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Abstract

Digital elevation models are responsible for providing altimetric information on a surface to be mapped. While global models of low 
and medium spatial resolution are available open source by several space agencies, the high-resolution ones, which are utilized in 
scales 1:25,000 and larger, are scarce and expensive. Here we address this limitation by the utilization of deep learning algorithms 
coupled with Single Image Super-Resolution techniques in digital elevation models to obtain better spatial quality versions from lower 
resolution inputs. The development of a GAN-based (Generative Adversarial Network-based) methodology enables the improvement 
of the initial spatial resolution of low-resolution images. In the geospatial data context, for example, these algorithms can be used with 
digital elevation models and satellite images. The methodological approach uses a dataset with digital elevation models SRTM (Shuttle 
Radar Topography Mission) (30 meters of spatial resolution) and ALOS PALSAR (12.5 meters of spatial resolution), created with the 
objective of allowing the study to be carried out, promoting the emergence of new research groups in the area as well as enabling the 
comparison between the results obtained. It has been found that by increasing the number of iterations the performance of the generated 
model was improved and the quality of the generated image increased. Furthermore, the visual analysis of the generated image against 
the high- and low-resolution ones showed a great similarity between the first two.
Keywords: Deep learning; Neural networks; Digital image processing

Resumo

Os modelos digitais de elevação são responsáveis   por fornecer informações altimétricas sobre uma superfície a ser mapeada. Enquanto 
modelos globais de baixa e média resolução espacial estão disponíveis em código aberto por diversas agências espaciais, os de alta 
resolução, que são utilizados em escalas 1:25.000 e maiores, são escassos e onerosos. Neste trabalho, foi abordada essa limitação pela 
utilização de algoritmos de aprendizado profundo acoplados a técnicas de Super-Resolução de Imagem Única em modelos digitais de 
elevação para obter versões de melhor qualidade espacial a partir de entradas de resolução mais baixa. O desenvolvimento de uma 
metodologia baseada em GAN (Generative Adversarial Network) permite melhorar a resolução espacial inicial de imagens de baixa 
resolução. No contexto de dados geoespaciais, por exemplo, esses algoritmos podem ser usados   com modelos digitais de elevação e 
imagens de satélite. A abordagem metodológica utiliza um conjunto de dados com modelos digitais de elevação SRTM (Shuttle Radar 
Topography Mission) (30 metros de resolução espacial) e ALOS PALSAR (12,5 metros de resolução espacial), criados com o objetivo 
de permitir a realização do estudo, promovendo o surgimento de novas pesquisas na área, além de possibilitar a comparação entre os 
resultados obtidos. Verificou-se que ao aumentar o número de iterações o desempenho do modelo gerado foi melhorado e a qualidade 
da imagem gerada aumentou. Além disso, a análise visual da imagem gerada contra as de alta e baixa resolução mostrou uma grande 
semelhança entre as duas primeiras.
Palavras-chave: Deep learning; Neural networks; Digital image processing
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1 Introduction
Society’s search for access to geospatial data 

is increasing. Such data is used to carry out different 
activities, whether professional, recreational or leisure. 
The emergence and development of new technologies 
and methodologies make it possible for professionals in 
the field of geosciences to meet this growing demand. 
Considering factors associated with the cost and limitations 
of devices aimed at acquiring spatial data, Super Resolution 
(SR) techniques are a viable alternative to increase the 
resolution and improve the psychovisual quality of the 
images (Azarang & Kehtarnavaz 2021; Rézio, Schwartz 
& Pedrini 2011). 

Essentially, it starts from the premise that the 
quality of the resulting image will be superior to their 
source image, such a technique is called super-resolution 
(Azarang & Kehtarnavaz 2021). It is based on the idea 
that Low Resolution (LR) images of a given scene can 
generate a High Resolution (HR) image. In this way, it 
tries to reconstruct the image of the original scene with 
high resolution, given a set of images observed in lower 
resolution (Capel & Zisserman 2003). The SR aims to 
improve the resolution of an image and increase its spatial 
resolution by increasing its number of pixels and seeking 
to reduce the occurrence of effects due to the acquisition 
itself, such as details loss, quality loss, lack of sharpness, 
occurrence of smudges, among others.

