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Weiliang Wen1,4, Guangtao Wang2, Wushuai Chang2,
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Beijing, China, 2Beijing Key Laboratory of Digital Plant, China National Engineering Research
Center for Information Technology in Agriculture, Beijing, China, 3College of Resources and
Environment, Jilin Agricultural University, Changchun, China, 4Nongxin Science & Technology
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Real-time monitoring of canopy chlorophyll content is significant in

understanding crop growth status and guiding precision agricultural

management. Remote sensing methods have demonstrated great potential

in this regard. However, the spatiotemporal heterogeneity of chlorophyll

content within crop canopies poses challenges to the accuracy and stability

of remote sensing estimation models. Hence, this study aimed to develop a

novel method for estimating canopy chlorophyll content (represented by

SPAD values) in maize (Zea mays L.) canopies. Firstly, we investigated the

spatiotemporal distribution patterns of maize canopy SPAD values under

varying nitrogen application rates and different growth stages. The results

revealed a non-uniform, “bell-shaped” curve distribution of maize canopy

SPAD values in the vertical direction. Nitrogen application significantly

influenced the distribution structure of SPAD values within the canopy.

Secondly, we achieved satisfactory results by fitting the Lorentz peak

distribution function to the SPAD values of different leaf positions in maize.

The fitting performance, evaluated using R2 and RMSE, ranged from 0.69 to

0.98 and 0.45 to 3.59, respectively, for the year 2021, and from 0.69 to 0.77

and 2.38 to 6.51, respectively, for the year 2022.Finally, based on the

correlation between canopy SPAD values and vegetation indices (VIs) at

different growth stages, we identified the sensitive leaf positions for the

selected CCCI (Canopy Chlorophyll Index) in each growth stage. The 6th (r =

0.662), 4th (r = 0.816), 12th (r = 0.722), and 12th (r = 0.874) leaf positions

exhibited the highest correlations. Compared to the estimation model using

canopy wide SPAD values, the model based on sensitive leaf positions

showed improved accuracy, with increases of 34%, 3%, 20%, and 3% for
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each growth stage, respectively. In conclusion, the findings of this study

contribute to the enhancement of chlorophyll content estimation models in

crop canopies and provide valuable insights for the integration of crop

growth models with remote sensing methods.
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1 Introduction

Chlorophyll is a vital photosynthetic pigment that plays a

crucial role in the transfer and conversion of light energy. Its

primary function is to absorb light energy and convert it into

chemical energy, which enables the photolysis of water and the

production of reduced coenzyme NADPH, crucial for the smooth

progress of photosynthesis (Croft et al., 2017; Li et al., 2020; Sun

et al., 2023). Leaf Chlorophyll Content (LCC) is a critical factor in

determining photosynthetic capacity and is commonly used by

agronomists to guide nitrogen fertilizer application, as chlorophyll

is one of the primary storage units for nitrogen and its content is

highly correlated with nitrogen levels (Lemaire et al., 2008;

Schlemmer et al., 2013; Zhou et al., 2023). Furthermore, nitrogen

deficiency in crops such as maize is often indicated by a decrease in

leaf green area and age (Ciampitti and Vyn, 2011; Li Y. et al., 2022).

The conventional approach to measuring chlorophyll content

involves initially conducting destructive sampling of crops,

followed by sending the processed samples to the laboratory for

testing. While this method offers high accuracy, it suffers from

drawbacks such as time-consuming and labor-intensive processes,

as well as data latency. However, a chlorophyll meter developed by

Soil Plant Analysis (referred to as “SPAD” hereafter), manufactured

by Konica Minolta in Tokyo, Japan, has been utilized to obtain the

relative chlorophyll content of leaves (Samborski et al., 2009; Yuan

et al., 2016). Compared to the traditional approach, the

implementation of the SPAD instrument offers numerous

advantages, including enhanced efficiency, non-destructiveness,

and freedom from time and environmental constraints. As a

result, this study opted to employ the SPAD values as a

representative measure of LCC.

The chlorophyll content of leaves demonstrates a conspicuous

non-uniform distribution pattern in the vertical direction, which is

influenced by the canopy structure characteristics and cultivation

mode of maize varieties (Li et al., 2013; Li L. et al., 2022). Therefore,

accurately assessing the spatial distribution and temporal changes of

chlorophyll content in maize holds significant importance for

modern agricultural production. The vertical disparity in plant

canopy chlorophyll content (CCC) is commonly represented by a

“bell-shaped” distribution (Ciganda et al., 2008; Winterhalter et al.,

2012), indicating that the LCC varies among different leaf positions.
02
Additionally, the transfer of nitrogen between leaf layers during

different growth stages and fertilization treatments further amplifies

the spatiotemporal variability of LCC within the canopy. While

current models can predict crop CCC to some extent (Huang et al.,

2022; Kushwaha et al., 2022), they often overlook the heterogeneity

of LCC distribution in the vertical space, resulting in significant

errors during practical application (Winterhalter et al., 2012).

Hence, the incorporation of vertical distribution characteristics of

LCC into the maize chlorophyll content model is pivotal. This

integration facilitates the quantitative depiction of LCC within the

canopy and elucidates the temporal and spatial distribution

characteristics of chlorophyll content. Consequently, it enhances

the timeliness and precision of field production management while

safeguarding maize from low nitrogen stress or excessive

resource input.

Currently, several studies have represented the vertical non-

uniform distribution curve of maize canopy LCC using different

functions, such as quadratic functions (Evers et al., 2005) and

curve functions based on thermal time (Li L. et al., 2022).

