product operation. Thus,
we work with the next multiple of 4 coefficients, which is 12. We refer to Figure 6 as we
work through the procedure, and assume input polynomials have ai = bj = 0 for i, j ≥ 10.

The results of all required outer product calculations are shown explicitly in Figure 6(a).
The actual procedure accumulates 4× 4 outer product results of a given color (white, light
gray or gray) into a single per-color 4× 4 matrix, as in Figure 5(c); for didactic reasons, we
omit this step in the course of the explanation. Zero partial products are struck out in the
figure; for some of these, this is a natural result of having ai or bj as input for i, j ≥ 10,
and for the others, we explicitly disable some columns during outer product computations.

Viewing Figure 6(a) as a block matrix of 4× 4 submatrices, note that submatrices in
and above the secondary (block) diagonal are constructed identically to the example of
Figure 5, as formalized in Algorithm 4.2. Notice the pattern followed by partial products
aibj in each row: those to its left and right are of the form ai+1bj and ai−1bj , respectively.
The rightmost columns of each submatrix in the secondary (block) diagonal have i = 0,
and the pattern continues to their right, with i− 1 taken modulo n (10 in the example).
For each partial product aibj , with k its row index modulo 4 and l its column index, as
indicated to the left and below the matrix in Figure 6(a), we have k + l ≡ i + j (mod n).

Submatrices in and above the secondary (block) diagonal are outer products of the
form bT

4l:4l+3a4k:4k+3 (no relation to k and l in the previous paragraph), while submatrices

Décio Luiz Gazzoni Filho, Guilherme Brandão, Julio López 13

Algorithm 4.4 FlattenMiddleBlock(c, j, r): sum-reduction of columns from multi-
plication sub-parallelograms.
Input: j (index of current sub-parallelogram)
Input: r ∈ {0, 1} (indicates relative order of even and odd rows of Z)
Output: c[32j : 32j + 31] (coefficients of x32j through x32j+31 of the polynomial multipli-

cation result)
Notes: assumes that Z[1 − r : 2 : 63 − r] and Z[r : 2 : 62 + r] contain the output of

Algorithm 4.2 for sub-parallelogram indices j − 1 and j, respectively
1: X1, X2 ← extrh(Z[3− r]), extrh(Z[2 + r])
2: Z[r]← mac16(Z[r] + X[63 : 94])
3: for i ∈ {2, 4, 6, . . . , 30} do
4: X1, X2 ← extrh(Z[2i + 1− r]), extrh(Z[2i + r])
5: Y1, Y2 ← extrh(Z[2i + 3− r]), extrh(Z[2i + 2 + r])
6: Z[r]← vecint(Z[r] + X[64− i : 95− i] + Y[63− i : 94− i])
7: c[32j : 32j + 31]← stz(Z[r])

Algorithm 4.5 FlattenLastTwoBlocks(c, j): sum-reduction of columns from the
two most significant multiplication sub-parallelograms.
Input: j (index of current block)
Output: c[32j : 32j + 62] (coefficients of x32j through x32j+62 of c(x) = a(x)× b(x))
Notes: assumes X3 = Y3 = [0, 0, . . . , 0], and that Z[1 : 2 : 63] and Z[0 : 2 : 62] contain the

output of Algorithm 4.2 for sub-parallelogram indices j − 1 and j, respectively; one
extra coefficient written at c[32j + 63] since AMX writes 64 bytes at a time

1: X1, X2 ← extrh(Z[3]), extrh(Z[2])
2: Z[0], Z[1]← mac16(Z[0] + X[63 : 94]), mac16(Z[1] + X[95 : 126])
3: for i ∈ {2, 4, 6, . . . , 30} do
4: X2, X1 ← extrh(Z[2i]), extrh(Z[2i + 1])
5: Y2, Y1 ← extrh(Z[2i + 2]), extrh(Z[2i + 3])
6: Z[0]← vecint(Z[0] + X[32− i : 63− i] + Y[31− i : 62− i])
7: Z[1]← vecint(Z[1] + X[64− i : 95− i] + Y[63− i : 94− i])
8: c[32j : 32j + 31], c[32j + 32 : 32j + 63]← stz(Z[0]), stz(Z[1])

Algorithm 4.6 PolyMul(c, a, b): modulo-216 multiplication of two n-coefficient polyno-
mials using AMX. Assumes n a multiple of 32; input must be zero-padded otherwise.
Input: a, b (arrays of n coefficients each of a(x) and b(x))
Output: c (array of 2n− 1 coefficients of c(x) = a(x)b(x))
Notes: since AMX stores 64 bytes (in this case, 32 coefficients of 16 bits each) at a time,

output array must be allocated with 2n coefficients
1: X0, X3, Y0, Y3 ← ldx([0, 0, . . . , 0]) ▷ load array of 32 zeros to each indicated register
2: AccumulateOuterProducts(a, b, 0, 0)
3: AccumulateOuterProducts(a, b, 1, 1)
4: FlattenFirstTwoBlocks(c)
5: for i = 2 to 2(n/32)− 3 do
6: AccumulateOuterProducts(a, b, i, i mod 2)
7: FlattenMiddleBlock(c, i, i mod 2)
8: AccumulateOuterProducts(a, b, 2(n/32)− 2, 0)
9: FlattenLastTwoBlocks(c, 2(n/32)− 2)

14 Fast polynomial multiplication . . . with applications to NTRU on Apple M1/M3 SoCs

a0b0

a0b1

a0b2

a0b3

a1b0

a1b1

a1b2

a1b3

a2b0

a2b1

a2b2

a2b3

a3b0

a3b1

a3b2

a3b3

a6b4

a6b5

a6b6

a6b7

a7b4

a7b5

a7b6

a7b7

a8b4

a8b5

a8b6

a8b7

a9b4

a9b5

a9b6

a9b7

a2b8

a2b9

a2b10

a2b11

a3b8

a3b9

a3b10

a3b11

a4b8

a4b9

a4b10

a4b11

a5b8

a5b9

a5b10

a5b11

a4b0

a4b1

a4b2

a4b3

a5b0

a5b1

a5b2

a5b3

a6b0

a6b1

a6b2

a6b3

a7b0

a7b1

a7b2

a7b3

a0b4

a0b5

a0b6

a0b7

a1b4

a1b5

a1b6

a1b7

a2b4

a2b5

a2b6

a2b7

a3b4

a3b5

a3b6

a3b7

a6b8

a6b9

a6b10

a6b11

a7b8

a7b9

a7b10

a7b11

a8b8

a8b9

a8b10

a8b11

a9b8

a9b9

a9b10

a9b11

a8b0

a8b1

a8b2

a8b3

a9b0

a9b1

a9b2

a9b3

a10b0

a10b1

a10b2

a10b3

a11b0

a11b1

a11b2

a11b3

a4b4

a4b5

a4b6

a4b7

a5b4

a5b5

a5b6

a5b7

a6b4

a6b5

a6b6

a6b7

a7b4

a7b5

a7b6

a7b7

a0b8

a0b9

a0b10

a0b11

a1b8

a1b9

a1b10

a1b11

a2b8

a2b9

a2b10

a2b11

a3b8

a3b9

a3b10

a3b11

0123456789101112

0
1
2
3
0
1
2
3
0
1
2
3

(a)

