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Understanding how a T-cell receptor (TCR) recognizes its specific ligand peptide is
crucial for gaining an insight into biological functions and disease mechanisms.
Despite its importance, experimentally determining TCR–peptide–major
histocompatibility complex (TCR–pMHC) interactions is expensive and time-
consuming. To address this challenge, computational methods have been
proposed, but they are typically evaluated by internal retrospective validation
only, and few researchers have incorporated and tested an attention layer from
language models into structural information. Therefore, in this study, we
developed a machine learning model based on a modified version of
Transformer, a source–target attention neural network, to predict the
TCR–pMHC interaction solely from the amino acid sequences of the TCR
complementarity-determining region (CDR) 3 and the peptide. This model
achieved competitive performance on a benchmark dataset of the TCR–pMHC
interaction, as well as on a truly new external dataset. Additionally, by analyzing the
results of binding predictions, we associated the neural network weights with
protein structural properties. By classifying the residues into large- and small-
attention groups, we identified statistically significant properties associated with
the largely attended residues such as hydrogen bonds within CDR3. The dataset
that we created and the ability of our model to provide an interpretable prediction
of TCR–peptide binding should increase our knowledge about molecular
recognition and pave the way for designing new therapeutics.
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Introduction

The T-cell receptor (TCR) serves as an antigen receptor, primarily composed of alpha
(TCRα) and beta (TCRβ) chains. It has a remarkable sequence diversity in its
complementarity-determining regions (CDRs), similar to the B-cell receptor, antibody.
The TCR CDR3, found in both α- and β-chains (CDR3α and CDR3β, respectively), is the
most diverse and vital for recognizing antigenic peptides presented by the major
histocompatibility complex (MHC) molecule. The molecule recognized is called the
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peptide–major histocompatibility complex (pMHC). Given the
immense sequence diversity produced through somatic
recombination, the potential responses of TCR with different
peptides are enormous. Therefore, predicting the TCR–pMHC
interaction, primarily involving CDR3–peptide binding, is of
great importance. This prediction could significantly impact our
understanding of biological functions and disease mechanisms, and
guide potential disease recovery pathways.

In response to this, numerous machine learning methods have
been developed for the TCR–pMHC prediction (Dash et al., 2017;
Gowthaman and Pierce, 2019; Springer et al., 2020; 2021; Lu et al.,
2021a; Montemurro et al., 2021; Gao et al., 2023). Some studies in
the bioinformatics field were in line with models using the
source–target attention (Chen et al., 2020; Honda et al., 2020;
Koyama et al., 2020; Weber et al., 2021), and current research
studies attempt to apply the attention models to the TCR–pMHC
prediction (Xu et al., 2022; 2021; Sidhom et al., 2021; Wu et al.,
2021). Notably, when performing predictions of computational
models based on cellular assay data regarding the recognition of
pMHC by TCRs, the term “TCR–pMHC interactions” is
appropriate, despite the absence of MHC or the non-CDR3 TCR
sequence in the computational model inputs.

The Transformer (Vaswani et al., 2017) and BERT (Devlin et al.,
2018) models, known for their impressive results and interpretability
(Voita et al., 2019; Rogers et al., 2020; Hao et al., 2021), have
demonstrated the advantages of the cross-attention mechanism in
source–target multi-input tasks such as machine translation or
image–text classification (Lee et al., 2018; Gheini et al., 2021;
Parthasarathy and Sundaram, 2021). Furthermore, during the
training process, employing the cross-attention mechanism on
two separate sequences is less computationally intensive than
applying a self-attention model to concatenated sequences. This
is because the computational complexity of the Transformer
attention mechanism scales quadratically with the length of the
input sequence. Despite the wide application of the Transformer, a
comprehensive analysis of interpretability based on the multi-input
TCR–pMHC protein complex is yet to be provided. Few studies have
attempted to provide the source–target attention model of
Transformer at the level of individual residues in CDR3αβ or the
peptide and analyze structural information such as hydrogen bonds.

For instance, models such as NetTCR-2.0 (Montemurro et al.,
2021) and ERGO-II (Springer et al., 2021), despite demonstrating
impressive predictive capabilities, are based on convolutional or
recurrent neural network frameworks. The PanPep model (Gao
et al., 2023), while using an attention mechanism, focuses solely on
CDR3β. This model provides no information about the structurally
important residues on the alpha chains, and it does not account for
interaction factors related to hydrogen bonds. The TCR–BERT (Wu
et al., 2021) model uses both the alpha and beta chains. However, it is
trained without the peptides and does not map the attention on
residues for structural analysis. The model proposed by AttnTAP
(Xu et al., 2022) utilizes attention, but it does not directly use
Transformer attention on both sides of the TCR and peptide. It
does not incorporate the alpha chain either. DLpTCR (Xu et al.,
2021), another model in this field, employs ResNet attention;
however, it refrains from using the Transformer attention.

Unlike existing research, in essence, our model intends to
develop a computational method that can incorporate CDR3α,

CDR3β, and a peptide, and conduct a residue-wise structural
analysis, leveraging a Transformer-based attention mechanism on
sequences. We hypothesize that an attention-based neural network
can accurately predict the TCR–pMHC interaction and provide
interpretable biological insights into the TCR function and
CDR3–peptide binding. To achieve this purpose, we propose a
model, the cross-TCR-interpreter, which uses a cross-attention
mechanism for predicting the TCR–pMHC interaction, the
binding between CDR3 regions of both the α and β chains, and a
peptide.

Our model achieved competitive performance on the
benchmark. Furthermore, by performing statistical tests on the
attention values over the complex structures, we successfully
identified statistically significant structural properties of largely
attended residues such as hydrogen bonds and residue distance.
We also discuss the limitations of generalizability on unseen data, an
issue not unique to our model but evident in other models as well.
Our approach, leveraging the source–target attention neural
network of Transformer, highlighted the capacity for a deeper
understanding and analysis of protein interactions.

Materials and methods

Model

An overview of the prediction model used in this study is shown
in Figure 1. The peptide sequence and the sequences of CDR3α and
CDR3β connected with the connection token (colon “:”) were

FIGURE 1
Overview of our cross-TCR-interpreter model. Data tensor sizes
are denoted. The cross-attention layers in the middle of the figure
were analyzed using structural data after being trained with sequence
data. Each embedding layer takes amino acid sequences as the
input.
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processed separately in the embedding layer and Transformer, and
then, they were input into the cross-attention layer designed for the
sequence relationship prediction. The cross-attention was used to
create a mutual-only layer, enabling the model to verify the
relationship. The outputs of the cross-attention layer were
concatenated and averaged over the length direction in the
output layer. A multi-layer perceptron (MLP) layer outputs a
single prediction as a real value, known as the confidence value,
from 0 to 1, whereas a true binding datum is represented as a binary
value of 0 or 1. Binary cross entropy (BCE) was used as the loss
function, and the model output was evaluated using the ROC AUC
score and the average precision score.

The model only takes amino acid sequences of CDR3α, CDR3β,
and the peptide as inputs. We used only CDR3s and not the entire
TCR sequences. Any other information such as gene types is not
utilized. Leveraging solely sequence information, without
incorporating domain-specific human knowledge such as gene or
MHC information, should be surely the key part for emulating
interpretability, closely resembling the natural phenomena of
CDR3 binding. The CDR3 and peptide sequences were
represented by 20 amino acid residues. Positional embedding and
padding tokens were also added to the sequences. Padding at the end
of each sequence was performed to ensure the lengths of each
CDR3 sequence aligned with the maximum sequence length in
the training data; hence, each CDR3α had the same length. This was
also performed for CDR3β and the peptide. The maximum and
minimum lengths for the datasets used in this study are provided in
Results, while the sequence length distribution is provided in
Supplementary Material.

