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Abstract. PERK is a digital signature scheme submitted to the recent NIST Post-
Quantum Cryptography Standardization Process for Additional Digital Signature
Schemes. For NIST security level I, PERK features sizes ranging from 6kB to 8.5kB,
encompassing both the signature and public key, depending on the parameter set.
Given its inherent characteristics, PERK’s signing and verification algorithms involve
the computation of numerous large objects, resulting in substantial stack-memory
consumption ranging from 300kB to 1.5MB for NIST security level I and from
1.1MB to 5.7MB for NIST security level V. In this paper, we present a memory-
versus-performance trade-off strategy that significantly reduces PERK’s memory
consumption to a maximum of approximately 82kB for any security level, enabling
PERK to be executed on resource-constrained devices. Additionally, we explore
various optimizations tailored to the Cortex M4 and introduce the first implementation
of PERK designed for this platform.
Keywords: Post-Quantum Cryptography · PERK · Stack Usage · Cortex M4

1 Introduction
With the recent unveiling of the latest Post-Quantum Cryptography (PQC) standards, the
National Institute of Standards and Technology (NIST) has released the preliminary public
drafts of FIPS 203, FIPS 204, and FIPS 205, which are founded on cryptographic schemes
commonly known as Kyber [ABD+22], Dilithium [DKL+22] and SPHINCS+ [ABB+22]
respectively. Additionally, NIST has confirmed its intention to standardize Falcon [PFH+22]
in the near future. This milestone marks the culmination of a protracted effort initiated in
2016, spanning three rounds of evaluation and public scrutiny. Concurrently, an ongoing
fourth round permits to conduct further assessments and potentially standardize additional
Key Encapsulation Mechanism (KEM) algorithms [AAB+22a, BCC+22, AAB+22b].

Furthermore, NIST has expressed a keen interest in investigating alternative general-
purpose signature schemes, either those not anchored in structured lattices or those
demonstrating superior performance compared to Dilithium and Falcon. This interest
materialized through a recent call for proposals, inviting submissions of additional digital
signature schemes. As a result, numerous new signature schemes have been submitted,
initiating a fresh scrutiny process and fostering research around these new candidates.

A significant area of research revolves around the portability and efficiency of algorithms
concerning resource-constrained devices. Typically, post-quantum cryptographic constructs
exhibit substantial size, leading to implementations that consume significant amounts of
memory. Consequently, the Cortex M4 platform has been regarded as the standard choice
for benchmarking Post-Quantum Cryptography (PQC) implementations in scenarios where
resource constraints are paramount.

This paper is focused on the recent post-quantum signature candidate PERK [ABB+23]
which is based on the Permuted Kernel Problem [Sha90]. PERK is a signature scheme
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relying on the Multi-Party Computation in-the-Head (MPCitH) paradigm [IKOS07].
Notably, PERK demonstrates competitiveness in terms of public key and signature sizes
within the new NIST signature standardization process. However, a drawback to PERK
lies in the necessity to compute large objects resulting in significant memory consumption.

Contributions. This paper studies and shows how to implement PERK on resource-
constrained devices. Our contributions are threefold:

1. We present a memory versus performance trade-off strategy, resulting in a substantial
reduction in PERK’s memory cost from thousands of kilobytes to a maximum of
approximately 82kB for the highest security levels. This optimization facilitates the
deployment of PERK within the memory limits of the typical STM32F407 discovery
board;

2. Additionally, we explore various optimization strategies to further enhance the
running-time of the scheme for Cortex M4 devices. Our modifications include a
streamlined protocol adhering to the PERK specification, enabling our implementa-
tion to successfully pass public Known Answer Tests (KAT) for compatibility;

3. Furthermore, our investigation extends to a different scenario where we deviate from
the PERK reference implementation. In this alternative approach, we employ distinct
techniques for operating with permutations, achieving superior performance on the
M4 device. Although instantiating PERK in this way preserves all the features and
guarantees of the scheme, one should note that the resulting implementation does
not replicate the KAT of the reference implementation.

To the best of our knowledge, this work constitutes the first implementation of PERK for
constrained devices.1 Table 1 gives an overview of the stack usage of our implementation
with respect to the PERK optimized one (one should note that PERK reference and
optimized implementations have similar stack usage consumption, see Section 2.2 for more
details).

Table 1: Stack usage comparison between PERK optimized implementation and our work

Instance Implementation Keygen Signing Verification

PERK-I-short3 PERK Ref. [ABB+23] 10 kB 1.49 MB 1.49 MB
This work 8 kB 28 kB 25 kB

PERK-V-short3 PERK Ref. [ABB+23] 27 kB 5.74 MB 5.74 MB
This work 26 kB 82 kB 75 kB

Paper Organization. We present the PERK signature scheme and the stack usage of its
reference implementation in Section 2. Then, we discuss memory vs performances trade-offs
allowing to implement PERK on memory-constrained devices in Section 3. Cortex-M4
specific optimizations are considered in Section 4. We provide an implementation that
passes the KAT provided in the PERK submission for compatibility (Section 4.1) as well
as a faster implementation that is compatible with the PERK specification but produces
different KAT (Section 4.2). Experimental results are presented in Section 4.3.

1Our implementation forks pqm4 [KPR+] and can be accessed publicly at
https://anonymous.4open.science/r/perk-on-resource-constrained-devices.

https://anonymous.4open.science/r/perk-on-resource-constrained-devices
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2 Background

This paper follows the notation as in [ABB+23]. We denote by [n] the set of integers
1 ≤ i ≤ n, and with Sn the group of permutations of [n]. For a power of a prime q, let
Fq denote the finite field of order q. Vectors are denoted with bold lower-case letters (e.g.
v = (vj)1⩽j⩽k ∈ Fn

q ) and matrices with bold upper-case letters. Let X be a finite set, we
use the notation x

$←− X to say that x is chosen uniformly at random from X, and the
notation x

$,θ←− X to say that x is sampled pseudo-randomly from X using the seed θ.

2.1 The PERK Signature Scheme

PERK is built from a zero-knowledge proof of knowledge for the relaxed Inhomogeneous
Permuted Kernel Problem r-IPKP. Informally, given a matrix H ∈ Fm×n

q and t pairs of
vectors (xi, yi) ∈ Fn

q ×Fm
q , the r-IPKP problem asks to find a permutation π ∈ Sn such that

Hπ(x) = y where x :=
∑

i κixi (respectively y :=
∑

i κiyi) and κ = (κ1, . . . , κt) ∈ Ft
q \ 0.

We define the relation Rr-IPKP for this problem as:

Rr-IPKP :=
{( (

H, (xi, yi)i∈[t]
)

; π̃
)

: H
(

π̃
[∑

i∈[1,t] κi · xi

])
=

∑
i∈[1,t] κi · yi

for any κ ∈ Fq
t \ 0

}
.

The zero-knowledge proof of knowledge used in PERK is inspired from [BG23, FJR23]
and constructed using the MPCitH paradigm [IKOS07]. It is then transformed into a
signature scheme using the Fiat-Shamir transform [FS87] within the random oracle model.

