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ABSTRACT

Finding the best single-elimination tournament design is important in scientific inquiry because it can
have major financial implications for event organizers and participants. This research aims to create
an optimal single-elimination tournament design using binary tree modeling with dummy techniques.
Dynamic programming algorithms have been used to compute optimal single-elimination designs to
overcome this effectively. This research method uses various implementations of sub-optimal algo-
rithms and then compares their performance in terms of runtime and optimality as a solution to mea-
sure the comparison of sub-algorithms. This research shows that the difference in relative costs pro-
duced by various sub-algorithms with the same input is quite low. This is expected because quotes are
generated as integer values from a small interval 1, ≤ 9, whereas costs tend to reach much higher val-
ues. From the comparison of these sub-algorithms, the best results among the sub-optimal algorithms
were obtained in the Sub Optimal algorithm 3. We present the experimental findings achieved using
the Python implementation of the suggested algorithm, with a focus on the best single-elimination
tournament design solution.
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1. INTRODUCTION
A knockout tournament, also called a single-elimination tournament, is a format employed in sporting events to ascertain the

victor of a match [1, 2]. In a knockout tournament, contestants compete against each other according to an initial seeding and advance
to subsequent rounds by defeating their immediate adversaries. The outcome of each match determines a solitary victor from the
two players who have contested. Draws are not considered in this context. The exploration of the ideal tournament structure holds a
key position in scholarly inquiry due to its far-reaching implications. Unoptimal configurations can profoundly impact the financial
aspects of event organizers, participating individuals, and teams and even influence the preferences of the match spectators, thereby
garnering substantial attention from researchers in this field [3]. To illustrate, teams engaged in the UEFA Champions League receive
substantial monetary incentives as they progress through different tournament phases. Therefore, making the correct selection of
players (which must be done before the commencement of the knockout rounds) assumes paramount importance. The economic
significance of sports continues to expand, as indicated by a European Commission report citing 2012 figures, which states that the
sport-related contribution to the Gross Domestic Product (GDP) of the European Union stood at 2.12%, equivalent to ¤279.7 billion
[4]. While tournaments are often associated with sports, politics is another significant domain where tournaments play a crucial
role, particularly in organizing elections. However, for this paper’s themes, the spotlight will primarily be on sports tournaments.
Fundamentally, tournament design revolves around two primary principles: the ”round robin” approach and the knockout principle.
These principles can be employed independently or in conjunction to create diverse tournament structures, contingent on factors
like the player count, available time, and the specific context in which the tournament is being held. The knockout tournament is
organized hierarchically, resembling a binary tree structure, where the leaf nodes symbolize individual players or teams. In contrast,
internal nodes signify the matches within the tournament [5]. This competition unfolds through a sequence of rounds, commonly
known as match rounds [6]. When the total count of players, denoted as P, is a power of 2, such as P = 8 = 23, the tournament
structure forms a complete binary tree, with all participants engaged in the initial round.

The primary driving factor behind this research stems from the fact that previous investigations have predominantly centered
on the optimal design of knockout tournaments when the number of participants is a power of 2 [7–9]. However, in practical
scenarios, the number of players might not adhere to this power of 2 constraint, as exemplified by the case when P = 9. Certain
players will be granted exemptions in such instances, allowing them to directly participate in the second round of matches without
undergoing the initial round. Bădică [10] formally conceptualizes competition through a single-elimination tournament, commonly
known as a knockout tournament. This design aims for optimality by enhancing its appeal, ensuring that top-ranking players have the
chance to face each other at the advanced stages of the tournament. They also introduced a Dynamic Programming algorithm for the
computation of optimal tournaments. They analyzed its algorithmic complexity, leading to a comprehensive examination of solution
optimality and the efficiency of its runtime performance. Optimization of the tournament design using utility functions optimized with
simulated annealing algorithms and optimal Bayesian design carried out by Hennessy [11]. Guyon [12] demonstrated the effective
utilization of this tournament format to maximize the number of knockout matches within the context of UEFA Champions League
matches. The design was coined ”Choose Your Opponent” by the author. Theoretical considerations also arise when examining
potential outcomes within knockout tournaments. This study explores upper and lower bounds on player winning probabilities within
random knockout tournaments [13]. The focus here pertains to examining random knockout tournaments, wherein a random process
governs the determination of match outcomes in each round. Moreover, this research assumes that the probabilities of victory and
defeat for every match involving two players are established. Conducted a theoretical exploration of knockout tournaments [14] with
a specific emphasis on evaluating scenarios where the number of players is a power of 2. However, sports like MuayThai [15], tennis,
chess, and soccer often involve a number of players that cannot be categorized as powers of 2. Nonetheless, this study will not delve
into the analysis of particular sports; its sole focus lies on the optimal design of knockout tournaments. Tournaments find numerous
practical applications, particularly within fields like sports. An intriguing discourse on sports economics from an operational research
standpoint and practical applications is elucidated in a recent scholarly publication by Csató [16]. This discourse centers on several
tournament ranking paradoxes and provides concrete illustrations of the implementation of tournament design.

Based on the related work, there has been no discussion [2, 13, 14] about optimal calculations using the dummy technique in
the structure of single-system tournaments. As a point of differentiation from similar research, we introduce a structured definition of
competitive events here, taking the shape of a single-elimination tournament, commonly known as a knockout tournament. We extend
this concept using the dummy technique and present a Dynamic Programming Algorithm to efficiently compute optimal tournaments
in various scenarios as a contribution to this study. Additionally, we analyze the algorithm’s complexity in detail. The objective of
this research is to create an optimal single elimination tournament design using binary tree modeling with dummy technique. To
address this work dynamic programming algorithm has used for effectively calculating optimal single elimination design.