The cross-attention layer is a modified model of Transformer
attention. In particular, it takes two sequences as input values and
allows meaningful information to be extracted from the entire
information about one sequence based on the entire information
about the other sequence, implying that it is beneficial for sequence
relationship predictions.

The attention layer is specified by Eq. 1.

Attention Q,K,V( ) � Softmax QKT/d( )V. (1)

In Eq. 1 for the attention layer, Q, K, and V are the data matrices
of sequences, and d is the scaling factor. KT denotes the transposed
matrix of K, where the sizes of arrays areQ: L1 × D, K: L2 × D, and V:
L2 ×D.D is the embedding dimension. WhenQ =K =V and L1 = L2,
this is a self-attention layer.

In the cross-attention layer, K (=V) and Q represent two
different inputs, i.e., a connected sequence of CDR3α:CDR3β and
a peptide, respectively.

In addition, we defined four heads for each side in the cross-
attention layer, and those heads were concatenated as in a typical
Transformer model. The softmax function defines the weights to V
when the matrix Q is the input, and the weights are allocated so
that the sum is 1 over the length direction ofV. This Softmax (QKT/
d) is the attrition and is used for the analysis and visualization,
suggesting the residue positions that are important within the
length of V.

By representing the learned hidden values of CDR3s, taken from
the output of the cross-attention layer just before concatenation, as
HTCR, we have

HTCR � Softmax(QPeptideK
T
TCR/d)VTCR

AttentionTCR−given−peptide
� Softmax(QPeptideK

T
TCR/d)

. (2)

The same was done for the peptide side, and we obtained
HPeptide. HPeptide and HTCR were concatenated just before the
MLP layer.

Visualization and analysis of the attention layer allow
interpretation of the residue interaction across sequences
(Figure 4). The cross-attention layer uses peptides as inputs and
assigns specific weights to each residue of CDR3s to learn the
important sites of CDR3s and vice versa. This enabled us to
analyze each side of the two areas of attention separately.

All hyperparameters of the model are tuned with the Optuna
package (Akiba et al., 2019) and given in Supplementary Material.
Except for hyperparameter tuning, the training was completed with
one A100 GPU node at the Osaka University SQUID cluster for
approximately 3 h, and the inference was completed with a 2.6 GHz
6-Core Intel Core i7 CPU for approximately 2 h.

Preparation of training and test datasets of
sequences

For the TCR–pMHC interaction, especially CDR3s and
peptide-binding datasets, we took the repository of ERGO-II
(Springer et al., 2021), which contains McPAS (Tickotsky et al.,
2017) and VDJdb (Shugay et al., 2018). We also independently
downloaded and created the newer version of VDJdb and COVID-
19 datasets (Lu et al., 2021b). The sequence datasets we created are
as follows:

• Benchmark datasets McPAS and VDJdb-without10x
(training and test): The two primary benchmark datasets,
McPAS and the VDJdb, were derived from the ERGO-II
repository. Specifically, the VDJdb dataset excluded the 10x
genomics data (referred to as VDJdb-without10x). These
datasets had both training and test sets and contained both
positive and negative interactions of TCR–pMHC.

• Combined data dataset (training): For a more
comprehensive model training, we also utilized an extended
dataset, referred to as the “combined data.” This dataset
concatenated the McPAS dataset, VDJdb-without10x, and
VDJdb with the 10x genomics data (VDJdb-with10x). This
dataset was used for training the model to evaluate the
following recent data test set and the COVID-19 dataset.

• Recent data test set (test): To assess the effectiveness of the
combined data-trained model in handling new, unseen data,
we tested our model on a recent test set from VDJdb
downloaded in 2023. The negative TCR–pMHC
interactions were added by randomly choosing the CDR3s
and peptides as the data contain only positive TCR–pMHC
interactions. This evaluates whether a model performs on the
most up-to-date data, highlighting its predictive capability for
new TCR–pMHC interactions.

• COVID-19 dataset (test): Lastly, to provide a stringent
assessment of our combined data-trained model, we created a
dataset derived from the study on COVID-19 (Lu et al., 2021b).
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This dataset is recognized as one of the most challenging for
models trained on the combined data dataset.

As this study involves a binary classification problem, negative
label data were needed to train the model. However, as most of the
TCR and peptide response data are positively labeled, this study
followed the same configuration and data on the existing ERGO-II
report that generated random CDR3–peptide pairs and assigned
negative labels to adjust the positive-to-negative ratio. The size of the
negative data was five times larger than that of the positive data.
Therefore, each data record to train the model is a tuple of CDR3α,
CDR3β, and a peptide that has a binary label of interaction. When
either the CDR3α or CDR3β sequence was missing for a binary
interaction label, the data record of pairs and the label were removed
and not used for training.

To ensure no overlapping pairs, we meticulously eliminated the
CDR3α, CDR3β, and peptide pairs from the test set that were
present in the training set. However, duplicated pairs of CDR3α,
CDR3β, or individual CDR3 or peptides may still exist that appear in
both training and test sets because the same TCR is present in both
the test and training datasets and may be paired with other different
multiple peptides. The proportion of such duplicates for McPAS and
VDJdb is described in the Results section.

Benchmark dataset and experiment

The validity of the cross-attention model was confirmed by
comparing the test scores on the benchmark data using McPAS and
VDJdb without 10x Genomics data (VDJdb-without10x). The
benchmark models included ERGO-II (Springer et al., 2021) and
NetTCR-2.0 (Montemurro et al., 2021), which use both CDR3α and
CDR3β. The only CDR3β chain TCR–pMHC prediction models
such as NetTCR-2.0 (Montemurro et al., 2021), PanPep (Gao et al.,
2023), AttnTAP (Xu et al., 2022), and DLpTCR (Xu et al., 2021) were
also compared. In these data, the binary labels were assigned to
CDR3β and peptide pairs. We evaluated our model performance not
only by using the whole test set but also by using the per-peptide
score within the test set. The benchmark datasets in the existing
ERGO-II research were developed by incorporating assumed
negatives, followed by splitting them into training and test
datasets. This approach might create an oversimplified problem
as many peptides or CDRs are likely to be shared between the
training and test datasets.

The detailed benchmark dataset creation process is as follows:

• Step 1: Download the test and training sets of ERGO-II, and
remove data records that do not have either one of CDR3α,
CDR3β, or peptide were removed.

• Step 2: Remove data records having duplicated pairs from the
test set that are shared with the training set.

When training, we minimized the binary cross-entropy for
the training set in the benchmark experiments. If the binary
cross-entropy did not improve within 10 updates, we stopped
the training. Subsequently, we adopted the weights that provided
the minimum value of the binary cross-entropy as the best
model.

The combined data dataset and the recent
data test set

After confirmation of the model’s performance, we trained the
model again with the whole dataset (i.e., the “combined data”
dataset) that included McPAS, VDJdb-without10x, and VDJdb-
with10x. Our primary objective with the combined data dataset
approach was to uncover meaningful relationships and model the
binding nature of the TCR–pMHC interactions, potentially leading
to a meaningful interpretation. By using this combined data-trained
model, we expected to acquire the learned relationship between the
two sequences within the attention layer. The combined data dataset
included a 10x dataset (10x Genomics, 2019) that was omitted in the
benchmark experiments. By using all the data, we attempted to
incorporate the maximum possible information related to binding
into the model and herein to analyze the attention weights in the
trained model. For the purpose of this model, we designated the test
set to comprise the most recent data from VDJdb (i.e., the “recent
data” test set), specifically the data downloaded between 2022 and
2023. In contrast, the training set included data downloaded from
VDJdb prior to 2022 and McPAS data. After downloading the data,
we added five times more negative data records to the downloaded
recent data test set. These negative pairs of CDR3s and peptides are
sampled only from the recent data test set, not from the combined
data dataset. This recent data test set can resemble a realistic
situation where we use the model with prospective validation,
evaluating the model non-retrospectively.

