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ABSTRACT
We propose a solution for user privacy-oriented privacy-preserving

data aggregation with multiple data customers. Most existing state-

of-the-art approaches present toomuch importance on performance

efficiency and seem to ignore privacy properties except for input

privacy. Most solutions for data aggregation do not generally dis-

cuss the users’ birthright, namely their privacy for their own data

control and anonymity when they search for something on the

browser or volunteer to participate in a survey. Still, they are ambi-

tious to secure data customers’ rights (which should come later).

They focus on resulting in an efficiency-oriented data aggregation

enabling input privacy only. We aim to give importance to user

privacy, and we have designed a solution for data aggregation in

which we keep efficiency in balance. We show that PRIDA provides

a good level of computational and communication complexities

and is even better in timing evaluation than existing studies pub-

lished recently (i.e., Bonawitz et al. (CCS’17), Corrigan-Gibbs et al.

(NSDI’17), Bell et al. (CCS’20), Addanki et al. (SCN’22)). We employ

threshold homomorphic encryption and secure two-party computa-

tion to ensure privacy properties. We balance the trade-off between

a proper design for users and the desired privacy and efficiency.

KEYWORDS
Data aggregation, User Privacy, Multiple Data Customers, Thresh-

old Homomorphic Encryption, Secure Two-party Computation,

Multi-key Homomorphic Encryption.

1 INTRODUCTION
Data aggregation has become one of the most indispensable tools

used by organizations for decision-making, innovation, increasing

efficiency, and ultimately driving growth. In order to increase pre-

cision and accuracy, companies are tempted to collect, process, and

analyze various types of data coming from their users or stake-

holders, which often include privacy-sensitive information or busi-

ness data. If compromised by malicious parties, data stored with-

out proper protection could result in serious privacy and security

breaches, maybe even identity theft and fraud. The cost of a data

breach, on average, has ramped up to $4.5M according to the IBM

statistics [38]: 51% of organizations plan to increase the privacy

and security of the data they analyze, not only to comply with

specific privacy-related regulations [2 23 62] but also to avoid these

catastrophic events that could result in extreme reputational and

monetary damage from happening. Protecting privacy-sensitive

data is not just a legal requirement but also a matter of public trust.

Conducting data aggregation in a privacy-preserving manner is a

way to reduce the risk of privacy breaches and maintain the trust

of users and stakeholders. This will help organizations make better

decisions, improve their operations, and maintain their reputation

in an increasingly data-driven world.

Furthermore, organizations may need domain-specific exper-

tise and/or computational resources to perform data aggregation

operations in a privacy-preserving manner. Hence, they usually

rely on the existence of third-party cloud servers for such analytics

operations to outsource this task. These servers are usually named

aggregators that offer aggregation operations over data collected

from a large number of users. With the existence of this third-

party aggregator, the implementation of privacy-preserving data

aggregation solutions becomes even more essential.

As a reaction to the underlying regulations, low-cost privacy-

preserving data aggregation solutions, such as data anonymiza-

tion [51] and federated learning [36 50 53 56 77 84], were immedi-

ately proposed and quickly adopted by organizations. Although data

anonymization ensures the privacy of an individual by anonymiz-

ing identifiers or by erasing sensitive data, this option is not a

foolproof method since [47 70 76 78 80 81] have proven the fea-

sibility of deanonymization. Similarly, FL cannot ensure privacy

perfectly: [36 50 53 56 77 84] have unveiled that leaking private

data is still feasible in FL. For example, authors have showed that

the aggregator could reconstruct the profiles of local training data

of a target user by observing the gradient vectors submitted by

users, and also, the aggregation server can infer privacy-sensitive

properties of local training and conduct membership inference

attacks [53 56] by observing gradient or model updates.

An alternative data aggregation solution to protect privacy while

still being able to process sensitive data, leverages secure multiparty

computation [8 37 69] or homomorphic encryption [21 22 29]. The

problem of privacy-preserving data aggregation has intensively

been studied, a large corpus of existing work such as [11 25 41 46

55 79 83], but they focus on a simpler scenario where the aggre-

gation operation is not outsourced to a third-party cloud server,

and there is only one stakeholder interested in this aggregation

result: The aggregator is that interested stakeholder and can

have access to the aggregation result while still not being able to

have access to individual data. Few prior solutions like [46] seem to

consider a bit more realistic setting whereby the aggregation opera-

tion is outsourced to a third-party aggregator with the existence of

only one stakeholder interested in the aggregation result. However,

these solutions still let the aggregator access the aggregated result.

They violate the result privacy. Furthermore, a few others could

consider having multiple stakeholders who employ the third-party

aggregator to access the aggregation result, but they do not pro-
vide any options for the users to choose the stakeholders
who can have access to the result [9 12 13 24 68 72 82] and to be
anonymouswhile joining data aggregation with their private data,

or they do not consider the potential collusion among parties.
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1.1 PRIDA: Preview
This paper presents a novel privacy-preserving data aggregation

solution called PRIDA that is designed to be suitable for real-world

scenarios as enumerated as follows: (i) PRIDA, by privacy-by-design,

provides the care to be transparent to the users, we name data
owners (DOs), who are able to gain the control their data without
being profiled (i.e., being anonymous to stakeholders interested in the
aggregation result) while participating in an aggregation operation.

We call this transparency to DOs, user privacy. DOs should be

free not to share information about themselves as their primary

birthright. This crucial birthright should be protected, and DOs

should not have to share anything inherently about themselves

while doing a simple Google search
1,2

. (ii) PRIDA supports, by

design, multiple stakeholders that we now name data customers
(DCs). PRIDA considers user privacy in the presence of multiple

data customers. These two crucial and more real-world use
case adaptable privacy properties have not been studied at the

same time by the state-of-the-art solutions. (iii) None DCs and

aggregators, unlike prior solutions, can access the aggregation

result unless multiple DOs allow the corresponding DC to. PRIDA

enables the corresponding DCs to obtain an aggregation result,

which is private only to them; we call it result privacy, as well
as provides the traditional and essential privacy goal for DOs, i.e.,

guaranteeing input privacy.
To ensure all these privacy and security goals (See Section 2.1),

we combine threshold homomorphic encryption (Th-FHE) [4
49], whereby one can perform operations over data encrypted cor-

responding to multiple keys, with secure two-party computation
(2PC) [8], where two parties jointly perform a function over private

inputs without disclosing them. PRIDA utilizes two aggregators

in place of one aggregator used in the more frequently setting

of state-of-the-art solutions [7 9–11 13 25 40 68 71 72 79 82 83].

The introduction of this additional aggregator enables DOs to be

anonymous to DCs, i.e., DCs are not able to distinguish whether

a particular DO has sent their data to the data aggregation oper-

ations. One of the distinctive features of PRIDA is that the result

of the aggregation operation could be delivered to multiple DCs

allowed by DOs while achieving all identified privacy goals. One

can utilize a cryptographic technique alone, but it may not be able

to achieve all privacy goals identified by PRIDA. When one designs

a simple protocol based on only 2PC with a single aggregator
(as in the state-of-the-art): The aggregator and DC are responsible

for the aggregation operation, i.e., DC also has to participate in the

aggregation computation, which is generally undesirable because

DC is usually considered a party having limited resources and no

expertise in privacy-preserving analytics like data owners. Preserv-

ing user privacy becomes problematic in this simple protocol. In

particular, when a new DC joins the aggregation, and if a data

owner (DO) does not participate in the aggregation for this DC,

the aggregator easily observes that this DO does not send its data;

i.e., the aggregator can easily conduct a user profiling for data
owners whether they join or not in the aggregation operations for

which DC. Even in a 2PC-based protocol with two aggregations,
the risk of user profiling still remains, as DOs may decide not to

1
https://spreadprivacy.com/how-does-google-track-me-even-when-im-not-using-it/

2
https://www.wired.com/story/google-tracks-you-privacy/

send data to each new DC. Alternatively, in the case of employing
only FHE and a single aggregator, DOs are assumed to encrypt

their data with the public key of the corresponding DC, and DC can

obtain the aggregated result with the help of the aggregator. In this

simple solution, we re-observe that user privacy is compromised

by the aggregator that can exploit user profiling when a data

owner does not send its data to a newcomer DC. We note that one

can ensure fundamental privacy properties like input privacy by

using only MPC or only FHE. However, PRIDA, privacy-by-design,

supports all of these privacy properties; thus, we propose the use

of both techniques.

1.2 PRIDA: Use case
When considering these newly presented privacy and security fea-

tures, PRIDA for a user privacy-oriented data aggregation solution

can be applied to a variety of use cases in which the user and

its data are sensitive if compromised by the wrong parties. For

example, our solution could be applied to healthcare-related use
cases: Patients’ (privacy-sensitive) data should never be shared

with any third parties, such as healthcare-related centers. However,

healthcare-related centers still need to be able to calculate aggre-

gated results for new treatments, medicine stocks, experiments,

statistical evaluations, etc. Note that patients may not be willing to

share their data with all these healthcare-related centers, but they

may want to share their data with specific centers. Patients should

be able to specify which of their data should be privately shared

with whom of these underlying centers. In such an example, PRIDA

players are (i) a (local) hospital as Aggregator1; (ii) patients admitted

to the hospital as data owners (DOs); (iii) healthcare-related cen-

ters like pharmaceutical companies, laboratories, health-oriented

research centers, health insurance companies as data customers

(DCs) that provide medicines, types of equipment, or insightful

information about the hospital to the public. The number of pa-

tients would range from hundreds to millions [5 65]. Moreover,

this local hospital may not have sufficient resources for computa-

tion capabilities or data analytics-specific expertise to process the

privacy-sensitive data. Thus, a cloud provider would need to be

employed, and (iv) we call it Aggregator2 in PRIDA. Patients acting

as data owners (DOs) are willing to participate in a statistical evalu-

ation over their private data: They encrypt their data and send them

to the two aggregators, namely the hospital and the cloud provider.

Once they receive these encrypted data, they jointly perform the

required analytics over these privacy-sensitive data and send the

encrypted aggregate result to the authorized centers if chosen by

enough patients. Then, these authorized centers can decrypt and

obtain the result. Remark that the health records of an individual

are highly private, and their collection, storage, and accessibility are

firmly regulated by laws on data protection [2 23 62 64]. Moreover,

such details are often the target of malicious actors that attack badly

protected organizations to gain an advantage through reputational

damage or by requesting a ransom. In only the first 10 months of

2023, according to the Department of Health and Human Services,

over 88M US individuals’ medical data has been exposed [26].

PRIDA can be employed in another use case scenario, namely

sports analytics since the global sports analytics market reached

$3220M in 2022 and is expected to be $11001M by 2028 [67]. For
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example, multiple sports companies such as Adidas, Asics, and Nike

as DCs would like to obtain some statistics (i.e., sum, average, etc.)

over multiple clients’ consumption or potential needs in the future,

like the approaching Christmas time. They would like to learn

how many pairs of shoes or which models should be delivered

to their stores in a specific local. Adidas, Asics, and Nike may

want to contact a sports analytics company such as Nielsen Sports

(as Aggregator2, which does not have direct contact with buyers).

These sports companies are competitors and may not want their

competitors to know about their insights. Thus, the aggregated

result should be private to each. For example, clients Alice and Bob,

who are potential buyers, namely DOs for these sports companies,

may like to participate in a statistical analysis with their privacy-

sensitive data, such as their search (or purchase) history for running

shoes or sneakers from some online marketing website like Amazon

(i.e., Aggregator1 we consider and it does not have a direct contact

with these sports companies). Alice usually purchases her running

shoes from Amazon, while Bob uses Amazon for new sneakers. Bob

always loves wearing his Adidas or Nike sneakers, whereas Alice

likes running with her Asics. An analysis over the search/purchase

history aggregated by two aggregators, Amazon, and Nielsen Sports,

showed that Alice and Bob could need to buy new shoes because

Alice’s running shoes have been estimated to be used at least 500 km

(since she bought them two years ago), and Bob bought his sneakers

last year. As we understand it from DOs’ preferences, no need for

Alice is to join a survey of Adidas and Nike or no need for Bob is

to join a survey of Asics. It is fair for data owners to have choices

to join the analytics that may work for them. They participate

in these analytics with their data (interest of buying shoes) and

choice (which brand of shoes they buy) while encrypting them.

Amazon and Nielsen Sports aggregate these data and could send

the aggregated results to corresponding sports companies, Adidas,

Asics, or Nike, which are interested in this valuable information.

With the help of this information, Adidas may like to advertise its

new pair of Adidas sneakers or running shoes, or Nike can publish

a discount on its items for the Christmas period for their target

clients, or Asics might continue selling the most sold-out model of

last year this year.

We believe that thanks to these insights, data customers take

action to provide better services (ads, discounts, etc.) to their target

groups.

1.3 Prior Work
This section is a detailed presentation of existing privacy-preserving

data aggregation solutions and highlights their relevance to PRIDA.

Table 1 provides a summary of this study and regroups solutions.

As shown in the table, most solutions do not focus on all identified

privacy goals for PRIDA, and they result in an efficiency-oriented

data aggregation enabling input privacy only.

Existing solutions rely on the use of either differential privacy

(DP) mechanism [6 7 10–13 17 31–34 40 44 45 60 61 66 71 79 83],

homomorphic encryption (HE) [27 39 46] or secure multi-party (or

two-party) computation (MPC/2PC) [1 9 15 16 24 25 30 41 42 57 72–

75 82]. Some of the DP-based solutions also implement some other

cryptographic techniques such as the Paillier cryptosystem [58],

Table 1: Comparison of the state-of-the-art solutions.

Solutions supporting Prior Work PRIDA

Multiple DCs [7 10 12 24 27 46]

Input privacy [1 6 7 9–13 15 17 24 25 27 28 30–35 39–42 44–46 52 57 61 66 68 71–75 79 82 83]

Result privacy [1 6 7 9 11 15–17 24 25 27 28 30–35 40–42 44–46 52 57 61 66 68 71–75 79 82 83]

Data Control -

Anonymity of DOs [7 10 25]

Collusion-resistance [66 68]

etc., to ensure data confidentiality while performing data aggrega-

tion.

