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Introduction: The chronological age (CA) cannot precisely reflect the health 
status. Our study aimed to establish a model of kidney biological age to evaluate 
kidney function more elaborately.

Methods: The modeling group was used to establish the model, consisting of 
1,303 respondents of the China Health and Retirement Longitudinal Study 
(CHARLS). The biological age of the kidney (BA) was constructed by principal 
component analysis (PCA) and Klemera and Doubal’s method (KDM) with the 
1,303 health respondents.

Results: PCA was chosen as the best method for our research step by step. The test 
group was used to apply the model. (a) BA of the kidney can distinguish respondents 
with from without kidney disease. (b) BA of the kidney was significantly different in 
various levels of kidney function. The BA of the eGFR <60 group and 60 ≤ eGFR <90 
group were older than GFR ≥90 group. (c) The group with younger BA of kidney 
at baseline had a lower risk of kidney function decreased. (d) The risk of decreased 
kidney function caused by increasing BA every additional year is higher than CA.

Discussion: The BA of the kidney is a parameter negatively correlated with decreased 
kidney function and fills the blank of evaluation among people in the middle of heathy 
and kidney diseases.
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1 Introduction

Genes, environment, lifestyle, and other factors influence longevity. There is a delicate 
balance between aging and diseases, which has become a focus of aging research. The primary 
aging mechanism includes oxidative stress, inflammation, disturbances in sympathetic-vagal 
balance, and many others (1). However, chronological age no longer accurately reflects a person’s 
health. For every one-year increase in the calculated biological age and chronological age 
difference, the hazard ratio for mortality increased by 1.6% (1.5% in men and 2.0% in women,) 
as well as for hypertension, diabetes mellitus, heart disease, stroke, and cancer incidence by 2.5, 
4.2, 1.3, 1.6, and 0.4%, respectively (2). Therefore, accurately quantifying the aging rate is not 
only important for evaluating the efficacy of aging interventions, but it also sheds light on the 
aging process itself (3). The earliest research on biological age dates back to at least the 1960s 
when scientists sought meaningful biomarkers to quantify the biological age of individuals 
exposed to the radiation from Hiroshima (4). Researchers have investigated various types of 
biological age, from the whole body to molecular levels (5–9). They have also investigated 
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different biological age estimation methods, including multiple linear 
regression (MLR), Hochschild’s method, the principal component 
analysis (PCA), the Klemera and Doubal’s method (KDM) (8, 10–12).

Different organs have different aging patterns and orders due to 
their unique physiological structures; therefore, biological age should 
be calculated according to organs (13). The aging of organs is a gradual 
process. The kidney undergoes different structural changes as it ages, 
including glomerulosclerosis, tubular atrophy, and a reduction in 
cortical volume (14). These changes result in functional degeneration, 
including a decrease in eGFR, renal blood flow, renal vascular 
permeability, reabsorption, and urine concentration (15). As China’s 
population ages, the high cost of treating age-related diseases exceeds 
the affordability of the country’s limited medical resources. In 
addition, morbidity and mortality increased as the incidence of kidney 
injury increased worldwide. Early patient identification is important 
to provide prompt intervention and improve prognosis (16). 
Therefore, monitoring the health status is a way to improve the life 
quality of older adults and reduce healthcare costs. In our study, 
healthy kidney people were used to model a biological kidney age for 
evaluating kidney function and aging among the population. The 
modeling people are from the China Health and Retirement 
Longitudinal Survey (CHARLS) database and the modeling methods 
are PCA and KDM.

2 Materials and methods

2.1 Data

CHARLS is a longitudinal database created by the National School 
for Development at Peking University that represents families and 
individuals aged 45 and above in China. The questionnaire includes 
demographic information, finances, health status, physical 
measurements, health insurance and retirement status. The pre-survey 
investigated 17,708 individuals in 28 provinces in 2011 (Wave 1), and 
follow-up waves were conducted in 2013 (Wave 2) and 2015 (Wave 3). 
Additional information is available on the CHARLS website1 (17). 
We have registered on the CHARLS website and obtained permission 
from Peking University. Our study was carried out following approved 
guidelines and includes data from 2011 and 2015 from the participants 
who provided written informed consent. The personal information, 
such as ID and address, was removed from the dataset and coded as a 
series of numbers. The study protocol was approved by the Ethical 
Review Committee of Peking University (IRB00001052-11015).

