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Abstract: The aim of this study was to build a regression model of solar irradiation in the Kulluk 
region of Turkey by using the multivariate adaptive regression splines (MARS) technique. Using the 
well-known data mining algorithm, MARS, this study has explored a convenient prediction model for 
continuous response variables, i.e., average daily energy production from the given system (Ed), 
average monthly energy production from given system (Em), average daily sum of global irradiation 
per square meter (Hd) and average annual sum of global irradiation per square meter (Hm). Four 
continuous estimators are included to estimate Ed, Em, Hd and Hm: Estimated losses due to temperature 
and low irradiance (ESLOTEM), estimated loss due to angular reflection effect (ESLOANGREF), 
combined photovoltaic system loss (COMPVLOSS) and rated power of the photovoltaic system (PPVS). 
Four prediction models as constructed by implementing the MARS algorithm, have been obtained by 
applying the smallest generalized cross-validation (GCV) criterion where the means of penalty are 
defined as 1 and the backward pruning method for the package “earth” of R software is used. As a 
result, it can be suggested that the procedure of the MARS algorithm, which achieves the greatest 
predictive accuracy of 100% or nearly 100%, permits researchers to obtain some remarkable hints for 
ascertaining predictors that affect solar irradiation parameters. The coefficient of determination 
denoted as R2 was estimated at the highest predictive accuracy to be nearly 1 for Ed, Em, Hd and Hm 
while the GCV values were found to be 0.000009, 0.018908, 0.000013 and 0.019021, respectively. 
The estimated results indicate that four MARS models with the first degree interaction effect have the 
best predictive performances for verification with the lowest GCV value. 
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1. Introduction 

According to the Global Status Report on Renewable Energy Sources [1], global renewable 
energy capacity reached 2,378 GW by the end of 2018, accounting for more than 33% of the world’s total 
energy production. In 2018, new capacity additions were 55% from photovoltaic power systems, 28% 
from wind power systems and 11% from hydroelectric power. Photovoltaic power in particular reached 
a high level with nearly 100 GW added. Therefore, photovoltaic power generation became the world’s 
fastest growing renewable energy source in 2022. In parallel with these developments, forecasting 
photovoltaic power generation has become an important requirement for energy trading. Different 
experimental methods have been used in the literature to model global solar irradiance, sunshine 
duration and air temperature data, which are important solar parameters in the installation of 
photovoltaic power systems. Despotovic et al. used a linear regression model to model monthly average 
daily diffuse solar irradiance, and the average absolute relative error was obtained as 0.060 [2]. Jamil and 
Akhtar used linear, logarithmic and exponential regression models for monthly average daily diffuse solar 
radiation modeling and the root mean square errors were found to be 0.8967, 1.1360 and 1.7705 MJ/m2, 
respectively [3]. Filho et al. calculated the root mean square error (RMSE) as 0.2718 MJ/m2 using a 
sigmoid logistic function in daily diffuse solar radiation modeling [4]. Liao et al. used a linear 
regression model to model the annual mean insolation duration and the coefficient of determination 
was 0.80 [5]. Chelbi et al. applied a linear regression model for monthly average daily insolation 
duration modeling and the coefficient of determination was found to be 0.7976 [6]. Zhu et al. applied a 
linear regression model for daily air temperature modeling and the RMSE was found to be 3.17 ℃ [7]. Ho 
et al. used a random forest regression model for daily maximum air temperature modeling and the 
mean absolute error was obtained as 1.67 ℃ [8]. Wenbin et al. used a sinusoidal curve fitting method 
for daily maximum and minimum air temperature modeling and calculated the correlation coefficients 
as 0.83 and 0.84, respectively [9]. Various machine learning, remote sensing and experimental models 
have been proposed in the literature to estimate solar radiation. Chang and Zhang improved the 
accuracy of hourly global solar irradiance estimation by using the hourly/daily irradiance ratio [10]. 
Jiang et al. extracted spatial patterns from satellite images by using convolutional neural networks, and 
they correlated them with hourly global solar irradiance using a multilayer perceptron. They realized 
accurate and reliable prediction [11]. Li et al. used a multivariate adaptive regression curve method to 
select the most important variables in meteorological data, and they realized good performance for the 
prediction of hourly global solar radiation on a horizontal surface [12]. Cornejo-Bueno et al. used 
different Gaussian processes, support vector regression and neural networks as machine learning 
regressors, and they demonstrated the effective performance of extreme learning machines in terms of 
hourly global solar radiation estimation [13]. Manju and Sandeep found surface measurement data to be 
more suitable than satellite measurement data for daily horizontal global solar radiation estimation [14]. 
Gouda et al. proposed a day-of-year-based hybrid sine and cosine wave model for the estimation of 
daily global solar radiation on a horizontal surface, and they obtained a good estimate without the need 
for any meteorological data [15]. Guermoui et al. proposed parallel and cascaded forecasting 
architectures based on weighted Gaussian process regression and improved the accuracy of daily 
global horizontal solar radiation forecasting [16]. Feng et al. compared temperature-based empirical 
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and machine learning models in terms of their ability to predict daily horizontal global solar irradiance, 
and they recommended a hybrid mind evolution based artificial neural network model as the 
appropriate model [17]. With a theory of experimentation approach, Makade et al. identified altitude, 
relative humidity, and sunshine duration as the dominant parameters for monthly average horizontal 
global solar radiation estimation [18]. Kisi O. et al. demonstrated the efficiency of a dynamically 
evolving neural-fuzzy inference system in monthly average global solar radiation prediction [19]. 
Kaplan et al. developed cubic, quadratic and linear models based on the moving least squares approach 
and they obtained monthly average global solar radiation values that were in good agreement with real 
data [20]. Anis et al. designed generalized models based on sunshine duration to perform monthly 
average global solar radiation estimation and they identified the quartic function as the top ranked 
model in terms of global performance [21]. Gürel et al. used a feed-forward neural network, empirical 
models (three Angstrom-type models), the Holt-Winters time-series method and mathematical models 
to predict monthly average daily global solar radiation values. Pressure, relative humidity, wind speed, 
ambient temperature and sunshine duration data were used and the feedforward neural network 
was the most successful method with a coefficient of determination of 0.9911, RMSE of 0.78 and 
mean absolute percentage error (MAPE) of 4.9263% [22]. El-Baz et al. facilitated the integration of 
probabilistic forecasts into energy management system algorithms and demand side management 
algorithms. The forecasting ability improved to 48.6% relative to the continuum model [23]. Hu et al. 
used ground-based cloud imagery for ultra-short-term photovoltaic power forecasting. Using radial 
basis functions, mean absolute error (MAE) and MAPE values were reduced by 83.4 W and 7.4%, 
respectively [24]. Dong et al. developed a filter-based expectation maximization and Kalman filtering 
mechanism to estimate the system parameters and state variables of photovoltaic systems. The 
developed model showed good performance in terms of normalized root mean square error (NRMSE) 
accuracy in short-term photovoltaic power estimation [25]. Gao et al. proposed long-short-term 
memory networks for photovoltaic power forecasting. The daily average meteorological data found 
via numerical weather prediction were used as input and the root mean square error value reached 4.62% 
for ideal weather conditions [26]. Gulin et al. developed a neural network based static/dynamic online 
corrector to predict photovoltaic power generation one day ahead and with a semicolon the standard 
deviation of power generation prediction was reduced by 50% [27]. Wang et al. constructed a hybrid 
model with convolutional neural network and long short-term neural network models to predict the 
photovoltaic power generation one day ahead, and this model worked better than single models using 
mostly photovoltaic time series data [28]. Wang et al. proposed a partial functional linear regression 
model to predict the daily power output of photovoltaic systems. Using global horizontal irradiance 
and photovoltaic power output data, the the mean absolute deviation value was reduced to 40.6277 
[29]. Han et al. combined the copula function and long short-term memory network for the medium-to 
long-term prediction of photovoltaic power generation. Using measured power and meteorological data, 
the normalized root mean square error value was reduced by up to 10.01% [30].  

