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Abstract

We present ReSolveD, a new candidate post-quantum signature scheme under the regular
syndrome decoding (RSD) assumption for random linear codes, which is a well-established vari-
ant of the well-known syndrome decoding (SD) assumption. Our signature scheme is obtained
by designing a new zero-knowledge proof for proving knowledge of a solution to the RSD prob-
lem in the recent VOLE-in-the-head framework using a sketching scheme to verify that a vector
has weight exactly one. We achieve a signature size of 3.99 KB with a signing time of 27.3 ms
and a verification time of 23.1 ms on a single core of a standard desktop for a 128-bit security
level. Compared to the state-of-the-art code-based signature schemes, our signature scheme
achieves 1.5× ∼ 2× improvement in terms of the common “signature size + public-key size”
metric, while keeping the computational efficiency competitive.

1 Introduction

Zero-knowledge (ZK) proof is an important cryptographic tool that enables a prover to convince
a verifier of the validity of a statement without revealing any further information. ZK proofs find
a lot of applications in various contexts, e.g., secure multi-party computation (MPC), machine
learning, and blockchain. Using the Fiat-Shamir heuristic [FS87], we can transform public-coin
zero-knowledge proofs into signature schemes. In particular, this is the main approach to building
code-based signature schemes. The recent call of NIST for standardizing post-quantum signatures
expressed its primary interest in additional signature schemes that are not based on structured
lattices [NIS22], which promotes the research of non-lattice-based signature schemes, particularly
code-based signatures.

The well-known syndrome decoding (SD) problem over a binary field F2 asks, given a ma-

trix H ∈ F(m−k)×m
2 and a target vector y ∈ Fm−k

2 , to recover a noise vector e ∈ Fm
2 such that

H · e = y for some sparse e of exact weight w ≪ m. The worst-case SD problem in certain
parameter regimes is known to be NP-hard [BMvT78, Bar94], and its average-case analogue is
one of the most promising assumptions for post-quantum cryptography. In the seminal work from
three decades ago, Stern [Ste94] introduced the first zero-knowledge proof to prove knowledge of
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a solution to the SD problem. However, the communication cost is significant due to the high
soundness error, and thus the signature size would be very large (i.e. about 37 KB for 128-bit
security), when being compiled using the Fiat-Shamir transform. Since then, a few prior works
(e.g., [Vér96, GG07, CVA10, MGS11, ACBH13]) optimized Stern’s protocol, but the communica-
tion cost is still high. To avoid the issue of high soundness error, subsequent code-based signature
schemes resort to different code-based problems, e.g., (a) LESS (and some subsequent improve-
ments) [BMPS20, BBPS21, PS23] adopts the linear/permutation code equivalence problem, and
(b) Durandal [ABG+19] depends on the rank SD problem over F2m . Recently, based on the SD
problem, the works [GPS22, FJR23, BGKM23, FJR22, CCJ23, AGH+23, MHJ+23] obtain signif-
icantly lower soundness errors by building zero-knowledge proofs based on the MPC-in-the-head
paradigm [IKOS07], and achieve the best efficiency for now in terms of the common “signature
size + public-key size” metric. We summarize the efficiency and assumptions of recent code-based
signature schemes in Table 1. Among these schemes, Wave [DST19] is the only signature scheme
that departs from the line that transforms zero-knowledge proofs with Fiat-Shamir. Instead, Wave
adopts the hash-and-sign paradigm that depends on the existence of a code-based trapdoor per-
mutation, which leads to a very large size of public keys. Wave achieves smaller signature sizes
but relies on a non-standard code-based assumption. For the common “signature size + public-key
size” metric, the Fiat-Shamir-based schemes still offer better performance.

In this work, we focus on designing a new code-based signature scheme under the regular
syndrome decoding (RSD) assumption [AFS03], a well-established variant of the well-known SD
assumption. Specifically, RSD is the same as SD, except for requiring that the noise vector e is
regular, i.e., e ∈ Fm

2 is divided into w consecutive blocks of length m/w, where each block has
exactly one noisy coordinate. Recent works [FJR22, LWYY22] presented a reduction from SD
to RSD, which builds confidence in the hardness of the RSD problem from a theoretic point of
view. Furthermore, the hardness of the RSD problem was thoroughly analyzed by Carozza et
al. [CCJ23], which gives us more confidence. As far as we know, the regular structure of noises
does not lead to significantly better attacks when the code rate is kept large (and thus the recent
algebraic attack [BØ23] can be bypassed).

1.1 Our Contributions

In this paper, we put forward a new zero-knowledge (ZK) protocol on proving knowledge of a
solution to the RSD problem over F2. By using the Fiat-Shamir transform, we compile the zero-
knowledge protocol into a code-based signature scheme (called ReSolveD). Compared to the state-
of-the-art code-based signature schemes, ReSolveD reduces the total size of the signature and public
key by a factor of 1.5× ∼ 2×, while keeping the signing and verification performance competitive.
In Table 1, we compare the efficiency of ReSolveD with the recent code-based signature schemes
at the 128-bit security level. Note that LESS [PS23] and CF-LESS [CPS23] lack of parameter
sets for 128-bit security, instead we use their parameters for NIST category 1 security. While the
work [AGH+23] describes three variants of their code-based signature scheme, Table 1 only shows
the third one that has the best performance among the three. The shortest version of the signature
scheme [AGH+23] has a signature size that is closest to the first variant of ReSolveD among prior
code-based signature schemes, but the signing and verification timings are more than 10× larger
than our scheme. Notice that the shortest version of [AGH+23] also offers the smallest size in the
“signature + public key” metric. Our second variant achieves 1.5× improvement in terms of that
metric with half of the running time. In Section 6.2, we also compare ReSolveD with other kinds
of post-quantum signature schemes.

While most code-based signature schemes in the Fiat-Shamir line adopt the MPC-in-the-head
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Table 1: Comparison of code-based signature schemes for 128-bit security level. Reported

runtimes are extracted from original publications, using a 3.5 GHz Intel Xeon E3-1240 v5 for Wave [DST19],

a 2.8 GHz Intel Core i5-7440HQ for Durandal [ABG+19], a 2.1 GHz Intel Core i7-12700 CPU for LESS [PS23],

a 3.8 GHz Intel Core i7 supports AVX2 and AES instructions for [FJR23, FJR22], a 3.1 GHz Intel Core

i9-9990K using AVX2 for [AGH+23], an Intel Xeon E-2378 with frequency fixed at 2.6 GHz for [MHJ+23] and

a conservative upper bound assuming a 3.8 GHz CPU for [CCJ23]. We benchmarked our ReSolveD-128 on

a Ubuntu 20.04 LTS machine with AMD Ryzen 5 3600 CPU and 16GB of RAM using AVX2.

Scheme
Sizes in KB Runtimes in ms

Assumption
|sig| |pk| |sig|+ |pk| tsign tverify

Wave [DST19] 1.59 3276.8 3278.39 300 − large-weight SD over F3,
(U,U + V )-codes indist.

Durandal-I [ABG+19] 4.06 15.25 19.31 4 5 Rank-SD over F2m

Durandal-II [ABG+19] 5.02 18.61 23.63 5 6 Rank-SD over F2m

LESS-FM-I [BBPS21] 15.2 9.77 24.97 − − Linear Code Equivalence
LESS-FM-II [BBPS21] 5.25 205.74 210.95 − − Perm. Code Equivalence
LESS-FM-III [BBPS21] 10.39 11.57 21.96 − − Perm. Code Equivalence

LESS-1b [PS23] 8.4 13.6 22 125.52 129.24 Linear Code Equivalence
LESS-1i [PS23] 5.8 40.8 46.6 121.10 125.43 Linear Code Equivalence
LESS-1s [PS23] 5.0 95.2 100.2 98.38 101.62 Linear Code Equivalence

CF-LESS-1(s=2) [CPS23] 2.42 13.61 16.04 − − CF Code Equivalence
CF-LESS-1(s=4) [CPS23] 1.80 40.81 42.61 − − CF Code Equivalence

[GPS22]-256 23.98 0.11 24.09 − − SD over F256

[GPS22]-1024 19.76 0.12 19.88 − − SD over F1024

[FJR23]-fast 22.6 0.09 22.69 12.9 12.2 SD over F2

[FJR23]-short 16.0 0.09 16.09 62.3 56.6 SD over F2

[BGKM23]-Sig1 24.0 0.1 24.1 − − SD over F2

[BGKM23]-Sig2 19.3 0.2 19.5 − − (QC)SD over F2

[BGKM23]-Sig3 15.6 0.2 15.8 − − (QC)SD over F2

[FJR22]-Var1f 15.6 0.09 15.69 − − SD over F2

[FJR22]-Var1s 10.9 0.09 10.99 − − SD over F2

[FJR22]-Var2f 17.0 0.09 17.09 13.4 12.7 SD over F2

[FJR22]-Var2s 11.8 0.09 11.89 64.2 60.7 SD over F2

[FJR22]-Var3f 11.5 0.14 11.64 6.4 5.9 SD over F256

[FJR22]-Var3s 8.26 0.14 8.4 29.5 27.1 SD over F256

[AGH+23]-fast 11.83 0.14 11.97 1.30 0.98 SD over F256

[AGH+23]-short 8.28 0.14 8.42 2.87 2.59 SD over F256

[AGH+23]-shorter 6.63 0.14 6.77 26.43 25.79 SD over F256

[AGH+23]-shortest 5.56 0.14 5.7 320.66 312.67 SD over F256

[MHJ+23]-Vanilla-short 8.27 0.14 8.6 4.5 4.17 SD over F256

[MHJ+23]-Vanilla-shorter 6.6 0.14 6.94 45.06 42.02 SD over F256

[MHJ+23]-PoW-short 7.78 0.14 8.11 4.34 4 SD over F256

[MHJ+23]-PoW-shorter 6.06 0.14 6.34 42.55 39.75 SD over F256

[CCJ23]-rsd-f 12.52 0.09 12.61 2.8∗ − RSD over F2

[CCJ23]-rsd-m1 9.69 0.09 9.78 17∗ − RSD over F2

[CCJ23]-rsd-m2 9.13 0.09 9.22 31∗ − RSD over F2

[CCJ23]-rsd-s 8.55 0.09 8.64 65∗ − RSD over F2

ReSolveD-128-Var1 3.99 0.08 4.07 27.3 23.1 RSD over F2

ReSolveD-128-Var2 3.43 0.08 3.51 158.73 153.11 RSD over F2

framework to design ZK proofs, we construct a ZK proof on RSD problems in the VOLE-in-
the-head framework [BBdSG+23b]. In the VOLE-in-the-head framework, Baum et al. present a
non-interactive version of the SoftSpokenOT technique [Roy22] to generate information-theoretic
message authentication codes (IT-MACs), and then transform a designated-verifier ZK proof based
on IT-MACs (e.g., QuickSilver [YSWW21]) to a publicly-verifiable ZK proof. Our starting point
is to prove knowledge of a solution to the RSD problem using a ZK proof based on IT-MACs, and
then transform it to a public-coin ZK proof using the VOLE-in-the-head paradigm. Due to the
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additive homomorphism and unforgeability of IT-MACs, the equation H · e = y is easy to prove.
The key point is to prove that e is a regular noise with an exact Hamming weight t.

