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Abstract— The control performance of myoelectric prostheses 

would not only depend on the feature extraction and classification 

algorithms but also on interactions of dynamic window-based 

hyper-parameters (WBHP) used to construct input signals. 

However, the relationship between these hyper-parameters and 

how they influence the performance of the convolutional neural 

networks (CNNs) during motor intent decoding has not been 

studied. Therefore, we investigated the impact of various 

combinations of WBHP (window length and overlap) employed 

for the construction of raw 2-dimensional (2D) surface 

electromyogram signals on the performance of CNNs when used 

for motion intent decoding. Moreover, we examined the 

relationship between the window length of the 2D sEMG and three 

commonly used CNN kernel sizes. To ensure high confidence in 

the findings, we implemented three CNNs which are variants of 

the existing models, and a newly proposed CNN model. 

Experimental analysis was conducted using three distinct 

benchmark databases, two from upper limb amputees and one 

from able-bodied subjects. The results demonstrate that the 

performance of the CNNs improved as the overlap between 

consecutively generated 2D signals increased, with 75% overlap 

yielding the optimal improvement by 12.62% accuracy and 

39.60% F1-score compared to no overlap. Moreover, the CNNs 

performance was better for kernel size of seven than three and five 

across the databases. For the first time, we have established with 

multiple evidence that WBHP would substantially impact the 

decoding outcome and computational complexity of deep neural 

networks, and we anticipate that this may spur positive 

advancement in myoelectric control and related fields. 

 

Index Terms—Convolution neural network (CNN), Window 

length, Window overlap, sEMG signal, Prostheses, Upper Limb 

I. INTRODUCTION 

HE inability of amputees to carry out basic and complex arm 
related tasks reduces their quality of life which may be 
psychologically distressing. To restore limb functionality in 
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amputees, prostheses driven by biosignals from which limb 
movement intentions can be decoded, have been widely 
embraced [1], [2], [3]. Such signals can be collected either in 
invasive (implantation of sensors within human body [4], [5], 
[6]) or noninvasive (placement of sensors on the skin surface 
human body [7], [8], [9]). Though different biosignals exist, 
surface electromyogram (sEMG) is considered the most 
appropriate signal source for the control of prostheses and other 
miniaturized robots (such as exoskeleton for stroke patient 
rehabilitation) due to its noninvasiveness, ease of acquisition, 
and capability to offer rich set of motor information [10]. The 
stochastic nature of sEMG motivated the use of engineered 
features for characterizing the underlying motion intent (MI) of 
amputees in traditional machine learning models [11], [12]. 
Besides, various studies have shown that raw sEMG signals are 
unsuitable for prosthetics control [8] and re-iterated the need for 
manually engineered features since they are often in low-
dimensional space and can significantly reduce pattern 
recognition complexity. However, such engineered features are 
computed based on statistical approaches that sometimes fail to 
capture relationships across sEMG channels, leading to the loss 
of underlying motor information [7]. To address this issue, deep 
learning methods have been proposed for automatic feature 
learning and can be directly applied to raw 2-dimensional 
sEMG signals for adequate extraction of relevant features 
across channels [9][13]. 

The sEMG-based gesture classification task can be modeled 
as a 2D signal recognition problem using convolutional neural 
networks (CNNs), where the input signal to the CNNs has a size 
of J × W (length x width). Many techniques have been used to 
construct 2D signals from sEMG which serve as input to deep 
learning models. For instance, 2D signals have been 
constructed based on spectrograms obtained from short-time 
Fourier transforms [14], scalograms obtained from wavelet 
transforms [15], and construction from engineered features 
[16]. Other methods include HD-sEMG electrode array 
topology (where the 2D resembles an array of electrode 
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placement during data collection) [17], and from raw sEMG 
signal segments using overlapping time windows [18] (where 
the signal width is equal to the number of electrodes and the 
length matches the segmentation window length). However, the 
use of spectrogram, scalogram and 2D from engineered features 
impose extra preprocessing time. While the raw EMG as input 
to CNNs represents a seamless and direct approach, several 
studies have leveraged this option towards attaining fairly 
decent classification performance [16] [18]. This partly 
motivated us to further explore the potential impact of 2D 
signals constructed from raw EMG recordings on CNNs for 
movement intent decoding, which may be necessary in 
developing time-efficient and intuitive deep learning driven 
prosthetic control schemes. 

Recent research has confirmed that 2D signals' temporal 
and spatial information can be used by CNN to extract long and 
short-term patterns present in sEMG recordings [17], [19], [20]. 
With respect to sparse and high-density surface EMG 
recordings, previous studies have proposed CNN-based models 
driven by 2D signals of varied window length and overlap 
constructed from sEMG recordings. For instance, in developing 
a CNN model that adopts 2D signals for movement intent 
decoding, overlaps of 0ms, 90ms, 10ms, 10ms, and 30 data 
points were applied using window lengths of 150ms, 150ms, 
100ms, 300ms, and 150 data points by Atzori et al. [21], 
Tsinganos et al. [18], Rahimian et al. [22], Gulati et al. [23], and 
Bakircioglu et al. [16], respectively. From these studies and 
other related works, it is unclear what combination of 
parameters in terms of window length and overlap would yield 
the requisite 2D signals for optimal movement intent decoding 
(in terms of accuracy and robustness) in CNNs-based pattern 
recognition schemes for multifunctional prostheses. Notably, 
previous studies have reiterated that variation in window-based 
hyper parameters would substantially impact MI decoding and 
computational complexity of traditional machine learning 
models that employ engineered features [24], [25], [26], and 
[27] without addressing deep neural networks.  In other words, 
systematic investigations of the optimal combination of 
window-based hyper parameters for 2D signal construction in 
deep neural networks (CNNs) remains an open research 
question to the best of the authors’ knowledge.   

Convolution kernels act as the feature extraction phase for 
the CNN in which the network automatically learn low- and 
high-level features [28]. The size of the kernel has a great 
influence on the network’s performance as small size kernels 
are good in mining fine features which could be missed by large 
size kernels and vice versa. Therefore, it is important to look at 
their influence in EMG decoding tasks. 

In an attempt to fill the above-mentioned research gaps, this 
paper thoroughly investigated the impact of 2D signals 
constructed from raw sEMG recordings using varied 
combinations of windowing parameters on the decoding 
performance of CNNs. Besides, the CNN models employed are 
simple and low memory enabling practical deployment in upper 
limb prostheses. Also, we explored the effects of varying kernel 
sizes on the classification performance of different CNN 
models. The experimentation was carried out using sEMG from 
three different databases comprising amputees and able-bodied 
individuals that are mostly used for EMG gesture 
characterization. Moreover, the databases include both HD-
sEMG and sparse multichannel sEMG signals and contain 
various degrees of freedom movements associated with the 

finger, hand, wrist, and elbow gestures, which ensures proper 
coverage. The four primary contributions of this work are; 
(1) To provide insight on the deployment of novel and efficient 
deep learning driven prostheses control scheme, this study 
explored the impact of the raw 2D signals’ window length and 
overlap on the performance of CNNs. (2) We explore the effects 
of receptive window for different configurations of CNNs and 
how they influence the feature learning on the raw 2D signal. 
(3) To aid the optimal selection of window parameters, we 
derived a rule of thumb on the relationship between kernel sizes 
and window parameters. (4) We proposed a novel variant of 
CNN model characterized by low computational complexity 
with simple yet robust, and accurate decoding performance.  
 