The detailed combined data dataset and the recent data test set
creation processes are as follows:

• Step 1: Download the McPAS, VDJdb-without10x, and
VDJdb-with10x data on ERGO-II. Concatenate and remove
data records that do not have either one of CDR3α, CDR3β, or
peptide.

• Step 2: Remove duplicated pairs inside the dataset (the
combined data dataset).

• Step 3: Download VDJdb in June 2023, and create the pairs of
CDR3α, CDR3β, and the peptide (the recent data test set).

• Step 4: Remove data records having duplicated pairs from the
recent data test set that are shared with the training set.

• Step 5: Add five times more negative data records to the recent
data test set.

The difference between the recent test and benchmark datasets
lies in the timing of the data split. For the recent data test set, we
performed the data split prior to adding assumed negative samples
to avoid the issue of the oversimplified problem. To show how
diverse the recent data and the combined data dataset were, the
sequence–sequence pairwise distance matrix was calculated using
Clustal Omega software (Sievers et al., 2011) for sequence space
analysis.

COVID-19 datasets and experiment

Similar to the recent data test set, to evaluate how accurately the
combined data-trained model would perform in a realistic situation
that has no known peptides, we applied it to prediction tasks of a
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real-world COVID-19 dataset generated from the COVID-19 study
(Lu et al., 2021b). A virtual dataset was created using the TCR pairs
and peptides taken from the spike (S) protein. In the original study,
the reaction between the peptides and TCRs was evaluated by a
reporter cell assay by measuring green fluorescent protein
expression in the TCR pathway, and the peptides of the S
protein were created with a 15-length residue window of amino
acid residues by moving four strides of residues. We adopted the
same procedure virtually to create the peptides of the S protein, by
creating a 9-length residue window and moving one residue stride,
as the median length of peptides in the combined data dataset was 9.
There was no peptide overlap between the combined data dataset
peptides and the 9-length peptides of the COVID-19 dataset. To
demonstrate the diversity of the COVID-19 peptides, we computed
the sequence–sequence pairwise distance matrix in the same
manner, as we did for the combined data dataset.

Attended residue analysis with attention
values on 3D structures

After training the model on the combined data dataset, we could
acquire any attentionmatrix on arbitrary residues.We argue that itmakes
sense to analyze themodel sincewe used the correctly predicted data.Our
approach was not aimed at cherry-picking but rather at investigating and
interpreting significant features discerned by the model.

Dividing the residues into two groups of large and small
attention made it possible to analyze the attention values. For
each head of CDR3 attention being provided a peptide, we
defined the residue indices of large CDR3s as Rlarge,h in Eq. 3.

Rlarge,h � t|max
p

at,p > �a + γ · σ{ }
where h denotes head
and at,p denotes an attention value
of CDR3 residue index t and peptide residue indexp.

(3)

Rlarge,all � Concath Rlarge,h( ). (4)

Eq. 3 shows the TCR-side attention. Given a head h of the cross-
attention layer, let Ah be an attention matrix of the TCR side with the
element at,p. It should be noted that, by the definition in Eq. 1,∑tat,p is a
one-dimensional all-one vector, (11, 12, · · ·, 1p, · · ·, 1P), where P is the
peptide length. We defined this as TCR-side attention because each p
assigns the attention to TCRs as a sum of one. maxp takes the
maximum value to the peptide axis. �a is the mean of the attention
values of Ah, and σ is the standard deviation of Ah. γ is a factor that
defines the large or small definition that is empirically expressed in the
Results section.When computing the largely attended peptide residues,
we exchanged the notation of t and p. When computing the not-largely
attended residues, we replaced the in-equation operator “larger-than”
(“>”) with the “smaller-than” symbol (“<”). Eq. 4 shows the attended
residues of the TCR side when all heads are concatenated.

Protein Data Bank structural data analysis

Defining the largely attended residues, the results were examined
using a dataset of TCR–pMHC complex structures taken from
the Protein Data Bank (PDB) (Berman et al., 2003). We collected

TCR-related structures from PDB search and the SCEptRe server
(Mahajan et al., 2019), which gathers the complex structures of
TCRs. SCEptRe data used here were downloaded on 2 June 2021.
With PDB headers, 65 structures with alpha and beta chains were
identified. ANARCI (Dunbar and Deane, 2016) was used to extract
the CDR3 portion of the structures. These 65 structures were
narrowed down to 55 by setting restrictions on the lengths of the
TCRs and peptide sequences. The 55 structures contained eight pairs
with identical sequences for CDR3s and peptides, and therefore, a
final analysis was performed based on the sequences of 47 structures.

We performed a paired Student’s t-test (also called the
dependent t-test) to assess the differences between the largely
attended and not-largely attended residue groups. The paired
t-test is a statistical method used to compare the means of the
two groups of subjects that are dependent on each other. In this
study, the TCR–pMHC structures were used as subjects of the t-test.
The values of the t-test were properties such as the proportion of
TCR residues that were hydrogen-bonded to the peptide, whether
the residue was engaged in an H-bond or not. We used Biopython
(Chapman and Chang, 2000) and LIGPLOT (Wallace et al., 1995) to
gather the structural properties.

Input perturbation

To examine individual cases in greater detail, we employed the
input perturbation method, which evaluates the sensitivity of a
model to changes in its inputs. This approach complements the
broader understanding provided by the paired t-test of the group.

The input perturbation method involves substituting amino acid
residues at some critical positions with alternative amino acids and
observing the resulting changes in both prediction and attention
values. By altering the attended residues, we assessed the model
responsiveness to these modifications, offering the observation of
the changes in predictions and attention values.

Results

Study overview and experiment types

We performed three experiments to validate the performance
and usefulness of our proposed cross-TCR-interpreter model
(Figure 1). In the first experiment, we trained and validated the
model using existing benchmark datasets, comparing its
performances with those of previously proposed models. In the
second experiment, in order to conduct the external prospective
validation of the TCR–pMHC interaction, we retrained the model
using the combined data dataset and validated it with the COVID-19
dataset (Lu et al., 2021b) and the recent data test set. In the third
experiment for explainability, we applied the combined data-trained
model to a dataset of the TCR–pMHC of known 3D structures,
performing statistical analyses of cross-attention values to detail the
CDR3–peptide biochemical binding event. Furthermore, we used
the model for the input perturbation analysis to observe the change
in attention. Hence, although the model was exclusively trained on
sequence data, the interpretation of its predictive modeling was
further enhanced using structural data.
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Unique element overlap and record-wise
overlap can explain the difficulties of
datasets

The key statistics of our sequence datasets are given in Table 1.
The training records of benchmark datasets are 23,363 for McPAS
and 19,526 for VDJdb-without10x. The records of test sets are
4,729 for McPAS and 4,010 for VDJdb-without10x, with no
duplicates between the test and the training data. Additionally,
the sequence length for each sequence dataset is given in Table 2.

Table 1 shows unique counts of CDR3s, peptides, and pairs of
records. Specifically, for instance, the McPAS training set consists of
23,363 records involving 3,181 unique CDR3 sequences and
316 unique peptides, with 16.67% being positive. From these
unique sequences, 833 CDR3s and 190 peptides also appear in the
test dataset, whereas none of the same interaction pairs of the
CDR3–peptide appear in the test set. Under ideal circumstances,
full observations between these unique CDR3 sequences and unique
peptides would have yielded a record count of 1,005,196 (=3181 · 316).

