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1. Introduction

The grad-div stabilization method was first introduced for the finite element approximation of the
incompressible Navier-Stokes equations by adding the grad-div stabilization term to the momentum
equation in [12]. For the most of Lagrange finite element pairs, such as the Taylor-Hood element and
MINI element, the grad-div stabilization term is nonzero, and there is no point-wise mass conservation.
Thus, this stabilization term is used to improve the mass conservation and to reduce the velocity error
caused by the pressure error. The influence of the grad-div stabilization term on the accuracy of the
numerical solution was studied in [40] for the steady Stokes problem.

It is well known that the standard Galerkin finite element methods are not suitable for the numerical
simulation of the incompressible flow problems in the case of the high Reynolds number or the small
viscosity. Different stabilized methods have been developed to overcome the instabilities of numerical
simulation, such as Galerkin least square methods in [13, 25], the residual-free bubbles methods
in [14, 15], the large eddy simulation methods in [45], the sub-grid scale methods in [23, 31], the
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variational multiscale methods in [26, 27, 34, 49] and the streamline upwind Petrov-Galerkin (SUPG)
method [5]. We note that the grad-div stabilization method is also a powerful tool for the high Reynolds
flow problems. There have an amount of works for this issue. For example, the SUPG and grad-div
stabilization methods were studied for the generalized Oseen problem in [37], where it was concluded
that the SUPG method is less important for the inf-sup stable pair of velocity and pressure due to the
choice of stabilization parameter. Moreover, if one considers only the grad-div stabilization method,
it was acknowledged that the grad-div method can lead to stabilized results. The grad-div method
for the rotation form of the Navier-Stokes equations can be found in [32], where numerical results
showed that the difference between the skew-symmetric and the rotation form of the nonlinearity is
from the increased error in the Bernoulli pressure, which results in the increasing of velocity error.
The use of the grad-div stabilization term ameliorates the effect and reduces the velocity error. For
the time-dependent Oseen problem, the semi-discrete and fully discrete schemes based on the grad-div
stabilization method were analyzed in [17]. Under the assumption of sufficiently smooth solutions and
based on the specific Stokes projection, the authors proved the optimal error estimates for velocity
and pressure with constants that are independent of the viscosity. Subsequently, this observation was
extended to the time-dependent Navier-Stokes equations in [18], where the constants in the optimal
error bounds do not depend on the inverse power of viscosity. Thus, the results in [17] and [18] gave a
theoretical confirmation about stable simulations of the high Reynolds number flows by using the grad-
div stabilization method. Recently, the analysis technique in [18] was extended to the second-order
backward differentiation formula (BDF2) scheme with variable time-step size of the Navier-Stokes
equations in [21]. A review study about error analysis of the grad-div stabilization methods can be
found in [20].

Since there are some advantages of the grad-div stabilization method in numerical simulations
of the incompressible flows, it has been applied to some related and coupled systems, such
as the magnetohydrodynamic (MHD) equations [11] and the time-dependent dual-porosity-Stokes
equations [33]. In this paper, we will consider the following time-dependent penetrative convection
equations in the nondimensional form:

∂u
∂t
− ν∆u + (u · ∇)u + ∇p − (γ1θ + γ2θ

2)i3 = f, for (x, t) ∈ Ω × (0,T ], (1.1)

∇ · u = 0, for (x, t) ∈ Ω × (0,T ], (1.2)
∂θ

∂t
− κ∆θ + (u · ∇)θ = g, for (x, t) ∈ Ω × (0,T ], (1.3)

u = 0, θ = 0, for (x, t) ∈ ∂Ω × (0,T ], (1.4)
u(x, 0) = u0(x), θ(x, 0) = θ0(x), for x ∈ Ω, (1.5)

whereΩ is a bounded and convex polyhedral domain in R3 with boundary ∂Ω, and (0,T ] is a finite time
interval. In the above system, the unknown (u, p, θ) denotes the velocity of the fluid, the pressure and
temperature, respectively. ν > 0 and κ > 0 represent the viscosity coefficient and thermal conductivity
parameter. f and g are two given functions. i3 is the unit basis vector given by i3 = (0, 0, 1)T, and (γ1θ+

γ2θ
2)i3 in (1.1) denotes the buoyancy term. The constraint ∇ · u = 0 represents the incompressibility of

the fluid.
The penetrative convection equations (1.1)–(1.3) used to describe the motion in which convection in

a thermally unstable region extends into an adjacent stable region. It has a wide range of applications in
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the fields of atmospheric dynamics, atmospheric fronts, katabatic winds, dense gas dispersion, natural
ventilation, cooling of electronic equipment [29, 36, 39, 42]. The stabilities of penetrative convection
equations have been studied in [7,8,16,41,46], and numerical simulations have been reported in [3,38].
Convergence and error estimates of finite element fully discrete schemes were studied in [44] and [6],
where the BDF2 and Crank-Nicolson schemes were used, respectively. However, the high Reynolds
number was not considered in [6, 44]. By considering a linear Boussinesq approximation, i.e., γ2 = 0
in (1.1), a grad-div stabilization finite element method was studied in [19]. In addition, a rigorous error
analysis was given and error estimates were derived in [19], where the constants in error bounds are
independent of inverse powers of the viscosity and thermal conductivity coefficients.

In this paper, based on the grad-div stabilization method, we consider and study two finite
element schemes by using the first-order backward Euler and BDF2 formulas to discrete the time
derivatives, respectively. The proposed schemes are both linearized semi-implicit schemes where we
use the implicit-explicit method and the standard extrapolation formula to deal with nonlinear terms.
Moreover, these schemes are unconditionally stable without any condition of the time step size and
mesh size. Following the analysis techniques developed in [18, 19], we derive error bounds of the
velocity and temperature in which the constants are independent of negative powers of the viscosity
and thermal conductivity coefficients.

The rest of this paper is organized as follows. In next section, we state some notations and recall
some known results in finite element theory. In sections three and four, the first-order Euler and second-
order BDF2 schemes with the grad-div stabilization are proposed, respectively. Unconditional stability
of numerical schemes and error analysis are also presented in these sections. In section five, we give
numerical results to support the theory analysis and numerical stability of the grad-div stabilization
method for the high Reynolds flows.

2. Materials and methods

For k ∈ N+ and 1 ≤ p ≤ +∞, let Lp(Ω) and Wk,p(Ω) denote the standard Lebesgue space and
Sobolev space, respectively. When p = 2, Wk,2(Ω) is the Hilber space Hk(Ω). The norms in Lp(Ω),
Wk,p(Ω) and Hk(Ω) are defined as the classical senses (cf. [1]) and are denoted by ∥ · ∥Lp , ∥ · ∥Wk,p and
∥ · ∥Hk . We define Hk

0(Ω) to be the subspace of Hk(Ω) of functions with zero trace on ∂Ω. The dual
space of H1

0(Ω) is denoted by H−1(Ω). The boldface notations Lp(Ω), Wk,p(Ω) and Hk(Ω) are used to
denote the vector-value spaces Lp(Ω)3, Wk,p(Ω)3 and Hk(Ω)3, respectively. The corresponding norms
are denoted by ∥ · ∥Lp , ∥ · ∥Wk,p and ∥ · ∥Hk .

For simplicity, we denote V = H1
0(Ω), Y = H1

0(Ω),

V0 = {u ∈ V, ∇ · u = 0 in Ω}, Q = L2
0(Ω) = {q ∈ L2(Ω),

∫
Ω

qdx = 0}.

Introduce the trilinear forms c1(·, ·, ·) and c2(·, ·, ·), which are given by

c1(u1,u2,u3) =
∫
Ω

(
(u1 · ∇)u2 · u3 +

1
2

(∇ · u1)u2 · u3

)
dx

c2(u1, θ1, θ2) =
∫
Ω

(
(u1 · ∇θ1)θ2 +

1
2

(∇ · u1)θ1θ2

)
dx
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for ui ∈ V with i = 1, 2, 3 and θ j ∈ Y with j = 1, 2. By the integration by parts, it is easy to check that
the trilinear forms c1(·, ·, ·) and c2(·, ·, ·) satisfy the skew-symmetric properties, i.e.,

c1(u1,u2,u3) = −c1(u1,u3,u2) and c2(u1, θ1, θ2) = −c2(u1, θ2, θ1),

which give

c1(u1,u2,u2) = 0 and c2(u1, θ1, θ1) = 0. (2.1)

For given f ∈ L2(Ω), g ∈ L2(Ω), u0 ∈ L2(Ω) and θ0 ∈ L2(Ω), in terms of ther skew-symmetric
properties (2.1), there holds the following energy inequalities:

∥θ(t)∥2L2 + κ

∫ t

0
∥∇θ(s)∥2L2ds ≤ ∥θ0∥

2
L2 +C

∫ t

0
∥g(s)∥2L2ds, (2.2)

and

∥u(t)∥2L2 + ν

∫ t

0
∥∇u(s)∥2L2ds

≤∥u0∥
2
L2 +C

∫ t

0
(∥f(s)∥2L2 + ∥θ(s)∥2L2 + ∥θ(s)∥2L2∥θ(s)∥2L3)ds

≤∥u0∥
2
L2 +C

∫ t

0
(∥f(s)∥2L2 + ∥g(s)∥2L2)ds +C

(∫ t

0
∥g(s)∥2L2ds

)2

(2.3)

for 0 ≤ t ≤ T .
Let 0 = t0 < t1 < · · · < tN = T be a uniform partition of the time interval [0,T ] with time step

τ = T/N and tn = nτ with 0 ≤ n ≤ N. Denote un = u(tn), pn = p(tn), θn = θ(tn), fn = f(tn) and
gn = g(tn). For any sequence of functions { f n}Nn=0, denote the backward Euler discretization and BDF2
discretization by

D1,τ f n+1 = ( f n+1 − f n)/τ for 0 ≤ n ≤ N − 1,

and
D2,τ f n+1 = (3 f n+1 − 4 f n + f n−1)/2τ, f̂ n = 2 f n − f n−1 for 1 ≤ n ≤ N − 1,

where f̂ n is the standard extrapolation formula. For the discrete time derivative D2,τ, there holds the
telescope formula [35]:

(D2,τ f n+1, f n+1) =
1
4τ

(∥ f n+1∥2L2 − ∥ f n∥2L2 + ∥ f̂ n+1∥2L2 − ∥ f̂ n∥2L2)

+
1
4τ
∥ f n+1 − 2 f n + f n−1∥2L2 .