Yang et al. made predictions based on data mining by using historical photovoltaic power generation 
data and meteorological data. On sunny days, the lowest root mean square error value was 0.1028 in the 
Markov chain model with a similar cloudy modification, while the lowest relative absolute error value 
was 0.88% in the space fusion model with a similar cloudy modification [31]. Wang et al. hybridized 
wavelet transform, deep convolutional neural network and quantile models for seasonal photovoltaic 
power prediction, and they calculated the RMSE value as 14.3381 [32]. Sharifzadeh et al. predicted 
photovoltaic power generation by using photovoltaic power, temperature, hourly variable, seasonal 
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variable, direct solar radiation and diffuse solar radiation data in artificial neural networks and support 
vector regression. The mean squared errors of artificial neural networks were found to be 3.26 × 10–4 
and 6.5 × 10–3 at 1-hour and 5-hour time periods, while the mean squared errors of support vector 
regression were 2.03 × 10–6 and 5.51 × 10–2 [33]. Wood predicted solar energy production by 
evaluating various weather, environmental and market variables in a transparent open box learning 
network. Two different data sets were prepared; the RMSEs of the first and second data sets were found 
to be 1044.4 and 936.1 MW, respectively, and the coefficients of determination were 0.975 and 0.980, 
respectively [34]. Heydari et al. proposed hybridized wavelet transform, hybrid feature selection, group 
data processing method based neural network and modified multi-objective fruit fly optimization 
algorithm for solar energy prediction in microgrids and used these methods in their study. The mean 
squared error of this proposed model is 0.017868, MAPE is 1.7275, mean absolute error is 0.015095 
and the coefficient of determination is 0.99649 [35]. In this study, Zhang and Goh investigated the use 
of a very simple nonparametric regression algorithm known as multivariate adaptive regression 
splines (MARS), which is capable of mathematically expressing the relationship between inputs 
and outputs. The main advantages of MARS are its capacity to produce simple, easy-to-interpret 
models, its ability to estimate the contributions of input variables and its computational efficiency [36]. 
In a study by Zhang et al. various weather variables such as air temperature, sunshine duration, relative 
humidity and incoming solar radiation data from 50 meteorological stations in Iran and their 
geographical information—or a subset thereof—were used as inputs in radial functions (RF) and 
MARS. The best predictions were obtained by the MARS model which achieved the following 
results: Root mean square (RMSE), mean square error (MAE) and R of 0.17 ℃, 0.14 ℃ and 1,000 
in the training phase and 0.15 ℃, 0.12 ℃ and 1,000 in the validation phase, respectively [37]. Raj and 
Gharineiat based their study on the use of artificial intelligence models to assess and predict the trend 
in mean sea level along the northern Australian coastline. The study uses sea level time series from 
four regions (Broom, Darwin, Cape Ferguson, Rosslyn Bay) for forecasting. MARS and ANN 
algorithms were applied to build the forecast model [38]. Zhang and Goh investigated the use of a 
fairly simple nonparametric regression algorithm known as MARS, which has the ability to 
approximate the relationship between inputs and outputs and to express the relationship 
mathematically. The main advantages of the MARS method are its capacity to generate simple models, 
estimate coefficients and computational efficiency. First, the MARS algorithm is described [39]. In 
their paper, Dhimish and Santiago Silvestre show the effects of the azimuth angle on the energy 
production of photovoltaic (PV) installations. Two different PV sites are studied, the first one includes 
PV systems installed in different geographical locations at azimuth angles of −13, −4, +12 and +21°, while 
the second PV site includes adjacent PV systems installed at azimuth angles of −87, −32, +2 and +17°. 
Finally, probability projections were evaluated for all observed azimuthal angles data-sets [40]. In 
another study Li et al. developed models based on the multivariate adaptive regression spline (MARS) 
method to estimate hourly global solar radiation on a horizontal surface. Logistic regression and 
artificial neural network methods were also used to develop models for comparative study. The results 
showed that the proposed MARS models exhibit good performance in terms of both prediction accuracy 
and interpretability [41]. Srivastava et al. used MARS, CART, M5 and random forest models to predict 
hourly solar radiation from 1 day in advance to 6 days in advance [42].  