A few works, such as [28 35 52], similar to PRIDA, combine HE

and MPC to ensure data privacy. Nevertheless, these solutions do

not consider the existence of multiple data customers (DCs), and

they cannot be easily extended to the challenges described in Sec-

tion 2. Although some prior works [7 10 12 27 46] seem to separate

the role of the aggregator and DC, the result privacy is omitted.

Furthermore, none of the existing solutions offers user privacy for

DOs to have control over their private data while allowing data

aggregation for DCs. Moreover, these solutions cannot prevent

collusion between DCs and the aggregator.

Prio [24] and Prio+ [1] employ MPC: Prio uses Arithmetic shares

to enable each DO to send its shares to multiple aggregators, which

sum these shares locally and send back the aggregated result to

DOs, and finally, DOs obtain the aggregated result. Prio presents

only the computation complexity. On the other hand, Prio+, an

extension of Prio, employs Boolean shares to improve the verifi-

cation performance of Prio. Furthermore, some recent DP-based

designs [10 13], also employing Shamir Secret Sharing (SSS) [69],

involve data owners that interact with each other, which is not

desired for our design: We aim to protect user privacy and enable

data owners not to interact with each other or not to compute too

many operations, except for just sending their privacy-sensitive

data by using cryptographic techniques.

To summarize, most of the state-of-the-art do not consider multi-

ple DCs and do not provide user privacy (data control and anonymity)

for DOs, who should have the right to choose which DCs can have

access to the aggregated result, including their data. Therefore,

most of the existing solutions can be considered as all-or-nothing,
whereby as soon as any DO participates in the aggregation, all

DCs can have access to the aggregate result. Finally, many existing

solutions do not tackle the problem of DOs’ anonymity. Thus, we

can conclude that by combining the use of Th-FHE and 2PC with

the help of two non-colluding aggregators, PRIDA succeeds in sup-

porting multiple DCs while ensuring user privacy (i.e., allowing

DOs to control their data over DCs and to be anonymous to DCs)

as well as input and result privacy.

1.4 Our contributions.
The state-of-the-art designs disregard user privacy and just focus on

input privacy and enhancing the efficiency of their proposal. In this

particular design, our objectives are to protect data owners, who

are simply users of some application, to give back their birthright,
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their privacy, to them, and to minimize their workload, considering

that they only encrypt and send their data. Therefore, PRIDA is

designed with a user-centric approach and carefully maintains

efficiency in balance with many important privacy and security

goals. Our contributions can be summarized as follows:

- PRIDA helps data owners gain their user privacy by enabling the
control of their data: The data owners can freely decide whether

or not to participate in an aggregation operation requested by a

certain data customer, and also by ensuring the anonymity of data
owners when a data customer can have access to the aggregation

result only if the number of participating DOs exceeds a pre-

defined threshold.

- We propose to preserve data privacy, namely input privacy for

DOs and result privacy for data customers, which generally has

not been studied in the state-of-the-art solutions.

- PRIDA supports, by design, more realistic real-world use cases

with more than one data customer thanks to the use of these

two cryptographic building blocks with a setting involving two

non-colluding aggregators.

- We study the existence of potential collusions among any pair

of players at the very design phase, namely: Collusions between

the aggregator and DOs and collusions between the aggregator

and data customers. We show that PRIDA is collusion-resistant

under the honest-but-curious security model.

- In order to show that PRIDA is secure and private, we conduct a

detailed security analysis of PRIDA while taking potential adver-

saries, collusions, and itemized privacy guarantees into account.

- We implement PRIDA to evaluate its performance by conducting

several experiments. The prototype implementation uses the

PALISADE library [59] with the threshold version of BFV and

CKKS.

- We evaluate the computational and communication costs of

PRIDA, and also we compare these results with the state-of-the-

art solutions [1 10 13 24]. Our performance evaluation shows

that PRIDA is 17-fold better than [10 13] in timing cost.

- As previously discussed, existing solutions that do not meet the

privacy goals introduced in PRIDA are not entirely suitable for a

fair comparison; therefore, we compare PRIDA with two differ-

ent versions based on multi-key fully homomorphic encryption,

namely PRIDAv2 and PRIDAv3. Moreover, we propose a new

algorithm for PRIDAv3, namely MK-TFHE . Post-process, and im-

plement missing algorithms/gates using the prototype library

of MK-TFHE. We show that PRIDA outperforms the latter two

versions at least 3-fold better and 2000-fold in computational cost,

respectively.

Outline. Section 2 introduces the problem of privacy-preserving

data aggregation in a setting where multiple data customers are

interested in the aggregation of data coming from multiple DOs.

The threat model is defined in the same section. The notion of

Th-FHE is defined in Section 3, and the definition of 2PC is also

reminded. Section 4 describes PRIDA in detail. The security and per-

formance evaluation of PRIDA are respectively studied in Section 5

and Section 6.

2 PROBLEM STATEMENT
Aprivacy-preserving data aggregation protocol is defined as a proto-

col where an aggregator collects data from a large number of clients

that we name data owners in a privacy-preserving manner and

calculates an aggregate result about these collected data without vi-

olating the individuals’ privacy. The aggregation operation usually

consists of the sum of the collected data. While most of the initial

privacy-preserving data aggregation solutions, such as [40 66 71],

let the aggregator have access to the aggregate information in clear,

some others like [7 10 12 27 46] introduce one additional party,

the data customer, who only receives the aggregate result (which

the aggregator also has access to) and does not have any role on

the aggregation operation. In this paper, instead of focusing on

only an efficiency-oriented solution (which prior works proposed

only), we also consider a more realistic (and more generic) scenario

supporting user privacy, data privacy, andmore than one data
customer that aggregators may serve with the data collected from

multiple data owners.

In the next section, we first identify our privacy goals raised by

this setting and revise the threat model accordingly.

2.1 Privacy goals
By definition, a privacy-preserving data aggregation protocol en-

sures data privacy, namely input privacy, which the input data

collected from multiple data owners to feed to the aggregation

should remain confidential to all parties except to the actual owner.

We now present the aggregated result privacy, which should

also be confidential to the actual data customer (DC) because the

introduction of multiple data customers may increase the risk

of potential corruption among parties, which would seriously en-

danger the output privacy guarantees. For example, suppose a data

customer and the aggregator collude; the output privacy guarantee

can be in danger since the two parties could discover the result of

other DC(s). This can be defined as the need for result privacy,
which we include in the content of data privacy.

Furthermore, since the aggregator (Agg) is serving multiple DCs

interested in receiving the aggregate result, data owners (DOs) can

easily lose control on the use of their data. Indeed, DOs cannot

easily control their data whether they have or not participated

to an aggregation operation requested by a particular DC. This
problem has not been studied in the state-of-the-art solutions since
those consider a unique DC or Agg who is inherently authorized to
receive the aggregation result. Moreover, in existing solutions, if

DO does not want to contribute to the aggregation operation, DO

simply does not send its input to Agg. This causes some problem

for the solutions containing a trusted key dealer (See Section 1.3)

since the aggregator does not derive the decryption key due to the

failure of DO. Further, in order to fix this problem, keying materials

are needed to be re-generated for the rest of DOs. Therefore, when

there exist multiple DCs, the existing solutions may not be sufficient

to address the control of the use of DOs’ input: Authors need to

update/extend their solutions. Finally, in this new setting, DOs can

also wish to keep their identity confidential to multiple DCs:
DCs should not identify which DO has participated to the actual

aggregation operation. Existing works do not discuss this problem
mainly because in these solutions Agg, who obtains the aggregation
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result, usually knows all the participating DOs. We call the two

privacy goals protecting the inherent rights of data owners, namely

data control and anonymity, user privacy.
To summarize, this new setting in privacy-preserving data ag-

gregation introducingmultiple data customers, on the one hand,

should ensure data privacy by providing not only input privacy
that is the traditional and essential privacy requirement for data

owners, but also result privacy that is the need for data customers;

on the other hand, also raises new challenges for data owners who

should have user privacy, namely data control of DOs over DCs
and anonymity of DOs.

2.2 Threat model
In this section, we define the threat model of a privacy-preserving

data aggregation protocol involving multiple data customers. The

introduction of multiple data customers increases the risk of poten-

tial corruption and collusion among parties, which could endanger

data and user privacy guarantees.

Similar to the majority of existing studies, we assume an honest-

but-curious security model where all parties have to follow the

protocol steps correctly. Still, these can act curiously to infer infor-

mation from the exchanged data. The potential adversaries in this

threat model are enumerated as follows:

- An external adversary who does not participate to the protocol

may try to discover information about inputs of data owners

and/or results (or called outputs) of data customers.

- The honest-but-curious Data Owner (DO) may try to learn in-

formation about the data aggregation result(s) and other DOs’

inputs. Moreover, note that DOs should not discover whether the

other DOs contribute to the aggregate information or not.

- The Aggregator (Agg) may wish to discover input data of DOs

and data customers’ aggregate results.

- Data Customer (DC) may try to discover information about inputs

of DOs and other DCs’ aggregate results. DC may also try to

discover whether DOs contribute to the aggregate information

or not.

Also, 𝐷𝐶 𝑗 may wish to learn the aggregate result when the

number of DOswho choose that DC is not at least as some threshold

𝑡 . When data customer 𝐷𝐶 𝑗 can reach or be above threshold 𝑡 , this

makes 𝐷𝐶 𝑗 “authorized” to receive the aggregation result. In other

words, DO does not have to send its sensitive data for each DC and

can choose which DC could have the aggregated result, consisting

of its private data.

PRIDA: Overview.
In order to cope with the challenges identified in the previous

section, namely (i) user privacy, i.e. the lack of data control of DOs
and the anonymity of DOs; (ii) data privacy, namely result privacy
in addition to input privacy; and (iii) the possible collusions be-

tween parties, we propose a new solution named PRIDA that firstly

introduces two non-colluding aggregators instead of one aggrega-

tor. This new setting protects against collusions among different

parties. Furthermore, to ensure both input and result privacy and

enable DO to control its data over DCs and be anonymous to DCs,

we propose to combine the use of threshold fully homomorphic en-

cryption (Th-FHE) whereby one can perform operations over data

encrypted under multiple keys, and secure two-party computation

where two parties jointly perform some function over their private

inputs without disclosing them.

Furthermore, in order to protect the anonymity of DOs, before

the actual privacy-preserving aggregation operation, we define a

preliminary privacy-preserving counting scheme that ensures that

aggregation takes place only if some threshold number is reached.

PRIDA involves the following three parties in Figure 1:

- Data Owner (DO) owns some confidential input data and out-

sources this confidential data to the aggregators once its input

data is first secretly shared and further encrypted with Th-FHE.

DO also defines which data customer can access the aggregate re-

sult involving its input by employing another private data named

choice data.

- The two Aggregators (Agg1 and Agg2) are non-colluding cloud

servers that collect the encrypted data from multiple DOs, per-

form data aggregation, and further, one (Agg1) helps DOs collect

their data, and the other one (Agg2) helps data customers receive

the result.

- Data Customer (DC) obtains the data aggregation result over the

inputs from multiple DOs in cleartext if authorized, using the

decryption algorithm of Th-FHE.

Colluding adversaries in PRIDA.
As previously mentioned, the existence of multiple DCs may

increase the power of adversaries through potential collusions. For

example, if some DC and Agg2 collude, they can try to discover

the input of some DOs. Also, the result privacy guarantee can be

in danger since these two parties can disclose the result of other

DC(s) when they collude. Therefore, the threat model should also

consider the collusions between parties:

- When the curious DO and Agg1 collude, they should not learn any

information about other DOs’ inputs and DCs’ data aggregation

results.

- If DC and Agg2 collude, they should not learn anything about

inputs of DOs and other DCs’ aggregation results.

- Finally, Agg1 and Agg2 should not discover the input of DOs

and the result of DCs’ even if DC colludes with Agg2 and/or DO
colludes with Agg1.

Remarks on other collusions.
If DO and Agg2 collude, they can try to learn something about

inputs of other DOs or aggregation results of DCs; yet, they cannot

discover anything about them since inputs of DOs, namely the

input data and the choice data, are shared-encrypted or secretly

shared and also results of DCs are encrypted. More importantly

they do need to have all decryption keying material to decrypt those

data and the other shared data. The only information Agg2 obtains

is the identity, and inputs of the colluding DO if it lets. There is

in this case no need for privacy protection of this DO which has

already been in collaborating with Agg2. Note that, in the collusion

of DO-Agg2, the compromised DO cannot collude with Agg1 (and

Agg2 not collude with DC) at the same time.

When DC and Agg1 collude, they can try to obtain some in-

formation about inputs of DOs or other DCs’ aggregation results.

Similar to the DO-Agg2 collusions, they cannot discover anything

about them since they neither do have all decryption keying ma-

terial nor the complementary of shared data. The collusions of
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Data Customer

DCj

Figure 1: PRIDA players.

DC-Agg1 can put the anonymity of DOs, which rely on Agg1, in

danger, which contradicts the threat model of PRIDA. We have

aimed at being a privacy advocate for data owners who deserve

their data control and anonymity as well as data privacy in PRIDA.

Therefore, we consider collusions of DC-Agg1 should not happen.

3 PRELIMINARIES
This section introduces the building blocks of PRIDA, namely: Se-

cure two-party computation and threshold fully homomorphic en-

cryption.

Notation.We denote vectors within bold: v. We utilize★ for the star

product of two vectors which is the element-wise multiplication

of two vectors, and · for a simple multiplication of two elements

of the vectors. [.] denotes the Th-FHE-encrypted data. Index 𝑖 in
{1, . . . , 𝑛} represents data owner DO𝑖 whereas index 𝑗 ∈ {1, . . . ,𝑚}
represents data customer DC𝑗 with 𝑛,𝑚 ∈ Z+ denoting the total

number of DOs and DCs, respectively.

3.1 Secure Two-party Computation
Secure two-party computation (2PC) is a technique in which two

parties can jointly perform a function over private inputs without

revealing any information but the result. In our work, PRIDA uses

arithmetic secret sharing.