(2.4)

We define the finite element spaces as follows. Let Th = {K j}
L
j=1 be a quasi-uniform tetrahedron

partition of Ω with the mesh size h = max {diam K j, j = 1, · · · , L}. In finite element discretization
of (1.1)–(1.3), we use the Taylor-Hood (P2−P1) finite element for the velocity u and pressure p, and the
piece-wise quadratic finite element for the temperature θ. The corresponding finite element subspaces
of V,Q and Y are denoted by Vh, Qh and Yh, respectively, i.e.,

Vh = {vh ∈ C(Ω) ∩ V, vh|K ∈ (P2(K))3, ∀ K ∈ Th},
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Qh = {qh ∈ C(Ω) ∩ H1(Ω), qh|K ∈ P1(K), ∀ K ∈ Th,

∫
Ω

qhdx = 0},

Yh = {rh ∈ C(Ω) ∩ Y, rh|K ∈ P2(K), ∀ K ∈ Th}.

It is well known that the discrete inf-sup condition holds for the inf-sup stable element such that

β0∥qh∥L2 ≤ sup
vh∈Vh

(∇ · vh, qh)
∥∇vh∥L2

, ∀ qh ∈ Qh, (2.5)

where β0 > 0 is independent of the mesh size h.
Denote the space of discrete divergence-free functions by

V0h = {vh ∈ Vh, (∇ · vh, qh) = 0 ∀ qh ∈ Qh}.

In the sequel, let πh and Rh be the L2 orthogonal and Ritz orthogonal projections onto Qh and Yh,
respectively. Then the following error bounds and stability hold [4, 43]:

∥p − πh p∥L2 ≤ Ch2∥p∥H2 ∀ p ∈ H2(Ω), (2.6)
∥ψ − Rhψ∥L2 + h∥∇(ψ − Rhψ)∥L2 ≤ Ch3∥ψ∥H3 ∀ ψ ∈ H3(Ω), (2.7)

∥Rhψ∥W1,∞ ≤ C∥ψ∥H3 ∀ ψ ∈ H3(Ω). (2.8)

Let Ih be the Lagrange interpolation operator onto Vh. The following bound can be found in [4]:

∥u − Ihu∥Wm,p ≤ Chn−m∥u∥Wn,p 0 ≤ m ≤ n ≤ 3, (2.9)

where n > 3/p when 1 < p ≤ ∞ and n ≥ 3 when p = 1.
Next, we recall some known results about finite element approximations of Stokes problem in [17,

18]. Consider the Stokes problem:

−ν∆u + ∇p = F in Ω,
∇ · u = 0 in Ω,

u = 0 on ∂Ω.
(2.10)

Let us denote (uh, ph) ∈ Vh × Qh, the mixed finite element approximation solution to the Stokes
problem (2.10). Then one has error estimates [22, 30]

∥∇(u − uh)∥L2 ≤ C
(

inf
vh∈Vh
∥u − vh∥H1 + ν−1 inf

qh∈Qh
∥p − qh∥L2

)
, (2.11)

∥p − ph∥L2 ≤ C
(
ν inf

vh∈Vh
∥u − vh∥H1 + inf

qh∈Qh
∥p − qh∥L2

)
, (2.12)

∥u − uh∥L2 ≤ Ch
(

inf
vh∈Vh
∥u − vh∥H1 + ν−1 inf

qh∈Qh
∥p − qh∥L2

)
, (2.13)

where C > 0 is independent of h, ν and κ. It is clear that the error estimates of the velocity depend on
the negative power of ν. To prove error bounds with constants being independent of the negative power
of ν, we recall the specific projection of (u, p) introduced in [17] that we will denote by sh defined by

(∇sh,∇vh) = (∇u,∇vh), vh ∈ V0h.
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Let (u, p, θ) be the solution to the system (1.1)–(1.5) with u ∈ L∞((0,T ]; V ∩ H3(Ω)), p ∈
L∞((0,T ]; Q ∩ H2(Ω)), θ ∈ L∞((0,T ]; Y ∩ H3(Ω)) and ut ∈ L∞((0,T ]; H1(Ω)). We note that (u, 0)
is the solution to the Stokes problem (2.10) with the right-hand side F given by

F = f − ut − (u · ∇)u − ∇p + (γ1θ + γ2θ
2)i3. (2.14)

Let (sh, lh) ∈ Vh × Qh be the corresponding mixed finite element approximation of (u, 0). Then,
from (2.11)–(2.13), we have

∥u − sh∥L2 + h∥u − sh∥H1 ≤ Ch3∥u∥H3 , (2.15)
∥lh∥L2 ≤ Cνh2∥u∥H3 , (2.16)

where C > 0 is independent of h and ν. In terms of the inverse inequality in the theory of the finite
element method and ∥Ihu∥L∞ ≤ C∥u∥L∞ , we have

∥sh∥L∞ ≤ ∥sh − Ihu∥L∞ + ∥Ihu∥L∞
≤ C(h−3/2∥sh − Ihu∥L2 + ∥u∥L∞)
≤ C(h−3/2∥sh − u∥L2 + h−3/2∥u − Ihu∥L2 + ∥u∥H3)
≤ C∥u∥H3 ,

(2.17)

where C > 0 is independent of h, ν and κ. Furthermore, there holds

∥∇(u − sh)∥L∞ ≤ C∥∇u∥L∞ ≤ C∥u∥H3 and ∥∇sh∥L∞ ≤ C∥∇u∥L∞ ≤ C∥u∥H3 , (2.18)

where C > 0 is independent of h, ν and κ.
Finally, we recall the discrete Gronwall inequality established in [24].

Lemma 2.1. Let ak, bk, ck and γk, for integers k ≥ 0, be the nonnegative numbers such that

an + τ

n∑
k=0

bk ≤ τ

n∑
k=0

γkak + τ

n∑
k=0

ck + B for n ≥ 0. (2.19)

Suppose that τγk < 1 for all k and set σk = (1 − τγk)−1, then

an + τ

n∑
k=0

bk ≤ exp(τ
n∑

k=0

γkσk)(τ
n∑

k=0

ck + B) for n ≥ 0. (2.20)

Remark 2.1. If the first sum on the right in (2.19) extends only up to n − 1, then the estimate (2.20)
holds for all τ > 0 with σk = 1.

3. The Euler grad-div stabilization finite element approximation

In this section, we consider the first-order Euler fully discrete scheme for the problems (1.1)–(1.5).
This Euler scheme is a semi-implicit scheme, i.e., one only solves two linear systems at each time
discrete level. Based on the grad-div stabilization method, we propose the following first-order Euler
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finite element scheme for 0 ≤ n ≤ N − 1.
Step I: Find θn+1

h ∈ Yh by

(D1,τθ
n+1
h , ψh) + κ(∇θn+1

h ,∇ψh) + c2(un
h, θ

n+1
h , ψh) = (gn+1, ψh) (3.1)

with the initial iteration values θ0
h = Rhθ0, u0

h = Ihu0 and for any ψh ∈ Yh.
Step II: Find (un+1

h , pn+1
h ) ∈ Vh × Qh by

(D1,τun+1
h , vh) + ν(∇un+1

h ,∇vh) + c1(un
h,u

n+1
h , vh) − (∇ · vh, pn+1

h ) + (∇ · un+1
h , qh)

+ β(∇ · un+1
h ,∇ · vh) − γ1(θn

hi3, vh) − γ2((θn
h)2i3, vh) = (fn+1, vh) (3.2)

for any (vh, qh) ∈ Vh × Qh, where β > 0 is the stabilization parameter. The detailed discussion about
the choice of β can be found in [28].