According to Capel and Zisserman (2003), Telles 
Junior (2008), Yang et al. (2015) and Ma et al. (2017) 
in super-resolution techniques, one or more low spatial 
resolution images of the same scene may be combined 
in order to produce one or several high spatial resolution 
images. The LR and HR images represent the same area but 
have differences between them, which can be characterized 
by: different acquisition dates, different projections, small 
variations in spatial resolution and displacements of pixels 
or subpixels.

In order to make SR viable, a solution regularly 
sought is the adoption of upscaling techniques, where 
mathematical interpolation operations, such as bilinear or 
bicubic, are applied to create a higher spatial resolution 
version of the original image (Lei, Shi & Zou 2017; 
Romano, Isidoro & Milanfar 2017; Shao et al. 2019). Such 
techniques usually present satisfactory results for cases 
in which the desired resolution increase is up to twice 
the value of the original image. For increases above the 
scale value, the results obtained are worse, and often not 
acceptable for the desired purposes, making it necessary 
the use of more robust techniques. This work addresses 
this limitation by applying deep learning techniques, such 

as algorithms adapted from Enhanced Super-Resolution 
Generative Adversarial Network (ESRGAN), to achieve 
such resolution improvements (Wang et al. 2018; Wu & 
Ma 2020).

Single Image Super-Resolution (SISR), as used in 
the research, is a relevant processing technique in the field 
of computer vision and it presents itself as a methodological 
alternative to the more usual SR processes, which combine 
images obtained in subpixel misalignments or those based 
on learning correspondences between patches of high-
resolution images from a database (Glasner, Bagon & Irani 
2009). Currently, concepts of Artificial Intelligence (AI) 
and Deep Learning (DL) integrate the state of the art of 
methodologies addressing SR images challenges. 

A number of academic works in the scientific 
literature address multiple aspects of the techniques used 
in the achievement of Digital Surface Models (DSM) and 
Digital Terrain Models (DTM), with regard to obtaining 
altitudes above the Earth’s surface for the construction 
of topographical and thematic maps (Li et al. 2022; 
Wilson 2012; Galin et al. 2019; Li, Zhu & Gold 2004). 
Such applications are widely used in different spheres of 
science, such as geodesy, photogrammetry, remote sensing, 
cartography, hydrology, topography, among others. 

Among these fields of action, the following activities 
can be cited as an example: monitoring of structural 
deformations; the integration of satellite images and auxiliary 
data for the delimitation of physiognomic and geological 
units; digital processing of satellite images for monitoring 
natural resources; numerical modeling of terrain on bases; 
gravitational anomaly prediction; the transformation between 
geodetic reference systems, among others (Wilson 2012; 
Galin et al. 2019; Li, Zhu & Gold 2004).

Several studies have demonstrated that using high 
resolution DTM as inputs it is possible to build more 
accurate flood maps compared to low resolution DTM. 
Despite the importance of high resolution DTM, many 
areas in the United States and the world do not have access 
to high resolution DTM due to technological limitations 
or the data collection cost (Demiray, Sit & Demir 2021).

Currently, there are some DEM (Digital Elevation 
Models) of global or regional scope that provide a number 
of applications. This work uses data from two sources: 
the Shuttle Radar Topography Mission (SRTM) and the 
ALOS data. The SRTM was a mission carried out jointly 
by the North American Space Agency (NASA), the United 
States Department of Defense (US DOD), represented 
by the National Geospatial-Intelligence Agency (NGA), 
the Space Agency German (Deutsches Zentrum für Luft- 
und Raumfahrt eV - DLR) and the Italian Space Agency 
(Agenzia Spaziale Italiana - ASI). In general, the SRTM  
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has an absolute vertical accuracy of about 16 meters for the 
C band and 6 meters for the X band, the absolute planimetric 
accuracy is of the order of 20 meters for the C band and 
15 meters for the X band, using a 90% confidence level, 
according to the National Map Accuracy Standard (NMAS) 
(Farr et al. 2007).

The ALOS satellite was launched on January 24th, 
2006 by the Japan Aerospace Exploration Agency (JAXA), 
and entered the operational and data delivery phase to the 
public on October 24th, 2006, having completed its operation 
on May 12th, 2011. On May 24th, 2014, ALOS–2 was 
launched as a continuation of the ALOS mission, featuring 
enhanced capabilities for wider observation and high 
resolution (10 m resolution). Two other missions are under 
development: ALOS–3 from ALOS–4 (EMBRAPA 2021).

