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Abstract. Money laundering is a serious financial crime where crimi-
nals aim to conceal the illegal source of their money via a series of trans-
actions. Although banks have an obligation to monitor transactions, it
is difficult to track these illicit money flows since they typically span
over multiple banks, which cannot share this information due to privacy
concerns. We present secure risk propagation, a novel efficient algorithm
for money laundering detection across banks without violating privacy
concerns. In this algorithm, each account is assigned a risk score, which
is then propagated through the transaction network. In this article we
present two results. Firstly, using data from a large Dutch bank, we show
that it is possible to detect unusual activity using this model, with cash
ratio as the risk score. With a recall of 20%, the precision improves from
15% to 40% by propagating the risk scores, reducing the number of false
positives significantly. Secondly, we present a privacy-preserving solution
for securely performing risk propagation over a joint, inter-bank transac-
tion network. To achieve this, we use Secure Multi-Party Computation
(MPC) techniques, which are particularly well-suited for the risk propa-
gation algorithm due to its structural simplicity. We also show that the
running time of this secure variant scales linearly in the amount of ac-
counts and transactions. For 200,000 transactions, two iterations of the
secure algorithm between three virtual parties, run within three hours
on a consumer-grade server.

Keywords: financial crime - money laundering - multi-party computa-
tion - privacy - risk propagation

1 Introduction

Financial Economic Crime is a serious crime with a huge social and economic
impact on our society. In 2018 alone, an estimated 5.8 trillion dollars (6.5% of
global GDP) worth of financial crime was conducted [9]. Money laundering is,
after fraud, the second largest economic crime, as it often co-occurs with other
type of crimes like drug trafficking, human trafficking and terrorist financing [6].
There are multiple definitions of money laundering as stated by [2]. In this
paper we use the definition from the European Union Law: ”Money laundering
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is the process by which criminals conceal the illegal origin of their property or
income” [12].

Money laundering can come in many forms, and new ways of money launder-
ing are invented by criminals continuously. The general pattern can be described
by three phases: placement, layering, and integration [14]. During the placement
phase, the cash from illicit activities is brought into the financial system, for
example via multiple small cash deposits. The layering phase consists of a series
of transactions aimed at disguising the source of funds. And in the final integra-
tion phase, the money launderers return the illicit money back to themselves in
a way that looks legitimate.

These phases are searched for in transaction monitoring. The objective of
transaction monitoring is to detect unusual transactions that might be related to
money laundering and/or terrorist financing. The anti-money laundering (AML)
directives of the European Union, implemented in the Dutch WWTF (law for
preventing money laundering and terrorism financing) obliges financial institu-
tions to implement a transaction monitoring process [19).

A transaction monitoring process starts with the systematic identification of
the integrity risks towards money laundering, and how these risks are mitigated.
This mitigation is often performed via a transaction monitoring system, but can
also be performed by manual inspection at the front desk. The automated trans-
action monitoring system flags unusual behavior referred to as ‘alerts’. The alerts
are manually investigated and in case of a true hit in the context of WWFT,
a suspicious activity report is reported to the Financial Intelligence Unit. This
organization takes further action. Conventional transaction monitoring systems
are rule-based and cannot always capture the complexity related to the trans-
action behavior of customers. This results in a large false positive rate of up
to 95%, which means many costly investigations have to be performed that do
not lead to detecting criminal activity. The usage of machine learning can de-
crease the number of false positives and thereby the overall performance of the
system [13].

The general money laundering pattern of placement, layering and integra-
tion shows that this involves a series of transactions with multiple entities, across
banks and jurisdictions. This motivates a network view with the entities as nodes
and transactions as edges. However, banks only see their own part of the transac-
tion graphs, only related to their own customers’ transactions. Understandably,
due to privacy constraints, regulations and business sensitivity, banks cannot
simply share this information with each other. Banks are therefore investigating
collaboration whilst taking privacy concerns into account. One possible solution
is to use a Trusted Third Party, that gathers all data, performs the analysis and
reports the results back to the parties involved. However, such initiatives can
still be confronted with privacy concerns. A decentralized alternative for a TTP
is given by applying Secure Multi-Party Computation (MPC). MPC is a set of
cryptographic techniques that essentially mimic the TTP by means of a protocol
the parties can jointly execute while staying in full control of their own data.
This removes the need to trust anyone with their data. MPC techniques enable
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the use of data from multiple sources to obtain shared knowledge without actu-
ally sharing the data with each other. MPC is a Privacy Enhancing Technology
(PET), which have been recognized as a promising technique in the fight against
financial crime by the Future of Financial Intelligence Sharing programme. Their
white paper [17] describes ten case studies of using PETs in the fight against
financial crime.