Arithmetic secret sharing. Arithmetic secret sharing allows two

parties to compute additions and multiplications over secretly

shared values. We denote ⟨.⟩𝑘 , 𝑘 = 1, .., 𝑝 , to represent an arith-

metic secret share. A secret input 𝑑 is split into 𝑝 shares, using

AS. Share(𝑝, 𝑑) which returns ⟨𝑑⟩
1
, . . . , ⟨𝑑⟩𝑝 such that ⟨𝑑⟩

1
+ . . . +

⟨𝑑⟩𝑝 ≡ 𝑑 mod 2
𝑙
where 𝑙 is the bit size for 2PC operations. The addi-

tion over the shared values is computed locally whereas performing

the multiplication operation requires two parties to interact. This

can be performed with Beaver’s multiplication triplets [8].

3.2 Threshold Fully Homomorphic Encryption
Due to the existence of multiple DCs and the two aggregators, we

propose to employ a particular homomorphic encryption scheme,

namely threshold fully homomorphic encryption [4 49].

Threshold fully homomorphic encryption (Th-FHE) is a homo-

morphic encryption scheme whereby multiple parties jointly gen-

erate a common (unique) public key using their individual public

and secret keys. The resulting secret key is not disclosed to any

party. The party encrypts its private data using the common public

key, and operations are performed over encrypted data. In order

to decrypt the result, these parties contribute to the decryption of

the output: First, they partially decrypt with their secret keys and

merge the partially decrypted values.

A semantically secure Th-FHE scheme contains six probabilistic

polynomial-time algorithms:

- 𝑝𝑝 ←Th-FHE . Setup(1𝜆): This algorithm outputs public param-

eters 𝑝𝑝 given security parameter 𝜆 ∈ Λ.
- (𝑝𝑘, 𝑠𝑘𝑖𝑑1

, . . . , 𝑠𝑘𝑖𝑑𝑘 ) ←Th-FHE .KeyGen(𝑝𝑝): This randomized

algorithm generates 𝑘 secret keys 𝑠𝑘𝑖𝑑𝑖 and a common public key

𝑝𝑘 given the public parameters 𝑝𝑝 .

- ct ← Th-FHE . Encrypt(m, 𝑝𝑘): This randomized algorithm en-

crypts message m with public key 𝑝𝑘 and outputs ciphertext

ct.

- ct
∗ ←Th-FHE . Eval(C, (ct1, . . . , ct𝑙 )): This algorithm evaluates

circuit C over the 𝑙 ciphertexts.

- 𝜇𝑖 ← Th-FHE . PartialDecrypt(ct
∗, 𝑠𝑘𝑖𝑑𝑖 ): This algorithm takes

as input ciphertext ct
∗
and secret key 𝑠𝑘𝑖𝑑𝑖 of party 𝑖 , and outputs

a partially decrypted information 𝜇𝑖 .

- m
′ ← Th-FHE .Merge(𝜇1, . . . , 𝜇𝑘 ): This algorithm takes as in-

put all the partial decryptions derived from a ciphertext ct
∗
and

outputs the final plaintext m
′
.

For more details on Th-FHE, we refer readers to [63].

4 PRIDA: PRIVACY-PRESERVING DATA
AGGREGATION

We present PRIDA, which combines the use of 2PC with threshold

fully homomorphic encryption (Th-FHE) to ensure that (i) user
privacy: Data owners can choose which data customer can have

access to the aggregate result involving their input without being
profiled and with being anonymized to multiple data cus-
tomers while joining in the data aggregation; (ii) data privacy:
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Data owners can keep their sensitive data private and also an au-

thorized data customer can receive the aggregation result private

only to itself; and (iii) multiple data customers can be supported.

As previously mentioned, the only assumption we make is that the

two aggregators do not collude.

PRIDA is constructed using 2PC and Th-FHE: PRIDA employs

Th-FHE differently than proposed [4 49] since the one who encrypts

its data does not use its public key. Instead, privacy-sensitive data

are encrypted with one unique public key collaboratively generated

by each DC and the two aggregators. That is, we propose PRIDA,

which consists of each data owner (DO) encrypting the data with

this common public key. The decryption involves the three secret

keys of these three parties corresponding to this public key. Thus,

in order to protect input data privacy, before encryption, we newly

propose that DO splits its data into two shares, encrypts each data

with this public key, and further sends the encrypted data to the

aggregators.

PRIDA is defined in five phases, as also presented in Protocol 1:

1. The setup phase in which the keying material is generated.

2. The data protection phase, whereby DO actually decides which

DC can have access to the aggregate result of which DO has

participated, and encrypts and secretly shares the relevant input

data accordingly.

3. The preliminary counting phase, whereby the two aggregators

find out which DC can receive the aggregated result by counting

the number of DOs and verifying if this number exceeds a pre-

defined threshold.

4. The aggregation phase, which consists of the two aggregators

jointly aggregating the data collected from different DOs.

5. The decryption phase, in which an authorized DC decrypts the

data aggregation result with the help of the two aggregators.

Algorithm 1: Aggregation phase

1 Inputs. Agg𝑘 (𝑘 ∈ {1, 2}) has [⟨dv𝑖 ⟩𝑘 ], ⟨cv𝑖 ⟩𝑘 , ⟨𝜶𝑖 ⟩𝑘 ,
⟨𝜷𝑖 ⟩𝑘 ,

〈
𝜸𝑖
〉
𝑘
.

2 Output. Agg𝑘 calculates the result [𝑠 𝑗 ] for authorized DC𝑗 .

3 Algorithm steps. for 𝑖 = 1 to 𝑛 do
4 Agg𝑘 : [⟨𝝐𝑖 ⟩𝑘 ] ← Eval(+, ( [⟨dv𝑖 ⟩𝑘 ],⟨𝜶𝑖 ⟩𝑘 )).
5 Agg𝑘 : ⟨𝜹𝑖 ⟩𝑘 ← ⟨cv𝑖 ⟩𝑘 + ⟨𝜷𝑖 ⟩𝑘 .
6 Agg𝑘 : Exchange [⟨𝝐𝑖 ⟩𝑘 ] and ⟨𝜹𝑖 ⟩𝑘 to compute [𝝐𝑖 ] and

𝜹𝑖 , where 𝑘 = 1, 2.

7 Agg𝑘 : [𝝐𝑖 ★ ⟨cv𝑖 ⟩𝑘 ] ← Eval(★, ( [𝝐𝑖 ], ⟨cv𝑖 ⟩𝑘 )).
8 Agg𝑘 : [𝜹𝑖 ★ ⟨dv𝑖 ⟩𝑘 ] ← Eval (★, ( [⟨dv𝑖 ⟩𝑘 ], 𝜹𝑖 )).
9 Agg𝑘 : [

〈
𝜸𝑖
〉
𝑘
+ 𝝐𝑖 ★ ⟨cv𝑖 ⟩𝑘 + 𝜹𝑖 ★ ⟨dv𝑖 ⟩𝑘 ] ←

Eval(+, ( [𝝐𝑖 ★ ⟨cv𝑖 ⟩𝑘 ], [𝜹𝑖 ★ ⟨dv𝑖 ⟩𝑘 ],
〈
𝜸𝑖
〉
𝑘
)).

10 Agg1: Send [
〈
𝜸𝑖
〉

1
+ 𝝐𝑖 ★ ⟨cv𝑖 ⟩1 + 𝜹𝑖 ★ ⟨dv𝑖 ⟩1] to Agg2.

11 Agg2: [𝜸𝑖 + 𝝐𝑖 ★ cv𝑖 + 𝜹𝑖 ★dv𝑖 ] ← Eval(+, ( [
〈
𝜸𝑖
〉

1
+ 𝝐𝑖 ★

⟨cv𝑖 ⟩1+𝜹𝑖★⟨dv𝑖 ⟩1], [
〈
𝜸𝑖
〉

2
+𝝐𝑖★⟨cv𝑖 ⟩2+𝜹𝑖★⟨dv𝑖 ⟩2])).

12 Agg2: [𝝐𝑖 ★ 𝜹𝑖 ] ← Eval(★, ( [𝝐𝑖 ], 𝜹𝑖 )).
13 Agg2:

[dv𝑖★cv𝑖 ] ← Eval(−, ( [𝜸𝑖+𝝐𝑖★cv𝑖+𝜹𝑖★dv𝑖 ], [𝝐𝑖★𝜹𝑖 ])).
14 Agg2: Call Eval for adding all [𝑑𝑖 𝑗 · 𝑐𝑖 𝑗 ] to find [𝑠 𝑗 ].

Protocol 1 PRIDA

Inputs. DO𝑖 , 𝑖 ∈ {1, . . . , 𝑛}, inputs a choice vector cv𝑖 and a data

vector dv𝑖 of size𝑚. Also, a pre-defined threshold 𝑡 and the public

parameters 𝑝𝑝 are published.

Output. If cv𝑡𝑜𝑡𝑎𝑙 𝑗 ≥ 𝑡 , DC𝑗 obtains the aggregate result 𝑠 𝑗 , 𝑗 ∈
{1, . . . ,𝑚}. Otherwise, DC𝑗 obtains nothing.

Protocol steps.
1. Setup executed by DC𝑗 , Agg1, and Agg2.

a. (𝑝𝑘, 𝑠𝑘𝐷𝐶 𝑗
, 𝑠𝑘𝐴𝑔𝑔1, 𝑠𝑘𝐴𝑔𝑔2) ←Th-FHE .KeyGen(𝑝𝑝).

2. Data protection executed by DO𝑖 .
a. (⟨cv𝑖 ⟩1 , ⟨cv𝑖 ⟩2) ← AS. Share(2, cv𝑖 ).
b. (⟨dv𝑖 ⟩1 , ⟨dv𝑖 ⟩2) ← AS. Share(2, dv𝑖 ).
c. [

〈
dv𝑖 𝑗

〉
𝑘
] ←Th-FHE . Encrypt(

〈
dv𝑖 𝑗

〉
𝑘
, 𝑝𝑘), 𝑘 = 1, 2.

d. Generate random vectors 𝜶𝑖 , 𝜷𝑖 and compute 𝜸𝑖 such that

𝜸𝑖 = 𝜶𝑖 ★ 𝜷𝑖 .
e. Beaver’s triplets. Call AS. Share(2, .) for 𝜶𝑖 , 𝜷𝑖 , 𝜸𝑖 .
f. Send [⟨dv𝑖 ⟩𝑘 ], ⟨cv𝑖 ⟩𝑘 , ⟨𝜶𝑖 ⟩𝑘 , ⟨𝜷𝑖 ⟩𝑘 , and

〈
𝜸𝑖
〉
𝑘
to Agg𝑘 ,

𝑘 = 1, 2.

3. Preliminary counting executed by Agg1 and Agg2.
a. Agg𝑘 : Obtain ⟨cv𝑡𝑜𝑡𝑎𝑙 ⟩𝑘 =

∑ ⟨cv𝑖 ⟩𝑘 , 𝑘 = 1, 2.

b. Agg𝑘 : Exchange ⟨cv𝑡𝑜𝑡𝑎𝑙 ⟩𝑘 to get cv𝑡𝑜𝑡𝑎𝑙 =

(cv𝑡𝑜𝑡𝑎𝑙1 , . . . , cv𝑡𝑜𝑡𝑎𝑙 𝑗 , . . . , cv𝑡𝑜𝑡𝑎𝑙𝑚 ).
c. Agg𝑘 : Label DC𝑗 as authorized if cv𝑡𝑜𝑡𝑎𝑙 𝑗 ≥ 𝑡 .

4. Aggregation executed by Agg1 and Agg2.
a. Jointly compute [s] = [∑dv𝑖 ★ cv𝑖 ] for each authorized

DC𝑗 . The details of data aggregation are provided in Algo-

rithm 1.

5. Decryption executed by Agg1, Agg2, and DC𝑗 .
a. Agg2: Send the aggregate result vector [s] = (. . . , [𝑠 𝑗 ], . . .)

to Agg1.

b. Agg1, Agg2: Employ 𝜇𝑘 ←Th-FHE . PartialDecrypt to de-

crypt [s] where 𝑘 = 1, 2.

c. Agg1: Send 𝜇1 to Agg2.

d. Agg2: Send 𝜇1 and 𝜇2 to the authorized DC𝑗 .

e. DC𝑗 : Call 𝜇3 ←Th-FHE . PartialDecrypt.

f. DC𝑗 : Run Th-FHE .Merge with 𝜇1, 𝜇2, 𝜇3 to find 𝑠 𝑗 .

In more details, during the setup phase, each DC and two aggre-

gators jointly generate the unique keying material according to

threshold homomorphic encryption. In the second phase, each DO𝑖

decides which DC is authorized to access the aggregate result
in which its input is involved. With this aim, DO𝑖 first defines

a binary choice vector cv𝑖= (cv𝑖1, ..., cv𝑖 𝑗 , ..., cv𝑖𝑚), where each
element is mapped to a particular DC𝑗 , and the value corresponds

to the authorization decision (cv𝑖 𝑗 = 0 if DC𝑗 is not authorized,

and 1 if authorized). Each DO also defines a data vector dv (same

size as cv) for its input data. If the actual DC𝑗 is authorized, then

the corresponding element dv𝑖 𝑗 is set to the private input of DO𝑖 .

Otherwise, DO generates a random number 𝑟 , which is set to the

corresponding element of vector dv. Finally, DO randomly gener-

ates two arithmetic secret shares for cv and dv and further encrypts
the two shares of dv. Each share is then sent to the corresponding

aggregator (Agg𝑘 , 𝑘 = 1 or 2). Then, in the preliminary counting
phase, Agg1 and Agg2 jointly add the choice vectors received from
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each DO in 2PC and further obtain the resulting number of DOs per

DC𝑗 , cv𝑡𝑜𝑡𝑎𝑙 𝑗 =
∑

cv𝑖 𝑗 , without discovering which DO has autho-

rized which DC. If the number of DOs authorizing a particular DC𝑗

is greater than the pre-defined threshold 𝑡 , then the two aggrega-

tors can start the actual aggregation phase defined in Algorithm 1:

Aggregators simply compute cv𝑖 𝑗 ·[dv𝑖 𝑗 ] for each DO𝑖 in 2PC and

further compute the sum of these intermediate values for all DO𝑖

to find aggregate result [𝑠 𝑗 ] = [
∑

dv𝑖 𝑗 · cv𝑖 𝑗 ] for authorized DC𝑗 .