2.2 Study population

The study population included individuals with completed data of 
demographic information, laboratory tests, and health status. Before 
the baseline examination, respondents diagnosed with kidney-related 
diseases, including hypertension, diabetes mellitus, and kidney 
diseases were excluded. The subjects were also excluded due to 
unqualified laboratory tests and physical examinations, estimated 
Glomerular Filtration Rate < 60 mL/min/1.73m2, fasting blood-glucose 
>7.0 mmol/L, and non-fasting blood-glucose >11.1 mmol/L, glycated 

1 http://charls.pku.edu.cn/index/zh-cn.html

hemoglobin ≥6.5%, systolic blood pressure ≥ 140 mmHg, and diastolic 
blood pressure ≥ 90 mmHg.

2.3 Blood samples and physical 
examinations collection and analysis

A total of 9 blood test results of the CHARLS were used to evaluate 
health and develop the BA model of the kidney. Blood tests included 
estimated glomerular filtration rate (eGFR), fasting blood glucose (glu), 
non-fasting blood glucose (uglu), glycated hemoglobin (HbA1c), uric 
acid (ua), creatinine (crea), urea nitrogen (bun), and cystatin C (cysc). 
Physical examinations included blood pressure. Medically trained 
personnel from the China CDC collected venous blood from each 
respondent and transported at 4°C to local CDC laboratories or township-
level hospitals near the study sites for a complete blood count test. The 
cryovials were then frozen at −20°C and transported within two weeks to 
the Chinese CDC in Beijing, where they were placed in a deep freezer and 
stored at −80°C until further analysis at the laboratory of Capital Medical 
University. eGFR was calculated using the CKD Epidemiological 
Collaboration equation and the chronic kidney disease epidemiology 
collaboration equations in Asian (CKD-EPI-Asian) (18). eGFR (mL/
min/1.73 m2) = 151 × (Scr/0.7)−0.328 × (0.993)Age, (if female and Scr ≤ 0.7). 
eGFR (mL/min/1.73 m2) = 151 × (Scr/0.7)−1.210 × (0.993)Age, (if female and 
Scr>0.7). eGFR (mL/min/1.73 m2) = 149 × (Scr/0.9)−0.415 × (0.993)Age, (if 
male and Scr ≤ 0.9). eGFR (mL/min/1.73 m2) = 149 × (Scr/0.9)−1.210 × 
 (0.993)Age, (if male and Scr>0.9). Blood glucose levels in CHARLS were 
converted from mg/dL into mmol/L by dividing with 18. The systolic and 
diastolic pressure was measured three times at 45-s intervals. We selected 
the highest values as the final systolic and diastolic pressure.

2.4 Demographic collection and analysis

Age and gender were major determinants of biological age. As a 
result, we collected the age, gender, and ID of each respondent from 
the demographic information in the CHARLS database. In addition, 
kidney diseases, diabetes, and hypertension were included in the 
demographic data used to determine whether the kidneys are healthy 
or unhealthy.

