
  

 

Abstract— Running is an essential locomotion activity that 

plays a critical role in everyday life and exercise activities, and 

may be impeded by joint disease and neurological impairments. 

Accurate and robust estimation of joint kinematics via surface 

electromyogram (sEMG) signals provides a human-machine 

interaction-based method that can be used to adequately control 

rehabilitation robots while performing complex movements such 

as running for motor function restoration in affected persons. To 

this end, this paper proposes a novel deep learning-based model 

(AM-BiLSTM) that integrates an attention mechanism (AM) 

and a bidirectional long short-term memory (BiLSTM) network. 

The proposed method was evaluated using knee joint kinematic 

and sEMG signals of fourteen subjects who performed running 

at 2 m/s speed. The proposed model’s generalizability was tested 

for within- and cross-subject scenarios, and compared with 

standard LSTM and multi-layer perceptron (MLP) networks in 

terms of normalized root-mean-square error and correlation 

coefficient evaluation metrics. Based on the statistical tests, the 

proposed AM-BiLSTM model significantly outperformed the 

LSTM and MLP methods in both within- and cross-subject 

scenarios (p<0.05) and achieved state-of-the-art performance.  

 

Clinical Relevance— The promising results of this study suggest 

that the AM-BiLSTM model may be potential for continuous 

cross-subject estimation of lower limb kinematics during 

running in controlling sEMG-driven exoskeleton robots oriented 

to rehabilitation training. 

I. INTRODUCTION  

Running is one of the most popular leisure exercise 
activities [1], which benefits both human physical and mental 
health [2]. Neurological impairments and joint diseases such 
as knee osteoarthritis can negatively affect performing 
important locomotion activities such as walking and running 
[3], [4] and, as a result, reduce the quality of life. Human-
machine interaction (HMI) based exoskeleton robots can help 
patients to restore normal motor function and perform essential 
movements [5]. Surface electromyogram (sEMG) signal that 
contains active muscles' physiological information is essential 
for controlling HMI-based exoskeleton robots because it is 
recorded 20 to 200 milliseconds before the initiation of limb 
motion [6].  

Fundamentally, two different control approaches can be 
used to realize the interaction between the patient and robot via 
sEMG signals, which are myoelectric-pattern recognition 
(MPR) based control and simultaneous and proportional 
control (SPC). In the MPR method, sEMG is used as a switch 
signal and different locomotion modes are recognized 
automatically from it using feature extraction techniques and 
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classification algorithms. For instance, the work presented in 
[7] implemented the principal component analysis method on 
sEMG signals for feature extraction and classified gait phases 
with over 90% accuracy using the support vector machine 
algorithm. In another work conducted by Qin et al. (2020) 
using an effective feature extraction technique, the accuracy of 
the classification reached 96% [8]. However, the MPR method 
is discrete in nature, and through this approach, the smooth 
coordination between patient and robot as well as the fine-
grained control are greatly affected, especially in complex 
locomotion tasks associated with the lower limbs [9]. 
Thereby, the MPR approach has limited application in real-
world scenarios [10]. The SPC is the alternative approach, 
which can offer a more natural solution to control exoskeleton 
robots while performing complex activities, such as running, 
through continuous motion estimation.  