a0b0

a0b1

a0b2

a0b3

a1b0

a1b1

a1b2

a1b3

a2b0

a2b1

a2b2

a2b3

a3b0

a3b1

a3b2

a3b3

a6b4

a6b5

a6b6

a6b7

a7b4

a7b5

a7b6

a7b7

a8b4

a8b5

a8b6

a8b7

a9b4

a9b5

a9b6

a9b7

a2b8

a2b9

a3b8

a3b9

a4b8

a4b9

a5b8

a5b9

a4b0

a4b1

a4b2

a4b3

a5b0

a5b1

a5b2

a5b3

a6b0

a6b1

a6b2

a6b3

a7b0

a7b1

a7b2

a7b3

a0b4

a0b5

a0b6

a0b7

a1b4

a1b5

a1b6

a1b7

a2b4

a2b5

a2b6

a2b7

a3b4

a3b5

a3b6

a3b7

a6b8

a6b9

a7b8

a7b9

a8b8

a8b9

a9b8

a9b9

a8b0

a8b1

a8b2

a8b3

a9b0

a9b1

a9b2

a9b3

a4b4

a4b5

a4b6

a4b7

a5b4

a5b5

a5b6

a5b7

a0b8

a0b9

a1b8

a1b9

(b)

a0b0

a0b1

a0b2

a0b3

a1b0

a1b1

a1b2

a1b3

a2b0

a2b1

a2b2

a2b3

a3b0

a3b1

a3b2

a3b3

a6b4

a6b5

a6b6

a6b7

a7b4

a7b5

a7b6

a7b7

a8b4

a8b5

a8b6

a8b7

a9b4

a9b5

a9b6

a9b7

a2b8

a2b9

a3b8

a3b9

a4b8

a4b9

a5b8

a5b9

a4b0

a4b1

a4b2

a4b3

a5b0

a5b1

a5b2

a5b3

a6b0

a6b1

a6b2

a6b3

a7b0

a7b1

a7b2

a7b3

a0b4

a0b5

a0b6

a0b7

a1b4

a1b5

a1b6

a1b7

a2b4

a2b5

a2b6

a2b7

a3b4

a3b5

a3b6

a3b7

a6b8

a6b9

a7b8

a7b9

a8b8

a8b9

a9b8

a9b9

a8b0

a8b1

a8b2

a8b3

a9b0

a9b1

a9b2

a9b3

a4b4

a4b5

a4b6

a4b7

a5b4

a5b5

a5b6

a5b7

a0b8

a0b9

a1b8

a1b9

0123456789101112

(c)

Figure 6: Sequence of operations to implement integrated polynomial multiplication and
reduction of 12-coefficient polynomials modulo x10 − 1 on a hypothetical 1/8-size AMX
unit. See text for a description of transformations from each subfigure to the next.

below this diagonal are obtained from outer products bT
4l:4l+3a4k+2:4k+5; note how the

coefficients of a are “unaligned”, i.e. the starting index is not a multiple of 4 (32 for a
full-size AMX unit). The offset 2 in the example corresponds in general to n mod 4, due to
the modulo xn − 1 reduction when n is not a multiple of 4 (32 for a full-size AMX unit).

We now present Algorithm 4.7, a counterpart of Algorithm 4.2 for the integrated
polynomial multiplication and reduction procedure. It follows Algorithm 4.2 in accumu-
lating outer products with matching columns (i.e. the submatrices of the same color in
Figure 6(a)), a step which we recall was omitted from the example for ease of exposition.

We transform Figure 6(a) into Figure 6(b) by removing struck-out partial products and
shifting rows of Figure 6(a) by the row index modulo 4; indices i, j of partial products aibj

in each column add exactly to the column index modulo 10. As we are working modulo
x10 − 1, the final result must be restricted to indices from 0 to 9; we mark this boundary
with a thick vertical line in the figure. Some partial products remain in columns with index
k ≥ 10, i.e. to the left of this line. We move them to the column with index k′ = k mod 10
in the same row to arrive at Figure 6(c); note that i + j ≡ k (mod 10) always holds.

Note parallelogram widths in Figure 5(c)/(d) and Figure 6(c): 2n−1 and n coefficients,
respectively, validating the earlier claim that the number of sum-reductions (shifts and
flattenings) is cut approximately in half by integrating multiplication and reduction.

Algorithms 4.3 and 4.4 perform shifts and flattenings for columns 0 to 9 of the

Décio Luiz Gazzoni Filho, Guilherme Brandão, Julio López 15

Algorithm 4.7 AccumulateOuterProductsReduction(a, b, j, r, n, m): accumulate
outer products for polynomial multiplication with reduction modulo xn−1 to Z[r : 2 : 62+r],
where r = 0 or 1; only the first m ≤ 32 columns are computed.

1: X1, Y1 ← ldx(a[32j : 32j + 31]), ldy(b[0 : 31])
2: Z[r : 2 : 62 + r]← mac16(YT

1 X1, columns = 0 : m− 1)
3: for 1 ≤ l ≤ j do
4: k ← j − l ▷ Thus: k + l = j
5: X1, Y1 ← ldx(a[32k : 32k + 31]), ldy(b[32l : 32l + 31])
6: Z[r : 2 : 62 + r]← mac16(Z[r : 2 : 62 + r] + YT

1 X1, columns = 0 : m− 1)
7: for j < l ≤ ⌊(n− 1)/32⌋ do
8: X1, Y1 ← ldx(a[n− 32(l − 1) : n− 32(l − 1) + 31]), ldy(b[32l : 32l + 31])
9: Z[r : 2 : 62 + r]← mac16(Z[r : 2 : 62 + r] + YT

1 X1, columns = 0 : m− 1)

parallelogram; in this example, Algorithm 4.3 is applied to the first two blocks (columns 0
to 3 and 4 to 7 of Figure 6(b)), and Algorithm 4.4 to columns 8 and 9 (which also includes
columns 10 and 11 in the result, an issue we must work around). Handling columns 10,
11 and 12, i.e. merging them with the main matrix as in Figure 6(c) (in this case, with
columns 0, 1 and 2, respectively) requires a new procedure, formalized as Algorithm 4.8.