II. MATERIAL AND METHODS 
 
A. Description of the EMG Databases Utilized 

 

In this study, we utilized three sEMG databases to validate 
our hypothesis and the performance of the CNNs as follows.  

Database 1 (DB1): The DB1 is the CapgMyo database 
(DB-a) [29], and it contains High-density sEMG (HD-sEMG) 
data acquired at a sampling frequency of 1000 Hz from 18 able-
bodied subjects. The acquisition device had 8 modules of 
matrix-type (8 × 2) differential electrode arrays with silver wet 
electrodes which were fixed around the right forearm. The first 
acquisition module was placed on the extensor digitorum 
communis muscle at the height of the radio-humeral joint and 
others were equally spaced clockwise. 8 isotonic and isometric 
hand gestures were involved, and were the subset of NinaPro 
database (DB3) [30]. There were 10 repetitions of each motion, 
each held for 3 to 10 seconds. The movements were 
interspersed with a rest state of around 7 seconds to avoid 
muscle fatigue, and only the preprocessed data which contains 
static part of the motion were used to ensure correct match with 
the labels. To handle the noisy segment, a second-order 
Butterworth band stop filter of 45–55 Hz was used while other 
observed artifacts were removed using a band-pass filter of 20-
380 Hz. 

 

 Database 2 (DB2): This database was acquired in-house 
from four transhumeral amputees. The dataset was collected 
using the HD-sEMG system (Refa 128 model, TMS 
International, Netherlands) with 32 monopolar electrodes and 
an amplifier gain of 26.55. The electrodes were positioned on 
biceps brachii and triceps brachii of the individuals’ residual 
limbs in a matrix of 4x8 as indicated in Fig. 1. Prior to the data 
collection, the subjects were given written informed consent 
and they provided permission for the publication of their data 

Fig. 1. Electrode location and experiment setup on the amputee during sEMG data 

collection for DB2.  
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for scientific and educational purposes. During data acquisition, 
a computer screen was placed in front of the participants and a 
picture of a particular gesture would be shown for the subject 
to follow (see Fig. 1). The 5 upper limb gestures involved were 
wrist supination (WS), wrist pronation (WP), no movement 
(NM), hand close (HC), and hand open (HO)). Meanwhile, each 
motion was held for about 5s with a 5s rest between two 
consecutive tasks. Each gesture was repeated 5 times. The data 
was sampled at 1024Hz while 50Hz notch filter and band pass 
filter with cut-off frequencies 10-500Hz were applied to extract 
requisite signal components. The experiment was approved by 
the Institutional Review Board of Shenzhen Institute of 
Advanced Technology, Chinese Academy of Sciences.   

Database 3 (DB3): The third database denoted as DB3 is a 
publicly available and known as NinaPro Database 3 [30] and 
it contains EMG recordings of 11 transradial amputees. The 
sparse multi-channel sEMG signals were recorded via 12 
electrode channels positioned on the residual arm muscles of 
the amputee. The electrodes were located around the residual 
arm. We utilized exercise B which contains 17 classes of 
movements comprising 9 basic wrist movements and 8 isotonic 
isometric hand gestures. Each movement gesture lasted 5 
seconds with 6 repetitions, followed by 3 seconds of rest. We 
directly worked with the preprocessed data which was sampled 
at 2000Hz, filtered with a notch filter of 50Hz and a band pass 
filter of 20-450 Hz [31]. Table 1. Summarizes the difference in 
the parameters of the three databases used in this study. 
            Table 1: The parameters of databases deployed in this study 

Database type Subjects Type of 

subjects 

No. of 

gestures 

Type of 

gestures 

No. of 

electrodes 

DB1 [29] 18 Able-

bodied 

8 Hand and 

finger  

128 

DB2 [in-house] 4 Amputee 5 Hand  32 

DB3 [30] 11 Amputee 17 Hand, 

finger, 

and wrist 

12 

 
 

B.  2D Signal Construction and Windowing Technique 
     The 2D signals were constructed using a segmentation 
window of dimension J × W, where W is the window length 
and J is the number of electrodes corresponding to 128, 32, and 
12 for DB1, DB2, and DB3, respectively. Precisely, a 
combination of various windowing parameters including 
window lengths (25ms, 50ms, 75ms, 100ms, 125ms, 150ms, 
175ms, and 200ms) and different overlaps (0% of W which 
denotes no overlap, 25% of W, 50% of W, and 75% of W) were 
employed in constructing varied configuration of 2D signals. 
The values of the windowing parameters were opted based on 
previous recommendations [24]. It is worth noting that, in this 
paper we denote the overlap as V. For instance, the overlap of 
25% of W is denoted as 0.25V, 50% of W is 0.50V etc. A 
description of the constructed 2D signals based on 
combinations of windowing parameters is indicated in Fig. 2.   

Subsequently, the 2D signals were partitioned into training 

and test sets. Where a 5-fold cross validation protocol was 

followed. And each time, 80% of the data was used for training 

while the unseen 20% was used for testing to avoid data leakage 

(a key challenge in building machine learning models). Before 

training, a Z-score normalization method was applied to the 

training set to ease the CNN’s learning process [32]. For the 

testing set normalization, the mean value to subtract and the 

standard deviation to divide as obtained from the training set 

were utilized for the normalization process of the test set. It is 

noteworthy that during the preliminary experiment, the Min-

Max [33] and Z-score normalization approaches were 

examined. Our choice on using Z-score normalization is based 

on its consistent excellent movement intent decoding results. 

Additionally, it is important to note that data preprocessing and 

the subsequent experiments were carried out separately for 

every subject. 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. The framework for the construction of 2D signals. The relationship between 

window length (W) and overlap (V) of any successive data segment exploited for 

constructing 2D sEMG representation of size JxW is depicted in the figure. Where J is 

the number of channels i.e., Channel 1 (Ch1), Channel2 (Ch2) up to Ch(J).  
 

C. Convolution Neural Networks (CNNs) 
This study built four different CNN models to investigate 

the impact of varied configurations of 2D sEMG. Among the 
four CNNs, Model1 has similar architecture to the model 
implemented in our previous work [34]. Meanwhile, Model2 
and Model3 are built as variants of existing models and the 
fourth (Model4) is entirely proposed by the authors. The 
architectures of the models are: 

 
       Model1: Model1 is built based on the CNN model 
implemented in our preliminary work [34]. Our decision for 
considering this network is due to its simple structure and stable 
performance. In addition, it takes as input a shape that aligns 
with the shape of our 2D sEMG representation (J x W).  

 
Model2:   Inspired by the simplicity of the model proposed 

by Bakırcıoğlu et al. [16], we adopted its feature learning 
convolution blocks in building our own CNN variant and 
replaced the flattening layer in Bakırcıoğlu et al.’s network with 
a global-max pooling which comparably reduces the network 
parameters (to enhance its computational cost) and is not prone 
to overfitting [35]. Thus, the Model2 consists of three 
convolution blocks each having 80, 100, and 120 nodes with 
similar values of kernel sizes, respectively. Succeeding each 
convolution block is a batch normalization and a max-pooling 
layers that allows down sampling of the feature maps by half. 
The lower part of the network consists of the Global max-
pooling layer for feature reduction and a dense layer of 512 
nodes for high-level feature learning.  