For the three security levels specified by the NIST, PERK provides four distinct sets
of parameters. Parameters denoted as short are designed to optimize the signature’s size
while parameters denoted as fast prioritize the running time of the algorithms. In addition,
parameters differs based on the value of t (either 3 or 5) in the underlying r-IPKP problem.
As a consequence, PERK instances are referred as PERK-X-Y where X denotes the NIST
security level (I, III or V) and Y is either fast3, fast5, short3 or short5. PERK parameters
are given in Table 2.

Table 2: Parameters of the PERK signature scheme [ABB+23]

Parameter Set λ q n m t N τ pk size sk size σ size
PERK-I-fast3 128 1021 79 35 3 32 30 0.15 kB 16 B 8.36 kB
PERK-I-fast5 128 1021 83 36 5 32 28 0.24 kB 16 B 8.03 kB
PERK-I-short3 128 1021 79 35 3 256 20 0.15 kB 16 B 6.25 kB
PERK-I-short5 128 1021 83 36 5 256 18 0.24 kB 16 B 5.78 kB
PERK-III-fast3 192 1021 112 54 3 32 46 0.23 kB 24 B 18.8 kB
PERK-III-fast5 192 1021 116 55 5 32 43 0.37 kB 24 B 18.0 kB
PERK-III-short3 192 1021 112 54 3 256 31 0.23 kB 24 B 14.3 kB
PERK-III-short5 192 1021 116 55 5 256 28 0.37 kB 24 B 13.2 kB
PERK-V-fast3 256 1021 146 75 3 32 61 0.31 kB 32 B 33.3 kB
PERK-V-fast5 256 1021 150 76 5 32 57 0.51 kB 32 B 31.7 kB
PERK-V-short3 256 1021 146 75 3 256 41 0.31 kB 32 B 25.1 kB
PERK-V-short5 256 1021 150 76 5 256 37 0.51 kB 32 B 23.0 kB
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2.1.1 PERK Overview

The Keygen, Sign and Verify algorithms of PERK are described in Figures 1, 2 and 3
respectively. PERK Keygen algorithm consists in generating an r-IPKP instance. PERK
Sign algorithm emulates a proof of knowledge for the r-IPKP problem between a Prover
and a Verifier. Informally, the Prover generates a sharing of its secret permutation π
for N parties and commits to each share (πi, vi)i∈[1,N ] as well as Hv for some mask v
(Step 1). The Verifier chooses a random challenge κ (Step 2) then the Prover computes
“in-its-head” π[

∑
j∈[1,t] κj · xj ] + v and commit to the output of each party within the

computation (Step 3). Next, the Verifier picks a random party α ∈ [N ] (Step 4) and the
Prover computes the signature accordingly by revealing the input of all parties except the
α one along with information allowing to emulate the MPC protocol without knowing
α’s input (Step 5). PERK verification algorithm starts by parsing the signature in order
to retrieve the challenges κ and α (Step 1). Once it is done, the signature is verified by
checking that both the input of the received parties and the MPC protocol execution are
consistent with the received commitments (Step 2).

1. Sample sk_seed $←− {0, 1}λ and pk_seed $←− {0, 1}λ

2. Sample π ←− PRG(sk_seed) from Sn

3. Sample (H, (xi)i∈[1,t])←− PRG(pk_seed) from Fm×n
q × (Fn

q )t

3. For j ∈ [1, t],

⋄ Compute yj = Hπ[xj ]
4. Output (sk, pk) = (sk_seed, (pk_seed, (yj)j∈[1,t]))

Figure 1: PERK - KeyGen algorithm

The efficiency of PERK is heavily dependent on operations involving permutations.
In the subsequent section, we delve into the permutation related operations (namely
permutation sampling, permutation composition, permutation inversion and permutation
compression) that play a crucial role in PERK performances.

2.1.2 Permutation Sampling, Composition, Inversion and Compression

Along with randomness sampling, permutation related operations are one of the most
computationally expensive tasks in PERK.

Permutation sampling. Random permutations are sampled from Sn using a method that
includes the use of a sorting algorithm. Specifically, to create a permutation π ∈ Sn, one first
samples a random vector e = (e0, . . . , en−1) ∈ (F16

2 )n, then constructs p = (p0, . . . , pn−1),
where pi = (ei|i). The integer sequence p is then sorted using a constant-time sorting
algorithm, and the permutation π is extracted from the lower-order bits of each pi. If
there are any duplicate values in the vector e, the process discards it and generates a
new one. The official PERK implementation employs the constant-time software library
djbsort [Ber19] for the sorting algorithm.

Permutating vectors. In order to permute vectors v according to a permutation π in
constant time, the PERK official implementation builds a vector p(πi|vi), sorts it with
djbsort, and extracts the lower-bits order vector from it.

Permutation composition and inversion. The aforementioned approach is also used
to invert, compose and apply permutations to vectors. Let π ∈ Sn be a permutation. After
sorting, the lower-bits order of the vector p = (p0, . . . , pn−1) where pi = (πi|i) corresponds
to the inverse permutation π−1. Similarly given two permutations π, τ ∈ Sn, after sorting,
the lower-bits order of the vector p = (p0, . . . , pn−1) where pi = (τi|πi) corresponds to the
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Inputs: The key pair (sk, pk) = (sk_seed, (pk_seed, (yj)j∈[1,t])) and a message m ∈ {0, 1}∗

Step 1: Commitment

1. Sample π ←− PRG(sk_seed) from Sn

2. Sample (H, (xj)j∈[1,t])←− PRG(pk_seed) from Fm×n
q × (Fn

q )t

3. Sample salt and master seed (salt, mseed) $←− {0, 1}2λ × {0, 1}λ

4. Sample seeds (θ(e))e∈[1,τ] ←− PRG(salt, mseed) from ({0, 1}λ)τ

5. For each iteration e ∈ [1, τ ],

⋄ Compute (θ
(e)
i

)i∈[1,N] ←− TreePRG(salt, θ(e))

⋄ For each party i ∈ {N, . . . , 1},

- If i ̸= 1, sample (π
(e)
i

, v
(e)
i

)←− PRG(salt, θ
(e)
i

) from Sn × Fn
q

- If i = 1, sample v
(e)
1 ←− PRG(salt, θ

(e)
1 ) from Fn

q

- If i ̸= 1, compute cmt(e)
1,i

= H0(salt, e, i, θ
(e)
i

)

- If i = 1, compute π
(e)
1 = (π

(e)
2 )−1 ◦ · · · ◦ (π

(e)
N

)−1 ◦ π and cmt(e)
1,1 = H0(salt, e, 1, π

(e)
1 , θ

(e)
1 )

⋄ Compute v(e) = v
(e)
N

+
∑

i∈[1,N−1]
π

(e)
N
◦ · · · ◦ π

(e)
i+1[v(e)

i
] and cmt(e)

1 = H0(salt, e, Hv(e))

Step 2: First Challenge

6. Compute h1 = H1(salt, m, pk, (cmt(e)
1 , cmt(e)

1,i
)e∈[1,τ],i∈[1,N])

7. Sample (κ
(e)
j

)e∈[1,τ],j∈[1,t] ←− PRG(h1) from (Ft
q)τ

Step 3: First Response

8. For each iteration e ∈ [1, τ ],

⋄ Compute s
(e)
0 =

∑
j∈[1,t]

κ
(e)
j
· xj

⋄ For each party i ∈ [1, N ],

- Compute s
(e)
i

= π
(e)
i

[s(e)
i−1] + v

(e)
i

Step 4: Second Challenge

9. Compute h2 = H2(salt, m, pk, h1, (s
(e)
i

)e∈[1,τ],i∈[1,N])

10. Sample (α(e))e∈[1,τ] ←− PRG(h2) from ([1, N ])τ

Step 5: Second Response

11. For each iteration e ∈ [1, τ ],

⋄ Compute z
(e)
1 = s(e)

α

⋄ If α(e) ̸= 1, z
(e)
2 = (π

(e)
1 || (θ

(e)
i

)
i∈[1,N]\α(e) )

⋄ If α(e) = 1, z
(e)
2 = (θ

(e)
i

)
i∈[1,N]\α(e)

⋄ Compute rsp(e) = (z
(e)
1 , z

(e)
2 , cmt(e)

1,α(e) )

12. Compute σ = (salt, h1, h2, (rsp(e))e∈[1,τ])

Figure 2: PERK - Sign algorithm

permutation π ◦ τ−1. Hence, to compute the composition π ◦ τ , one should first invert τ ,
and then compute π ◦ (τ−1)−1 with the procedure just described.