However, the mentioned functions fail to incorporate the

structural characteristics of the maize canopy, as well as the

impact of environmental factors like variety, fertilization, and

growth stage. This limitation results in a restricted mechanistic

understanding and reduced accuracy of the model. Moreover,

crop growth and development lead to variable vertical nutrient

distribution, influenced by conditions of nitrogen fertilizer and

stages of growth (Yan-Li et al., 2018). Thus, it is vital to take these

factors into account during the construction of the LCC

model. In previous research, the Lorentz peak distribution

function: y = ym/[1 + ((x – x0)/b) ²] Equation 1, a nonlinear

regression curve, was successfully utilized to simulate winter

barley leaf growth and the relationship between the main stem

and tiller leaf length in wheat (Evers et al., 2005), demonstrating

favorable performance. The three parameters, ym, x0, and b, in this

function represent the peak value of the curve, the independent

variable corresponding to the peak value, and the slope coefficient

of the curve, respectively, resembling the vertical non-uniform

distribution characteristics of maize canopy LCC. Moreover, the

maximum LCC (ym), the corresponding leaf position (x0) of

maize, and the variation range of LCC across different leaf

layers (b) have been observed to be influenced by phenological
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stages and fertilization treatments. However, currently, there is a

paucity of research focusing on the fitting of the Lorentz peak

distribution function to characterize LCC within the

maize canopy.

In recent decades, unmanned aerial vehicle (UAV) spectral

remote sensing has emerged as a highly valuable tool for spatial

diagnosis and prediction of crop chlorophyll, offering advantages

such as high-throughput capabilities, low-cost implementation, and

non-destructive assessment (Lang et al., 2019; Wang et al., 2022).

With the continuous improvement of technical means, as well as

advancements in image temporal and spatial resolution, UAV

remote sensing has garnered increasing attention in modern

agriculture (Brocks and Bareth, 2018). Numerous studies have

employed vegetation indices (VIs) for chlorophyll content

monitoring and retrieval. Many studies have utilized vegetation

indices (VIs) for monitoring and estimating chlorophyll content,

including the widely employed modified red-edge ratio (mRER) and

canopy chlorophyll content index (CCCI), which have been

demonstrated to exhibit a strong correlation with leaf chlorophyll

content (LCC). For instance, (Yang et al., 2022) utilized the mRER

index and achieved an optimal model for estimating LCC in maize

(R2 = 0.87). This model accurately predicts LCC during the middle

growth stage. In another study, conducted by (Cammarano et al.,

2011) over a three-year experimental period in Australia, the

canopy green CCCI successfully predicted the canopy nitrogen

(N) content (g m-2) of rainfed wheat pre- and post-jointing stage

(R2 = 0.97, RMSE=0.65g m-2). These VIs, calculated based on the

spectral reflectance in the visible and near-infrared bands, exhibit a

robust association with LCC and can be easily derived from

multispectral image data. Currently, the transferability and

stability of UAV remote sensing models are constrained by the

limited consideration of crop physiological structure information

and the failure to integrate the temporal and spatial distribution

characteristics of canopy LCC into remote sensing models for

chlorophyll prediction.

Understanding the spatiotemporal distribution of canopy LCC

is crucial, providing essential insights for precise crop nutrient

diagnosis and management strategies at key stages of the growing

season. Additionally, this knowledge offers theoretical foundations

for chlorophyll estimation through remote sensing imagery.

Integration of UAV remote sensing with the canopy chlorophyll

distribution function model holds promise for enhancing the

accuracy of maize canopy LCC estimation. Therefore, this paper

aims to: 1) investigate the spatial and temporal distribution

characteristics of canopy LCC in maize during critical growth

stages and under different nitrogen fertilizer treatments; 2)

employ the Lorentz peak distribution function to quantitatively

simulate canopy LCC in maize across various growth stages and

nitrogen fertilizer treatments, while elucidating the spatiotemporal

variations of function parameters; 3) assess the general applicability

of the Lorentz peak distribution function in fitting canopy LCC

across different years and evaluate the potential of combining UAV

multispectral data with the canopy LCC distribution function.
Frontiers in Plant Science 03
2 Materials and methods

2.1 Study site and experimental design

In 2021 and 2022, a two-year field experiment was conducted at

the Research Base of Beijing Academy of Agriculture and Forestry

Sciences, located in the International Seed Industry Science and

Technology Park in Tongzhou District, Beijing, China (116°41′2″ E,
39°41′50″ N) (Figure 1). The study site is characterized by a typical

warm temperate semi-humid continental monsoon climate, with an

average annual temperature, precipitation, and sunshine hours of

13.8°C, 570.1mm, and 2396.2h, respectively. The two-year maize

growing seasons spanned from June 1 to September 25, 2021, and

from June 20 to September 30, 2022, respectively. Artificial thinning

of seedlings is performed during the seedling stage. Local field

management practices are followed, including the application of

herbicides and insecticides as necessary, and sufficient rainfall

occurs throughout the growing season.

Table 1 presents the key details of the two tested cultivars,

fertilization practices, and soil properties. The nitrogen fertilizer

application was divided into two stages, with 50% applied as a base

fertilizer before sowing and the remaining 50% applied at the

jointing stage. To gather comprehensive information on canopy

structure and LCC, Experiment 1 included 8 hybrid varieties and 6

nitrogen application treatments (0, 75, 150, 225, 300, and 375 kg N

ha-1, denoted as N0—N5). Experiment 2 encompassed 10 hybrid

varieties and 7 nitrogen application rates (0, 75, 150, 225, 300, 375,

and 400 kg N ha-1, denoted as N0-N6). C1 to C10 correspond to 10

distinct maize varieties used in experiments 1 and 2, respectively.