2.5 Principal component analysis

There were five steps to develop a biological age formula: 
correlation analysis, stability analysis, redundancy analysis, principal 
component analysis (PCA), and formula construction. Identifying 
biomarkers related to chronological age for the next steps was 
essential. In our study, correlation coefficient |r| > 0.10 was an inclusion 
criterion. The stability analysis was only used in longitude studies to 
determine whether biomarkers were stable in two continuous studies. 
The selected biomarkers were then entered in the next step. The 
redundancy analysis identifies biomarkers from the same major organ 
or body part. In other words, this analysis eliminated the overlapping 
biomarkers, leaving the remaining ones uncorrelated (19). The core of 
the PCA is dimensions reduction and selection of eigenvalue >1.0 as 
principal components. When principal components are validated, 
we typically construct two formulas with and without CA. The formula 
with CA investigated the relationship between principal components 
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and CA. The formula without CA investigated whether principal 
components maintain the relationship without CA. The biological age 
score (BAS) is calculated by Equation (1)
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Where n is the score coefficient, Xn represents the marker, and the 
mean is the average value of Xn. SDn is the standard deviation of Xn. 
Some researchers are used to converting BAS into BA using the 
T-score method [Equation (2)]. Because BAS has no unit, it cannot 
be directly compared with CA, namely:

 BA BAS BA CASD mean= ´ +  (2)

Where BASD is the standard deviation of BA, and CAmean is the 
average value of CA. To solve the problem of edge data distortion, 
some researchers have corrected the formula [Equation (3)] is

 Corrected BA BA Z= +  (3)

 Z y y bi= -( ) -( )1  (4)

Where yi is the individual’s CA, y is CAmean, and b is the linear 
correlation coefficient of BA, CA and Z is calculated by Equation 
(4) (10).

2.6 Klemera and Doubal’s method

Klemera and Doubal’s method was proposed in research titled “A 
new approach to the concept and computation of biological age” by 
Klemera and Doubal in 2006 (20). It is a new mathematical algorithm 
for calculating biological age confirmed by other papers. The BA 
estimates are determined by minimizing the distance between m 
regression lines and m biomarker points in an m-dimensional space 
containing all biomarkers. In this article, the authors used computer-
generated simulations to validate the method. They defined BA as 
equivalent to CA and added variables to improve precision. They 
presented two alternative methods for calculating the optimum 
estimates of BA, Equations (5) and (6), in which the latter method 
utilizes CA in the final equation—and using simulations was shown 
to be superior:
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where j is one of the m biomarkers, q, k, and s are the intercept, 
slope, and root mean square error of regression of chronological age 
on j, a is chronological age, and sBA

2  is a scaling factor equal to the 
square root of the variance in chronological age explained by the m 
biomarkers in the CHARLS. Intermediate variables involved in 
Equations (7) and (8) are calculated as follows.
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Where rj
2 is used to calculate the characteristic correlation 

coefficient from Equation (7), it refers to the variance explained by 
regression CA on m biomarkers. Finally, following the assumption 
made by Klemera and Doubal, sBA

2  was transformed so that sBA 
maintained the same mean but was now linearly increasing with age, 
with a difference of four between subjects at CAmax and CAmin.

2.7 Statistics analysis

The characteristics of respondents were described and 
compared according to the different biological age estimated 
methods. Continuous variables were presented as mean (standard 
deviation, SD) for normal distribution and median (interquartile 
range, IQR) for skewed distribution. Categorical variables were 
presented as a number. Mann–Whitney and Kruskal-Wallis tests 
were used to compare the difference between two groups and more 
than two groups, respectively. Multinomial logistic regression 
analysis was used to calculate odds ratios (OR) and 95% confidence 
interval (CI) for the biological age of different estimated methods 
and different groups. All statistical analyses were performed using 
SPSS version 17.0 (SPSS Inc., Chicago, IL, USA), Stata version 13.0 
(Stata Corporation, College Station, TX, USA), GraphPad Prism 9.5 
(GraphPad Software, San Diego, CA, USA), and the statistical 
software package R, version 4.1.0.2

2 https://cran.r-project.org
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3 Results

3.1 The inclusion criteria of respondents in 
different groups

Our study utilized two biological age-estimated methods, PCA 
and KDM. The modeling group included respondents with healthy 
kidney function from both 2011 and 2015 from CHARLS. The test 
group included respondents with healthy kidney function in 2011 and 
followed them up until 2015. We recruited 1,303 respondents from 
modeling groups and 1980 respondents from the test group 
(Supplementary Figure S1). In addition, 1980 individuals were 
confirmed as having healthy kidney health in 2011 and also followed 
up to 2015 (Supplementary Figure S2). The flow design of our study 
is shown in Figure 1.