Finally, during the decryption phase, the aggregators partially
decrypt the aggregate result, which is further sent to the corre-

sponding authorized DC, which is now its turn to partially decrypt

and obtain the plaintext result 𝑠 𝑗 .

To fully achieve the privacy goals established for PRIDA, it is

insufficient to rely solely on 2PC or Th-FHE. This is due to the fact

that if 2PC is implemented alone, unauthorized DCs could obtain

the aggregate result by collaborating with a single Agg, while Th-

FHE alone could expose the inputs of DOs and render it challenging

for DOs to control their data in the problem of collusion between

Agg and DC.

5 SECURITY ANALYSIS
We analyze the security of PRIDA, taking the previously introduced

threat model into account, and show that PRIDA satisfies the pri-

vacy goals defined in Section 2. There exists a strong relationship

between user and data privacy requirements, such that they are

deeply intertwined. This implies that cryptographic primitives uti-

lized to ensure user privacy also play a crucial role in safeguarding

data privacy and vice-versa. We also study the analysis by consid-

ering each player as an attacker in Appendix A. PRIDA aims to

compute privacy-preserving data aggregation in the honest-but-

curious adversarial model, and we assume the honest-but-curious

adversary is non-adaptive and computationally bounded. The defi-

nitions A.1, A.2, and A.3 in Appendix A help us prove that PRIDA

is secure and private. We guarantee secure and private aggrega-

tion thanks to the cryptographic techniques we employ to design

PRIDA. Both threshold homomorphic encryption (Th-FHE) and se-

cure two-party computation (2PC) are proven to be secure. Indeed,

the Th-FHE scheme is semantically secure [4 49].

In the data protection and decryption phases of PRIDA, the secu-

rity is achieved by the semantic security (in Definition A.3) of the

Th-FHE scheme and/or the information-theoretic security of 2PC

since data and choice vectors are firstly secretly shared, and the

data vectors are encrypted. Note that the Th-FHE scheme satisfies

semantic security against chosen plaintext attacks under the (ring)

learning with errors. Hence, these shared and/or shared-encrypted

data are indistinguishable for all parties except the actual DO. Those

parties obtain only indistinguishable random values that do not

disclose any information about the input data and the aggrega-

tion result. When we investigate the security of encryption and

decryption of the input data and the result of private aggregation

that meets Definition A.3, in the phases of data protection and

decryption, we now provide the simulation for the data protection

phase only in this section, and the decryption phase is the reverse

operation of the encryption.

Simulator A′.With holding inputs 𝑝𝑝 and 1
|𝑋𝜆 |

, where 𝜆 is the

security parameter, Algorithm A′ performs the following:

1. 𝑝𝑘 ← Th-FHE.KeyGen(𝑝𝑝) to generate a unique public key 𝑝𝑘
with the given information 𝑝𝑝 and 𝜆.

2. [0 |𝑋𝜆 | ]𝑝𝑘 ← Th-FHE. Encrypt(0 |𝑋𝜆 | , 𝑝𝑘) to obtain the encryp-

tion of “garbage” based on the given information 1
|𝑋𝜆 |

.

3. Lastly, A′ runs the algorithm A(1𝜆, ct𝜆, 1
|𝑋𝜆 | ), where ct𝜆 =

[0 |𝑋𝜆 | ]𝑝𝑘 , and receives whatever A obtains.

When A runs the encryption algorithm Th-FHE. Encrypt on

input 𝑋𝜆 (i.e.,A obtains [𝑋𝜆]𝑝𝑘 ← Th-FHE. Encrypt(𝑋𝜆, 𝑝𝑘)),A′
gets output ct𝜆 . That is, the simulation has performed the encryp-

tion over input zeros. If the encryption scheme is indistinguishable,
thenA obtains 𝑓 (1𝜆, 𝑋𝜆) (which equals to (1𝜆, [𝑋𝜆]𝑝𝑘 , 1 |𝑋𝜆 | )) with
almost the same probability when given Th-FHE. Encrypt(𝑋𝜆, 𝑝𝑘)
like the given information Th-FHE. Encrypt(0 |𝑋𝜆 | , 𝑝𝑘). The sim-

ulator simulates an execution for the adversary using the indis-

tinguishable encryption of zeros. Therefore, A cannot distinguish

between these two encryptions.

The preliminary counting phase, on the other hand, requires

the two aggregators to jointly compute addition over DOs’ choice

vectors, and the security of the addition operation is guaranteed us-

ing secure two-party computation. Moreover, the two aggregators

perform the data aggregation phase using arithmetic secret sharing

via Beaver triplets [8] over Th-FHE encrypted data. In addition

to the security of Th-FHE, arithmetic secret sharing used in the

preliminary counting and data aggregation phases of PRIDA as a

secure two-party computation technique achieve indistinguishabil-

ity given that the shares are generated from a uniformly random

distribution [37]. Similarly, those data do not leak anything about

inputs and aggregation results; only the authorized (i.e., actual) DC

discovers the aggregate result. In order to prove the formal security

to show that PRIDA performs private data aggregation securely,

we use the simulation proof technique [48].

The simulation proof technique is a method to analyze security

in two worlds, namely the ideal and real worlds. A protocol is

considered secure when the adversaries in the two worlds learn the

same amount of knowledge, i.e., approximately nothing during the

protocol runs. The ideal world security is established by outsourcing

inputs of two parties to a trusted third party that can perform the

computations and return the result, whereas the security of the real

world is provided if an adversary A can attack the protocol in the

real world, then the attack can also be performed by an adversary

S in the ideal world. Since the attacks of S are not successful in the

ideal world, the attacks in the real world also fail, and the protocol

is proved to be secure in the real-world setting as in Definition A.4.

Accordingly, Algorithm 1 is a protocol 𝜋 between Agg1 and Agg2,

which computes the functionality 𝑓 that aggregates private inputs

of DOs. In more details, Agg1 provides shared and shared-encrypted

inputs, namely 𝑥𝑖1 = {⟨cv𝑖 ⟩1 , [⟨dv𝑖 ⟩1], ⟨𝜶𝑖 ⟩1 , ⟨𝜷𝑖 ⟩1 ,
〈
𝜸𝑖
〉

1
} for 𝜋 ,

and Agg2’s inputs are 𝑥𝑖2 = {⟨cv𝑖 ⟩2 , [⟨dv𝑖 ⟩2], ⟨𝜶𝑖 ⟩2 , ⟨𝜷𝑖 ⟩2 ,
〈
𝜸𝑖
〉

2
},

where cv𝑖 , dv𝑖 , 𝜶𝑖 , 𝜷𝑖 , and 𝜸𝑖 are split into two shares, and further,

shared dv𝑖 is encrypted under Th-FHE. Given 𝑥𝑖1, 𝑥𝑖2, 𝑓 computes

𝑓 (𝑥𝑖1, 𝑥𝑖2) =
(
⊥, [𝑠 𝑗 ]

)
, where [𝑠 𝑗 ] =

∑[𝑑𝑖 𝑗 ·𝑐𝑖 𝑗 ], and Agg1 receives
nothing at the end of data aggregation, i.e., its output is an empty

string ⊥, and Agg2 receives the encrypted aggregation result for

the actual DC.
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Theorem 5.1. The aggregation protocol 𝜋 (Algorithm 1) securely
computes the functionality 𝑓 (𝑥𝑖1, 𝑥𝑖2) =

(
⊥, [𝑠 𝑗 ]

)
in the presence

of honest-but-curious, non-adaptive, and computationally bounded
adversaries.

Proof. The proof and demonstration are provided by the ideal-

real simulation, which illustrates that adversaries cannot differen-

tiate between “real” world experiments, where they receive “real”

data, and “ideal” world experiments, where they receive random

data generated by the simulator(s). Theorem 5.1 is proved below

for corrupted Agg1 and Agg2, by demonstrating that Adversary

A’s views under the real-world conditions are computationally

indistinguishable from the simulated views of S𝑖 , where 𝑖 ∈ {1, 2}
is for the Agg1 and Agg2, respectively. We construct a separate

simulator for each party.

• Agg1 is corrupted by A: It is important that Agg1 receives

no output. So, we need to show that Simulator S1 can generate

the view of incoming messages to Agg1, which are [⟨𝝐𝑖 ⟩2] and
⟨𝜹𝑖 ⟩2. Then, we can conclude by comparing the real view and

the simulated view. S1 is given with the security parameter 𝜆

and inputs, namely 𝑥𝑖1 = {⟨cv𝑖 ⟩1 , [⟨dv𝑖 ⟩1], ⟨𝜶𝑖 ⟩1 , ⟨𝜷𝑖 ⟩1 ,
〈
𝜸𝑖
〉

1
}

and works as follows:

1. S1 chooses a uniformly distributed random tape 𝑟 ′
1
.

2. S1 guesses intermediate messages [
〈
𝝐′
𝑖

〉
2
] and

〈
𝜹 ′
𝑖

〉
2
using

random tape 𝑟 ′
1
.

3. S1 outputs [
〈
𝝐′
𝑖

〉
2
] and

〈
𝜹′
𝑖

〉
2
.

The view of Agg1, view𝜋
1
(𝑥𝑖1, 𝑥𝑖2), in the real world is{

⟨cv𝑖 ⟩1 , [⟨dv𝑖 ⟩1], ⟨𝜶𝑖 ⟩1 , ⟨𝜷𝑖 ⟩1 ,
〈
𝜸𝑖
〉

1
, 𝑟1; [⟨𝝐𝑖 ⟩2], ⟨𝜹𝑖 ⟩2

}
, (1)

while the view generated by the simulator,S1 (1𝜆, 𝑥𝑖1, 𝑓1 (𝑥𝑖1, 𝑥𝑖2)),{
⟨cv𝑖 ⟩1 , [⟨dv𝑖 ⟩1], ⟨𝜶𝑖 ⟩1 , ⟨𝜷𝑖 ⟩1 ,

〈
𝜸𝑖
〉

1
, 𝑟 ′

1
; [
〈
𝝐′𝑖
〉

2
],
〈
𝜹′𝑖

〉
2

}
. (2)

Thanks to the security of AS. Share and Th-FHE.Decrypt, sim-

ulator, S1 cannot distinguish the real {[⟨𝝐𝑖 ⟩2], ⟨𝜹𝑖 ⟩2} from uni-

formly random {[
〈
𝝐′
𝑖

〉
2
],
〈
𝜹′
𝑖

〉
2
}. So we obtain{

S1 (1𝜆, 𝑥𝑖1, 𝑓1 (𝑥𝑖1, 𝑥𝑖2))
}

c≡
{
view𝜋

1
(𝑥𝑖1, 𝑥𝑖2)

}
. (3)

• Agg2 is corrupted byA: SimulatorS2 requires the construction

of a view for the real and ideal worlds. Observe that a party’s view

includes its input, random tape, and all intermediate messages.

The result obtained by running the protocol instructions on the

simulator view has to be correct; otherwise, the distinguisher can

easily determine that the result does not correspond to the view

of the real-world execution. S2 receives the security parameter 𝜆,

Agg2’s input 𝑥𝑖2 = {⟨cv𝑖 ⟩2 , [⟨dv𝑖 ⟩2], ⟨𝜶𝑖 ⟩2 , ⟨𝜷𝑖 ⟩2 ,
〈
𝜸𝑖
〉

2
} and

the aggregation result [𝒔] = ∑[dv𝑖 ★ cv𝑖 ] and thus, S2 works as

follows:

1. S2 chooses a uniformly distributed random tape 𝑟 ′
2
.

2. S2 guesses intermediate messages [
〈
𝝐′
𝑖

〉
1
] and

〈
𝜹′
𝑖

〉
1
using

random tape 𝑟 ′
2
.

3. S2 computes [⟨𝝐𝑖 ⟩2] = Eval(+, ( [⟨dv𝑖 ⟩2], ⟨𝜶𝑖 ⟩2)) and ⟨𝜹𝑖 ⟩2 =

⟨cv𝑖 ⟩2 + ⟨𝜷𝑖 ⟩2.
4. S2 obtains [𝝐′

𝑖
] = Eval(+, ( [

〈
𝝐′
𝑖

〉
1
], [⟨𝝐𝑖 ⟩2])) and

𝜹′
𝑖
=
〈
𝜹′
𝑖

〉
1
+ ⟨𝜹𝑖 ⟩2.

5. S2 estimates [(𝝐𝑖 ★ 𝜹𝑖 )′] = Eval(★, ( [𝝐′
𝑖
], 𝜹′

𝑖
)) like the real

Agg2.

6. S2 computes [𝝆′
2
] = [

〈
𝜸𝑖
〉

2
+ 𝝐 ′

𝑖
★ ⟨cv𝑖 ⟩2 + 𝜹 ′𝑖 ★ ⟨dv𝑖 ⟩2].

7. S2 sets [𝝆′] = [(𝜸𝑖 + 𝝐𝑖 ★ cv𝑖 + 𝜹𝑖 ★ dv𝑖 )′]
= Eval(−, ( [𝒔], [(𝝐𝑖 ★ 𝜹𝑖 )′])), where [𝒔] = [

∑
dv𝑖 ★ cv𝑖 ] is

received from Agg2.

8. S2 calculates [𝝆′
1
] = [(

〈
𝜸𝑖
〉

1
+ 𝝐𝑖 ★ ⟨cv𝑖 ⟩1 + 𝜹𝑖 ★ ⟨dv𝑖 ⟩1)′]

= 𝐸𝑣𝑎𝑙 (−, ( [𝝆′], [𝝆′
2
])).

9. S2 outputs [
〈
𝝐′
𝑖

〉
1
],
〈
𝜹′
𝑖

〉
1
and [𝝆′

1
].