This paper is organized as follows: Section 1 introduces the single elimination tournament and concept design using the
dummy technique problems. Section 2 describes the research method used to describe the contributed solution methodology. Results
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and analysis are presented in Section 3. Section 4 includes the conclusion and future work. Section 5 acknowledgment. Section 6
declarations are made in the last section.

2. RESEARCH METHOD
In this study, we will harness mathematical models and techniques guided by the notion of proof. Our approach involves rep-

resenting the tournament through a binary tree structure, where each leaf node represents an individual player, and each internal node
represents a match between two players and determines the victor. In constructing the binary tree brackets, we will systematically
derive this proposition from a foundational set of principles, referred to as definitions. Definition 1 is stated as follows.

2.1. Binary Tree Brackets
Definition 1. Let us contemplate a finite nonempty set of players, denoted as σ. We establish the set of trees, denoted as T(σ),

with serving as the set of leaf nodes, based on the subsequent criteria (1) If consists of a single element, denoted as i, the set T(σ)
consists of a single tree with a single node representing i. (2) if σ1 and σ2 are two separate sets of players, we define the set σ as the
union of σ1 and σ2 (σ = σ1

⋃
σ2). We represent it as the following Equation (1).

T (σ) = {tree | tree = {tree1, tree2}, tree1 ∈ σ1, tree2 ∈ σ2} (1)

It’s worth noting that the set notation in Equation (1) indicates that the trees are unordered, meaning that the arrangement of
the left and right branches is not significant. We examine instances of tournaments involving sets of players containing 1, 2, 3, and 4
elements. This can be observed in the illustrative example provided in Example 1.

1. If the set σ contains only the element 1, then T (σ) = {1}.
2. If σ is defined as the set containing the elements 1 and 2, then T (σ) = {{1, 2}}.
3. If σ is defined as the set containing the elements 1, 2, and 3, then applying the function T to σ would result in a set that contains

nested sets. Specifically, it would be represented as T (σ) = {{{1, 2}, 3}, {{1, 3}, 2}, {{3, 2}, 1}}.
4. If is defined as the set containing the elements 1, 2, 3, and 4, then applying the function T to σ would result in a collection of

nested sets, forming different tree structures (T (σ) = {{{1, 2}, {3, 4}}, {{1, 3}, {2.4}}, {{1, 4}, {2, 3}}, {{{1, 2}, 3}, 4}, . . .}).
In this particular case, it can be observed that there are 15 distinct trees.
Graphical representations of certain tournaments introduced in Example 1 are depicted in Figure 1. Notice that the tournaments

in the top row (labeled ”a” and ”b”) consist of a number of elements that is a power of two (2 = 21) and 4 = 22, respectively and are
fully balanced. Nevertheless, the tournaments in the second row are not entirely evenly matched. Even though the lower rightmost
tournament includes 4 = 22 players, it doesn’t qualify as fully balanced. From an intuitive perspective, the tournament with three
players (labeled ”c”) seems reasonable because player 3 joins the tournament just one round after players 1 and 2, implying a sense
of ”balancing.” However, the lower rightmost tournament with four players (labeled ”d”) is deemed unacceptable since player 4 is
exempted from playing in the first two rounds, which is considered unfair.

Next, we will employ the statement ”counting binary tree bracket,” or it can be referred to as a proposition. Proposition 1 for
counting binary brackets is expressed in Equation (2). The set T (σ), where | σ | is P players, contains Equation (2) elements.

(2P − 2)!

(P − 1)!.2P−1
(2)

Single Elimination Tournament . . . (Yusri Ikhwani)
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(a) (b)

(c) (d)

Figure 1. Binary tree brackets of two and three players (first column) and four players (second column), (a) Balanced binary tree
brackets with two players, (b) Balanced binary tree brackets with four players, (c) Balanced binary tree brackets with three players,

(d) Balanced binary tree brackets with four players

The number of full binary tree brackets with P leaves is equal to C(P−1), where CP represents Catalan number [17]. The
method for determining the proof of Proposition 1, as represented in Equation (2), is expressed in Equation (3).

Cp =
1

(P + 1)

(
2P
P

)
(3)

Now, every permutation of the P players can be linked to the leaf nodes of a binary tree, resulting in P ! · C(P−1) trees.
Nonetheless, the branches of every internal node can be swapped, leading to an identical tree. There are P − 1 internal nodes, which
means there’s a total of 2(P − 1) swaps, resulting in the number of trees given by Equation (4):

P ! · Cp−1

2P−1
=

(2P − 2)!

(P − 1)! · 2P−1
(4)

In Example 2, we will demonstrate that our calculations are consistent with Example 1 discussed earlier. For example, If P is
equal to 3 (P = 3), we obtain a total of 4!

2!∗22 = 3 trees, and when P is equal to 4 (P = 4), we obtain 6!
3!∗23 = 15 trees. A legitimate

tournament needs to be equitable, meaning that each player should engage in (approximately) an equal number of games to secure
victory.