In brief, this research aims to contribute to the 
academic environment through new approaches to the 
generation of information from orbital altimetry data, a 
subject closely related not only to geodesy, but also to 
several other related areas such as cartography, remote 
sensing, photogrammetry, among others. Among the 
benefits to the area of geodetic sciences that the proposed 
methodology may bring, are the reduction of costs in the 
production of high spatial resolution DEM as well as the 
generation of high-resolution DEM for regions where only 
low spatial resolution models are available.

1.1 Super-Resolution Methods Based on Neural 
Network 

A Generative Adversarial Network (GAN) is a class 
of machine learning systems invented by Ian Goodfellow 
in 2014 where two neural networks compete with each 
other in a game - in the game theory sense, in the form 
of a zero-sum game (Goodfellow et al. 2014). This 

technique generates new data with the same statistics as 
the training set. Training a GAN involves a “generator” 
and a “discriminator” networks together, where the first 
network synthesizes realistic images at input, and the 
second architecture classifies input data as synthetic or 
real (Azarang & Kehtarnavaz 2021).

Following up the original GAN, the Super-
Resolution Generative Adversarial Network (SRGAN) 
algorithm has been developed. The SRGAN combines 
deep neural networks with a GAN to learn how to 
generate upscaled images (Figure 1). During training, a 
high-resolution image is first downsampled into a lower 
resolution image and input into a generator. The generator 
then tries to upsample that image into a super-resolution 
image. The discriminator is used to compare the generated 
super-resolution image to the original high-resolution 
image. The GAN loss from the discriminator is then back 
propagated into both the discriminator and generator. The 
discriminator is mainly composed of convolution, batch 
normalization and parameterized ReLU (PRelU) layers 
(Ledig et al. 2017). 

Although the SRGAN has stimulated new creations 
and brought new ideas capable of generating realistic textures 
during the super-resolution of a single image, undesirable 
artifacts were often observed. To further improve the visual 
quality, three main components were added to the SRGAN, 
namely (i) network architecture, (ii) adversarial loss, and 
(iii) perceptual loss, to derive an Enhanced Super-Resolution 
Generative Adversarial Networks (ESRGAN). In addition, 
two modifications were made to the generator structure: the 
removal of all Batch Normalization (BN) layers and the 
replacement of the original basic block with the proposed 
Residual-in-Residual Dense Block (RRDB), which combines 
multilevel residual network and dense connections (Wang 
et al. 2018; Chen et al. 2020). 

Figure 1 Schematic of a generative adversarial network: Looking back at the original vanilla GAN and its evolution over time (Perera 2021).
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The idea of relativistic GAN was also introduced 
to let the discriminator predict the relative realness instead 
of the absolute value. However, GANs usually take only 
random noise as input samples, which leads to an ambiguous 
meaning of the generated results (Li et al. 2022). Unlike 
the standard discriminator in SRGAN, which estimates 
the probability that an input image is real and natural, the 
relativistic discriminator attempts to predict the probability 
that a real image is relatively more realistic than a fake one 
(Wang et al. 2018).

Furthermore, ESRGAN presents a more effective 
loss of perception (L percep) by restricting resources before 
activation rather than after activation as practiced in SRGAN 
(Chen et al. 2020). Based on the idea of being closer to the 
perceptual similarity, the perceptual loss extended to the 
SRGAN has been proposed. The perceptual loss has been 
previously defined in the activation layers of a pre-trained 
deep network, where the distance between two activated 
features is minimized. Contrary to convention, resources 
were used before the activation layers, which overcome 
two disadvantages of the original design (Wang et al. 2018). 

Perceptual loss was also improved using the features 
before activation which provided stronger supervision for 
gloss consistency and texture recovery. Benefiting from these 
improvements, the ESRGAN achieved consistently better 
visual quality with more realistic and natural textures than 
SRGAN (Wang et al. 2018). ESRGAN is able to generate 
more detailed structures in construction, while other methods 
fail to produce sufficient detail (SRGAN) or add unwanted 
textures (EnhanceNet). Also, earlier GAN-based methods 
sometimes introduce distortions into the image. 