The view of Agg2, view𝜋
2
(𝑥𝑖1, 𝑥𝑖2), in the real world is{

⟨cv𝑖 ⟩2 , [⟨dv𝑖 ⟩2], ⟨𝜶𝑖 ⟩2 , ⟨𝜷𝑖 ⟩2 ,
〈
𝜸𝑖
〉

2
, 𝑟2; [⟨𝝐𝑖 ⟩1], ⟨𝜹𝑖 ⟩1 , 𝝆1

}
, (4)

while the view generated by the simulator,S2 (1𝜆, 𝑥𝑖2, 𝑓2 (𝑥𝑖1, 𝑥𝑖2)),{
⟨cv𝑖 ⟩2 , [⟨dv𝑖 ⟩2], ⟨𝜶𝑖 ⟩2 , ⟨𝜷𝑖 ⟩2 ,

〈
𝜸𝑖
〉

2
, 𝑟 ′

2
; [
〈
𝝐′𝑖
〉

1
],
〈
𝜹′𝑖

〉
1
, 𝝆′

1

}
.

(5)

SimulatorS2 cannot accurately predict [
〈
𝝐′
𝑖

〉
1
],
〈
𝜹′
𝑖

〉
1
,

〈
𝜸 ′
𝑖

〉
from

𝝆′
1
, and therefore [

〈
𝝐′
𝑖

〉
] and

〈
𝜹′
𝑖

〉
as well. Indeed, S2 cannot cal-

culate any intermediate value based on [
〈
𝝐′
𝑖

〉
1
], and

〈
𝜹′
𝑖

〉
1
as

the way Agg2 does. However, we can say that the distribution of

[
〈
𝝐′
𝑖

〉
1
] and

〈
𝜹′
𝑖

〉
1
will be very close to the distribution of [⟨𝝐𝑖 ⟩1]

and ⟨𝜹𝑖 ⟩1 because of the random uniformly distributed coeffi-

cients of the Beaver’s triplet. Moreover, like simulator S1, S2

cannot distinguish the real and ideal case thanks to the security

of AS. Share and Th-FHE.Decrypt. Therefore, we obtain{
S2 (1𝜆, 𝑥𝑖2, 𝑓2, 𝑓 (𝑥𝑖1, 𝑥𝑖2))

}
c≡
{
view𝜋

2
(𝑥𝑖1, 𝑥𝑖2), output𝜋 (𝑥𝑖1, 𝑥𝑖2, 𝜆)

}
,

(6)

We can now estimate the advantage of an attacker in distinguish-

ing views under the real-world setting in a way that there exists a

non-uniform polynomial-time distinguisher 𝐷 with a negligible

function 𝜇 (𝜆) such that���Pr

[
𝐷

(
⟨cv𝑖 ⟩2 , [⟨dv𝑖 ⟩2], ⟨𝜶𝑖 ⟩2 , ⟨𝜷𝑖 ⟩2 ,

〈
𝜸𝑖
〉

2
, 𝑟 ′

2
; [
〈
𝝐′𝑖
〉

1
],
〈
𝜹′𝑖

〉
1
, 𝝆′

1

)
= 1

]
−

Pr

[
𝐷

(
⟨cv𝑖 ⟩2 , [⟨dv𝑖 ⟩2], ⟨𝜶𝑖 ⟩2 , ⟨𝜷𝑖 ⟩2 ,

〈
𝜸𝑖
〉

2
, 𝑟2; [⟨𝝐𝑖 ⟩1], ⟨𝜹𝑖 ⟩1 , 𝝆1

)
= 1

] ���≤ 𝜇 (𝜆) .
(7)

In Equation 7, the negligible function 𝜇 (𝜆), which is an extremely

small value, indicates that the simulator exists and generates a

view for the adversary in the real world that is computationally

indistinguishable from its real version.

As a result of the computational indistinguishability in Defini-

tion A.1, both views of S2 and Agg2 are naturally nonuniform.

We have shown that views of S2 and Agg2 are only computa-

tionally indistinguishable by employing the negligible function

𝜇 (𝜆) in order to demonstrate their non-uniformity. When we

rewrite indistinguishability for every non-uniform polynomial-

time algorithm 𝐷 and every polynomial 𝑝 (𝜆), there exists 𝜆 such

that,���Pr

[
𝐷

(
⟨cv𝑖 ⟩2 , [⟨dv𝑖 ⟩2], ⟨𝜶𝑖 ⟩2 , ⟨𝜷𝑖 ⟩2 ,

〈
𝜸𝑖
〉

2
, 𝑟 ′

2
; [
〈
𝝐′𝑖
〉

1
],
〈
𝜹′𝑖

〉
1
, 𝝆′

1

)
= 1

]
−

Pr

[
𝐷

(
⟨cv𝑖 ⟩2 , [⟨dv𝑖 ⟩2], ⟨𝜶𝑖 ⟩2 , ⟨𝜷𝑖 ⟩2 ,

〈
𝜸𝑖
〉

2
, 𝑟2; [⟨𝝐𝑖 ⟩1], ⟨𝜹𝑖 ⟩1 , 𝝆1

)
= 1

] ���< 1

𝑝 (𝜆) .
(8)

Equations 7 and 8 guarantee that a corrupted Agg2 has no ad-

vantage on distinguishability.

□
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Protocol 𝜋 between Agg1 and Agg2 is secure; further, we can

conclude that PRIDA provides secure data aggregation, including

input privacy and aggregation result privacy as requirements are

intertwined. Moreover, we prove the security of the collusions

between Agg1 and the data owner and the collusions between the

data customer and Agg2 in Appendix A.

6 PERFORMANCE EVALUATION
We propose to evaluate the performance of PRIDA using a use case

scenario whereby multiple data customers (DCs) acting as phar-

maceutical companies wish to discover the side effects of some

medicine on multiple patients who take the underlying medicine,

using some statistics such as sum, average, etc. over this target

group. In this scenario, when patients acting as data owners (DOs)

are willing to participate in this discovery with their private data,

patients use threshold FHE and 2PC to protect their data before

sending them to the non-colluding two aggregators. Once the ag-

gregators receive these protected data, they jointly perform the

required operations over these data and send the encrypted aggre-

gate result to the authorized pharmaceutical companies if chosen

by enough patients. Later on, these companies decrypt the result.

Therefore, we conduct several experiments with different numbers

of DOs and DCs and analyze the computational cost at each party.

Computational and communication complexity.
We have worked on the computational and communication costs

of PRIDA as presented in Table 2. Remark that the complexities of

basic operations and representation are assumed to be negligible,

i.e., O(1).
Computational cost for DO:O(ℓ2). The computation for a data owner

starts with (i) pseudorandom generation for 𝛼 and 𝛽 (O(ℓ) complex-

ity) ; (ii) multiplication of 𝛼 and 𝛽 to compute 𝛾 (O(ℓ2) complexity);

and (iii) secret sharing for 𝑑 , 𝑐 , 𝛼 , 𝛽 , 𝛾 (O(ℓ) complexity).

Communication cost for DO: O(ℓ).A data owner constructs only one

communication with Aggregator1 (Note that Aggregator2 receives

the data coming from DO through Aggregator1) and sending the

shares of 𝑑 , 𝑐 , 𝛼 , 𝛽 , 𝛾 takes O(ℓ) complexity.

Computational cost for Aggregator1 (or Aggregator2): O(ℓ2). Ag-
gregator1 (i) performs multiplication in key generation in O(ℓ2)
complexity and (ii) simply computes 𝑐 [𝑑] for all DOs and sums all

latter multiplication over 2PC in O(ℓ2) complexity.

Communication cost for Aggregator1 (or Aggregator2): O(ℓ). Aggre-
gator1 interactively computes the public key and the aggregation

operation in O(ℓ) complexity.

Computational cost for DC: O(ℓ2). A data customer calculates mul-

tiplication in key generation in O(ℓ2) complexity.

Communication cost for DC: O(ℓ). A data customer interactively

computes the public key in O(ℓ) complexity.

Prototype Implementation: Experimental Setup.
We have also implemented PRIDA based on Th-FHE and 2PC

with the PALISADE library v1.11.9 [59]. We have employed the

Th-FHE schemes, namely BFV and CKKS, to implement PRIDA. We

have followed the standard HE security recommendations (e.g., 128-

bit security) indicated in [3] for PRIDA. We implemented the 2PC

protocol on our own: Data is shared by generating a randomnumber

first and then computing the other share accordingly: Additions of

shares are performed locally, and multiplications are implemented

according to the Beaver triplets algorithm [8]. All experiments

have been carried out using a desktop computer with a 3.5GHz

Intel Core i7-7800X processor, 128GB RAM for DO and DC, and a

server computer with dual 2.50GHz Intel Xeon E7-8890v3 processor,

1.97TB RAM for Aggregator1 and Aggregator2.

Prototype Implementation: Timing results.
We have first evaluated the computation cost of each PRIDA

player in a scenario with 100 DOs and 1 DC for PRIDA. The results

per party are shown in Table 4. These values correspond to an av-

erage of measurements from ten executions. We first observe that

only aggregators in PRIDA perform costly operations. Indeed, while

Aggregator2 takes 1.22 seconds with Th-CKKS and 1.51 seconds

with Th-BFV, Aggregator1 takes 1.17 and 1.48 seconds, respectively.

We observe a slight difference in the computation time between Ag-

gregator1 and Aggregator2 because this difference originates from

the different workloads attributed to each aggregator: Aggregator2,

indeed, performs additional operations to finalize the aggregation

phase (see Algorithm 1).

6.1 Comparison with the state-of-the-art
We have also studied the comparison of the state-of-the-art solu-

tions in Table 2: PRIDA supporting multiple data customers,
user privacy, and data privacy is more realistic than existing

solutions. As many prior works do not meet these privacy goals, we

compare our proposal, PRIDA, particularly, with DP-based (with

SSS [69]) designs [10 13] and MPC-based designs [1 24]. Before the

comparison for the computation and communication complexity, it

is essential to remark that PRIDA provides anonymity of data own-

ers, data control of data owners over data customers, and collusion

resistance, which are not guaranteed in [1 10 13 24] (See Table 1).

Table 2: Comparison for computational and communication
complexity of PRIDA and the state-of-the art

Ref. Data Owner Data Customer Aggregator1 Aggregator2

C
om

pu
ta
tio

n D
P-
ba
se
d

[13] O(𝑛2 + ℓ𝑛) NA O(𝑛2ℓ) NA

[10] O(log
2 𝑛 + ℓ log𝑛) NA O(𝑛(log

2 𝑛 + ℓ log𝑛)) NA

M
PC

-b
as
ed

[24] O(𝑀 log𝑀) NA O(𝑛(𝑀 log𝑀)) NA

[1] O(ℓ) NA O(ℓ) O(ℓ)

PRIDA O(ℓ2) O(ℓ2) O(ℓ2) O(ℓ2)

C
om

m
un

ic
at
io
n

D
P-
ba
se
d

[13] O(𝑛 + ℓ) NA O(𝑛2 + ℓ𝑛) NA

[10] O(log
2 𝑛 + ℓ) NA O(𝑛(log

2 𝑛 + ℓ)) NA

M
PC

-b
as
ed

[24] NA NA O(𝑛) NA

[1] O(ℓ) NA O(𝑛 + ℓ2) O(𝑛 + ℓ2)

PRIDA O(ℓ) O(ℓ) O(ℓ) O(ℓ)

NA: Not Applicable,𝑛: #DOs, ℓ : bit size in MPC,𝑀 : #Multiplications

As shown in Table 2, data owners in PRIDA, unlike [10 13], do

not need to compute many operations and interact with each other
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to achieve their input privacy. Data owners further store the keys

and secret shares in Bonawitz et al. [13] while suffering from user

privacy features like data control over data customers. Even though

Bell et al. [10] improve the computational and communication costs

of [13] for users, it still requires users to compute many operations

and communicate with each other. In addition, what PRIDA pro-

vides, like aggregated result privacy and multiple data customers,

does not seem to be possible in [10 13].

Prio [24] does not consider the data customer as an additional

party interested in receiving the aggregated result. Indeed, data

owners act as data customers. Prio enables each data owner to send

its Arithmetic shares to multiple aggregators. Then aggregators

sum these shares locally and send back the aggregated result to

data owners, and finally, they obtain the aggregated result. Authors

present the computation complexity in terms of𝑀 , which denotes

the number of multiplication gates needed for verification with a

lower bound of 2
10
, and a limitation for the size of the field where

they define aggregation operations over DOs’ private data. On the

other hand, Prio+ [1] employs Boolean shares to improve the ver-

ification performance result in [24], which is the only difference.

When comparing the workload of aggregator(s) in [1 10 13 24],

PRIDA involving another aggregator is still promising and reason-

able as it can serve realistic use cases. Since 𝑛 > ℓ and 𝑀 ≫ ℓ ,

which are more realistic in real-world scenarios, PRIDA surpasses

the state-of-the-art in terms of computational and communication

complexities. This claim is supported by the complexity and the

timing evaluation presented in Table 2 and Table 3. As [1 24] does

not present any timing evaluation of the aggregation process, we

compare our experimental results with [10 13]. Note that these

solutions lack the properties we intended in PRIDA, like anonymity,

data control, and collusion resistance.

For 1000 data owners, PRIDA with Th-CKKS takes 24.24 seconds

for the aggregation; [13] takes 415.47 seconds, and [10] improves

100x in DOs’ cost while the cost of the aggregator in [10] takes

roughly the same time as [13]. Thus, the total cost of the aggregation

operation in [10] is 413.78 seconds. As observed from Table 2, the

computational complexity of PRIDA is better than the state-of-

the-art solutions. Indeed, PRIDA outperforms experimental time

complexities of [10 13] 17x better.

Table 3: Comparison of PRIDA with state-of-the-arts (in s).

Ref. Data Owner Data Customer Aggregator(s) Total

PRIDA NA 0.34 11.7 + 12.2 24.24

[10] 0.017 NA 413.77 413.78

[13] 1.7 NA 413.77 415.47

To summarize, we have observed that PRIDA achieves a good

balance between computational and communication costs in data

aggregation, particularly for data owners who gain their privacy

and take less computation when compared to the state-of-the-art

proposals.

6.2 PRIDA based on multi-key FHE
In order to compare even more the performance evaluation of

PRIDA, which combines the use of 2PC with Th-FHE to guarantee

user privacy and data privacy, and to support multiple data
customers, we have further studied PRIDA by employing multi-

key fully homomorphic encryption (FHE) with 2PC (See the details

of multi-key FHE in Section B). In this section, we present the

two versions of PRIDA based on asymmetric multi-key FHE (MK-

FHE) and symmetric multi-key FHE (MK-TFHE), respectively, and

focus more on analyzing their performance evaluation with our

initial proposal, which outperforms the two new versions. For more

details, we refer readers to Appendices C and D.