We leverage the algorithms of this section and of Section 4.2 in a procedure for integrated
polynomial multiplication and reduction, formalized as Algorithm 4.9, which we use as the
main polynomial multiplication routine in NTRU, i.e. the poly_Rq_mul() function.

Algorithm 4.8 MergeFirstAndLastBlocks(c, j, r, n): sum-reduction of columns from
the two most significant multiplication sub-parallelograms.
Input: j (index of current sub-parallelogram)
Input: r ∈ {0, 1} (indicates relative order of even and odd rows of Z)
Input: n (reduction polynomial is xn − 1)
Output: c[0 : 31] (coefficients of x0 through x31 of the polynomial multiplication result)
Notes: assumes that Z[1 − r : 2 : 63 − r] and Z[r : 2 : 62 + r] contain the output of

Algorithm 4.7 for sub-parallelogram indices j − 1 and j, respectively
1: δ ← (−n) mod 32
2: Z[r]← ldz(c[0 : 31])
3: X2 ← extrh(Z[3− r])
4: Z[r]← mac16(Z[r] + X[95− δ : 126− δ])
5: i← 1
6: while i < 31− δ do
7: X2, Y2 ← extrh(Z[2i + 3− r]), extrh(Z[2i + 5− r])
8: Z[r]← vecint(Z[r] + X[95− δ − i : 126− δ − i] + Y[94− δ − i : 125− δ − i])
9: i← i + 2

10: while i < 31 do
11: X1, X2 ← extrh(Z[2i + 2 + r]), extrh(Z[2i + 3− r])
12: Y1, Y2 ← extrh(Z[2i + 4 + r]), extrh(Z[2i + 5− r])
13: Z[r]← vecint(Z[r] + X[95− δ − i : 126− δ − i] + Y[94− δ − i : 125− δ − i])
14: i← i + 2
15: c[0 : 31]← stz(Z[r])

4.4 Working around memory access slowdowns
An initial implementation of polynomial multiplication modulo xn − 1, applying all opti-
mizations mentioned in Sections 4.2 and 4.3, outperforms the analogous routines from the

16 Fast polynomial multiplication . . . with applications to NTRU on Apple M1/M3 SoCs

Algorithm 4.9 PolyModMul(c, a, b, n): modulo-216 multiplication of two n-coefficient
polynomials using AMX, reduced modulo xn − 1.
Input: a, b (arrays of n coefficients each of a(x) and b(x))
Output: c (array of n coefficients of c(x) = a(x)b(x))
Notes: since AMX stores 64 bytes (in this case, 32 coefficients of 16 bits each) at a time,

output array must be allocated with 32⌈n/32⌉ coefficients
1: n′ ← ⌊(n− 1)/32⌋
2: X0, X3, Y0, Y3 ← ldx([0, 0, . . . , 0]) ▷ load zeros to all indicated registers
3: AccumulateOuterProductsReduction(a, b, 0, 0, n, 32)
4: AccumulateOuterProductsReduction(a, b, 1, 1, n, 32)
5: FlattenFirstTwoBlocks(c)
6: for i = 2 to n′ − 2 do
7: AccumulateOuterProductsReduction(a, b, i, i mod 2, n, 32)
8: FlattenMiddleBlock(c, i, i mod 2)
9: AccumulateOuterProductsReduction(a, b, n′ − 1, (n′ − 1) mod 2, n, n mod 32)

10: FlattenMiddleBlock(c, n′ − 1, (n′ − 1) mod 2)
11: MergeFirstAndLastBlocks(c, n′ − 1, (n′ − 1) mod 2, n)

implementations of [NG21] and [CCHY23] when benchmarked in isolation. However, im-
provements were modest for the operations of the full scheme (key generation, encapsulation
and decapsulation), with [CCHY23] still outperforming our NTRU implementation.

Handley [Han23] claims that load/store queues track AMX memory accesses at a
granularity of memory pages, marking them as “interesting” for AMX, and concurrent
CPU and AMX accesses to the same page will block. Inspection of the kem.c, owcpa.c
and poly.c source files shows that polynomial coefficient arrays are allocated on the stack,
next to other variables used exclusively by CPU code, and thus stored in adjacent addresses
in memory, very likely in the same memory page. We conjectured this was the root cause
of our performance issues, we switched to allocating one polynomial per memory page
using the mmap() function. Benchmarks using this new memory allocation scheme led to
our implementation outperforming those of [NG21] and [CCHY23] in all tested scenarios.

Johnson [Joh22b] suggests using CPU prefetch instructions, which (unlike AMX in-
structions) are executed out of order by the CPU, triggering memory accesses in advance
of AMX load/store instructions and reducing latency. However, we saw no performance
improvements from this. It appears this suggestion is targeted towards typical AMX
applications with working sets too large to fit CPU caches, which is not the case for NTRU.

As the CPU’s NEON units are independent from AMX, one might conjecture that
splitting tasks between both can achieve even higher throughput. However, AMX/CPU
memory conflicts incur performance penalties which may invalidate this strategy, unless
NEON and AMX work on distinct data, stored on different memory pages.

5 Experimental results
We benchmark our implementation on a 2020 Apple MacBook Air laptop with the Apple
M1 SoC with nominal P-core clock speed of 3200 MHz, and a 2023 Apple MacBook Pro
laptop with the Apple M3 Max SoC with nominal P-core clock speed of 4064 MHz. All
implementations are compiled with Apple clang 15 using the -O3 optimization flag.