Permutation compression. PERK signatures include sending permutations in clear.
To keep the sizes reduced, PERK involves two different approaches to represent permuta-
tions respectively for short and fast parameters sets trading off length and efficiency of
computations. More specifically, short parameters employ a ranking/unranking algorithm
to represent each permutation as a unique integer in the set {0, ..., n!− 1} that is optimal
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Inputs: The public key pk = (pk_seed, (yj)j∈[1,t]), a signature σ and a message m ∈ {0, 1}∗

Step 1: Parse signature

1. Sample (H, (xj)j∈[1,t])←− PRG(pk_seed) from Fm×n
q × (Fn

q )t

2. Parse signature as σ = (salt, h1, h2, (z
(e)
1 , z

(e)
2 , cmt(e)

1,α(e) )e∈[1,τ])

3. Recompute (κ
(e)
j

)e∈[1,τ],j∈[1,t] ←− PRG(h1) from (Ft
q \ 0)τ

4. Recompute (α(e))e∈[1,τ] ←− PRG(h2) from ([1, N ])τ

Step 2: Verification

5. For each iteration e ∈ [1, τ ],

⋄ Compute s
(e)
0 =

∑
j∈[1,t]

κ
(e)
j
· xj and s(e)

α = z
(e)
1

⋄ Compute (π
(e)
i

, v
(e)
i

)i∈[1,N]\α from z
(e)
2

⋄ For each party i ∈ [1, N ] \ α(e),

- If i ̸= 1, compute cmt(e)
1,i

= H0(salt, e, i, θ
(e)
i

)

- If i = 1, compute cmt(e)
1,1 = H0(salt, e, 1, π

(e)
1 , θ

(e)
1 )

⋄ For each party i ∈ [1, N ] \ α(e),

- Compute s
(e)
i

= π
(e)
i

[s(e)
i−1] + v

(e)
i

⋄ Compute cmt(e)
1 = H0(salt, e, Hs

(e)
N
−

∑
j∈[1,t]

κ
(e)
j
· yj)

6. Compute h̄1 = H1(salt, m, pk, ((cmt(e)
1,i

)i∈[N,1], cmt(e)
1 )e∈[1,τ])

7. Compute h̄2 = H2(salt, m, pk, h1, (s
(e)
i

)e∈[1,τ],i∈[1,N]).

8. Output accept if and only if h̄1 = h1 and h̄2 = h2.

Figure 3: PERK - Verify algorithm

(i.e. the shortest as possible) but requires making computations with arbitrary-precision
arithmetic. To this end, the official PERK implementation makes use of the the gmp
library [Pro23]. To speed-up the execution time, a look-up table is used to store some
pre-computed factorials used in the algorithm. On the other hand, fast parameters employ
a packing algorithm that is sub-optimal on the size but much lighter in the computation
and does not require arbitrary-precision arithmetic.

2.1.3 Object Representation, Randomness and Hash Functions

Object representation. In PERK, elements of Fq are stored in 16 bit unsigned integers,
vectors are represented as arrays of Fq elements and matrices are represented as a two
dimensional arrays of Fq elements. In addition, permutations are represented as an array
of length n of elements in [0, n− 1] encoded on 8 bits. Permutations are also represented
as string of bits whenever they are compressed.

PRG and Hash functions. In PERK, the PRG function is instantiated using SHAKE-128
for λ = 128 and SHAKE-256 for λ = 192 or λ = 256. In addition, the hash functions are
instantiated using SHA3-256 for λ = 128, SHA3-384 for λ = 192 and SHA3-512 for λ = 256.
Both functions are instantiated using domain separators.

TreePRG. In PERK, the signer must generate sets of N seeds then reveal N − 1 of these
as part of the signature. In order to do so, the signer uses a master seed to compute a
binary tree structure whose N leaves correspond to the N seeds to be generated. This
allows to reveal N − 1 of these seeds efficiently by revealing intermediate nodes in the tree.
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2.2 Stack Usage in PERK
In the reference and optimized implementations of PERK, the primary factor influencing
stack usage during both signing and verification is the storage of variables such as seed trees,
permutations, and vectors. Let’s explore these variables by examining their computation
and usage across the different steps of the protocol in the provided implementations.

We start by the signing algorithm described in Figure 2. In each iteration e ∈ [1, τ ] of
the commitment step (Step 1), the signer generates a seed tree having the seeds (θ(e)

i )i∈[1,N ]

as leaves, the permutations (π(e)
i )i∈[1,N ], the vectors (v(e)

i )i∈[1,N ] and a set of commitments
(cmt(e)

1 , cmt(e)
1,i )i∈[1,N ]. In order to generate the first challenge (Step 2), the signer uses the

commitments computed in the previous step to generate h1 then samples the first challenge.
In the first response step (Step 3), in order to compute the vectors (s(e)

i )e∈[1,τ ],i∈[1,N ],
the signer must possess the pairs (π(e)

i , v
(e)
i )e∈[1,τ ],i∈[1,N ] generated in the commitment

step. Then, the signer uses the (s(e)
i )e∈[1,τ ],i∈[1,N ] to sample the second challenge through

h2 (Step 4). Finally, in order to generate the signature σ (Step 5), the signer needs
the seeds (θ(e)

i )e∈[1,τ ],i∈[1,N ], the permutations (π(e)
i )e∈[1,τ ],i∈[1,N ] and the commitments

(cmt(e)
1,i )e∈[1,τ ],i∈[1,N ] generated in the Step 1. It also needs the s

(e)
i computed in the Step 3.

In order to optimize performance and in light of variable reuse across different steps of the
scheme, the provided implementations leverage a data structure for storing these variables
to enable efficient reuse (see Figure 4). One should note that there is a total of τ instances
of the aforementioned data structure allocated in the stack, corresponding to the number
of rounds in the algorithm.

typedef struct {
perk_theta_seeds_tree_t theta_tree;
perm_t pi_i[PARAM_N];
vect1_t *v_i;
vect1_t s_i[PARAM_N + 1];
cmt_t cmt_1_i[PARAM_N];
cmt_t cmt_1;

} perk_instance_t;

Figure 4: Data structure used to store seed trees, permutations πi’s, random vectors vi’s,
vectors si’s and commitments (cmt1, cmt1,i) [ABB+23].