Upon examining the competition presented in Example 1 and Figure 1, it becomes clear that when the size of the set |σ|≤ 3 is
considered. Every element in T (σ) corresponds to a legitimate tournament. However, when the set has a size of 4 (|σ|= 4), it can
be observed that only 3 trees within T (σ) truly depict valid competitions. For instance, take the example of {{1, 2}, {3, 4}}, which
represents a valid competition. In this scenario, each player must participate in exactly two games to have a chance of winning the
competition. In this instance, we have a completely equitable tournament comprising P = 22 players. Furthermore, {{1, 2}, 3} is
also considered a valid competition, meeting the criteria where players 1 and 2 must engage in two games to win, while player 3 needs
just one game for victory. This means that player 3 is not required to participate in the first round, leading to a maximum disparity
of one game played among the players. Nevertheless, {{{1, 2}, 3}, 4} fails to satisfy the conditions for a legitimate competition. In
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this scenario, players 1 and 2 must participate in three games to secure victory, while player 4 only requires one game to win. This
leads to a disparity of more than one game played by each player, surpassing the fairness threshold. In this context, having multiple
exemptions for a player is deemed unfair.

It’s noticeable that in a legitimate competition, the tree’s configuration exhibits a feature where all its leaf nodes are at a height
of either R or R + 1, with R being a specific value. The determination of R can be deduced from the given player count, P , in the
competition, and it signifies the total number of rounds encompassed by the competition.

Let’s examine a tournament with R rounds. It’s easy to recognize that the highest number of players, Pmax = 2R, and this
occurs when the first round consists of a maximum of 2R−1 games. Therefore, we have Equation (5) for a tournament with R rounds.
Note that Equation (5) implies by given Equation (6).

2R−1 < P ≤ 2R (5)

R = [log2P ] (6)

Once again, we are creating a valid and balanced binary tree definition. We refer to this definition as Definition 2. Consider the
variable R, where R belongs to the set of natural numbers (N) and signifies the number of rounds in the competition. Let σ denote
a nonempty set comprising P players that meet conditions Equation (5) and (6). The set TR(σ), representing balanced trees with R
layers, is defined as the assortment of balanced (valid) competitions with R rounds in the following manner:

1. When R is equal to 0 (R = 0), it implies that P equals 1 (P = 1). Consequently, we have a singleton set σ = {i}. In this
particular scenario, T0(σ) is equivalent to the set {i} (T0(σ) = {i}).

2. If R is greater than or equal to 1, and there exist t1 ∈ TR−1(σ1) and t2 ∈ TR−1(σ2) such that σ1 ∩ σ2 = ∅ and σ1 ∪ σ2 = σ,
then = {t1, t2}εTR(σ).

3. If R is greater than or equal to 2, and there exist t1 ∈ TR−1(σ1) and t2 ∈ TR−2(σ2) represents a fully balanced tree with
| σ2 |= 2R−2, and σ1 ∩ σ2 = ∅ with their union being equal to σ, then t = {t1, t2}εTR(σ)

If R is greater than or equal to 1, then the number of players P ∈ 2R−1 +1 . . . 2R. A tree in t ∈ TR(σ) can be created by either
(i) combining two balanced trees with R − 1 layers or (ii) combining one balanced tree with R − 1 layers and one fully balanced
tree with R− 2 layers (where all the leaves are located on layer R− 2). In both scenarios, the balancing condition of t is maintained
appropriately.

We refer to the proposition concerning the brackets of a balanced competition as Proposition 2. Consider a competition
t ∈ TR(σ), where σ represents a set of P players, and the value of R is determined according to Equation (6). The initial round of
the competition begins with C = 2P − 2R players, while the number of dummy players starting the first round is D = 2R − P to
transform a perfect binary tree into a full binary tree. Furthermore, when R is greater than or equal to 1, the number of level 2 internal
nodes in the tree can be expressed as E = P − 2R−1 , which is equal to the number of players P. This implies that C = 2E, and
D = 2R−1 − E. The proof of this proposition is as follows:

First, let us note that if the number of players is a power of 2, indicated by P = 2R, then we have E = 2R−1 = P/2, C = P ,
andD = 0. This statement is straightforwardly true, as in such cases, the competition is perfectly balanced, and all players commence
the competition in the first round without any exemptions or byes. The general case can be proven using an induction technique based
on R ∈ N. When R equals 0, the competition consists of P = 1 player. In this scenario, a solitary balanced competition exists where
D = 0 and C = 1, satisfying the property straightforwardly. For R = 1, the competition has P = 2 players. A single balanced
competition exists in this case, characterized by E = 1, C = 2, and D = 0. Therefore, the property is straightforwardly fulfilled.
Now, let’s assume that the property holds for x = 0, 1, . . . , R. We will proceed to prove that it also holds for x = R+ 1.

1. Case 1. If R ≥ 1, t1 ∈ TR(σ1), t2 ∈ TR(σ2), σ1 ∩ σ2 = ∅ and σ1∪2 = σ, consider t = {t1, t2} ∈ TR+1(σ), where σ is a
nonempty set, and t fulfills the second condition stated in Definition 2. According to the induction hypothesis, we can assume
that Di = 2R−Pi, Ci = 2Pi− 2R, Ei = Pi− 2R−1 for i = 1, 2 and P = P1 +P2. Then D = D1 +D2 = 2R+1(P1 +P2) =
2R+1P . Similarly, we can show that C = C1 + C2 = 2P2R+1 and E = E1 + E2 = P2R. This verifies the desired result.