The main objective of this study was to use a valuable regression model to estimate solar radiation 
parameters (Ed, Em, Hd and Hm) [43,44] in the local area of Küllük, Turkey by using the MARS data 
mining algorithm [45] as a reputable alternative to the response surface methodology. This method 
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shows the effect of the azimuth on energy production in PV installations. In this study, a new was used 
to estimate these parameters by using measured solar energy parameters [46–54]. 

1.1. Azimuthal angle 

The latitude (W) of a point or location (Figure 1) is the angle that formed by the radial line connecting 
the location to the center of the earth makes with its projection in the equatorial plane [46–49]. The solar 
azimuth (incidence) angle is the horizontal angle measured from the south (in the northern hemisphere) 
to the horizontal projection of the sun’s rays [50]. In this context, many previous studies have been 
carried out to define the relationship between these parameters and the calculation of solar positions. 
Walgreen calculated the parameter for the determination of the sun’s position by using R as the 
statistical software programme. The calculated and estimated parameters were time, solar longitude, 
declination, local azimuth, altitude, sunrise and sunset in real time.  

 

Figure 1. Schematic representation of the solar azimuth angles [51]. 

2. Materials and methods 

Igdir is a province in the Eastern Anatolia region of Turkey, particularly in the Erzurum/Kars 
section and easternmost part of Turkey. The area of the province is 3.664 km2. Its borders are Armenia, 
Nakhchivan Autonomous Republic and Iran. It is the only province of Turkey that has borders with 
three countries. The Küllük region is a neighborhood located in the Igdir city center (Figure 2). In this 
study, the parameters were analyzed by using daily, monthly and annual data measured via a 
pyranometer and photovoltaic geographical information system (PVGIS) between 2001 ± 2014 in 
order to maximize search efficiency and obtain better quality solutions. 
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Figure 2. Location map of Igdir province according to districts: Tuzluca, Igdir center, 
Karakoyunlu and Aralık [55,56]. 

2.1. MARS algorithm 

Physicist Jerome H. Friedman in the early 1990s developed a MARS model by using a 
non-parametric regression technique [55,57]. This technique is based on the co-modeling between a 
dependent variable and a set of independent variables. It provides linearity with partial linear functions 
using separate regression gradients at different intervals. A MARS algorithm tries to identify nodes 
that cover all possible interactions between all variables in the model. In this study, solar radiation 
angle was estimated using MARS for the evaluation of solar energy efficiency and solar radiation 
parameters of Kulluk locality of Igdir province [58,59]. Global irradiation parameters are predicted 
through the use of the MARS algorithm for multiple response variables (Ed, Em, Hd and Hm) with the 
help of the package “earth” of the R software program. In the package “earth”, the command “cbind (Ed, 
Em, Hd, Hm)” is specialized to analyze multiple response variables simultaneously.  