Related Work Many data-driven techniques have been applied to detect money
laundering, varying from traditional rule-based models to various machine learn-
ing models [1,24]. Only a small subset of those concern algorithms that exploit
the graph structure of bank transactions [18]. For example, social network anal-
yses have been applied successfully on transaction data to prevent and detect
money laundering [7,/11]. However, such methods are primarily aimed to be
applied on transaction data of a single bank and typically not suitable to be
extended to a distributed network (over multiple banks) using MPC due to their
complexity.

An overview of the use of PETSs in finance in general can be found in the Sys-
temization of Knowledge by Baum et al. [5]. An earlier version of our work [2§]
and the work of Zand et al. [31] are mentioned as the main bodies of work in
the field of cryptography and AML. In the latter research, a money-laundering
detection system is presented that includes one or more auditors, who anal-
yse transactions from multiple banks, via some confidentialy-preserving crypto-
graphic protocol. The suspicious activity reports (SARs) that follow from this
audit are then secret shared to the banks, that can finally recover the SAR to-
gether when they collectively decide on doing so. Note that the difference with
our approach is that we do not need a (trusted) third party.

Some real-world use cases for the use of PETs in the fight against finan-
cial crime are mentioned in a paper by Future of Financial Intelligence Sharing
(FFIS) [17]. One of these examples focuses on network data coming from the
Australian Transaction Reports and Analysis Centre (ASTRAC) [15]. The algo-
rithm is based on the observation that the nodes associated to the layering phase
in money laundering show similarities in terms of structure and information. The
similarities of all nodes in the transaction graph are compared pairwise, in order
to identify clusters of similar nodes. This way money laundering patterns can
potentially be detected. de Perthuis et al. |10] also look at similarities within a
transaction network. They present a secure way, using functional encryption, of
an idea presented by Soltani et al. [26]. They present a framework in which re-
duced transaction data can be scanned to find pairs of transactions with common
attributes and behaviours that are potentially involved in money laundering ac-
tivities. It then applies a clustering method to detect potential money laundering
groups. Using the method of de Perthuis, this can be done between two banks
without sharing their part of the transaction network. However, both AUSTRAC
and de Perthuis use a pairwise comparison approach, which scales quadratically
in the number of accounts and requires performing non-linear comparisons. This
is very costly in terms of communication in an MPC protocol.
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In an article by Suzumura et al. |27], federated machine learning has been
used on transaction graphs. There a prediction model is trained for suspicious
money laundering efforts by using local and global graph features. Aly et al. [3]
consider the shortest path and max-flow algorithm using MPC. The PageRank
algorithm [22] was implemented in a multi-party setting by Cozzo et al. [g]
using an active security approach. There, the computation can be outsourced to
other parties. However, the computation- and communication complexity of all
of these solutions renders them infeasible for large transaction graphs and thus
for a wider use in detecting financial crime.

Several frameworks for efficiently computing graph algorithms have been pro-
posed in [4,/21]. By outsourcing the computation to a set of three other parties
of which at least two are honest, a tailored MPC solution can be used to over-
come performance issues at the cost of having a weaker security model where
the banks are furthermore no longer in complete control of their own customer
data. This is undesirable in practice.

Finally, Sangers et al. |25] did develop a scalable solution (linear in the num-
ber of nodes) for computing PageRank securely while keeping in control of your
own data, using additive homomorphic encryption. They exploit the fact that
each party knows its own transaction graph, enabling local computations with
private values. While PageRank is a relevant metric used for detecting transac-
tional fraud, it is unclear if PageRank can contribute in detecting money laun-
dering patterns. However, the concept of exploiting local knowledge presented
in their work serves as a basis for our work.

Contributions

— We present a novel algorithm called Risk Propagation for performing anti-
money laundering by analyzing transaction graphs. This is a relatively new
and promising approach for banks to do AML. Our algorithm is agnostic
towards the type of indicators of risk that are of interest and is thus flexible
to be used for analyzing various types of risk. The design of this algorithm
was devised with the goal of privacy-preserving analyses in mind.