We compare our implementation to the state-of-the-art ones of [CCHY23], which
implements only HPS2048677 and HRSS701 (and holds the current speed record for
these sets), and [NG21], which implements all parameter sets. We backport optimized
polynomial inversion and constant-time sorting routines from [CCHY23] to [NG21], seeking

Décio Luiz Gazzoni Filho, Guilherme Brandão, Julio López 17

to highlight differences in polynomial multiplication performance only; we include this
modified implementation in our GitHub repository. We also optimize NIST’s AES-256 CTR-
DRBG randombytes() function with AES instructions from ARMv8-A’s Cryptographic
Extensions, using software tests to verify that outputs are bit-identical to the NIST version.

All of these optimizations (polynomial inversion, constant-time sorting and random
number generation) are also applied to our AMX implementation. We ensure Known
Answer Tests for all implementations match those provided in the NTRU reference code.

Recall from Section 4.4 that our implementation uses a specific memory allocation
strategy for arrays of polynomial coefficients. To ensure a fair comparison, we create stack
and mmap() allocation variants for every implementation and report performance figures
for both, computing speedups by comparing the fastest strategy for each implementation.

Performance measurements use the same cycle-counting harness found in [NG21] and
[CCHY23]. To reduce timing variabilities, each routine is run for 1,024 times in a loop,
measuring the cycle counts of each run individually, and the median value is reported.

5.1 Performance measurements
We present NTRU performance results in Table 4. We omit the tc variant of HPS2048677
included in [CCHY23], as the tmvp variant always outperforms it.

Table 4: Cycle counts for NTRU KEM operations and polynomial multiplication. Speedups
computed as a ratio of the best cycle counts for previous implementations and our
implementation (in both cases, across different memory allocations types).

Par.
set

Mem.
alloc. Work

Operation
Key gen. Encaps. Decaps. Poly. mult.

M1 M3 M1 M3 M1 M3 M1 M3

509

mmap
[NG21] 218938 215086 16314 15695 29876 28667 6352 6351
Ours 170334 163936 12620 11885 18976 17300 2281 2009

stack [NG21] 218436 214434 16287 15805 29870 28780 6373 6349
Ours 181787 170648 19628 14327 26609 23810 3675 3229

Speedup (×) 1.28 1.31 1.29 1.32 1.57 1.66 2.78 3.16

677

mmap
[NG21] 364048 348559 23738 22591 44977 42912 10028 10347

[CCHY23] 307460 296025 19272 18586 31718 30620 5472 7080
Ours 283023 266334 17324 16205 26443 24004 3781 3715

stack
[NG21] 363999 348318 23806 22668 46566 44654 9998 10308

[CCHY23] 307014 295602 20789 19596 35454 34061 5523 6056
Ours 316845 291497 27777 16441 35953 32728 4299 4303

Speedup (×) 1.08 1.11 1.11 1.15 1.20 1.28 1.63 1.81

821

mmap
[NG21] 497771 493264 28254 27728 56756 56294 13912 13911
Ours 384569 371277 19520 18303 30981 28292 4789 4414

stack [NG21] 475626 492597 28261 27653 56874 56227 13859 13911
Ours 610072 384194 27403 19204 40542 37827 5386 7100

Speedup (×) 1.29 1.33 1.45 1.51 1.83 1.99 2.89 3.15

701

mmap
[NG21] 393734 384123 20804 20078 54265 53030 12870 12603

[CCHY23] 323627 308902 14731 14044 37233 35423 6911 6860
Ours 287657 269343 11659 10657 29038 26622 3708 3367

stack
[NG21] 398678 386098 20779 20160 55835 53942 12529 12300

[CCHY23] 323551 308247 14791 14128 37300 35544 6918 6858
Ours 310970 273767 11729 10804 36039 31719 5431 5876

Speedup (×) 1.12 1.14 1.26 1.32 1.28 1.33 1.86 2.04

Stack allocation of polynomials fluctuates between small slowdowns and speedups
for NEON implementations (with a few outliers), but AMX consistently favors mmap()

18 Fast polynomial multiplication . . . with applications to NTRU on Apple M1/M3 SoCs

allocation, more so in the M1; recall that speedup calculations pick the best performing
memory allocation method for each implementation. The M3 AMX unit is faster than
the M1’s; in particular, microbenchmarks show that the M3 executes some vector AMX
operations at a rate of 2 instructions/cycle, a phenomenon we didn’t observe in the M1.

The most representative results are for HPS2048677 and HRSS701 using the TMVP
algorithm [CCHY23]. Our polynomial multiplication routine achieves significant speedups
of 1.63× (M1)/1.81× (M3) for the former and 1.86× (M1)/2.04× (M3) for the latter. These
translate into smaller speedups for KEM operations (1.08× to 1.28× for the M1 and 1.11×
to 1.33× for the M3), since the time spent in other routines (such as polynomial inversion
for key generation, and constant-time sorting for key generation and encapsulation) remain
identical between our implementation and previous ones. Nevertheless, our implementation
consistently outperforms all others. For the remaining parameter sets, our gains are even
more pronounced, but we expect the gap would shrink if TMVP were applied to them.

Scaling and subquadratic algorithms. In Figure 7(a), we provide polynomial multi-
plication scaling results as a function of polynomial degree, either with or without reduction
modulo xn − 1. We also perform a least-squares fit to an equation of the form axb, and
note that in this range, the algorithm displays subquadratic scaling; this can be attributed
to O(n2) scaling of outer product operations (cheaper) versus O(n) scaling of shifts and
flattenings (more expensive). We note that the version with reduction outperforms the
one without, as it requires only about half as many slower shift/flattening operations.

We also implemented Karatsuba on AMX, for a single recursion level with our routine
of Section 4.2 as a basecase, and compare it to the routine of Section 4.3 in Figure 7(b).
Karatsuba is seen to outperfom schoolbook for n ≥ 4544, far outside the range of crypto-
graphic interest. We give numerical results for all NTRU parameter sets in Table 5, and
also compute lower bounds (accounting for the cost of pointwise multiplications only) for
single-level Karatsuba and subquadratic algorithms across all possible multi-level recursion
strategies, using either schoolbook, Karatsuba, Toom-3 or Toom-4 at each level (the bounds
are computed by a Jupyter notebook included in our GitHub repository). We conclude
that schoolbook outperforms any subquadratic strategy for all NTRU parameter sets.

0 100 200 300 400 500 600 700 800
n

0

1000

2000

3000

4000

5000

6000

cy
cl

es

(a)

poly. mult. without reduction
fit: 0.211x1.523

poly. mult. with reduction
fit: 0.039x1.724

0 1000 2000 3000 4000 5000 6000 7000 8000
n

0

50000

100000

150000

200000

250000

cy
cl

es

(b)

Schoolbook poly. mult. with reduction
Karatsuba poly. mult. with reduction

Figure 7: Cycle counts for AMX polynomial multiplication routines in the M3 as a function
of n: (a) schoolbook algorithm with and without reduction modulo xn − 1; (b) schoolbook
and (single recursion level) Karatsuba algorithms with reduction.