The basic function is defined as MARS Eq (1) [60,61]. 

𝑦 ൌ 𝜂௢ ൅  ∑ 𝜂௠ℎ௠ሺ𝑋ሻெ
௠ୀଵ      (1) 

where 𝜂௢is intercept, 𝜂ଵ….𝜂௠ are regression coefficients while the ℎ௠ሺ𝑋ሻ are terms with a very specific 
form. All the terms created will be of the form: 

ሺ𝑋௜ െ 𝑡௜ሻା ൌ ൜
ሺ𝑋௜ െ 𝑡௜ሻ 𝑖𝑓 𝑋௜ ൐ 𝑡௜
0              𝑖𝑓 𝑋௜ ൑ 𝑡௜

     (2) 

ሺ𝑡௜ െ 𝑋௜ሻା ൌ ൜
ሺ𝑡௜ െ 𝑋௜ሻ   𝑖𝑓 𝑋௜ ൏ 𝑡௜

0                𝑖𝑓 ൒ 𝑡௜
     (3) 
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Figure 3. Basis function. 

In particular, the basic functions for linear and non-linear expansion are used in two ways. The 
two-way basic functions (x-t) + and (t-x) + are expressed as t node values, as given in Eqs (2) and (3). 
The (+) sign next to these functions indicates that the result of the equation is positive. Otherwise, each 
function is evaluated at the zero point [62]. Figure 3 shows a single node and two basic functions. Each 
function is segmented linear with the t value at the node. These two functions form reflected pairs. The 
basic functions are segmented linear regression curves that divide the arguments into intervals with 
optimal joints. Another purpose of MARS is to determine the joints with the smallest sum of squares. 
During the establishment of the model, the forward stepping method will create many nodes (with little 
or no contribution to the model), but the excess nodes will be removed from the model by the stepwise 
pruning method. Model selection is based on the generalized cross validation (GCV) criterion 
developed by [63]. This coefficient takes into account both the error of the residues and the model 
complexity. GCV coefficient [64,65], as given in the following equation. 

𝐺𝐶𝑉ሺ𝜆ሻ ൌ
∑ ሺ௒೔ି௒෠೔ሻమ೙

೔సభ

ሾଵିಾሺഊሻ
೙

ሿమ
      (4) 

where, n is the number of sample data, C is the measure of cost-complexity of the added basic functions 
and Mሺ𝜆ሻ is the number of regression models established by the MARS model [66]. 

If there are Mሺ𝜆ሻ linear independent basic functions in the models are presented as follows [58,67]: 

𝑅ଶ ൌ ൤1 െ
∑ ሺ௒೔ି௒෠೔ሻమ೙

೔సభ

∑ ሺ௒೔ି௒തሻమ೙
೔సభ

൨     (5) 

Adjusted coefficient of determination was described by [46]  

𝑅஺஽௃
ଶ ൌ ቈ1 െ

భ
೙షೖషభ

∑ ሺ௒೔ି௒෠೔ሻమ೙
೔సభ

భ
೙షభ

∑ ሺ௒೔ି௒തሻమ೙
೔సభ

቉    (6) 

Standard deviation ratio was defined by [65,66] 

𝑆𝐷ோ஺்ூை ൌ ඨ
భ

೙షభ
∑ ሺఌ೔ିఌതሻమ೙

೔సభ
భ

೙షభ
∑ ሺ௒೔ି௒തሻమ೙

೔సభ
     (7) 
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where, Yi is the observed value of ith measurement, Ŷi is the predicted value of ith measurement, Ȳ is 
average of all the measurements, εi is the residual value of ith measurement, έ is the average of the 
residuals, k is the number of terms in the MARS model, and n is total number of samples. The residuals 
of each measurement are obtained with εi = Yi − Ŷi. 

Since the equation is in linear form, the results of the MARS model are evaluated using ANOVA. 
MARS allows comparison of low- and high-grade models when it is defined in the model that the 
variables are to be entered individually or in combination. Friedman (1991) recommends corrected 
R2 as a benchmark. A model with interaction terms can be preferred only if the corrected R2 is 
significantly higher [68]. 

3. Results  

In this study, the multivariate adaptive regression splines (MARS) technique was used. The most 
commonly used parameters affecting four solar irradiation parameters were selected. The aim of this 
study is to investigate the effects of four solar irradiation parameters on solar energy efficiency through 
MARS technique. Adjusted coefficient of determination (R2), RMSE, MAD and MAPE measurements 
were used. According to the results, when using MARS model, R2 value was found to be 0.9990. In 
addition, RMSE, MAD and MAPE results can be seen in Tables 1 and 2. We obtained better results 
for all criteria with MARS model. 

Table 1. Performance criteria for the MARS model. 

Artificial neural network 
R2 RMSE MAD MAPE
0.9990 0.055 850.03 5.215

Table 2. Performance criteria of each parameters for the MARS technique.  