These varieties include Jingke999, Xianyu335, MC121, Dika159,

Jingnongke728, Liangyu99, MC812, Zhengdan958, Jingnongke828,

and Jingkeqingzhu516 (as shown in Figure 1B). Both experiments

followed a split-plot design, with nitrogen fertilizer treatment as the

main plot and varieties randomly distributed within the nitrogen

fertilizer treatment, repeated 3 times. The planting method

employed equal row spacing with 60 cm between rows, resulting

in a planting density of 60,000 plants ha -1. The total area of the

experimental plots was approximately 0.48 ha. Data from the first

year of Experiment 1 were utilized for model validation, while data

from Experiment 2 were employed for model construction and

calibration purposes.
2.2 Data collection

2.2.1 Relative chlorophyll content (SPAD values)
During the four key growth stages of maize, namely the 6th leaf

fully expanded stage (V6), the 9th leaf fully expanded stage (V9), the

silking stage (R1), and the blister stage (R2), SPAD values for fully

expanded leaves were obtained. From each plot, five plants with

similar growth were selected, and their SPAD values were measured

using a Minolta SPAD-502 chlorophyll meter manufactured in

Japan. To determine the canopy SPAD value, record the SPAD
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values of all fully unfolded leaves along the main stem, starting from

the bottom and moving towards the top. After completing all leaves

measurements, calculate the average SPAD value of all leaves, which

will serve as the canopy SPAD value. To ensure accuracy, each leaf

was divided into intervals of 20% of its length, with measurements

taken at 0-20%, 20-40%, 40-60%, 60-80%, and 80-100% of the leaf

length. The SPAD values for each interval were determined
Frontiers in Plant Science 04
accordingly. The results obtained from each plot were averaged to

obtain representative measurements.

2.2.2 UAV multispectral imagery acquisition
and processing

During the 2022 growing season, UAV multispectral images

were captured at four growth stages: V6, V9, R1, and R2, which
TABLE 1 Basic information regarding two field experiments.

Experiment
No.

Year Treatments Plots Soil
characteristics

Exp.1 2021 Cultivar: Jingke999, Xianyu335, MC121, Jingnongke728, Liangyu99, MC812, Zhengdan958,
Jingnongke828.
N application (kg N ha-1): 0, 75, 150, 225, 300, 375

48 Type: brown sandy
Organic matter: 17.03 g
kg-1

Total N: 1.08 g kg-1

Olsen-P: 0.067 g kg-1

Available-K: 0.241 g kg-1

Exp.2 2022 Cultivar: Jingke999, Xianyu335, MC121, Dika159,
Jingnongke728, Liangyu99, MC812, Zhengdan958,
Jingnongke828, Jingkeqingzhu516.
N application (kg N ha-1): 0, 75, 150, 225, 300, 375, 400

70 Type: brown sandy
Organic matter: 20.5 g kg-
1

Total N: 1.35 g kg-1

Olsen-P: 0.078 g kg-1

Available-K: 0.201 g kg-1
A

B

C

FIGURE 1

Geographical location of the study site (A), Plot division of the experimental plots in 2021 and 2022 (B). Canopy conditions under seven nitrogen
fertilizers (N) treatments on August 10, 2022 (C).
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coincided with the measurement of maize SPAD values. The UAV

platform utilized a DJI M300 RTK multi-rotor UAV (SZ DJI

Technology Co. LTD., Shenzhen, China), equipped with a

Micasense Altum multispectral camera (AgEagle Sensor Systems

Inc., Wichita, Kansas, USA) (Figure 2). The camera allows

simultaneous data collection in five bands, including visible light

(red, green, and blue), near-infrared, and red-edge bands. The

center wavelength and bandwidth information for each band is

provided in Table 2. The image resolution for each band is

2064×1544, with a field of view of 48°×36.8° and a focal length of

8mm. To ensure high-quality image stitching, the UAV flew at a

height of 50m above the ground at a speed of 4m/s, the

multispectral image has a spatial resolution of 1.5cm/pixel,

overlap rates of 75% and 80% were set for the forward and side

directions respectively. The entire research area can be covered in

about 10 minutes per flight mission, resulting in the collection of

approximately 1,240 multispectral images. A standard gray board

with a constant reflectance is positioned along the flight path,

ensuring it’s captured by the camera. It is utilized to calibrate the

original multispectral image, generating a reflectance image. The

multispectral data were captured under clear, cloudless conditions

between 11:00 am and 2:00 pm. Using Pix4Dmapper (Pix4D S.A.,

Lausanne, Switzerland), multispectral image preprocessing was

conducted to generate corrected spectral reflectance (with

reflectance correction). Each output file was saved as a high-

resolution TIFF image. Subsequently, ENVI 5.3 (HARRIS

geospatial, Wokingham, UK) software was employed to merge the

TIFF images from multiple bands into a 5-band reflectance TIFF

image. A specific area of 100*100 pixels was selected as the region of

interest (ROI) and save all plot ROIs as an XML file (Figure 2C). To

ensure the consistency of ROIs across different growth stages, we

register images from various time periods by relying on pre-

arranged control points on the ground. Finally, the average

reflectance of the pixels within each ROI was then extracted to

represent the plots reflectance. The above steps follow the

processing flow proposed by Mesas-Carrascosa and Li et al.

(Mesas-Carrascosa et al., 2015; Li et al., 2023).