Single Image Super-Resolution has attracted 
increasing attention in the AI research community. Since 
the pioneering work of single image Super-Resolution 
deep Convolutional Neural Network (SRCNN), deep 
Convolutional Neural Network (CNN) approaches have 
brought a prosperous development. Various network 
architecture projects and training strategies have continuously 
improved super-resolution performance, especially the peak 
signal-to-noise ratio (PSNR) value. However, these PSNR-
driven approaches tend to produce over-smoothed results 
without sufficient high-frequency detail, as the PSNR metric 
fundamentally disagrees with the subjective assessment of 
human observers (Wang et al. 2018).

This work aims to develop an alternative for the 
generation of a digital elevation model with better spatial 
resolution using single image super-resolution technique 
through Generative Adversarial Network. The model 
proposed here to produce a digital elevation model with 
super-resolution has been used to obtain super-resolution 
color photographs (Goodfellow et al. 2014).

2 Methodology and Data
This section describes the methodology used in this 

work to achieve the results presented. The work proposed 
here is based in the ESRGAN with modifications described 
in subsection 3.4 to adapt the algorithm to DEMs. The 
proposed algorithm is referred to as DEM-ESRGAN. The 
programming language used in the developments carried 
out in this work was the Python 3.7 interpreter. 

2.1 Synthesis of the Pipeline

In order to synthesize the adopted procedures, 
a flowchart with the used pipeline has been produced  
(Figure 2). In the pipeline, the generation of the digital 
elevation model with the DEM-ESRGAN algorithm is 
called “data processing”. The sub-sections 3.2 to 3.5 
describe the elements presented in this flowchart.

2.2 Study Area

The selection of the study area for this work follows 
two-fold criteria: it should not only allow the use of several 
digital elevation models, but also provide a qualitative 
evaluation of different types of terrain models. In this 
context, the study area selected for the present work is 
the municipality of Monte Castelo in the State of Santa 
Catarina, Brazil, due to the variations of its relief features. 
The State of Santa Catarina covers an area of 95,346 km² 
in the south of Brazil and has recently had its territory 
mapped at a scale of 1:50,000, producing digital terrain 
models of 1-meter spatial resolution, available for free to 
download on the internet, which will be used later in the 
DEM-ESRGAN algorithm evaluation.

2.3 Data 

To carry out this research, the following data has 
been selected: DEM SRTM of 30 meters (https://earthdata.
nasa.gov) and DEM ALOS PALSAR of 12.5 meters. All 
these selected digital models are available for download 
and use on the internet and have global coverage.

2.3.1. Dataset

For the accomplishment of the present work, the 
following dataset has been created: DEM SRTM of 30 
meters (as LR images) and DEM ALOS PALSAR of 12.5 
meters (as HR images or ground truth), with 50 pairs of 
training images and 20 pairs of validation images (Figure 
3 and 4). The criterion used to partition the 70 image pairs 
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Figure 2 Synthesis flowchart of the pipeline followed in this work.

was the proportion of 70% of the samples for training the 
algorithm and 30% of the samples for its validation. The 
images used were cropped in the following dimensions: 
156 pixels by 156 pixels. 

In relation to the dataset built with samples from 
DEM SRTM 30 meters and DEM ALOS PALSAR 12.5 

meters, considering the region with the respective images 
selected for their construction, it has been found that using 
the resampled LR image to calculate the average difference 
between the LR and HR images, a discrepancy value of 
5.6909 meters was obtained and the difference of standard 
deviation presented is 0.3483 meters.
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Figure 3 Demonstations of 4 low resolution samples generated 
for the dataset used to perform the DEM-ERSGAN training. 

Figure 4 Illustration of 4 low resolution samples generated for the 
dataset used to perform the DEM-ERSGAN validation. 

2.4 Processing with the DEM-ESRGAN Algorithm

The pairs of images generated for the dataset will 
be used to perform the processing in the DEM-ESRGAN 
algorithm. The DEM-ESRGAN algorithm has been 
developed adapting the ESRGAN algorithm by changing 
the inputs and outputs. ESRGAN uses files with extension 
.PNG colored images with 3 bands (RGB) as input and 
output. To run files with altimetric information, it was 
necessary to change the input and output to .TIF images 
with only 1 band. Another necessary modification was 
the image scaling (spatial and radiometric resolution), so 
that the DEM-ESRGAN algorithm could receive different 
combinations of digital models.