Next lemma gives the stability of the scheme (3.1)–(3.2), where the discrete energy inequalities
can be viewed as the discrete version of the energy estimates (2.2)–(2.3). Moreover, since (3.1)–(3.2)
are both linearized problems, the discrete energy inequalities imply the existence and uniqueness of
numerical solution (un+1

h , pn+1
h , θn+1

h ) to the Euler scheme (3.1)–(3.2).
Lemma 3.1. For 0 ≤ n ≤ N − 1 and all τ > 0, h > 0, the finite element scheme (3.1) and (3.2) has a
unique solution θn+1

h ∈ Yh and (un+1
h , pn+1

h ) ∈ Vh × Qh. Moreover, the discrete energy inequalities hold:

∥θm+1
h ∥2L2 + κτ

m∑
n=0

∥∇θn+1
h ∥

2
L2 ≤ Cτ

N−1∑
n=0

∥gn+1∥2L2 + ∥θ
0
h∥

2
L2 , (3.3)

and

∥um+1
h ∥

2
L2 + τν

m∑
n=0

∥∇um+1
h ∥

2
L2 + 2τβ

m∑
n=0

∥∇ · um+1
h ∥

2
L2

≤Cτ
N−1∑
n=0

(∥fn+1
∥2L2 + ∥gn+1∥2L2) +C(∥u0

h∥
2
L2 + ∥θ

0
h∥

2
L2) +C

τ N−1∑
n=0

∥gn+1∥2L2 + ∥θ
0
h∥

2
L2

2 (3.4)

for all 0 ≤ m ≤ N − 1, where C > 0 is independent of τ and h.
Proof. Setting ψh = 2τθn+1

h in (3.1), using the skew-symmetric property (2.1), the Hölder inequality
and Young inequality, we have

∥θn+1
h ∥

2
L2 − ∥θ

n
h∥

2
L2 + ∥θ

n+1
h − θn

h∥
2
L2 + 2τκ∥∇θn+1

h ∥
2
L2 ≤ 2τ∥gn+1∥L2∥θn+1

h ∥L2

≤ Cτ∥gn+1∥2L2 + τκ∥∇θ
n+1
h ∥

2
L2 .

Summing up the above inequality from n = 0 to n = m gives (3.3).
Similarly, taking (vh, qh) = 2τ(un+1

h , pn+1
h ) in (3.2), we have

∥un+1
h ∥

2
L2 − ∥un

h∥
2
L2 + ∥un+1

h − un
h∥

2
L2 + 2τν∥∇un+1

h ∥
2
L2 + 2τβ∥∇ · un+1

h ∥
2
L2

≤ Cτ∥fn+1
∥L2∥un+1

h ∥L2 +Cτ∥θn
h∥L2∥un+1

h ∥L2 +Cτ∥θn
h∥L2∥θn

h∥L3∥un+1
h ∥L6

≤ τν∥∇un+1
h ∥

2
L2 +Cτ(∥fn+1

∥2L2 + ∥θ
n
h∥

2
L2 + ∥θ

n
h∥

2
L2∥θ

n
h∥

2
L3).
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Summing up the above inequality from n = 0 to n = m and noticing (3.3), we get (3.4). □
Denote

en
h = sn

h − un
h, θn − θn

h = (θn − Rhθ
n) + (Rhθ

n − θn
h) := ηn

θ + en
θ .

The sh(t) is the finite element solution to the Stokes problem (2.10) with the right-hand side (2.14) and
sn

h = sh(tn).
Thanks to the discrete inf-sup condition (2.5), the finite element scheme (3.2) is equivalent to: Find

un+1
h ∈ V0h by

(D1,τun+1
h , vh) + ν(∇un+1

h ,∇vh) + c1(un
h,u

n+1
h , vh) + β(∇ · un+1

h ,∇ · vh)
− γ1(θn

hi3, vh) − γ2((θn
h)2i3, vh) = (fn+1, vh) ∀ vh ∈ V0h. (3.5)

For simplicity, we take s0
h = u0

h. For 0 ≤ n ≤ N − 1, sn+1
h and θn+1 satisfy

(D1,τsn+1
h , vh) + ν(∇sn+1

h ,∇vh) + c1(sn
h, s

n+1
h , vh) + β(∇ · sn+1

h ,∇ · vh)
− γ1(θni3, vh) − γ2((θn)2i3, vh)
= (fn+1, vh) + (∇ · vh, pn+1 − πh pn+1)
+ β(∇ · (sn+1

h − un+1),∇ · vh) + (D1,τsn+1
h − ut(tn+1), vh)

+ c1(sn
h, s

n+1
h , vh) − c1(un+1,un+1, vh)

+ γ1(θn+1 − θn, i3 · vh) + γ2((θn+1)2 − (θn)2, i3 · vh) ∀ vh ∈ V0h,

(3.6)

and

(D1,τθ
n+1, ψh) + κ(∇θn+1,∇ψh) + c2(un+1, θn+1, ψh) = (D1,τθ

n+1 − θt(tn+1), ψh)
+ (gn+1, ψh) ∀ ψh ∈ Yh. (3.7)

In (3.6), we use ∇ · un+1 = 0 in Ω and (∇ · vh, πh pn+1) = 0 due to vh ∈ V0h.
Next, we give error equations. Subtracting (3.5) from (3.6) leads to

(D1,τen+1
h , vh) + ν(∇en+1

h ,∇vh) + β(∇ · en+1
h ,∇ · vh) =

6∑
j=1

(Jn+1
j , vh) ∀ vh ∈ V0h, (3.8)

where

(Jn+1
1 , vh) = (D1,τsn+1

h − ut(tn+1), vh),
(Jn+1

2 , vh) = (∇ · vh, (pn+1 − πh pn+1) + β∇ · (sn+1
h − un+1)),

(Jn+1
3 , vh) = c1(sn

h, s
n+1
h , vh) − c1(un+1,un+1, vh),

(Jn+1
4 , vh) = c1(un

h,u
n+1
h , vh) − c1(sn

h, s
n+1
h , vh),

(Jn+1
5 , vh) = γ1(θn+1 − θn, i3 · vh) + γ2((θn+1)2 − (θn)2, i3 · vh),

(Jn+1
6 , vh) = γ1((θn − θn

h), i3 · vh) + γ2(((θn)2 − (θn
h)2), i3 · vh).

Subtracting (3.1) from (3.7), we have

(D1,τen+1
θ , ψh) + κ(∇en+1

θ ,∇ψh) + c2(un
h, e

n+1
θ , ψh) =

3∑
j=1

(λn+1
j , ψh) ∀ ψh ∈ Yh, (3.9)
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where

(λn+1
1 , ψh) = (D1,τθ

n+1 − θt(tn+1), ψh),
(λn+1

2 , ψh) = −(D1,τη
n+1
θ , ψh),

(λn+1
3 , ψh) = c2(un

h,Rhθ
n+1, ψh) − c2(un+1, θn+1, ψh).

The main result in this section is presented in the following theorem.
Theorem 3.1. Let (u, p, θ) be the unique solution to the time-dependent penetrative convection
problems (1.1)–(1.5) and satisfy the following regularity assumptions:

u0 ∈ H3(Ω), θ0 ∈ H3(Ω), f ∈ L∞((0,T ]; L2(Ω)), g ∈ L∞((0,T ]; L2(Ω)),
u ∈ L∞((0,T ]; H3(Ω)), p ∈ L∞((0,T ]; H2(Ω)), θ ∈ L∞((0,T ]; H3(Ω)),
ut ∈ L∞((0,T ]; H1(Ω)) ∩ L2((0,T ]; H2(Ω)),
θt ∈ L∞((0,T ]; H1(Ω)) ∩ L2((0,T ]; H2(Ω)),
utt ∈ L2((0,T ]; L2(Ω)), θtt ∈ L2((0,T ]; L2(Ω)).

(3.10)

Then, for the first-order Euler grad-div scheme (3.1)–(3.2) under the time step condition τ ≤ Ch2, when
h and τ are sufficiently small, we have the following error estimate:

∥em+1
h ∥

2
L2 + ∥em+1

θ ∥
2
L2 + τ

m∑
n=0

(
ν∥∇em+1

h ∥
2
L2 + κ∥∇em+1

θ ∥
2
L2

)
≤ C2

0(h4 + τ2) (3.11)

with 0 ≤ m ≤ N − 1, where C0 > 0 is independent of h, τ, ν and κ.
Proof. Taking vh = 2τen+1

h in (3.8) and summing up the resulting equation from n = 0 to n = m, we
have

∥em+1
h ∥

2
L2 + 2τ

m∑
n=0

(
ν∥∇en+1

h ∥
2
L2 + β∥∇ · en+1

h ∥
2
L2

)
= 2τ

m∑
n=0

6∑
j=1

(Jn+1
j , en+1

h ). (3.12)

We estimate the right-hand side of (3.12) as follows. For Jn+1
1 , we split it as

Jn+1
1 = (D1,τsn+1

h − D1,τun+1) + (D1,τun+1 − ut(tn+1)).

According to the Taylor’s formula and the regularity assumption (3.10), one has

τ

m∑
n=0

∥D1,τun+1 − ut(tn+1)∥2L2 ≤ Cτ2.

Notice that

D1,τsn+1
h − D1,τun+1 =

1
τ

∫ tn+1

tn
∂t(sh(t) − u(t))dt.