However, due to data limitations in real-world datasets, this situation
is not realized. There are very few overlapped duplications on CDR3s
and peptides between the combined data dataset and the recent data
test set. Furthermore, there are very few duplications of CDR3s and
peptides between the combined data dataset and the COVID-19
dataset. This explains the difficulty in predicting the TCR–pMHC
interactions in the recent data test set and the COVID-19 dataset.

Figure 2 outlines pair-wise duplication within each test dataset,
meaning the duplication count of records where one side of the
peptide or CDRs is shared with the training dataset. As shown, the
test set records of the McPAS and VDJdb-without10x are composed
of already observed peptides in the training dataset, while 14.8% of
data records of the recent data test set comprise known peptides, and
no records of the COVID-19 dataset peptides are observed in the
combined data dataset. From both perspectives of peptides and
CDRs, the recent data test set and the COVID-19 dataset show
records mostly of unseen CDRs or peptides.

For instance, the McPAS test set consists of 4,729 records, of
which 4,683 records comprise peptides already observed in the
training set and 46 records comprise brand new peptides.
However, the recent data test set consists of 33,360 records, and
only 4,938 records comprise the peptides observed in the
training set.

The model shows excellent performance for
benchmark datasets

To evaluate the performance of our model, we used training and
test datasets inspired by those of ERGO-II (Springer et al., 2021).
Two benchmark datasets, McPAS and VDJdb-without 10x
Genomics data (VDJdb-without10x), were prepared for this
experiment. Evaluating the models with the ROC AUC score and
the average precision score, our model showed competitive scores
against other models for both benchmark datasets in the sequence-
feature-only setting models (Tables 3, 4).

For detailed performance metrics per-peptide for each test set,
we calculated the scores on the top eight frequent peptides shown in
Figure 3. Our model shows competitive results over the NetTCR-2.0
(Montemurro et al., 2021) model for the per-peptide performance

TABLE 1 Dataset statistics. The “Interaction” columnmeans the unique count of pairs of {CDR3α, CDR3β, peptide}, and CDR3αβ denotes the unique count of pairs of
{CDR3α, CDR3β}. The duplication count, the “in duplication” row of the “Unique count” column, means the number of unique data that are shared between
training and test sets, i.e., overlapped data count. The “Pos. rate” column denotes the positive ratio in the binary label.

Dataset Unique count CDR3αβ Peptide Interaction Pos. rate

McPAS In training 3,181 316 23,363 0.1665

McPAS In test 833 190 4,729 0.1512

- In duplication b/w training and test 132 171 0 N/A

VDJdb-without10x In training 2,902 175 19,526 0.1670

VDJdb-without10x In test 689 120 4,010 0.1504

- In duplication b/w training and test 111 111 0 N/A

Combined data dataset (A) In training 23,299 478 119,046 0.1400

Recent data test set (B) In test 33,183 838 33,360 0.1667

COVID-19 dataset (C) In test 1,676 1265 2,120,140 1.887 · 10–5
- In duplication b/w (A) and (B) 18 44 0 N/A

- In duplication b/w (A) and (C) 1 0 0 N/A

TABLE 2 Sequence length for each dataset. For the median and mean, the data
record was counted on each data record basis. The distribution of the length is
provided in Supplementary Material.

Dataset Sequence Max Min Median Mean

McPAS CDR3α 26 6 13 13.27

CDR3β 21 7 14 13.79

Peptide 25 8 9 9.761

VDJdb-without10x CDR3α 22 5 13 13.37

CDR3β 21 8 13 13.76

Peptide 20 8 9 9.462

Combined data dataset CDR3α 26 5 14 13.61

CDR3β 26 7 14 14.37

Peptide 25 7 9 9.520

COVID-19 dataset CDR3α 20 6 14 13.69

CDR3β 21 10 15 14.60

Peptide 9 9 9 9.00
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comparison. We added an analysis of the performance delegation of
TCR distance in the Discussion section.

The performance metrics for the best model of ERGO-II were
obtained directly from their research paper repository. Their ROC
AUC for McPAS and VDJdb was 0.939 and 0.866, respectively.
However, they ceased weight updates with the use of the test set,
presumably for better use for the code repository users. This
prevented us from replicating their top-performing model
predictions accurately, thus hindering a fair comparison on the
average precision.

The models exhibit limited performance in
the recent data test set

After confirmation of the model performance, we retrained the
model with a larger dataset (herein referred to as the “combined data
dataset”) consisting of McPAS and the whole VDJdb including the
10x Genomics dataset (10x Genomics, 2019).

Then, we applied our combined data-trained model to recently
published data, the recent data test set, evaluating its efficacy in
predicting TCR–pMHC interactions in a real-life setting. Our

FIGURE 2
The pie charts illustrate the percentages and counts of data records of the test set comprising either one of the observed elements. Contrary to
Table 1, the numbers are the duplication counts of data records, where one side of the peptide or CDRs is shared with the training dataset. In each test set,
we display either the duplicated counts of CDR3 pairs or the duplicated counts of peptides. “Is-in-training” indicates that the peptide or CDR3s are present
in the training dataset, while “Not-in-training”means the peptide or CDR3s are not found in the training dataset. The test set data record counts of
McPAS is 4,729, that of VDJdb-without10x is 4,010, that of the recent data test is 33,360, and that of the COVID-19 test set is 2,120,140. Upper-half row:
peptides. Lower-half row: CDR3αβ. Each column shows a different dataset; from the left, they are McPAS, VDJdb-without10x test set, the recent data test
set, and the COVID-19 test set. For example, the McPAS test set consists of 4,729 records, of which 4,683 records comprise peptides observed in the
training set and 46 records comprise brand new peptides. From the CDR3 aspect, 560 records out of 4,729 are composed of unseen CDR3s, whereas
560 records are composed of seen CDRs.

TABLE 3 Result of the benchmark dataset of McPAS. APS stands for the average precision score.

Model Features in addition to peptides ROC AUC APS

Cross-TCR-interpreter (Ours) CDR3s of α and β chains 0.9154 0.6211

NetTCR-2.0 CDR3s of α- and β-chains 0.9204 0.5808

PanPep CDR3 sequence of the β-chain with biochemical features 0.8374 0.4519

AttnTAPa CDR3 sequence of the β-chain 0.840 -

DLpTCRa CDR3 Sequence of the β-chain 0.633 -

ERGO-II, LSTMb CDR3s of α- and β-chains 0.855 -

ERGO-II, LSTMb CDR3s of α- and β-chains, VJ genes, and MHC type 0.939 -

aThe numbers were derived from the AttnTAP paper because we observed that both DLpTCR and AttnTAP achieved only poor scores in our experiments. Hence, to avoid potential

misinterpretation due to poor scores, we opted not to display the average precision score in this context. Regarding our experiments of AttnTAP, ROCAUC and APS onMcPASwere 0.5934 and

0.3073, respectively. Those of VDJdb-without10x were 0.3951 and 0.1400, respectively. Those of our DLpTCR experiments on McPAS were 0.5346 and 0.1941, respectively, and those of

DLpTCR on VDJdb-without10x were 0.5187 and 0.1914, respectively.
bThe numbers were derived from the ERGO-II paper.
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objective with the combined data dataset approach was not
necessarily to maximize generalizability but to uncover
meaningful relationships and mimic the binding nature of the
TCR–pMHC interactions or CDR3–peptide binding. As shown in
Table 5, most of the models did not achieve more than 0.9 ROC
AUC scores, as in the benchmark, on the pure recent data dataset, as
they did in the benchmarks. This result should be explained by the
difficulties associated with the number of duplications; it is a difficult
task if the records comprise unseen CDRs or unseen peptides.