— We present an efficient solution for performing our risk propagation algo-
rithm in a privacy-preserving way. For this, we present a scalable solution
using additively homomorphic encryption. This enables collaborative anti-
money laundering across financial institutions on transaction graphs of mil-
lions of accounts. With this solution, we address the problem that the per-
formance of such transaction graph analyses is typically hampered by the
limited view a single bank has on the transaction graph. In our approach,
the parties stay in complete control of their own data in contrast to other
works that tackle similar algorithms [4,21] and do not need any external
party to perform the computations for them.

— We have evaluated our solution on real transaction data from a large, Dutch
bank and using cash ratios as indicators to show the potential of our algo-
rithm as a feature to improve AML algorithms.
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Outline The rest of this article is structured as follows. In Section [2} the risk
propagation algorithm is presented. Section [3] demonstrates how one can apply
additive homomorphic encryption to the risk propagation algorithm, so that
it can be used securely in a multi-party setting. In the first part of Section
[4] we present results of experiments of the standard risk propagation on real
bank data to measure its predictive power. In the second part of Section [@] we
present the results of experiments performed to measure the scalability of the
secure, privacy-preserving multi-party variant. Finally, in Section [5| we conclude
this research, discuss the results of this work and give pointers towards future
research. An overview of the notation can be found in Table [T

2 Risk Propagation Algorithm

The approach of the risk propagation algorithm is to update risk scores of every
bank account, by using risk scores of accounts that it receives money from,
in a weighted manner. In other words, if an account receives money from an
account with a higher (or lower) risk score, its updated risk score becomes higher
(or lower). This way, the layering phase of money laundering is simulated, and
accounts involved could possibly be detected using the updated risk scores. Also,
multiple iterations are used to mimic the depth of the layering phase, so that
illicit money flows can be followed. In this section, we present the details of the
risk propagation algorithm.

2.1 Transaction data to a static graph

The input of the risk propagation algorithm is transaction data. These data
consists of the accounts of a bank and all transactions between these accounts
over a certain period of time. We aggregate the transactions that have been made
in this time period into two amounts between every account ¢ and j. The first
amount A; ; is the total amount of all transactions sent from account ¢ to j, and
the second amount A;; is the total amount from j to i. These amounts could
also be zero when there is no transaction. In the upcoming sections, we consider
the accounts to be nodes and the amounts to be the weights of directed edges,
forming weight matrix A, resulting in a simple directed graph. Furthermore,
every account has a previously defined risk score. In the experiments in Chapter
[ we chose cash ratio as a risk score. Other choices could be based on high-risk
geographies or the use of cryptocurrencies. In the upcoming sections we consider
risk scores more generally as node attributes.

Note that ideally we would use the risk propagation algorithm in real time,
updating every risk score when there is a new transaction. However, we have the
aim of applying the algorithm in a secure multi-party setting, as described in the
next section. To reduce complexity, we need to perform the algorithm on a static
graph. However, in the experiments we split up into four sequential time periods,
to mimic real time propagation. Here the updated risk scores over a network of
one time period are used as input for the network of the next time period. The
smaller these time periods are, the closer it gets to a real time propagation.
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2.2 Input Data

The input of the algorithm is a directed graph G(V, E), consisting of nodes V
and directed edges E. The weight matrix A = (4; ;) jcv assigns a weight A4, ;
to every edge e = ¢; j in E from node i to j. We use the convention that A; ; =0
if and only if there is no edge from node i to j.

For a node j, we define S;,(j) C V to be the set of all nodes ¢ in V' for which
there is an incoming edge from i to j (i.e. A;; # 0). Furthermore, Squ(j) C V
are all nodes 4 in V for which there is an outgoing edge from j to i (i.e. A;; # 0).

Finally, every j in V has a node attribute value 0.0 < r; < 1.0. These
attributes can initially be determined or can be the result of the risk propagation
algorithm performed on a different network with the same nodes.

2.3 Updating attributes

The purpose of the propagation algorithm is to update the attribute values of
nodes, using the attributes of neighbouring nodes. This way, the attributes are
propagated through the network.

We update the initial attribute value 7“? of every node j using the attribute
values of the nodes in S;,(j) and the weights in A. A factor 5% determines the
pace of the propagation. For every iteration k € {1,.., K}, where K resembles
the number of iterations, for every 5 € V we update rf by

5l~c
rh = (1 -k 4 T > orkta (1)
7 ieSin(j)

We define T} := Ziesin(j) A; ; as the total incoming weight in node j, the
factor 6% = % depends on a fixed a,b € R such that with 0 <a <1 and b >0
and iteration k > 1. Note that 0 < 6% < 1.