The ESRGAN algorithm offers the possibility to 
upscale the image by 2x, 4x or 8x. In order to adapt the 
ESRGAN into DEM-ESRGAN, the scaling factor had to 
be defined. Thus, a scaling factor of 4x between low- and 
high-resolution images has been set for the DEM-ESRGAN.

2.5 Evaluation Metrics

The measures used to perform quality control of 
the results from the experiments here reported are: Peak 
Signal-to-Noise Ratio (PSNR), Structural Similarity Index 
Measure (SSIM), Mean Squared Error (MSE), Naturalness 

Image Quality Evaluator (NIQE), and Root Mean Squared 
Error (RMSE).

The PSNR is a measure defined as the ratio between 
the maximum energy of a signal and the noise that affects 
its faithful representation (SCIKIT-IMAGE 2022. A higher 
PSNR means smaller noise and because of that, it generally 
indicates that the reconstruction is of higher quality.

The SSIM is a metric used to measure the similarity 
between two images. The resulting SSIM index is a decimal 
value between -1 and 1, with a value of 1 occurring only 
when the two data sets are identical and therefore indicating 
perfect structural similarity (IMATEST 2022; SCIKIT-
IMAGE 2022).

The NIQE is an image quality score. It compares a 
given image to a standard model calculated from images 
of natural scenes, where a lower score obtained indicates 
better perceptual quality (GITHUB 2022).

The MSE is a measure of the quality of a given 
estimator. The MSE values of two statistical models can 
be used to measure how well they explain a given set 
of observations. The value of MSE is always positive or 
greater than zero. A value close to zero represents a better 
quality of the regression model. In the absence of noise, the 
MSE is zero. The RMSE is the square root of the MSE and 
allows the results of the metric to be analyzed in the same 
dimension as the data (SCIKIT-IMAGE 2022).
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2.6 Evaluation of the Generated Products

To carry out the evaluation of the generated 
products, different analyzes were carried out, such as: 
analysis of automatically generated contour lines, altimetry 
cartographic pattern analysis, visual evaluation of drainage 
networks, critical points evaluation, DEMs slope evaluation, 
DEMs aspect evaluation and visualization of the generated 
DEMs together with the high and low resolution DEMs. 

2.7 Hardware Resources

To perform the DEM-ESRGAN runs, the following 
hardware equipment has been used (not required) (Table 1):

3 Results

3.1 Processing Runs

In this work, three processing runs were performed 
with a variation in the number of iterations among them. 
The first run was performed with 10,000 iterations and is 
referred to as Run 1. The second run has 50,000 iterations 
and is referred to as Run 2. And the third run has 100,000 
iterations and is referred to as Run 3. Such conformation 
of runs has been selected so that it is possible to observe 
the behavior of the algorithm in relation to the parameter 
iteration number, as well as to understand the model in the 
variation of the results of each run.

The 50 training sets are used to define the model 
parameters as well as to perform in-sample analysis of the 
models generated in each run. The 15 validation sets are 
used to perform the Peak Signal to Noise Ratio (PSNR) 
metric calculations of the runs and to perform the losses 
calculations. The method used to partition the dataset in 
this work is the Holdout Method, considering p = 70%.

For the analysis of the processing metrics, it has 
been found that the implementation of five different metrics 

for evaluating the generated images added greater analysis 
power to the research. It is noteworthy that among the 
metrics used, the first two (PSNR and SSIM) are directly 
proportional values, while the last three (NIQE, MSE and 
RMSE) are inversely proportional values.

At the end of the runs with the validation dataset, 
the values of the PSNR metrics were calculated leading 
to a PSNR of 48.779 for the Run 1, a PSNR of 49.172 
for the Run 2, and a PSNR of 51.511 for the Run 3. So 
that the PSNR decreases with an increasing number of 
iterations, and the Run 3 with 10,000 iterations performed 
best, with the highest PSNR value. Nevertheless, if one 
follows the PSNR as the iterations progress, one observes an 
oscillatory variation of the PSNR values, thus not occurring 
a continuous growth or decline over time.