After the training, the ROC AUC and the average precision score
of the training dataset were 0.952 and 0.7952, respectively.
Nonetheless, achieving generalizability against the recent data test
set posed a significant challenge (Table 5), as evidenced by the ROC

AUC and the average precision score of the test set decreasing to
0.5362 and 0.1855, respectively. By restricting the data records of the
test set to the known peptides, we did observe relative improvements
in the average precision scores, increasing to 0.3318. By restricting the
data records of the test set to the new peptides that were not observed
in the training dataset, we observed a decrease in the average precision
score to 0.1707. Not only does our model demonstrate poor
performance but also the NetTCR-2.0 or PanPep models exhibit a
similar level of performance deficiency in the recent data test set and
its subsets. Regarding the PanPepmodel in which we used a zero-shot
model setting for the unseen peptides and amajoritymodel setting for
the known peptides, while it claims to predict CDR3β–peptide pairs
for unseen peptides, it achieved a slightly better average precision

TABLE 4 Result of the benchmark dataset of VDJdb-without10x. APS stands for the average precision score.

Model Features in addition to peptides ROC AUC APS

Cross-TCR-interpreter (Ours) CDR3s of α- and β-chains 0.9445 0.7600

NetTCR-2.0 CDR3s of α- and β-chains 0.9492 0.7262

PanPep CDR3 sequence of the β-chain with biochemical features 0.9009 0.6435

AttnTAPa CDR3 sequence of the β-chain 0.894 -

DLpTCRa CDR3 sequence of the β chain 0.622 -

ERGO-II, LSTMb CDR3s of α- and β-chains 0.800 -

ERGO-II, LSTMb CDR3s of α- and β-chains, VJ genes, and MHC type 0.866 -

aThe numbers were derived from the AttnTAP paper because we observed that both DLpTCR and AttnTAP achieved only poor scores in our experiments. Hence, to avoid potential

misinterpretation due to poor scores, we opted not to display the average precision score in this context. Regarding our experiments of AttnTAP, ROCAUC and APS onMcPASwere 0.5934 and

0.3073, respectively. Those of VDJdb-without10x were 0.3951 and 0.1400, respectively. Those of our DLpTCR experiments on McPAS were 0.5346 and 0.1941, respectively, and those of

DLpTCR on VDJdb-without10x were 0.5187 and 0.1914, respectively.
bThe numbers were derived from the ERGO-II paper.

FIGURE 3
(A) Number of records for each peptide, (B) positive rate inside the records (the ratio of positively recorded CDR3αβ), and (C) average precision
scores (APSs) in the benchmark data on McPAS.
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score of 0.1897, outperforming our model by a small margin.
Nevertheless, for the data records of the test data subset of the
known peptide, it only achieved less than the new peptide setting.
These performances are still insufficient to serve as a viable alternative
to wet laboratory experiments. Hence, it is clear that predicting
CDR3–peptide interactions that contain peptides not represented
in the training data remains a considerable challenge.

Our model does not exhibit satisfactory
performance for the COVID-19 dataset

We also applied our combined data-trained model to a recently
published COVID-19 dataset (Lu et al., 2021b), evaluating its
efficacy in predicting the TCR–pMHC interactions in a real-life
setting. As described in the Methods section, peptides from each
SARS-CoV-2 protein were created with a 9-length residue window
by moving one stride. No peptides of the COVID-19 dataset were
found in the combined data dataset. The total number of data records
was 2,120,140, of which 2,120,100 were negative data records and only
40 data records were positive. Of the 2,120,140 data records, there
were 1,676 unique CDR3 alpha–beta pairs and 1,265 unique peptides
(1, 676 · 1, 265 = 2, 120, 140, as shown in Table 1). Of the 40 positive
records, we found 10 unique CDR3αβ pairs and 24 unique peptides.
Consequently, this means that the remaining 200 records, composed
of these specific CDR3s and peptides, are classified as negative records
(10 · 24–40 = 200).

By maximizing the F1-score of this prediction task, the model
achieved a precision score of 2.501 · 10–5 and a recall of 0.600. In the
confusion matrix, the true positive count was 24, the false negative
count was 16, the false positive count was 959,512, and the true negative
count was 1,160,588. The ROC AUC score was 0.5461, and the average
precision score was 2.032 · 10–5. Given the fact that positive records exist
at a rate of 1.887 · 10–5 (=40/2120140), we can claim that the model can
detect positive records 1.326 times (=2.501/1.887) better than the
random selection, but its specificity was not adequate enough to
replace wet laboratory experiments.

Residues in structural data are categorized
based on their level of attention into largely
attended and less attended groups

Although perfect generalizability was not achieved, we sought to
interpret the model within the 39 complex structures, where the
model surely performs well enough to analyze. Using the procedure
described in the Methods section, we started with 47 TCR-related
structures from the PDB search and the SCEptRe server. Of these
47 structures, our model designated 39 structures as having positive
TCR–pMHC interactions, using a threshold of 0.5. A notable
observation was that 30 of these 39 structures share sequences
with the combined data dataset. We paid special attention to these
39 cases in our analysis of attention layers, on the premise that the
accurate interpretability of the model could be safely assumed for
these instances. This is similar to a regression analysis examining the
effect of some explanatory variables on target variables, and our goal
was to identify the important features that the model learns, i.e., the
features of the largely attended amino acid residues. Details of these
39 structures are given in Supplementary Material.

The attention values were considered “large” when they exceeded
the threshold of MEAN + 5.5 STD on the peptide side and MEAN +
4.5 STD on the TCR side (5.5 and 4.5 are γs in Eq. 3). Approximately
20% of the residues were identified as large on each side, using γ as a
result of the total sum of the four heads. The thresholds were
determined through empirical evaluation, and the residue count
generated by changing γ is provided in Supplementary Material. The
chosen thresholds were found to be effective in differentiating between
large and small attention values. It should be noted that the threshold
for large attention values varies for each PDB entry or head due to
differences in the distribution of attention values.

The analysis was performed separately for each of the four heads
in the cross-attention layer (heads 0–3) on both the TCR and the
peptide sides, with each head being analyzed separately. The cross-
attention layer was defined on a CDR3αβ sequence and a peptide
sequence, resulting in an attention matrix with a shape determined
by the length of the peptide and CDR3αβ residues. It was possible for

TABLE 5 Result of the recent data test dataset. APS stands for the average precision score.

Model Dataset ROC AUC APS # of data records Pos. rate

Cross-TCR-interpreter Recent data test set 0.5362 0.1855 33,360 0.1667

Recent data test set of the new peptide subset 0.5085 0.1707 28,422 0.1662

Recent data test set of the known peptide subset 0.6598 0.3318 4,938 0.1692

Recent data test set of the new CDR3 subset 0.5355 0.1844 33,335 0.1660

NetTCR-2.0 Recent data test set 0.5274 0.1808 33,360 0.1667

Recent data test set of the new peptide subset 0.5113 0.1705 28,422 0.1662

Recent data test set of the known peptide subset 0.6327 0.3008 4,938 0.1692

Recent data test set of the new CDR3 subset 0.5267 0.1798 33,335 0.1660

PanPepa Recent data test set 0.5337 0.1897 30,221 0.1745

Recent data test set of the new peptide subset 0.5359 0.1908 25,661 0.1739

Recent data test set of the known peptide subset 0.5199 0.1852 4,560 0.1779

Recent data test set of the new CDR3 subset 0.5374 0.1923 29,145 0.1752

The scores for the test set comprising only known CDR3s could not be computed as all the data records are positive.