Notice that we can use the approaches implied in previous code-based signature schemes
(e.g., [FJR22, AGH+23]) to prove the validity of e, but fail to obtain a code-based signature scheme
with signature size shorter than the state-of-the-art schemes listed in Table 1. This requires us to
exploit an approach that has better compatibility with VOLE-in-the-head. In particular, we refine
the sketching technique [BGI16], which is used in verifiable function secret sharing (FSS), to prove
the constraint on noise e. Additionally, we adopt the recent half-tree technique [GYW+23] to
optimize the computation of GGM-based random vector commitments. See Section 1.2 for more
details of our technique.

1.2 Technical Overview

We give a high-level overview of the technical route underlying the ReSolveD signature scheme,
then we highlight the technical contributions, which include a novel method for validating the noise
vector of an RSD problem and the half-tree optimization integrated into the VOLE-in-the-Head
framework.

Code-based Signatures from VOLE-in-the-Head. A canonical paradigm in code-based sig-
natures is to first design a public-coin ZK proof for code-based problems and then apply the
Fiat-Shamir transform to make it a signature scheme. While there are multiple choices in the
design of ZK proofs, the recent VOLE-in-the-Head framework [BBdSG+23b] provides a promis-
ing new direction. In particular, within this framework, we can generate IT-MAC relations in a
public-coin fashion and then convert designated-verifier ZK (which relies on such relations) into
publicly-verifiable ones. Given the rapid development of designated-verifier ZK [WYKW21, DIO21,
BMRS21, YSWW21, WYX+21, BBMH+21, DILO22, WYY+22, BBMHS22], this inspires us to de-
sign a designated-verifier ZK tailored to the RSD problem and convert it into a code-based signature
scheme using VOLE-in-the-Head.

In more detail, the IT-MAC generation of VOLE-in-the-Head begins with the prover committing
to a series of GGM trees. For each tree, the prover opens all but one leaf node to the verifier, which
allows them to generate a small field VOLE correlation with the punctured index as the global
key using the technique in SoftSpokenOT [Roy22]. By applying de-randomization and consistency
checking [KOS15, PSS17, OOS17, Roy22], the small field VOLE correlations can be aggregated
so that the global key size is large enough to ensure the binding property of IT-MAC. Then the
generated IT-MAC correlations are utilized by the subsequent designated-verifier ZK protocol.

One caveat of the above process is that to open the GGM-based vector commitment, the prover
needs to know the punctured index, which is also the IT-MAC global key. Nevertheless, once the
global key is known by the prover, the binding property fails to hold, and so does the soundness of
the designated-verifier ZK upon which it relies. The crucial observation in [CDD+19, BBdSG+23b]
is that since the DVZK proof is public-coin, the vector commitment opening can be postponed
until the proof has been completed. In this way, even if the prover learns the global key, it can no
longer change the proof messages that have already been sent.

Checking the Noise Vector using IT-MAC. We introduce the design of IT-MAC-based
designated-verifier ZK for the RSD problem. Our starting point is the QuickSilver protocol [YSWW21]
that provides an efficient method to verify the quadratic relations among multiple IT-MAC authen-
ticated triples. We now explain how the validity check of the RSD noise vector can be streamlined
into the verification of multiple quadratic relations, a task in which the QuickSilver protocol excels.
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We assume without loss of generality that the public matrix H is in the systematic form, i.e.,
H = [I∥HB] and that the witness is split accordingly as e = [eA∥eB]. Since IT-MACs are linearly
homomorphic, the prover can commit to eB and both parties check the Hamming weight constraint
on the “virtual” witness e = [y −HB · eB∥eB] to implicitly check the linear constraint.

Instead of relying on polynomials [FJR22, AGH+23] or share-conversions [CCJ23] to check the
weight constraint, we prove the validity for each noise block by utilizing the sketching technique
introduced by Boyle, Gilboa and Ishai [BGI16]. More concretely, when proving the validity of the

solution e = [e0∥e1∥ . . . ∥ew−1] ∈ Fm
2 to a RSD problem, we first define w matrices Li ∈ F4×m/w

2λ

each consisting of four rows for all i ∈ [0, w) (i.e., the linear sketches). The first two rows are

uniformly sampled and defined as ri0, r
i
1 ← Fm/w

2λ
. The third row is defined as the component-wise

product of the first two rows, namely ri0 ◦ri1. The last row is an all-1 vector. Then we can compute
the sketch JziK by right-multiplying Li with JeiK where JeiK is the noise block authenticated using
IT-MAC [BDOZ11, NNOB12].

JziK =

u

ww
v

zi0
zi1
zi2
zi3

}

��
~ =


(ri0)

T

(ri1)
T

(ri0 ◦ ri1)T
1 ... 1

 · JeiK .

Finally, the verification procedure checks that the sketch zi = (zi0, z
i
1, z

i
2, z

i
3) satisfies the condition

that zi0 · zi1 − zi2 = 0 and zi3 − 1 = 0 for all i ∈ [0, w). We view the above expression as a
degree-2 polynomial in ri0, r

i
1, . . . , r

i
m/w whose coefficients are determined by ei. Note that if ei is

not a unit vector, then the condition holds with probability less than 2/2λ from Schwartz-Zippel
Lemma [Sch80, Zip79].

Using the sketching technique, we can convert the validity check of each noise block into the
verification of a simple multiplication relation. By running the QuickSilver protocol which shows a
way to prove low-degree polynomials with very high efficiency, we can reduce all w linear checks to a
single check by a random-linear combination. We note that due to the application of the sketching
technique, our protocol still outperforms the polynomial-based protocols of [FJR22, AGH+23] even
if we replace the MPC-in-the-Head proof with VOLE-in-the-Head.

Half-tree Optimization. We observe that a large portion of the computational overhead in the
VOLE-in-the-Head framework originates from generating the vector commitments. By applying
the half-tree technique [GYW+23] we can populate the GGM tree with half the number of calls
to symmetric-key ciphers in the random permutation model [GKWY20]. In VOLE-in-the-Head,
the number of GGM trees is linearly correlated with the communication overhead. Therefore, by
optimizing the computational complexity in GGM tree generation, we can use fewer but deeper
trees, opening more possibilities in the communication-computation trade-off.

1.3 Paper Organization

This paper is organized as follows: In Section 2 and Section 3, we introduce notations and definitions
for necessary background knowledge on regular syndrome decoding problem, VOLE-in-the-Head
paradigm and linear sketching technique. We present our more efficient zero-knowledge proof
and signature scheme which yields shorter proof and signature size in Section 4 and Section 5
respectively. To conclude, we provide experimental evaluations of our construction and make
comparisons with other state-of-the-art signature schemes in Section 6.
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Table 2: Symbols and their meanings in this paper.

Notation Meaning

a, JaK A vector and its authentication
ai,a[i, j] The i-th coordinate and sub-vector with indices [i, j] of a

U,U[i],Uj A matrix, its i-th row and its j-th column
Ik The k × k identity matrix

M[a],K[a] IT-MAC tag and local key
m Length of the noise vector in RSD

m− k Length of the syndrome vector in RSD
w, d Hamming weight of the noise vector in RSD

F2,F2τ ′ ,F2ττ ′ The base field in syndrome decoding and two extension fields
τ, τ ′ Degrees of field extensions where τ ′ = O(log(λ)) and ττ ′ ≥ λ

diag(∆) The diagonal matrix with vector ∆ on its diagonal
[a∥b], [A∥B] The concatenation of two vectors or two matrices

[1 ... 1] The all-one row vector
a ◦ b The component-wise multiplication between two vectors

len(a),wt(a) The length and Hamming weight of a vector a

2 Preliminaries

2.1 Notation

We use λ to denote the computational security parameter. We use log to denote logarithms in
base 2. We define [a, b) = {a, . . . , b − 1} and write [a, b] = {a, . . . , b} and [n] = [1, n]. We write
x ← S to denote sampling x uniformly at random from a finite set S. We use {xi}i∈S to denote
the set that consists of all elements with indices in set S. When the context is clear, we abuse the
notation and use {xi} to denote such a set.

We use bold lower-case letters like a for column vectors and bold uppercase letters like A for
matrices. We let ai denote the i-th component of a (with a0 the first entry) and a[i, j] denote
the subvector of a with indices [i, j]. Let len(a) be the length of the vector a. Let wt(a) be the
Hamming weight of the vector a and let [a∥b], [A∥B] denote the concatenation of two vectors
and matrices, respectively. Let Ik denote the k × k identity matrix and [1 ... 1] denote the all-one
row vector where the dimension is implicit in the context. Let diag(a) be the diagonal matrix
with the vector a on its main diagonal. We use the notation a ◦ b to denote the component-wise
multiplication between two vectors a and b.