2. Case 2. If R ≥ 2, t1 ∈ TR(σ1), t2 ∈ TR−1(σ2) is a fully balanced tree (i.e., |σ2|= 2R−1) σ1 ∩ σ2 = ∅, andσ1 ∪ σ2 = σ. We
will now examine t = {t1, t2} ∈ TR+1(σ) such that the third condition of Definition 2 is satisfied. According to the induction
hypothesis, we have D1 = 2R − P1, C1 = 2P1 − 2R, E1 = P1 − 2R−1, D2 = 0, C2 = 2R−1 and E2 = 2R−2, P2 = 2(R1),
and P = P1 + 2R−1. So C = C1 = 2(P1 + 2R−1)− 2R − 2R = 2P − 2R+1 and also D = D1 + C2 = 2R − P1 + 2R−1 =
2R + 2R−1 + 2R−1P = 2(R + 1)P and also E = E1 = P1 − 2R−1 = P − 2R−1 − 2R−1 = P − 2R . Thus, it has been
demonstrated.The relationships C = 2E and D = 2R−1 − E can now be easily verified.

Single Elimination Tournament . . . (Yusri Ikhwani)
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Figure 2. Balanced hierarchically shaped single-elimination brackets with 3 dummies and five real players

We describe the binary tree design for the match brackets in Example 3. Consider a competition with P = 5 players. In this
scenario, we have R = 3, D = 23 − 5 = 3, E = 22 − 3 = 1, C = 2 ∗ 5− 23 = 2. The corresponding tree structure will have three
layers in a competition involving five players. The first layer will consist of C = 2 leaves (representing players), and the second
layer will consist of 2 internal nodes and D = 3 leaves (representing players) among the total of 2R−1 = 4 nodes in that layer. One
example of a balanced competition is illustrated in Figure 2, where D means that represents a dummy player.

We propose to create a proposition for counting balanced hierarchically shaped single elimination brackets. We refer to

this proposition as Proposition 3. The set TR(σ) with |σ|= P players contains
P !.

(
2R−1

D

)
2P−1

elements. For a proof, there are(
2R−1

D

)
ways to choose how the D players will progress to the second round. Their arrangement is significant, so we multiply

by D!. Furthermore, those D players are selected arbitrarily from the set of P players, so we multiply by (PD). In the end, the
arrangement of those C remaining players who enter the first round is significant, so we also multiply by C!. For every inner node in
the tree, swapping its left and right sub-tree maintains a tournament invariant. There are 2P−1 distinct methods to switch the left and
right sub-trees of the tree, so we need to divide by 2P−1.

2.2. Single elimination best design
The matchups between players are determined in each round of a competition consisting of R rounds. It is crucial to emphasize

that in a competition, two players can only face each other once in a match during a particular round. This property arises because
in a binary tree, any two leaves (nodes without children) have a distinct common ancestor, the closest shared ancestor between them.
As a consequence, the competition round Xi,j where players i, j can face each other is a distinct and well-defined value within the
range of 1, 2, . . . R. For instance, taking into account the competition depicted in Figure 2, X3,5 = 3, X1,4 = 2, X4,5 = 1. In an
intuitive sense, it is preferable for players i and j with higher rankings to face each other in the later stages of the competition. This
arrangement increases the significance and intensity of their matches.

In the following discussions, we assume that there is a quotation ri ∈ (0,+∞) available for each of the i εσ players. In the
context mentioned, quotations can be obtained based on the players’ current rankings, similar to how it is done in international Boxing
and Muaythai competitions. Alternatively, quotations can be acquired through other methods or criteria. Definition 3 (Brackets cost).
Consider t ∈ TR(σ), which represents a competition with R rounds. Let Xt

ij ∈ {1, 2, . . . , R}, indicating the stage in which players
i, j can potentially meet in the competition t. Assume ri > 0 represents the quotatioxxns of players for all i ∈ σ. The cost of t is
defined as follows:

Cost(t) = Σi,j∈σ,i<jrirjX
t
ij (7)

Definition 4 (Optimal brackets). A single-elimination competition bracket refers to a competition where its cost, as computed
using Equation (7), is maximized. The definition of a single-elimination competition brackets is determined by:

OptimalBracket(σ) = maxt∈TR(σ)Cost(t)
t∗ = argamaxtεTR(σ)Cost(t)

(8)
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It is evident that players with higher rankings are associated with higher quotations. We assume that the quota ri of a player, i
corresponds to their rank si, such that if si < sj , it follows that ri > rj . For instance, in the case where there are P = 2R players,
we can assign ri = P + 1− si as the quota for each player i = 1, . . . , P . Example 4. We will consider three competitions,t1, t2, and
t3, with three players each. The players are shown in Figure 3. We will now introduce some new terms:

L = r1r2 + r1r3 + r2r3

M = r1 + r2 + r2
(9)

We obtain:
Cost(t1) = r2r31 + r1r22 + r1r32 = L+ r1(r2 + r3) = L+ r1(M − r1)
Cost(t2) = L+ r2(M − r2)
Cost(t3) = L+ r(M − r3)

(10)

The arrangement of the costs is determined by the sequence of values of the function r(M − r) for r = r1, r2, r3 ∈ [0,M ].
The function exhibits a monotonic increase on [0,M/2] and a monotonic decrease on [M/2,M ]. If the condition ri ≤ M/2 holds,
which means that no player receives more than half of the total quotation stake, then the arrangement of the costs is determined by
the order of the quotations ri.