From the Hölder inequality, we have

∥D1,τsn+1
h − D1,τun+1∥L2 ≤

1
τ

∫ tn+1

tn
∥∂t(sh(t) − u(t))∥L2dt
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≤
Ch2

τ

∫ tn+1

tn
∥∂tu(t)∥H2dt

≤
Ch2

τ1/2

(∫ tn+1

tn
∥∂tu(t)∥2H2dt

)1/2

.

Thus,

2τ
m∑

n=0

(Jn+1
1 , en+1

h ) ≤ Cτ
m∑

n=0

∥en+1
h ∥

2
L2 +C(τ2 + h4), (3.13)

where C > 0 is independent of h, τ, ν and κ.
For Jn+1

2 , it follows from the Hölder inequality and (2.6) that

(Jn+1
2 , en+1

h ) ≤
(
∥pn+1 − πh pn+1∥L2 + β∥sn+1

h − un+1∥H1

)
∥∇ · en+1

h ∥L2

≤Ch2∥∇ · en+1
h ∥L2 ,

then

2τ
m∑

n=0

(Jn+1
2 , en+1

h ) ≤ Ch4 + ϵ1βτ

m∑
n=0

∥∇ · en+1
h ∥

2
L2 , (3.14)

where C > 0 is independent of h, τ, ν, κ and ϵ1 > 0 is some small constant determined later.
For Jn+1

3 , in terms of the skew-symmetric property (2.1), (2.18), the Hölder inequality and the
regularity assumption (3.10), there holds

(Jn+1
3 , en+1

h ) = c1(sn
h − un, sn+1

h , en+1
h ) + c1(un − un+1, sn+1

h , en+1
h )

+ c1(un+1, sn+1
h − un+1, en+1

h )
≤ (∥sn

h − un∥H1 + ∥un+1 − un∥H1)∥sn+1
h ∥W1,∞∥en+1

h ∥L2

+ ∥un+1∥L∞∥sn+1
h − un+1∥H1∥en+1

h ∥L2

≤ C(h2 + τ)∥en+1
h ∥L2 ,

where C > 0 is independent of h, τ, ν and κ. Thus, the third term can be estimated by

2τ
m∑

n=0

(Jn+1
3 , en+1

h ) ≤ C(h4 + τ2) +Cτ
m∑

n=0

∥en+1
h ∥

2
L2 , (3.15)

where C > 0 is independent of h, τ, ν and κ.
A similar method to bound Jn+1

4 leads to

(Jn+1
4 , en+1

h ) = c1(en
h, s

n+1
h , en+1

h )
≤ ∥en

h∥L2∥∇sn+1
h ∥L∞∥e

n+1
h ∥L2 + ∥sn+1

h ∥L∞∥∇ · e
n
h∥L2∥en+1

h ∥L2 ,

and

2τ
m∑

n=0

(Jn+1
4 , en+1

h ) ≤ ϵ1βτ

m∑
n=0

∥∇ · en+1
h ∥

2
L2 +Cτ

m∑
n=0

(∥en+1
h ∥

2
L2 + ∥en

h∥
2
L2), (3.16)
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where C > 0 is independent of h, τ, ν and κ.
For Jn+1

5 , using the Hölder inequality, Young inequality and the regularity assumption (3.10), we
have

|(Jn+1
5 , en+1

h )| ≤ C(1 + ∥θn + θn+1∥L∞)
∫ tn+1

tn
∥θt(t)∥L2dt∥en+1

h ∥L2

≤ C∥en+1
h ∥

2
L2 +Cτ2,

then

2τ
m∑

n=0

(Jn+1
5 , en+1

h ) ≤ Cτ
m∑

n=0

∥en+1
h ∥

2
L2 +Cτ2, (3.17)

where C > 0 is independent of h, τ, ν and κ.
By a similar method, we estimate the last term by

(Jn+1
6 , en+1

h ) ≤ ∥ηn
θ + en

θ∥L2∥en+1
h ∥L2 + ∥(ηn

θ + en
θ)∥L2∥θn + θn

h∥L∞∥e
n+1
h ∥L2

≤ C(1 + ∥θn
h∥

2
L∞)(h4 + ∥en

θ∥
2
L2) +C(∥en

θ∥
2
L2 + ∥en+1

h ∥
2
L2),

where we use the Sobolev imbedding inequality and C > 0 is independent of h, τ, ν and κ. Taking the
sum gives

2τ
m∑

n=0

(Jn+1
6 , en+1

h ) ≤Ch4τ

m∑
n=0

(1 + ∥θn
h∥

2
L∞) +Cτ

m∑
n=0

(∥en
θ∥

2
L2 + ∥en+1

h ∥
2
L2)

+Cτ
m∑

n=0

(1 + ∥θn
h∥

2
L∞)∥en

θ∥
2
L2 ,

(3.18)

where C > 0 is independent of h, τ, ν and κ.
Substituting the estimates (3.13)–(3.18) into (3.12), we obtain

∥em+1
h ∥

2
L2 + 2τ

m∑
n=0

(
ν∥∇en+1

h ∥
2
L2 + β∥∇ · en+1

h ∥
2
L2

)
≤C(h4 + τ2) +Ch4τ

m∑
n=0

(1 + ∥θn
h∥

2
L∞) +Cτ

m∑
n=0

(∥en
θ∥

2
L2 + ∥en+1

h ∥
2
L2 + ∥en

h∥
2
L2)

+ 2ϵ1βτ

m∑
n=0

∥∇ · en+1
h ∥L2 +Cτ

m∑
n=0

(1 + ∥θn
h∥

2
L∞)∥en

θ∥
2
L2 ,

(3.19)

where C > 0 is independent of h, τ, ν and κ.
Next, we estimate en+1

θ . Taking ψh = 2τen+1
θ in (3.9), summing up the resulting equation from n = 0

to n = m and noticing the skew-symmetric property (2.1), we have

∥em+1
θ ∥

2
L2 + 2κτ

m∑
n=0

∥∇en+1
θ ∥

2
L2 = 2τ

m∑
n=0

3∑
j=1

(λn+1
j , en+1

θ ), (3.20)
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where we noted e0
θ = 0. By the Taylor’s formula and the Hölder inequality, it is easy to prove that

2τ
m∑

n=0

(λn+1
1 , en+1

θ ) ≤ Cτ
m∑

n=0

∥en+1
θ ∥

2
L2 +Cτ2, (3.21)

2τ
m∑

n=0

(λn+1
2 , en+1

θ ) ≤ Cτ
m∑

n=0

∥en+1
θ ∥

2
L2 +Ch4τ

m∑
n=0

∥D1,τθ
n+1∥2H1

≤ Cτ
m∑

n=0

∥en+1
θ ∥

2
L2 +Ch4

(3.22)

by noticing

τ

m∑
n=0

∥D1,τθ
n+1∥2H1 ≤

1
τ

m∑
n=0

(∫ tn+1

tn
∥θt(t)∥H1dt

)2

≤ C,

where C > 0 is independent of h, τ, ν and κ.
For last term λn+1

3 , in terms of the following splitting:

(λn+1
3 , en+1

θ ) = (un
h · ∇Rhθ

n+1, en+1
θ ) +

1
2

((∇ · un
h)Rhθ

n+1, en+1
θ ) − (un+1 · ∇θn+1, en+1

θ )

= −(en
h · ∇Rhθ

n+1, en+1
θ ) − (sn

h · ∇η
n+1
θ , en+1

θ ) + ((sn
h − un+1) · ∇θn+1, en+1

θ )

−
1
2

((∇ · en
h)Rhθ

n+1, en+1
θ ) +

1
2

(∇ · (sn
h − un)Rhθ

n+1, en+1
θ ),

we estimate it by

(λn+1
3 , en+1

θ ) ≤(∥en
h∥L2∥∇Rhθ

n+1∥L∞ + ∥sn
h∥L∞∥∇η

n+1
θ ∥L2 + ∥sn

h − un+1∥L3∥∇θn+1∥L6)∥en+1
θ ∥L2

+
1
2

(∥∇ · en
h∥L2∥Rhθ

n+1∥L∞ + ∥sn
h − un∥H1∥Rhθ

n+1∥L∞)∥en+1
θ ∥L2

≤C(h4 + τ2) +C(∥en+1
θ ∥

2
L2 + ∥en

h∥
2
L2) +

ϵ1β

2
∥∇ · en

h∥
2
L2 .