 
Model3:  It is an improved version of the network proposed 

by Maufroy et al. [36] that comprised two convolution layers 
and a fully connected layer each having 100 nodes designed 
specifically for 1D EMG signal processing. Thus, we came up 
with a variant of the network by replacing the 1D convolution 
layers with 2D convolution layers and discarded the dropout 
layers after each convolution except after the fully connected 
layer.  Each convolution is followed by a batch normalization 
and max-pooling layer of 2x2. Similar to Model2, feature 

Ch2  

Ch3  

Ch J  

Ch1  

V 

Myoelectric Recordings 

W 

  
V 

W  

. . . 
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reduction is achieved by using the Global max-pooling layer. 
Because the networks are trained from scratch, we have applied 
weights initialization in both Model2 and Model3 to allow 
quick convergence and optimization of the networks [37]. It 
should be noted that the classification in both networks (Model2 
and Model3) is performed using a softmax layer. 

 
Model4 (Multi-scale CNN) abbreviated as MS-CNN:  The 

convolution kernels can be treated as view windows of the 
network, large size kernels meaning that the network can view 
2D signal at a large dimension (which includes both spatial 
information across channels, and temporal information within 
channels) at once and learn large grained features, likewise, 
small kernels can model fine features of the signal [38]. 
Therefore, in this study, we proposed a MS-CNN model which 
combines the advantage of small and large size kernels to 
improve the classification performance by learning both fine 
and large-grained patterns from the signal while keeping the 
network parameters as low as possible. Moreover, inspired by 
the dilated convolution kernel concept [39], we have utilized 
them as core layers to achieve the multi-scale task. The 
architecture of the proposed network herein referred to as 
Model4 is presented in Fig. 3.  

 The essential functional layers in the MS-CNN (in Fig. 3) 
are the multi-scale block 1 and block 2 composed of dilated 
convolution layers at different scales (dilation rates) to enable 
an exponential increase of large receptive fields without loss of 
output resolution [40]. The input to the network is fed to block1 
via two means including the upper and lower paths with each 
having its own scales. Meanwhile, the upper path contains 
convolution with kernel size=3 and dilation =1 to model fine 
features. The lower path contains convolution with kernel 
size=3 and dilation=4 which is equivalent to the conventional 
kernel of size =9 with output resolution equivalent to 3x3 
convolution. Such a large kernel can learn coarse (general) 
features from the input. The outputs of the two paths are 
combined by the concatenation layer without dimension 
reshaping while max-pooling is applied to extract the most 
essential joint features. The second Multi-scale block (Block 2) 
has a similar operation to Block 1. 

The subsequent Block 3 contains two point-wise 1x1 
convolutions. These convolutions enable the network to learn 
more about the joint features from the multi-scale blocks while 
keeping the number of network parameters low [41].  The lower 
part of the network incorporates a global max-pooling layer, 
one fully connected layer of 128 nodes, and the classification 

layer that employs a softmax function. Additionally, all the 
weights were initialized using a random uniform initializer. The 
key operations of the proposed Model4 are described in 
subsection (i) and (ii) below; 
 

i.  Dilated Convolution Layer for Multi-scale and Memory 
Efficiency 
 

Dilated convolution layer is a layer that uses larger 2D filters 
to extend the standard convolution layer. Fig. 4 depicts the 
conceptual representation of a typical dilation process in the 
context of the proposed MS-CNN. In order to optimize the 
number of network parameters, traditional CNNs exploit 
convolution with small filters ( 2 × 2  or  3 × 3 ). However, 
dilated convolution filters are an easy approach to generating a 
CNN with large filters such as 5 × 5, 7 × 7, etc. while keeping 
the parameters similar to 2 × 2  or 3 × 3  kernels. A dilated 
convolution with an enlargement rate of 𝑑 places 𝑑 − 1 zeros 
in between successive filter values, which results in enlarging 
the size of a 𝐿  filter to  [ 𝐿 + (𝐿 −  1)(𝑑 − 1)(𝑑 − 1)] . It 
should be noted that the quantity of nonzero parameters remains 
equal as before. In addition, the dilated filters significantly 
expand CNN's receptive field, allowing it to capture more 
contextual and spatial information [42]. As a result, it enables 

flexible multi-scale contextual information 
aggregation while maintaining the same 
resolution. 

 
ii. Handling Internal Covariant Shift within the 

MS-CNN 

A major challenge of non-stationary signals 
such as the sEMG is the lack of a common 
distribution which sometimes result in internal 
covariant shift within the network [43]. To 
resolve this issue, batch normalization layers 
were introduced after each convolution block, 
and the ELU activation function was leveraged 
afterwards in requisite layers. Thus, the ELU 
activation function is expressed mathematically 
as shown in equation. (1): 

  𝑓𝐸𝐿𝑈(𝑥𝑘)  =  {
    𝑥𝑘                                    (𝑥𝑘 > 0)    

∝ (exp(𝑥𝑘) − 1)         (𝑥𝑘 ≤ 0)
      (1) 

Where, 𝑥𝑘  is the filter output in the kth channel and ∝ 
represents a parameter to control the value to which an ELU 
saturates for negative inputs. In this study, the default value ∝
= 1 was considered. For negative inputs, the ELU activation 
function returns negative values, as a result its mean (average) 
outputs approach zero than that of ReLU. Hence the ELU 
activation function can improve network learning [44]. Thus, in 
the MS-CNN, each point-wise convolution is followed by an 
ELU activation function. 

Fig. 3. The proposed Multi-scale Convolution neural network (MS-CNN). D represents the dilation rate. 

 

Fig. 4. The conceptualization of dilation: The convolution kernel (L) = 3x3 and its 

dilated filters when dilation rate (D) = 1, 2 and, 3.   
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D. Experimental Setups 

Since the Adam Optimizer [45] demonstrated the best 
network performance (in our preliminary/pilot experiments of 
finding the optimal hyper-parameters for the models) compared 
to the stochastic gradient descent (SGD) optimizer [46], all the 
described models were trained using Adam Optimizer with a 
learning rate of 0.0001. It should also be noted that at least one 
subject from each DB was used to get the optimal hyper-
parameters for the models during preliminary experiments. 
Besides, due to its superior performance in multiclass tasks, the 
categorical cross-entropy [47] was utilized as the loss function. 
The number of epochs for each model was set depending on the 
characteristics of the dataset in each database as indicated in 
Table 2. Thus, the number of iterations/epochs was varied in 
every model separately to allow optimal convergence while 
leaving out only the effects of the studied parameters (overlap, 
window length and kernel sizes) to be observed.     

                        
Table 2.  The number of epochs for each model and database. DB1 denotes database1, 

DB2 denotes Database 11 and DB3 denotes database 3. 

 
To analyze the impact of kernel size on the performance of the 
CNNs per time, the same size of the kernel was applied to all 
convolution layers of the models. Hence, we utilized kernel 
sizes of 3x3, 5x5, and 7x7 since they are the basic kernels that 
have been employed in prior studies and yielded relatively good 
performances [14], [16], [18], [21], [22]. It should be noted that 
Model4, utilizes kernels with resolution equivalent to 3. Thus, 
it was not included in experiments involving the variation of 
kernels 5x5 and 7x7.  

 
Table 3. Experimental analyses performed for the three parameters for different models 

(The parameters were the same for every subject) 

 

Evaluation Measures 

To analyze the performance of the different networks, we 

used benchmark evaluation metrics that include accuracy and 

F1-score, as they have been widely adopted in the field of 

myoelectric pattern recognition. Additionally, to verify the 

statistical significance of the proposed method, a non-

parametric Friedman’s test was conducted followed by Dunn’s 

post hoc test. The definitions for the metrics are indicated in 

equations 2 and 3.  

           𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦         =         
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁
                     (2) 

 

           𝐹1 − 𝑠𝑐𝑜𝑟𝑒            =      
2𝑇𝑃

2𝑇𝑃+𝐹𝑃+𝐹𝑁
                       (3) 

From equations 2 and 3, true negative (TN) and true 
positive (TP) are the number of accurately classified negative 
and positive samples, respectively. The number of positive 
cases classified as negative is a false negative (FN), while the 
number of negative samples predicted as positive is false 
positive (FP).  

        III: RESULTS AND ANALYSIS 
 

A. Analyzing the impact of window length and overlap on the 

performance of the CNNs. 

In this section, we investigated whether or not the 2D signals 

constructed from varied combinations of window length (W) 

and overlap (V) would impact the decoding performance of 

CNNs. For each experiment, the W was kept constant while 

varying the V and vice versa. And the corresponding signals 

were used to train the built CNNs described in Section II.C. 

For instance, 2D signals obtained from W of 175ms and an 

overlap of “75% of W” were employed to train and test a CNN 

with a kernel size of 3. Similarly, the impact of other 

combinations of W and V across kernel sizes on the CNNs was 

examined. Meanwhile, the experiments were carried out for 

each of the databases described in Section II.A and the obtained 

results are presented as follows. Table 3 summarizes the overall 

analyses per subject. Because the results for all three kernels (3, 

5, and 7) show a similar trend, we only presented the results for 

kernel size of 3. The average motion classification performance 

for every combination of window parameters (W vs V) across 

kernel sizes and subjects for the different CNNs for Database 1 

(DB1) are presented in Fig 5 in accuracy and Table 4 in F1-

score.  

Analyzing the results in (Fig. 5 (a)), it can be seen that the 

accuracy in every CNN improves when the percentage of 

overlap (V) increases at constant window length (W) and kernel 

size (K). For instance, the accuracy of Model1 at W = 25ms 

increases from 97.22%, 97.79%, 98.32%, to 98.74% when V 

increases from 0V, 0.25V, 0.50V, to 0.75V, respectively. This 

indicates a significant improvement upon statistical analysis 

results when comparing overlap 0V and 0.75V (p-value: 7x10-

6). When investigating the effects of varying W at constant V in 

a particular model, the results show no considerable difference. 

For instance, in Model1, the performances at the overlap of 0.75 

are 98.74%, 98.88%, 98.84%, 98.86%, 98.84%, 98.74%, 

98.79%, and 98.91% at W of 25ms, 50ms, 75ms, 100ms, 

125ms, 150ms, 175ms, and 200ms, respectively. To further 

examine this phenomenon, the F1-score results in Table 4 also 

show that the model’s performance improved by increasing the 

percentage of overlap at constant window length. Similarly, the 

average results displayed in Fig. 5 (b) (accuracy) and Table 4 

(F1-score), show that the overlap of 75% (0.75V) achieved 

much better classification results for upper limb MI decoding 

irrespective of the window length.   

To further validate the above results, we conducted the 

experiments using amputee databases (D2 and DB3) whose 

results are presented in Fig 6 and 7 in accuracy, and Table 5 and 

6 in F1-score, respectively. The accuracy results in Fig. 6 and 7 

(for DB2 and DB3 respectively), show that the performance of 

all the networks increases with an increase in overlap at a fixed 

window size per time with statistical significance of p=4.0x10-

6, 3.0x10-6, 3.0x10-6, 7.9x10-5 for model1, model2, model3, and 

model4 in DB2. While p=3.62x10-4, 2.4x10-5, 2.8 x10-5, 

8.26x10-3   were observed in  DB3 for model1, model2, model3, 

and model4 respectively,  when comparing the results of  

overlap 0v and 0.75.  Also, the F1-score values in Table 5 and 

6 depict similar trend, further corroborating the phenomenon 

observed for the accuracy metrics. 

SN Database 
Model1 

(Epochs) 

Model2 

(Epochs) 

Model3 

(Epochs) 

Model4 

(Epochs) 

1 DB1 35 20 30 30 

2 DB2 30 20 30 30 

3 DB3 30 30 38 30 

SN CNN 
Window 

Length 

Overlap 

Size 

Kernel 

Size 

Total 

Analyses 

1 Model 1 8 4 3 96 

2 Model 2 8 4 3 96 

3 Model 3 8 4 3 96 

4 Model 4 8 4 1 32 

 Total Experimental Analyses 320 
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(DB1) W=25 W=50 W=75 

 0V 0.25V 0.5V 0.75V 0V 0.25V 0.50V 0.75V 0V 0.25V 0.50V 0.75V 

Model1 88.41 90.92 94.18 97.72 87.69 90.00 94.04 98.70 87.67 91.26 93.39 97.71 

Model2 89.96 92.48 95.96 98.93 89.98 93.72 95.72 99.19 88.72 94.12 95.39 99.08 

Model3 80.86 86.31 90.99 97.61 83.47 85.59 91.45 98.60 79.20 88.64 91.22 98.90 

Model4 92.60 95.04 97.38 98.54 93.31 96.18 97.44 99.85 96.79 97.88 98.22 99.79 

 W=100 W=125 W=150 

 0V 0.25V 0.50V 0.75V 0V 0.25V 0.5V 0.75V 0V 0.25V 0.5V 0.75V 

Model1 88.22 89.77 93.94 97.70 86.29 90.12 94.59 97.48 82.67 86.22 93.32 98.24 

Model2 88.09 91.95 95.35 98.59 88.22 90.61 96.35 98.19 85.30 89.83 93.96 97.66 

Model3 81.78 86.44 94.61 98.19 80.52 85.33 95.37 97.83 79.06 88.63 88.99 98.13 

Model4 96.94 98.10 99.47 99.91 96.34 96.85 98.79 98.89 93.31 95.89 99.55 99.76 

 W=175 W=200 Mean±Std 

 0V 0.25V 0.5V 0.75V 0V 0.25V 0.5V 0.75V 0V 0.25V 0.5V 0.75V 

Model1 84.80 84.89 92.71 98.00 83.11 85.69 92.48 97.68 86.10±2.31 88.60±2.56 93.57±0.73 97.90±0.40 

Model2 85.22 88.89 94.49 98.22 82.04 87.73 96.90 98.35 87.19±2.77 91.16±2.29 95.51±0.95 98.52±0.52 

Model3 77.59 82.77 89.87 98.50 78.47 86.23 94.84 98.92 80.11±1.92 86.24±1.88 92.16±2.44 98.33±0.48 

Model4 94.92 94.95 97.52 99.68 92.67 94.85 97.43 99.89 94.60±1.87 96.21±1.29 98.22±0.93 99.53±0.52 

Table 4 Classification F1-score of Model1, Model2, Model3, and Model4 at kernel size=3 when applied on DB1. Each part contains 

classification at different window lengths (W) with varied overlaps (V). Note: Window length (W) unit is in millisecond (ms)). 
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(a). Classification accuracy for every window length at varied overlaps. Kernel=3  
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Fig. 7. Classification (in accuracy) of Model1, Model2, Model3, and Model4, when they are applied to DB3. (a) Each sub-part in the graphs contains results of all models at the 

same window length and varied overlaps 0V, 0.25V, 0.50V and 0.75V which are equivalent to 75% of W, 50% of W, 25%of W and 0% of W. Note: Window length (W) unit 

is in millisecond (ms). (b) The average classification results across window lengths. 