We consider the regular syndrome decoding problem over F2 in this work. Let τ, τ ′ ∈ N
and fix two monic irreducible polynomials f1(X), f2(X) of degrees τ, τ ′ respectively. We define
F2τ ′

∼= F2[X]/f2(X) and F2ττ ′
∼= F2τ ′ [X]/f1(X). Therefore, we can pack τ elements in F2τ ′ or ττ

′

elements in F2 into one element in F2λ . We also require ττ ′ ≥ λ. We list the symbols and their
definitions of this paper in Table 2.

2.2 Hash Functions

In our protocol, we utilize universal hash functions and circular correlation robust hash functions.
Following prior works [GKWY20], we define the security requirements in Definition 1 and Defini-
tion 2.

6



Definition 1. A linear ϵ-almost universal family of hashes is a family of matrices H ⊆ Fr×(n+h)
2

such that for any nonzero v ∈ Fn+h
2 , PrH←H[H·v = 0] ≤ ϵ. A matrix H is n-hiding if the distribution

H · v is independent of v[0, n) for a uniformly random v ← Fn+h
2 . The hash family H is n-hiding

if every hash function in this family is n-hiding.

Definition 2. Let H : {0, 1}λ → {0, 1}λ be a function. For Γ ∈ {0, 1}λ, define Occr
∆ (x, b) =

H(x⊕ Γ)⊕ b · Γ. We don’t allow the distinguisher to query the same x with both 0 and 1 to avoid
the trivial attack. For a distinguisher D, we define the following advantage

AdvccrH :=

∣∣∣∣∣ Pr
Γ←{0,1}λ

[DOccr
∆ (·)(1λ) = 1]− Pr

f←Fλ+1,λ

[Df(·)(1λ) = 1]

∣∣∣∣∣ ,

where Fλ+1,λ denotes the set of all functions mapping (λ + 1)-bit inputs to λ-bit outputs. H is
(t, q, ϵ)-circular correlation robust if for all D running in time t and making at most q queries to
the oracle we have AdvccrH ≤ ϵ.

2.3 Regular Syndrome Decoding

We recall the regular syndrome decoding problem (RSD) where the noise vector is the concatenation
of several unit vectors. We inherit the notations from [FJR22] (named d-split syndrome decoding
in that paper).

Definition 3. Let m, k,w, d be positive integers such that m > k, m > w and d = w. The regular
noise syndrome decoding problem with parameters (m, k,w, d) is the following problem: Let H, e
and y be such that:

1. H is uniformly sampled from F(m−k)×m
2 ,

2. e is uniformly sampled from {[e0∥...∥ew−1] : ∀i ∈ [0, w), ei ∈ F
m
w
2 , ∥ei∥0 = 1},

3. y is defined as y := H · e. From (H,y), find e.

Systematic Form of RSD. Following previous works [FJR22, CCJ23] we assume without loss
of generality that the matrix H is in the systematic form, i.e., H = [Im−k∥HB]. Therefore, in the
zero-knowledge protocol, the solution e = [eA∥eB] can be compressed into a smaller one eB since
the complete witness can be linearly expressed as e = [y −HB · eB∥eB].

The benefit of this optimization is two-fold. Firstly, by compressing the witness we can reduce
the communication complexity of the ZK protocol, and therefore the signature size. Secondly, the
linear expression implicitly enforces the constraint that H · e = y, and thus we only need to check
the Hamming weight constraint on the “virtual” vector e = [y −HB · eB∥eB] in the ZK protocol.

The Hardness of RSD. A number of works studied the hardness of regular syndrome de-
coding under different parameter regimes [HOSS18, LWYY22]. In particular, some recent works
utilize the regular noise structure into the state-of-the-art cryptanalysis algorithms of syndrome
decoding [CCJ23, BØ23, ES23]. To the best of our knowledge, the chosen parameters for our sig-
nature scheme lie in a region where the exact relationship between the hardness of RSD and SD
remains unclear [ES23]. In Table 3, we choose parameters such that the RSD solution is unique
(
(
m
w

)w
< 2m−k) while the same parameter would lead to multiple solutions if we drop the regularity

constraint (
(
m
w

)
> 2m−k). In this region, the regular structure of noises does not lead to significantly

better attacks [CCJ23, BØ23, ES23].
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Functionality FDVZK

This functionality runs with a prover P and a verifier V, and operates as follows:

• Upon receiving (dvzk, sid, ℓ, {JxiK, JyiK, JziK}i∈[0,ℓ)) from P and V if there exists some i ∈ [0, ℓ) such
that one of JxiK, JyiK, JziK is not valid, output (sid, false) to V and abort.

• Check that zi = xi · yi for all i ∈ [0, ℓ). If the check passes, then output (sid, true) to V, else output
(sid, false) to V.

Figure 1: Functionality for DVZK proofs of authenticated multiplication triples.

2.4 Information-Theoretic Message Authentication Codes

We use information-theoretic message authentication codes (IT-MACs) [BDOZ11, NNOB12] over
F2λ . Specifically, let ∆ ∈ F2λ be a global key. We use JxK = (K[x],M[x], x) to denote that an
element x ∈ F (where F ∈ {F2,F2λ} known by one party can be authenticated by the other party
who holds ∆ and a local key K[x] ∈ F2λ , where a MAC tag M[x] = K[x] +x ·∆ is given to the party
holding x. For a vector x ∈ Fℓ

2λ
, we denote by JxK = (Jx0K, ..., Jxℓ−1K) a vector of authenticated

values. For a constant value c ∈ F2λ , it is easy to define JcK = (−c ·∆, 0, c). It is well known that
IT-MACs are additively homomorphic. That is, given public coefficients c0, c1, . . . , cℓ ∈ F2λ , two
parties can locally compute JyK :=

∑ℓ−1
i=0 ci · JxiK + cℓ.

The IT-MAC authenticated value JxK can be opened by revealing x andM[x] and the validity can
be enforced by checking that M[x] = K[x]+x ·∆. The security holds since opening JxK to any other
value (K[x],M[x′], x′) is equivalent to guessing the global key since ∆ = (M[x]−M[x′]) · (x− x′)−1.

We can open multiple values Jx0K, ..., Jxℓ−1K in a batch by sending one MAC tag as follows. The
sender first reveals x′0, ..., x

′
ℓ−1, then using the additive homomorphism of IT-MAC, both parties

can define JyiK = JxiK− x′i for i ∈ [0, ℓ). Now it suffices to check that ∀i ∈ [0, ℓ), yi = 0.
For task of checking multiple zero values Jy0K, ..., Jyℓ−1K, we can save communication by opening

a random linear combination χ0 · Jy0K + ...+ χℓ−1 · Jyℓ−1K. In particular, the sender can only send∑ℓ−1
i=0 χi ·M[yi] since

∑ℓ−1
i=0 χi · yi = 0 for uniformly random χi ← F2λ .

2.5 Designated-Verifier Zero-Knowledge for Quadratic Relations

Based on IT-MACs, a family of streamable designated-verifier zero-knowledge (DVZK) proofs with
fast prover time and a small memory footprint has been proposed [WYKW21, DIO21, BMRS21,
YSWW21, WYX+21, BBMH+21, DILO22, WYY+22, BBMHS22]. While these DVZK proofs can
prove arbitrary circuits, we only need them to prove a simple multiplication relation for our pur-
pose. Specifically, given a set of authenticated triples {(JxiK, JyiK, JziK)}i∈[0,ℓ) over F2λ , these DVZK
protocols can enable a prover P to convince a verifier V that zi = xi · yi for all i ∈ [0, ℓ). This is
modeled by an ideal functionality shown in Figure 1. In this functionality, an authenticated value
JxK is input by two parties P and V, meaning that P inputs (x,M) and V inputs (K,∆). We say
that JxK is valid, if M = K+ x ·∆.

QuickSilver. We use the QuickSilver protocol [YSWW21] to instantiate FDVZK. The benefit of
using this protocol is two-fold. Firstly, the protocol is public-coin in the FsVOLE-hybrid model,
making it compatible with the VOLE-in-the-Head technique to be explained next. Secondly, the
QuickSilver protocol excels at proving many quadratic relations as required in proving the Hamming
weight constraint in the RSD problem, which only requires sending 2λ bits in total.
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We briefly sketch how to prove multiple quadratic constraints in QuickSilver. Suppose the prover
wants to prove zi = xi · yi for i ∈ [0, ℓ), the verifier samples random challenges χ0, ..., χℓ−1 ∈ F and
evaluates the following value using the IT-MAC relation M[x] = K[x] + x ·∆.∑

i∈[0,ℓ)

χi· (K[xi] · K[yi] + ∆ · K[zi]) =
∑
i

χi · (xiyi − zi) ·∆2

+
∑
i

χi · (−xiM[yi]− yiM[xi] +M[zi]) ·∆+
∑
i

χi ·M[xi]M[yi] .

If the quadratic relations hold then this value should be a linear function of ∆. To prove this, P
simply sends the masked coefficients c1, c0 of that function to V, who checks that c1 ·∆+ c0 equals
the masked left-hand side.

2.6 The Zero-Knowledge Functionality

We recall the definition of the ideal zero-knowledge functionality in Figure 2. Looking ahead, we will
construct a public-coin designated-verifier zero-knowledge protocol that realizes the functionality
FRSD−ZK in the FsVOLE-hybrid model, which can then be transformed into a publicly-verifiable
zero-knowledge protocol using the techniques in [BBdSG+23b].

Functionality FRSD−ZK

Both parties P and V have access to the RSD instance y = H · e for y ∈ Fm−k
2 and H ∈ F(m−k)×m

2 . We
assume the matrix H = [Im−k∥HB] is in the systematic form.

• Input. Upon receiving (input, e) from P and (input) from V, the functionality stores the input e.
Let e = [e0∥...∥ew−1], where len(ei) = m/w for i ∈ [0, w).

• Prove. Upon receiving (prove) from both parties, the functionality checks that e satisfies the fol-
lowing two constraints:

– Linear Constraint: It holds that H · e = y.

– Hamming Weight Constraint: It holds that wt(ei) = 1 for i ∈ [0, w).