3.2 General characteristics of respondents 
in different groups

The general characteristics of respondents were described. The 
median CA of the modeling group in 2011 and 2015 were 56.00 
(49.00, 62.00), and 60.00 (53.00, 66.00) respectively. The median CA 
of the test group in 2011 and 2015 were 57.00 (50.00, 64.00), and 61.00 
(54.00, 68.00), respectively (Supplementary Table S1).

3.3 The result of the principal component 
analysis

3.3.1 Determination of variables in the BA of 
kidney

The data of 1,303 respondents in 2011 were used to calculate the 
biological age for determining the efficiency of the two methods. 
Initially, variables associated with kidney health were included in the 
BA of the kidney based on the strength of their relationship with CA, 

|r| > 0.10 (p < 0.05). The variables were eliminated for the collinearity of 
each other, |r| < 0.60 (p < 0.05). Only the most correlative one could 
be remained. Finally, blood urea nitrogen (bun), creatinine (crea), uric 
acid (ua), and cystatin C (cysc) were included (Supplementary Figure S3).

3.3.2 Construction of the BA of kidney
The selected four biomarkers (bun, crea, ua, and cysc) were 

further analyzed by PCA to reduce the dimension and identify the 
most important factors associated with the aging process. Only the 
eigenvalue of the first principal component was greater than 1.0 (10) 
(Supplementary Table S2). All the biomarkers Xn were transformed 
into standardized form (Xn-Xmean)/SDn. BAS was calculated as BAS 
= 0.609*(X1-creamean)/SDcrea + 0.558*(X2-uamean)/SDua + 0.434*(X3-cy
scmean)/SDcysc + 0.359*(X4-bunmean)/SDbun. The BA transformed by 
T-score was used as an intermediate variable to compare with CA. To 
eliminate the edge data distortion of the BA formula, the Z score was 
added to the equation to correct BA. Eventually, we  acquired the 
biological age by PCA, PCA-BAc.

3.4 Klemera and Doubal’s method

The basic parameters of the modeling group in 2011 were 
calculated as follows. These parameters estimated KD-BA and 
KD-BAec (Supplementary Table S3).

3.5 Assessment of different biological 
age-estimated methods

We evaluated the two methods using r and r2, as shown in 
Supplementary Table S4. Firstly, we constructed the biological age 
formulas with 1,303 respondents of the modeling group. The results 
showed that PCA-BAc and KD-BAec performed 0.65 and 0.57 of r, 
0.42 and 0.33 of r2, respectively. The results showed a stable trend in 
the two modeling methods (Supplementary Table S4; 

FIGURE 1

The flowchart of the present study.
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Supplementary Figure S4). Comparison of PCA-BAc and KD-BAec to 
CA for the same year showed that the results of the two methods in 
2011 had no statistical difference, indicating that the CA of individuals 
with a healthy kidney could reflect BA. In 2015, the difference between 
PCA-BAc and CA was −1.84, indicating that the BA was 1.84 years 
younger than the CA. In contrast, the difference between KD-BAec 
and CA was 8.43, indicating that the biological age was 8.43 years 
older than the chronological age. We also compared the BA of kidney 
differences between 2015 and 2011. We  found that the difference 
between the BA of the kidney calculated by the PCA and the CA 
(ΔPCA-BAc 2015–2011) was 2.88 years old after 4 years of follow-up. 
The difference between the BA of the kidney calculated by the KD and 
the CA (ΔKD-BAec 2015–2011) was 12.05 years older 
(Supplementary Table S5). In contrast to the result of the PCA 
method, the modeling method of KDM was illogical and ruled it out.