Figure 3. Balanced hierarchically shaped single-elimination competition brackets with 3 dummy players and three real players

Example 5. Let us examine a situation involving four players, as presented in Table 1. Each player is assigned a distinct rank
from 1 to 4. If we use the ri = 5 − si approach to determine players’ quotas, player 2, who has rank 4, will be assigned a quota
r2 = 1. We consider the three competitions t1, t2, t3 ∈ T2({1, 2, 3, 4}) from Figure 4. The cost of a competition t ∈ T2({1, 2, 3, 4})is
calculated according to Equation (7), as follows:

Cost(t) = Σ4
1≤i<j≤4rirjX

t
ij

Cost(t) = 4× 1.Xt
12 + 4× 2.Xt

13 + 4× 3.Xt
14 + 1× 2.Xt

23 + 1× 3.Xt
24 + 2× 3.Xt

34
(11)

By substituting the stage values Xt
ij for each competition in Table 2 in Equation (11), we can obtain the cost values of the

competitions in Table 2. It can be observed that, in this case, the best competition is t3. After conducting a thorough analysis, it can
be confirmed that competition t3 is the optimal choice when the quota values are arranged in decreasing order according to ranks.

Table 1. Ranking and quotation of players for R = 4

Player i Rank (Si) Quota ri = R+ 1− Si

1 1 4
4 2 3
3 3 2
2 4 1

Single Elimination Tournament . . . (Yusri Ikhwani)
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Figure 4. Balanced hierarchically shaped single-elimination competition brackets with 2 dummy players and four real players

Table 2. Stages of gameplay and corresponding costs for each competition in Figure 4

Xt1 1 2 3 4 Xt2 1 2 3 4 Xt2 1 2 3 4
1 2 2 1 1 2 2 1 1 1 2 2
2 1 2 2 1 2 2 2 2
3 2 3 2 3 1

Cost 56 56 60
Cost of t1 Cost of t2 Cost of t3

2.3. Best single elimination design with dynamic programming

The dynamic programming algorithm can be implemented in either a bottom-up approach or a top-down approach with memo-
ization [18]. The comprehensive research was given by Bădică et al. in [19], who provided valuable insights and proposed a dynamic
programming algorithm that could be implemented using both a top-down approach with memoization and a bottom-up approach.
This algorithm calculates the single-elimination competition brackets and their associated cost.

Proposition 4 (Recurrences for optimal brackets competitions cost). The optimal brackets competition costOptimalBracket(σ)
introduced by Equation (8) can be defined recursively as follows:

OptimalBraket(σ) =



0 R = 0, |σ| = 1

ri.rj R = 1, σ = {i, j}
max OptimalBracket(σ1) +OptimalBracket(σ2) +Rrσ1rσ2 R ≥ 2, 2R−1 < |σ| ≤ 2R

σ1 ∪ σ2 = σ 2R−2 ≤ |σ1| ≤
σ1 ∩ σ2 = ∅ |σ2| ≤ 2R−1

(12)

The optimal brackets competition can be determined by monitoring the pairs of subsets Optimal(σ) = (σ1, σ2 = σ \ σ1) that
maximize OptimalBracket in Equation (12) for a given value of R ≥ 2, 2R−1 < |σ| ≤ 2R as described below:

OptimalSub(σ) = argmaxOptimalBracket(σ1) +OptimalBracket(σ2) +Rrσ1rσ2σ1, σ2 ⊆ σ

Moreover, the sets OptimalSub(σ) can be used to construct a single-elimination competition bracket. Let σR = σ represent
the set of all possible subsets of σR. We define a function (σR−1 = OptimalSub(σR)), . . . , σ0 = OptimalSub(σ1) to represent
the optimal cost of a competition for a given subset σR. Based on this, the optimal bracket competition t∗ can be recursively defined
as follows:
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t∗ = tR(σR)

ti(σi) =

{
{ti−1

1 (σi−1), ti−1
2 (σi \ σi−1)} i ≥ 1

j i = 0, σ0 = j

The following sections will investigate these options by deriving a bottom-up dynamic programming algorithm specifically de-
signed for fully balanced competitions. Additionally, we will explore a top-down dynamic programming algorithm with memoization
that can handle the general case.

2.4. Top-down Dynamic Programming Algorithm with Memoization

Proposition 6 determined by assuming that we want to calculateOptC(Σ) for |Σ| = P, P ≥ 2, 2n−1+1 ≤ P ≤ 2n. According
to proposition 5, we must recursively explore all tournaments of shape t = {t1, t2} such that ti ∈ T (Σi), |Σi| = Pi, i = 1, 2, P =
P1 + P2.

max{P − 2n−1, 2n− 2} ≤ P1 ≤ bP/2c
P = P1 + P2 and P1 ≤ P2

(13)

Obtained Equation (14) :

P1 ≤ bP/2c
As P = P1 + P2 and 2n−2P1 ≤ 2n−1 (14)

Obtained Equation (15):

2n−2 ≤ P1 ≤ 2n−1

P − 2n−1 ≤ P1 ≤ P − 2n−2 (15)

Combination between Equations (14) and (15), obtained Equation (16) :

max{P − 2n− 1, 2n− 2} ≤ P1 ≤ min{2n−1, P − 2n−2, bP/2c} (16)

By merging the conclusions drawn from Propositions 5 and 6, we arrive at the top-down methodology for calculating optimal
balanced tournaments, as outlined in Algorithm 1.

Algorithm 1: OptTourCostTD (Σ, P, q) top-down dynamic programming algorithm with memoization for computing the cost
of the optimal tournament.

Global: OptC, initially ∅, maps subsets of players to
costs of optimal tournaments.
OptS, initially ∅, maps subsets to sub-subsets for building optimal tournaments.