Having analyzed the stack usage of the signing algorithm, let us now shift our focus to
the verification algorithm where a similar observation can be made. Step 1 in the verifica-
tion algorithm involves parsing the signature and generating the challenges. During Step 2,
the signer generates and stores (π(e)

i , v
(e)
i )e∈[1,τ ],i∈[1,N ]\α(e) . To achieve this, they first need

to generate their corresponding seeds (θ(e)
i )i∈[1,N ]\α(e) from the partial tree, necessitating

the storage of seed trees. Notice that the set of pairs (π(e)
i , v

(e)
i )e∈[1,τ ],i∈[1,N ]\α(e) are used

later to generate the vectors (s(e)
i )e∈[1,τ ],i∈[1,N ]\α(e) . Then, the signer computes the commit-

ments (cmt(e)
1,i )e∈[1,τ ],i∈[1,N ]\α(e) using the seed trees and computes (s(e)

i )e∈[1,τ ],i∈[1,N ]\α(e)

which are used twice: first, for the computation of commitments (cmt(e)
1 )e∈[1,τ ] and then

subsequently for calculating the hash value h̄2. Finally, the signer uses the stored commit-
ments (cmt(e)

1 , cmt(e)
1,i )e∈[1,τ ],i∈[1,N ] to compute h̄1. Similarly to the signing algorithm, the

verify algorithm relies on the data structure depicted in Figure 4 to store these variables.
We provide in Table 3 the stack usage of the official PERK implementations. One

can see that the reference and optimized implementations have a very similar memory
consumption profile. As a consequence, we won’t differentiate them in the remaining of
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this paper for simplicity. Hereafter, whenever memory consumption values are given, they
correspond to the optimized implementation.

Table 3: Stack usage of the PERK reference and optimized implementations [ABB+23].

Algorithm Keygen Signing Verification
Ref. Opt. Ref. Opt. Ref. Opt.

PERK-I-fast3 10 kB 10 kB 307 kB 310 kB 307 kB 310 kB
PERK-I-fast5 11 kB 11 kB 299 kB 302 kB 299 kB 302 kB
PERK-I-short3 10 kB 10 kB 1.49 MB 1.49 MB 1.49 MB 1.49 MB
PERK-I-short5 11 kB 11 kB 1.40 MB 1.40 MB 1.40 MB 1.40 MB
PERK-III-fast3 17 kB 17 kB 671 kB 674 kB 671 kB 674 kB
PERK-III-fast5 18 kB 18 kB 647 kB 650 kB 647 kB 650 kB
PERK-III-short3 17 kB 17 kB 3.31 MB 3.31 MB 3.31 MB 3.31 MB
PERK-III-short5 18 kB 18 kB 3.08 MB 3.08 MB 3.08 MB 3.08 MB
PERK-V-fast3 27 kB 27 kB 1.14 MB 1.14 MB 1.14 MB 1.14 MB
PERK-V-fast5 29 kB 29 kB 1.09 MB 1.09 MB 1.09 MB 1.09 MB
PERK-V-short3 27 kB 27 kB 5.73 MB 5.74 MB 5.73 MB 5.74 MB
PERK-V-short5 29 kB 29 kB 5.29 MB 5.29 MB 5.29 MB 5.29 MB
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3 PERK on Memory-Constrained Devices
In order to enable PERK on resource-constrained devices, we propose several modifications
for the sign and verification algorithms in Section 3.1 and 3.2 respectively. The resulting
streamlined algorithms are described in 5 and 6 and constitutes the keystone of the
implementation evaluated in Section 4.

3.1 Sign Algorithm
We present several optimizations reducing the memory footprint of the Sign algorithm
in Section 3.1.1. Then, we discuss performance related optimizations in Section 3.1.2.
Some of these performance related optimizations increase the memory consumption of
the algorithm but are nonetheless considered as they constitutes interesting memory vs
performances trade-offs.

3.1.1 Memory related optimizations

Streamlining seed trees sampling and usage. As explained in Section 2.2, the seed
trees generated in Step 1 are preserved for later use in Step 5. Storing them requires
τ(2N − 1)λ/8 bytes hence inducing a large memory consumption. Alternatively, we opt
to generate the seed tree of each iteration, utilize them to derive required variables, and
then promptly erase them from memory. In Step 3 and Step 5, we recompute the seed
trees for each iteration as needed leveraging the knowledge of the salt and master seed
(salt, mseed). By adopting this approach, we can reduce the amount of stored memory
by a factor τ resulting in substantial savings in terms of memory footprint (see Table 4).
However, this comes at the cost of needing to recalculate the seed trees twice, specifically
in Steps 3 and 5.

Table 4: Stack memory required to store the seed trees in kB.

Algorithm PERK This work
PERK-I-fast3 30.2 1
PERK-I-fast5 28.2 1
PERK-I-short3 163 8.1
PERK-I-short5 147 8.1
PERK-III-fast3 69.5 1.5
PERK-III-fast5 65 1.5
PERK-III-short3 380 12.2
PERK-III-short5 343 12.2
PERK-V-fast3 122 2
PERK-V-fast5 114 2
PERK-V-short3 670 16.3
PERK-V-short5 605 16.3

Streamlining πi’s and vi’s sampling and usage. The permutations and random vectors
(π(e)

i , v
(e)
i )e∈[1,τ ],i∈[1,N ] are generated in Step 1 and preserved for subsequent use in Step 3

and 5. Alternatively, we choose to generate only one pair (π(e)
i , v

(e)
i ) at a time. This

strategy leads to significant savings in terms of memory footprint as shown in Table 5.
Indeed in the PERK implementation, permutations and vectors are stored using nNτ and
2nNτ bytes respectively while our implementationonly requires 3n bytes. However, this
modification implies to recomputate these values in Step 3 and 5.
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Table 5: Stack memory required to store permutations and vectors.

Algorithm PERK This work
PERK-I-fast3 227 kB 237 B
PERK-I-fast5 223 kB 249 B
PERK-I-short3 1.21 MB 237 B
PERK-I-short5 1.14 MB 249 B
PERK-III-fast3 494 kB 336 B
PERK-III-fast5 478 kB 348 B
PERK-III-short3 2.66 MB 336 B
PERK-III-short5 2.49 MB 348 B
PERK-V-fast3 854 kB 438 B
PERK-V-fast5 820 kB 450 B
PERK-V-short3 4.59 MB 438 B
PERK-V-short5 4.26 MB 450 B

Streamlining commitments and hash values computation. The commitments (cmt(e)
1 ,

cmt(e)
1,i )i∈[1,N ] are generated in Step 1 and used for computing h1 in Step 2. Subsequently,

only one commitment among (cmt(e)
1,i )i∈[1,N ] is required for later use in Step 5 where,

depending on the challenge α(e), a commitment becomes part of the signature. Storing
these commitments requires a significant amount of memory. Alternatively, instead of
deferring the absorption of these values until Step 2, we can efficiently absorb them within
Step 1 right after their generation. This is feasible for two reasons. Firstly, in Step 2,
the commitments (cmt(e)

1,i )i∈[1,N ] are absorbed before cmt(e)
1 , and the computation of the

latter does not depend on the values of the former. Secondly, the hash function’s state
is prepared in order to absorb these values. Hence, there is no need to wait until the
generation of all commitments is complete to compute h1. This results in a reduction of
the memory usage from 2λ(N + 1)τ bits down to 2λ bits (see Table 6) as we reuse the
buffer initially used for the computation of (cmt(e)

1,i )i∈[1,N ] for cmt(e)
1 . On the other hand,

since we don’t save the commitment value, this only comes at the cost of recomputing one
commitment cmt(e)

1,α(e) , in Step 5 which is computationally negligible. Similarly, we suggest
simplifying the computation of h2, mirroring the approach taken for h1. Specifically, the
absorption of vectors s

(e)
i occurs within Step 3.