In previous research, traditional machine learning 
algorithms such as multi-layer perceptron (MLP) [11], 
random forest [12], and support vector regression [13] are 
used to continuously estimate lower limbs’ motions from 
sEMG signals. However, these classic models fail at 
capturing time series’ long-term dependencies which leads to 
lower prediction accuracy compared to deep neural networks 
(DNNs) [14]. Biomechanical signals (including sEMG) are 
time series with a sequential structure, and DNNs can capture 
long-term dependencies and model the long-term relationships 
between the input and target data [15]. Among the most 
promising DNNs, the long short-term memory (LSTM) and 
gated recurrent unit (GRU) networks have been exploited to 
estimate knee joint angles via sEMG signals [16-18]. For 
instance, Ref. [16] employed an LSTM model for continuous 
estimation of knee joint angle during level-ground walking 
using sEMG signals. In Ref. [18], a hybrid framework 
incorporating a GRU network and a convolutional neural 
network was purposed for continuous estimation of knee joint 
angles via sEMG signals, and similar to Ref. [16], the 
prediction was carried out during the walking scenario. 
However, none of the previous studies focused on controlling 
exoskeleton robots during running, an essential movement 
which is more complex than walking, and plays an important 
role in maintaining physical and mental health. Furthermore, 
in both literature [16] and [18] the prediction of the knee joint 
angle is carried out only in the within-subject scenario, and the 
proposed model’s generalization ability has not been 
investigated in the cross-subject scenario which is a more 
challenging testing level and could aid the practical 
deployment of the SPC scheme in real-world scenarios. 
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      To address the aforementioned shortcomings of previous 
research, this study aimed to estimate knee joint angle via 
sEMG signals during complex locomotion activity such as 
running. A major concern related to the control of sEMG-
driven exoskeleton robots is large EMG cross-subject 
variability due to subject-specific differences in muscles’ 
physiological characteristics. Hence, we considered within-
subject as well as cross-subject testing scenarios to predict the 
knee joint angles via sEMG signals. For accurate estimation in 
the presence of subject-specific differences, we propose a 
novel deep learning-based model (AM-BiLSTM) that 
integrates an attention mechanism (AM) [19] and a 
bidirectional LSTM (BiLSTM) network [20]. The BiLSTM 
network is an updated version of the standard LSTM, which in 
addition to processing the signal in the forward direction, also 
processes the signal in the reverse direction. This architecture 
leads to learning long-term dependencies more effectively, and 
as a result, will improve the performance of the network 
compared to standard (unidirectional) LSTM [21]. Moreover, 
the AM was adopted to further improve the performance of the 
BiLSTM network by assigning weights to the relevant features 
and highlighting critical information. For comparison 
purposes, previously used approaches including LSTM and 
MLP networks are also implemented in this study.  

II. METHODS 

A. Participants Information 
A total of fourteen healthy male subjects (age: 24.42±9.01; 

mass: 82.31±12.10 kg; height: 178.28±4.46 cm; BMI: 

25.85±3.09) with no lower-limb disabilities were recruited in 

this study. All subjects provided informed written consent 

before the experiment.  The Institutional Review Board of 

Sport Sciences Research Institute of Iran approved the ethical 

review for this study with a reference identification number of 

IR.SSRI.REC.1400.1200.  

B.  Data Collection and Preprocessing  
The dataset of this study was collected during treadmill 

running at 2 m/s speed (see Fig. 1). Each trial was repeated three 

times and a 10-minute interval was considered between each trial 

to prevent muscle fatigue. During each trial, sEMG signals from 

six muscles were recorded for one minute (after stabilization of 

running speed) with the NORAXON wireless EMG system 

(myoMUSCLE, NORAXON USA Inc., Scottsdale, Arizona). 

The sampling frequency of the myoMUSCLE system was 3000 

Hz and vastus medialis, rectus femoris, semitendinosus, biceps 

femoris, gastrocnemius medialis, and tibialis anterior were the 

selected muscles. Simultaneously, the angle of the knee joint was 

recorded using the NORAXON myoMOTION motion analysis 

system (myoMOTION, NORAXON USA Inc., Scottsdale, 

Arizona) with a sampling rate of 200 Hz.  

 

Subsequently, the raw knee joint angles were filtered using a 

low-pass 6 Hz filter (4th order zero-phase Butterworth filter) [22]. 

Also, a 20-500 Hz band-pass filter (4th order zero-phase 

Butterworth filter) was applied to the raw sEMG signals to 

remove other inherent noises [22]. 

C.  Feature Extraction from sEMG Signals  

      sEMG is a non-stationary signal that has highly complex 

time and frequency characteristics and its nature change over 

time [23]. Therefore, to analyze sEMG signals, time-

frequency feature extraction techniques such as wavelet 

transform and short-time Fourier transform (STFT) are more 

powerful methods compared to the classical time and 

frequency feature extraction methods. We used the discrete 

wavelet transform (DWT) for feature extraction from sEMG 

signals, which has a better performance compared to the 

STFT due to its variable-sized windowing technique. The 

DWT is a dual channel sub-band coding technique that 

decomposes the input signal into the approximation (low-

frequency part) (cA) and detail (high-frequency part) (cD) 

subsets. The approximation coefficients that provide 

significant information about the original sEMG signal can be 

used as the predictor features of neural networks [24].  