The fixed parameters a and b should be determined by the context. The
intuition behind the parameters is as follows. The value a decides how significant
the attribute of a node is influenced by its neighbors. The value b decides how
large % remains over the iterations, and thus how many hops back in the network
should have a (significant) influence on determining the final attribute of a node.
Now, the higher a is, the more influence neighbouring nodes have on the attribute
of an accounts. When a = 0, the attributes are completely static while with a = 1
(and b = 0), the old attribute of a node itself is completely ignored. On the other
hand, when performing multiple iterations, an increased value of b leads to an
earlier convergence of §* and therefore to an earlier stabilization of the attributes
of the nodes.

3 Secure Multi-Party Variant

In this section, we present our solution for securely performing the risk propaga-
tion algorithm with multiple parties in a privacy-preserving manner. We assume
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that the set of nodes V is distributed over multiple parties. Every party knows
the attribute values of its own nodes and all (directed) incoming- and outgoing
edges associated with its own nodes.

To understand why the algorithm is suitable to be run efficiently in a se-
cure multi-party variant, we note two things. Firstly, if a party wants to update
the attribute value of one of its own nodes, it needs the attribute values of
the nodes that are neighbouring by incoming edges. In case these neighbouring
nodes are owned by a different party, the corresponding attribute values can
be received securely in homomorphic encrypted form and used for calculations
without decrypting the value. This means that not the entire graph data, but
only the attributes of the neighbouring nodes need to be (securely) communi-
cated between the parties. Secondly, since updating an attribute value is a linear
operation, this allows for an efficient secure implementation.

3.1 Security model

The secure risk propagation algorithm works in the passive security model up to
all-but-one corrupted parties (depending on the chosen decryption threshold).
This means that, under the assumption that no party actively deviates from the
cryptographic protocol, no information can be retrieved about the secret input
of an honest party, other than what can be deduced from the outcome of the pro-
tocol. The passive security model is especially useful to obtain a relative efficient
solution in this collaborative AML setting where the parties do trust each other
but are simply not allowed to share private information due to regulations. Note
that the security model of an MPC protocol guarantees that no information is
leaked to the parties during the computation except from what each party could
have derived from its own input and output in the protocol. Depending on the
computation, some sensitive information could thus still be deduced in practice.
We will analyze this further in Section

Additive homomorphic encryption We denote encryption Encp,(m) for
a message m encrypted with public key pk, and we denote Decgi(m) for de-
crypting the encrypted message with the secret key sk. Then by definition
Decy(Encpi(m)) = m. The secure version of the risk propagation algorithm
requires the additive homomorphic encryption property, meaning that we can
perform addition (but no multiplication) between encrypted values. Further-
more, these schemes allow for the multiplication of a plaintext scalar with an
encrypted value. Because of the linearity of risk propagation, there is no need for
a less efficient fully homomorphic encryption scheme. For the implementation
we chose the Paillier encryption scheme [23].

Distributed Key Generation In order to use the Paillier encryption securely
in this setting, we need to prevent parties from decrypting intermediate values.
Therefore we use an implementation of the encryption scheme with threshold
decryption without a trusted dealer, the distributed key generation as described
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in [30]. With this encryption scheme, a key pair {pk, sk} is generated, where
the key pk is public, and the secret key sk is distributed among the parties.
In order to decrypt an encrypted value, a certain number of parties is required
(the threshold), with each party performing a partial decryption. The decrypted
value is only revealed to the parties with access to sufficient partial decryptions.
In other words, a ciphertext can only be decrypted if enough parties cooperate.
After the distributed key generation, the attribute values are encrypted and the
secure In the next sections, we explain how the encrypted values are used to
perform secure computations.

Distributed graph The real-world problem of the distributed graph is a trans-
action graph that is distributed amongst multiple banks. Every bank knows its
own accounts including attribute values, and knows the incoming and outgo-
ing transactions, even if they are from or to accounts of another bank. A bank
knows which other bank these neighbouring accounts belong to, but does not
know their risk scores, and therefore cannot perform the complete risk propaga-
tion algorithm.

More mathematically, the input data is a graph as defined in Section [2.2
but now we assume that the graph is distributed amongst ¢ parties, where the
set of parties is denoted as P. Every party P € P has a unique subset of nodes

VP cV,suchthat V= |J V¥ and for P,P' € P
PEP

VPNV =gif P#P.