Constant-time experiments. We empirically tested whether AMX instructions execute
with data-independent timing, by benchmarking polynomial multiplication routines with
either zero or random polynomials as inputs; the former were chosen as the most likely
case for hypothetical data-dependent hardware optimizations. We also performed these
experiments for the implementations of [NG21] and [CCHY23] for comparison purposes.

Our experiment consists in creating either zero polynomials or a single pair of random
polynomials, and repeatedly computing polynomial multiplications with these fixed inputs.
We benchmark each operation 64 times and return the median cycle count; we loop this

Décio Luiz Gazzoni Filho, Guilherme Brandão, Julio López 19

Table 5: Cycle counts for schoolbook and Karatsuba polynomial multiplication in the M3,
and a lower bound computed across all possible subquadratic recursion strategies.

Parameter set Schoolbook
performance

Subquadratic
lower bound

Single level Karatsuba

lower bound performance

HPS2048509 1848 2100 2922 3506
HPS2048677/HRSS701 3202 3881 4758 5396

HPS4096821 4226 4813 6132 6793

for 1,000,000 times for zero inputs, and another 1,000,000 times for random inputs. We
discard the 0.5% smallest and 0.5% highest readings and draw cycle count histograms.

As discussed in Section 4.4, allocating polynomials on the stack causes undesirable
CPU-AMX memory subsystem interactions. In addition to worse performance (Table 4),
our experiments exhibited performance instabilities (bimodal cycle count distributions for
the same code across benchmark iterations); we conjecture they arise from CPU accesses
of neighboring stack variables. Since our implementation does not index arrays based
on secret data, any such instabilities cannot be exploited in timing side-channel attacks.
Regardless, in choosing a representative example for Figure 8, we opted for a version using
mmap() allocation, displaying some of the worst-case timing differences in the M3. The
full dataset, including similarly-behaving M1 data, is available in our GitHub repository.

4395 4400 4405 4410 4415 4420
Cycles

0

20000

40000

60000

80000

100000

120000

140000

Sa
m

pl
es

AMX

zeros
random

13900 14000 14100 14200 14300 14400
Cycles

0

1000

2000

3000

4000

5000

6000

7000

Sa
m

pl
es

[NG21]

zeros
random

Figure 8: Histogram of cycle counts for 1,000,000 iterations of polynomial multiplication,
for either zero or random inputs, for the AMX and [NG21] NEON implementation of
NTRU HPS4096821 with mmap() memory allocation, running on the M3.

We note some timing differences between the zero and random inputs, for both AMX
and NEON implementations. In the case of AMX, the outer product instruction is executed
⌈821/32⌉2 = 676 times, whereas the largest variations we see are in the order of 5 cycles.
While not all outer product instructions in the code are latency-bound, deviations are on
the order of < 0.01 cycles per outer product instruction, which seem unlikely to arise on
purpose due to a variable-time ALU design. Note also that even higher deviations occur
on the presumed constant-time NEON implementation. Thus, they seem more likely to
be random deviations between benchmark runs; indeed, while zero inputs are marginally
faster than random inputs in the NEON example, we also see occurrences of the reverse.

We also ran an experiment to measure the latency of matrix-mode mac16, for both
zero and random inputs, as we believe this is the most likely target for data-dependent
timing. We repeatedly run mac16 and extract the results back from Z to X and Y, creating
an inter-iteration data dependency, which serializes all operations so that we can measure
their latency. Running this in the M3 for 100,000 iterations, we get 2,294,898 cycles for zero
inputs and 2,294,876 cycles for random inputs, a difference of only 18 cycles or 0.0001%. A
variable-time ALU would exhibit at least 1 cycle difference in latency between both cases,
and thus one would expect a difference of at least 1 cycle/iteration, i.e., 100,000 cycles.

20 Fast polynomial multiplication . . . with applications to NTRU on Apple M1/M3 SoCs

In summary, we see no evidence of data-dependent timing in AMX.

6 Conclusion
We report on an implementation of polynomial multiplication, applied to the NTRU
lattice-based PQC scheme, leveraging a matrix-multiplication coprocessor which, as of
2023, is shipping on hundreds of millions of devices. Our implementation sets new speed
records on two representative devices featuring this coprocessor, the Apple M1 and M3
SoCs, outperforming state-of-the-art conventional implementations for the same platforms.

CPU-coupled matrix multiplication accelerators will soon flood the market, bringing
about huge leaps in processing power, but implementors must adapt to their new architec-
tural paradigms to harness their added performance. Our most surprising conclusion is that
multiplication (2D outer product) is much cheaper in AMX than vector (1D) operations,
which must be applied row- or column-wise, increasing instruction count. As subquadratic
algorithms trade off multiplication count for extra vector operations, AMX’s architectural
tradeoffs favor schoolbook for small polynomial degrees of cryptographic interest.

Future work. We suggest several avenues of future work from the results of our paper.
Other schemes based on NTT-unfriendly rings may see similar speedups from AMX,

such as SABER [BMD+20] and FrodoKEM [BCD+16, ABD+21] (note the latter uses
matrix-matrix multiplication). It is unclear whether NTT-based schemes such as Kyber
[ABD+19] and Dilithium [BDK+21] are a good match for AMX, but it merits investigation.

While we have argued that schoolbook should outperform other subquadratic algorithms
for NTRU, we assume that recursion is performed in a “black-box” fashion, calling
self-contained functions to compute multiplications of smaller degree. We encourage
investigating if an integrated approach, as in Sections 4.2 and 4.3, can improve performance.

Finally, we are witnessing the initial generations of matrix-multiplication accelerators.
As they evolve, implementation techniques must equally adapt: faster vector operations
could render subquadratic algorithms feasible, and the introduction of instructions to
accelerate matrix-vector products could favor the use of TMVP. In this vein, other
accelerators such as Intel AMX and ARMv9-A SME undoubtedly differ to some degree in
available instructions and performance characteristics from Apple’s AMX, and warrant a
careful study aiming to exploit their performance potential for post-quantum cryptography.