3.6 Applying the model for biological age

After verifying the reliability of the model, it was applied to a 
kidney health cohort for evaluating kidney function. The 1980 
respondents of the test group with healthy kidney function calculated 
the BA of the kidney in 2011. After the follow-up, only 576 respondents 
had kidney diseases or kidney dysfunction. Then we calculated the BA 
of 1980 respondents in 2015. The BA of the kidney at baseline had no 
significant differences from CA. The r of PCA-BAc was 0.57 (p < 0.05), 
and the r2 was 0.33 (p < 0.05). After a 4-year follow-up, the r and r2 of 
models increased compared with the baseline (PCA-BAc, r = 0.67, 
r2 = 0.44) (Supplementary Figure S5). The difference between PCA-BAc 
from 2011 to 2015 was 2.67 years (Supplementary Tables S6, S7).

3.6.1 The BA of kidney and kidney diseases
After follow-up of the test group, 48 of 1980 respondents (2.4%) 

were considered as having kidney disease or kidney dysfunction, 
diagnosed by the level of eGFR <60 mL/min/1.73m2 or a history of 
kidney disease, who had healthy kidney function at baseline.

The BA of the kidney appeared different in the two outcomes after 
4 years of follow-up, PCA-BAc of respondents with kidney disease or 
kidney dysfunction (PCA-BAc = 71.20, p < 0.05) and those without 
kidney disease or kidney dysfunction (PCA-BAc = 55.11, p < 0.05). 

However, CA was not significantly different (with PCA-BAc = 61.50; 
without PCA-BAc = 61.00, p > 0.05). There was no statistical difference 
between PCA-BAc and CA of respondents without kidney disease or 
kidney dysfunction during follow-up (PCA-BAc = 55.11, CA = 61.0, 
p = 0.300), and they were younger than their chronologic age. 
However, there was a significant statistical difference between 
PCA-BAc and CA of respondents with kidney disease or kidney 
dysfunction after 4 years of follow-up (PCA-BAc = 71.20, CA = 61.50, 
p < 0.05), and the BA was older than the CA. Comparing the difference 
in biological age between 2015 and 2011 (ΔPCA-BAc 2015–2011), it 
was found that respondents without kidney disease or kidney 
dysfunction were 2.83 years younger than CA. In contrast, respondents 
with kidney diseases or kidney dysfunction were 6.10 years older than 
the CA average (Figure 2). The BA of kidney performed better than 
CA in distinguishing people with or without kidney disease or 
kidney dysfunction.

3.6.2 The BA of the kidney and the different levels 
of eGFR

To further understand the BA of respondents with different 
kidney function levels, we divided the respondents of the test group 
in 2015 into eGFR <60, 60 ≤ eGFR <90, and eGFR ≥90 groups 
according to the standard of kidney disease classification. CA and BA 
of every kidney level group were different significantly (eGFR <60: 
CA = 65.0, PCA-BAc = 83.2; 60 ≤ eGFR <90: CA = 69.0, 
PCA-BAc = 75.9; eGFR ≥90:CA = 59.0, PCA-BAc = 54.8). The BA of 
eGFR <60 group and 60 ≤ eGFR <90 were older than CA. The BA of 
eGFR ≥90 groups were younger than CA. The differences between BA 
and CA from big to small were eGFR <60, 60 ≤ eGFR <90, and eGFR 
≥90. The oldest BA of the kidney was the eGFR <60 group. The 
difference of PCA-BAc in the following 4 years (ΔPCA-BAc 2015–
2011) was 12.14 years old (eGFR <60), 3.91 years old (60 ≤ eGFR <90), 
and 2.16 years old (eGFR ≥90), respectively. All the above results 
showed that CA and PCA-BAc increased as kidney function 
decreased, especially PCA-BAc (Supplementary Table S8; Figure 3).