 

Fig. 6. Classification accuracy of Model1, Model2, Model3 and Model4, when they are applied to DB2. (a) Each sub-part in the graphs contains results of all models at the 

same window length and varied overlaps 0V, 0.25V, 0.50V and 0.75V which are equivalent to 75% of W, 50% of W, 25%of W and 0% of W. Note: Window length (W) unit 

is in millisecond (ms). (b) The average classification results across window lengths. 
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Fig. 5. Classification accuracy of Model1, Model2, Model3, and Model4, when they are applied to DB1. (a) Each sub-part in the graphs contains results of all models at the 

same window length and varied overlaps 0V, 0.25V, 0.50V and 0.75V which are equivalent to 75% of W, 50% of W, 25%of W and 0% of W. Note: Window length (W) 

unit is in millisecond (ms). (b) The average classification results across window lengths. 



7 

> REPLACE THIS LINE WITH YOUR MANUSCRIPT ID NUMBER (DOUBLE-CLICK HERE TO EDIT) < 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 
 
 
 
 
 
 
 
 
 
 
 

B.  Analyzing the Effect of Network Receptive Fields 
against the Generated 2D sEMG Signals.      

The effect of each model's kernel size on different 2D 

sEMG signals constructed using varied windowing parameters 

was investigated in this section. The experiments were carried 

out by varying kernel sizes (3, 5, and 7) while keeping each 

window length constant and the networks were configured to 

utilize a specific kernel size per training phase. Due to the 

relatively stable and higher performances observed when the 

overlap was 75%, only this overlap was reported in this section 

for brevity.  Moreover, due to the architecture of Model4 which 

only incorporates kernels with a resolution equivalent to 3, it 

was excluded from the analysis in the section for a fair 

comparison. Thus, the F1-score results for three models at 

different kernel sizes when 2D signals were generated from 

DB1, DB2, and DB3 are presented in Fig. 8. 
Based on analysis of the results for DB1 presented in Fig. 

8(a), in general, the kernel size of 7 yields better classification 
performance across the networks (Model1, Model2, and 
Model3) as the window length increases from 25ms to 200ms.  
Also, the trend of increment for kernel sizes of 3, 5, and 7 can 
be observed to be similar in all the models except at window 
175 in Model1 and Model2, and window 125 in Model3, where 
kernel 5 recorded an average F1-score value that is better than 
that of kernel 7. The average performance shows that kernel  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
size of 3 led to the least classification results in all the CNNs. 
Besides, the statistical analysis between kernel 3 and 7 show a 
significant improvement of p=0.9.92x10-4, 1.30x10-3, and 
1.83x10-2. Although the impact is realized when varying kernel 
sizes, there is no significant and consistent (increase) effect 
when varying window length (at constant kernel) in the 
network’s performance in this database (DB1) except from 
window 25 to 50ms for Model1, and from 25 to 75ms for 
Model2 and Model3.  

By closely analyzing the variation of kernel sizes and 
window lengths for DB2 in Fig. 8(b), an increase in the 
performance of every model is realized when the size of kernels 
increases from 3, 5 to 7. The observation in this database shows 
that the use of large-size kernels improves the CNN’s 
performance significantly (with p<0.05 in all models) 
regardless of the window length. Moreover, the variation of 
window lengths shows an impact in the performance of CNNs 
especially in Model2 and Model3 where the graphs show a 
positive gradient with the increase in window lengths for all 
window sizes (from 25ms to 200ms) in Model2, and from 
100ms to 200ms in Model2 at constant kernel size.  

From the results illustrated in Fig. 8(c) for DB3, the 
performance of every model increases with the increase in 
kernel size at constant window length.  Although the database 
contains signals from amputees, kernel=7 has achieved good 
performance. Comparing the results of kernels 7 and 3 a 

(DB2) W=25 W=50 W=75 

 0V 0.25V 0.5V 0.75V 0V 0.25V 0.50V 0.75V 0V 0.25V 0.50V 0.75V 

Model1 69.83 72.27 75.95 82.99 70.59 74.19 78.21 90.56 70.48 74.02 79.94 88.69 

Model2 67.45 70.16 77.52 84.75 69.84 72.59 78.84 93.08 69.57 76.29 80.78 92.47 

Model3 63.62 66.77 72.54 83.94 64.79 68.13 71.63 90.48 65.23 72.05 72.82 90.56 

Model4 67.59 70.22 75.29 80.13 72.60 74.04 78.19 89.97 75.03 77.19 81.70 90.35 

 W=100 W=125 W=150 

 0V 0.25V 0.50V 0.75V 0V 0.25V 0.5V 0.75V 0V 0.25V 0.5V 0.75V 

Model1 71.81 74.40 78.52 89.08 70.35 73.85 78.37 89.72 67.97 74.47 78.61 87.57 

Model2 68.59 74.46 80.33 91.62 68.63 73.83 79.59 91.96 66.90 77.80 80.87 92.55 

Model3 65.98 68.82 82.27 86.98 65.86 70.69 84.09 88.20 64.08 73.38 74.99 88.42 

Model4 76.75 78.12 83.04 90.25 75.23 78.63 85.40 90.73 75.60 81.53 83.91 91.01 

 W=175 W=200 Mean±Std 

 0V 0.25V 0.5V 0.75V 0V 0.25V 0.5V 0.75V 0V 0.25V 0.5V 0.75V 

Model1 66.89 73.20 78.43 90.10 67.60 71.80 81.96 89.69 69.44±1.73 73.52±1.01 78.74±1.70 88.54±2.43 

Model2 65.24 71.99 80.71 92.81 66.59 70.39 91.23 94.07 67.85±1.58 73.43±2.70 81.23±4.20 91.66±2.89 

Model3 63.51 67.89 71.83 89.36 64.33 72.87 83.63 96.03 64.67±0.95 70.07±2.51 76.72±5.58 89.24±3.47 

Model4 76.92 80.36 82.91 91.99 77.46 80.81 88.20 93.54 74.64±3.23 77.61±3.82 82.32±4.04 89.74±4.06 

(DB3) W=25 W=50 W=75 
 

0V 0.25V 0.5V 0.75V 0V 0.25V 0.50V 0.75V 0V 0.25V 0.50V 0.75V 

Model1 37.96 39.97 42.47 47.48 43.27 46.31 49.56 57.81 45.65 48.88 53.21 62.42 

Model2 34.45 36.95 43.25 49.69 40.50 43.79 49.67 74.86 42.68 49.64 55.09 73.08 

Model3 28.41 30.81 33.28 38.33 32.11 34.69 37.47 46.25 33.69 38.35 40.20 58.74 

Model4 35.42 37.48 40.24 44.74 42.47 44.58 47.63 57.07 45.71 48.95 53.26 62.56 
 

W=100 W=125 W=150 
 

0V 0.25V 0.50V 0.75V 0V 0.25V 0.5V 0.75V 0V 0.25V 0.5V 0.75V 

Model1 47.06 51.18 55.28 65.42 46.74 52.19 57.61 67.09 47.01 53.13 58.23 69.29 

Model2 44.78 50.41 57.11 74.68 43.77 52.35 59.51 77.33 46.06 57.34 62.11 80.03 

Model3 36.09 38.92 45.74 51.90 36.22 38.84 48.63 54.35 37.06 42.09 45.95 57.95 

Model4 49.16 51.41 57.46 64.77 51.45 55.11 60.99 68.28 51.45 55.11 60.99 68.28 
 

W=175 W=200 Mean±Std 
 

0V 0.25V 0.5V 0.75V 0V 0.25V 0.5V 0.75V 0V 0.25V 0.5V 0.75V 

Model1 47.79 52.19 58.22 71.32 45.25 50.80 60.55 72.77 45.09±3.21 49.33±4.36 54.39±5.92 64.20±8.31 