However, when setting a threshold at 0.5, our model achieves a recall score of 0.56, compared to the NetTCR-2.0 score of 0.44 and PanPep 0.59.
aThe datasets employed in our model and NetTCR-2.0 were identical. However, the dataset utilized in PanPep differed due to its exclusive use of a CDR3 beta chain. Consequently, by

eliminating duplicates of the beta chain CDR3 from the test set, the total number of data records was reduced from that of our model and NetTCR-2.0.
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a particular residue to have a large attention value in head 0 but not
in the other heads (as observed in Eq. 3).

As an example, the attention values for the TCR–pMHC of PDB
entry 5TEZ are shown as eight heatmaps in Figure 4. 5TEZ has a
complex structure of MHC class I HLA-A2, influenza A virus, and
TCRs (Yang et al., 2017). The corresponding 3D structure of the
TCR–pMHC is shown in Figure 5, in which the amino acid
sequences of the peptide, CDR3α, and CDR3β are GILGFVFTL,
CAASFIIQGAGKLVF, and CASSLLGGWSEAFF, respectively.

Statistical analysis shows largely attended
residues form H-bonds with CDR3

Using the γ factor of 4.5 defined in Eq. 3, we classified the TCR
residues into two groups based on their attention values, “large” and
“small,” for the cross-attention of the TCR side, given a peptide. To
gain insights into the characteristics of each group of residues, we
analyzed their structural properties.

To assess differences between the two groups, we performed a
paired t-test to remove variations arising from individual structural
factors. In this study, 39 TCR–pMHC structures were used as subjects,
and structural properties associated with large- or small-attention
groups were the tested values. The purpose of the paired t-test was
to examine the null hypothesis that the mean difference between the
pairs of measurements is zero. The proportion of a property, the test
value (e.g., H-bonded to any peptide residue), is calculated byP =Ah/Bh,
where Ah is the number of residues with one or more H-bonds of the
specified type within the residues of large attention values and Bh is the
number of residues of large attention values, where h denotes the head.

The results of the statistical tests are shown in Table 6. Although
each head was analyzed equally and separately, they showed
different results. The results of all concatenated heads are shown
in Table 6. The individual results for each head are given in
Supplementary Material.

As a TCR sequence for the structural analysis includes both
CDR3 and non-CDR3 portions, the H-bond properties were
measured by dividing the residues into CDR3 and non-CDR3 portions.

The residues with large attention values had a more
significant proportion of having an H-bond with the
CDR3 portions inside their own chain. Nonetheless, the
proportion of residues that are H-bonded to any TCR residue
(i.e., H-bonds within the TCR chains) showed no difference
between the large- and small-attention groups.

A natural consequence of those observations is that the largely
attended residues are less likely to be H-bonded to the non-CDR3
portions, compared to the residues with small-attention values. The
most significant property difference in all concatenated heads
occurred in the proportion of H-bonded to any non-CDR3 TCR
residue. This means that the largely attended residues are highly
likely to avoid the H-bonded to the non-CDR3 TCR part, whereas
they are likely to have H-bonds with the CDR3 portions.

To avoid pitfalls associated with multiple p-values in the statistical
analysis, we executed the Benjamini–Hochberg (BH) procedure and
adjusted the p-values. Here, the “false discovery rate (FDR) for BH”
represents the likelihood of incurring a type I error among all rejected
null hypotheses. At an FDR threshold of 0.05, only the “H-bonded to
any non-CDR3 TCR residue” hypothesis was rejected, demonstrating
the rigor of this threshold. Althoughmany assertions in our studymight
be substantiated when considering average metrics, they may not attain

FIGURE 4
Example of attention value visualization of PDB ID 5TEZ (Yang et al., 2017). (A) Upper half: attention values of a peptide so that the sum is 1 over the
peptide, given a CDR3 αβ pair. The x-axis represents the residue of the peptide, while the y-axis represents the residue of TCRs. Lower half: attention
values of a CDR3 pair so that the sum is 1 over the CDR3s, given a peptide. The x-axis is the residue of TCRs, while the y-axis is the residue of peptides. The
sumover the x-axis direction is 1 for both images. Four columns denote the heads of themulti-head attention layer. Colors denote themagnitude of
the attention value: dark blue represents smaller attention, yellow represents larger attention, and green is in the middle. (B) In the lower figure, the cell
corresponding to the peptide position L8 (the last row) and CDR3β positionW24 (sixth column from the right) represents the weight of how important the
CDR3W24 is, given the peptide L8. It is denoted in bright yellow, whichmeans that the attention value is large, and the two residuesmight play a potentially
biologically important role during predictions. Furthermore, this value is larger than the MEAN + γ STD threshold, defined for each PDB ID and each head.
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statistical significance at this level. Meanwhile, modifying FDR to 0.1 led
to the rejection of two hypotheses, “H-bonded to any non-CDR3 TCR
residue” and “H-bonded to any CDR3 residue of own chain,” which is
additionally highlighted by the symbol “**” in Table 6. Further
increasing FDR to 0.15 expanded the rejections to four hypotheses,
adding “H-bonded to any CDR3 residue of opposite chain” and “H-
bonded to any CDR3 residue,” which are designated by “*” in Table 6.

Collectively, these statistical evaluations lend support to our hypothesis
that attended residues significantly avoid H-bonds with non-CDR3
TCR regions, favoring H-bonds within the CDR3 regions.

In contrast, contrary to expectations, the proportion of largely
attended TCR residues to form an H-bond with any peptide residues
was not significant in all heads. This highlighted a surprising and
counter-intuitive finding in our analysis. We also examined the

FIGURE 5
Largely attended residues in the TCR—the influenza virus epitope–HLA complex (PDB ID: 5TEZ)—where the CDR3 sequences of TCR α and β are
CAASFIIQGAQKLVF and CASSLLGGWSEAFF, respectively. The left figure (A) shows the overall structure of the complex, and the right figure (B) shows the
residue interactions of the largely attended residues: VAL104 (the 14th Val(V) of TCR α) and GLN101 (the 11th Gln(Q) of TCR α) of the TCR α chain, and
TRP99 (the 9th Trp(W)) of the TCR β chain. The TCR α chain is wheat, the β-chain is light blue, the TCR αCDR3 part is light pink, and the βCDR3 is pale
cyan. The residues with the large attention in CDR3 α are denoted in magenta and that in TCR β CDR3 is cyan. The MHC is denoted in gray. The residues
with large attention and interacting residues are represented by sticks. The yellow dot lines represent the hydrogen bonds. VAL104 makes the two
hydrogen bonds bind to TCR α ALA93 (the 3rd alanine Ala(A) of TCR α) and may contribute to the stabilization of the end of the CDR3 loop conformation.
GLN101 is hydrogen-bonded with TCR α SER94, and SER94 is hydrogen-bonded to TCR β, maintaining the α and β structures. GLN101 of TCR α and
TRP99 of β have hydrogen bonds with the epitope. PyMOL (Schrödinger and Delano, 2020) is used for visualization.

TABLE 6 TCR-side attention analysis. Structural property comparisons between the large- and small-attention residue groups are shown. The p-adjusted column
shows the adjusted p-value by the Benjamini–Hochberg (BH) procedure. The symbol “***” denotes the significant difference based on a false discovery rate (FDR)
of 0.05 in the BH procedure; the symbol “**” indicates significance at an FDR value of 0.10; and the symbol “*” indicates an FDR value of 0.15. The numbers in the
Large attention or Small attention columns are the average and standard deviation, respectively.