Input: P ∈ N∗represents the number of players.
q. Vector of size N representing the players quota
Σ such that |Σ| = P . Σ represents the set of players.

Output: Cmax, Cost of the optimal tournament for set Σ
of players.
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n←− [log2P ]
if n = 0 then

Cmax ←− 0
Smax ←− ∅

else if n = 1(i.e., Σ = {i, j}) then
Cmax ←− q∗i qj
Smax ←− {i, j}

else
PL1←− 2n−2

PL2←− 2∗PL1
kmax ←− bP/2c
if P ≤ PL1 + PL2 then

kmin ←− PL1
else

kmin ←− P − PL2
end if
Cmax ←−∞
for kmin, kmax do

for Σ1 ⊆ Σs.t | Σ1 |= k do
if Σ1 /∈ OptC then

C1 ←− OptTourCostTD(Σ1, k, q)
else

C1 ←− OptC | Σ1 |
end if
Σ2 ←− Σ \ Σ1

if Σ2 /∈ OptC then
C2 ←− OptTourCostTDC(Σ2, k, q)

else
C2 ←− OptC | Σ2 |

end if
C ←− C1 + C2

ql←− 0
for iεΣ1 do

ql←− ql + qi
end for
qr ←− 0
for iεΣ2 do

qr ←− qr + qi
end for
C ←− C + k∗ql∗qr
if C > Cmax then

Cmax ←− C
Smax ←− Σ1

end if
end for

end for
end if
OptC | Σ |←− Cmax
OptS | Σ |←− Smax
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2.5. Sub-Optimal Algorithm

In a broader sense, the dynamic programming algorithm strategy for formulating optimal tournaments adheres to the top-down
divide-and-conquer approach elucidated in Algorithm 2.

Algorithm 2: OptTourCostSubOpt (Σ, P, q, S) top-down divide-and-conquer algorithm for computing a sub-optimal tourna-
ment.

Input: P ∈ N∗ represents the number of players.
q. Vector of size N representing the players quota
σ such that | Σ |= P.Σ represents the set of players.
S = ΣiεΣqi. Sum of players quotations

Output: Cmax, Cost of the sub-optimal tournament for
set Σ of players.
tmax. sub-optimal tournament tree

n←− [log2P ]
if n = 0(i.e., σ = {i}) then

Cmax ←− 0
tmax ←− i

else if n = 1(i.e., Σ = {i, j}) then
Cmax ←− 0
tmax ←− {i, j}

else
PL1←− 2n−2

PL2←− 2∗PL1
kmax ←− bP/2c
if P ≤ PL1 + PL2 then

kmin ←− PL1
else

kmin ←− P − PL2
end if
Cmax ←− −∞
for Σ1 ∈ Strategy(Σ, kmin.kmax) do

S1 ←− 0
for i ∈ Σ1 do

S1 ←− S1 + qi
end for
k ←−| Σ1 |
(C1, t1)←− OptTourCostSubOpt(Σ1, k, q, S1)
(C2, t2)←− OptTourCostSubOpt(Σ \ Σ1, P − k, q, S − S1)
C ←− C1 + C2 + k∗S1∗(S − S1)
if C > Cmax then

Cmax ←− C
tmax ←− (t1, t2)

end if
end for

end if
return

Note that when s equals 1, the time complexity of Algorithm 2 remains linear concerning the player count P. Furthermore,
when s exceeds 1, the algorithm’s time complexity becomes polynomial in P, and the polynomial’s degree escalates logarithmically
in relation to s.
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3. RESULT AND ANALYSIS
3.1. Implementation

In essence, the subsets representing combinations of l elements from a set with R (where R ≥ l) elements consist of all the
permutations with repetitions of a binary vector consisting of R elements, where exactly l elements are equal to 1. Our experimental
implementation of Algorithms 1, 2, and 3 required us to address several issues.

First and foremost, we chose to represent sets using arrays of bits and utilized the integer value equivalent to the binary
representation as an array of bits. Secondly, to generate subsets of a given size (i.e., combinations), we utilized Algorithm 7.2.1.2L
from [20], which generates permutations with repetitions of binary arrays. Thirdly, we had to select an efficient representation for
the OptimalBracket and OptimalSub structures. The proper handling of these structures is essential for the effective implementation
of some of our algorithms. Regarding our implementation, we have chosen the Python platform and opted to use subset-indexed
dictionaries to represent OptimalBracket and OptimalSub. These dictionaries serve the purpose of mapping subsets of to their
respective costs and the subsets required for constructing single-elimination competition bracketss, respectively. The dictionary
keys representing the subsets are defined as integer values derived from their characteristic vectors in binary format. Since Python
dictionaries are efficiently implemented using hash tables, the lookup operations are expected to have an average time complexity of
O(1).

Lastly, for implementing the random selection of subsets, we used the array of bits representation of sets and employed the
random.permute function from the NumPy package to generate a randomly permuted array representing a random subset.

3.2. Experiment Results
The research used a computer platform with the specification based on Intel Core i3 2.30 GHz CPU, 8 GB RAM, and Microsoft

Windows 10 Profesional 64 Byte. The software uses Python 3.7.3 with a web-based interactive computing platform, namely Jupyter
Notebook. Based on our research, no existing algorithms directly correspond to our proposed approaches. This can be attributed to
two primary reasons: 1) We adopt an integrated approach to competition design instead of employing separate stages for structure
design and seeding, which sets our approach apart from existing algorithms. 2) Our cost function lacks probabilistic information,
making it difficult to directly compare competition cost values with algorithms that rely on such data. We pursued a distinct approach
to assess our propositions. We developed optimal algorithms and various sub-optimal algorithm versions and compared their results
regarding execution time and optimality. Consequently, we implemented and experimentally evaluated a total of eight algorithms,
which are detailed in Table 3.