3.2 Quantitative Evaluation

The images generated by the Run 3 are superior in 
practically all the metrics used in the evaluation, with the 
exception of SSIM (Table 2).

To enable the comparison of the DEM-ESRGAN 
algorithm with other typical interpolation methods, and 
to verify how each scores in this problem, a benchmark 
was carried out with such methods, making it possible to 
obtain results from different metrics (PSNR, SSIM, MSE 
and RMSE) (Table 3). The DEM-ESRGAN algorithm with 
100,000 epochs (Run 3) showed the best result among all 
other typical interpolation methods used in this evaluation.

The altimetric positional accuracy assessment is 
based on the analysis of residuals between the coordinates 
taken from a cartographic product and their counterparts 
observed in another product. To perform the Altimetric 
Cartographic Accuracy Pattern analysis, a matrix of 
difference of pixels of each pair of images, ground truth 
and generated, is used. The Mean Error (ME) and the 
Standard Error (SE) are then calculated, in order to verify 
the appropriate scales to be used by the evaluated product 
(Table 4).

3.3 Visual Evaluation

Figure 5 presents the structural lines results (drainage 
channels) in the high resolution DEMs and in the DEMs 
generated by the processing under analysis. Firstly, it can be 
seen that Run 3 can get the best matching rate of drainage 
channel characteristics. So, Run 3 outperforms Run 1 and 
Run 2 in preserving the characteristics of drainage channels. 
This result can be verified by comparing the similarities 
found between the processing lines and the true ground 
drainage lines.

Components Specifications
Brand DELL
Physical Memory (RAM) Installed 16 GB
Graphics card Geforce RTX 2060

Operating system Microsoft Windows 10 Home 
Single Language

Model G5 5590
System type PC based in X64

Table 1 Technical specifications of the processing hardware. 
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Runs / Metrics PSNR SSIM NIQE MSE RMSE (m)
Run 1 364.766 0.9819 114.113 146.505 37.643
Run 2 338.917 0.9815 116.633 266.986 51.051
Run 3 399.357 0.9805 109.501 67.820 24.860

Table 2 Evaluation of the metrics of the samples generated in the 3 runs.

Interpolators PSNR SSIM MSE RMSE (m)
bilinear 24.2055 0.4508 246.9050 15.7132
bicubic 25.4767 0.5306 184.2516 13.5739
lanczos 24.7469 0.5283 217.9667 14.7637
Run 1 32.0653 0.8784 40.4162 6.3574
Run 2 34.9551 0.8633 20.7766 4.5581
Run 3 29.8438 0.8609 67.4060 8.2101

Table 3 Comparison table of PSNR, SSIM, MSE and RMSE metrics of the results of different interpolators.

Run Image Initial resolution Final resolution ME SE

Run 1

1

30 m 12.5 m

-0.925 4.148
2 -1.517 3.237
3 -3.482 3.204
4 -3.768 3.063

Run 2

1

30 m 12.5 m

5.115 4.279
2 5.273 3.223
3 3.824 3.257
4 4.062 2.876

Run 3

1

30 m 12.5 m

-2.317 3.931
2 -1.557 2.921
3 -2.329 3.148
4 -2.186 2.577

Table 4 Mean Error and Standard Error of the images generated in the respective runs.

One may notice that in the second image of Run 1 
as well as in the third image of Runs 1, 2 and 3, there is 
a difference in the thickness of the drainage channels in 
relation to the high-resolution image, with lower points 
generating longer channels.

In the present section, an investigation was carried 
out regarding the effectiveness of the methods used in the 
critical points recovery. From previous evaluations, it can 
be observed that the DEM-ERSGAN algorithm generates 
better results in relation to the generation of SR than the 
other methods. Thus, this evaluation focuses only on the 
ground truth results and on the interpolations of the Runs 
1, 2 and 3.

Figure 6 presents a set of images of the pixels visual 
analysis containing maximum and minimum altitudes of 

high-resolution images versus the images generated by 
Runs 1, 2 and 3, where the maximum altitude pixels are 
represented by the color red and the pixels of minimum 
altitude are represented by the color blue. Such pixels 
represent critical points for the DEMs generated by the 
method used in the present work.