2.2.3 Vegetation indices extraction
The vegetation index is calculated based on UAV multispectral

images. It is a linear or nonlinear combination of multiple spectral
Frontiers in Plant Science 05
bands used to replace the band reflectance. Previous studies have

established a direct correlation between LCC and leaf reflectance,

which has subsequently spurred the development of multiple VIs

(Narmilan et al., 2022). In this study, wide band VIs was calculated

using multispectral images, and 17 well-established VIs related to

chlorophyll were employed to establish the correlation between

these indices and LCC during different growth stages (see Table 3).
2.3 Construction of Lorentz peak
distribution function based on leaf
SPAD values

In this study, the vertical variation of maize leaf SPAD values was

simulated using the Lorentz peak distribution function. The original

definition of the Lorentz peak distribution function is as follows:

y =
ym

1 + ( x−x0b )2
(1)

this function has three parameters: ym, the peak of the curve; b,

the slope of the curve; x0, the independent variable corresponding to

the peak of the curve. Considering that the main purpose of this

study is to fit the vertical non-uniform curve of the SPAD values of

maize canopy leaves, formula (1) is redefined as:

SPAD =
SPADm

1 + ( n−nmb )2
(2)

where SPADm represents the maximum SPAD values, n

represents different leaf positions, nm represents the leaf position

corresponding to the maximum SPAD values, b represents the slope

of the curve.
2.4 Data analysis

The leaf SPAD value data collected over the two-year

experiment constituted the dataset for constructing the Lorentz

peak distribution function. Select the leaves dataset from

Experiment 2 as the calibration set for the Lorentz peak function

(V6, n=420; V9, n=630; R1, n=1010; R2, n=950), and the leaves

dataset from Experiment 1 as the validation set for the model (V6,
A B DC

FIGURE 2

Unmanned aerial vehicle (UAV) multi-spectral system. (A) UAV platform, (B) MicaSense Altum camera and reflection calibration panel, (C) Single-
band multi-spectral image and (D) Single-band reflectance extraction (The red line signifies the highest and lowest reflectance values among the five
bands within the region of interest.; The green line represents the average reflectivity ± standard deviation of the five bands within the ROI and the
black line represents the average reflectance of the five bands within the ROI).
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n=36; V9, n=54; R1, n=82; and R2, n=78). In this verification

process, SPAD values of leaves from different varieties treated with

each nitrogen fertilizer in Experiment 1 were subjected to averaging.

To assess the UAV platform’s sensitivity to SPAD values at

different leaf positions in the maize canopy, the Pearson correlation

coefficient (r) Equation 6 was utilized to evaluate the correlation

between VIs and SPAD values at various leaf positions. The p-value

was then employed to determine statistical significance, with a

threshold of p< 0.05 considered significant. Lastly, the VIs extracted

through UAV multispectral analysis were employed to formulate a

linear regression model incorporating sensitive leaf position SPAD

values and overall canopy SPAD values (average SPAD values of all

leaves). Evaluation metrics, including the coefficient of

determination (R2) Equation 3, root mean square error (RMSE)

Equation 4, and normalized root mean square error (nRMSE)

Equation 5, were selected to quantify the explained variation, and

assess model performance. The calculation formula is as follows:

R2 = 1 −o
n
i=1(yi − Pi)

2

on
i=1(yi − �y)2

(3)

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
on

i=1(yi − Pi)
2

n

s
(4)

nRMSE =
RMSE

(ymax − ymin)
(5)

where Pi represents the predicted value, �y represents the average

value of the measured value, yi represents the measured value, and n

represents the number of samples, and ymax and ymin are the

maximum and minimum sample values.

r = on
i=1(Xi − �X)(Yi − �Y)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

on
i=1(Xi − �X)2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
on

i=1(Yi − �Y)2
qr (6)

where r is the correlation coefficient between variable X   =

Xi(1 ≤ i ≤ n) and variable Y =  Yi(1 ≤ i ≤ n), r >0 indicates that

variable X is positively correlated with Y , and r < 0 indicates that

both r = 0 indicates that the two are not correlated; Xi is the

measured value of the variable X   at the i-th position; �X is the mean

value of the variable X; Yi is the measured value of the variable Y at

the i-th position; �Y is the mean value of variable Y ; n is the number

of variable X or Y (this study refers to the number of leaves and the

number of samples in the experimental plot).
3 Result

3.1 Vertical distribution of SPAD values
within the canopy

Based on the data presented in Figure 3, it is evident that the

distribution of canopy SPAD values in maize varied across different

growth stages. The distribution pattern exhibited a non–uniform

trend, characterized by an initial increase followed by a decrease
TABLE 2 MicaSense Altum multispectral camera parameters.

Waveband
Central wave-
length/nm

Spectral band-
width/nm

Blue 475 32

Green 560 27

Red 668 14

Red edge 717 12

Near infrared 842 48.8
TABLE 3 Summary of vegetation index selected in this study.

Vegetation
Index Name Formula Reference

Normalized difference
vegetation index NDVI

(Rnir − Rred)(Rnir
+ Rred)

(Li Z.
et al., 2022)

Normalized
Difference
Chlorophyll Index NDCI

(Rre−Rred)/
(Rre+Rred)

(Mishra and
Mishra, 2012)

Normalized difference
red edge index NDRE

(Rnir − Rre)/
(Rnir+Rre)

(Li
et al., 2015)

Green NDVI GNDVI
(Rnir − Rgreen)/(Rnir
+ Rgreen)

(Gitelson
et al., 2003)

Plant Pigment ratio PPR
(Rgreen − Rblue)/
(Rgreen+Rblue)

(Wang
et al., 2004)

Canopy
chlorophyll content CCCI

(NDRE −

(NDREmin)/
(NDREmax
−NDREmin)

(Fitzgerald
et al., 2006)

MERIS Terrestrial
Chlorophyll Index MTCI

(Rnir − Rre)/
(Rre−Rred)

(Dash and
Curran, 2007)