References
[ABD+19] Roberto Avanzi, Joppe Bos, Léo Ducas, Eike Kiltz, Tancrède Lepoint, Vadim

Lyubashevsky, John M. Schanck, Peter Schwabe, Gregor Seiler, and Damien
Stehlé. CRYSTALS–Kyber: Algorithm specification and supporting documen-
tation. Submission to the NIST Post-Quantum Cryptography Standardization
Project, 2019. https://pq-crystals.org/kyber/resources.shtml.

[ABD+21] Erdem Alkim, Joppe W. Bos, Léo Ducas, Patrick Longa, Ilya Mironov,
Michael Naehrig, Valeria Nikolaenko, Chris Peikert, Ananth Raghunathan,
and Douglas Stebila. FrodoKEM learning with errors key encapsulation: Al-
gorithm specifications and supporting documentation. Submission to the
NIST Post-Quantum Cryptography Standardization Project, 2021. https:
//frodokem.org/files/FrodoKEM-specification-20210604.pdf.

[Ame17] American National Standards Institute. Lattice-based polynomial public key
establishment algorithm for the financial services industry. ASC X9.98-2010
(R2017), 2017.

https://pq-crystals.org/kyber/resources.shtml
https://frodokem.org/files/FrodoKEM-specification-20210604.pdf
https://frodokem.org/files/FrodoKEM-specification-20210604.pdf

Décio Luiz Gazzoni Filho, Guilherme Brandão, Julio López 21

[App23] Apple Inc. Accelerate: Make large-scale mathematical computations and image
calculations, optimized for high performance and low energy consumption,
2023. https://developer.apple.com/documentation/accelerate.

[ARM] ARM Limited. How is instruction timing affected by the FEAT_DIT ar-
chitectural feature? URL: https://developer.arm.com/documentation/
ddi0487/ja/.

[BCD+16] Joppe Bos, Craig Costello, Leo Ducas, Ilya Mironov, Michael Naehrig, Valeria
Nikolaenko, Ananth Raghunathan, and Douglas Stebila. Frodo: Take off the
ring! Practical, quantum-secure key exchange from LWE. In Proceedings of the
2016 ACM SIGSAC Conference on Computer and Communications Security.
ACM, oct 2016. URL: https://doi.org/10.1145/2976749.2978425.

[BDK+21] Shi Bai, Léo Ducas, Eike Kiltz, Tancrède Lepoint, Vadim Lyubashevsky,
Peter Schwabe, Gregor Seiler, and Damien Stehlé. CRYSTALS–Dilithium:
Algorithm specification and supporting documentation. Submission to the
NIST Post-Quantum Cryptography Standardization Project, 2021. https:
//pq-crystals.org/dilithium/resources.shtml.

[BMD+20] Andrea Basso, Jose Maria Bermudo Mera, Jan-Pieter D’Anvers, Angshu-
man Karmakar, Sujoy Sinha Roy, Michiel Van Beirendonck, and Frederik
Vercauteren. Saber: Mod-LWR based KEM (round 3 submission). Submis-
sion to the NIST Post-Quantum Cryptography Standardization Project, 2020.
https://www.esat.kuleuven.be/cosic/pqcrypto/saber/index.html.

[Bun21] Bundesamt für Sicherheit in der Informationstechnik. Migration to post quan-
tum cryptography: Recommendations for action by the BSI, 2021. URL: https:
//www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Crypto/Migration_
to_Post_Quantum_Cryptography.pdf?__blob=publicationFile&v=2.

[Caw23] Peter Cawley. Apple AMX instruction set, 2023. https://github.com/
corsix/amx/.

[CCHY23] Han-Ting Chen, Yi-Hua Chung, Vincent Hwang, and Bo-Yin Yang. Algorith-
mic views of vectorized polynomial multipliers – NTRU. Cryptology ePrint
Archive, Report 2023/1637, 2023. https://ia.cr/2023/1637. To appear at
INDOCRYPT 2023.

[CDH+20] Cong Chen, Oussama Danba, Jeffrey Hoffstein, Andreas Hülsing, Joost Ri-
jneveld, John M.Schanck, Tsunekazu Saito, Peter Schwabe, William Whyte,
Keita Xagawa, Takashi Yamakawa, and Zhenfei Zhang. NTRU algorithm
specifications and supporting documentation. Submission to the NIST Post-
Quantum Cryptography Standardization Project, 2020. https://ntru.org/
resources.shtml.

[CHWZ17] Cong Chen, Jeffrey Hoffstein, William Whyte, and Zhenfei Zhang. NIST
PQ submission: NTRUEncrypt - a lattice based encryption algorithm.
Submission to the NIST Post-Quantum Cryptography Standardization Project,
2017. https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-
Cryptography/documents/round-1/submissions/NTRUEncrypt.zip.

[Han23] Maynard Handley. AArch64-Explore: Exploration of Apple CPUs – volume 3:
SoC, 2023. https://github.com/name99-org/AArch64-Explore.

https://developer.apple.com/documentation/accelerate
https://developer.arm.com/documentation/ddi0487/ja/
https://developer.arm.com/documentation/ddi0487/ja/
https://doi.org/10.1145/2976749.2978425
https://pq-crystals.org/dilithium/resources.shtml
https://pq-crystals.org/dilithium/resources.shtml
https://www.esat.kuleuven.be/cosic/pqcrypto/saber/index.html
https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Crypto/Migration_to_Post_Quantum_Cryptography.pdf?__blob=publicationFile&v=2
https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Crypto/Migration_to_Post_Quantum_Cryptography.pdf?__blob=publicationFile&v=2
https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Crypto/Migration_to_Post_Quantum_Cryptography.pdf?__blob=publicationFile&v=2
https://github.com/corsix/amx/
https://github.com/corsix/amx/
https://ia.cr/2023/1637
https://ntru.org/resources.shtml
https://ntru.org/resources.shtml
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/round-1/submissions/NTRUEncrypt.zip
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/round-1/submissions/NTRUEncrypt.zip
https://github.com/name99-org/AArch64-Explore

22 Fast polynomial multiplication . . . with applications to NTRU on Apple M1/M3 SoCs

[HHK17] Dennis Hofheinz, Kathrin Hövelmanns, and Eike Kiltz. A modular analysis
of the Fujisaki-Okamoto transformation. In Theory of Cryptography, pages
341–371. Springer International Publishing, 2017. doi:10.1007/978-3-319-
70500-2_12.