 GCV RSS GR2 R2 CVRSq
Ed 0.000009 0.00009 0.9999 0.9999 0.9783
Em 0.018908 0.18908 0.9997 0.9997 0.9617
Hd 0.000013 0.00013 0.9999 0.9999 0.9744
Hm 0.019021 0.19021 0.9998 0.9998 0.9935
All 0.037952 0.37952 0.9997 0.9997 0.9770
 CVRSq sd MaxErr sd
Ed 0.978 0.032 −0.0394 0.0174
Em 0.962 0.049 −2.0223 1.5392
Hd 0.974 0.038 −0.0545 0.0299
Hm 0.994 0.005 −1.2136 0.7737
All 0.977 0.031 −2.0223 1.5392

In order to evaluate the MARS model proposed, for four solar irradiation parameters, Ed, Em, Hd 
and Hm as response variables are used. Predictive capabilities of the relevant models are measured by 
using this parameter. R2 estimates are found as nearly 1 for Ed, Em, Hd and Hm, which means that the 
almost highest accuracy is achieved by each parameters namely Ed, Em, Hd and Hm. Generalized Cross 
Validation values are found for Ed, Em, Hd and Hm as 0.000009, 0.018908, 0.000013 and 0.019021, 
respectively. Cross-Validation R2 are estimated as 0.99, 0.98, 0.99 and 0.99 for Ed, Em, Hd and Hm, 
in a sequentially. Residual Sum of Squares are found as 0.00009, 0.18908, 0.00013 and 0.19021 for 
Ed, Em, Hd and Hm, respectively while standard deviation ratios are estimated as 0.0124, 0.0182, 
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0.0116 and 0.0145 for Ed, Em, Hd and Hm, in a sequentially. The greatest predictive accuracy and the 
smallest GCV values for the MARS models specified here are obtained by means of V-three-fold cross 
validation, five selected terms and 1st interaction order. For the solar parameters Ed (Eq 8), Em (Eq 9), 
Hd (Eq 10) and Hm (Eq 11). The following are the prediction equations from the MARS program:  

Ed = 3.6835 – 0.2037 ൈ max(0, 40 - AZIMUTH) – 0.0010 ൈ max(0, AZIMUTH - 40) - 0.031 max(0, 

AZIMUTH - 40) ൈ ESLOANGREF + 0.0081 ൈ max(0, 40 - AZIMUTH) ൈ COMPVSLOSS                      (8) 

Em = 111.846 – 9.140 ൈ max(0, 40 - AZIMUTH) + 0.050 ൈ max(0, AZIMUTH - 40) - 0.117 ൈ max(0, 

AZIMUTH - 40)  ൈ ESLOANGREF + 0.364 ൈ max(0, 40 - AZIMUTH) ൈ COMPVSLOSS                         (9) 

Hd = 4.9854 – 0.2690 ൈ max(0, 40 - AZIMUTH) + 0.0003 ൈ max(0, AZIMUTH - 40) - 0.044 ൈ max(0, 

AZIMUTH - 40) ൈ ESLOANGREF + 0.0107 ൈ max(0,40 - AZIMUTH) ൈ COMPVSLOSS                      (10) 

Hm = 151.839 – 5.856 ൈ max(0, 40 - AZIMUTH) + 0.030 ൈ max(0, AZIMUTH - 40) - 0.143 ൈ max(0, 

AZIMUTH - 40) ൈ ESLOANGREF + 0.236 ൈ max(0, 40 - AZIMUTH) ൈ COMPVSLOSS                       (11) 

In the predictive models, 40 degree is found as the determinative azimuth angle. Predicted response 
values are calculated at this angle and Ed = 3.6835, Em = 111.846, Hd = 4.9854 and Hm = 151.839 are 
obtained where max (0, 40-AZIMUTH) and max (0, AZIMUTH-40) are zero at 40 degree azimuth. At 40 
degree azimuth angle, the effect of ESLOANGREF and COMPVSLOSS on Ed, Em, Hd and Hm is 
masked. However, at the azimuth angles narrower than 40, the basis function max (0, 40-
AZIMUTH)*COMPVSLOSS are activated as an interaction effect. It is shown that the effect of 
COMPVSLOSS on the solar irradiation parameters is based on azimuth angle. At angles wider than 40, 
the solar parameters would be expected to decrease as ESLOANGREF increased. These results may 
be important hints for solar irradiation efficiency preciously described by means of multiple responses 
MARS algorithm. The results indicate that the MARS algorithm is recommendable for statistical 
modeling to investigate solar efficiency. The algorithm may also be a good option for modeling of 
global warming parameters.  

The available results indicated obviously that the solar irradiation parameters may change based 
upon AZIMUTH, ESTLOANGREF and COMPVSLOSS values [69–72]. The effect of 
ESTLOANGREF and COMPVSLOSS on the parameters may vary based on AZIMUTH. It could be 
advised that MARS algorithm is a powerful statistical tool for evaluating solar irradiation data with 
multiple responses. The package earths of the R software permit us to reach the best predictive accuracy 
for the MARS models created. In Appendix, you can find the codes of the MARS algorithm for 
predicting multiple continuous responses, Ed, Em, Hd and Hm. Graphics of model selection, residual 
and fitted values for Ed, Em, Hd and Hm are depicted in Figure 4(a), (b), (c) and (d) respectively. 
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Figure 4(a). Model selection for Ed, residual and fitted values graphs. 