Streamlining si computation. The vectors s
(e)
i are calculated during Step 3 and used to

compute h2 in Step 4 as well as in Step 5 where depending on the value of the challenge
α(e), a specific s

(e)
α(e) is selected from the set of stored s

(e)
i to be included in the signature.

It’s worth noting that in the current PERK implementation, s
(e)
i and v

(e)
i share the same

memory address. This approach allows to save memory as freshly computed s
(e)
i can be

stored at the index of the corresponding v
(e)
i used in its computation. Since v

(e)
i is not

used after Step 3, they can be overwritten in the buffer storing s
(e)
i . Rather than reusing

the buffer for v
(e)
i , our strategy involves recalculating s

(e)
i during Step 5. This choice

is based on the fact that, upon computation, each s
(e)
i is immediately absorbed by H2.

Consequently, there is no need to store these values and wait until Step 4. Additionally,
it’s important to highlight that in Step 5, we are not compelled to generate all N pairs;
instead, one can halt the generation at index α(e).
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Table 6: Stack memory required to store commitments.

Algorithm PERK This work
PERK-I-fast3 31.6 kB 32 B
PERK-I-fast5 29.5 kB 32 B
PERK-I-short3 164 kB 32 B
PERK-I-short5 148 kB 32 B
PERK-III-fast3 72.8 kB 48 B
PERK-III-fast5 68.1 kB 48 B
PERK-III-short3 382 kB 48 B
PERK-III-short5 345 kB 48 B
PERK-V-fast3 128 kB 64 B
PERK-V-fast5 120 kB 64 B
PERK-V-short3 674 kB 64 B
PERK-V-short5 608 kB 64 B

3.1.2 Performance related optimizations

Computing π−1. In Step 1, one can calculate π
(e)
1 by first computing the permutation

π−1 ◦ (π(e)
N )◦ . . .◦ (π(e)

2 ) and then inverting it. This approach enables the avoidance of N−1
permutation inverses, reducing the computation load to only two inversions: inverting the
secret permutation π and the intermediate result. Since π−1 is utilized in each iteration
e ∈ [1, τ ], it is suggested to compute and store this value. By doing so, the need to invert
π multiple times in Step 1 is mitigated, incurring only a negligible memory cost of n bytes
to store π−1.

Storing permutation π1. As we no longer retain the permutations (π(e)
i )i∈[1,N ] and

instead recalculate them in Step 5, it becomes necessary to recompute the permutation
π

(e)
1 , derived from the permutation (π(e)

2 , . . . , π
(e)
N ). This computation involves composing

(N − 1) permutations making it a resource-intensive task. To mitigate this, we adopt
the strategy of preserving the value of π

(e)
1 for each iteration e in Step 1. This approach

induces an overhead of Nτ bytes in memory consumption as illustrated in Table 7. This
amount is relatively modest hence this constitutes an interesting trade-off considering the
substantial performance gains achieved.

Optimizing permutation sampling and composition. In the streamlined version of the
PERK sign algorithm, right after sampling the permutation πi, this gets composed with
another permutation π1 ◦ (π(e)

i ) in Step 1. We improve these two operations thanks to the
following observation. Assume that we want to sample a permutation π and right after
we want to compute the composition τ ◦ π with another permutation τ . Let e0, . . . , en−1
be the random buffer utilized to sample π via djbsort. This main observation here is
that this buffer inherently represents the inverse of πi. More precisely, the sorting of the
buffer aligns with the one of π−1

i . Exploiting this observation, we optimize computations
as follows. Construct p = (p0, . . . , pn−1), where pi = (ei|τi|i). After sorting p using
djbsort, the lower bits, corresponding to i, encode the permutation π while the center
bits corresponding to τ precisely encode τ ◦ π. The main advantage of this novel approach
is that we perform all these operations by making only one call to djbsort instead of three
(sample, invert, compose). Notice that we can leverage this idea thanks to the fact that
djbsort works with 32 bits words, and this is enough for using 16 bits for the randomness,
8 bits for i and the remaining bits for τ .



12 Enabling PERK on Resource-Constrained Devices

Table 7: Stack memory required to store π1 in kB.

Algorithm This work
PERK-I-fast3 2.3
PERK-I-fast5 2.3
PERK-I-short3 1.5
PERK-I-short5 1.4
PERK-III-fast3 5.1
PERK-III-fast5 4.9
PERK-III-short3 3.4
PERK-III-short5 3.2
PERK-V-fast3 8.9
PERK-V-fast5 8.5
PERK-V-short3 5.9
PERK-V-short5 5.5

Balancing memory and performance using si. Given a targeted memory limit, one can
fine tune the implementation using the si in order to get the best possible performance
with respect to the available memory. By storing the (s(e)

i )e∈[1,τ ′],i∈[1,N ] values (where
τ ′ ≤ τ) after their computation in Step 3, one only need to recompute them in Step 5 for
the remaining τ − τ ′ rounds thus avoiding τ ′N computations of si values. In addition,
keeping s

(e)
0 is unnecessary and thus its computation can be omitted once the s

(e)
i values

are stored. For instance, using PERK-I-fast3 parameters, setting τ ′ = 7 requires 35.3 kB
of memory but saves 224 computations of si values. Similarly, using τ ′ = 15 and τ ′ = 30
requires 75.8 kB and 151 kB of memory but saves 480 and 960 computations of si values.
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Inputs: The key pair (sk, pk) = (sk_seed, (pk_seed, (yj)j∈[1,t])) and a message m ∈ {0, 1}∗

Step 1: Commitment

1. Sample π ←− PRG(sk_seed) from Sn and compute πinverse = π−1

2. Sample (H, (xj)j∈[1,t])←− PRG(pk_seed) from Fm×n
q × (Fn

q )t

3. Sample salt and master seed (salt, mseed) $←− {0, 1}2λ × {0, 1}λ

4. h1.state = H.init(salt)

5. h1.state = h2.state = H.update(m, pk)

6. For each iteration e ∈ [1, τ ],

⋄ Set π
(e)
1 = πinverse

⋄ Sample seed θ(e) ←− PRG(salt, mseed) from {0, 1}λ

⋄ Compute (θ
(e)
i

)i∈[1,N] ←− TreePRG(salt, θ(e))

⋄ For each party i ∈ {N, . . . , 2},

- Sample (π
(e)
i

, v
(e)
i

)←− PRG(salt, θ
(e)
i

) from Sn × Fn
q

- Compute cmt(e)
1,i

= H0(salt, e, i, θ
(e)
i

) and h1.state = H.update(h1.state, cmt(e)
1,i

))

- π
(e)
1 = π

(e)
1 ◦ (π

(e)
i

),

- If i = N , v(e) = v
(e)
N

and π
(e)
comp = π

(e)
N

- If i ̸= N v(e) = v(e) + π
(e)
comp(v

(e)
i

) and π
(e)
comp = π

(e)
comp ◦ π

(e)
i

⋄ Compute π
(e)
1 = π

(e)
1 inverse and cmt(e)

1,1 = H0(salt, e, 1, π
(e)
1 , θ

(e)
1 ) // We save π

(e)
1 .