[HP19] John L. Hennessy and David A. Patterson. A new golden age for computer
architecture. Communications of the ACM, 62(2):48–60, jan 2019. doi:
10.1145/3282307.

[HPS96] Jeffrey Hoffstein, Jill Pipher, and Joseph H. Silverman. NTRU: a new high
speed public key cryptosystem. CRYPTO ’96 rump session, 1996. https:
//web.securityinnovation.com/hubfs/files/ntru-orig.pdf.

[HPS98] Jeffrey Hoffstein, Jill Pipher, and Joseph H. Silverman. NTRU: A ring-based
public key cryptosystem. In Joe P. Buhler, editor, Algorithmic Number Theory,
pages 267–288, Berlin, Heidelberg, 1998. Springer Berlin Heidelberg.

[HRSS17a] Andreas Hülsing, Joost Rijneveld, John Schanck, and Peter Schwabe. High-
speed key encapsulation from NTRU. In Wieland Fischer and Naofumi Homma,
editors, Cryptographic Hardware and Embedded Systems – CHES 2017, volume
10529 of Lecture Notes in Computer Science, pages 232–252, Cham, 2017.
Springer-Verlag Berlin Heidelberg.

[HRSS17b] Andreas Hülsing, Joost Rijneveld, John M. Schanck, and Peter Schwabe.
NTRU-HRSS-KEM algorithm specifications and supporting documentation.
Submission to the NIST Post-Quantum Cryptography Standardization Project,
2017. https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-
Cryptography/documents/round-1/submissions/NTRU_HRSS_KEM.zip.

[Ins09] Institute of Electrical and Electronics Engineers. IEEE standard specification
for public key cryptographic techniques based on hard problems over lattices.
IEEE Std 1363.1-2008, 2009. doi:10.1109/IEEESTD.2009.4800404.

[Int22] Intel Corporation. Intel® architecture instruction set extensions
and future features: Programming reference (revision 047), Decem-
ber 2022. https://cdrdv2-public.intel.com/671368/architecture-
instruction-set-extensions-programming-reference.pdf.

[Int23a] Intel Corporation. Data operand independent timing instruction set archi-
tecture (ISA) guidance, 2023. URL: https://www.intel.com/content/www/
us/en/developer/articles/technical/software-security-guidance/
resources/data-operand-independent-timing-instructions.html.

[Int23b] Intel Corporation. Data operand independent timing instructions, 2023. URL:
https://www.intel.com/content/www/us/en/developer/articles/
technical/software-security-guidance/best-practices/data-
operand-independent-timing-isa-guidance.html.

[Int23c] International Organization for Standardization. FrodoKEM: Learning with
errors key encapsulation preliminary draft standard, 2023. URL: https:
//frodokem.org/files/FrodoKEM-ISO-20230314.pdf.

[Joh22a] Dougall Johnson. Apple M1 microarchitecture research. https://dougallj.
github.io/applecpu/firestorm.html, 2022.

[Joh22b] Dougall Johnson. IDA (disassembler) and Hex-Rays (decompiler)
plugin for Apple AMX, 2022. https://gist.github.com/dougallj/
7a75a3be1ec69ca550e7c36dc75e0d6f.

https://doi.org/10.1007/978-3-319-70500-2_12
https://doi.org/10.1007/978-3-319-70500-2_12
https://doi.org/10.1145/3282307
https://doi.org/10.1145/3282307
https://web.securityinnovation.com/hubfs/files/ntru-orig.pdf
https://web.securityinnovation.com/hubfs/files/ntru-orig.pdf
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/round-1/submissions/NTRU_HRSS_KEM.zip
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/round-1/submissions/NTRU_HRSS_KEM.zip
https://doi.org/10.1109/IEEESTD.2009.4800404
https://cdrdv2-public.intel.com/671368/architecture-instruction-set-extensions-programming-reference.pdf
https://cdrdv2-public.intel.com/671368/architecture-instruction-set-extensions-programming-reference.pdf
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/resources/data-operand-independent-timing-instructions.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/resources/data-operand-independent-timing-instructions.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/resources/data-operand-independent-timing-instructions.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/best-practices/data-operand-independent-timing-isa-guidance.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/best-practices/data-operand-independent-timing-isa-guidance.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/best-practices/data-operand-independent-timing-isa-guidance.html
https://frodokem.org/files/FrodoKEM-ISO-20230314.pdf
https://frodokem.org/files/FrodoKEM-ISO-20230314.pdf
https://dougallj.github.io/applecpu/firestorm.html
https://dougallj.github.io/applecpu/firestorm.html
https://gist.github.com/dougallj/7a75a3be1ec69ca550e7c36dc75e0d6f
https://gist.github.com/dougallj/7a75a3be1ec69ca550e7c36dc75e0d6f

Décio Luiz Gazzoni Filho, Guilherme Brandão, Julio López 23

[JYP+17] Norman P. Jouppi, Cliff Young, Nishant Patil, David Patterson, Gau-
rav Agrawal, Raminder Bajwa, Sarah Bates, Suresh Bhatia, Nan Boden,
Al Borchers, Rick Boyle, Pierre-luc Cantin, Clifford Chao, Chris Clark, Jeremy
Coriell, Mike Daley, Matt Dau, Jeffrey Dean, Ben Gelb, Tara Vazir Ghaem-
maghami, Rajendra Gottipati, William Gulland, Robert Hagmann, C. Richard
Ho, Doug Hogberg, John Hu, Robert Hundt, Dan Hurt, Julian Ibarz, Aaron
Jaffey, Alek Jaworski, Alexander Kaplan, Harshit Khaitan, Daniel Killebrew,
Andy Koch, Naveen Kumar, Steve Lacy, James Laudon, James Law, Diemthu
Le, Chris Leary, Zhuyuan Liu, Kyle Lucke, Alan Lundin, Gordon MacK-
ean, Adriana Maggiore, Maire Mahony, Kieran Miller, Rahul Nagarajan,
Ravi Narayanaswami, Ray Ni, Kathy Nix, Thomas Norrie, Mark Omernick,
Narayana Penukonda, Andy Phelps, Jonathan Ross, Matt Ross, Amir Salek,
Emad Samadiani, Chris Severn, Gregory Sizikov, Matthew Snelham, Jed Souter,
Dan Steinberg, Andy Swing, Mercedes Tan, Gregory Thorson, Bo Tian, Horia
Toma, Erick Tuttle, Vijay Vasudevan, Richard Walter, Walter Wang, Eric
Wilcox, and Doe Hyun Yoon. In-datacenter performance analysis of a tensor
processing unit. In Proceedings of the 44th Annual International Symposium
on Computer Architecture, ISCA ’17, page 1–12, New York, NY, USA, 2017.
Association for Computing Machinery. doi:10.1145/3079856.3080246.