If both constraints are satisfied, the functionality sends true to V. Otherwise, it sends false.

Figure 2: The zero-knowledge functionality for regular syndrome decoding

3 VOLE-in-the-Head and Linear Sketching

In this section, we recapture the VOLE-in-the-head technique in [BBdSG+23b] as well as the
sketching technique of [BGI16] that form the basis of our signature scheme in Section 5.

3.1 VOLE-in-the-Head

VOLE-in-the-Head is a technique proposed by Baum et al. [BBdSG+23b] which allows transforming
the public-coin designated-verifier zero-knowledge protocols in the VOLE-hybrid model into the
publicly verifiable counterparts1. At the core of this technique is the observation that GGM-style

1This technique somewhat resembles the classical MPC-in-the-head technique.
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vector commitment can realize an all-but-one random oblivious transfer functionality, which can
then be transformed into a VOLE protocol using the technique in SoftSpokenOT [Roy22]. One
caveat is that to facilitate the simulation of OT from commitment, the verifier has to send its choice
in the clear; Nevertheless, this suffices for a public-coin protocol since the verifier’s action is merely
sending public coins and the OT’s output can be delayed to the very end of the protocol.

GGM-style Vector Commitment. Given a n-level GGM tree, let rij denotes the j-th node on

the i-th level where 0 ≤ i < n and 0 ≤ j < 2i. It’s well-known that if the root node is uniformly
random and the tree is generated as ri+1

2j ∥r
i+1
2j+1 := PRG(rij) for some length-doubling PRG then

the leaf nodes are pseudorandom. Moreover, for each leaf node, we can derive a random message
and an authenticator. Then all messages can be committed by hashing the authenticators while
all but one of them can be opened by presenting the sibling nodes on the punctured path and the
authenticator of the punctured message. We model this vector commitment as an ideal functionality
FVC in Figure 3.

Functionality FVC

Let τ ′ ∈ N, τ ′ ≥ 1 and N = 2τ
′
. The functionality is run between two parties P and V which are

possibly corrupted by the adversary A. We have the following commands.

• Upon receiving (commit) from P and V, the functionality samples mi ← {0, 1}λ for i ∈ [0, N). If P
is corrupted then it receives {mi}i∈[0,N) from the adversary and locally records the values. Then it
sends (done) to both parties.

• Upon receiving (get, α) from P and V, the functionality sends {mi}i∈[0,N),i̸=α to V.

Figure 3: The ideal vector commitment scheme supporting all-but-one opening.

SoftSpokenOT. Let PRG : Fλ
2 → Fn

2 be a pseudorandom generator. SoftSpokenOT [Roy22]
utilizes the fact that the all-but-one OT correlation is equivalent to the subfield VOLE correlation
over the polynomial-sized extension field F2τ ′ . Let ∆ ∈ F2τ ′ be the OT index. The key observation
(which is implicit in the classical IKNP protocol) is that by defining u′ :=

∑
i∈[0,2τ ′ ) PRG(mi),

v :=
∑

i∈[0,2τ ′ ) i ·PRG(mi), and w′ :=
∑

i∈[0,2ℓ)(i+∆) ·PRG(mi), the sender and receiver can locally
compute the respective values and the transformation from OT to subfield VOLE can be done
non-interactively. Notice that in the expression of w′, the value PRG(m∆) which is unknown to the
receiver is multiplied by 0 and the receiver can efficiently compute w′. Therefore, w′ = v + u′ ·∆.

Since the field F2τ ′ need to be enumerated, we require that τ ′ = O(log λ) (i.e. small-field VOLE).
Nevertheless, the VOLE global key needs to contain enough entropy to ensure soundness. Therefore,
we need to repeat the base protocol ⌈ λτ ′ ⌉ times and apply a consistency checking protocol to ensure
that the same vector u is used in all small-field VOLE instances (so that the global keys can be
concatenated.)

In particular, the sender and receiver would run the above small-field VOLE protocol for
τ := ⌈ λτ ′ ⌉ times, acquiring Ju′0K, ..., Ju

′
τ−1K, where u′i ∈ Fn+h

2 . Then by viewing each row of the
concatenated matrix U′ := [u′0∥...∥u′τ−1] as a noisy codeword of the length-τ repetition code, as
the sender sends the syndrome C of all the codewords to the receiver. Then the sender corrects the
matrix U′ into a structured matrix U := [1 ... 1] · u where each row is a repetition codeword while
the receiver sets W = W′ + [0∥C] · diag(∆) where ∆ denotes the concatenation of all small-field
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VOLE global keys. Notice that with the matrix U being structured, we can transform each row of
W,V as well as ∆ as elements in the extension field F2λ , which gives the IT-MAC format.

Finally, we need to check that U is indeed structured. We do this by sacrificing the last h rows
of U. In particular, the sender sends ũ = HUHF · u and Ṽ = HUHF ·V for some linear universal

hash function HUHF ∈ Fr×(n+h)
2 while the receiver checks that Ṽ+ ũ · [1 ... 1] · diag(∆) = HUHF ·W.

VOLE-in-the-Head. We put together all the pieces and explain the technique in [BBdSG+23b].
Recall that our goal is to transform a designated-verifier zero-knowledge protocol in the VOLE-
hybrid model into a publicly verifiable one. We additionally require that the DVZK protocol be
public-coin. The transformation proceeds as follows. We state the protocol in the interactive setting
but the interaction can be removed using Fiat-Shamir [FS87].

1. The prover locally runs the SoftSpokenOT protocol, instantiating the all-but-one random OT
with vector commitment. In particular, the prover generates the GGM trees and sends the
commitments to the verifier. Then the prover simulates the SoftSpokenOT protocol, sending
the correction syndrome and checking information to the verifier.

2. With the IT-MAC correlations from previous step, the parties simulate the zero-knowledge
protocol using the previous subfield VOLE correlations.

3. When all interactions of the zero-knowledge protocol are completed, the verifier simply sends
the VOLE global key ∆ to the prover, who then replies with the corresponding vector de-
commitment. The verifier then checks that

(a) the vector commitment openings are correct;

(b) the consistency checks inside SoftSpokenOT are correct;

(c) the zero-knowledge verification passes.

If all checks pass then the verifier accepts. Otherwise, it rejects the proof.

Intuitively, since the inner ZK protocol in the FsVOLE-hybrid model is public-coin, the parties can
still simulate the protocol before sampling the global key ∆, and since the proof information is
already sent in step 2, revealing the global key in step 3 does not grant the prover any advantage.
In [BBdSG+23b], this intuition is characterized by an ideal functionality Fp,q,S∆,C,ℓ,L

sVOLE where the
receiver’s outputs are revealed after the prover commits to its inputs. In this work, we only
consider a special case of it, namely we only consider using repetition code and fixing the set S∆

to be the entire field F2τ ′ . We recall the functionality in Figure 4.

3.2 The Linear Sketching Technique

To verify the Hamming weight constraint, we use the linear sketching technique of Boyle et
al. [BGI16]. For general field F, given an IT-MAC authenticated vector JuK where u ∈ Fn, we
can easily check that ∥u∥0 = 1. We first sample two public random vectors r0, r1 ∈ Fn and define
z0, z1, z2, z3 as follows.

z =


z0
z1
z2
z3

 =


rT0
rT1

(r0 ◦ r1)T
1 ... 1

 · u .
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Functionality FsVOLE

The functionality is parameterized by the base field F2 and its extension F2τ′ . We also define an integer
n as the number of random sVOLE correlations to produce and τ as the repetition parameter such that
ττ ′ ≥ λ.
Upon receiving (init) from P and V, the functionality does the following.

• Sample u← Fn
2 , V← Fn×τ

2τ′ and ∆← Fτ
2τ′ . Let W = V + u · [1 ... 1] · diag(∆).

– If P is corrupted, then receive u,V from the adversary A and recompute W.

– If V is corrupted, then receive ∆,W from the adversary A and recompute V = W − u · [1 ... 1] ·
diag(∆).

• Send (u,V) to P.

• If P is corrupted, then receive a leakage query L from A.

Upon receiving (get) from P and V, the functionality does the following.

• If ∆ ̸∈ L, then send (check-failed) to V and abort.

• Otherwise, send (∆,W) to V.

Figure 4: The subspace VOLE functionality.

Here ◦ denotes the component-wise product between two vectors. Finally, we check that z0 ·z1 = z2
and that z3 = 1. The first check ensures that ∥u∥0 ≤ 1. Conditioned on passing the first check,
the second check ensures that u is a unit vector. The second check is straightforward and we will
elaborate on the intuition of the first check.

When viewing (r0 ◦ r1)T · u −
(
rT0 · u

)
·
(
rT1 · u

)
as a multivariate polynomial over r0, r1, we

have that if ∥u∥0 > 1 then the polynomial is non-zero and has degree of two. Therefore, with the
Schwartz-Zippel lemma [Sch80, Zip79], we can show that the equation z2 = z0 ·z1 holds except with
probability 2

|F| over the choices of r0, ..., rn−1. Formally, we have the following lemma by Boyle et

al. [BGI16].

Lemma 1. Let F be any finite field. Suppose u ∈ Fn is not a unit vector then we have the probability

Pr[L← L(F, n), z = L · u : z0 · z1 = z2 ∧ z3 = 1] ≤ 2

|F|
,

where the distribution L(F, n) is defined by sampling r0, r1 ← Fn and returning

L =


rT0
rT1

(r0 ◦ r1)T
1 ... 1

 .

Notice that since IT-MAC is linear homomorphic, we can get the authentication of z by evalu-
ating JzK = L · JuK. Then, we can use the IT-MAC opening operation to check that z3 = 1 and use
QuickSilver to prove that z0 · z1 = z2.

In our protocol, we perform the checking on u ∈ F2 over the extension field F2λ to get negligible
soundness error. For RSD over larger fields, we can adapt the above method to prove that the
non-zero element is equal to an arbitrary value in the field. Nevertheless, we focus on RSD over F2

in this work and using the above sketching technique is sufficient.
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4 Designated-Verifier ZK from Linear Sketching

In this section, we present an efficient zero-knowledge proof for the RSD problem in the FsVOLE-
hybrid model and give a security proof for its soundness and zero-knowledge property.