3.6.3 The BA of the kidney and the different levels 
of the kidney at baseline

The healthy kidney respondents had different outcomes after a 
4-year follow-up. We  aimed to determine whether there were 

FIGURE 2

The biological age and chronological age of respondents with and without kidney diseases or dysfunction.
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FIGURE 4

The biological age and chronological age of respondents with different kidney function with the different level at baseline.

differences in the outcomes of individuals with different levels of 
eGFR at the baseline. Therefore, we  divided the healthy kidney 
respondents into two groups, 60 ≤ eGFR <90 and eGFR ≥90 at 
baseline and compared the outcomes. We found 399 respondents with 
60 ≤ eGFR <90 and 1,580 respondents with eGFR ≥90 at baseline. 
Then we tracked the outcomes of two groups. We found BA of the 
60 ≤ eGFR <90 group was older than the eGFR ≥90 group after 4 years 
of follow-up. Then we divided kidney function into 3 outcomes at the 
follow-up year. We found that the BA of 60 ≤ eGFR <90 and eGFR <60 
differed from those of eGFR ≥90, even though these three groups 
began at the same baseline level (Supplementary Table S8; Figure 4).

3.6.4 Association of BA of the kidney with the risk 
of decreased kidney function

To further understand the risk of different kidney levels at baseline 
or after follow-up, we applied multinomial logistic regression. Among 
respondents with 60 ≤ eGFR <90 at baseline, the risk of those with 
eGFR <60 after follow-up increased by 41.5% for each additional year 

of PCA-BAc compared with eGFR ≥90, and 60 ≤ eGFR <90 after 
follow-up increased by 21.3%. Similarly, the risk of those with eGFR 
<60 after follow-up increased by 21.9% for each additional year of 
PCA-BAc difference in 4 follow-up years compared with those with 
eGFR ≥90, and 60 ≤ eGFR <90 after follow-up increased by 9.8%. The 
risk of those with eGFR <60  in 2015 increased by 13.2% for each 
additional year of CA compared with eGFR ≥90, and 60 ≤ eGFR <90 
increased by 11.1%. All the above results showed BA of the kidney 
performed an obvious difference than CA for evaluating risks of 
kidney function decreased.

Among respondents with eGFR ≥90 at baseline, the risk of those 
with eGFR <60 after follow-up increased by 13.6% for each additional 
year of PCA-BAc compared with eGFR ≥90, and 60 ≤ eGFR <90 
increased by 11.9%. The risk of those with eGFR <60 after follow-up 
increased by 14.2% for each additional year of PCA-BAc difference in 
4 followed-up years compared with eGFR ≥90, and 60 ≤ eGFR <90 
after follow-up increased by 10.6%. In the same way, the risk of those 
with eGFR <60 after follow-up decreased insignificantly by 4.5% for 
each additional year of CA compared with eGFR ≥90, and 60 ≤ eGFR 
<90 after follow-up increased by 10.7%. The results of all respondents 
were in Supplementary Table S9 and Figure  5. The results above 
indicated that the kidney function after follow-up was correlated with 
BA and CA. The healthier kidney function at baseline, the less kidney 
function decreased after follow-up, and the less risk induced by 
PCA-BAc.

4 Discussion

In our study, we aimed to build a model of kidney biological age 
for evaluating the kidney function of individuals. Therefore, we screen 
a population with a healthy kidney from CHARLS and regard their 
CA as BA of kidney for modeling. The models were constructed by 
two mainstream methods, PCA and KDM. Selected from statistics and 
logic step by step, the model of KDM was eliminated for illogical and 

FIGURE 3

The biological age and chronological age of respondents with 
different kidney functions.
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PCA-BAc remained for further analysis. Our purpose of the model 
was to evaluate the kidney function more elaborated than eGFR 
among those with or without kidney diseases. Therefore, we tracked a 
group of test population with healthy kidneys from CHARLS at 
baseline and followed them up after 4 years, comparing the differences 
of BA in multi-dimensions among various levels of kidney function.