Table 3. Table showing the roster of implemented optimal and sub-optimal algorithms for balanced competition brackets.

Algorithm Description Optimality Number of Players
OptimalDPTD dynamic programming algorithm with memoization for computing

the cost of the optimal brackets (Algorithm 1)
Optimal Any natural number of choice

OptimalDPBU dynamic programming-bottom-up for computing the cost of the op-
timal fully balanced brackets (Algorithm 2)

Optimal Precise power of 2.

OptimalSubD1 Deterministic top-down divide-and-conquer strategy and un-
changed quotation sequence that computes the sub-single-
elimination competition brackets brackets (Algorithm 4)

Sub-optimal Any natural number of choice

OptimalSubD2 Deterministic top-down divide-and-conquer strategy and increas-
ingly sorted quotation sequence that compute the sub-single-
elimination competition brackets brackets (Algorithm 4)

Sub-optimal Any natural number of choice

OptimalSubD3 Deterministic top-down divide-and-conquer strategy and decreas-
ingly sorted quotation sequence that computes the sub-single-
elimination competition brackets (Algorithm 4)

Sub-optimal Any natural number of choice

OptimalSubS1 The stochastic sub-optimal approach, Algorithm 4, using the
stochastic strategy with Psample = 1.

Sub-optimal Any natural number of choice

OptimalSubS2 The stochastic sub-optimal approach, Algorithm 4, using the
stochastic strategy with Psample = 1.

Sub-optimal Any natural number of choice

OptimalSubS3 The stochastic sub-optimal approach, Algorithm 4, using the
stochastic strategy with Psample = 1.

Sub-optimal Any natural number of choice

It is important to highlight that the optimal algorithms face at least two constraints that make a comprehensive experimental
comparison challenging with the other algorithms. First and foremost, their significantly high computational complexity restricts
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their practical applicability to scenarios involving only a few players. Additionally, the dynamic programming bottom-up algorithm
is restricted to scenarios where the number of players is an exact power of 2. We have only verified its performance for P = 4, 8, and
16.

In our dataset, we have multiple sequences of players’ quotations. For each P value ranging from 3 to 50, we generated
a sequence of quotations (v1, v2, . . . , vP ) with integer values vi randomly selected from a uniform distribution within the interval
(vmin = 1, vmax = 9). We employed this dataset to conduct experimental evaluations of the algorithms listed in Table 3. All
sequences in the dataset were utilized to test algorithms (OptimalSubDi) and (OptimalSubSi) for i = 1, 2, 3. We evaluated
the optimal algorithm OptimalDPTD only for sequences corresponding to P = 3, . . . , 16 players due to its high computational
complexity. To control the running time of each problem instance, we set a limit of 8 minutes. We assessed the optimal algorithm
OptimalDPBU solely for sequences corresponding to P = 4, 8, and 16 players. This limitation is attributed to the algorithm’s
high computational complexity and the requirement that it works only with a number of players with an exact power of 2. For
each algorithm, we documented both the (sub-)optimal cost of the resulting competition and the corresponding execution time. The
stochastic algorithms (OptimalSubSi as i = 1, 2, 3) were evaluated by running them 13 times for each input sequence of quotations
from the dataset. We recorded the minimum, maximum, and average costs and the average execution time.

Figure 5 displays the sub-optimal costs generated by the OptimalSubDi and OptimalSubSi algorithms for i = 1, 2, 3. The
figure illustrates the costs Coi obtained from OptimalSubDi algorithms for i = 1, 2, 3, along with the average costs COSai
generated by OptimalSubSi algorithms for i = 1, 2, 3, and the maximum cost CoMAX3 derived from 14 repetitions of the
OptimalSubS3 algorithm. We included only the maximum cost in this scenario since the stochastic algorithm (OptimalSubSi
for i = 1, 2, 3) is expected to produce the best results, considering it uses the highest number of samplings (Psample = 3). Upon
examining Figure 5, we can observe that the relative cost difference generated by the different algorithms on the same input sequence
is relatively low. As anticipated, this occurs because the quotations vi were randomly generated as integer values within a small
interval (1 ≤ vi ≤ 9), while the cost can result in significantly higher values.

Figure 5. The sub-single-elimination competition brackets bracket costs obtained from different quotations’ sequences using
sub-optimal algorithms for different numbers of players.