      Using the DWT method, the approximation subset was 

calculated by passing the input signal (𝑥(𝑘)) through a low-

pass filter with impulse response g(n). 
 

𝑍𝑙𝑜𝑤 = ∑ 𝑥(𝑘) 𝑔(2𝑛 − 𝑘)𝐿
𝑘= 1                                                    (1) 

Simultaneously, the detail subset was calculated by passing 

the input signal through a high-pass filter with impulse 

response h(n). 
 

 𝑍ℎ𝑖𝑔ℎ = ∑ 𝑥(𝑘) ℎ(2𝑛 − 𝑘)𝐿
𝑘= 1                                                       (2) 

      The decomposition of sEMG signal can be repeated 

iteratively until the desired approximation coefficients are 

obtained. In this paper, the de-noised sEMG signals were 

Figure 2. Feature extraction from sEMG signals using 

discrete wavelet transform. Figure 1. Data collection from one of the subjects. (a) Subject 

in anatomical position; (b) Subject at running.  



  

decomposed into eight levels, and we extracted the desired 

time-frequency feature from the approximation subset of 

eighth-level DWT decomposition (cA8) (see Fig. 2).  

 

 

D.  Proposed AM-BiLSTM Model Description 

      1) Bidirectional LSTM Network:  LSTM was first 

proposed in 1997 by Hochreiter and Schmidhuber to address 

the gradient explosion and gradient disappearance problems 

of classic recurrent neural networks [25]. In the BiLSTM 

network, which is the improved version of the standard 

LSTM, the input sequence is used twice in the training 

process, first using a forward LSTM (𝐿𝑆𝑇𝑀⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗) and then using 

a backward LSTM (𝐿𝑆𝑇𝑀⃖⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ). The memorizing process of both 

𝐿𝑆𝑇𝑀⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗  and 𝐿𝑆𝑇𝑀⃖⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  is adjusted by three special gates named 

forget gate (𝑓𝑡), input gate (𝑖𝑡), and output gate (𝑜𝑡) which can 

be represented by the following equations (3)–(7): (In all of 

these equations, the subscripts t and t-1 represent the present 

and previous time steps, respectively.) 

𝑓𝑡 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝐖𝒇. [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓)                                                    (3) 

𝑖𝑡 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝐖𝒊. [ℎ𝑡−1, 𝑥𝑡] +  𝑏𝑖)                                                   (4) 

𝑜𝑡 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝐖𝒐. [ℎ𝑡−1, 𝑥𝑡] +  𝑏𝑜)                                                  (5)             

𝐶𝑡 = 𝑓𝑡⨀ 𝐶𝑡−1 + 𝑖𝑡⨀(𝑡𝑎𝑛ℎ(𝐖𝒄. [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑐))                          (6)                    

ℎ𝑡 = 𝑜𝑡⨀ 𝑡𝑎𝑛ℎ(𝐶𝑡)                                                                           (7) 

Where x is the input sequence, h is the hidden state, and C is 

the cell state. Also, 𝐖 and b stand for the weight matrix and 

bias values. 

      In the BiLSTM network, first, the forward hidden states 

( ℎ⃗ 𝑖) are calculated ((ℎ⃗ 1 ,…, ℎ⃗ 𝑁 ) = 𝐿𝑆𝑇𝑀⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗(𝑥1,…, 𝑥𝑁)). Next, 

the input sequence is processed in the reverse form and the 

backward hidden states ( ℎ⃖⃗𝑖 ) are calculated (( ℎ⃖⃗𝑁 ,…, ℎ⃖⃗1 ) 

=𝐿𝑆𝑇𝑀⃖⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ (𝑥𝑁,…, 𝑥1)). In the final stage, by concatenating the 

forward and backward hidden states, the final hidden state 

(ℎ̃𝑖) is obtained as follows.   