Model2 46.68 53.05 63.49 81.80 45.28 53.54 74.28 84.88 43.02±3.99 49.63±6.43 58.06±9.34 74.54±10.81 

Model3 39.24 40.76 46.01 58.73 36.40 43.10 52.70 63.53 34.89±3.39 38.44±4.02 43.74±6.32 53.72±8.11 

Model4 55.00 57.70 63.49 72.41 54.74 58.85 66.32 77.87 48.17±6.69 51.14±7.26 56.29±8.78 64.49±10.14 

Table 6. Classification F1-score of Model1, Model2, Model3, and Model4 at kernel size=3 when applied on DB3.  

 

Table 5. Classification F1-score of Model1, Model2, Model3, and Model4 at kernel size=3 when applied on DB2.  
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significant increase in the performance of the models was 
observed for DB3 with p<0.05 in Model 1 and Model3. In that 
respect the maximum improvement of 18.46% is observed in 
Model1 with a window length of 125ms, while 8.35% is 
observed in Model2 with a window of 75ms, and 31.75% in 
Model3 with a window of 50ms. Contrary to previous databases 
(DB1 and DB2), the effects of increasing window length at 
constant kernel significantly increase the performance of the 
networks when DB3 was utilized.  For example, the results in 
Model1 with a kernel of 3 improved from 47.48%, 57.81%, 
62.42%, 65.42%, 67.09%, 69.29%, 71.32%, to 72.77% F1-
score at window lengths of 25, 50, 75, 100, 125, 150, 175, and 
200ms, respectively. This observation correlates with the 
previous study, which shows that the impact of window length 
is more evident in a small number of channels [26]. 
 
C. Analysis of Individual Limb Motion Intention (MI) across 

Window Overlaps and Kernel Sizes 

The analysis in the previous sections only presents an 

overview of motion classification outcomes with respect to 

varied combinations of window lengths, overlaps (V), and 

kernel sizes (K). Thus, it is necessary to look into the effects of 

these parameters on the classification performance of individual 

classes of movement. Hence, for each of the studied databases, 

the impact of kernel size and overlap on the categorization of a 

certain class of motion is described in this section. It is 

noteworthy that the results of W=200 were considered due to 

its high performances (as indicated in section III-B) and only 

Model1 was presented because the results in other models 

follow the same trend. Additionally, the confusion matrices for 

the average results across all subjects are presented for the 

lowest performing combination (Kernel=3 and overlap of 0V) 

and highest performing combination K=7 and overlap=0.75V. 

The impacts of window parameters on each MI classification 

were examined in DB1, DB2 and DB3 and the results are 

presented in Fig. 9.   
Considering the analysis in Fig. 9 (a) for DB1, it can be seen 

that most of the individual gestures have attained results below 
80.00% at the lowest combination (K=3 and overlap of 0%), 
however, the application of kernel=7 and overlap of 75% led to 
significant improvement in MI classification performance 
(above 98.00%) in all gestures. 

Likewise, the investigation across individual limb motion 
intention (MI) task in the amputee database (DB2) in Fig. 9 (b) 
shows that the classification performances of all gestures were 
improved from below 74.00% to above 88.00% for all gestures 
when the lowest combination was replaced by the highest 
combination. 

The same trend is observed in Fig. 9 (c) for DB3, where the 
application of 75% overlap and kernel of 7 has achieved 
performances above 86.00%. This demonstrates that networks 
at kernel =7 and the 2D sEMG signals with a 75% overlap 
would be a perfect combination for characterizing sEMG signal 
patterns associated with these classes of hand gestures.      
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(a) Variation of kernel sizes and window lengths in DB1 
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(b) Variation of kernel sizes and window lengths in DB2 
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(c) Variation of kernel sizes and window lengths in DB3 

Fig. 8. The classification performance of Model1, Model2, and Model3 while varying the network kernels (3, 5 and, 7) at different 2D signal lengths (W) of 25, 50, 75, 

100, 125, 150, 175, and 200 of DB1, DB2, and DB3. AV is the average results across all window lengths. Note: Window length (W) unit is in millisecond (ms). 
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D. Analysis of Time Delay of the CNNs for varied 

Window Parameters of 2D sEMG Signals.  
In this section, we quantified the corresponding latency 

efficiency of the CNNs when the constructed 2D sEMG signals 
were applied. In this case, the response time (𝑇𝑒) is an essential 
parameter that reflects the delay observed when the CNN model 
is deployed in a prosthesis for use in practical settings. This 
parameter could be seen as a function of the amount of time 
taken to decode a MI task from a single trial evaluation. The 
previous studies investigated the microcontroller delay time 
when the prosthesis is in use and found that it can be computed 
using the relationship in equation 4. [26], [24], [25]. 
 

             𝐷𝑇 =
1

2
𝑊 +

1

2
𝑉 + 𝑇𝑒                         (4)  

 

Where, 𝐷𝑇 is the microcontroller delay time,  𝑊  is the window 
length,  𝑉 is the overlap, and 𝑇𝑒 is the response time of CNN 
(from preprocessing the sEMG and generation of 2D signals to 
yielding a decision).  Thus, equation 4 was utilized to compute 
the latency (program execution time) of the CNNs built based 
on varied combination of window parameters across the kernel 
sizes as shown in Tables 7, 8, and 9 for the three databases 
(DB1, DB2, and DB3), respectively.   

 
By closely analyzing the results across one trial of 

movement in Tables 7, 8, and 9, it can be seen that the delay 
time decreases with a decrease in the overlap. The overlaps of 
75% have the highest computation times. Moreover, the 
increase in kernel size also increases the inference time. DB2 
(in Table 8) has the highest times relative to other databases. 
While the delay times in DB1 (Table 7) are all (except for W= 
50, 75, and 200ms at overlap 0.75V) within an acceptable range 
for the practical application of the prostheses, which is stated to 
be below 200ms [24]. All delay times in DB3 (Table 9) are 
within the acceptable range. Therefore, when considering the 
combination of both accuracy and time efficiency of the CNNs 
for prostheses-based applications, networks with kernel =7 and 
an overlap of 50% would yield reliable operations in all 
databases (below 200ms) and 75% overlap for DB3.  
 

IV. DISCUSSION 
       This work investigated the relationship between the length of 
the 2D sEMG signal window and the overlap, which can produce 
the network's best performance. We also studied how CNN kernel 
sizes affect the network's performance on classification tasks when 
raw 2D sEMG signals constructed using different combinations of 

Table 8. Average delay time (seconds) of a single trial of movement in DB2.  

 

Table 9. Average delay time (seconds) of a single trial of movement in DB3. 