We define A of A to be all amounts A; ; such that i € VF or j € VF. Also,
party P knows the initial attribute values r? for every j € VP Finally, party P
knows to which party each of its neighbouring nodes belong. To be more precise,
for every j € VP for all i € Si,(5)USout(j), party P knows P’ such that i € 72

3.2 Exchange of encrypted attributes

In the distributed graph setting, if party P wants to update the attribute values
r;) of j € VP, according to it needs all ¥ for all i € Si,(j). However, in
general not all i € S;,(j) are in VZ.

Therefore, the first step of secure risk propagation is the parties exchanging
the initial attributes they need in an encrypted form. In general, we denote sf
as the encrypted form of r¥.

If for i € Sin(j), i ¢ VT, party P needs to receive s from the party P’ such
that i € VF'. In order to receive the right encrypted values, the following needs
to happen. For all j € V¥ if for i € Soui(j), there is a party P’ # P such that
i € VP, then P needs to communicate 59 to P

Furthermore, before every new iteration, there is an exchange of the en-
crypted updated risk scores. See also the exchange pseudocode in Algorithm
We now explain how the encrypted values are used to update the attributes
securely.
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Algorithm 1 exchange(k, P)

Input: k, sf forall j € VT, Vv, A"

1: for j € V¥ do

2: for P € P\ P do

3: if 3i € Sout(j) such that i € VF' then
4: send s¥ to P’

3.3 Secure Computations

In order to perform the secure computations, every party homomorphically en-
crypts its attribute values, which we refer to as the attribute ciphertexts. Note
that the Paillier scheme uses integers as input, however, the attribute values
r;? and 6% are not an integer. For this we use scaling factors, such as in [25].
Since this is a straightforward adaptation, we will ommit the scaling factors in
the equations below. In our algorithm, we measured a difference smaller than
107° between the results of the plaintext- and the secure variant with the scaling
factors, which we deem insignificant.

Secure updating of attributes The attribute ciphertexts are exchanged as
described in Section Using the properties of additive homomorphic encryp-
tion, every party computes the updated attribute ciphertexts with an encrypted
version of Equation . The difference with Equation is that we use homo-
morphically encrypted ciphertexts. Therefore, sums become products and prod-
ucts with plaintext values become exponentiations as described in Section [3.1}
Denoting sé? = Encpr (rf), we get the following secure update,

sk

Sf = (Sf_l)lﬂslC H (sf—l)Ai,j . 2)

iE S'in (])

After the first iteration, every party ends up with a ciphertext of the updated
attribute values of its own accounts. This value is then exhanged for the next
iteration. Before exchanging, every ciphertext is rerandomized by multiplying
the ciphertext with a fresh encryption of 0. After rerandomization, the new
ciphertexts are exchanged, and another iteration is performed. The pseudocode
is found in Algorithm

3.4 Decryption

After performing all iterations, the outcome of the protocol is decrypted with
threshold decryption as described in Section Every party P sends the cipher-
texts of the end results to the other parties, so that they can partially decrypt
those values. When party P has received the partially decrypted outcomes, it
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Algorithm 2 Secure Risk Propagation algorithm for party P
Input: Public pk, K, 6, P

Input: Private V7, AT, (T?)jEVP

Output: Encrypted updated scaled attributes (SJK)jevP

1: for j € VP do

2: 57 < Encpi(r))

3: exchange(0, P)
4.
5
6

: for k=0 to K do
for j € V¥ upon receiving all (Sf)ieSin(j) do

o)
sk T
T: S?H —(sH? [Hiesin(j)(S?)A'L”] !

8: rerandomize & exchange(k + 1, P)

decrypts the end results with their part of the decryption key. This happens in
such a way that only party P learns the updated attribute values of j € V7.

Also, there are different options for revealing the output of the secure risk
propagation. Instead of decrypting all final updated attributes, the parties could
decide to reveal only some information about the attribute values. With a secure
comparison, the ciphertext is transformed into the outcome of a comparison
with some threshold. After decryption, only the outcome of this comparison
is revealed [29]. Using this technique, the parties could for example decide to
only decrypt whether the scores are low, medium or high, or compare it to a
certain threshold. This way, only relevant information is revealed, while other
information remains private.