ℎ̃𝑖 = [ ℎ⃗ 𝑖  , ℎ⃖⃗𝑖 ], 𝑖 = 1, 2, 3, … , 𝑁                                           (8) 

      To further enhance the performance of the BiLSTM 

network in predicting the target signals, we implemented and 

integrated a variant of the attention mechanism to the 

BiLSTM module, and the description is as follows:   

      2) Attention Mechanism:  Attention is a new concept in 

deep learning which has become one of the most important 

topics in the field [26]. The RNNsearch was the first attention-

based model, proposed by Bahdanau et al. (2014) for machine 

translation [19]. Since then, different attentive neural 

networks have achieved state-of-the-art performances in other 

fields of expertise such as predicting electrical load [28] and 

stock price [29], which is due to highlighting key information 

when handling vast amounts of data by AM. The AM can be 

represented by the following equations (9)–(11). 

      First, the final hidden states were applied to a one-layer 

perceptron.  

𝑢𝑖 = 𝑡𝑎𝑛ℎ(𝐖ℎ̃𝑖 +  𝑏)                                                                      (9) 

Where, 𝐖 and 𝑏 stand for the weight matrix and the bias 

values of the single-layer perceptron, and 𝑢𝑖 is the hidden 

representation of final hidden states. 

      In the next step, the attention weight (𝛼𝑖) is calculated by 

performing SoftMax normalization on the corresponding 𝑢𝑖 .  

 𝛼𝑖 =
exp(𝑢 𝑖

T 𝑢𝑠 )

∑ exp(𝑢 𝑖
T 𝑢𝑠 )𝑖

                                                              (10) 

Where  𝑢𝑠  is the weight vector, which is randomly initialized. 

      Finally, the attention layer output (𝑣) is calculated through 

the following equation.  

𝑣 = ∑ 𝛼𝑖
𝑁
𝑖=1 ℎ�̃�                                                                    (11) 

Where N is the length of the sequence. 

E.  Performance Indices and Testing Scenario 
For a comprehensive investigation, the prediction accuracy 

of the proposed AM-BiLSTM model was tested in within- and 

cross-subject scenarios and compared with the performance 

of notable existing approaches (LSTM and MLP).  In the 

within-subject scenario, each model (AM-BiLSTM, LSTM, 

and MLP) was trained using 75% of data corresponding to a 

specific subject and tested with 25% remaining data of the 

same subject. This process was repeated four times for each 

subject. In the cross-subject scenario, each model was trained 

with the corresponding data of thirteen subjects out of 

fourteen and tested for the unseen subject. This process was 

repeated fourteen times to determine the performance of the 

corresponding model for all subjects. 

Herein, two standard evaluation indices, the normalized 

root-mean-square error (NRMSE) and correlation coefficient 

(CC), were used to quantify the performance of all models. 

The NRMSE and CC metrics are defined as:  

      𝑁𝑅𝑀𝑆𝐸 =
√∑ (�̃�𝑡−𝜃𝑡)

2𝑁
𝑡=1

𝑁

𝜃𝑚𝑎𝑥 − 𝜃𝑚𝑖𝑛

  × 100                                                              (12) 

    CC =

1

𝑁
∑ (𝜃𝑡 − �̅�)(�̃�𝑡 − �̅̃�)𝑁

𝑡=1

√
1

𝑁
∑ (𝜃𝑡 − �̅�)2𝑁

𝑡=1 √
1

𝑁
∑ (�̃�𝑡 − �̅̃�)2𝑁

𝑡=1

                                             (13) 

 

Where �̃�𝑡 is the prediction at t, 𝜃𝑡 is the real knee joint angle 

at t, and N is the sequence length. 

F. Statistical Analysis 

To identify significant differences between the 

performance of the proposed method and previously used 

approaches including LSTM and MLP, Friedman test and 

Wilcoxon signed-rank test with Bonferroni correction for 

multiple comparisons were applied (p<0.05).  