Property Large attentiona Small attentiona p-value p-adjusted

H-bonded to any peptide residue 0.0862 ± 0.1368 0.0805 ± 0.0675 0.828 0.9108

H-bonded to any CDR3 residue 0.4846 ± 0.2216 0.4103 ± 0.1040 0.0478 0.1315 *

H-bonded to any non-CDR3 TCR residue 0.2940 ± 0.1923 0.4672 ± 0.0846 3.88e-05 4.268e-04 ***

H-bonded to any TCR residue 0.6845 ± 0.1650 0.7294 ± 0.0880 0.0987 0.2145

H-bonded to any CDR3 residue of its own chain 0.4643 ± 0.2180 0.3752 ± 0.0922 0.0107 0.05885 **

H-bonded to any TCR residue of its own chain 0.6013 ± 0.1999 0.6561 ± 0.0880 0.117 0.2145

H-bonded to any TCR residue of the opposite chain 0.1679 ± 0.1714 0.1497 ± 0.0793 0.562 0.7199

H-bonded to any CDR3 residue of the opposite chain 0.0306 ± 0.0857 0.0672 ± 0.0743 0.0369 0.1315 *

In the edgeb 0.6434 ± 0.2064 0.5928 ± 0.0570 0.218 0.3426

Closest distance to the peptide (Å)c 8.4072 ± 2.2892 8.4122 ± 0.9592 0.988 0.988

Number of H-bonds formedc 2.0234 ± 0.9370 2.0875 ± 0.6685 0.589 0.7199

aMean and standard deviation (for the 39 structures) of the proportion of residues that satisfy the property shown in the first column.
bFour residues from the beginning and four from the end of the CDR.
cIn the last two properties, per-residue averages were used instead.
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closest distance from a given TCR residue to any peptide residue;
however, no significant difference was observed.

We also performed a similar analysis on the peptide side (Table 7)
and observed that amino acid residues with large attention values had
smaller distances to the closest TCR residues, a pattern not observed on
the TCR side. This poses an interesting structural aspect.

Impact of largely attended residues on
model behaviors through input perturbation
analysis

In this subsection, we delve into the effect of input perturbations
on the outcomes of predictions and attention values through

modification of the input sequence. This technique was utilized
on the training data, PDB ID 5TEZ. Furthermore, we extended this
approach to a mutation study (Cole et al., 2013), which was not a
part of our training data. The study involved mutating the protein
sequence of the CDR3 beta loop of A6-TCR and assessing its binding
strength against the TAX peptide, a peptide of the human T-cell
leukemia virus type I, on the MHC class I HLA-A2. The sequences
and structures, following mutation, were recorded in the PDB under
the identifiers, PDB ID 1AO7 (before mutation) and PDB ID 4FTV
(after mutation).

For the 5TEZ PDB structure, three residues exhibited large
attention values, 11th Gln(Q) of CDR3α, 14th Val(V) of CDR3α,
and 9th Trp(W) of CDR3β (Table 8). We assessed how prediction
and attention values were affected when these residues were
substituted with alternative amino acids. The CDR3α sequence of
5TEZ is CAASFIIQGAQKLVF, while CDR3β is
CASSLLGGWSEAFF. Notably, 11th Gln(Q), 14th Val(V), and 9th
Trp(W) formed H-bonds, but only the 14th Val of the α-chain
formed two H-bonds with the internal CDR3 chain of the TCR
residue.

When the 14th Val(V) of CDR3α was altered, the predictions
experienced the most substantial impact, with the “unbound”
prediction typically falling below 0.9 (Figure 6), probably because
this attended residue has two H-bonds with CDR. Changes to the
11th Gln(Q) of the α-chain had a relatively minor effect on
predictions, whereas alterations to the 9th Trp(W) of the β-chain
modify predictions while maintaining positive predictions with
various amino acid substitutions. These results can be also
confirmed by Figure 5 and support our hypothesis that the
internal H-bonded structure of CDR3 is crucial for peptide binding.

In the 1AO7 (before mutation) and 4FTV (after mutation)
structures, Cole et al. (2013) identified that mutations in the four
residues of the CDR3β chain of TCR enhanced binding to the
peptide by nearly 1,000-fold. We evaluated how predicted y-values
change when these amino acid residues are substituted, focusing on
the two structures with mutations. As shown in Table 8, the CDR3α
sequence of 1AO7 and 4FTV is CAVTTDSWG, with CDR3β for
1AO7 being CASRPGLAGGRP and for 4FTV being
CASRPGLMSAQP. The 4FTV mutation was from AGGR to
MSQP, with the 8th to 11th residues enhancing affinity.
Remarkably, our model successfully focused on the mutated
residues in 10th Ala(A) and 11th Gln(Q) of the β-chain,
although the model predicted both of them as positive.

TABLE 7 Peptide-side attention analysis. Structural property comparisons between the large- and small-attention residue groups are shown.

Property Large attentiona Small attentiona p-value p-adjusted

H-bonded to any peptide residue 0.0495 ± 0.1443 0.0659 ± 0.1206 0.458 0.56

H-bonded to any CDR3 residue 0.2050 ± 0.3024 0.1682 ± 0.0982 0.48 0.56

H-bonded to any TCR residue 0.3401 ± 0.3714 0.2372 ± 0.1184 0.151 0.3523

H-bonded to any non-CDR3 TCR residue 0.1712 ± 0.3112 0.1118 ± 0.1283 0.355 0.56

In the edgeb 0.4459 ± 0.4097 0.5874 ± 0.1232 0.0795 0.3523

Closest distance to the peptide (Å)c 4.6398 ± 1.7149 5.1926 ± 1.2647 0.141 0.3523

Number of H-bonds formedc 2.1126 ± 1.4959 2.0031 ± 0.9051 0.668 0.668

aMean and standard deviation (for the 39 structures) of the proportion of residues that satisfy the property shown in the first column.
bThree residues from the beginning and three from the end of the peptide.
cIn the last two properties, per-residue averages were used instead.

TABLE 8 CDR3 chain analysis for 5TEZ, 1AO7 (before mutation), and 4FTV (after
mutation).

5TEZ α chain β chain

AA types CAASFIIQGAQKLVF CASSLLGGWSEAFF

Large or small attention SSSSSSSSSSLSSLS SSSSSSSSLSSSSS

# of H-bonds 212421222253322 22453423486223

# of H-bonds with self-CDR3 102120200213120 10220300140020

# of H-bonds with the peptide 000000000010000 00000000100000

1AO7 α chain β chain

AA types CAVTTDSWG CASRPGLAGGRP

Large or small attention SSLSSSSSL SSSSSSSSSSSS

# of H-bonds 122325223 124610210212

# of H-bonds with self-CDR3 102013011 002200010012

# of H-bonds with the peptide 000000200 000100100000

4FTV α-chain β-chain

AA types CAVTTDSWG CASRPGLMSAQP

Large or small attention SSLSSSSSL SSSSSSSSSLLS

# of H-bonds 222428312 224711101112

# of H bonds with self-CDR3 102114011 002200001012

# of H-bonds with the peptide 000000200 000000000000
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Furthermore, Cole et al. (2013) posited that the mutation led to the
loss of one hydrogen bond with the peptide, but the overall affinity
was stronger after the mutation, suggesting an indirect contribution
to the binding, except for the TCR–peptide H-bonds. This finding
also should reinforce our assertion that the internal H-bonded
structure of CDR3s is essential for peptide binding and reinforces
the biological significance of attention values.