[LHKK79] C. L. Lawson, R. J. Hanson, D. R. Kincaid, and F. T. Krogh. Basic linear al-
gebra subprograms for Fortran usage. ACM Trans. Math. Softw., 5(3):308–323,
sep 1979. doi:10.1145/355841.355847.

[LSH+22] Wai-Kong Lee, Hwajeong Seo, Seong Oun Hwang, Ramachandra Achar, Ang-
shuman Karmakar, and Jose Maria Bermudo Mera. DPCrypto: Acceleration
of post-quantum cryptography using dot-product instructions on GPUs. IEEE
Transactions on Circuits and Systems I: Regular Papers, 69(9):3591–3604, 2022.
doi:10.1109/TCSI.2022.3176966.

[LSZH22] Wai-Kong Lee, Hwajeong Seo, Zhenfei Zhang, and Seong Oun Hwang. Ten-
sorCrypto: High throughput acceleration of lattice-based cryptography using
tensor core on GPU. IEEE Access, 10:20616–20632, 2022. doi:10.1109/
ACCESS.2022.3152217.

[MBB+21] José E. Moreira, Kit Barton, Steven Battle, Peter Bergner, Ramon Bertran,
Puneeth Bhat, Pedro Caldeira, David Edelsohn, Gordon C. Fossum, Brad Frey,
Nemanja Ivanovic, Chip Kerchner, Vincent Lim, Shakti Kapoor, Tulio Machado
Filho, Silvia Melitta Mueller, Brett Olsson, Satish Sadasivam, Baptiste Saleil,
Bill Schmidt, Rajalakshmi Srinivasaraghavan, Shricharan Srivatsan, Brian W.
Thompto, Andreas Wagner, and Nelson Wu. A matrix math facility for Power
ISA(TM) processors, 2021. https://arxiv.org/abs/2104.03142.

[MCL+18] S. Markidis, S. Chien, E. Laure, I. Peng, and J. S. Vetter. NVIDIA ten-
sor core programmability, performance & precision. In 2018 IEEE Interna-
tional Parallel and Distributed Processing Symposium Workshops (IPDPSW),
pages 522–531, Los Alamitos, CA, USA, may 2018. IEEE Computer Soci-
ety. URL: https://doi.ieeecomputersociety.org/10.1109/IPDPSW.2018.
00091, doi:10.1109/IPDPSW.2018.00091.

[Nat17] National Institute of Standards and Technology. Post-Quantum Cryptography,
2017. https://csrc.nist.gov/Projects/post-quantum-cryptography/
post-quantum-cryptography-standardization.

[NG21] Duc Tri Nguyen and Kris Gaj. Fast NEON-based multiplication for lattice-
based NIST post-quantum cryptography finalists. In Jung Hee Cheon and

https://doi.org/10.1145/3079856.3080246
https://doi.org/10.1145/355841.355847
https://doi.org/10.1109/TCSI.2022.3176966
https://doi.org/10.1109/ACCESS.2022.3152217
https://doi.org/10.1109/ACCESS.2022.3152217
https://doi.ieeecomputersociety.org/10.1109/IPDPSW.2018.00091
https://doi.ieeecomputersociety.org/10.1109/IPDPSW.2018.00091
https://doi.org/10.1109/IPDPSW.2018.00091
https://csrc.nist.gov/Projects/post-quantum-cryptography/post-quantum-cryptography-standardization
https://csrc.nist.gov/Projects/post-quantum-cryptography/post-quantum-cryptography-standardization

24 Fast polynomial multiplication . . . with applications to NTRU on Apple M1/M3 SoCs

Jean-Pierre Tillich, editors, Post-Quantum Cryptography, pages 234–254, Cham,
2021. Springer International Publishing.

[Rod20] Andres Rodriguez. Deep Learning Systems: Algorithms, Compilers, and Proces-
sors for Large-Scale Production. Synthesis Lectures on Computer Architecture.
Morgan & Claypool Publishers, Oct. 2020.

[SBG+16] Ali Sazegari, Eric Bainville, Jeffry E. Gonion, III Gerard R. Williams, and
Andrew J. Beaumont-Smith. Outer product engine. US patent US2018/074824
A1, 2016. URL: https://patents.google.com/patent/US20180074824A1/
en.

[Sho97] Peter W. Shor. Polynomial-time algorithms for prime factorization and discrete
logarithms on a quantum computer. SIAM J. Comput., 26(5):1484–1509,
October 1997. doi:10.1137/S0097539795293172.

[WMS22] Finn Wilkinson and Simon McIntosh-Smith. An initial evaluation of Arm’s
Scalable Matrix Extension. In 2022 IEEE/ACM International Workshop on
Performance Modeling, Benchmarking and Simulation of High Performance
Computer Systems (PMBS), pages 135–140, 2022. doi:10.1109/PMBS56514.
2022.00018.

[WZF+22] Lipeng Wan, Fangyu Zheng, Guang Fan, Rong Wei, Lili Gao, Yuewu Wang,
Jingqiang Lin, and Jiankuo Dong. A novel high-performance implementation
of CRYSTALS-Kyber with AI accelerator. In Vijayalakshmi Atluri, Roberto
Di Pietro, Christian D. Jensen, and Weizhi Meng, editors, Computer Security –
ESORICS 2022, pages 514–534, Cham, 2022. Springer Nature Switzerland.

https://patents.google.com/patent/US20180074824A1/en
https://patents.google.com/patent/US20180074824A1/en
https://doi.org/10.1137/S0097539795293172
https://doi.org/10.1109/PMBS56514.2022.00018
https://doi.org/10.1109/PMBS56514.2022.00018

	Introduction
	Preliminaries
	Apple's AMX coprocessor
	Programmer's model
	Programming interface
	Instruction set
	Performance considerations

	Implementing polynomial multiplication on AMX
	Basic block: multiplication of 32-coefficient slices
	Polynomial multiplication by product-scanning of basic blocks
	Integrated reduction modulo xn - 1
	Working around memory access slowdowns

	Experimental results
	Performance measurements

	Conclusion