⋄ h1.state = H.update(h1.state, cmt(e)
1,1)),

⋄ Sample v
(e)
1 ←− PRG(salt, θ

(e)
1 ) from Fn

q

⋄ v(e) = v(e) + π
(e)
comp(v

(e)
1 )

⋄ Compute cmt(e)
1 = H0(salt, e, Hv(e))

⋄ h1.state = H.update(h1.state, cmt(e)
1 ),

Step 2: First Challenge

7. Compute h1 = H1.final(h1.state, H1)

8. Sample (κ
(e)
j

)e∈[1,τ],j∈[1,t] ←− PRG(h1) from (Ft
q \ 0)τ

Step 3: First Response

9. Use h2.state from 5 (Step 1).

10. Compute h2.state = H.update(h2.state, h1)

11. For each iteration e ∈ [1, τ ],

⋄ Compute s
(e)
0 =

∑
j∈[1,t]

κ
(e)
j
· xj

⋄ Sample seeds θ(e) ←− PRG(salt, mseed) from {0, 1}λ

⋄ Compute (θ
(e)
i

)i∈[1,N] ←− TreePRG(salt, θ(e))

⋄ Sample v
(e)
i
←− PRG(salt, θ

(e)
1 ) from Fn

q

⋄ Compute s
(e)
1 = π

(e)
1 [s(e)

0 ] + v
(e)
1 // We use the saved π

(e)
1 .

⋄ Compute h2.state = H.update(h2.state, s
(e)
1 ).

⋄ For each party i ∈ [2, N ],

- Sample (π
(e)
i

, v
(e)
i

)←− PRG(salt, θ
(e)
i

) from Sn × Fn
q

- Compute s
(e)
i

= π
(e)
i

[s(e)
i−1] + v

(e)
i

- Compute h2.state = H.update(h2.state, s
(e)
i

).

Step 4: Second Challenge

12. Compute h2 = H2.final(h2.state, H2)

13. Sample (α(e))e∈[1,τ] ←− PRG(h2) from ([1, N ])τ



14 Enabling PERK on Resource-Constrained Devices

Step 5: Second Response

14. For each iteration e ∈ [1, τ ],

⋄ Compute s
(e)
0 =

∑
j∈[1,t]

κ
(e)
j
· xj

⋄ Sample seeds θ(e) ←− PRG(salt, mseed) from {0, 1}λ

⋄ Compute (θ
(e)
i

)i∈[1,N] ←− TreePRG(salt, θ(e))

⋄ Sample v
(e)
i
←− PRG(salt, θ

(e)
1 ) from Fn

q

⋄ Compute s
(e)
1 = π

(e)
1 [s(e)

0 ] + v
(e)
1 // We use the saved π

(e)
1 .

⋄ If α(e) > 1, for each party i ∈ [2, α(e)],

- Sample (π
(e)
i

, v
(e)
i

)←− PRG(salt, θ
(e)
i

) from Sn × Fn
q

- Compute s
(e)
i

= π
(e)
i

[s(e)
i−1] + v

(e)
i

⋄ Compute z
(e)
1 = s(e)

α

⋄ If α(e) ̸= 1, z
(e)
2 = (π

(e)
1 || (θ

(e)
i

)
i∈[1,N]\α(e) ), compute cmt(e)

1,α(e) = H0(salt, e, α(e), θ
(e)
α(e) )

⋄ If α(e) = 1, z
(e)
2 = (θ

(e)
i

)
i∈[1,N]\α(e) , compute cmt(e)

1,α(e) = H0(salt, e, 1, π
(e)
1 , θ

(e)
1 )

⋄ Compute rsp(e) = (z
(e)
1 , z

(e)
2 , cmt(e)

1,α(e) )

15. Compute σ = (salt, h1, h2, (rsp(e))e∈[1,τ])

Figure 5: Streamlined PERK - Sign algorithm

3.2 Verify Algorithm
In this section, we present several optimizations reducing the memory footprint of the
Verify algorithm. Some of these optimizations are presently concisely as they are the
counterpart of the optimizations described in Section 3.1.1 in the verification setting.

Streamlining seed trees sampling and usage. The Step 2 of the verification algorithm
involves generating and storing seed trees in memory for all iterations. Instead, a stream-
lined technique akin to the signing algorithm detailed in Section 3.1 is adopted hence seed
trees are computed dynamically in each iteration.

Streamlining πi’s and vi’s sampling and usage. As in the signing algorithm, one can
streamline the generation and use of permutation and vector pairs (π(e)

i , v
(e)
i ). Specifically,

one generate a single pair for each iteration (e) thus significantly reducing the memory
footprint. The pairs are generated immediately before their usage, precisely for computing
the vectors s

(e)
i , and are promptly removed from memory after.

Streamlining commitments and hash values computation. As outlined in Section 2.2,
PERK involves the computation and storage of commitments (cmt(e)

1 , cmt(e)
1,i )i∈[1,N ]). We

consider a comparable strategy to the aforementioned signing algorithm aiming to stream-
line their computation and their application in the computation of h̄1. For each iteration
e and for each party i, and depending on the challenge α(e), the computation of cmt(e)

1,i

involves the seed tree leaves along with data extracted from the signature σ. One should
note that the commitments are absorbed in a reverse order with respect to the signing
algorithm. Once the absorption of cmt(e)

1,i is complete, the computation of cmt(e)
1 follows

and is subsequently absorbed.

Computing h̄2. In our proposed approach, the computation of h̄1 and h̄2 occurs concur-
rently, diverging from the sequential process outlined in the PERK reference implementation.
Despite this difference in computation, it’s noteworthy that our approach yields the same
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result as the reference implementation. In the reference implementation, s
(e)
i values are

initially computed and stored. Then, h̄1 is computed, and finally, the precomputed s
(e)
i

values are used in the calculation of h̄2. To facilitate parallel computation and eliminate
the necessity of storing s

(e)
i values, we suggest initializing the h̄2 state with salt, m, pk,

and h1, all extractable from the signature σ. Moreover, the absorption of these values can
be accomplished in two stages. Firstly, leveraging the fact that h̄1 and h̄2 share certain
inputs, specifically the values salt, m, and pk, it is prudent to absorb these values initially.
Subsequently, the obtained state can be utilized for the concurrent computation of both
h̄2 and h̄1. This approach ensures efficient utilization of shared inputs in the calculation
process. This modification allows us to absorb s

(e)
i values on-the-fly as they are generated,

fulfilling our objective of abstaining from storing them.