Discussion

Interpretation of the prediction in protein
sequences

Prediction results of machine learning models are generally
difficult to interpret, but when a model is used for binding
predictions of biological sequences, the interpretability of the
neural network model is essential. Highlighting residue positions
is useful for understanding model predictions and is critical for
utilizing later-stage applications. Our work, the cross-TCR-
interpreter, attempts to enable this interpretation with the
attention layer.

Unexpectedly, we found that CDR residues with large attention
values in our ML model did not necessarily interact directly with
peptide residues, as statistically shown in Table 6. Our result suggests
that the ratio of hydrogen bond formation between CDR3s and a
peptide can be relatively small yet result in positive predictions in the
model.

Instead, the TCR residues with large attention values appeared to
stabilize a specific loop conformation required for peptide binding by
forming H bonds within CDR3s. Accordingly, researchers have
observed that residues that comprise the H-bond network within
TCR may be evolutionarily conserved (Garcia et al., 1996; Andrade
et al., 2019), and the internal organization of the interface plays an
important role in protein–protein interactions (Reichmann et al., 2005;

Rauf et al., 2009). Our findings suggest that certain residues may be
oriented in a specific directionwith internal H-bonds, and the attention
layer may emphasize their importance in TCRs in terms of binding
stability.

Our findings also showed that the average distance between the
TCR and peptide in 3D decreased when the attention value on the
peptide side of attention was large. This may be because the peptide,
being a short sequence, has a limited contribution to TCR binding
that is related solely to distance. However, the larger attention values
on the TCR side did not necessarily correspond to smaller distances
in the 3D structure, potentially because TCRs are longer and more
complicated in their binding role.

Not all the sequence paired data were available with a 3D
structure, and we knew that the number was small, but we
experimented with as many available structures as possible. We
used the 3D structure as the confirmation of attention layer
interpretation. In future investigations, it may be possible to use
a different machine learning model such as a meaningful
perturbation method on exhaustively collected sequences.

Model limitations due to the dataset and
difficulties associated with the recent data
and COVID-19 dataset

In our investigation of the TCR–pMHC interaction, we simplified
our focus to the CDR3 region of TCR and its peptides. This approach
offers computational efficiency and enhanced interpretability by
emphasizing the most variable and antigen-specific regions.
Furthermore, given the data limitation to the experimental data on
the whole sequences, it offers some advantages over the methods
required to have the whole sequences. However, this narrowed scope
might miss out on integral information from the complete TCR and
MHC, potentially leading to overlooked critical interactions vital for
binding. For a more comprehensive view of the entire binding

FIGURE 6
(A) Prediction change in Glutamine (Q) of CDR3α from CAASFIIQGAQKLVF to CAASFIIQGA (*)KLVF, where (*) denotes a substituted amino acid
position. (B) Prediction change in Valine (V) of CDR3α from CAASFIIQGAQKLVF to CAASFIIQGAQKL (*)F. (C) Prediction change in Tryptophan (W) of
CDR3β from CASSLLGGWSEAFF to CASSLLGG (*)SEAFF. Notably, only Valine (V) of CDR3α has two H-bonds with the internal CDR3 alpha chain, and
hence, altering it has the most substantial impact.
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mechanism, methods such as molecular simulations might be more
suitable, although they are computationally demanding. Our model,
similar to othermodels discussed in the Introduction section, captures
a specific aspect of a complex biological process, and its utility must be
contextualized based on research objectives and available resources.

Furthermore, our analysis and results might, admittedly, raise
several questions regarding the interpretability of attention values
observed between the TCR and peptide. The diverse sampling of TCR
compared to the peptide samples in our dataset might influence the
apparent association of significant attention with structural properties
such as hydrogen bond formation primarily within TCR. This
imbalance could help explain why our model predominantly
associates the presence of certain TCR residues with reactivity
against a specific peptide, rather than assigning weight to peptide-
side attention.

The approach to generating negative data in benchmark datasets
may skew our test dataset to resemble our training data more than
would be typical in real-world prospective evaluation scenarios. This
is indicated by the inferior performance of the recent data test set

scores and the COVID-19 dataset results. The difficulty of
prediction in the recent data test set and the COVID-19 data was
not caused by differences in TCRs but, instead, by differences in
peptides between the COVID-19 data and baseline data. We plotted
the sequence–sequence pairwise distance matrix with UMAP
dimension reduction, as shown in Figure 7. There was no
difference in the distribution of TCRs between the data on
combined data dataset and the COVID-19 data, whereas there
was a substantial difference in the distribution of peptides. This
discussion is also supported by previous studies on TCR predictions
(Moris et al., 2021; Weber et al., 2021; Essaghir et al., 2022), in which
the authors stated that generalization and extrapolation to unseen
epitopes remain challenging.

In addition, when the COVID-19 dataset was modified to a
positive ratio of 20%, the model ROC AUC value was 0.5881 and the
average precision score was 0.2305. When we set the threshold
giving the maximum F1-score, the precision was 0.2892 and the
recall was 0.60. The positive ratio affected the performance of the
model evaluation.

FIGURE 7
UMAP visualizations of the sequence distance maps of TCRs and peptides in the COVID-19 dataset (upper two figures) and the recent data test set
(lower two figures). Each point shows a sequence datum, and the two colors on the peptide side (right two figures) show minimal overlap, indicating
different peptides in those data datasets. Left: TCR sequence (CDR3αβ) visualization. Right: peptide sequence visualization. Orange points: the COVID-19
dataset or the recent data test set. Blue points: the combined data dataset.
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Difficulties associated with unseen data

Additionally, we sought to evaluate the performance of our
model specifically on data records involving unseen peptides or
different TCRs within the benchmark test set of McPAS and
VDJdb data. This was done either by removing the records of
peptides of the training dataset or by removing similar TCRs
from the test dataset.

Although the majority of the peptides were already present in
the training data, we identified a subset of 46 records (14 positives)
for McPAS and 16 records (eight positives) for VDJdb that involved
unseen peptides (the numbers, 46 and 16, are also shown in
Figure 2). The ROC AUC scores for these unseen peptide
records were 0.721 for McPAS and 0.719 for VDJdb, which were
a lot lower than the scores given in Tables 3, 4 for records involving
observed peptides. This performance gain when evaluating the
model on already observed peptides was also observed in the
recent data test set experiment.

Figure 8 shows that our performance metrics indicated a
decrease when we refined the test dataset by eliminating any test
records involving TCRs that exhibit a distance greater than a certain
threshold value from the TCRs present in the training set. This trend
underscores the sensitivity of the model to the diversity and
distribution of TCRs in the test data.

Conclusion

Our study presents a computational approach for predicting
TCR binding to specific ligand peptides. Our study predicted the
TCR–pMHC interaction with the cross-attention mechanism and
analyzed the available protein structures comprehensively to gain
new insights into TCR–peptide functional relationships.

By incorporating an attention layer based on language models,
our machine learning model achieved competitive performance on a
benchmark dataset of the TCR–pMHC interaction, although it
confronted enduring challenges with the COVID-19 dataset and
the recent data test set.

Our analysis of the model allowed us to associate neural network
weights with protein 3D structure datasets, identify statistically
significant properties of largely attended residues, and detail the
binding principle through the visualization and analysis of the cross-
attention layer, the source–target attention layer.

The statistical analysis of the attention layer on the structural
data revealed that the largely attended residues were more likely to
contact their own CDR3 than normal residues, thereby providing
new insights into the CDR3–peptide binding mechanisms. Proteins
create hydrogen bonds to form special structures and may play
special roles when a peptide is conditioned to react with them.
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