Furthermore, we get

2τ
m∑

n=0

(λn+1
3 , en+1

θ ) ≤C(h4 + τ2) +Cτ
m∑

n=0

(∥en+1
θ ∥

2
L2 + ∥en

h∥
2
L2) + ϵ1βτ

m∑
n=0

∥∇ · en
h∥

2
L2 , (3.23)

where C > 0 is independent of h, τ, ν and κ.
Substituting the estimates (3.21)–(3.23) into (3.20), we get

∥em+1
θ ∥

2
L2 + 2κτ

m∑
n=0

∥∇en+1
θ ∥

2
L2

≤C(h4 + τ2) +Cτ
m∑

n=0

(∥en+1
θ ∥

2
L2 + ∥en

h∥
2
L2) + ϵ1βτ

m∑
n=0

∥∇ · en
h∥

2
L2 ,

(3.24)
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where C > 0 is independent of h, τ, ν and κ.
Taking the sum of (3.19) and (3.24), we have

∥em+1
h ∥

2
L2 + ∥em+1

θ ∥
2
L2 + 2τ

m∑
n=0

(
ν∥∇en+1

h ∥
2
L2 + κ∥∇en+1

θ ∥
2
L2 + β∥∇ · en+1

h ∥
2
L2

)
≤Cτ

m∑
n=0

(∥en+1
θ ∥

2
L2 + ∥en+1

h ∥
2
L2 + ∥en

θ∥
2
L2 + ∥en

h∥
2
L2) +C(h4 + τ2)

+Ch4τ

m∑
n=0

(1 + ∥θn
h∥

2
L∞) + 3ϵ1βτ

m∑
n=0

∥∇ · en+1
h ∥L2 +Cτ

m∑
n=0

(1 + ∥θn
h∥

2
L∞)∥en

θ∥
2
L2 ,

(3.25)

where C > 0 is independent of h, τ, ν and κ.
To uniformly bound the norm ∥θn

h∥L∞ , we use the method of mathematical induction. Taking m = 0
in (3.25) and noting e0

h = 0, e0
θ = 0 and ∥θ0

h∥L∞ = ∥Rhθ0∥L∞ ≤ ∥θ0∥H3 , we get

∥e1
h∥

2
L2 + ∥e1

θ∥
2
L2 + 2τ

(
ν∥∇e1

h∥
2
L2 + κ∥∇e1

θ∥
2
L2 + β∥∇ · e1

h∥
2
L2

)
≤Cτ(∥e1

θ∥
2
L2 + ∥e1

h∥
2
L2) +C(h4 + τ2) + 3ϵ1βτ∥∇ · e1

h∥L2 .
(3.26)

For sufficiently small τ with Cτ < 1/2, we select small parameter ϵ1 ≤ 2/3 in (3.26). We then conclude
that there exists some C1 > 0, which is independent of h, τ, ν and κ such that

∥e1
h∥

2
L2 + ∥e1

θ∥
2
L2 + τ

(
ν∥∇e1

h∥
2
L2 + κ∥∇e1

θ∥
2
L2

)
≤ C2

1(h4 + τ2).

Thus, the error estimate (3.11) holds for m = 0 by taking C0 > C1. Now, we assume that the error
estimate (3.11) holds for m ≤ k − 1 with 1 ≤ k ≤ N − 1. Under the time step condition τ ≤ Ch2, we
have

∥en
θ∥L2 ≤ CC0h2 ∀ 1 ≤ n ≤ k. (3.27)

By the inverse inequality, we get

∥en
θ∥L∞ ≤ Ch−3/2∥en

θ∥L2 ≤ CC0h1/2 ≤ C

for sufficiently small h with C0h1/2 ≤ 1. Thus,

∥θn
h∥L∞ ≤ ∥e

n
θ∥L∞ + ∥θ

n∥L∞ ≤ C and τ

k∑
n=1

∥θn
h∥

2
L∞ ≤ C. (3.28)

As a result, resetting m by k in (3.25), we have

∥ek+1
h ∥

2
L2 + ∥ek+1

θ ∥
2
L2 + 2τ

k∑
n=0

(
ν∥∇en+1

h ∥
2
L2 + κ∥∇en+1

θ ∥
2
L2 + β∥∇ · en+1

h ∥
2
L2

)
≤C(h4 + τ2) +Cτ

k∑
n=0

(∥en+1
θ ∥

2
L2 + ∥en+1

h ∥
2
L2 + ∥en

θ∥
2
L2 + ∥en

h∥
2
L2)

+ 3ϵ1βτ

k∑
n=0

∥∇ · en+1
h ∥L2 .

(3.29)
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We select small parameter ϵ1 ≤ 2/3 in (3.29), then

∥ek+1
h ∥

2
L2 + ∥ek+1

θ ∥
2
L2 + τ

k∑
n=0

(
ν∥∇en+1

h ∥
2
L2 + κ∥∇en+1

θ ∥
2
L2

)
≤C(h4 + τ2) +Cτ

k∑
n=0

(∥en+1
θ ∥

2
L2 + ∥en+1

h ∥
2
L2 + ∥en

θ∥
2
L2 + ∥en

h∥
2
L2).

Applying the discrete Gronwall inequality to the above inequality, we conclude that there exists some
C2 > 0, which is independent of h, τ, ν and κ such that

∥ek+1
h ∥

2
L2 + ∥ek+1

θ ∥
2
L2 + τ

k∑
n=0

(
ν∥∇en+1

h ∥
2
L2 + κ∥∇en+1

θ ∥
2
L2

)
≤ C2

2(h4 + τ2)

for sufficiently small τ. Thus, we prove that the error estimate (3.11) also holds for m = k by taking
C0 ≥ C2, and we finish the mathematical induction. □

Based on (3.11) in Theorem 3.1, we get the following error estimate for the first-order Euler grad-
div finite element scheme (3.1)–(3.2).

Theorem 3.2 Under the assumptions in Theorem 3.1, we have

∥um+1 − um+1
h ∥

2
L2 + ∥θ

m+1 − θm+1
h ∥2L2 ≤ C(h4 + τ2) (3.30)

with 0 ≤ m ≤ N − 1, where C > 0 is independent of h, τ, ν and κ.

4. The BDF2 grad-div stabilization finite element approximation

In this section, we consider the second-order BDF2 fully discrete scheme. Based on the
extrapolation method and grad-div stabilization method, we propose the following linearized second-
order finite element scheme for 1 ≤ n ≤ N − 1:
Step I: Find θn+1

h ∈ Yh by

(D2,τθ
n+1
h , ψh) + κ(∇θn+1

h ,∇ψh) + c2(̂un
h, θ

n+1
h , ψh) = (gn+1, ψh) ∀ ψh ∈ Yh. (4.1)

Step II: Find (un+1
h , θn+1

h ) ∈ Vh × Qh by

(D2,τun+1
h , vh) + ν(∇un+1

h ,∇vh) + c1(̂un
h,u

n+1
h , vh) − (∇ · vh, pn+1

h ) + (∇ · un+1
h , qh)

+ β(∇ · un+1
h ,∇ · vh) − (γ1̂θ

n
h + γ2(̂θn

h)2, i3 · vh) = (fn+1, vh) ∀ (vh, qh) ∈ Vh × Qh. (4.2)

Remark 4.1. Numerical solution (u1
h, θ

1
h) ∈ V0h×Yh can be solved from the Euler finite element scheme

(3.1)–(3.2) in the above section. Usually, since the one-step error is first higher order, then one has

∥e1
h∥

2
L2 + ∥e1

θ∥
2
L2 + τ

(
ν∥∇e1

h∥
2
L2 + κ∥∇e1

θ∥
2
L2 + β∥∇ · e1

h∥
2
L2

)
≤ C2

3(h4 + τ4), (4.3)

where C3 > 0 is independent of h, τ, ν and κ.
By a similar proof for Lemma 3.1, we can get the following unconditional stabilities of the

numerical scheme (4.1)–(4.2), which imply the existence and uniqueness of numerical solution
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(un+1
h , pn+1

h , θn+1
h ) to the BDF2 scheme (4.1)–(4.2).

Lemma 4.1. For 1 ≤ n ≤ N − 1 and all τ > 0, h > 0, the BDF2 finite element scheme (4.1) and (4.2)
has a unique solution θn+1

h ∈ Yh and (un+1
h , pn+1

h ) ∈ Vh × Qh. Moreover, the discrete energy inequalities
hold:

∥θm+1
h ∥2L2 + ∥̂θ

m+1
h ∥2L2 + 2κτ

m∑
n=1

∥∇θn+1
h ∥

2
L2 ≤ Cτ

m∑
n=1

∥gn+1∥2L2 +C
(
∥θ1

h∥
2
L2 + ∥θ

0
h∥

2
L2

)
, (4.4)

and

∥um+1
h ∥

2
L2 + ∥̂u

m+1
h ∥

2
L2 + 2τν

m∑
n=1

∥∇un+1
h ∥

2
L2 + 4τβ

m∑
n=1

∥∇ · un+1
h ∥

2
L2

≤Cτ
m∑

n=1

(∥fn+1
∥2L2 + ∥gn+1∥2L2) +C(∥θ1

h∥
2
L2 + ∥θ

0
h∥

2
L2)

+C

τ m∑
n=1

∥gn+1∥2L2 + ∥θ
1
h∥

2
L2 + ∥θ

0
h∥

2
L2

2

(4.5)

for all 1 ≤ m ≤ N − 1, where C > 0 is independent of h and τ.
In terms of the discrete inf-sup condition (2.5), we rewrite the discrete variational problem (4.2) as:

find un+1
h ∈ V0h by

(D2,τun+1
h , vh) + ν(∇un+1

h ,∇vh) + c1 (̂un
h,u

n+1
h , vh) + β(∇ · un+1

h ,∇ · vh) − (γ1θ̂
n
h + γ2 (̂θn

h)2, i3 · vh) = (fn+1, vh) ∀ vh ∈ V0h.