Discussion.
Our empirical results show that PRIDA can compute the ag-

gregation in 2.73 seconds with Th-CKKS, which is at least 3-fold

better in computational cost than the aggregation in PRIDAv2, i.e.,

MK-CKKS-based PRIDA, and 2000-fold more efficient in MK-TFHE-

based PRIDA.

Table 4: Timing evaluation for each PRIDA player (in s). The
timings of Aggregators are provided in a scenario consisting
of 100 DOs and 1 DC.

Protocols Data Owner Data Customer Aggregator1 Aggregator2

PRIDA with Th-BFV 0.009 0.22 1.48 1.51

PRIDAv2 with MK-BFV 0.299 0.09 3.18 3.21

PRIDA with Th-CKKS 0.009 0.34 1.17 1.22

PRIDAv2 with MK-CKKS 0.294 0.07 4.16 4.19

PRIDAv3 with MK-TFHE 4.452 2.28 2632.25 3160.70

As we have presented the performance evaluation of PRIDA,

we have also analyzed the computation cost of PRIDA players for

PRIDAv2 and PRIDAv3 shown in Table 4
3
. We observe that in a

scenario with 100 DOs and 1 DC, Aggregator2 takes 3.21 seconds

with MK-BFV and 4.19 seconds with MK-CKKS within PRIDAv2,

while Aggregator1 takes 3.18 and 4.16 seconds, respectively. While

Aggregator2 takes 3160.71 seconds (with MK-TFHE) and Aggre-

gator1 takes 2632.25 seconds, data owner and data customer take

4.45 and 2.27 seconds, respectively (For this result, we have used

the desktop computer). As observed that PRIDAv3 takes more time

than the two other protocols, the difference between the results of

the symmetric and asymmetric versions is nonnegligible. In order

to explain the slowness of PRIDAv3, we refer readers to the values

in Table 3 in [19]: 1 NAND operation takes time between 1.90 and

7.16 seconds according to the number of keys varying between 4

and 8, respectively. Since PRIDAv3 contains multiple NAND and

other homomorphic operations with 5 keys, our results are valid

and overlap with the results of [19]. Also, we believe that the over-

head is caused mainly due to the additional layers of encryption,

for which the MK-TFHE library has not been optimized yet.

3
These values correspond to an average of measurements from ten executions.
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Figure 2: Data aggregation time for PRIDA (Th-FHE) and
PRIDAv2 (MK-FHE) using BFV and CKKS.
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(c) with 5 DCs
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(d) with 10 DCs
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In order to study the scalability of PRIDA, we have also mea-

sured the time of the actual aggregation operation in PRIDA (namely,

the preliminary counting phase, the aggregation phase, and the

decryption phase) with respect to a larger number of DOs and an

increasing number of DCs. Since The PRIDAv3 cost is high and in

order to make a fair assessment, we propose to study PRIDA and

PRIDAv2 only. Detailed results are shown in Figure 2
3
. We remind

that PRIDA enables DOs to control their data by choosing which

DC can receive the aggregate result for which they are contributing.

For our experiment, the anonymity threshold 𝑡 is 50; yet, in general,

threshold 𝑡 can be considered a public parameter chosen by the

two aggregators. In order to consider all possible scenarios with

respect to the authorization aspects, we propose that in Figure 2b,

DOs authorize each DC uniformly randomly whereas, in Figure 2c,

each DO authorizes three out of five DCs (corresponding to a ratio

of 50%). Lastly, in Figure 2d, DOs authorize nine DCs out of ten.

We observe that the aggregation computation time linearly
increases with respect to the number of DOs and DCs. We also

observe a slight difference between the execution times of PRIDA

and PRIDAv2: PRIDAv2 relies on multiple keys, the execution time

of the underlying MK-FHE . Eval algorithm linearly increases with

the number of keys, and PRIDA employing Th-FHE . Eval approxi-

mately equals to Eval with one key only (i.e., the encryption algo-

rithm uses one single public key). On the other hand, PRIDAv2 does

not require an additional setup phase since, as opposed to PRIDA,

each party independently generates its keying material.

Figure 3: PRIDA scalability.
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In order to provide the scalability feature of PRIDA even more

(to study the PRIDA limits without any optimizations like par-

allelizations, SIMD, etc.), we have run PRIDA and PRIDAv2 with

1K, 2K, and 10K data owners with 1 data customer. As depicted in

Figure 3, we observe that privacy-preserving data aggregation op-

erations remain possible: When PRIDA with Th-CKKS can support

up to 15K data owners in 4.2 mins, PRIDAv2 with MK-BFV is able to

perform aggregation with up to 2K data owners in 2 mins. Further,

PRIDA supporting user privacy, data privacy, andmultiple data
customers is more realistic than the existing solutions and can be

extended for the applications of federated learning, which requires

data aggregation.

To summarize, PRIDA based on Th-FHE is more efficient than

the two versions, namely PRIDAv2 and PRIDAv3: PRIDA requires

the two aggregators and each data customer to jointly generate a

common public key, whereas PRIDAv2 and PRIDAv3 do not need

a jointly generated unique key, on the other hand, DOs need to

perform more operations to protect their input privacy. Therefore,

our experiments show that PRIDA achieves a good balance between
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computational and communication costs in privacy-preserving data

aggregation.

7 CONCLUSION
This work proposes PRIDA, a privacy-preserving data aggregation

solution combining threshold fully homomorphic encryption (Th-

FHE) and secure two-party computation. Thanks to the use of these

two cryptographic building blocks with a setting involving two non-

colluding aggregators, PRIDA supports scenarios with more than

one data customer. Furthermore, PRIDA enables data owners to

control their data by deciding which data customers can access the

resulting aggregated information. Moreover, with the introduction

of an anonymous counting phase, data customers can discover the

aggregation results only when a sufficient number of data owners

(i.e., greater than a pre-defined threshold) authorize them. We have

provided a detailed security analysis of PRIDA considering potential

adversaries, including potential collusions among parties. Lastly, we

instantiated PRIDA in two other different schemes, namely multi-

key fully homomorphic encryption (PRIDA v2) and multi-key TFHE

(PRIDA v3), to provide a detailed comparison with PRIDA based

on Th-FHE: Our experimental results showed that PRIDA is more

efficient than the two MK-FHE based versions of PRIDA and further

when comparing the state-of-the-art solutions, PRIDA supporting

user privacy and multiple data customers is promising.
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A SECURITY ANALYSIS: CONT'ED
This section incrementally studies the security analysis by intro-

ducing several definitions and further investigating potential colli-

sions between players. Note that PRIDA aims to compute privacy-

preserving data aggregation in the honest-but-curious adversarial

model as mentioned in Section 2.

We introduce a few definitions [48] used in the proof of Theo-

rem 5.1 in Section 5.

Definition A.1 (Computational Indistinguishability). Let 𝑋 =

𝑋 (m, 𝜆) and 𝑌 = 𝑌 (m, 𝜆) be two probability ensembles where

m ∈ {0, 1}∗ is the input of the parties and 𝜆 is the security parameter

in Λ. 𝑋 and 𝑌 are computationally indistinguishable, i.e., 𝑋
c≡ 𝑌 ,

if there exists a negligible function 𝜇 (𝜆) for every non-uniform

polynomial time algorithm 𝐷 such that for every m ∈ {0, 1}∗ and
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every 𝜆 ∈ Λ,
|Pr [𝐷 (𝑋 (m, 𝜆)) = 1] − Pr [𝐷 (𝑌 (m, 𝜆)) = 1] | ≤ 𝜇 (𝜆). (9)

Definition A.2 (Non-uniformity). Since 𝑋 = 𝑋 (m, 𝜆) and 𝑌 =

𝑌 (m, 𝜆) are computationally indistinguishable, 𝑋 and 𝑌 are inher-

ently non-uniform. In order to provide their non-uniformity, we

need to show that 𝑋 and 𝑌 are not computationally indistinguish-
able without using the negligible function 𝜇 (𝜆). When we rewrite

computational indistinguishability 𝑋
c≡ 𝑌 : For every non-uniform

polynomial time algorithm 𝐷 and every polynomial 𝑝 (𝜆), there
exists 𝜆 ∈ Λ such that for all 𝜆 > Λ and every m ∈ {0, 1}∗,

|Pr [𝐷 (𝑋 (m, 𝜆)) = 1] − Pr [𝐷 (𝑌 (m, 𝜆)) = 1] | < 1

𝑝 (𝜆) . (10)

We can write the contradiction of (A.2) as follows: There exists such

𝐷 and 𝑝 (𝜆) such that for all 𝜆 ∈ Λ, there exists a 𝜆 > Λ and m for

which

|Pr [𝐷 (𝑋 (m, 𝜆)) = 1] − Pr [𝐷 (𝑌 (m, 𝜆)) = 1] | ≥ 1

𝑝 (𝜆) . (11)

For all such 𝜆, there can be a different m ∈ {0, 1}∗. To be able to

make the simulation non-uniform inherently, we need to give the

value m ∈ {0, 1}∗ associated with 𝜆.

DefinitionA.3 (Semantic Security). Let 𝜖 = (𝐺, 𝐸, 𝐷) be an encryp-
tion scheme. 𝜖 is computationally indistinguishable if there exists a
non-uniform probabilistic polynomial time algorithm A′ for every
non-uniform probabilistic polynomial time algorithm A such that

for every probability ensemble {𝑋𝜆}𝜆∈Λ with |𝑋𝜆 | ≤ poly(𝜆), every
polynomially bounded function pair 𝑓 , ℎ : {0, 1}∗ → {0, 1}∗, every
polynomial 𝑝 (𝜆) and sufficiently large 𝜆

Pr

[
A(1𝜆, 𝐸𝑘 (𝑋𝜆), 1 |𝑋𝜆 | , ℎ(1𝜆, 𝑋𝜆)) = 𝑓 (1𝜆, 𝑋𝜆)

]
< Pr

[
A′ (1𝜆, 1 |𝑋𝜆 | , ℎ(1𝜆, 𝑋𝜆)) = 𝑓 (1𝜆, 𝑋𝜆)

]
+ 1

𝑝 (𝜆) (12)

where 𝑘 ← 𝐺 (1𝜆) and the probability Pr is taken over 𝑋𝜆 and

also over the internal coin tosses of the encryption scheme algo-

rithms 𝐺, 𝐸, and A or A′. The adversary A has the information

𝐸𝑘 (𝑋𝜆) and also the auxiliary information ℎ(1𝜆, 𝑋𝜆) and tries to

guess the value of 𝑓 (1𝜆, 𝑋𝜆) while the adversary A′ has only the

length of (𝑋𝜆 and also ℎ(1𝜆, 𝑋𝜆) and tries to guess 𝑓 (1𝜆, 𝑋𝜆). Note
that the parties in PRIDA are honest-but-curious, and thus we do

not have any auxiliary information ℎ(1𝜆, 𝑋𝜆). The security require-

ment implies that A′ having almost nothing about the ciphertext,

can correctly find 𝑓 (1𝜆, 𝑋𝜆) with approximately the same probabil-

ity as A having the ciphertext 𝐸𝑘 (𝑋𝜆) for any 𝑓 . In other words,

whatever A obtains can be obtained by A′. In the definition, we

did not mention the simulation or the ideal-real world; however,

the definition is in line with the paradigm [48]: In the world of A′
holding only the length of the plaintext is the ideal world where

A′ can learn only from the plaintext length, and the proof that A′
can obtain as much information as A can learn, is the comparison

between the real and ideal worlds. The proof technique is to show

the scheme is secure in terms of the threat model of the scheme.

Definition A.4 (Definition of Security). Let Agg1 and Agg2 be two

aggregators who would like to run a protocol 𝜋 , namely data aggre-

gation, on shared and shared-encrypted inputs𝑥1 = {⟨cv𝑖 ⟩1 , [⟨dv𝑖 ⟩1]}

and 𝑥2 = {⟨cv𝑖 ⟩2 , [⟨dv𝑖 ⟩2]} sent by DOs to compute a functionality

𝑓 (𝑥1, 𝑥2), simply one multiplication and two additions, which out-

puts 𝑓1 (𝑥1, 𝑥2) and 𝑓2 (𝑥1, 𝑥2) for each aggregator. In the execution

of 𝜋 , the view of aggregators are

view𝜋
1
(𝑥1, 𝑥2, 𝜆) = (𝑥1, 𝑟1; m1,m2, · · · ,m𝑛), (13)

view𝜋
2
(𝑥1, 𝑥2, 𝜆) = (𝑥2, 𝑟2; m1,m2, · · · ,m𝑛), (14)

where 𝑟1, 𝑟2 are the randomness of aggregators, 𝜆 is the security

parameter, and m𝑖 ’s are the intermediary messages received by

aggregators. The output of 𝜋 is

output𝜋 (𝑥1, 𝑥2, 𝜆) = (output𝜋1 (𝑥1, 𝑥2, 𝜆), output𝜋2 (𝑥1, 𝑥2, 𝜆)),
(15)

where output𝜋
1
(𝑥1, 𝑥2, 𝜆) and output𝜋

2
(𝑥1, 𝑥2, 𝜆) are the local out-

puts of Agg1 and Agg2. We say that 𝜋 securely computes 𝑓 (𝑥1, 𝑥2)
in the presence of static honest-but-curious, non-adaptive, computa-

tionally bounded adversaries if there exist probabilistic polynomial-

time simulators S1 and S2 such that{
S1 (1𝜆, 𝑥1, 𝑓1 (𝑥1, 𝑥2)), 𝑓 (𝑥1, 𝑥2)

}
c≡
{
view𝜋

1
(𝑥1, 𝑥2, 𝜆), output𝜋 (𝑥1, 𝑥2, 𝜆)

}
,

(16){
S2 (1𝜆, 𝑥2, 𝑓2 (𝑥1, 𝑥2)), 𝑓 (𝑥1, 𝑥2)

}
c≡
{
view𝜋

2
(𝑥1, 𝑥2, 𝜆), output𝜋 (𝑥1, 𝑥2, 𝜆)

}
.