Protocol ΠRSD−DVZK

Both parties P and V have access to the RSD instance (H, y) where H ∈ F(m−k)×m
2 and y = H · e. P

has the witness e = [e0∥...∥ew−1] where ∥ei∥0 = 1 for i ∈ [0, w). We assume the matrix H = [Im−k∥HB]
is in the systematic form and the vector e is split into eA and eB. We assume without loss of generality
that ττ ′ = λ.

Input: The prover commits to the witness as follows.

1. Both parties call FsVOLE on input (init) and P gets u ∈ Fn
2 and V ∈ Fn×τ

2τ′ . Let n = k + λ. For
i ∈ [0, k) the prover defines Vi ↪→ M[ui]. The prover lifts the last λ coordinates of u into a mask
uQS ∈ F2λ and we define its IT-MAC tag M[uQS] similarly by lifting the respective rows in V. Finally,
the prover sends d = eB − u[0, k) to the verifier.

Prove: The parties check that the committed witness is valid as follows.

2. The verifier samples the sketch functions L(i) according to Lemma 1 for i ∈ [0, w) and random
challenges χQS,χopen ← Fw

2λ and sends them to the prover.

3. The prover defines M[eB] as the first k coordinates of M[u] and reconstructs M[e] using the linear
relation e = [y −HB · eB∥eB]. Let e = [e0∥...∥ew−1]. Using the linear homomorphism of IT-MAC,
we define the authentication of z(i) = L(i) · ei for i ∈ [0, w).

Then the prover uses QuickSilver to prove that z
(i)
0 · z

(i)
1 = z

(i)
2 for i ∈ [0, w). In particular, it

computes mQS
0 = M[uQS] +

∑
i∈[0,w) χ

QS
i · M[z

(i)
0 ] · M[z

(i)
1 ] and mQS

1 = uQS +
∑

i∈[0,w) χ
QS
i · (z

(i)
0 ·

M[z
(i)
1 ] + z

(i)
1 ·M[z

(i)
0 ] +M[z

(i)
2 ]). The prover also defines mopen

0 =
∑

i∈[0,w) χ
open
i ·M[z

(i)
3 ]. The prover

sends mQS
0 ,mQS

1 ,mopen
0 to the verifier.

4. Both parties call the functionality FsVOLE on input (get) and the verifier gets ∆ = (∆0, ...,∆τ−1) ∈
Fτ
2τ′ and W ∈ Fn×τ

2τ′ . The verifier defines ∆ ↪→ ∆ and Wi ↪→ K[ui] for i ∈ [0, k) as well as the

IT-MAC local key K[uQS] using the last λ rows of W. Then it defines K[eB] = K[u[0, k)] + d ·∆ and
reconstructs K[e] using the linear relation e = [y −HB · eB∥eB]. It also defines the IT-MAC local
keys of z(i) for i ∈ [0, w). The verifier accepts if the following relation holds and rejects otherwise.

mQS
0 +mQS

1 ·∆ = K[uQS] +
∑

i∈[0,w) χ
QS
i · (K[z

(i)
0 ] · K[z(i)1 ] + ∆ · K[z(i)2 ]) and

mopen
0 + (

∑
i∈[0,w) χ

open
i ) ·∆ =

∑
i∈[0,w) χ

open
i · K[z(i)3 ] .

Figure 5: The ZK protocol for syndrome decoding based on linear sketch in the FsVOLE-hybrid
model.

4.1 Protocol Description

Since we may view the matrix H in its systematic form and therefore implicitly enforce the linear
constraint, we can turn our focus to proving the Hamming weight constraint. Using the linear
sketching technique [BGI16] we can check that the segment of the witness vector has a Hamming
weight of exactly 1 by verifying a quadratic relation and performing an IT-MAC opening. Using
the QuickSilver protocol, we can prove all w quadratic relations corresponding to the entire witness
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vector in a batch using a random linear combination, with essentially the same communication
cost as proving one quadratic relation. The cost of w openings can also be reduced using another
random linear combination. We describe the protocol in detail in Figure 5 and prove its security
in the next subsection.

4.2 Security Proof

We prove that the protocol ΠRSD−DVZK is an honest verifier zero-knowledge protocol for regular
syndrome decoding in the FsVOLE-hybrid model in Theorem 1. Our proof is a straightforward
extension of the proof in [BBdSG+23b]. The only difference is that we use the linear sketch
technique from [BGI16] to check the validity of the witness vector.

Theorem 1. The protocol ΠRSD−DVZK realizes the functionality FRSD−ZK in the FsVOLE-hybrid
model. The security holds against a malicious prover or a semi-honest verifier and the soundness
error in the former case is bounded by 7

2λ
.

Proof. Correctness of the proof follows by definition. In the following, we construct simulators for
the malicious prover and verifier cases to argue soundness and zero-knowledge properties respec-
tively.

Malicious Prover. The simulator SP is constructed as follows.

1. SP simulates the (init) command of the functionality FsVOLE by receiving the u,V values from
A. It also receives the difference vector d and recovers the witness eB = d + u[0, k). Let
e = [y −HB · eB∥eB]. SP sends message (input, e) to the functionality FRSD−ZK.

2. SP samples the random challenges L(i) for i ∈ [0, w) and χQS,χopen ← Fw
2λ

and sends them to
the adversary.

3. SP receives the QuickSilver proof messages mQS
0 ,mQS

1 ,mopen
0 from the adversary.

4. SP simulates the (get) command of FsVOLE and the QuickSilver checking phase. In particular,
SP sends ⊥ to the ideal functionality in the following two cases.

• Let e = [e0∥...∥ew−1]. There exists i ∈ [0, w) s.t. ∥ei∥0 ̸= 1 or ∥ei∥0 = 1 but the non-zero
element is not 1.

• Let eQS
0 = M[uQS] +

∑
i∈[0,w) χ

QS
i · M[z

(i)
0 ] · M[z

(i)
1 ] − mQS

0 and eQS
1 = uQS +

∑
i∈[0,w) χ

QS
i ·

(z
(i)
0 ·M[z

(i)
1 ] + z

(i)
1 ·M[z

(i)
0 ] −M[z

(i)
2 ]) −mQS

1 be the errors in the QuickSilver messages while

eopen0 =
∑

i∈[0,w) χ
open
i ·M[z

(i)
3 ]−mopen

0 be the error in the opening message. We have eQS
0 ̸= 0

or eQS
1 ̸= 0 or eopen0 ̸= 0.

Otherwise, SP sends continue to the ideal functionality.

Since the protocol is public-coin, the simulation of the verifier’s messages is identically dis-
tributed with the interaction of the real verifier. Now we analyze the soundness error, which
captures the difference between the abort probability of the real case and the ideal case. If the
verifier in the real world rejects, then either the relation does not hold (i.e. the witness has too
large or zero Hamming weight) or the QuickSilver messages are malformed. In both cases, the ideal
verifier also rejects the proof.

Now we focus on the case where the real verifier accepts while the simulator rejects. If the
extracted witness e does not satisfy the Hamming weight constraint, then by Lemma 1 we conclude
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that except with probability 2
2λ

there exists at least one index i ∈ [0, w) such that the quadratic

relation z
(i)
0 · z

(i)
1 = z

(i)
2 and z

(i)
3 = 1 does not hold. In this case, we can re-write the real verifier’s

first acceptance condition as follows.

mQS
0 +mQS

1 ·∆ = K[uQS] + (
∑

i∈[0,w)

χQS
i · (z

i
0 · zi1 − zi2)) ·∆2

+
∑

i∈[0,w)

χQS
i · (z

i
0 ·M[zi1] + zi1 ·M[zi0] +M[zi2]) ·∆

+
∑

i∈[0,w)

χQS
i ·M[zi0] ·M[zi1]

Since the χQS challenge is sampled uniformly at random and independent from other random-
ness, except with probability 1

2λ
the quadratic term of the above equation is non-zero. In this case,

there exists at most two solutions to the equation. Since ∆ is sampled uniformly at random and
independent from other randomness, the equation holds with at most 2

2λ
probability.

Moreover, if z
(i)
3 ̸= 1 for some i ∈ [0, w), since χopen is uniformly random over Fw

2λ
, the equality∑

i∈[0,w) χ
open
i · z(i)3 =

∑
i∈[0,w) χ

open
i holds except with 1

2λ
probability. Assuming the equality does

not hold, the adversary can pass the check except it correctly guesses the ∆ value, which happens
except with 1

2λ
probability. Using the union bound, we conclude that the soundness error is upper

bounded by 7
2λ
.

Semi-Honest Verifier. The simulator SV is constructed as follows.

1. SV simulates the (init) command of the functionality FsVOLE and receives the messages ∆ and
W′ from the adversary. Then it samples d← Fk

2 and sends it to the adversary.

2. SV receives the random challenges L(i) for i ∈ [0, w) and χQS,χopen ∈ Fw
2λ

from the adversary.

3. SV samples a random value mQS
1 ← F2λ and computes mQS

0 = K[uQS] +
∑

i∈[0,w) χ
QS
i · (K[z

(i)
0 ] ·

K[z
(i)
1 ] + ∆ · K[z(i)2 ]) −mQS

1 ·∆. It also prepares mopen
0 =

∑
i∈[0,w) χ

open
i · (K[z(i)3 ] + ∆). It sends

mQS
0 ,mQS

1 ,mopen
0 to the adversary.

4. SV simulates the (get) command of FsVOLE by sending ∆,W′ to the adversary.

Notice that we only argue for security against a semi-honest adversary. Due to the masking of
u[0, k), the message d is uniformly random in the view of the adversary. Also due to the masking
of u[k, k+ λ), the message mQS

1 is also uniformly random. Moreover, the messages mQS
0 ,mopen

0 can
be deterministically evaluated using ∆,d, {L(i)},χQS,χopen,W′,mQS

1 . Therefore, we conclude that
the adversary’s view is identical between the simulated case and the real case.