(4.6)

On the other hand, let s0
h = u0

h. For 1 ≤ n ≤ N − 1, sn+1
h and θn+1 satisfy

(D2,τsn+1
h , vh) + ν(∇sn+1

h ,∇vh) + c1(̂sn
h, s

n+1
h , vh) + β(∇ · sn+1

h ,∇ · vh)

− γ1(̂θn, i3 · vh) − γ2((̂θn)2, i3 · vh)
= (fn+1, vh) + (∇ · vh, pn+1 − πh pn+1)
+ β(∇ · (sn+1

h − un+1),∇ · vh) + (D2,τsn+1
h − ut(tn+1), vh)

+ c1(̂sn
h, s

n+1
h , vh) − c1(un+1,un+1, vh)

+ γ1(θn+1 − θ̂n, i3 · vh) + γ2((θn+1)2 − (̂θn)2, i3 · vh) ∀ vh ∈ V0h,

(4.7)

and

(D2,τθ
n+1, ψh) + κ(∇θn+1,∇ψh) + c2(un+1, θn+1, ψh) = (gn+1, ψh) + (D2,τθ

n+1 − θn+1
t , ψh) ∀ ψh ∈ Yh.

(4.8)

In (4.7), we use ∇ · un+1 = 0 in Ω and (∇ · vh, πh pn+1) = 0.
Next, we give error equations corresponding to the BDF2 scheme. Subtracting (4.6) from (4.7)

leads to

(D2,τen+1
h , vh) + ν(∇en+1

h ,∇vh) + β(∇ · en+1
h ,∇ · vh) =

6∑
j=1

(In+1
j , vh) ∀ vh ∈ V0h, (4.9)
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where

(In+1
1 , vh) = (D2,τsn+1

h − ut(tn+1), vh),
(In+1

2 , vh) = (∇ · vh, (pn+1 − πh pn+1) + β∇ · (sn+1
h − un+1)),

(In+1
3 , vh) = c1(̂sn

h, s
n+1
h , vh) − c1(un+1,un+1, vh),

(In+1
4 , vh) = c1(̂un

h,u
n+1
h , vh) − c1(̂sn

h, s
n+1
h , vh),

(In+1
5 , vh) = γ1(θn+1 − θ̂n, i3 · vh) + γ2((θn+1)2 − (̂θn)2, i3 · vh),

(In+1
6 , vh) = γ1((̂θn − θ̂n

h), i3 · vh) + γ2(((̂θn)2 − (̂θn
h)2), i3 · vh).

Subtracting (4.1) from (4.8) leads to

(D2,τen+1
θ , ψh) + κ(∇en+1

θ ,∇ψh) + c2(̂un
h, e

n+1
θ , ψ) =

3∑
j=1

(Xn+1
j , ψh) ∀ ψh ∈ Yh, (4.10)

where

(Xn+1
1 , ψh) = (D2,τθ

n+1 − θt(tn+1), ψh),
(Xn+1

2 , ψh) = −(D2,τη
n+1
θ , ψh),

(Xn+1
3 , ψh) = c2(̂un

h,Rhθ
n+1, ψh) − c2(un+1, θn+1, ψh).

The main result in this section is presented in the following theorem.
Theorem 4.1. Under the assumptions in (3.10), we further assume that

uttt ∈ L2((0,T ]; L2(Ω)), θttt ∈ L2((0,T ]; L2(Ω)). (4.11)

Then, for the second-order BDF2 grad-div scheme (4.1)–(4.2), under the time step condition τ ≤ Ch,
when h and τ are sufficiently small, we have the following error estimate:

∥em+1
h ∥

2
L2 + ∥em+1

θ ∥
2
L2 + τ

m∑
n=0

(
ν∥∇em+1

h ∥
2
L2 + κ∥∇em+1

θ ∥
2
L2

)
≤ Ĉ2

0(h4 + τ4) (4.12)

with 0 ≤ m ≤ N − 1, where Ĉ0 > 0 is independent of h, τ, ν and κ.
Proof. Taking vh = 4τen+1

h in (4.9) and summing up the resulting equation from n = 1 to n = m, we
have

∥em+1
h ∥

2
L2 + ∥̂em+1

h ∥
2
L2 + 4τ

m∑
n=1

(
ν∥∇en+1

h ∥
2
L2 + β∥∇ · en+1

h ∥
2
L2

)
≤4τ

m∑
n=1

6∑
j=1

(In+1
j , en+1

h ) +C∥e1
h∥L2 ,

(4.13)

where C > 0 is independent of h, τ, ν, κ and we use

∥̂e1
h∥L2 ≤ 2∥e1

h∥L2 + ∥e0
h∥L2 = 2∥e1

h∥L2 .
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We estimate the right-hand side of (4.13) as follows. Since

In+1
1 = (D2,τsn+1

h − D2,τun+1) + (D2,τun+1 − ut(tn+1)),

by using the Taylor’s formula and the regularity assumption (4.11), one has

D2,τun+1 − ut(tn+1) =
1
2τ

∫ tn+1

tn−1

(
2(t − tn)2 −

1
2

(t − tn−1)2
)
∂tttu(t)dt,

which results in

τ

m∑
n=1

∥D2,τun+1 − ut(tn+1)∥2L2 ≤ Cτ4,

where C > 0 is independent of h, τ, ν and κ. From the Hölder inequality, we have

∥D2,τsn+1
h − D2,τun+1∥L2

≤
3
2τ

∫ tn+1

tn
∥∂t(sh(t) − u(t))∥L2dt +

1
2τ

∫ tn

tn−1

∥∂t(sh(t) − u(t))∥L2dt

≤
Ch2

τ

∫ tn+1

tn−1

∥∂tu(t)∥H2dt

≤
Ch2

τ1/2

(∫ tn+1

tn−1
∥∂tu(t)∥2H2dt

)1/2

.

Thus, we can obtain

4τ
m∑

n=1

(In+1
1 , en+1

h ) ≤ Cτ
m∑

n=1

∥en+1
h ∥

2
L2 +C(τ4 + h4), (4.14)

where C > 0 is independent of h, τ, ν and κ.
From the Hölder inequality and (2.6), we estimate (In+1

2 , en+1
h ) by

(In+1
2 , en+1

h ) ≤
(
∥pn+1 − πh pn+1∥L2 + β∥sn+1

h − un+1∥H1

)
∥∇ · en+1

h ∥L2

≤Ch2∥∇ · en+1
h ∥L2 .

Then, by the Young inequality, it is easy to see that

4τ
m∑

n=1

(In+1
2 , en+1

h ) ≤ Ch4 + ϵ2βτ

m∑
n=1

∥∇ · en+1
h ∥

2
L2 , (4.15)

where C > 0 is independent of h, τ, ν, κ and ϵ2 > 0 is a small constant determined later.
For the term of In+1

3 , according to the Hölder inequality, (2.6), (2.18), the regularity
assumption (3.10) and the Taylor formula with integral remainder

ûn
− un+1 =

∫ tn+1

tn−1

{2(t − tn)+ − (t − tn−1)}∂ttu(t)dt, (4.16)
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where (t − tn)+ = max{t − tn, 0}, there holds

(In+1
3 , en+1

h ) = c1(̂sn
h − ûn

, sn+1
h , en+1

h ) + c1(̂un
− un+1, sn+1

h , en+1
h )

+ c1(un+1, sn+1
h − un+1, en+1

h )
≤ (∥̂sn

h − ûn
∥H1 + ∥̂un

− un+1∥L2)∥sn+1
h ∥W1,∞∥en+1

h ∥L2

+C∥un+1∥L∞∥sn+1
h − un+1∥H1∥en+1

h ∥L2

≤ C(h2 + (τ3
∫ tn+1

tn−1

∥∂ttu(t)∥2L2dt)
1
2 )∥en+1

h ∥L2 .