Simple ratio SR Rnir/Rred
(Xue
et al., 2004)

Red−edge
chlorophyll index

CIred
−edge (Rnir/Rre) − 1

(Gitelson,
2005)

Green
chlorophyll index CIgreen (Rnir/Rgreen) − 1

(Gitelson
et al., 2003)

Transformed Chl
absorption in
reflectance index TCARI

3*[(Rre − Rred) − 0.2*
(Rre − Rgreen)
(Rre/Rred)]

(Haboudane
et al., 2002)

Triangular
vegetation index TVI

60*(Rnir − Rgreen) −
100*(Rred−Rgreen)

(Yang
et al., 2022)

mTVI (red-edge) mTVI
60*(Rnir − Rgreen) −
100*(Rre−Rgreen)

(Broge and
Leblanc, 2001)

Modified chlorophyll
absorption ratio index MCARI

(Rre − Rred) − 0.2*
(Rre−Rgreen) *
(Rre/Rred)

(Daughtry,
2000)

mNDblue mNDblue
(Rblue − Rre)/(Rblue
+ Rnir)

(Jay
et al., 2017)

Enhanced
vegetation index EVI

2.5*(Rnir − Rred)/
(Rnir + 6*Rred −

7.5*Rblue+1)

(Peng
et al., 2017)

Difference
Vegetation Index DVI Rnir − Rred

(Li Z.
et al., 2022)
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from the bottom to the top of the canopy, resembling a bell-shaped

curve. Specifically, during the V6 growth stage, the highest SPAD

values under different nitrogen fertilizer treatments (N1–N6) were

primarily observed in the 2nd and 3rd leaf positions (Figure 3A). In

the V9 stage, the maximum SPAD values were found in the 4th, 5th,

and 6th leaf positions (Figure 3B). As for the R1 and R2 stages, the

peak SPAD values were distributed in the ear position leaf and the

two leaves above and below the ear position (Figures 3C, D).

Additionally, the results depicted in Figure 3 indicate that the

SPAD values of maize canopies treated without nitrogen application

(N0) were significantly lower than those subjected to nitrogen

treatment across all four growth stages. Notably, the discrepancy in

canopy SPAD values between different nitrogen application rates was

more prominent during the vegetative growth stages (V6 and V9) and

diminished during the reproductive growth stages (R1 and R2). This

observation can be attributed to the nutrient transfer mechanism in

maize plants, where nutrients are transported from the lower parts to
Frontiers in Plant Science 07
the upper parts during the later growth stages to support

photosynthesis in the upper leaves. Consequently, the lower leaves of

the maize exhibit progressive senescence and yellowing, as evident in

the experimental plots (Figures 3C, D). Furthermore, during the V6

and V9 stages, the SPAD values of the same leaf position displayed an

upward trend with increasing nitrogen application (Figures 4A, B).

However, during the R1 and R2 stages, the SPAD values of the same

leaf position exhibited an initial increase followed by a decrease with

increasing nitrogen application.
3.2 Modeling and validation of canopy
SPAD values based on the Lorentz peak
distribution function

The results displayed in Figure 5 demonstrate the fitting of

crown SPAD values for maize at four growth stages using the
A B DC

FIGURE 3

Vertical distribution of leaf SPAD values in maize canopy during the 2022 growing season. The Y-axis represents leaf position. (A) the 6th leaf fully
expanded stage (V6), (B) the 9th leaf fully expanded stage (V9), (C) the silking stage (R1), and (D) the blister stage (R2). Error bars show standard
deviation. In the R1 and R2 growth stages, the lower leaves exhibit senescence and yellowing, while most varieties experience leaf shedding at the
top in the R2 stage. To ensure data consistency, the leaf counts for R1 and R2 are 6-20 and 6-19, respectively.
A B

DC

FIGURE 4

Changes of SPAD value in the same leaf position under different nitrogen application rates. (A) V6 stage, (B) V9 stage, (C) R1 stage, and (D) R2 stage.
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Lorentz peak distribution function Equation 2. The findings

indicate that the Lorentz peak distribution function effectively fits

the distribution of crown SPAD values at these stages, with R2 and

RMSE values as follows: V6 (R2: 0.75 – 0.98, RMSE: 0.45 – 1.28); V9

(R2: 0.69 – 0.96, RMSE: 0.9 – 2.18); R1 (R2: 0.78 – 0.95, RMSE: 1.42

– 3.59); and R2 (R2: 0.6 – 0.96, RMSE: 1.13 – 2.3). Notably, the

highest fitting accuracy was observed for the no nitrogen treatment

(N0) in the V6 stage (R2 = 0.94, RMSE = 0.63); the N5 treatment in

the V9 stage showed the highest fitting accuracy (R2 = 0.96, RMSE =

0.9); the N0 treatment in the R1 stage exhibited the highest fitting

accuracy (R2 = 0.95, RMSE = 1.42); and the N1 treatment in the R2

stage displayed the highest fitting accuracy (R2 = 0.96, RMSE =

1.13). Except for the V9 stage, the Lorentz peak distribution
Frontiers in Plant Science 08
function effectively fits the leaf SPAD values under both no

nitrogen and low nitrogen conditions.

Moreover, Table 4 presents the statistical results of the three

function parameters: SPADm, nm, and b values, under different

nitrogen application treatments and growth stages. The maximum

SPAD values (SPADm) and leaf positions (nm) during the V6 and

V9 stages are primarily concentrated in the 4th and 5th leaves, while

during the R1 and R2 stages, the nm are mainly distributed in the

12th and 13th leaves. SPADm and b values exhibit similar patterns of

variation across different nitrogen application treatments and

growth stages (Figure 6). The results indicate a positive

correlation between both SPADm and b parameters with nitrogen

application rate and growth stage, implying that increasing nitrogen
TABLE 4 The statistical results of Lorentz peak distribution function parameters.