5 ReSolveD: Shorter Signatures from RSD and VOLEitH

We apply the transformation in [BBdSG+23b] to convert the public-coin protocol ΠRSD−DVZK in the
FsVOLE-hybrid model into a publicly-verifiable zero-knowledge proof ΠRSD−PVZK. Then we apply
the Fiat-Shamir transform and present ReSolveD, a post-quantum digital signature scheme from
RSD and VOLE-in-the-Head. We present the signature scheme in Figure 6.
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• KeyGen()

1. Samples a generator matrix in systematic form H = [I∥HB] ∈ F(m−k)×m
2 as well as a regular noise e ∈ Fm

2 .

2. Output pk = (H,y = H · e), sk = (pk, e).

• Sign(sk,m)

1. The signer executes the prover’s actions of ΠRSD−PVZK. For all challenges HUHF,χQS,χopen,∆, the signer
sends the protocol’s transcript concatenated with the message m to the random oracle to get the respective
challenges.

2. Output signature σ as complete transcript of ΠRSD−PVZK.

• Verify(pk,m, σ)

1. The verifier executes the verifier’s actions of ΠRSD−PVZK. The verifier uses the prover’s messages extracted
from the signature σ while for the verifier’s challenges, the verifier also hashes the partial transcript con-
catenated with the signed message m.

2. The verifier accepts the signature if in the simulated execution of ΠRSD−PVZK, the simualted verifier also
accepts. It rejects if otherwise.

Figure 6: The ReSolveD signature scheme. We assume that the unary form of the security parameter
λ is the implicit input of all three algorithms.

5.1 Signature Description

We describe the protocol ΠRSD−PVZK in Figure 8. We apply the half-tree optimization [GYW+23]
when constructing the vector commitment scheme, which we recall in Figure 7 and prove its security
in Lemma 2. Notice that in this construction, we utilize the circular correlation robustness property
which is usually instantiated in the ideal cipher model [GKWY20], of which we recall a simplified
version in Definition 2.

Lemma 2. Let G1, G2 be two random oracles and H be a (t, q, ϵ)-circular correlation robust hash
function. Then the vector commitment scheme ΠVC−cGGM (Figure 7) securely implements the vector
commitment functionality FVC (Figure 3).

Proof. The protocol correctness follows by definition. Now we argue security against a malicious
P and V respectively.

Malicious prover. The simulator SP receives the commitment com from the adversary and then
recovers the hashed values {comi}i∈[0,N) and {rτ

′
i }i∈[0,N) from the random oracle queries and send

{mi}i∈[0,N) to FVC where (mi, comi) = G(rτ
′

i ) for i ∈ [0, N).
For the (get, α) command, SP receives the de-commitment information decomα = {Ki

ᾱi
}i∈[1,τ ′]

from the adversary and runs the checking procedures of the verifier. If the check fails then it sends
⊥ to FVC.

Unless there exists a collision in the random oracle queries, then the ideal execution successfully
extracts the committed messages. The collision probability is upper bounded by Q

2λ
where Q is the

number of random oracle queries from by A.

Malicious verifier. The simulator SV samples com ← {0, 1}λ and sends it to A to simulate
(commit). For the (get, α) command, the simulator samples Ki

ᾱi
← {0, 1}λ for i ∈ [1, τ ′], comα ←

{0, 1}λ and sends them to A. Then it receives the {mi}i∈[0,N),i ̸=α message from FVC and programs
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Protocol ΠVC−cGGM

Let G1 : {0, 1}∗ → {0, 1}2λ, G2 : {0, 1}λ → {0, 1}λ × {0, 1}2λ be two random oracles and H : {0, 1}λ ×
{0, 1}λ → {0, 1}λ be a hash function. Let τ ′ ∈ N be the tree depth and define N = 2τ

′
.

• For the commit command, P and V perform the following steps.

1. P samples Γ ← Fλ
2 , r10 ← Fλ

2 and computes r11 = r10 ⊕ Γ. It evaluates the full binary tree
using the recursive relation ri+1

2j = H(rij), r
i+1
2j+1 = H(rij) ⊕ rij for i ∈ [2, τ ′), j ∈ [0, 2i) and com-

putes (mi, comi) ← G2(r
τ ′

i ) for i ∈ [0, 2τ
′
) and the sum of all even indexed nodes on each level

{Ki
0}i∈[1,τ ′] =

∑
j∈[0,2i−1) r

i
2j .

2. P sends the commitment com := G1(com0, ..., comN−1) to V and locally stores the de-commitment
information decom := (Γ, {Ki

0}i∈[1,τ ′]) and the messages {mi}i∈[0,N).

• For the (get, α) command, P and V perform the following steps.

1. Let α1, α2, ..., ατ ′ be the binary decomposition of α ∈ [0, N), P sends the opening information
decomα := ({Ki

ᾱi
:= Ki

0 ⊕ ᾱi · Γ}i∈[1,τ ′], comα) to V.
2. Upon receiving the opening information, V defines r1ᾱ1

= Ki
ᾱ1

from decomα. For i ∈ [2, τ ′],

j ∈ [0, 2i−1) and j ̸= α1∥...∥αi−1, it evaluates ri2j = H(ri−1
j ) and ri2j+1 = H(ri−1

j ) ⊕ ri−1
j and

defines riα1∥...∥αi−1∥ᾱi
= Ki

ᾱi
⊕
∑

j∈[2i−1],j ̸=α1∥...∥αi−1
ri2j+ᾱi

.

3. For each leaf node i ∈ [0, N) \ α, V derives (mi, comi) = G2(r
τ ′

i ). V checks that com =
G1(com0, ..., comN−1) using the comα information in decomα. If the equality does not hold then it
outputs ⊥. Otherwise, it outputs {mi}i∈[0,N),i̸=α.

Figure 7: The correlated GGM tree construction.

the random oracle such that when evaluating the leaf nodes rτ
′

i for i ∈ [0, N), i ̸= α the verification
process would pass.

We argue indistinguishability via a hybrid argument.

• Hybrid1. This is the real distribution of a malicious verifier.

• Hybrid2. We sample comα uniformly at random and update com = G2(com0, ..., comN−1) ac-
cordingly. Since G2 is a random oracle, the only way that an adversary can distinguish between
Hybrid1 and Hybrid2 is by querying the pre-image of comα in Hybrid1, which implies extract-
ing Γ and contradicts the CCR security of H.

• Hybrid3. In this hybrid, we sample {Ki
ᾱi
}i∈[1,τ ′] uniformly at random. We show in Lemma 3

that the adversary’s advantage can be bounded by the CCR security of H.

• Hybrid4. This is the ideal distribution, which is identical to Hybrid3.

Lemma 3. The advantage of distinguishing Hybrid2 and Hybrid3 in the proof of Lemma 2 can
be bounded by the circular correlation robustness of the hash function H.

Proof. We can sample the adversary’s view using an oracle O(·) such that the view corresponds to
Hybrid2 (resp. Hybrid3) if O is the real oracle Occr

Γ (resp. the ideal oracle f) as follows.
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• For i = 1, we sample K1
ᾱ1

uniformly at random.

• For i ∈ [2, τ ′] we compute

Ki
ᾱi

=

{
O(

⊕i−1
j=1K

j
ᾱj
, 0) if ᾱi = 0,

O(
⊕i−1

j=1K
j
ᾱj
, 1)

⊕i−1
j=1K

j
ᾱj

if ᾱi = 1.

• Sample comα uniformly at random and compute com = G2(com0, ..., comN−1).

Notice that if O is a random function then the output distribution is Hybrid3 whereas if O =
Occr

Γ (·) then we have if ᾱi = 0 then

Ki
ᾱi

= H(
i−1⊕
j=1

Kj
ᾱj
)

= H(ri−1αi−1∥...∥α1
)

And if ᾱi = 1 then

Ki
ᾱi

= H(
i−1⊕
j=1

Kj
ᾱj
)⊕∆⊕

i−1⊕
j=1

Kj
ᾱj

= H(ri−1αi−1∥...∥α1
)⊕ ri−1αi−1∥...∥α1

,

which is the same as in Hybrid2.

Remark 1. We note that the construction of CCR hash functions in the random permutation
model [GKWY20] requires a permutation on λ-bit strings. For some block ciphers (e.g. AES-128)
the offered security level matches the block size and we can model the block cipher as a random
permutation and apply the construction in [GKWY20]. Whereas other block ciphers with λ-bit
security level do not provide a permutation on λ-bit strings (e.g. AES-192 and AES-256 has block
size of 128 bits despite having higher security levels.) In this case, we use the standard GGM
tree construction based on length-doubling PRG. We leave the efficient construction of CCR hash
functions at the security level beyond 128 from standard symmetric primitives in the latter case
(e.g. AES-192 and AES-256) as a future work.

5.2 Security Proof

We state the security of our protocol ΠRSD−PVZK under Fiat-Shamir transformation in Theorem 2.
Since we prove the protocol ΠVC−cGGM securely realizes the vector commitment functionality FVC

in Lemma 2, the security proof of the conversion from designated-verifier zero-knowledge (Figure 5)
to the non-interactive zero-knowledge is identical to the work of [BBdSG+23b], we omit it in this
paper.

Theorem 2. Let PRG : {0, 1}λ → Fn
2 be a pseudorandom generator, the zero-knowledge protocol

ΠRSD−PVZK, after Fiat-Shamir transformation, is a zero-knowledge non-interactive proof system in
the random oracle model.
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Protocol ΠRSD−PVZK

Both parties P and V have access to the RSD instance (H, y) where H ∈ F(m−k)×m
2 and y = H ·e. The

prover also knows the witness e = [e0∥...∥ew−1] where ∥ei∥0 = 1 for i ∈ [0, w). We assume the matrix
H = [Im−k∥HB] is in the systematic form and the vector e is split into eA and eB. Let n = k+λ, N = 2τ

′

and HUHF ⊆ Fr×(n+h)
2 be a family of n-hiding, ϵ-universal hash function. Let PRG : {0, 1}λ → Fn+h

2 be
a pseudorandom generator. We assume without loss of generality that ττ ′ = λ.