As for the preservation of the critical points 
(Figure 6), no obvious rules were observed in the three 
runs. In this sense, the statistical results can be the best 
approach to evaluate the critical points preservation, and 
the main conclusions can be obtained from a metrics 
analysis obtained from the respective images. Therefore, 
to summarize, in this regard, the Run 3 outperforms the 
other runs in preserving most of the terrain features in the 
DEM super-resolution. 
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Figure 5 DEMs containing the drainage channels results for the images generated by the Runs 1, 2 and 3 in comparison to the high-
resolution images. GT: Ground Truth.

Figure 6 High resolution DEMs versus the generated DEMS for Runs 1, 2 and 3 with the validation set of dataset 3 containing their 
respective maximum and minimum altitudes. The minimum altitude pixels are in blue and the maximum altitude in red. The values 
indicate altitude in meters. GT: Ground Truth.
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Figure 7 presents the terrain slope results of the 
original high resolution DEMs and the DEMs generated by 
Runs 1, 2 and 3. Considering the terrain slope assessment, 
the intuitive perception is that the results of Run 3 are much 
smoother than those of Runs 1 and 2, and some textures 
are more reinforced in the Run 1 interpolation results, but 
are retained in Runs 2 and 3.

Figure 8 presents the appearance results of the 
original high resolution DEMs versus the DEMs generated 

by Runs 1, 2 and 3. As for the aspect, intuitively, it appears 
that the distortions in the results of Run 1 are greater 
compared to the results of Runs 2 and 3. However, the 
terrain slope results from Run 3 show a better balance 
between global accuracy and local features, which may 
be the reason why Run 3 outperforms the other methods. 
So, considering the aspect evaluation, the three processes 
generate comparable results, and such a conclusion is 
consistent with the statistical evaluations.

Figure 8 DEMs containing the appearance results of the high-resolution images versus the images generated by Runs 1, 2 and 3. nits 
are in degrees. GT: Ground Truth.

Figure 7 DEMs containing the terrain slope results of the high-resolution images versus the images generated by Runs 1, 2 and 3. 
Slope values are in percentage. GT: Ground Truth.
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4 Conclusions
The present work sought to create datasets for the 

effective insertion of digital elevation models in image 
super-resolution studies, to create learning machines using 
Generative Adversarial Network in order to obtain an 
increase in spatial resolution of such models, and to generate 
new models from the learning machines. In addition, it 
presented an analysis of the increased spatial resolution 
effectively obtained in the experiments performed, verifying 
the potential of using digital elevation models generated 
using the Generative Adversarial Network algorithm in 
cartographic production for altimetric data extraction.

Considering the analysis and statistical comparisons 
presented in this work, it has been found that increasing 
the number of iterations is favorable to the performance 
of the generated model and to the quality of the generated 
image. This indicates that the proposed methodology is 
constructive and fulfills the SISR task by generating a 
high-resolution DEM image departing from a single low 
resolution DEM image. 

The only indicator which does not corroborate this 
tendency was the PSNR for the validation dataset, where 
the run with fewer iterations had a higher PSNR value than 
the runs with more iterations. Even though, an oscillatory 
variation for the PSNR over time has been observed, this 
conflicting result may also be an indication that, despite 
the PSNR being the scoring metrics in the GAN algorithm, 
the PSNR alone may not be a sufficient quality indicator, 
justifying the search for alternatives to the traditional PSNR-
driven approaches.

Also, the DEM-ESRGAN showed a substantial 
improvement in the quality metrics compared to the 
traditional interpolation methods in the benchmark. Hence 
the development of super-resolution digital elevation models 
is timely, given the technological advances in the areas of 
artificial intelligence, orbital sensors, and computational 
resources. In this context, future research is planned to 
further the investigations presented here, including studies 
with DEMs of different spatial resolutions.

From the visual analysis of the generated images, 
low resolution images and high-resolution images used in 
this work, it is noticeable the great similarity between the 
generated images and their respective high-resolution images.

Finally, it is believed that the concepts and 
methodology presented here made it possible to explore 
the use of geospatial data in artificial intelligence 
environments with image super-resolution techniques, 
contributing to the advancement of the discussion on the 
subject. In the computational field, the methodological 
innovations presented here are original in the field of 

geodetic sciences and present solutions that can be used 
by specialists in the areas of photogrammetry, remote 
sensing, cartography, geodesy, with the possibility of 
extension to other different contexts.
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