Inputs: The public key pk = (pk_seed, (yj)j∈[1,t]), a signature σ and a message m ∈ {0, 1}∗

Step 1: Parse signature

1. Sample (H, (xj)j∈[1,t])←− PRG(pk_seed) from Fm×n
q × (Fn

q )t

2. Parse signature as σ = (salt, h1, h2, (z
(e)
1 , z

(e)
2 , cmt(e)

1,α(e) )e∈[1,τ])

3. Recompute (κ
(e)
j

)e∈[1,τ],j∈[1,t] ←− PRG(h1) from (Ft
q \ 0)τ

4. Recompute (α(e))e∈[1,τ] ←− PRG(h2) from ([1, N ])τ

Step 2: Verification

5. h̄1.state = H.init(salt)

6. h̄1.state = h̄2.state = H.update(m, pk)

7. Compute h̄2.state = H.update(h̄2.state, h1)
8. For each iteration e ∈ [1, τ ],

⋄ (θ
(e)
i

)
i∈[1,N]\α(e) ← PartialTreePRG(z2)

⋄ For each party i ∈ {N, · · · , 1}

- If i ̸= 1 and i ̸= α(e), compute cmt(e)
1,i

= H0(salt, e, i, θ
(e)
i

) and h̄1.state = H.update(h̄1.state, cmt(e)
1,i

))

- If i = 1 and α(e) ̸= 1, compute cmt(e)
1,1 = H0(salt, e, 1, π

(e)
1 , θ

(e)
1 ) and h̄1.state = H.update(h̄1.state, cmt(e)

1,1))

- If i = α(e), compute h̄1.state = H.update(h̄1.state, cmt(e)
1,α))

⋄ Compute s
(e)
0 =

∑
j∈[1,t]

κ
(e)
j
· xj and s(e)

α = z
(e)
1

⋄ For each party i ∈ [1, N ],

- If i ̸= α(e), Sample (π
(e)
i

, v
(e)
i

)←− PRG(salt, θ
(e)
i

) from Sn × Fn
q

- If i ̸= α(e), compute s
(e)
i

= π
(e)
i

[s(e)
i−1] + v

(e)
i

and h̄2.state = H.update(h̄2.state, s
(e)
i

)

- If i = α(e), compute h̄2.state = H.update(h̄2.state, s(e)
α )

⋄ Compute cmt(e)
1 = H0(salt, e, Hs

(e)
N
−

∑
j∈[1,t]

κ
(e)
j
· yj)

⋄ Compute h̄1.state = H.update(h̄1.state, cmt(e)
1 ),

9. Compute h̄1 = H1.final(h̄1.state, H1)

10. Compute h̄2 = H2.final(h̄2.state, H2)

11. Output accept if and only if h̄1 = h1 and h̄2 = h2.

Figure 6: Streamlined PERK - Verify algorithm
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4 Implementation and Evaluation on Cortex M4
We consider two additional implementations tailored to Arm Cortex M4 devices, building
upon the generic memory optimizations discussed in Section 3. In Section 4.1, we describe
various optimizations aimed at improving the running time on Cortex M4. This approach
is aligned with the PERK specification and successfully verifies the KAT for compatibility.
In Section 4.2, we discuss an alternative approach relying on distinct techniques to compute
permutation relation operations that achieve superior performances on the M4 device.
Although instantiating PERK in this way preserves all the features and guarantees of
the scheme, the resulting implementation does not replicate the KAT of the reference
implementation. In Section 4.3, we present the experimental results of our implementations
associated to Section 3, Section 4.1 and Section 4.2 respectively.

4.1 Implementation Compliant with Specifications
Optimizing permutation operations. While the PERK reference implementation employs
djbsort for permutation composition, inversion and application to vector as explained in
Section 2.1.2, we leverage the cache-less RAM architecture of Cortex M4 devices to enhance
performances. Standard iterative algorithms for permutation operations offer greater speed,
but their secret-dependent memory accesses introduce vulnerabilities to cache side-channel
attacks. However, most Cortex M4 devices, including our target STM32F407, lack of RAM
cache hardware [Lim, Sec. 3.6], allowing us to mitigate this threat. We then replaced the
djbsort-based algorithms with their standard counterparts, achieving a notable speed-up
in the Sign algorithm. Note that the standard method to permute a vector was already
used in the Verification algorithm as constant-time is not a requirement in that context.

Optimizing djbsort for Cortex M4. To obtain a significant speed-up in the operation
of sampling permutations at random, we employed a variant implementation of djbsort
optimized for Cortex M4 devices from the work of [GFSL]. More specifically, this im-
plementation builds upon the portable djbsort/int32/portable4 implementation and
translates the macro int32_MINMAX to its assembly equivalent on the M4 architecture
while maintaining the original functionality.

Stack only permutation compression. The packing algorithm used for the fast parame-
ters of PERK in the reference implementation do not require any modification for running
on Cortex M4 devices. On the other hand, the ranking and unranking algorithms used for
compressing permutations for the short parameters are memory and time consuming. For
this reason, we dropped the gmp implementation used in the PERK reference implementa-
tion for an equivalent stack-only implementation that makes use of the tiny-bignum-c2

library for multiple-precision integer operations. More specifically, tiny-bignum-c is a
stack-only multiple-precision library characterized by a relatively small code size. Here,
we customized the library to make use of the minimum amount of memory for every
short parameters set of PERK. Furthermore, we enhanced big numbers multiplication
by integrating it with the Karatsuba integer multiplication algorithm for big numbers3.
Similarly to what is done with gmp in the PERK reference implementation, we also make
use of a look-up table for storing the factorials 0!, 1!, ..., n! used in the ranking and unrank-
ing algorithms. However, while in the PERK reference implementation the factorial are
stored in base-62 representation strings and then converted when reading, we can store
the factorials directly in the tiny-bignum-c native format, thanks to the fact that in this
case, big numbers are represented simply as uint32_t arrays.

2available at https://github.com/kokke/tiny-bignum-c.
3available at https://github.com/umnikos/tiny-bignum-c.

https://github.com/kokke/tiny-bignum-c
https://github.com/umnikos/tiny-bignum-c
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4.2 Faster Variant of PERK
The Fisher-Yates shuffle [FY38, Dur64] stands out as one of the most widely used methods
for generating random permutations. However, in a cryptographic context, this algorithm
is often dismissed because, in its naive and most efficient implementation, it uses secret-
dependant memory accesses thus making cache side-channel attacks possible [BCMP24].
For the reasons explained in Section 4.1, Fisher-Yates is not vulnerable to these kind
of attacks when implemented on our target devices. Hence, we propose here a variant
of PERK that uses Fisher-Yates to sample random permutations at the place of the
djbsort-based technique (see Section 2.1.2).

More specifically, we implemented the variant of Fisher-Yates outlined in Algorithm 1.
This algorithm comprises two main subroutines: sampling random integers from decreasing-
length intervals (Line 2) and shuffling (Line 4). While the latter is straightforward to
implement, the former demands careful considerations. Sampling random integer from an
interval whose length is not a power of two might introduce unwanted bias to the algorithm
if not implemented correctly. To address this, we adopted the approach recommended in
[BCMP24] and employed the algorithm proposed by Lemire [Lem19].

Notice that, for a given seed, Algorithm 1 produces a different permutation than the
one sampled using djbsort as explained in Section 2.1.2. Hence, this variant of PERK
will not produce and pass the official KAT of PERK.