N treatment

V6 V9 R1 R2

SPADm nm b SPADm nm b SPADm nm b SPADm nm b

N0 39.16 4 6.51 41.80 4 7.01 48.69 12 8.24 47.62 14 10.58

N1 42.12 4 6.99 47.94 4 8.92 56.58 13 10.56 57.12 13 9.83

N2 40.48 4 6.83 49.55 4 8.87 58.37 13 10.26 57.92 12 12.27

N3 41.75 4 6.18 51.92 5 8.17 57.06 13 11.49 55.28 12 13.40

N4 46.00 5 8.32 54.40 5 8.55 59.33 13 11.09 59.20 14 13.02

N5 47.40 4 6.90 53.89 4 8.77 58.29 12 12.87 58.86 12 12.08

N6 47.22 4 7.42 54.40 4 10.03 57.77 13 10.94 58.11 14 14.56
frontier
FIGURE 5

Lorentz peak curve fitting under different nitrogen application rates at four growth stages. The solid line represents the fitted curve, the scatter
represents the true SPAD value, and the error line represents the standard deviation.
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fertilizer application can enhance SPADm and b values. Notably,

there is a significant difference between nitrogen application and no

nitrogen application treatments. As the growth stage progresses,

SPADm and b gradually increase. While there is no significant

change in SPADm from the R1 to R2 stage, the difference in b among
Frontiers in Plant Science 09
the four growth stages is significant. Based on the fitting results

obtained from the model, the model was further validated using

experimental data collected in 2021 (Figure 7). The validation

results of the Lorentz peak distribution function, based on the

measured data sets from the four growth stages (V6, V9, R1, and
A B

FIGURE 6

Changes of parameters SPADmax (A) and b (B) at different growth stages and fertilization conditions in the growing season of maize in 2022.
A B

DC

FIGURE 7

Verification results of fitting SPAD value to Lorentz peak distribution function at four growth stages in 2021 growing season. (A) V6 stage, (B) V9
stage, (C) R1 stage, and (D) R2 stage.
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R2), demonstrate good estimation accuracy. The highest accuracy

was observed in the V9 and R1 stages (V9: R2 = 0.77, RMSE = 6.51;

R1: R2 = 0.77, RMSE = 4.17), followed by the V6 stage (R2 = 0.73,

RMSE = 2.38). Slightly lower accuracy was observed in the R2 stage

(R2 = 0.69, RMSE = 5.41).
3.3 Identification and selection of VIs with
high sensitivity for each growth stage

A linear regression model was constructed using the 2021 field

experiment data and UAV multispectral data to establish the

relationship between canopy SPAD values and VIs. The fitting

accuracy of the canopy SPAD values and VIs was assessed using R2

and RMSE. The results demonstrate consistent strong correlations

between canopy SPAD values and VIs across different growth

stages. The top 5 VIs with strong correlations in each stage,

including CCCI, MTCI, CIred-edge, NDRE, and GNDVI, are

presented in Table 5. Moreover, the correlation coefficients

between VIs and crown SPAD values varied across stages: V6 (r:

0.583 – 0.665), V9 (r: 0.735 – 0.814), R1 (r: 0.777 – 0.788), and R2 (r:

0.802 – 0.866). The results indicate an increasing correlation

between VIs and crown SPAD values as the growth stage

progresses. Specifically, CCCI exhibited the highest correlation

coefficients in V9 and R2, with r values of 0.814 (RMSE = 3.17)

and 0.866 (RMSE = 2.59), respectively. CCCI also performed well in

V6 and R1, with r values of 0.662 (RMSE = 3.57) and 0.783 (RMSE

= 3.16), respectively. Therefore, considering convenience for

further research, CCCI was selected as the optimal VI for

subsequent investigation.
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3.4 Selection of sensitive leaf positions and
establishment of an inversion model for
predicting SPAD values

Based on the findings from the previous section, the CCCI was

chosen as the optimal vegetation index for selecting sensitive leaf

positions within the crown across the four growth stages, as

depicted in Figure 8. The analysis revealed that in the V6 stage,

the sixth leaf position displayed the highest correlation coefficient

with CCCI (r = 0.662), while the first leaf position exhibited the

lowest correlation coefficient (r = 0.565). The correlation

coefficients gradually increased from the lower to the upper

regions of the canopy. In the V9 stage, the fourth leaf position

demonstrated the highest correlation coefficient (r = 0.816),

whereas the ninth leaf position had the lowest correlation

coefficient (r = 0.662). The correlation coefficients exhibited an

ascending trend followed by a descending trend from the first to the

ninth leaf position. For both the R1 and R2 stages, the twelfth leaf

position exhibited the maximum correlation coefficients of 0.722

and 0.874, respectively. Furthermore, the correlation coefficients

between different leaf positions and CCCI displayed a similar

decreasing trend from the middle to the upper and lower regions

of the canopy for both stages.

Furthermore, to validate the effectiveness of estimating maize

SPAD values using sensitive leaf positions, simple linear regression

models were developed using these positions (V6: 6; V9: 4; R1: 12;

R2: 12) and canopy SPAD values with VIs for the four growth

stages. These models were then tested on two datasets. The

relationship between the predicted and measured SPAD values,

based on the CCCI model constructed using the two datasets and
TABLE 5 Analyzing the correlation between the vegetation index and SPAD value across four phenological stages.