Thus, we have

4τ
m∑

n=1

(In+1
3 , en+1

h ) ≤ C(h4 + τ4) +Cτ
m∑

n=1

∥en+1
h ∥

2
L2 , (4.17)

where C > 0 is independent of h, τ, ν and κ.
A similar method leads to

(In+1
4 , en+1

h ) = c1(̂en
h, s

n+1
h , en+1

h )
≤ ∥̂en

h∥L2∥∇sn+1
h ∥L∞∥e

n+1
h ∥L2 + ∥sn+1

h ∥L∞∥∇ · ê
n
h∥L2∥en+1

h ∥L2

≤ ∥̂en
h∥L2∥∇sn+1

h ∥L∞∥e
n+1
h ∥L2 + ∥sn+1

h ∥L∞∥e
n+1
h ∥L2(2∥∇ · en

h∥L2 + ∥∇ · en−1
h ∥L2)

and

4τ
m∑

n=1

(In+1
4 , en+1

h ) ≤ϵ2βτ

m∑
n=1

(∥∇ · en
h∥

2
L2 + ∥∇ · en−1

h ∥
2
L2)

+Cτ
m∑

n=1

(∥en+1
h ∥

2
L2 + ∥̂en

h∥
2
L2),

(4.18)

where C > 0 is independent of h, τ, ν and κ.
For In+1

5 , using (4.16), the Hölder inequality and the regularity assumption (3.10), we have

(In+1
5 , en+1

h ) ≤ C∥en+1
h ∥L2(τ3

∫ tn+1

tn−1

∥∂ttθ(t)∥2L2dt)
1
2 ,

then

4τ
m∑

n=1

(In+1
5 , en+1

h ) ≤ Cτ
m∑

n=1

∥en+1
h ∥

2
L2 +Cτ4, (4.19)

where C > 0 is independent of h, τ, ν and κ.
We estimate the last term In+1

6 by

(In+1
6 , en+1

h ) ≤ ∥̂ηn
θ + ên

θ∥L2∥en+1
h ∥L2 + ∥(̂ηn

θ + ên
θ)∥L2 ∥̂θn + θ̂n

h∥L∞∥e
n+1
h ∥L2

≤ C(1 + ∥̂θn
h∥

2
L∞)(h4 + ∥̂en

θ∥
2
L2) +C(∥̂en

θ∥
2
L2 + ∥en+1

h ∥
2
L2),
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where C > 0 is independent of h, τ, ν and κ. Taking the sum of the above inequality gives

4τ
m∑

n=0

(In+1
6 , en+1

h ) ≤ Ch4τ

m∑
n=1

(1 + ∥̂θn
h∥

2
L∞) +Cτ

m∑
n=1

(∥̂en
θ∥

2
L2 + ∥en+1

h ∥
2
L2)

+Cτ
m∑

n=1

(1 + ∥̂θn
h∥

2
L∞)(∥en

θ∥
2
L2 + ∥en−1

θ ∥
2
L2),

(4.20)

where C > 0 is independent of h, τ, ν and κ.
Substituting the estimates (4.14)–(4.20) into (4.13), we obtain

∥em+1
h ∥

2
L2 + ∥̂em+1

h ∥
2
L2 + 4τ

m∑
n=1

(
ν∥∇en+1

h ∥
2
L2 + β∥∇ · en+1

h ∥
2
L2

)
≤C(h4 + τ4) +Ch4τ

m∑
n=1

∥̂θn
h∥

2
L∞ +Cτ

m∑
n=1

(∥̂en
θ∥

2
L2 + ∥̂en

h∥
2
L2 + ∥en+1

h ∥
2
L2)

+ 3ϵ2βτ

m∑
n=1

∥∇ · en+1
h ∥

2
L2 +Cτ

m∑
n=1

(1 + ∥̂θn
h∥

2
L∞)(∥en

θ∥
2
L2 + ∥en−1

θ ∥
2
L2),

(4.21)

where C > 0 is independent of h, τ, ν, κ and the estimate (4.3) is used.
Next, we estimate en+1

θ . Taking ψh = 4τen+1
θ in (4.10), summing up the resulting equation from n = 1

to n = m and noticing the skew-symmetric property (2.1), we have

∥em+1
θ ∥

2
L2 + ∥̂em+1

θ ∥
2
L2 + 4κτ

m∑
n=1

∥∇en+1
θ ∥

2
L2 ≤ 4τ

m∑
n=1

3∑
j=1

(Xn+1
j , en+1

θ ) +C∥e1
θ∥

2
L2 , (4.22)

where we noted e0
θ = 0.

By the regularity assumptions (3.10) and (4.11), it is easy to prove that

(Xn+1
1 , en+1

θ ) ≤
1
2τ

∫ tn+1

tn−1

(
2(t − tn)2 −

1
2

(t − tn−1)2
)
∥∂tttθ(t)∥L2dt∥en+1

θ ∥L2 ,

τ

m∑
n=1

∥D2,τθ
n+1∥2H1 ≤

C
τ

m∑
n=1

(∫ tn+1

tn−1

∥θt(t)∥H1dt
)2

≤ C,

then we have

4τ
m∑

n=1

(Xn+1
1 , en+1

θ ) ≤ Cτ
m∑

n=1

∥en+1
θ ∥L2 +Cτ4, (4.23)

4τ
m∑

n=1

(Xn+1
2 , en+1

θ ) ≤ Cτ
m∑

n=1

∥en+1
θ ∥

2
L2 +Ch4τ

m∑
n=1

∥D2,τθ
n+1∥2H1

≤ Cτ
m∑

n=1

∥en+1
θ ∥

2
L2 +Ch4,

(4.24)

where C > 0 is independent of h, τ, ν and κ.
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For last term Xn+1
3 , we estimate it by

(Xn+1
3 , en+1

θ ) = (̂un
h · ∇Rhθ

n+1, en+1
θ ) +

1
2

((∇ · ûn
h)Rhθ

n+1, en+1
θ ) − (un+1 · ∇θn+1, en+1

θ )

= −(̂en
h · ∇Rhθ

n+1, en+1
θ ) − (̂sn

h · ∇η
n+1
θ , en+1

θ ) + ((̂sn
h − ûn) · ∇θn+1, en+1

θ )
+ ((̂un

− un+1) · ∇θn+1, en+1
θ )

−
1
2

((∇ · ên
h)Rhθ

n+1, en+1
θ ) +

1
2

(∇ · (̂sn
h − ûn)Rhθ

n+1, en+1
θ ),

where the skew-symmetric property (2.1) is used. We have

4τ
m∑

n=1

(Xn+1
3 , en+1

θ ) ≤ (∥̂en
h∥L2∥∇Rhθ

n+1∥L∞ + ∥̂s
n
h∥L∞∥∇η

n+1
θ ∥L2)∥en+1

θ ∥L2

+ (∥̂sn
h − ûn

∥L2 + ∥̂un
− un+1∥L2)∥∇θn+1∥L∞∥en+1

θ ∥L2

+ (∥∇ · ên
h∥L2 + ∥̂sn

h − ûn
∥H1)∥Rhθ

n+1∥L∞∥en+1
θ ∥L2

≤ C(h4 + τ4) + ϵ2βτ

m∑
n=1

∥∇ · en
h∥

2
L2

+Cτ
m∑

n=1

(∥en+1
θ ∥

2
L2 + ∥̂en

h∥
2
L2),

(4.25)

where the C > 0 is independent of h, τ, ν and κ.
Substituting the estimates (4.23)–(4.25) into (4.22) and using (4.3), we get

∥em+1
θ ∥

2
L2 + 4κτ

m∑
n=1

∥∇en+1
θ ∥

2
L2

≤C(h4 + τ4) +Cτ
m∑

n=1

(∥en+1
θ ∥

2
L2 + ∥̂en

h∥
2
L2) + ϵ2βτ

m∑
n=1

∥∇ · en
h∥

2
L2 ,

(4.26)

where C > 0 is independent of h, τ, ν and κ.
Taking the sum of (4.21) and (4.26), we have

∥em+1
h ∥

2
L2 + ∥em+1

θ ∥
2
L2 + 4τ

m∑
n=1

(
ν∥∇en+1

h ∥
2
L2 + κ∥∇en+1

θ ∥
2
L2 + β∥∇ · en+1

h ∥
2
L2

)
≤ C(h4 + τ4) +Cτ

m∑
n=1

(∥en+1
θ ∥

2
L2 + ∥en+1

h ∥
2
L2 + ∥̂en

h∥
2
L2 + ∥̂en

θ∥
2
L2) +Ch4τ

m∑
n=1

∥̂θn
h∥

2
L∞

+ 4ϵ2βτ

m∑
n=1

∥∇ · en+1
h ∥

2
L2 +Cτ

m∑
n=1

(1 + ∥̂θn
h∥

2
L∞)(∥en

θ∥
2
L2 + ∥en−1

θ ∥
2
L2),

(4.27)

where C > 0 is independent of h, τ, ν and κ.
Next, we bound uniformly the norm ∥θn

h∥L∞ by the method of mathematical induction as in the proof
of Theorem 3.1.
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According to (4.3), we can see that (4.12) holds for m = 0 if we take Ĉ0 ≥ C3. Now, we assume
that (4.12) also holds for m ≤ k − 1 with 1 ≤ k ≤ N − 1. Under the condition τ ≤ Ch and the inverse
inequality, one has

∥en
θ∥L∞ ≤ Ch−3/2∥en

θ∥L2 ≤ CĈ0h1/2 ≤ C ∀ 1 ≤ n ≤ k

for sufficiently small h with Ĉ0h1/2 ≤ 1, which further gives

∥̂θn
h∥L∞ ≤ ∥̂e

n
θ∥L∞ + ∥θ

n∥L∞ ≤ C and τ

k∑
n=1

∥̂θn
h∥

2
L∞ ≤ C. (4.28)

To finish the mathematical induction, we need to prove that (4.12) also holds for m ≤ k. As a result
of (4.28), we have

∥ek+1
h ∥

2
L2 + ∥ek+1

θ ∥
2
L2 + 4τ

k∑
n=1

(
ν∥∇en+1

h ∥
2
L2 + κ∥∇en+1

θ ∥
2
L2 + β∥∇ · en+1

h ∥
2
L2

)
≤ C(h4 + τ4) +Cτ

k∑
n=1

(∥en+1
θ ∥

2
L2 + ∥en+1

h ∥
2
L2 + ∥̂en

h∥
2
L2 + ∥̂en

θ∥
2
L2)