 

Figure 4(b). Model selection for Em, residual and fitted values graphs. 
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Figure 4(c).  Model selection for Hd, residual and fitted values graphs. 

 

Figure 4(d). Model selection for Hm, residual and fitted values graphs. 

In these figures, the five terms produce the least difference between the dark black and red lines 
in the MARS model for the solar radiation parameters (as seen in Figure 4(a)). Figure 4(a) also shows 
that the highest prediction accuracy in this model is obtained for Ed, Em, Hd and Hm. In Figure 4(a), 
all absolute residuals for the Ed parameter range between 0.000 ± 0.010. Figure 4(b) shows the 
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absolute residuals for the parameter Em in the range 0.000 ± 0.300 and the absolute residuals are 
between 0 and 0.012. For Hm, 95 per cent of the absolute residuals (in Figure 4(d)) range between 0 
and 0.20. The third, fourth and sixth measurements could be outliers, potential observations that 
increase the residual variance of the MARS model for the Ed parameter. The first, second and fourth 
measurements could be outliers for Em as a response variable. Similarly, outliers for Hd in Figure 4(c) 
could be the third, fourth and sixth measurements. Also, the first, second and sixth measurements can be 
outliers for Hm [73]. A residual QQ plot shows some deviations from the normality assumption of the 
residuals, as in the plots of fitted and residuals. GRSq is the generalized R square and RSq is the R square. 

Table 3. The values change of the Ed, Em, Hd and Hm according to year; ESLOTEM, 
ESLOANGREF, OTHERSLOSS, COMPVSLOSS and PPVS [74]. 

Year Slope Aziimuth Ed Em Hd Hm PPVS  Eslotem Esloangref Othersloss  Compvsloss 

2001–2014 35 0 3.85 117 5.19 158 1 Kw 11 2.8 14 25.5 

2001–2014 35 10 3.83 117 5.17 157 1 Kw 11 2.8 14 25.6 

2001–2014 35 20 3.8 116 5.13 156 1 Kw 11.2 2.8 14 25.7 

2001–2014 35 30 3.75 114 5.07 154 1 Kw 11.3 2.8 14 25.8 

2001–2014 35 40 3.68 112 4.98 152 1 Kw 11.4 2.8 14 25.9 

2001–2014 35 50 3.59 109 4.87 148 1 Kw 11.5 2.8 14 26.1 

2001–2014 35 60 3.49 106 4.74 144 1 Kw 11.6 2.9 14 26.2 

2001–2014 35 70 3.37 103 4.59 140 1 Kw 11.6 3 14 26.3 

2001–2014 35 80 3.25 98.7 4.43 135 1 Kw 11.6 3.2 14 26.4 

2001–2014 35 90 3.11 94.5 4.25 129 1 Kw 11.5 3.4 14 26.5 

Table 3 summarizes the results and we obtain Figure 5a,b using these results.  

 

Figure 5a,b. Monthly energy output from fixed-angle for latitude 39.59.13 North and 
longitude 43.54.40 East. 

Figure 5a,b shows monthly energy output from fixed angle PV system at location (latitude 39.59.13 
North and longitude 43.54.40 East) with a 40 degree inclination angle. According to Figure 5(a), it is 
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obvious that in June, July and August, the highest energy outputs are achieved whereas the lowest 
values are obtained during the winter. 

 

Figure 6 (a) and (b). Monthly in plane irradiation for fixed angle PV system at latitude 
39.59.13 North and longitude 43.54.40 East. 

Figure 6 (a) and (b) provides two plots ± the scatter and the column ± of monthly irradiation in a 
plane for a fixed angle PV system at (latitude 39.59.13 North and longitude 43.54.40 East). It is certain 
that for the same inclination angle, the behavior of the solar energy output is similar to the location 
indicated in Figure 5 (a) and (b). 
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Figure 7 (a). The change of Ed according to year and COMPVSLOSS (combined PV system losses). 

 

Figure 7 (b). The change of Em according to year and COMPVSLOSS (combined PV 
system losses). 
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Figure 7 (c). The change of  Hd  according to year and COMPVSLOSS (combined PV 
system losses). 

 

Figure 7 (d). The change of Hm according to year and COMPVSLOSS (combined PV 
system losses). 
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The monthly global and solar irradiation on the surfaces in the defined location is demonstrated 
in Figure 7 (a–d). From these figures, it can be understood that the global irradiation generally 
decreases as latitude increases; however, a comparison of the annual climatic conditions indicates that 
the north-east gradient is much stronger during especially August and September months. In these 
figures, it is clearly seen that it is ascertained that the diffuse irradiation is influenced positively by 
latitude in these months and the fraction of the diffuse to global irradiation increases in the months. 
These four figures are 7 (a–d) display the global irradiation azimuth (incident) angle in relation to 
systems both fixed at optimal inclination angles and mounted on two-axis trackers, from which it is 
obvious that the energy generation increase induced by means of a two-axis tracker is unfavorably 
correlated with the percentage of diffuse to global irradiation. Maximum levels in the energy were 
probable at azimuth angle of 40°, which is suitable for statistical evaluation of the solar irradiation data, 
as verified from these figures. Monthly in-plane irradiation on for fixed angle indicated a similar 
tendency to these figures. 