Phenological Period N0. VIs
Correlation
coefficient

RMSE

V6 1
2
3
4
5

MTCI
CCCI
mTVI

CIred-edge
NDRE

0.665
0.662
0.590
0.584
0.583

3.57
3.57
3.85
3.87
3.88

V9 1
2
3
4
5

CCCI
MTCI
NDRE
GNDVI
CIgreen

0.814
0.783
0.744
0.743
0.735

3.17
3.39
3.64
4.41
4.47

R1 1
2
3
4
5

CIred-edge
MTCI
CCCI
CIgreen
NDRE

0.788
0.787
0.783
0.780
0.777

3.12
3.13
3.16
3.17
3.19

R2 1
2
3
4
5

CCCI
MTCI
NDRE

CIred-edge
GNDVI

0.866
0.855
0.812
0.808
0.802

2.59
2.68
3.02
3.05
3.09
“N0.” indicates the ranking order of the correlation coefficient.
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UAV-derived data, is presented in Figure 9. The estimation

accuracy of SPAD values at the sensitive leaf positions in the four

growth stages, based on UAV spectral data, was superior to that at

the canopy scale. The R2 and RMSE values for the sensitive leaf
Frontiers in Plant Science 11
positions at the four growth stages were 0.59, 0.67, 0.60, and 0.76,

respectively, with corresponding RMSE values of 4.07, 3.71, 4.28,

and 3.20. In contrast, the R2 and RMSE values for the canopy were

0.44, 0.65, 0.50, and 0.74, respectively, with corresponding RMSE
FIGURE 9

The estimation results of sensitive leaf position and canopy SPAD values at different growth stages were obtained by using unitary linear
regression model.
A B

DC

FIGURE 8

Sensitivity of leaf position SPAD to canopy spectral index at different growth stages. ★represents the most sensitive leaf position in each period. (A)
V6 stage, (B) V9 stage, (C) R1 stage, and (D) R2 stage.
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values of 4.33, 4.01, 4.34, and 3.49. The estimation accuracy of the

sensitive leaf positions in V6 and R1 was significantly better than

that at the canopy scale, while the improvement effect was not as

evident in the V9 and R2 stages. Additionally, Figure 10 displays the

spatiotemporal distribution of predicted SPAD values using UAV

multispectral images, highlighting the variability of SPAD values in

response to different treatments and growth stages.
4 Discussion

Crop chlorophyll remote sensing plays a crucial role in quantitative

remote sensing of crops. Timely and accurate monitoring of crop

canopy chlorophyll content is of great significance for agricultural

management (Cabangon et al., 2011). Although the heterogeneity of

vertical chlorophyll distribution in crop canopies has been confirmed

by numerous studies (Shiratsuchi et al., 2006; Wu et al., 2021), there is

still considerable room for improvement in the accuracy and

mechanisms of remote sensing monitoring methods.
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4.1 Characteristics of temporal and spatial
heterogeneity in canopy SPAD values
distribution of maize

This study first conducted experiments involving multiple

growth stages and different nitrogen fertilization treatments to

demonstrate the asymmetric curve distribution of SPAD values in

maize canopy leaves along the vertical direction. The SPAD values

were higher in the middle leaf position compared to the top and

bottom layers (Figure 3), and this distribution pattern was

consistent in both vegetative and reproductive growth stages,

consistent with previous research findings (Ciganda et al., 2008;

Winterhalter et al., 2012; Yang et al., 2022). Moreover, different

nitrogen application treatments resulted in distinct canopy

structure types (Figure 3), and the SPAD values of the same leaf

position increased with higher nitrogen application rates (Figure 4).

Nitrogen is an essential component of chlorophyll and highly

mobile in plants, and increasing nitrogen fertilizer can enhance

the nitrogen supply capacity of the soil to crops (Bonelli and
A B

D

E F

G H

C

FIGURE 10

UAV RGB images and SPAD values maps for each plot. Examples presented are: (A, C) V6; (B, D) V9; (E, G) R1 and (F, H) R2.
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Andrade, 2020; Zhang et al., 2021). Therefore, nitrogen fertilization

significantly influences leaf SPAD values and alters the canopy’s

distribution structure. Consequently, quantitatively simulating

canopy leaf SPAD values should consider the fertilization level

and different growth stages.
4.2 Performance of the Lorenz peak
distribution function model

Based on the obtained results, the application of the Lorentz

peak distribution function to fit the spatial distribution of maize

canopy SPAD values demonstrated excellent performance across

different growth stages and nitrogen application treatments

(Figure 5). Among the four growth stages, the treatments that

yielded the best model fitting were N0, N5, N0, and N1, respectively,

with the Lorentz peak distribution function performing

exceptionally well during the V6 stage. One key advantage of

using this function is its ability to better represent the crucial

structural parameters of the maize canopy through its three

parameters (SPADm, nm, and b). The research findings confirm

that the distribution structure of maize canopy SPAD values follows

an asymmetric curve, encompassing the maximum SPAD values,

the leaf position with the highest SPAD values, and the gradient

change of SPAD values at different leaf positions, represented by

SPADm, nm, and b. The nm values at different reproductive stages

are 5, 5, 13, and 14, respectively (Table 4). During the early growth

stage, nm is primarily concentrated in the upper-middle layer of the

canopy because the upper leaves of maize are adept at capturing

more light energy for photosynthesis, which fulfills the crop’s

growth requirements (Ciganda et al., 2009). In the reproductive

growth stages, nm predominantly appears in the three-ear leaves.

As the functional leaves of maize, the nutrient index of the three-ear

leaves directly influences grain growth and development. Therefore,

the three-ear leaves intercept more light for photosynthesis to

ensure the contribution of grain carbohydrates (Li et al., 2019).