 

Table 7. Delay time (in seconds) of a single trial of movement on DB1. V is the overlap, 

K is the kernel size, and W is the window size 

 DB1

V/K K=3 K=5 K=7 K=3 K=5 K=7 K=3 K=5 K=7 K=3 K=5 K=7 K=3 K=5 K=7 K=3 K=5 K=7 K=3 K=5 K=7 K=3 K=5 K=7

0.75V 162 120 120 226 221 223 200 214 226 122 119 120 149 148 148 169 169 172 188 190 191 210 213 208

0.50V 94 58 56 109 102 103 107 105 107 103 97 99 115 115 115 135 136 136 153 153 153 172 172 172

0.25V 82 46 46 87 79 83 84 86 88 80 80 82 96 96 96 112 113 113 127 127 127 143 143 143

0V 66 37 37 65 68 67 73 77 73 66 67 68 79 79 82 92 93 93 104 104 107 116 117 117

0.75V 147 117 119 205 212 218 204 206 164 128 127 126 152 151 151 174 174 172 195 196 195 214 214 219

0.50V 90 58 60 105 103 105 105 105 99 99 99 98 116 117 117 136 137 135 154 159 154 172 174 172

0.25V 79 45 25 83 81 63 82 88 88 81 82 82 96 97 97 114 114 113 129 131 128 144 144 144

0V 68 36 20 72 68 48 74 75 75 67 68 69 80 80 80 93 94 92 105 106 105 117 117 117

0.75V 142 103 119 193 190 220 194 196 222 125 125 128 149 150 150 170 168 175 195 191 194 215 214 218

0.50V 85 52 58 95 94 102 101 103 107 98 97 98 116 116 116 135 135 135 153 153 154 172 173 173

0.25V 75 44 46 78 77 82 82 82 86 81 81 81 96 97 96 112 112 112 128 128 128 143 144 144

0V 63 34 39 64 62 67 75 73 71 67 67 67 79 79 79 92 92 92 104 104 104 117 117 117

0.75V 165 234 234 130 153 172 193 218

0.50V 101 123 122 100 118 136 155 175

0.25V 84 96 97 83 99 114 130 145

0V 83 88 86 70 81 93 106 120

Model4

W=25 W=50 W=75 W=100

Model3

Model2

Model1

W=175 W=200W=125 W=150

DB2

V/K K=3 K=5 K=7 K=3 K=5 K=7 K=3 K=5 K=7 K=3 K=5 K=7 K=3 K=5 K=7 K=3 K=5 K=7 K=3 K=5 K=7 K=3 K=5 K=7

0.75V 162 120 120 226 221 223 200 214 226 153 157 159 178 178 180 197 203 206 215 225 233 233 231 238

0.50V 94 58 56 109 102 103 107 105 107 114 116 115 133 133 133 151 176 152 169 169 171 186 187 187

0.25V 82 46 46 87 79 83 84 86 88 100 100 100 115 115 115 130 132 143 145 153 147 160 160 160

0V 66 37 37 65 68 67 73 77 73 86 87 87 101 101 99 110 110 110 123 123 123 134 134 134

0.75V 147 117 119 205 212 218 204 206 164 156 158 162 180 180 199 193 205 219 214 219 230 243 238 251

0.50V 90 58 60 105 103 105 105 105 99 118 119 121 135 135 142 156 172 163 174 177 183 203 188 192

0.25V 79 45 25 83 81 63 82 88 88 102 102 104 117 117 124 132 135 137 147 149 153 162 160 164

0V 68 36 20 72 68 48 74 75 75 88 89 91 100 100 103 110 111 112 123 124 127 137 136 138

0.75V 142 103 119 193 190 220 194 196 222 158 162 158 192 192 213 195 215 230 216 220 230 243 244 242

0.50V 85 52 58 95 94 102 101 103 107 117 119 119 154 154 163 157 164 157 175 177 182 190 191 201

0.25V 75 44 46 78 77 82 82 82 86 101 102 103 123 123 120 133 136 138 147 149 153 161 162 162

0V 63 34 39 64 62 67 75 73 71 88 90 88 100 100 105 111 118 112 123 124 126 136 137 138

0.75V 165 234 234 165 191 200 220 239

0.50V 101 123 122 122 139 160 178 191

0.25V 84 96 97 105 119 134 149 163

0V 83 88 86 92 103 112 124 138

Model4

W=25 W=50 W=75 W=100

Model3

Model2

Model1

W=175 W=200W=125 W=150

DB3

V/K K=3 K=5K=7 K=3 K=5K=7 K=3 K=5K=7 K=3 K=5K=7 K=3 K=5 K=7 K=3 K=5 K=7 K=3 K=5 K=7 K=3 K=5 K=7

0.75V 55 34 12 66 68 47 71 77 79 87 90 91 95 96 98 109 109 110 118 120 121 123 123 132

0.50V 32 20 20 36 38 38 43 43 45 60 61 62 69 69 70 78 79 80 86 87 88 94 95 95

0.25V 26 16 16 30 28 31 37 34 38 49 50 51 57 57 57 64 65 66 73 72 73 78 78 79

0V 24 13 14 28 25 26 34 29 32 41 41 41 48 47 48 54 53 54 61 61 60 65 65 65

0.75V 57 35 37 68 73 76 76 83 84 87 91 92 97 101 103 110 109 111 118 124 125 124 128 136

0.50V 34 21 21 39 40 41 45 43 49 61 62 64 68 72 72 79 79 80 87 88 88 95 96 101

0.25V 28 17 17 34 30 34 40 32 42 50 53 51 57 59 58 65 66 65 73 73 73 79 79 83

0V 24 15 14 28 26 31 31 27 37 41 42 42 46 49 48 53 54 53 60 61 62 65 65 67

0.75V 57 38 41 69 75 77 74 79 82 87 90 91 99 103 107 112 114 116 120 124 123 125 128 126

0.50V 33 22 22 37 41 43 44 44 47 60 61 62 71 73 74 80 82 83 88 89 90 94 94 95

0.25V 27 18 17 31 32 33 37 36 38 49 50 50 58 59 60 66 67 67 73 74 74 78 80 79

0V 24 15 16 26 27 29 32 30 31 40 41 41 48 49 49 54 55 57 60 61 60 64 64 64

0.75V 59 75 85 93 101 112 123 129

0.50V 34 40 49 63 71 80 89 97

0.25V 27 32 40 52 59 65 73 80

0V 25 29 35 43 49 55 61 66

Model4

W=25 W=50 W=75 W=100 W=175 W=200

Model1

Model2

Model3

W=125 W=150

(b). Classification performance for every motion intent in DB2. Where, the 

output motions in DB2 are, wrist supination (WS), wrist pronation (WP), no 

movement (NM), hand close (HC), and hand open (HO). 

K=3, Overlap=0V 

 
K=7, Overlap=0.75V 

 

(a). Classification performance for every motion intent in DB1. M1 – M8 

represent the 8 motion intents in DB1. 

K=7, Overlap=0.75V 

 
K=3, Overlap=0V 

 

K=3, Overlap=0V 

 
K=7, Overlap=0.75V 

 (c). Classification performance of Model1 for every motion in DB3. H1 – 

H17 represents the 17 gestures in DB3. 

Fig. 9. The confusion matrices for Model1 on classification performance across 

each motion intention in DB1, DB2, and DB3 
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window length and overlaps were used as input to the CNN. The 
investigation considered four different kinds of CNN models. It 
should be noted that, although this study focused on raw EMG as 
input to the CNN, we also acknowledge the potential of using other 
forms of inputs to the CNN such as spectrograms [48]. 