For instance, when analyzing the results obtained for the sample with P = 38 players, we can observe that the relative dif-
ference between the lowest and highest costs achieved (70,321 and 79,451) is only 5.23%. It is worth noting that the sub-optimal
algorithm OptimalSubS3 achieved the best results, while the algorithms OptimalSubD2 and OptimalSubD3 produced the worst
results among the sub-optimal algorithms. It might appear somewhat unexpected that algorithm OptimalSubD1 outperforms
OptimalSubD2 and OptimalSubD3; however, this can be attributed to the way the data set was generated. Algorithm Opti-
malSubD1 employs a random permutation of the quotations’ sequence, leading to a more balanced distribution of total quotations
between the subsets and σ \ σ1(seeAlgorithm4) compared to algorithms OptimalSubD2 and OptimalSubD3. One final obser-
vation, also confirmed experimentally, is that algorithms OptimalSubD2 and OptimalSubD3 produce identical sub-optimal costs
when the number of players is an exact power of 2 (e.g., 16 and 32 in Figure 5). This outcome is a direct consequence of the logic
behind their strategy definition.
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Figure 6 illustrates the execution times TDi and TSi of algorithms OptimalSubDi and OptimalSubSi for i = 1, 2, 3. The
time values are presented in milliseconds on a logarithmic scale, and they were obtained by calculating the average of 12 executions
of each algorithm on the same input data. Initially, it is noticeable that the deterministic versions (OptimalSubDi) are the fastest, and
they exhibit nearly identical running times. This can be readily explained by implementing their underlying strategies, which have a
low computational complexity. In essence, their strategies employ the same mechanism, with the additional sorting of the quotation
sequence incurring a negligible cost, as it is executed before the core processing of the algorithms. Furthermore, as anticipated,
OptimalSubS3 exhibits the highest execution time among the algorithms. This algorithm demonstrates the highest computational
complexity among the sub-optimal algorithms due to its utilization of three subset samples during the top-down search. Based on
Figure 6, it can be observed that the sequence of quotations withP = 37 players achieved the longest average execution time, reaching
a value of 3.11 seconds. Figure 7 displays the outcomes generated by the optimal algorithmsOptimalDPTD andOptimalDPBU ,
along with a comparison to the results obtained from the sub-optimal algorithm OptimalSubS3, covering P = 3, 4, . . . , 16 players
in our input dataset.

Figure 6. Graphs showing the logarithmic running times scale for sub-optimal algorithms on various quotations’ sequences with
varying numbers of players.

Figure 7a illustrates the contrast between the relative maximum and average costs achieved by algorithm OptimalSubS3
(CoMAX3 and COSa3) and the true optimal cost attained by algorithm OptimalDPTD. The relative sub-optimal cost is represented
by Ds ∈ [0, 1] and is calculated using Equation (17).

Dos =
Doo
Do1

(17)

Utilizing the absolute values of sub-optimal cost Do0 and optimal cost Do1, where Do1 > Do0 > 0. Note that Dos = 1 only
when Do1 = Do0, indicating that the algorithm producing the sub-optimal cost Do0 is, in fact, optimal. It is important to note that
the computation of the relative sub-optimal cost assumes that the exact value Do1 of the optimal cost is known. In our specific case,
this value is known as it was determined using the OptimalDPTD optimal algorithm for P = 3, 4 . . . 16 players.

In Figure 7b, we present a comparison of the running times for algorithmsOptimalDPTD,OptimalDPBU , andOptimalSubS3
denoted as TTD, TBU , and TS3, respectively. The comparison is made considering P = 3, 4, . . . , 16 players. The running times
were obtained by executing each algorithm 13 times using the same input data and plotted on a logarithmic scale. Notably, algorithm
OptimalSubS3 stands out as the most efficient among the three. The linear increase observed in TTD and TBU on the logarithmic
scale confirms our findings, signifying that the complexities of algorithmsOptimalDPTD andOptimalDPBU grow exponentially
with the number of competition players.
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(a)

(b)

Figure 7. (a)Comparison of the relative maximum and average costs achieved by algorithm SubOptS3 ( CoMAX3 and COSa3)
with the optimal cost attained by algorithm OptimalSubD1 for P = 3, 4, . . . , 16 players, based on our input dataset. (b) We

compared the running times of algorithms OptimalDPTD, OptimalDPBU, and OptimalSubS3 for P = 3, 4, . . . , 16 players, using
our input dataset. The time values are displayed on a logarithmic scale.

The same tendency is also noticeable in the plot of TBU, where the values were recorded only for an exact power of two of the
number of players, i.e., P = 4, 8, 16. Furthermore, the sub-linear increasing trend of TS3 on the logarithmic scale aligns with the
polynomial time complexity of algorithm OptimalSubS3.

The same tendency is also noticeable in the plot of TBU, where the values were recorded only for an exact power of two of the
number of players, i.e., P = 4, 8, 16. Furthermore, the sub-linear increasing trend of TS3 on the logarithmic scale aligns with the
polynomial time complexity of algorithm OptimalSubS3.

This study’s findings appear to align with previous research in the field of Fixing Knockout Tournaments With Seeds. Several
prior studies have also demonstrated a positive correlation between the effective utilization of this tournament format to maximize
the number of knockout matches within the context of UEFA Champions League matches. The design was coined ”Choose Your
Opponent” by the author. For instance, the optimization of the tournament design using utility functions optimized with simulated
annealing algorithms and optimal Bayesian design carried out by Hennessy [11]. These consistent findings, in conjunction with our
study’s results, indicate that the differences in relative cost differences resulting from various sub-algorithms with the same input
were rather low.

4. CONCLUSION
The variance in relative costs among different sub-algorithms using the same input was relatively low. This outcome was

anticipated since the cost values were generated as integers within a narrow range of 1 ≤ 9, while the costs typically reached
much higher values. For instance, when considering a scenario with 25 players (P = 25), the observations revealed that the relative
difference between the lowest and highest costs (307.47 and 333.39) was only 2.76%. In summary, among the sub-optimal algorithms
compared, the SubOptS3 algorithm yielded the best results. Consequently, our optimized single-elimination system can effectively
apply to sports competitions employing a bye system. Potential areas for further research in this study are exploring techniques
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to parallelize dynamic programming algorithms to speed up the computation of large knockout tournaments taking advantage of
multi-core processors or distributed computing environments.
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