4 Results

In this section, we first analyze the security of our solution. Afterwards, to mea-
sure the performance of the secure risk propagation algorithm, we have per-
formed two types of experiments. First, the predictive power of the algorithm
was measured on a real transaction dataset from a large Dutch bank, by using
the risk scores computed by our algorithm to predict which accounts should
be labeled as having unusual behaviour that requires further investigation. The
results of these experiments can be found in Section

Secondly, the scalability of the solution was measured by benchmarking the
runtime of the algorithm with sufficiently large cryptographic keys to secure the
data in practice. The results of this experiment can be found in Section [.3]

4.1 Security Analysis

As long as the parties follow the algorithm honestly, the only communication
that takes place between two banks A and B are encrypted risk scores of ac-
counts from A that make a transaction to an account at B (or vice versa). Since
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Fig. 1: Schematic Overview of the Experiment.
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the parties both already have this transaction in their respective datasets, this
does not leak any additional information about the structure of the underlying
transaction network. Furthermore, both parties also already know the amount of
the transaction and thus have all the information required to perform the secure
update of the risk score. Given that the Paillier encryption scheme is secure, our
protocol is thus secure in the passive model.

However, it should be noted that the risk propagation algorithm consists of
only linear operations. Therefore, it might be possible to deduce information
about the encrypted inputs from only the decrypted results in some cases as
explained in Section When using this algorithm in practice, this should be
prevented. Using secure comparison, the outcome of the secure algorithm can
be a category (e.g. low, medium or high) instead of an exact risk score. Also,
using multiple iterations where the intermediate outcomes are not decrypted, the
output is an outcome of non-linear operations. Lastly, differential privacy [20]
could be used to obscure the output of the secure risk propagation, without too
much compromise on the performance. The necessity of these measures should
be tested in further research.

4.2 Predicting Future Alerts of Unusual Behaviour

A schematic overview of the experiment to measure the predictive power of risk
propagation can be found in Figure [I} This experiment was conducted on real
transaction data of a single, large bank in the Netherlands. Therefore, we could
locally use the plaintext version of the risk propagation algorithm. As explained
in Section [3.3] an encrypted version does not significantly influence the results
of the algorithm.

Data Selection We filtered the dataset to remove accounts and transactions of
minors, deceased persons, transactions via suspense accounts and correspondent
banking transactions. Furthermore, we only consider transactions large than 100
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euros and aggregate transactions between pairs of accounts. In total, this yields
a dataset with a few million bank accounts with an average out degree between
2 and 3. This is data that the bank already uses for their legal obligation under
the Dutch WWFT and has not specifically been gathered for this research.

As attributes, the IBAN numbers of the accounts are required as well as the
alerts of unusual behaviour that we use to label the dataset. For the transactions,
the IBAN of the sender and receiver are required, the transaction amount and
an indicator of whether it is a cash transaction or not.

Label information comes from a separate dataset containing, on a customer
level flags of suspicious behaviour by current AML systems in place. We therefore
assign the customer label to all of their accounts. Note that customers being
labeled as having unusual behaviour that might be related to money laundering
can be labeled for a range of different reasons which does not necessarily have to
be related to cash. In the preprocessing step data is extracted for three different
periods of time in the data.

Initial attributes. To compute the initial attributes, we chose eight consecutive
weeks from September 1, 2021 until October 27, 2021. We use the cash ratio
as initial attribute. This is computed as the amount of money that was marked
as cash that an account has received in this time period, divided by the total
amount received. Furthermore, the accounts that made or received at least one
transaction in this time period will be the scope of the rest of the experiment.
The choice of cash ratio as an informative feature is supported by the three
phases of money laundering as described in Section [I] During the placement
phase, cash from illicit activities could be brought into the system [14]. We
expect that risk propagation algorithm therefore mimics the layering phase.

Transaction network(s). For creating the static transaction network, we use four
weeks between September 29, 2021 and October 27, 2021, which we split up into
four sub periods of one week each. Note that here, we only build a transaction
network for the accounts that are in scope as described above (i.e. that have
a cash ratio). The transactions made in a sub period we call a time frame.
In the remainder of this section, we refer “Z;” for the i-th time frame. In the
experiment, resulting attributes after risk propagation over Z;, are used as the
input attributes for the propagation over Zs, etcetera. This way we mimic a real
time use of risk propagation.

Labels. For assigning labels, we use eight weeks from October 1, 2021 until
November 30, 2021. Here we select the alerts that have been raised in this time
period. These alerts are used to label the accounts in scope as positive or neg-
ative. We deliberately pick an additional month after the transaction networks,
since the systems that generate these alerts can have a delay and thus unusual
behaviour in October might only be alerted in November.