In this study, we addressed a solar PV power plant installation problem considering both 
qualitative and quantitative factors and solved the problem of investigating real data’s measurements. 
First, azimuth angle is found proposed location. Then each location at the certain azimuth angle is 
investigated in terms of several parameters such as Ed and Em. In this study, we provide an 
examination of different places using both tangible and intangible information. In addition, another 
possible research direction a smaller interval than 5 for azimuth angle range. In this way, we will be 
able to examine changes between 35 and 45 azimuth angles [73−75]. 

4. Discussion 

The aim of this study work is to simultaneously build a regression model of four solar irradiation 
parameters by using the MARS technique at Küllük local region of the Turkey to reduce the differences 
between the observed values and the predicted values in response variable and to reduce error variance. 
To that end, we built the prediction model from predictors and response variable multivariate statistical 
techniques to remove multicollinearity problems. Global irradiation parameters were predicted through 
MARS algorithm for multiple response variables (Ed, Em, Hd and Hm) with the help of the package “earth” 
of R software program. In the package “earth”, the command “cbind(Ed, Em, Hd, Hm)” was 
specialized for simultaneously analyzing multiple response variables. The maximum number of basic 
functions in the MARS modeling was defined at the first step as 100, and the MARS model was 
constructed by using interaction order of 2. After building the most complex MARS model, the basic 
functions that did not contribute much to the model predictive accuracy were removed from the process 
of the so-called pruning based on the following generalized cross-validation error (GCV). The 
goodness-of-fit criteria for measuring their predictive performance of the MARS algorithm are 
presented as follows. Goodness-of-fit criteria allow analysts to obtain information on the degree of 
predictive accuracy of MARS predictive modeling. The highest correlation coefficient is unity which 
means MARS is a powerful alternative to response surface approach for multiple continuous responses. 
MARS produces more effective results compared to classical approaches like multiple linear 
regression in the violation of distributional assumptions. MARS produces more understandable outputs 
compared to ANNs types, i.e., MLP and RBF; MARS produces the prediction equations for all the 
responses. Also MARS produces more understandable outputs in the R studio free package program. 
Linear models are relatively simple but fail to capture the inherent nonlinear nature of solar data. 
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Therefore, it can be expected that the use of nonlinear models will increase the prediction accuracy 
compared to linear models. Traditional nonlinear models based on ANN usually involve the design 
of the network architecture and the selection of a good learning algorithm. This is largely based on 
past experiences and is subject to trial and error processes. Due to its simplicity and well-
interpretation, this article recommends the MARS model as a viable alternative. Although the MARS 
model is a non-parametric model, it retains the simplicity of traditional multiple linear regression. 
Therefore, the MARS model can be seen as an improved version of the traditional linear regression 
models. In this study, a study was conducted to estimate optimal azimuth angles for maximum PV 
solar efficiency using MARS, including linear models and some nonlinear models. This shows that 
nonlinear models tend to outperform linear models on average. There is no model that can outperform 
the other equally in both the training and prediction phases. However, the MARS model seems to be 
able to give reliable results both in training and estimation stages due to its non-parametric feature. 
Therefore, this very simple nonlinear model can be recommended for practical use. 

5. Conclusions 

The potential energetic benefits from the photovoltaic systems installed at a local scale in the 
Kulluk region of Turkey are evaluated comprehensively in this study. It is seen that the diffuse 
irradiation during the August and December months is also influenced positively as the latitude 
increases. Due to the longer path of the sun on the celestial sphere and the optimum incidence angle 
achieved during these months, the use of a tracker provides better results at the location selected. As a 
result of increasing latitude, more energy is also obtained. Moreover, the annual performance ratio 
increase of systems applying two-axis trackers over fixed inclination systems is affected positively by 
latitude. As a result of being lower environmental temperatures, lower energy losses are revealed 
converting from D.C. into A.C. The most efficient device is found to be in the polar-axis and 
azimuth/elevation types. It could be suggested that MARS algorithm is an influential statistical 
approach for prediction of solar irradiation parameters such as Ed, Em, Hd and Hm. At 40 degree 
azimuth angle, ESLOANGREF has a significant effect on the variables with the exception of 
ESLOANGREF = 3.1. The ESLOANGREF is smaller/greater than 3.1 at 40 degree azimuth angle, the 
parameters increase/decrease. The influence of COMPVSLOSS on the parameters considered was 
masked at 40 degree or narrower azimuth angle, whereas COMPVSLOSS effect is available at only 
the azimuth angles wider than 40 degree, which means that the COMPVSLESS may be altered by 
azimuth ones wider than 40 degree. Thus, MARS algorithm as a non-parametric regression is an 
extraordinary statistical tool that estimates the suitable cut-off values, 40 degree azimuth angle and 3.1 
ESLOANGREF values for the influential predictors and their interactions affecting the solar irradiation 
parameters without requiring any assumptions on the distribution of the predictors. 