(17)

We now discuss the collusions between the data owner and

Aggregator1, and the collusions between the data customer and

Aggregator2.

Input and output privacy against collusions between Data
Owner and Aggregator. The collusions of Agg1 with one DO only

result in discovering the individual input of the actual DO and

the other secret shared values. Hence all remaining information is

either secret shared, or shared-encrypted, or multi-key encrypted

with two keys for which they do not have the corresponding secret

keys.

The collusion of DO𝑖 and Agg1 is corrupted byA: Simulator S3 is

given the input and the output of DO1 (without loss of generality,

𝑖 = 1) and Agg1, which are 𝑥1 = {cv1, dv1,𝜶1, 𝜷1,𝜸1} (for DO1),

𝑥𝑖1 = {⟨cv𝑖 ⟩1 , [⟨dv𝑖 ⟩1], ⟨𝜶𝑖 ⟩1 , ⟨𝜷𝑖 ⟩1 ,
〈
𝜸𝑖
〉

1
} (for Agg1), ⊥, and the

security parameter 𝜆. In the simulation, we need to show that

S3 can generate the view of incoming messages to both parties,

namely DO1 and Agg1, which are [⟨𝝐1⟩2] and ⟨𝜹1⟩2. Note that

DO1 is responsible only for its data protection and sending them to

aggregators; yet, the two parties can try to learn any information

about the input of DO𝑖 (where 𝑖 ≠ 1), the output of DC𝑗 , the

anonymity of DO𝑖 , and the control of DO𝑖 on DC𝑗 . Formally, S3

works as follows:

1. S3 chooses a uniformly distributed random tape, 𝑟 ′
3
.

2. S3 guesses intermediate messages [
〈
𝝐′
𝑖

〉
2
] and

〈
𝜹 ′
𝑖

〉
2
using ran-

dom tape 𝑟 ′
3
.

3. S3 outputs [
〈
𝝐′
𝑖

〉
2
] and

〈
𝜹′
𝑖

〉
2
.

The view of DO1 and Agg1, view𝜋
1
(𝑥1, 𝑥𝑖1, 𝑥𝑖2), in the real world is(

𝑥1, ⟨cv𝑖 ⟩1 , [⟨dv𝑖 ⟩1], ⟨𝜶𝑖 ⟩1 , ⟨𝜷𝑖 ⟩1 ,
〈
𝜸𝑖
〉

1
, 𝑟3; [⟨𝝐𝑖 ⟩2], ⟨𝜹𝑖 ⟩2

)
, (18)
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while the view generated by the simulator, S3 (1𝜆, 𝑥1, 𝑥𝑖1),(
𝑥1, ⟨cv𝑖 ⟩1 , [⟨dv𝑖 ⟩1], ⟨𝜶𝑖 ⟩1 , ⟨𝜷𝑖 ⟩1 ,

〈
𝜸𝑖
〉

1
, 𝑟 ′

3
; [
〈
𝝐′𝑖
〉

2
],
〈
𝜹′𝑖

〉
2

)
.

(19)

As previously discussed, S3 and S1 have almost the same in-

formation. The information of DO1 (i.e., only its input data) does

not give any advantages to obtaining information about the input

of DO𝑖 , the output of DC𝑗 . The control of DO𝑖 on DC𝑗 since S3

does not have access to the decryption key 𝑠𝑘 , it cannot simulate

MP-FHE.Decrypt and also cannot simulate AS. Share. On the other

hand,S3 can generate the intermediarymessages

〈
𝜶 ′
𝑖

〉
1
,
〈
𝜷 ′
𝑖

〉
1
,
〈
𝜸 ′
𝑖

〉
1

only if 𝑟 ′
3
is uniformly sampled from 𝑟3. They can learn only the

identity of DO𝑖 , yet, they cannot prove whether DO𝑖 really joins the

aggregation by sending its exact data to the analytics or to whom

gets its data analytics result.

Collusions between Data Customer and Aggregator.When an

authorized DC and Agg2 collude, they do not discover any leakage

regarding inputs of DOs and/or outputs of other DCs. Indeed, even if

the Agg2 aggregates the result for an unauthorized DC and forwards

it, the only information that DC would be able to decrypt would be

bogus, 𝑟 (DOs encrypt bogus data for unauthorized DCs).

The collusion of DC𝑗 and Agg2 is corrupted by A: Different from

the collusion between Agg1 and DO𝑖 , Agg2 and DC𝑗 perform one

last addition to obtain aggregate result [𝑠 𝑗 ] for an authorized DC.

However, this does not affect the security of protocol 𝜋 since Simu-

latorS4 would work on the same simulation with an additional step

for the aggregate result as SimulatorS2 does. We do not provide the

proof for S4 for collusions between DC𝑗 and Agg2, which perform

the aggregation functionality over 2PC-secure and 2PC+MP-FHE-

secure data. The two parties cannot differentiate shared-encrypted

data from the random-tape data.

Control of Data Owners on Data Customers. With a choice

vector, cv, each DO can easily decide which DC can receive its data

while computing the data aggregation. DO secret shares its choice

vector cv into two and sends one share to one aggregator. Thanks

to the preliminary counting phase, the non-authorized DC cannot

receive the aggregation result. Moreover, even if a non-authorized

DC colludes with Agg2, they cannot retrieve the aggregated result

because Agg1 has already terminated the data aggregation for this

non-authorized DC. Further, the actual data aggregation result

remains bogus (i.e., a random number 𝑟 is used) since bogus data is

assigned to this specific element when cv𝑖 𝑗 = 0. Moreover, thanks to

MP-FHE, Agg2 andDCneedAgg1 to partially decrypt the encrypted

aggregate result during the decryption phase.

Anonymity of Data Owners. A data customer DC𝑗 can discover

the aggregated result without learning the individual DO if and

only if the number of DOs should be at least a pre-defined thresh-

old 𝑡 during the preliminary counting phase. Otherwise, DC learns

nothing.

B MULTI-KEY FHE
Due to the existence of multiple DCs and the two aggregators and

also comparing PRIDA based on Th-FHE, we propose to employ

a particular homomorphic encryption scheme that enables one or

multiple parties to encrypt or decrypt data under multiple keys,

which is called multi-key fully homomorphic encryption.

To construct this building block, PRIDA revisits two different

homomorphic encryption schemes, namely: (i) asymmetric multi-

key FHE (MK-FHE), whereby each party encrypts its data with its

own public key, and operations are performed over multiple data

encrypted with multiple keys; and (ii) symmetric multi-key FHE,

MK-TFHE, which is similar to the previous scheme except that the

encryption key is symmetric.

Asymmetric multi-key FHE (MK-FHE). Chen et al. [20] propose

multi-key variants of BFV [14 29] and CKKS [21]. Basically, multiple

parties individually encrypt their private data using their own

public keys, and further homomorphic operations are performed

over all these data. All parties contribute to the decryption of the

output. A semantically secure MK-FHE scheme is defined by seven

probabilistic polynomial-time (PPT) algorithms.

- 𝑝𝑝 ← MK-FHE . Setup(1𝜆): Given the security parameter 𝜆 ∈ Λ,
this algorithm outputs public parameters 𝑝𝑝 .

- (𝑠𝑘, 𝑝𝑘) ← MK-FHE .KeyGen(𝑝𝑝): This randomized algorithm

takes the public parameters 𝑝𝑝 as input and outputs a pair of

secret and public keys (𝑠𝑘, 𝑝𝑘).
- ct← MK-FHE . Encrypt(m, 𝑝𝑘): This randomized algorithm en-

crypts message m with public key 𝑝𝑘 and returns a ciphertext

ct = (𝑐0, 𝑐1).
- (ct

∗,𝑇 ∗) ← MK-FHE . Pre-process(c̄t = (𝑐0, . . . , 𝑐𝑘𝑖 ),
𝑇 = {𝑖𝑑1, . . . , 𝑖𝑑𝑘𝑖 }): This algorithm basically extends the input

ciphertext with additional 0’s in order to be able to perform the

homomorphic operation over all the underlying 𝑘 keys according

to the mapping defined in 𝑇 ∗ = {𝑖𝑑1, ..., 𝑖𝑑𝑘 }. Hence, the algo-
rithm returns ct

∗ = (𝑐∗
0
, . . . , 𝑐∗

𝑘
) such that 𝑐∗

0
= 𝑐0 and

𝑐∗
𝑖
=

{
𝑐 𝑗 if 𝑖 = 𝑖𝑑 𝑗 for some 1 ≤ 𝑗 ≤ 𝑘𝑖 ,

0 otherwise.

- ct
∗ ← MK-FHE . Eval(C, (ct

∗
1
, . . . , ct

∗
𝑙
)): This algorithm evaluates

circuit C over the 𝑙 ciphertexts encrypted with multiple keys.

- 𝜇𝑖 ← MK-FHE . PartialDecrypt(𝑐∗
𝑖
, 𝑠𝑘𝑖𝑑𝑖 ): This algorithm takes

as input 𝑐∗
𝑖
from ciphertext ct

∗
corresponding to the party holding

secret key 𝑠𝑘𝑖𝑑𝑖 and outputs a partially decrypted information 𝜇𝑖 .

- m
′ ← MK-FHE .Merge(𝑐∗

0
, 𝜇1, . . . , 𝜇𝑘 ): This algorithm takes as

input all the partial decryptions derived from a ciphertext ct
∗

and outputs the final plaintext m
′
.

We refer readers to [20] for more details on asymmetric MK-FHE.

Symmetric multi-key FHE (MK-TFHE). Chen et al. [19] proposed

the multi-key version of TFHE, whereby each party uses its sym-

metric secret key to encrypt and decrypt the data. The MK-TFHE

scheme is defined by seven PPT algorithms:

- 𝑝𝑝 ← MK-TFHE . Setup(1𝜆): This algorithm outputs public pa-

rameters 𝑝𝑝 given security parameter 𝜆 ∈ Λ.
- 𝑠𝑘 ← MK-TFHE .KeyGen(𝑝𝑝): This randomized algorithm gen-

erates secret key 𝑠𝑘 given the public parameters 𝑝𝑝 .

- ct = (𝑏, 𝑎) ← MK-TFHE . Encrypt(m, 𝑠𝑘): This randomized al-

gorithm encrypts message m with secret key 𝑠𝑘 and outputs

ciphertext ct = (𝑏, 𝑎).
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- (ct
∗,𝑇 ∗) ← MK-TFHE . Pre-process(c̄t = (𝑏, 𝑎1, . . . , 𝑎𝑘𝑖 ),

𝑇 = {𝑖𝑑1, . . . , 𝑖𝑑𝑘𝑖 }): Similar to the case of MK-FHE, this algo-

rithm basically extends the input ciphertext with additional 0’s

in order to be able to perform the homomorphic operation over

all the underlying 𝑘 keys according to the mapping defined in

𝑇 ∗. Hence, the algorithm returns ct
∗ = (𝑏∗, 𝑎∗

1
. . . , 𝑎∗

𝑘
) such that

𝑏∗ = 𝑏 and 𝑎∗
𝑖
=

{
𝑎 𝑗 if 𝑖 = 𝑖𝑑 𝑗 for some 1 ≤ 𝑗 ≤ 𝑘𝑖 ,

0 otherwise.

- ct
∗ ← MK-TFHE . Eval(C, (ct

∗
1
, . . . , ct

∗
𝑙
)): This algorithm evalu-

ates circuit C over the 𝑙 ciphertexts encrypted with multiple

keys.

- 𝜇𝑖 ← MK-TFHE . PartialDecrypt(𝑎∗
𝑖
, 𝑠𝑘𝑖𝑑𝑖 ): This algorithm takes

as input𝑎∗
𝑖
from ciphertext ct

∗
corresponding to the party holding

secret key 𝑠𝑘𝑖𝑑𝑖 and outputs a partially decrypted information 𝜇𝑖 .

- m
′ ← MK-TFHE .Merge(𝑏∗, 𝜇1, . . . , 𝜇𝑘 ): This algorithm takes as

input all the partial decryptions derived from a ciphertext ct
∗

and outputs the final plaintext m
′
.

For more details on MK-TFHE, we refer readers to [19].

We now present two versions of PRIDA, which are based on 2PC

and MK-FHE (PRIDAv2) depicted in Protocol 2, and based on 2PC

and MK-TFHE, namely PRIDAv3 in Protocol 3. In the next section,

we will highlight the main differences between each instantiation

and PRIDA based on Th-FHE.

C PRIDAV2: PRIDAWITH MK-FHE
This section presents the details of PRIDAv2 in Protocol 2, and the

main difference with Protocol 1 resulting from the use of MK-FHE

is highlighted with the blue color.

PRIDAv2 presented in Protocol 2 combines 2PC and asymmet-

ric multi-key fully homomorphic encryption (MK-FHE) [20]. We

present a few steps while maintaining the support of our privacy

goals and multiple data customers in PRIDAv2 as well: During the

data protection phase, each DO𝑖 secret shares its data dv𝑖 and uses

the three public keys of Agg1, Agg2, and the actual DC𝑗 while

encrypting the shares. As previously mentioned in PRIDA (See Sec-

tion 4), DOs have employed one unique public key of Agg1, Agg2,

and DC𝑗 . Moreover, note that the given example in the original

MK-FHE proposal [20] only involves two public keys: Each party

encrypts its input data with its public key; however, in PRIDAv2,

DOs employ the public keys of Agg1, Agg2, and DC𝑗 to encrypt

their input data. Therefore, we propose the following transforma-

tion (Step (c) to (f) in Protocol 2): Before encrypting the shares, DO𝑖

once again secret shares ⟨dv𝑖 ⟩𝑘 into three shares and encrypts each

share with one of the three public keys; then, MK-FHE . Pre-process

is called for each of these encrypted shares, and finally, these three

values are summed using MK-FHE . Eval. The obtained result cor-

responds to the encryption of ⟨dv𝑖 ⟩𝑘 with three keys, as expected.

The following steps of PRIDAv2 are the same as in Protocol 1.

In order to analyze the performance of PRIDAv2, we have imple-

mented the asymmetric MK-FHE solution described in [20] using

the BFV [14 29] and CKKS [21] schemes from the SEAL library

v41.1.1 [54].