+ 4ϵ3βτ

k∑
n=1

∥∇ · en+1
h ∥

2
L2

by setting m = k in (4.27). Select small ϵ2 ≤ 1, then we have

∥ek+1
h ∥

2
L2 + ∥ek+1

θ ∥
2
L2 + τ

k∑
n=1

(
ν∥∇en+1

h ∥
2
L2 + κ∥∇en+1

θ ∥
2
L2

)
≤C(h4 + τ4) +Cτ

k∑
n=1

(∥en+1
θ ∥

2
L2 + ∥en+1

h ∥
2
L2 + ∥̂en

h∥
2
L2),

where C > 0 is independent of h, τ, ν and κ.
Applying the discrete Grönwall inequality to the above inequality, we conclude that there exists

some C4 > 0, which is independent of h, τ, ν and κ, such that

∥ek+1
h ∥

2
L2 + ∥ek+1

θ ∥
2
L2 + τ

k∑
n=1

(
ν∥∇en+1

h ∥
2
L2 + κ∥∇en+1

θ ∥
2
L2

)
≤ C2

4(h4 + τ4)

for sufficiently small τ. Thus, we prove that the error estimate (4.12) also holds for m ≤ k by taking
Ĉ0 ≥ C4, and we finish the mathematical induction. □

Based on (4.12) in Theorem 4.1, we get the following error estimate for the second-order BDF2
grad-div finite element scheme (4.1)–(4.2).

Theorem 4.2 Under the assumptions in Theorem 4.1, we have

∥um+1 − um+1
h ∥

2
L2 + ∥θ

m+1 − θm+1
h ∥2L2 ≤ C(h4 + τ4) (4.29)

with 0 ≤ m ≤ N − 1, where C > 0 is independent of h, τ, ν and κ.
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5. Numerical results

In this section, we present numerical results of the second-order BDF2 grad-div stabilization method
for the penetrative convection problems (1.1)–(1.5) with small viscosity coefficient ν. For simplicity,
we only consider the 2D problem with the domain Ω = [0, 1]2. To check the convergence rates, we
take the appropriate f and g such that the exact solution (u, p, θ) is given by

u1 = 10x2(x − 1)2y(y − 1)(2y − 1) exp(−t), u2 = −10x(x − 1)(2x − 1)y2(y − 1)2 exp(−t),

p = 10(2x − 1)(2y − 1) exp(−t), θ = sin(πx) sin(πy) exp(−t).

In numerical computation, we take the physical parameters κ = 10−1, γ1 = 10−1, γ2 = 10−1, the
stabilized parameter β = 0.1 and the final time T = 1. In addition, we denote

∥u − uh∥L2 = ∥uN − uN
h ∥L2 , ∥θ − θh∥L2 = ∥θN − θN

h ∥L2 ,

∥u − uh∥l2(V) =

τ N∑
n=1

∥∇(un − un
h)∥2L2

1/2

,

∥θ − θh∥l2(Y) =

τ N∑
n=1

∥∇(θn − θn
h)∥2L2

1/2

.

In terms of error estimates in Theorems 4.1 and 4.2, we have the second-order convergence rates
of the velocity and temperature if we select τ = O(h). We use a uniform mesh on Ω with the spatial
mesh size h in each direction. By taking gradually decreasing mesh sizes h = 1/4, 1/8, · · · , 1/128, we
choose different iteration numbers N = 1/h such that the time step size τ = h. We present numerical
results with small viscosity coefficients ν = 10−3 and ν = 10−4 in Tables 1 and 2, respectively, from
which we can see that the second-order convergence rates are reached. Thus, these numerical results
are in good agreement with the theoretical analysis.

Table 1. Numerical errors and convergence rates with ν = 10−3 and τ = h.

h ∥u − uh∥L2 rate ∥u − uh∥l2(V) rate ∥θ − θh∥L2 rate ∥θ − θh∥l2(Y) rate

1/4 4.28913E-03 6.57526E-02 2.09701E-03 4.88982E-02
1/8 9.74180E-04 2.14 2.16564E-02 1.60 3.44116E-04 2.61 1.23962E-02 1.98
1/16 2.34556E-04 2.05 4.99515E-03 2.12 6.70734E-05 2.36 3.11457E-03 1.99
1/32 5.84811E-05 2.00 1.03426E-03 2.27 1.51182E-05 2.15 7.79712E-04 2.00
1/64 1.46777E-05 1.99 2.10634E-04 2.30 3.61134E-06 2.07 1.94978E-04 2.00
1/128 3.67926E-06 2.00 4.68535E-05 2.17 8.84215E-07 2.03 4.87451E-05 2.00
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Table 2. Numerical errors and convergence rates with ν = 10−4 and τ = h.

h ∥u − uh∥L2 rate ∥u − uh∥l2(V) rate ∥θ − θh∥L2 rate ∥θ − θh∥l2(Y) rate

1/4 4.75610E-03 7.67595E-02 2.10166E-03 4.89096E-02
1/8 1.20543E-03 1.98 3.84952E-02 1.00 3.45921E-04 2.60 1.23987E-02 1.98
1/16 2.87010E-04 2.07 1.36084E-02 1.50 6.79439E-05 2.35 3.11550E-03 1.99
1/32 6.89986E-05 2.06 3.67556E-03 1.89 1.54451E-05 2.14 7.80036E-04 2.00
1/64 1.73110E-05 1.99 8.06317E-04 2.19 3.70433E-06 2.06 1.95075E-04 2.00
1/128 4.24985E-06 2.03 1.45108E-04 2.47 9.07167E-07 2.03 4.87662E-05 2.00

On the other hand, the second-order convergence rates in the L2 norm is sub-optimal since we use
the P2 element to approximate u and θ. Theoretically, the optimal error estimate should be

∥u − uh∥L2 + ∥θ − θh∥L2 ≤ C(h3 + τ2) (5.1)

for 1 ≤ n ≤ N. To check (5.1), we take τ = h3/2 such that

∥u − uh∥L2 + ∥θ − θh∥L2 ≤ Ch3. (5.2)

By taking different mesh sizes h = 1/22, 1/32, · · · , 1/72, we give numerical results in Tables 3 and 4
with ν = 10−3 and ν = 10−4, respectively. We can see that the almost third-order convergence rates in
L2 norm are reached. Thus, the L2 error estimates in (4.29) is not optimal. How to prove the optimal
error estimates in L2 norm will be reported in future work.

Table 3. Numerical errors and convergence rates with ν = 10−3 and τ = h3/2.

h ∥u − uh∥L2 rate ∥θ − θh∥L2 rate

1/4 3.18961E-03 1.39164E-03
1/9 3.03406E-04 2.90 1.22372E-04 3.00
1/16 5.02327E-05 3.13 2.18932E-05 2.99
1/25 1.15939E-05 3.29 5.75192E-06 3.00
1/36 3.31503E-06 3.43 1.93196E-06 2.99
1/49 1.12367E-06 3.51 7.67713E-07 2.99

AIMS Mathematics Volume 9, Issue 1, 453–480.



476

Table 4. Numerical errors and convergence rates with ν = 10−4 and τ = h3/2.

h ∥u − uh∥L2 rate ∥θ − θh∥L2 rate

1/4 3.65795E-03 1.39237E-03
1/9 5.23458E-04 2.40 1.22415E-04 3.00
1/16 1.16969E-04 2.60 2.18917E-05 2.99
1/25 3.32275E-05 2.82 6.22161E-06 2.82
1/36 1.12122E-05 2.98 2.25287E-06 2.79
1/49 4.52035E-06 2.95 9.47731E-07 2.81

6. Conclusions

In this paper, we studied the first-order Euler and second-order BDF2 finite element schemes
for the approximation of the the time-dependent penetrative convection equations. In designing of
numerical scheme, we used the grad-div stabilization method to overcome instabilities from the high
Reynolds number. Main advantages of the proposed schemes are two folds. One is that they both
are unconditionally stable without any condition of the time step and mesh size. Another is that one
only needs to solve linearized systems at each time step. In terms of the analysis technique in [18,19],
uniform error estimates in L2 norm were derived in which the constants are independent of inverse
powers of the viscosity coefficient and thermal conductivity coefficient.

In some related models, the nonlinear term 2νD(u) : D(u), which is used to describe the viscous
dissipation, appears in the temperature equation (1.3) [2, 9, 47]. Here, D(u) is the strain tensor having
components Di j(u) = 1

2 ( ∂ui
∂x j
+

∂u j

∂xi
). However, this strongly nonlinear term will result in much more

difficulties in well-posedness analysis and numerical analysis. Thus, we consider the Eq (1.3) without
the viscous dissipation in this paper. On the other hand, different modified Boussinesq approximations
for some practical problems have been considered, such as the heat and mass transfer models in [10,48].
In future works, we can use the grad-div stabilization method for these modified models.

On the other hand, for the reason of simplicity, we use the zero Dirichlet boundary condition for
the temperature. We remark that uniform error estimates derived in this paper can be extended to the
problem with the mixed boundary condition for the temperature in [19], where the mixed boundary
condition is composed by zero Dirichlet and Neumann boundary conditions.
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