Additionally, both the SPADm and b parameters exhibited an

upward trend with increasing nitrogen application rate and

growth stage (Figure 6), indicating that an augmented nitrogen

application can modify the distribution structure of SPAD values in

the maize canopy. Furthermore, as the growth stage advances, the

disparity in SPAD values between different leaf layers becomes

more pronounced, resulting in a steeper curve slope. Furthermore,

this study employed field experiment data from 2021 to verify the

constructed Lorentz peak distribution function across multiple

years (Figure 7). All four growth stages yielded satisfactory

verification results: V6, R2 = 0.73, RMSE = 2.38; V9, R2 = 0.77,

RMSE = 6.51; R1, R2 = 0.77, RMSE = 4.17; R2, R2 = 0.69, RMSE =

5.41. These findings indicate the model’s robustness and

applicability in different growing seasons. However, due to space

limitations, this study did not establish a quantitative relationship

between the model parameters and the two indicators of

fertilization rate and phenological period. Future research can

explore this aspect further.
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4.3 Construction and application of UAV
platform estimation model

VIs has been widely recognized as effective tools for rapid and

nondestructive estimation of various crop canopy parameters

(Palka et al., 2021). Therefore, in this study, 17 VIs that have

been previously linked to canopy chlorophyll (Table 3) were

selected, and the sensitivity of these VIs to canopy SPAD values

was assessed using Pearson correlation coefficient analysis. The

findings revealed that VIs such as CCCI, MTCI, and NDRE

exhibited strong correlations with maize canopy.

SPAD values across the four growth stages (Table 5). These

results align with previous research by C. S. T. Daughtry et al.

(Daughtry, 2000) and Bin Wu et al. (Wu et al., 2021), emphasizing

the significance of the red-edge band in establishing VI and

chlorophyll models. Among the evaluated VIs, CCCI consistently

demonstrated the best performance across different growth stages,

which corroborates the findings of Davide Cammarano et al. (2011)

and Fei Li et al. (2014). Notably, the leaf positions exhibiting the

highest correlation between leaf SPAD values and CCCI varied

across the four growth stages (Figure 8), highlighting the need to

construct separate canopy VIs models for accurate estimation of leaf

SPAD values based on growth stage. To further validate the

advantages of using UAV spectral data for estimating SPAD

values in sensitive leaf positions, field data and UAV canopy

spectral data collected in 2022 were employed. The results

revealed that the estimation accuracy of SPAD values at the four

growth stages based on UAV multispectral data surpassed that at

the canopy scale (Figure 9). Specifically, the R2 values increased by

34% for V6, 3% for V9, 20% for R1, and 3% for R2, respectively.

These findings emphasize that the vertical distribution

characteristics of maize canopy structure significantly impact the

UAV-based SPAD estimation model, indicating that the estimation

of crop canopy indicators using UAV cannot assume a uniform

distribution throughout the canopy.

In this study, the utilization of the Lorentz peak distribution

function facilitated the quantitative simulation of SPAD values for

different leaf positions within the maize canopy. By integrating the

spatiotemporal distribution characteristics of canopy SPAD values

with the UAV multispectral estimation model, the accuracy of the

UAV remote sensing model for canopy SPAD values was

significantly improved. However, there are still some issues that

need to be improved in this study. 1. Multi source data fusion,

previous studies have shown that fusing multiple sources of data

(spectral data, texture information, morphological parameters) can

effectively improve model accuracy. In the future, low-cost high-

definition digital cameras can be used to obtain multi-source data to

verify the feasibility of this research method (Liu et al., 2022a; Liu

et al., 2022b); 2. Cross scale applications, UAV remote sensing has

the advantages of strong mobility and high resolution, but there are

still certain limitations in its application in large-scale environments

due to the large environment (weather, wind speed). So future

research should focus on how to combine UAV remote sensing with

satellite remote sensing (Lou et al., 2021); 3. Model algorithms,
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traditional machine learning algorithms such as partial least squares

and random forests, as well as commonly used deep learning and

transfer learning, have been widely used in remote sensing models,

but they require a large amount of data. In the future, data from

different experimental points can continue to be collected, and

machine learning algorithms can be combined to improve the

accuracy of the model (Fu et al., 2023).
5 Conclusion

This work incorporates the spatiotemporal distribution

characteristics of maize leaf SPAD values into an UAV remote

sensing estimation model. By constructing a vertical distribution

function for maize canopy SPAD values, we have effectively

enhanced the accuracy of the UAV remote sensing model for

canopy SPAD values. The results show that:
Fron
1. The canopy SPAD values of maize during critical growth

stages exhibit a non-uniform vertical distribution pattern

resembling a “bell-shaped” curve. The canopy SPAD values

of the non-fertilized treatment are significantly lower than

those of the fertilized treatment.

2. The fitting of maize canopy SPAD values was achieved

based on the Lorenz peak distribution function, and the

obtained results were validated using inter-annual

data (Figure 7).

3. The accuracy of estimating the UAV multispectral model,

constructed based on sensitive leaf position SPAD values,

surpasses that of the canopy-scale model, with respective

improvements in R2 values for V6 (34%), V9 (3%), R1

(20%), and R2 (3%).
The findings of this study highlight that employing quantitative

modeling of canopy indicators can substantially enhance the precision

of remote sensing estimation. However, it is important to note that the

validation of this approach was conducted at a single ecological site and

with a single crop. Further research is necessary to establish the

applicability of this method across multiple ecological sites and other

crops. Additionally, there is an opportunity for further exploration of

coupling canopy model parameters with models such as radiative

transfer, which can contribute to more effective guidance of agricultural

production management.
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