Firstly, the BA of the test group was 1.33 years younger than their 
CA. The whole test group at baseline had normal kidney function. 
After follow-up, 48 (2.4%) respondents had kidney diseases or 
dysfunction. PCA-BAc was significantly different between respondents 
with and without kidney disease or dysfunction, but not CA. It was 
suggested that PCA-BAc, composed of kidney biomarkers, can reflect 
kidney function more accurately than CA. Researchers found that 
biomarkers greater than the cutoff values indicated an increase in 
acute kidney injury risk, irrespective of kidney function (21). Cystatin 
C is an independent predictor of all-cause mortality among middle-
aged and older adults in Chinese (22). Quantification of biological 
aging among Taiwanese older adults, a traditional biomarker index 
was performed as well as participant self-rated health to predict these 
outcomes (23). In the Framingham offspring study, the BA of the 
kidney was regarded as complementary in predicting risk for mortality 
and age-related diseases (24). BA of the kidney was better than CA for 
measuring life and health span in the Singapore Longitudinal Aging 
Study (25). The research above expressed our point again. We found 
the difference of PCA-BAc during 4 years of follow-up was very close 
to 4 years, when individuals merely maintained 60 ≤ eGFR <90.

Secondly, the respondents with healthy kidneys had different 
outcomes after a 4-year follow-up. We investigated whether there were 
differences in outcomes between individuals with different levels of 
eGFR at the baseline. We divided respondents into the normal kidney 

function group (60 ≤ eGFR <90) and the good kidney function group 
(eGFR >90). Regardless of kidney condition, PCA-BAc increased as 
kidney function decreased. The PCA-BAc of respondents with good 
kidney conditions was younger than those with a normal condition. 
In other words, keeping a good kidney function at the baseline was 
beneficial to obtain a better outcome in the future.

Thirdly, it was known that kidney function decreased with aging 
even in healthy populations. Some studies have reported that eGFR 
decreased with aging (26, 27). or in diseases (17, 21, 22, 24, 28, 29) 
Comparing the effect of indicators was meaningful. Accordingly, using 
the ratios of different levels of eGFR after follow-up by kidney 
functions compared with the reference group, we determined the risk 
of those whose kidney function was eGFR <60 and 60 ≤ eGFR <90 
increased significantly for each additional year of PCA-BAc compared 
with eGFR ≥90. The group with higher levels of kidney function had 
a lower risk. The individuals with a higher level of kidney function at 
the baseline had a lower risk for every additional year of PCA-BAc. 
Norwegian Patients with IgA Nephropathy reported that the risk of 
end-stage renal disease or deaths of patients with 60 ≤ eGFR and 
30 ≤ eGFR <59.9 are 5.7 and 18.7 times higher than patients with 
eGFR ≥60 (30). Moreover, the risk was more evident in the PCA-BAc 
than the CA, confirming the superiority of biological age in 
estimating aging.

eGFR was a classic and wide standard for evaluating kidney 
function. However, its accurate grouping was focused on kidney 
disease not healthy people. It was a blank for people in the middle of 
the health and diseases. The typical characteristics of kidney diseases 
were less awareness and strong stealthiness. Kidney biological age was 
an appropriate tool for evaluating comprehensively and conveniently. 
The plain results gave the public a direct report and comparison, 

FIGURE 5

Odds ratios plot of different levels of eGFR in 2015 by kidney functions on the baseline.
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which improved the awareness effectively. That was the core of our 
study. However, this was a study that preliminarily explored the 
biological age model in evaluating kidney function based on an online 
database. One limitation was the lack of kidney function biomarkers 
collected by CHARLS so that less representativeness of biomarkers. 
Another limitation was that we  did not account for the kidney’s 
endocrine system. The relationship between RAAS and senescence, 
and RAAS hyperactivity, appeared to be one of the primary inducing 
mechanisms for normal senescence and many prevalent diseases in 
older adults (31). A collection of biomarkers was the basis for a 
comprehensive evaluation of kidney function. We suggest that the 
above reasons caused KDM unsuitable for our research. It could 
involve the application of statistics.

5 Conclusion

In conclusion, BA of the kidney is a more precise parameter for 
estimating aging than CA and correlates negatively with reduced 
kidney function. The individual with a better kidney condition means 
a younger BA of kidney and a better outcome in the following years. 
The model of kidney biological age fills the blank of evaluation among 
people in the middle of the heathy and kidney diseases.
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