1. P and V run τ instances of the vector commitment functionality FVC and send (commit) to them.
Denote the messages as {kij} for i ∈ [0, τ), j ∈ [0, N). The prover then defines U′,V for the index
i ∈ [0, τ).

U′ =

∑
j PRG(k

0
j ) . . .

∑
j PRG(k

τ−1
j )

 , V =

∑
j j · PRG(k0j ) . . .

∑
j j · PRG(k

τ−1
j )


The prover also defines u = U′[0] as the first column of U′ and C := [U′[1]⊕u∥ · · · ∥U′[τ − 1]⊕u] ∈
Fn×(τ−1)
2 where U′[i] denotes the i-th column of U′. P sends C to V.

2. V samples random challenge HUHF ← HUHF and sends it to P.

3. P defines the SoftSpokenOT check messages ũ = HUHF · u and Ṽ = HUHF ·V and sends them to V.

4. P and V run step 1–3 of ΠRSD−DVZK using the first n rows of u and V.

5. V samples the random challenge ∆ = (∆0, ...,∆τ−1) and call (get, ∆i) for i ∈ [0, τ). With the
opened messages, it computes

W′ :=

∑
j(j +∆0) · PRG(k0j ) . . .

∑
j(j +∆τ−1) · PRG(kτ−1

j )


If the following two checks pass then V accepts the proof. Otherwise, V rejects.

• SoftSpokenOT. V checks that

Ṽ + ũ · [1 ... 1] · diag(∆) = HUHF · (W′ + [0∥C] · diag(∆)) .

• QuickSilver. The verifier runs the consistency check in step 4 of ΠRSD−DVZK.

Figure 8: The publicly verifiable zero-knowledge protocol for regular syndrome decoding.

5.3 Communication

We theoretically estimate the communication cost of ΠRSD−PVZK. Firstly, during the inner protocol
ΠRSD−DVZK the prover needs to send d and mQS

0 ,mQS
1 ,mopen

0 , which takes k elements in F2 and 3
elements in F2λ respectively.

Moreover, during the simulation of the FsVOLE setup, the prover needs to run τ instances of the
vector commitment protocol ΠVC−cGGM, each of which the communication cost is (τ ′ + 4) · λ bits.
Then, in SoftSpokenOT the prover needs to send the de-randomization matrix C as well as the
checking information ũ, Ṽ, which takes (τ − 1) · (k + λ + h) elements in F2, r elements in F2 and
r · τ elements in F2τ ′ respectively.

19



Optimizations. We can use some existing techniques in the literature to optimize communica-
tion [CCJ23, BBdSG+23a]. We list three main optimizations as follows.

• When running τ instances of ΠVC−cGGM the commitment message com can be combined by hashing
all the leaf nodes across τ binary trees at once, saving 2λ · (τ − 1) bits of communication.

• Since in the RSD witness all elements in a block XOR to 1, the prover can commit to the first
m
w −1 coordinates of each block and linearly express the remaining element. Thus, we can reduce
the witness length by a ratio of w

m .

• The values Ṽ,mQS
0 ,mopen

0 can be computed by the verifier and therefore to check for equality, it
suffices for the prover to send a hash of those values.

Taking into account all the optimizations outlined above, we conclude the theoretical estimate
of the communication of ΠRSD−PVZK as follows.

Comm =
(
(1− w

m
)k + λ+ h

)
· (τ − 1)︸ ︷︷ ︸

C

+ r︸︷︷︸
ũ

+(1− w

m
)k︸ ︷︷ ︸

d

+ λ︸︷︷︸
mQS

1

+((τ ′ + 2) · τ + 2) · λ︸ ︷︷ ︸
VC Openings

+ 2λ︸︷︷︸
EQ

bits.

6 Performance Evaluation

In this section, we implement the ReSolveD signature scheme, which achieves highly competitive
performance and a much smaller signature size when compared to other state-of-the-art code-based
signature schemes. We first describe the parameters and implementation details of the scheme,
then we report the evaluation results in terms of signature and key sizes as well as running time.

6.1 Parameters

We follow the approach from prior art [CCJ23] in the selection of parameters for the regular
syndrome decoding instance. In particular, we select the minimal parameters that can offer the
required bit security against state-of-the-art attacks that account for the regularity of the noise
vector. Specifically, we estimate the complexity of the linearization attack, information syndrome
decoding (ISD) attack and birthday paradox according to the formulas in [CCJ23] and take their
minimal as the estimation of bit security. Using this estimation, we choose the smallest parameters
that have complexity estimation of 2128, 2143, 2207 and 2272 according to the practice of previous
works and the NIST’s L1, L3 and L5 security levels.2

Table 3: The parameters for the ReSolveD signature scheme.

Parameter Set m k w τ Estimated Bit Security

ReSolveD-128-Var1 1302 738 217 14 128.20
ReSolveD-128-Var2 1302 738 217 10 128.20
ReSolveD-L1 1470 834 245 11 143.20
ReSolveD-L3 2196 1248 366 17 207.48
ReSolveD-L5 2934 1668 489 22 272.29

2We select the parameters of ReSolveD-128 and ReSolveD-L{1,3,5} independently, because the former targets at
signatures with 128-bit security while the latter targets other NIST submissions.
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Regarding the parameters of VOLE-in-the-Head, we follow the approach in the specification of
FAEST [BBdSG+23a]. In particular, with the security parameter λ and the repetition parameter
τ , we compute τ ′0 = ⌈λ/τ⌉, τ ′1 = ⌊λ/τ⌋, and τ0 = λ mod τ , τ1 = τ − τ0. In this way, since
τ0τ
′
0+ τ1τ

′
1 = λ, we can ensure that by sampling τ0 instances of FVC with depth τ ′0 and τ1 instances

of FVC with depth τ ′1 we can get a global key with λ bits of entropy.
We select parameters such that our scheme demonstrates better performance in terms of the

“signature size + public-key size” metric while still maintaining comparable running time com-
pared to other NIST submissions. The parameters are shown in Table 3. We note that the
parameter selection listed in Table 3 has considered recent attacks that exploit the regular noise
structure [BØ23, ES23].

We implement our signature scheme by adapting the implementation of FAEST3.
We run the experiments on a Ubuntu 20.04 LTS machine with an AMD Ryzen 5 3600 CPU

and 16GB of RAM. For the time being, we only optimized the 128-bit version of ReSolveD with
the AVX2 instruction set while we leave the respective optimization of ReSolveD-L1, ReSolveD-
L3 and ReSolveD-L5 to a future work. The performance of ReSolveD under the first two sets of
parameters with AVX2 optimization is reported in Table 1, while we compare the un-optimized
version of ReSolveD under the other three sets of parameters with the reference implementation of
other NIST submissions in the next subsection.

6.2 Comparison with Other Post-Quantum Signature Schemes

We give a detailed comparison between ReSolveD and NIST’s new submissions SDitH [MFG+23]
and FAEST [BBdSG+23a] in Table 4. This is because SDitH shares a similarity in the underlying
intractability assumption and FAEST utilizes the same VOLE-in-the-Head technique. In summary,
ReSolveD and FAEST share almost the same secret key size, but ReSolveD is smaller in signature size
while faster in signing and verification time than the short version of FAEST and its EM variant,
with only slightly larger public key size and slower key generation time in the same security level.
The size of ReSolveD outperforms SDitH where the signature size (resp., secret key size) is more
than 2× (resp., 12×) smaller than that in SDitH. However, the running time of our scheme is much
slower.

We also compare our ReSolveD with post-quantum signatures to be standardized by NIST in-
cluding Dilithium [LDK+22], Falcon [PFH+22] and SPHINCS+ [HBD+22] and other previous/new
submissions to NIST such as Picnic [ZCD+20] and SPHINCS-α [ZCY23] in Table 5. Lattice-based
signatures are currently the most efficient post-quantum signature schemes which achieve both
smaller signature sizes and faster running times. However, these schemes are based on structured
lattice problems such as Ring/Module-LWE and NTRU, on the contrary, our ReSolveD relies on
no algebraic or geometric structures. Meanwhile, ReSolveD is competitive with Dilithium in the
“signature size + public-key size” metric (with the former being 3.91 KB and the latter being
3.64 KB), although the runtimes of Dilithium significantly outperform us. Compared with the
SPHINCS family and the Picnic family, our ReSolveD also achieves about 2× ∼ 4× smaller in
sizes than SPHINCS+ and SPHINCS-α, and is more than 3× smaller than Picnic. Nevertheless,
our ReSolveD is slower in terms of signing and verification. We plan to develop an optimized
implementation of our scheme in the future work.

3We adapted the reference implementation of FAEST at https://github.com/faest-sign/faest-ref. We also
note that OpenSSL is required to facilitate fast evaluation
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Table 4: Detailed comparison of ReSolveD compared to NIST’s new submissions SDitH and FAEST
with its EM variants for NIST security L1, L3 and L5.

Scheme
Sizes in Bytes Runtimes in ms

Assumption
|sig| |sk| |pk| |sig|+ |pk| tkeygen tsign tverify

ReSolveD-L1 3916 32 96 4012 4.36 97.51 80.21 RSD over F2

ReSolveD-L3 8532 48 143 8675 9.97 257.37 226.71 RSD over F2

ReSolveD-L5 14944 64 191 15135 17.66 537.54 469.72 RSD over F2

FAEST-L1-S 5006 32 32 5038 0.19 129.14 124.89 AES
FAEST-L3-S 12744 56 64 12808 1.01 401.76 371.87 AES
FAEST-L5-S 22100 64 64 22164 1.47 624.62 586.12 AES

FAEST EM-L1-S 4566 32 32 4598 0.18 112.06 108.85 EM-AES
FAEST EM-L3-S 10824 48 48 10872 0.46 297.66 288.40 EM-AES
FAEST EM-L5-S 20956 64 64 21020 1.41 540.35 540.04 EM-AES

SDitH-L1-gf256 8224 404 120 8344 6.08 33.23 28.62 SD over F256

SDitH-L1-gf251 8224 404 120 8344 4.41 14.76 12.32 SD over F251

SDitH-L3-gf256 19544 616 183 19727 7.31 113.98 98.82 SD over F256

SDitH-L3-gf251 19544 616 183 19727 5.30 34.46 28.32 SD over F251

SDitH-L5-gf256 33992 812 234 34226 10.59 209.67 186.77 SD over F256

SDitH-L5-gf251 33992 812 234 34226 8.74 59.33 54.85 SD over F251

Acknowledgements

We thank anonymous reviewers for their helpful comments. Yu Yu is supported by the National Key
Research and Development Program of China (Grant No. 2020YFA0309705), the National Natural
Science Foundation of China (Grant Nos. 62125204 and 92270201), and the Major Program of
Guangdong Basic and Applied Research (Grant No. 2019B030302008). Yu Yu also acknowledges
the support from the XPLORER PRIZE. Kang Yang is supported by the National Natural Science
Foundation of China (Grant Nos. 62102037 and 61932019).