Choice of parameters As explained in section the most suitable values
for a and b in the parameter 6* depend on the context. Using a grid search, we
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Fig.2: PR curves after every iteration. Here, each line is the performance of the
model using the resulting risk scores after a certain iteration.
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determined the choices for our dataset that resulted in (on average) the best
models, which were ¢ = 0.3 and b = 0.8. Furthermore, using a similar strategy
we found two iterations per time frame (eight iterations in total) to yield the
best results.

Results To measure the performance of the algorithm on the dataset which is
highly skewed (> 99% nodes are negative), we compute precision-recall curves of
a threshold model as depicted in Figure[l| after every iteration. The result of the
algorithm is a risk score for every account. The model uses these risk scores to
predict which accounts are positive by choosing a threshold and mark accounts
with a risk score higher than the threshold as positive and negative otherwise.
The ground truth is given by the alerts dataset as explained above.

We present the “Area Under the Curve (AUC)” of each model as an indi-
cation of how well the models perform. The AUC is calculated as the average
precision at each threshold (and thus each recall). Precision describes how likely
an account flagged by the risk propagation algorithm is to actually be positive
while recall describes how well the algorithm performs at finding the positive ac-
counts. After each iteration, we evaluate the predictive power of the risk scores
by computing the precision and recall for a range of thresholds. Intuitively, a
lower threshold means we have a higher recall since we flag more accounts as
positive at the cost of a lower precision.

The results of this experiment can be found in Figure The AUC of simply
guessing which accounts are positive would precisely equal the percentage of
positive accounts, which is less than 1%. Now, the initial cash ratio shows how
well a model just using the cash ratio as an indicator for a positive account would
perform. As expected, there is some correlation between higher cash ratios and
accounts being labeled as positive, which results in an AUC that is already better
than randomly guessing.
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As can be seen, the AUC further improves as we perform more iterations of
the algorithm. The best results for this dataset and with these parameters are
after seven iterations, which is the first iteration of the last time frame (Z3) .
With an AUC of 0.143, we see that this model performs almost three times better
than the initial cash ratio model. This gives a strong indication that propagating
risk scores through transaction networks supports finding more accounts with
unusual behaviour that might be harder to find when looking at each account
individually.

In Figure only this best model and the initial model are presented to give
a better view on how the model improved. With the optimal threshold choice
of this model, it reaches a precision of 40% and a recall of 25%. This means
the model is able to find 25% of all positive accounts and from all the accounts
that it did mark as positive, 40% were correctly labeled as positive. On the other
hand, the model using just the initial cash ratios has a precision of 15% for the
same recall. Therefore propagating is useful to drastically reduce the amount of
false positives of such an algorithm.

In general, we see that the models improve the most after the first iteration
in a new transaction network time frame. This is likely due to the fact that in
those iterations, new information is introduced (namely, new transactions).

4.3 Scalability of Secure Variant

In order to test scalability, we benchmarked the secure variant of the risk prop-
agation algorithm. The secure implementation of our risk propagation is open
source [16]. The implementation is made in Python and uses the Gmpy?2 library
to perform faster modular arithmetic. The distributed Paillier key used during
the experiments is 2048 bits in size. Each party runs in its own process. Each pro-
cess has access to a single core of 3.5GHz in a cloud environment. The processes
communicated with each other via HTTP connections. For the benchmarking
experiments random graphs of up to 200,000 accounts were generated, with the
accounts equally divided over three parties. Then for each account, incoming
transactions were sampled according to a Poisson distribution with a mean of
10. The corresponding transaction amounts were chosen between 0 and 1000
while risk scores for all the accounts were sampled ranging from 0 to 1.

As for the choice of parameters, the choices for 6% is irrelevant for the per-
formance of the secure risk propagation. We performed k& = 2 iterations. This
represents processing one transaction network in the experiments in

Results In Figure [3| the execution time is split into three sections. Firstly the
encryption of the cash ratios of all the accounts, then the iterations to propa-
gate and update the encrypted risk scores and finally decryption to reveal the
resulting risk scores to the respective parties.