Protocol 2 PRIDA based on asymmetric MK-FHE

Inputs. DO𝑖 , 𝑖 ∈ {1, . . . , 𝑛}, inputs a choice vector cv𝑖 and a data

vector dv𝑖 of size𝑚. Also, a pre-defined threshold 𝑡 and the public

parameters 𝑝𝑝 are published.

Output. If cv𝑡𝑜𝑡𝑎𝑙 𝑗 ≥ 𝑡 , DC𝑗 obtains the aggregate result 𝑠 𝑗 , 𝑗 ∈
{1, . . . ,𝑚}.
Protocol steps:
1. Setup executed by DC𝑗 , Agg1, and Agg2.

a. (𝑠𝑘𝑝 , 𝑝𝑘𝑝 ) ← MK-FHE .KeyGen(𝑝𝑝) where 𝑝 =

DC𝑗 , Agg1, and Agg2.

2. Data protection executed by DO𝑖 .
a. (⟨cv𝑖 ⟩1 , ⟨cv𝑖 ⟩2) ← AS. Share(2, cv𝑖 ).
b. (⟨dv𝑖 ⟩1 , ⟨dv𝑖 ⟩2) ← AS. Share(2, dv𝑖 ).
c.

(〈
dv𝑖 𝑗

〉
𝑘,DC𝑗

,
〈
dv𝑖 𝑗

〉
𝑘,Agg1

,
〈
dv𝑖 𝑗

〉
𝑘,Agg2

)
←

AS. Share(3,
〈
dv𝑖 𝑗

〉
𝑘
) for 𝑘 = 1, 2.

d. [
〈
dv𝑖 𝑗

〉
𝑘,𝑝
] ← MK-FHE . Encrypt(

〈
dv𝑖 𝑗

〉
𝑘,𝑝

, 𝑝𝑘𝑝 ) for 𝑘 =

1, 2 and 𝑝 = DC𝑗 ,Agg1, and Agg2.

e. Call MK-FHE . Pre-process with all [
〈
dv𝑖 𝑗

〉
𝑘,𝑝
] for 𝑇 ∗ =

{𝑖𝑑𝐷𝐶 𝑗
, 𝑖𝑑𝐴𝑔𝑔1, 𝑖𝑑𝐴𝑔𝑔2}.

f. [
〈
dv𝑖 𝑗

〉
𝑘
] ←

MK-FHE . Eval (+, ( [
〈
dv𝑖 𝑗

〉
𝑘,1
], [

〈
dv𝑖 𝑗

〉
𝑘,2
], [

〈
dv𝑖 𝑗

〉
𝑘,3
] ) ) , 𝑘 =

1, 2.

g. Generate random vectors 𝜶𝑖 , 𝜷𝑖 and compute 𝜸𝑖 such that

𝜸𝑖 = 𝜶𝑖 ★ 𝜷𝑖 .
h. Beaver’s triplets. Call AS. Share(2, .) for 𝜶𝑖 , 𝜷𝑖 , 𝜸𝑖 .
i. Send [⟨dv𝑖 ⟩𝑘 ], ⟨cv𝑖 ⟩𝑘 , ⟨𝜶𝑖 ⟩𝑘 , ⟨𝜷𝑖 ⟩𝑘 , and

〈
𝜸𝑖
〉
𝑘
to Agg𝑘 ,

𝑘 = 1, 2.

3. Preliminary counting executed by Agg1 and Agg2.
a. Agg𝑘 : Obtain ⟨cv𝑡𝑜𝑡𝑎𝑙 ⟩𝑘 =

∑ ⟨cv𝑖 ⟩𝑘 , 𝑘 = 1, 2.

b. Agg𝑘 : Exchange ⟨cv𝑡𝑜𝑡𝑎𝑙 ⟩𝑘 to get cv𝑡𝑜𝑡𝑎𝑙 =

(cv𝑡𝑜𝑡𝑎𝑙1 , . . . , cv𝑡𝑜𝑡𝑎𝑙 𝑗 , . . . , cv𝑡𝑜𝑡𝑎𝑙𝑚 ).
c. Agg𝑘 : Label DC𝑗 as authorized if cv𝑡𝑜𝑡𝑎𝑙 𝑗 ≥ 𝑡 .

4. Aggregation executed by Agg1 and Agg2.
a. Jointly compute [s] = [∑dv𝑖 ★ cv𝑖 ] for each authorized

DC𝑗 . The details of multiplication are provided in Algo-

rithm 1.

5. Decryption executed by Agg1, Agg2, and DC𝑗 .
a. Agg2: Send the aggregate result [s] to Agg1.

b. Agg𝑘 : 𝜇𝑘 ← MK-FHE . PartialDecrypt, 𝑘 = 1, 2.

c. Agg1: Send 𝜇1 to Agg2.

d. Agg2: Send 𝜇1 and 𝜇2 to the authorized DC𝑗 .

e. DC𝑗 : 𝜇3 ← MK-FHE . PartialDecrypt.

f. DC𝑗 : Run MK-FHE .Merge with 𝜇1, 𝜇2, 𝜇3.

D PRIDAV3: PRIDAWITH MK-TFHE
This section shows that PRIDA also supports the symmetric multi-

key FHE in Protocol 3, and we further introduce a new algorithm,

namely MK-TFHE . Post-process.

The specification of PRIDAv3, executingMK-TFHE . Post-process,

is provided in Protocol 3, and the main difference with Protocol 1

resulting from the use of MK-TFHE is highlighted with the blue

color.
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Protocol 3 PRIDA based on MK-TFHE

Inputs. Choice vector cv𝑖 and data vector dv𝑖 for DO𝑖 , pre-defined

threshold 𝑡 , and public parameters 𝑝𝑝 .

Output. If cv𝑡𝑜𝑡𝑎𝑙 𝑗 ≥ 𝑡 , DC𝑗 obtains the aggregate result 𝑠 𝑗 , 𝑗 ∈
{1, . . . ,𝑚}.
Protocol steps:
1. Setup executed by DO𝑖 , DC𝑗 , Agg1, and Agg2.

a. Generate 𝑠𝑘𝑝 ← MK-TFHE .KeyGen(𝑝𝑝), 𝑝 = DO𝑖1 ,DO𝑖2 .

b. Generate 𝑠𝑘𝑝 ← MK-TFHE .KeyGen(𝑝𝑝), 𝑝 =

DC𝑗 , Agg1, Agg2.

2. Data protection executed by DO𝑖 .
a. (⟨cv𝑖 ⟩1 , ⟨cv𝑖 ⟩2) ← AS. Share(2, cv𝑖 ).
b. (⟨dv𝑖 ⟩1 , ⟨dv𝑖 ⟩2) ← AS. Share(2, dv𝑖 ).
c.

(〈
dv𝑖 𝑗

〉
𝑘,DC𝑗

,
〈
dv𝑖 𝑗

〉
𝑘,DO𝑖

1

,
〈
dv𝑖 𝑗

〉
𝑘,DO𝑖

2

)
←

AS. Share(3,
〈
dv𝑖 𝑗

〉
𝑘
) for 𝑘 = 1, 2.

d. [
〈
dv𝑖 𝑗

〉
𝑘,𝑝
] ← MK-TFHE . Encrypt(

〈
dv𝑖 𝑗

〉
𝑘,𝑝

, 𝑠𝑘𝑝 ), 𝑘 =

1, 2.

e. Call MK-TFHE . Pre-process with all [
〈
dv𝑖 𝑗

〉
𝑘,𝑝
] for 𝑇 ∗ =

{𝑖𝑑𝐷𝐶 𝑗
, 𝑖𝑑𝐷𝑂𝑖

1

, 𝑖𝑑𝐷𝑂𝑖
2

}.
f. [

〈
dv𝑖 𝑗

〉
𝑘
] ← MK-TFHE . Eval

(+, ( [
〈
dv𝑖 𝑗

〉
𝑘,DC𝑗

], [
〈
dv𝑖 𝑗

〉
𝑘,DO𝑖

1

], [
〈
dv𝑖 𝑗

〉
𝑘,DO𝑖

2

] ) ) .

g. Generate random vectors 𝜶𝑖 , 𝜷𝑖 and compute 𝜸𝑖 such that

𝜸𝑖 = 𝜶𝑖 ★ 𝜷𝑖 .
h. Beaver’s triplets. Call AS. Share(., 2) for 𝜶𝑖 , 𝜷𝑖 , 𝜸𝑖 .
i. Send [⟨dv𝑖 ⟩𝑘 ], ⟨cv𝑖 ⟩𝑘 , ⟨𝜶𝑖 ⟩𝑘 , ⟨𝜷𝑖 ⟩𝑘 , and

〈
𝜸𝑖
〉
𝑘
to Agg𝑘 ,

𝑘 = 1, 2.

3. Preliminary counting executed by Agg1 and Agg2 as shown in
Protocol 1.

4. Aggregation executed by Agg1 and Agg2.
a. Agg𝑘 : Call MK-TFHE . Post-process with the known se-

cret keys of DO𝑖𝑘 and Agg𝑘 to modify [⟨dv𝑖 ⟩𝑘 ] related
to 𝑠𝑘DO𝑖𝑘

to 𝑠𝑘Agg𝑘 .

b. Agg𝑘 : Exchange samples and repeat Step (a) ending up with

samples encrypted with DC𝑗 , Agg1, Agg2.

c. Agg𝑘 : Jointly calculate the result [𝑠 𝑗 ] jointly such that

[𝑠 𝑗 ] = [
∑

dv𝑖 𝑗 · cv𝑖 𝑗 ] for authorized DC𝑗 . The details of

multiplication are provided in Algorithm 1.

5. Decryption executed by Agg1, Agg2, and DC𝑗 .
a. Agg2: Send [s] = (. . . , [𝑠 𝑗 ], . . .) to Agg1.

b. Agg𝑘 : 𝜇𝑘 ← MK-TFHE . PartialDecrypt.

c. Agg1: Send 𝜇1 to Agg2.

d. Agg2: Send 𝜇1 and 𝜇2 to the authorized DC𝑗 .

e. DC𝑗 : 𝜇3 ← MK-TFHE . PartialDecrypt.

f. DC𝑗 : Run MK-TFHE .Merge with 𝜇1, 𝜇2, 𝜇3.

MK-TFHE is constructed as an extension of TFHE [22]. The main

challenge in designing PRIDA onMK-TFHE relies on the generation

and distribution of pairwise symmetric keys. A large number of

parties (DOs and DCs) result in a large number of pairwise keys.

We, therefore, address this problem by transforming ciphertexts

encrypted with individual key sets into ciphertexts encrypted with

common group keys. More specifically, each DC𝑗 shares one com-

mon key 𝑘 𝑗 with all DOs, and each DO establishes one pairwise

key with each aggregator: When Agg1 and Agg2 receive individual

ciphertexts encrypted with different sets of keys, they partially de-

crypt them with the keys that they know and re-encrypt them with

their unique key only known by themselves. Therefore, we propose

a brand new algorithm, namely MK-TFHE . Post-process defined in

Algorithm 2 to remove some keying material if one possesses that

keying material. We refer the reader to Section B for the details of

Algorithm 2 and Protocol 3.

We have implemented PRIDAv3 using an extended version of

the MK-TFHE library ([18], an experimental prototype). We have

conducted several improvements: We have implemented all bi-

nary gates except for the NAND gate, which has already been

available. We have also revisited the original MK-TFHE . Encrypt

and MK-TFHE .Decrypt algorithms because they require all the

keys from the very beginning; thus, we prevented a significant

increase in the number of keys and, consequently, the size of the

ciphertext. Thus, we have split Encrypt into MK-TFHE . Encrypt

and MK-TFHE . Pre-process, and Decrypt into

MK-TFHE . PartialDecrypt and MK-TFHE .Merge, and implemen-

ted the new MK-TFHE . Post-process algorithm. We further have

implemented some optimizations: (i) We have implemented the

double-and-add algorithm for the multiplication of an MK-TFHE-

encrypted number by a known scalar; and (ii) we have implemented

a variant of the addition algorithm, which employs ternary logical

gates, and it only requires 2 bootstrappings instead of 5, hence

saving about a factor of 2.5 times [43].

Protocol 3 based on MK-TFHE, requires some additional opera-

tions to be compatible with as less keying material for ciphertexts

under multi-key as possible. Thanks to MK-TFHE . Post-process, in

Algorithm 2, the two aggregators do not need to execute

MK-TFHE . Pre-process as double the number of DOs.

In Protocol 3, DO𝑖 generates two secret keys for the two aggrega-

tors who decrease the number of keys related to

〈
𝑑𝑖 𝑗

〉
𝑘
by employ-

ing MK-TFHE . Post-process, and add their actual keys thanks to

MK-TFHE . Pre-process. Therefore, the underlying ciphertext will

contain as few keys as possible.

Algorithm 2: MK-TFHE . Post-process

Input: c̄t = (𝑏, 𝑎1, . . . , 𝑎𝑘 ),𝑇 = {𝑖𝑑1, . . . , 𝑖𝑑𝑙 , . . . , 𝑖𝑑𝑘 }, old
identity 𝑖𝑑𝑙 , new identity 𝑖𝑑∗

𝑙
, and their respective

secret keys.

Output: ct
∗,𝑇 ∗

1 𝑏′ ← 𝑏 − 𝑎𝑙 · 𝑠𝑘𝑖𝑑𝑙 . // noise is added in the next step

2 (𝑏∗, 𝑎∗
𝑙
) ← MK-TFHE . Encrypt(𝑏′, 𝑠𝑘𝑖𝑑∗

𝑙
).

3 ct
∗ = (𝑏∗, 𝑎1, . . . , 𝑎

∗
𝑙
, . . . , 𝑎𝑘 ), 𝑇 ∗ = {𝑖𝑑1, . . . , 𝑖𝑑

∗
𝑙
, . . . , 𝑖𝑑𝑘 }.

For the security of the new Post-process algorithm, it is crucial to

add some noise, which must be done with each partial key addition

and/or removal. Note that in Algorithm 2, a fresh noise is added as

a part of the MK-TFHE . Encrypt algorithm is sufficient to do that

once for both key addition and removal.
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