Four prediction models are also investigated under different azimuth angles ranging from 0 ± 90 
degrees. The determinant azimuth angle is obtained at 40 degree. The present results indicate that 
MARS modeling may allow decision makers to obtain useful clues for solar irradiation modeling.      
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Appendix A 

>summary (solar, digits = 4) 
Call: earth (formula = cbind(Ed, Em, Hd, Hm)~., data = d, pmethod = “backward”,  
Keepxy = T, degree = 2, nfold = 3, penalty = 2, nk = 150) 

Table A1. Interaction values of each azimuth angle. 

 Ed Em Hd Hm 

(Intercept) 3.6835 111.846 4.9854 151.839 

Max (0, 40-AZIMUTH) −0.2037 −9.140 −0.2690 −5.856 

Max (0, AZIMUTH-40) −0.0010 0.050 0.0003 0.030 

Max (0, AZIMUTH-40) * ESLOANGREF −0.0031 −0.117 −0.0044 −0.143 

Max (0, 40-AZIMUTH) * COMPVSLOSS 0.0081 0.364 0.0107 0.236 

Selected 5 of 5 terms, and 3 of 4 predictors 
Termination condition: Reached maximum RSq 0.9990 at 5 terms 
Importance: AZIMUTH, ESLOANGREF, COMPVSLOSS, ESTLOSSTEMP-unused 
Number of terms at each degree of interaction: 1 2 2 
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Table A2. Maximum RSq reached in 4 terms. 

 GCV RSS GRSq RSq CVRSq 

Ed 0.000009 0.00009 0.9999 0.9999 0.9783 

Em 0.018908 0.18908 0.9997 0.9997 0.9617 

Hd 0.000013 0.00013 0.9999 0.9999 0.9744 

Hm 0.019021 0.19021 0.9998 0.9998 0.9935 

All 0.037952 0.37952 0.9997 0.9997 0.9770 

Note: The cross-validation sd’s below are standard deviations across folds 

Cross validation: Nterms 4.00 sd 0.00 nvars 2.00 sd 0.00 

Table A3. MaxErr was reached in 4 terms. 

 CVRSq sd MaxErr sd 

Ed 0.978 0.032 −0.0394 0.0174 

Em 0.962 0.049 −2.0223 1.5392 

Hd 0.974 0.038 −0.0545 0.0299 

Hm 0.994 0.005 −1.2136 0.7737 

All 0.977 0.031 −2.0223 1.5392 

>evimp(solar) 

Table A4. Generalized cross-validation reached in 4 terms. 

 Nsubsets Gcv Rss 

Azimuth 4 100.0 100.0 

Esloangref 4 100.0 100.0 

Compvsloss 3 20.6 2060 
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Figure A1. Cross-validation with MARS using the earth package. 

Below one may find the commands of the package “earth” for the statistical analysis of MARS 
algorithm in R software. 

> ## MARS algorithm for multiple continuous responses in R software##  

> d = read.table(“C:/gok.txt”, header = T) 

> str(d) 

> install.packages(“earth”)  

> library(earth) 

> solar = earth (cbind(Ed, Em, Hd, Hm)~., data = d, penalty = 2, pmethod = “backward”, degree = 2, 

nk = 150, nfold = 3, keepxy = T) 

> summary(solar) ## Summary results of the MARS algorithm  

> evimp(solar) ## Relative importance of the influential predictors 

> plot (solar, nresponse = 1) 

> plot (solar, nresponse = 2) 

> plot (solar, nresponse = 3) 

> plot (solar, nresponse = 4) 

> plotmo(solar, nresponse = 1) 

> plotmo(solar, nresponse = 2) 

> plotmo(solar, nresponse = 3) 

> plotmo(solar, nresponse = 4) 

> ## Use the following commands for estimating SD Ratio of each response 

> install.packages(“pastecs”) 



1353 

 

 
AIMS Energy  Volume 11, Issue 6, 1328–1353. 

> library(pastecs) 

> residualvalues < - solar$residuals 

> stat.desc(residualvalues) ## descriptive statistics of residuals for each response variable 

> stat.desc(d$Ed)## descriptive statistics of the actual Ed values 

> stat.desc(d$Em)## descriptive statistics of the actual Em values 

> stat.desc(d$Hd)## descriptive statistics of the actual Hd values 

> stat.desc(d$Hm)## descriptive statistics of the actual Hm values 

 

© 2023 the Author(s), licensee AIMS Press. This is an open access 
article distributed under the terms of the Creative Commons 
Attribution License (http://creativecommons.org/licenses/by/4.0) 

 