In this scenario the entire algorithm for 200,000 accounts ran within three
hours with the majority of the runtime consisting of decrypting the updated
attribute values. Note that the decryption time is constant for the same number
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Fig. 3: Scalability benchmark with distributed Paillier key of 2048 bits.
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of nodes. Therefore, for larger numbers of iterations, the decryption time is neg-
ligible. Finally, we observe that the runtime of all parts are linear in the number
of accounts in the dataset. This gives a strong indication that the algorithm
is scalable and feasible for analyzing larger datasets with more banks involved.
From the linearity we can predict that the algorithm can be run on millions of
bank accounts in a reasonable amount of time (e.g. a few days).

5 Conclusion

In this paper we presented a novel, efficient algorithm for the detection of money
laundering using the graph structure of a transaction network. Our results on
real bank data strongly indicate that the propagated risk scores can improve
the detection of bank accounts involved with unusual behaviour that requires
further investigation.

Furthermore, due to the conceptual simplicity of the algorithm, we have
shown that it can easily be extended to a secure multi-party version that is
feasible in practice. The secure version of the algorithm can be used to make the
risk scores more informative by combining data from multiple banks. This gives
a group of banks a way to cooperate and share insight with each other using
information which they are otherwise not allowed to share.

Finally, looking at the performance of our algorithm, we believe risk propa-
gation should not be treated as a stand-alone solution for doing AML. Rather,
it should be used as an additional feature to further strengthen the knowledge
of existing detection algorithms by bringing in additional information from the
transaction graph. This is supported by the observation that risk propagation
is particularly good at reducing false positives. Since each account flagged as
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positive needs to be manually investigated by an analyst, this is believed to
significantly strengthen the intelligence position of banks.

Discussion & Future Work Firstly, the experiments on real bank data in
Section [£:2] show that the risk propagation has predictive value. However, the
predictive value on a network of multiple banks has not yet been tested. Intu-
itively, we expect this to be even better, since performing the algorithm in a
multi-party setting provides an improved view on the entire network and money
laundering patterns take place over multiple banks. This should be tested in a
pilot setting. Furthermore, the optimal choice for the time periods should be
found experimentally in practice. Our hypotheses is that the results improve
with smaller time periods, ultimately reaching real time transaction monitor-
ing. Of course this would require more computational resources or efficiency
improvements in the algorithm. Additionally, we have only measured the pre-
dictive power aggregated over all the accounts but could not verify whether the
algorithm indeed detects new money laundering patterns.

Secondly in a multi-bank setting, it is important that the banks agree on the
semantics of the attributes. If banks use a different definition for the attributes,
the multi-party risk propagation will be less useful. However, from competition
law, it is advisable to carefully consider which attributes to use and exchange
such that this is lawful. The banks need to agree on the used attribute such
that it is based on an objective indicator and not an indicator that is subject to
interpretation of how a bank perceives risks. A good example of such an objec-
tive indicator is the cash ratio, which is well-defined and objectively measured
without any interpretation of risk involved. How each bank uses the updated
risk scores is up to each bank individually and this is not shared between the
banks.

Thirdly, the alerts used to label our dataset for the accuracy experiments
are on a customer level while the risk propagation was done over bank accounts.
However in practice, some of these accounts might not have anything to do with
this behaviour and are thus impossible to find, resulting in additional false nega-
tives. Furthermore, the alerts dataset contains alerts for any unusual activity in
the light of the Dutch WWFT (law for preventing money laundering and terror-
ism financing). These might not have anything to do with cash while cash is the
only feature we used for risk propagation. This might have impacted our results.
Therefore, our results should be seen as a “baseline” for the predictive power of
the risk propagation algorithm but it is hard to determine its performance in
practice.

Finally, our secure solution is secure in the passive security model. This
is sufficient for parties who do trust each other. In case this assumption is not
realistic, the stronger model of active security should be adopted, which typically
introduces additional overhead. It would therefore be interesting to research how
this can be done in an efficient manner for the risk propagation algorithm.
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A Notation

The following notation is used in Algorithm [I] and Algorithm

pk Paillier public key

Encpy (m)|Encryption of message m using public key pk

K number of iterations

5" multiplication factor ;% depending on k and pre-defined a and b
P Set of parties

v Set of all nodes in transaction network

VP Set of all nodes belonging to party P

A Weight matrix of transaction network

AP All in- and outgoing weights of party P

T; Total incoming weight for node j

Sin(7) All nodes i such that A; ; #0
Sout(7)  |All nodes ¢ such that A;; #0

r? Initial attribute of node j
rf Attribute of node j after k iterations
s;“ Encrypted attribute of node j after k iterations
Table 1: Overview of notation.
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