III. RESULTS AND DISCUSSION 

      The proposed AM-BiLSTM model was built in 

TensorFlow platform. Also, the LSTM and MLP networks 

were implemented in MATLAB (The MathWorks Inc., 

Natick, MA, USA). Using the grid search method, the optimal 

training option for each model was determined and the 

corresponding hyperparameters were tuned. Due to the faster 

convergence rate than other optimization algorithms, the 

Adam algorithm was selected to minimize the cost function 

of each model.  

      Fig. 3 shows the actual knee joint angles against the 

estimated knee joint angles when using each of the three 

methods. In the within-subject scenario, both AM-BiLSTM 

and LSTM models provided accurate trends (the proposed 



  

achieved better results) and obviously performed better than 

the MLP network (Fig. 3(a)). In the cross-subject scenario, the 

MLP network lost its fitting ability to a great extent and the 

output of this network is accompanied by a high amount of 

distortion (Fig. 3(b)). Also, the LSTM’s performance 

decreased in cross-subject tests, especially in predicting the 

peaks of target signals (Fig. 3(b)). This decrease in LSTM’s 

performance in cross-subject tests is due to large subject-

specific differences in sEMG signals. However, despite the 

individual differences in cross-subject tests, the performance 

of the proposed AM-BiLSTM model is still high and is 

markedly better than both comparative networks (Fig. 3(b)), 

which indicates the high generalizability of the proposed 

model compared to other methods. 

  

         The average values across all subjects corresponding to 

the NRMSE and CC metrics related to the within- and cross-

subject tests are shown in Table I. According to Table I, the 

results of the within-subject evaluation scenario indicated 

strong correlations between the AM-BiLSTM outputs and the 

actual knee joint angles and relatively low prediction error 

(CC=0.984 and NRMSE=4.807%). The prediction accuracy 

of the proposed model decreased slightly in the cross-subject 

scenario (CC=0.928 and NRMSE=7.101%), nevertheless, in 

both evaluation protocols, the accuracy of the proposed model 

was significantly higher than LSTM and MLP networks 

(p<0.05).  

      Overall, our model significantly outperformed both 

LSTM and MLP networks in the within-subject testing 

scenario (p<0.05) as well as the cross-subject scenario 

(p<0.05) and achieved state-of-the-art performance, which 

indicates the high potential of this model for practical 

deployment in real-world scenarios. The prediction 

robustness and higher generalization ability of the proposed 

model in comparison to the standard LSTM and MLP 

networks can be due to the importance of highlighting pivotal 

information by the AM layer and incorporation of future 

information in the BiLSTM network's training process. 

 
Table I. Average CC and NRMSE values of all models across fourteen subjects 
for within- and cross-subject scenarios. 

* Indicates a significant difference between the performance of the proposed model and LSTM and 
MLP networks based on the results of statistical tests. 

IV. CONCLUSION 

Running is a periodic and continuous movement for the 
human lower limb, which plays an important role in everyday 
life and exercise activities. Accurate estimation of human knee 
joint angle during running activity via sEMG signals can be 
used to intuitively control exoskeleton robots in the 
rehabilitation training for patients with neurological 
impairments and joint disease, conditions that, to the best of 
our knowledge, have not been considered to date. To this end, 
we proposed a novel deep learning-driven model that 
integrates attention mechanism and bidirectional LSTM 
network (AM-BiLSTM) for accurate prediction of target knee 
joint angle signals via muscles’ electrical activity that is 
represented by sEMG signals. To investigate the proposed 
model’s generalizability, within- and cross-subject testing 
scenarios were carried out, and the performance of the 
proposed AM-BiLSTM model was compared with LSTM and 
MLP networks in each scenario in terms of CC and NRMSE 
metrics. According to the statistical tests, the proposed model 
significantly outperformed both standard LSTM and MLP 
networks in each testing scenario (p<0.05) and achieved state-
of-the-art performance. Findings from this study may aid the 
practical deployment of intuitive deep learning-based control 
schemes for lower limb rehabilitation robotic systems.  

Furthermore, our future work will focus on testing the 
proposed method on running movement at various speeds and 
slopes, which is often performed in practice.  
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