Algorithm 1: Fisher-Yates algorithm for sampling random permutations.
Input: A positive integer n
Output: A random permutation π from Sn

1 Initialize lists ℓ, π of length n;
2 for i← 0 to n− 1 do
3 ℓ[i] $←− {0, . . . , i};

4 for i← 0 to n− 1 do
5 π[i] = π[ℓ[i]];
6 π[ℓ[i]] = i;
7 return π

4.3 Experimental Results
The approaches described in Section 3, Section 4.1 and Section 4.2 have all been im-
plemented on a Cortex M4 device. Hereafter, we provide an evaluation of the resulting
implementations by reporting in Tables 8, 9 and 10 their stack consumption and CPU
Cyles count during key generation, signing and verification for each NIST security level.
We compare our implementations to the PERK reference implementation [ABB+23].

Our benchmark uses the STM32F407 discovery board that is also used by the testing
and benchmarking framework pqm4 [KPR+]. The STM32F407 board is equipped with
192 kB of memory, 1 MB of flash, and can operate at frequencies of up to 168 MHz. Our
build and performance evaluation configuration rely on pqm4, with benchmarks conducted
at a frequency of 24 MHz to minimize flash memory related wait cycles. For each parameter
set, the results have been obtained by computing the average from 20 random instances.
In particular, all cycle counts were produced with the compiler arm-none-eabi-gcc in
version 13.2.rel1 with the default optimization flags specified by the pqm4 build framework.

One can see that our implementations require between 24 kB and 82 kB of stack memory
depending on the considered NIST security level. One should note that we have not used
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the memory vs performance trade-off that exploits all the available memory (see “Balancing
memory and performances using si” in Section 3.1.2) as stack consumption was prioritized
for this benchmark. Our implementations reduce the amount of required memory by a
factor 12 to 65 depending on the considered parameter set. As expected, such a reduction
is achieved at the cost of performance. Indeed, our generic implementation from Section 3
is approximately 15 times slower for signing and 9 times slower for verification compared
to the PERK reference implementation. Similarly, our implementation compliant with
PERK specification and KAT from Section 4.1 is approximately 8 times slower than PERK
reference implementation. Interestingly, our faster variant from Section 4.2 can improve
the performances by up to 12% depending on the considered instance.

Table 8: Performance benchmarks for PERK-I.

PERK Instance Stack Consumption CPU Cycles
Keygen Sign Verify Keygen Sign Verify

Ref.[ABB+23] 10 kB 307 kB 307 kB 0.1 M 21 M 8.9 M
PERK-I Section 3 7 kB 24 kB 20 kB 0.6 M 319 M 82 M

fast3 Section 4.1 7 kB 24 kB 20 kB 0.5 M 165 M 76 M
Section 4.2 7 kB 24 kB 20 kB 0.5 M 155 M 72 M
Ref.[ABB+23] 11 kB 299 kB 299 kB 0.1 M 21 M 8.5 M

PERK-I Section 3 9 kB 25 kB 21 kB 0.8 M 312 M 80 M
fast5 Section 4.1 9 kB 25 kB 21 kB 0.6 M 158 M 73 M

Section 4.2 9 kB 25 kB 21 kB 0.6 M 147 M 69 M
Ref.[ABB+23] 10 kB 1.49 MB 1.49 MB 0.8 M 112 M 48 M

PERK-I Section 3 7 kB 27 kB 25 kB 0.6 M 1 760 M 502 M
short3 Section 4.1 7 kB 27 kB 25 kB 0.5 M 898 M 433 M

Section 4.2 7 kB 27 kB 25 kB 0.5 M 848 M 411 M
Ref.[ABB+23] 11 kB 1.40 MB 1.40 MB 0.1 M 106 M 44 M

PERK-I Section 3 9 kB 28 kB 26 kB 0.8 M 1 668 M 470 M
short5 Section 4.1 9 kB 28 kB 26 kB 0.6 M 830 M 401 M

Section 4.2 9 kB 28 kB 26 kB 0.6 M 779 M 377 M
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Table 9: Performance benchmarks for PERK-III.

PERK Instance Stack Consumption CPU Cycles
Keygen Sign Verify Keygen Sign Verify

Ref.[ABB+23] 17 kB 671 kB 671 kB 0.2 M 50 M 21 M
PERK-III Section 3 14 kB 47 kB 41 kB 1.4 M 760 M 200 M

fast3 Section 4.1 14 kB 47 kB 41 kB 1.3 M 394 M 184 M
Section 4.2 14 kB 47 kB 41 kB 1.3 M 376 M 176 M
Ref.[ABB+23] 18 kB 647 kB 647 kB 0.2 M 48 M 20 M

PERK-III Section 3 16 kB 48 kB 42 kB 1.7 M 739 M 193 M
fast5 Section 4.1 16 kB 48 kB 42 kB 1.5 M 376 M 176 M

Section 4.2 16 kB 48 kB 42 kB 1.5 M 356 M 168 M
Ref.[ABB+23] 17 kB 3.31 MB 3.31 MB 0.2 M 273 M 117 M

PERK-III Section 3 14 kB 51 kB 46 kB 1.4 M 4 312 M 1 252 M
short3 Section 4.1 14 kB 51 kB 46 kB 1.3 M 2 221 M 1 105 M

Section 4.2 14 kB 51 kB 46 kB 1.3 M 2 141 M 1 067 M
Ref.[ABB+23] 18 kB 3.08 MB 3.08 MB 0.2 M 253 M 106 M

PERK-III Section 3 16 kB 51 kB 47 kB 1.7 M 4 028 M 1 165 M
short5 Section 4.1 16 kB 51 kB 47 kB 1.5 M 2 071 M 1 031 M

Section 4.2 16 kB 51 kB 47 kB 1.5 M 1 960 M 986 M

Table 10: Performance benchmarks for PERK-V.

PERK Instance Stack Consumption CPU Cycles
Keygen Sign Verify Keygen Sign Verify

Ref.[ABB+23] 27 kB 1.14 MB 1.14 MB 0.3 M 100 M 45 M
PERK-V Section 3 25 kB 80 kB 69 kB 2.4 M 1 531 M 430 M

fast3 Section 4.1 25 kB 80 kB 69 kB 2.3 M 823 M 394 M
Section 4.2 25 kB 80 kB 69 kB 2.3 M 735 M 360 M
Ref.[ABB+23] 29 kB 1.09 MB 1.09 MB 0.3 M 97 M 43 M

PERK-V Section 3 28 kB 80 kB 70 kB 2.9 M 1 465 M 410 M
fast5 Section 4.1 28 kB 80 kB 70 kB 2.7 M 782 M 376 M

Section 4.2 28 kB 80 kB 70 kB 2.6 M 694 M 340 M
Ref.[ABB+23] 27 kB 5.73 MB 5.73 MB 0.3 M 536 M 238 M

PERK-V Section 3 25 kB 82 kB 74 kB 2.5 M 8 646 M 2 691 M
short3 Section 4.1 25 kB 82 kB 74 kB 2.3 M 4 758 M 2 474 M

Section 4.2 25 kB 82 kB 74 kB 2.3 M 4 265 M 2 280 M
Ref.[ABB+23] 29 kB 5.29 MB 5.29 MB 0.3 M 511 M 230 M

PERK-V Section 3 28 kB 82 kB 74 kB 2.9 M 7 996 M 2 488 M
short5 Section 4.1 28 kB 82 kB 74 kB 2.7 M 4 403 M 2 298 M

Section 4.2 28 kB 82 kB 74 kB 2.6 M 3 905 M 2 104 M
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