References

[ABG+19] Nicolas Aragon, Olivier Blazy, Philippe Gaborit, Adrien Hauteville, and Gilles
Zémor. Durandal: A rank metric based signature scheme. In Yuval Ishai and
Vincent Rijmen, editors, EUROCRYPT 2019, Part III, volume 11478 of LNCS,
pages 728–758. Springer, Heidelberg, May 2019.

[ACBH13] Sidi Mohamed El Yousfi Alaoui, Pierre-Louis Cayrel, Rachid El Bansarkhani, and
Gerhard Hoffmann. Code-based identification and signature schemes in software. In
Alfredo Cuzzocrea, Christian Kittl, Dimitris E. Simos, Edgar R. Weippl, and Lida
Xu, editors, Security Engineering and Intelligence Informatics - CD-ARES 2013
Workshops: MoCrySEn and SeCIHD, Regensburg, Germany, September 2-6, 2013.
Proceedings, volume 8128 of Lecture Notes in Computer Science, pages 122–136.
Springer, 2013.

22



Table 5: Comparison of signature sizes and runtimes at NIST L1 security for some standardized
schemes and previous/new submissions from the NIST PQC standardization project. Numbers for
Picnic are taken from [KZ20] running on a 3.6GHz Intel Xeon W-2133, others are taken from their
technical report with a base clock frequency of up 2.6 GHz Intel Core i7-6600U CPU for Dilithium,
a 2.3 GHz Intel Core i5-8259U for Falcon, a 3.1 GHz Intel Xeon E3-1220 CPU for SPHINCS+ and
a 3.6 GHz AMD Ryzen 5 3600 CPU for SPHNICS-α.

Scheme
Sizes in KB Runtimes in ms

Assumption
|sig| |pk| |sig|+ |pk| tsign tverify

Dilithium2 [LDK+22] 2.36 1.28 3.64 0.128 0.046 MLWE
Falcon-512 [PFH+22] 0.65 0.88 1.53 0.168 0.036 NTRU

SPHINCS+-SHAKE-L1-F [HBD+22] 16.69 0.03 16.72 18.37 1.08 Hash
SPHINCS+-SHAKE-L1-S [HBD+22] 7.67 0.03 7.70 355.64 0.38 Hash
SPHINCS+-SHA2-L1-F [HBD+22] 16.69 0.03 16.72 10.86 0.69 Hash
SPHINCS+-SHA2-L1-S [HBD+22] 7.67 0.03 7.70 207.98 0.28 Hash

SPHINCS-α-SHAKE-L1-F [ZCY23] 16.33 0.03 16.36 15.85 0.99 Hash
SPHINCS-α-SHAKE-L1-S [ZCY23] 6.72 0.03 6.75 316.60 1.36 Hash
SPHINCS-α-SHA2-L1-F [ZCY23] 16.33 0.03 16.36 7.40 0.56 Hash
SPHINCS-α-SHA2-L1-S [ZCY23] 6.72 0.03 6.75 149.18 0.75 Hash

Picnic1-L1-FS [ZCD+20] 32.09 0.03 32.12 1.37 1.10 AES
Picnic2-L1-FS [ZCD+20] 12.05 0.03 12.08 40.95 18.20 AES
Picnic3-L1 [ZCD+20] 12.30 0.03 12.33 5.17 3.96 AES
Picnic3-L1-K12 [ZCD+20] 12.30 0.03 12.33 3.98 2.87 AES
Picnic3-L1-64 [ZCD+20] 11.14 0.03 11.17 23.25 17.21 AES
Picnic3-5-L1 [ZCD+20] 13.38 0.03 13.41 5.59 4.63 AES

ReSolveD-L1 3.82 0.09 3.91 95.51 80.21 RSD

[AFS03] Daniel Augot, Matthieu Finiasz, and Nicolas Sendrier. A fast provably secure
cryptographic hash function. Cryptology ePrint Archive, Report 2003/230, 2003.
https://eprint.iacr.org/2003/230.

[AGH+23] Carlos Aguilar Melchor, Nicolas Gama, James Howe, Andreas Hülsing, David
Joseph, and Dongze Yue. The return of the SDitH. LNCS, pages 564–596. Springer,
Heidelberg, June 2023.

[Bar94] S. Barg. Some new NP-complete coding problems. Probl. Inf. Transm., 30(3):209–
214, 1994.

[BBdSG+23a] Carsten Baum, Lennart Braun, Cyprien Delpech de Saint Guilhem, Michael Klooß,
Christian Majenz, Shibam Mukherjee, Emmanuela Orsini, Sebastian Ramacher,
Christian Rechberger, Lawrence Roy, and Peter Scholl. FAEST: Algorithm Speci-
fications. Technical report, National Institute of Standards and Technology, 2023.
available at https://faest.info/faest-spec-v1.1.pdf.

[BBdSG+23b] Carsten Baum, Lennart Braun, Cyprien Delpech de Saint Guilhem, Michael Klooß,
Emmanuela Orsini, Lawrence Roy, and Peter Scholl. Publicly verifiable zero-

23

https://eprint.iacr.org/2003/230
https://faest.info/faest-spec-v1.1.pdf


knowledge and post-quantum signatures from vole-in-the-head. In Helena Hand-
schuh and Anna Lysyanskaya, editors, CRYPTO 2023, Part V, volume 14085 of
LNCS, pages 581–615. Springer, 2023.

[BBMH+21] Carsten Baum, Lennart Braun, Alexander Munch-Hansen, Benôıt Razet, and Peter
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Supplementary Material

A Parameter Selection Script

Here we present the parameter selection script written in SageMath. The bit security estimation
functions are derived from the formulas in [CCJ23].

def bitsec_lin(m,k,w):

d = m / w

cost_mat = (m-k)^3

num = binomial(d-1, d-1-floor((m-k)/w))

den = binomial(d-2,d-1-floor((m-k)/w))

prob_inv = ( num / den )^((1 -1/d)*w)

return log(cost_mat * prob_inv , 2)

def bitsec_isd(m,k,w):

f = lambda q : q * (1 - log(m/w ,2)/(2*m/w)) + \

log(q / (m-k-q), 2) - k * log(m/w,2) / (2*m/w)

low , high = 1, m-k-1

mid = (high -low)/2 + low + 1

while mid != high:

if f(mid) > 0:

high = mid

elif f(mid) < 0:

low = mid

else:

break

mid = floor(low + (high - low) / 2 + 1)

q = mid

cost1 = q * (k + q) / (m / w) * (m / w)^((k+q)/12)

cost2 = (m / w)^((k+q)/(m/w)) / 2^q * (m - k - q) * (k+q)/(m/w)

return log(cost1+cost2 , 2)

def bitsec_gba(m,k,w):

r = k - w

cost = (m / w)^(r/(2*m/w)-1) * r * k

return log(cost , 2)

def comm_cost (m, k, w):

return k * (1 - w / m)

def bitsec (m,k,w):

return min (bitsec_lin(m, k, w),

bitsec_isd(m, k, w),

bitsec_gba(m, k, w) )

def find_k (params ):

csp = params [0]

d = params [1]

w = params [2]

results = params [3]

m = w * d

khigh = floor(m - w * log(d,2))
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klow = ceil (m - log( binomial (m, w), 2 ) )

min_cost = 999999999999

min_k = -1

if bitsec(m,khigh ,w) < csp:

return

for k in [klow.. khigh]:

if k % d != 0:

continue

security = bitsec(m,k,w)

if security >= csp and comm_cost(m,k,w) < min_cost:

min_cost = comm_cost(m,k,w)

min_k = k

break

if min_cost != 999999999999:

results [(csp , d, w)] = min_k

csp_list = [128, 143, 207, 272]

results = dict()

for csp in csp_list:

for d in [2..10]:

for w in [100..500]:

results [(csp , d, w)] = None

for csp in csp_list:

min_cost = 999999999999

min_param = (-1, -1, -1)

for d in [2..10]:

for w in [100..500]:

find_k ([csp , d, w, results ])

if results [(csp , d, w)] is not None:

k = results [(csp , d, w)]

m = d * w

if comm_cost(m,k,w) < min_cost:

min_cost = comm_cost(m,k,w)

min_param = (m,k,w)

m,k,w = min_param

print (csp , m, k, w, bitsec(m, k, w).n(20), sep=’\t’)

30


	Introduction
	Our Contributions
	Technical Overview
	Paper Organization

	Preliminaries
	Notation
	Hash Functions
	Regular Syndrome Decoding
	Information-Theoretic Message Authentication Codes
	Designated-Verifier Zero-Knowledge for Quadratic Relations
	The Zero-Knowledge Functionality

	VOLE-in-the-Head and Linear Sketching
	VOLE-in-the-Head
	The Linear Sketching Technique

	Designated-Verifier ZK from Linear Sketching
	Protocol Description
	Security Proof

	ReSolveD: Shorter Signatures from RSD and VOLEitH
	Signature Description
	Security Proof
	Communication

	Performance Evaluation
	Parameters
	Comparison with Other Post-Quantum Signature Schemes

	Parameter Selection Script