Specifically, the results presented in section III.A demonstrated 
the effects of window overlap and window length of the generated 
2D signals on the performance of the CNNs. In general, the results 
in Fig. 5 & Table 4, Fig. 6 & Table 5, and Fig. 7 & Table 6 for 
DB1, DB2, and DB3, respectively, show that the performance of 
the CNNs is greatly influenced by the amount of overlap in the 
generated 2D signals. Interestingly, the highest overlap achieved 
the maximum improvement of 20.91% in DB1, 31.70% in DB2, 
and 39.60% F1-score in DB3. Further analysis is presented in 
section III. C (Fig. 9), which depicts the effects of varying window 
overlaps and kernel sizes on the individual motion intention in Fig. 
9 (a) (for DB1), Fig. 9 (b) (for DB2), and Fig. 9 (c) (for DB3). The 
classification performances across individual motion intents show 
that 75% (0.75V) of signal overlap has achieved higher 
performances in all gestures compared to 0% overlap (0V). This, 
emphasizes that the use of 2D sEMG signal with large overlaps can 
achieve reasonable and practical results for CNN. 

On the other hand, the results in section III. B show that the 
effect of window length of 2D sEMG signals becomes significant 
when the number of channels decreases. In that regard, the impacts 
of varying window lengths were not realized when DB1 with 128 
channels (signals of size Wx128) was used as indicated in Fig. 8 
(a). The effect started to show up in DB2 (32 channels) in Fig. 8 
(b). A consistent and positive impact of window length is observed 
in Fig. 8 (c) when DB3 (which uses 2D signals from 12 channels) 
was deployed. This finding corroborates the previous work [26], 
on engineered features which also showed that the effects of 
window length increase with the decrease in the number of 
channels. This relationship is likely described by the feature space 
in non-dense channels (i.e., 12 channels in DB3) that provide less 
spatial information which on the other hand can be compensated 
by additional temporal information provided by longer window 
lengths. But longer window lengths provide less benefit to large-
channel clusters (i.e., 128 channels in DB1 and 32 channels in 
DB2) that are already more adequately distributed in feature space. 

The CNN's kernel can be thought of as the network's eye; the 
larger the kernel, the larger the network's receptive field, allowing 
it to see more of the signal and identify more widespread spatial 
patterns (features), whereas a smaller kernel size identifies finer 
features [22]. The results attained in Fig. 8 indicate that the increase 
in kernel size improves the CNN’s performance by a significant 
margin at constant window length, with the peak performance 
attained by kernel =7.  This implied that the patterns of the sEMG 
signals can be modelled over a large spatial dimension of the signal 
[49].  Besides, a wide field of view allows the network to learn 
hidden temporal connectivity within the signal [22]. Hence, it can 
model both spatial and temporal patterns of the signal. This 
provides us with an insight that it may be essential to consider 
shallow networks but with large kernels to have classifiers with 
high accuracy which are time and memory efficient.  

Additionally, when we compare the general results across 
different databases between the amputees-based database (DB2 
and DB3) and the database containing the able-bodied subjects’ 
data (DB1). The results obtained in DB1 in all experiments are 
relatively higher than in DB2 and DB3. This could be due to the 
high quality of the signals collected from able-bodied subjects 
contrary to the amputee subjects, whose signal qualities are 
normally low due to limited residual muscles [50]. However, the 
application of a high percentage of overlaps (particularly 75%) in 
the generated 2D signals has improved the classification results of 

DB2 and DB3 to an acceptable level in all Models. Therefore, a 
combination of 75% overlap and large kernels such as 7 may have 
the potential to realize the practical use of CNN-based prostheses.  

Furthermore, we estimated the possible delay time of the 
prosthesis microcontroller based on CNNs in relation to the 
window length, overlap, and kernel size on a single trial of 
movement as indicated in Tables 7, 8, and 9. The trend shows that 
the delay time increases with an increase in overlap and kernel 
sizes. Besides, we discovered that when considering efficiency in 
time and accuracy, an overlap of 50% and a kernel size of 7 can 
give an ideal response in all tested databases but with slightly low 
accuracy compared to 75% overlap which gives the highest 
accuracy (in all databases) with slightly low efficiency in time, 
particularly in DB1 and DB2. Hence such a trade-off between 
overlaps of 50% and 75% could be taken into account by the 
prosthesis manufacturers. In general, the analysis presented in this 
study leads to the following rule of thumb: The overall decoding 
performance of convolutional neural networks is observed to be 
highly dependent on the window based hyperparameters including 
overlap and kernel size which validates our hypothesis. 

Lastly, we compared the relative performance of the proposed 
model MS-CNN (Model4) and other models which have been used 
in the study (Model1, Model2, and Model3). Considering the 
average classification results depicted in Fig. 5 (b), Fig. 6 (b), and 
Fig. 7 (b), it can be observed that the proposed Model4 achieved 
the highest performances in all overlaps in DB1 (Fig. 5 (b)), in DB2 
(Fig. 6 (b)) for all overlaps except overlap of 75%), and in DB3 
(Fig. 7(b)) all overlaps except for overlap of 75%). The stable 
performances exhibited by Model4 across all databases suggest 
that the proposed Model4 would be more suitable for decoding 
sEMG based motion intents.  

 

CONCLUSION 
This work has extensively examined the impacts of varying the 

segmentation window parameters for raw 2D sEMG signal 

construction and kernel sizes on the performance of CNNs for 

upper limb movement classification. Moreover, we have designed 

a less complex, accurate and memory-efficient CNN model whose 

key operations are based on dilation convolutional layers. From the 

experimental results, we found that the combination of kernel size 

of 7 and overlap of 75% achieved higher classification 

performance than other combinations with slightly low 

computational time. However, a combination of kernel size of 7 

and an overlap of 50% gives acceptable computational time with 

slightly lower classification accuracy. Therefore, when 

manufacturing the prostheses, a combination of 75% overlap with 

shallow CNN but large kernel sizes (such as 7) would provide 

considerably high accuracy, time, and memory efficiency. These 

findings will help assist prostheses manufacturers in developing 

more efficient sEMG‐based gesture recognition algorithms. The 

newly proposed CNN model yielded significantly better motor 

decoding performance than others tested, thus, its deployment in 

prosthetics and other fields such as rehabilitation control systems 

could facilitate multifunctional and intuitive EMG-PR control 

schemes. Finally, for the first time, we have been able to establish 

with substantial evidence through multiple experiments that 

window-based hyper-parameters substantially impact the decoding 

outcome and computational complexity of deep neural networks. 

In general, we anticipate that this novel finding may spur positive 

development in myoelectric control and related fields. 

Transfer learning, where a pre-trained model is fine-tuned on a 

small dataset from the end-application, is an important technique 

when using little data (especially human data such as with EMG) 
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for training deep learning models. In that respect, due to their 

simplicity and good performance, we anticipate that the CNN 

models proposed in this study can be useful for transfer learning of 

parsimonious models in EMG-related fields/tasks such as inter-

subject and inter limb/hand domain adaptation. 

Despite the merits of the findings observed in this study, the 

analyses were based on offline experiments. Consequently, there is 

still room for improvement, particularly in the aspect of 

incorporation of hyperparameters and investigating the variation of 

window parameters in the performance of the CNN models in an 

online setting. In our future study, we hope to further validate the 

findings of the study and the performance of the proposed CNN 

network in an online setting, taking factors that may impact the 

real-time control performance of the multifunctional prostheses 

into consideration. 
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