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Introduction: Paralyzed and physically impaired patients face communication 
difficulties, even when they are mentally coherent and aware. Electroencephalographic 
(EEG) brain–computer interfaces (BCIs) offer a potential communication method for 
these people without invasive surgery or physical device controls.

Methods: Although virtual keyboard protocols are well documented in EEG BCI 
paradigms, these implementations are visually taxing and fatiguing. All English 
words combine 44 unique phonemes, each corresponding to a unique EEG 
pattern. In this study, a complete phoneme-based imagined speech EEG BCI was 
developed and tested on 16 subjects.

Results: Using open-source hardware and software, machine learning models, 
such as k-nearest neighbor (KNN), reliably achieved a mean accuracy of 97 ± 
0.001%, a mean F1 of 0.55 ± 0.01, and a mean AUC-ROC of 0.68 ± 0.002 in a 
modified one-versus-rest configuration, resulting in an information transfer rate 
of 304.15 bits per minute. In line with prior literature, the distinguishing feature 
between phonemes was the gamma power on channels F3 and F7.

Discussion: However, adjustments to feature selection, trial window length, and 
classifier algorithms may improve performance. In summary, these are iterative 
changes to a viable method directly deployable in current, commercially available 
systems and software. The development of an intuitive phoneme-based EEG BCI 
with open-source hardware and software demonstrates the potential ease with 
which the technology could be deployed in real-world applications.
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1 Introduction

Difficulties in communication greatly reduce the quality of life of paralyzed and physically 
impaired individuals. Electroencephalographic (EEG) brain–computer interfaces (BCIs) offer a 
potential communication method for these people because they do not require invasive surgery or 
physical device controls. Although virtual keyboard protocols are well documented in EEG BCI 
paradigms, the P300 speller and steady-state visually evoked potentials (SSVEPs) are visually taxing 
and fatiguing. Motor imagery can be hard-coded to specific keys or buttons; however, this requires 
extensive data training and time-consuming encoding of multiple specific gestures. In a machine 
learning classifier, the covert or imagined speech BCI paradigm encodes specific EEG patterns of 
imagined thought to discrete outputs. Linguistic core components, phonemes, have been reported 
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as separable in an EEG pattern (Suyuncheva et al., 2020). All English 
words are combinations of 44 unique phonemes, each corresponding to 
a unique EEG pattern. Therefore, using a phoneme-based covert speech 
EEG BCI may be the least visually taxing and most intuitive method of 
converting thought to speech. Prior covert speech systems have used 
expensive research and commercial headsets at higher sampling rates 
(Panachakel and Ramakrishnan, 2021; Lopez-Bernal et al., 2022; Shah 
et al., 2022). If a more capable covert speech BCI could be successfully 
developed using a commercial EEG headset, its accessibility would 
be significantly increased. In this study, an EEG BCI using 44 English 
language phonemes was implemented with low-cost and open-source 
hardware, and the software was evaluated on 16 human subjects.

1.1 Background

Communication can be challenging for paralyzed and physically 
impaired individuals. Prior studies on invasive implants, specifically 
for communication, have resulted in health complications, such as 
tissue scarification and implant rejection. Imagined speech BCIs offer 
a potential alternative; however, previous studies have used expensive 
tools, such as multichannel EEG or MRI scanners (Tang et al., 2023). 
The use of specific letters, words, or syllables has succeeded in 
imagined speech BCIs; however, the use of phonemes has been limited 
(Shah et al., 2022).

1.2 EEG BCI

For decades, non-invasive EEG BCI systems have been used in 
research and recreation (Di Flumeri et al., 2019; Kübler, 2020). While 
surface EEG is noisier than invasive recordings, EEG BCI systems do 
not cause the potential complications of invasive, implanted devices 
(Guenther et al., 2009). Low-cost EEG systems have become increasingly 
common in applications, such as medical devices, commercial products, 
and hobbyist projects (Cardona-Alvarez et al., 2023). EEG BCI systems 
use reliably repeatable patterns of electrophysiological activity. The 
specific visual or auditory stimuli used to evoke the electrophysiological 
activity consists of the paradigm. Examples include the P300 speller 
using flashing rows and columns and motor imagery consisting of cued 
imagined physical gestures (Tang et al., 2022). The P300 speller and 
SSVEP have been used as virtual keyboards to enable the letter-by-letter 
composition of a message (Capati et al., 2016). However, owing to their 
flashing lights, such paradigms are visually taxing and challenging to 
use for extended periods (Allison et al., 2010). Motor imagination BCIs 
involve using the distinctive EEG of separate imagined physical gestures 
as device inputs (Lakshminarayanan et al., 2023). Motor imagery has 
been used for virtual keyboards and other applications, but the most 
active brain region is typically the brain’s motor cortex. In contrast, 
imagined speech involves the brain’s language forming areas and regions 
(Lopez-Bernal et al., 2022). While activity in brain regions can overlap, 
imagined speech is distinct from imagined gesture-based EEG BCI.

1.3 Imagined speech

Imagined speech, also called covert speech, is a BCI protocol that 
uses imagined verbal utterances (Kim et al., 2013; Sereshkeh et al., 

2017a,b). Neural control of speech is a more complex, diffuse process 
than motor action. A prior researcher’s invasive implant was 
designed to directly interface with the verbal and linguistic networks 
of the brain (Panachakel and Ramakrishnan, 2021; Shah et al., 2022). 
An alternative approach involves functional magnetic resonance 
imaging (fMRI) to reconstruct entire words and sentences. Owing to 
its accessibility and low cost, most imagined speech implementations 
have used EEG. However, these implementations are impractical for 
daily use (Panachakel and Ramakrishnan, 2021; Shah et al., 2022).

Prior EEG imagined speech BCIs have involved several 
constraints. The first implementations of imagined speech were 
conducted on research or medical EEG systems with gel electrodes 
and higher numbers of channels requiring long setup times (Jahangiri 
and Sepulveda, 2019; Panachakel and Ramakrishnan, 2021; Lopez-
Bernal et al., 2022). The use of visual and auditory stimuli to evoke 
EEG responses can distract from immediate tasks. BCI illiteracy 
occurs with imagined speech, as with other BCIs. The breadth of 
disjointed linguistic components has also constrained BCIs. Some 
studies have focused on complete words, syllables, sentences, or 
phonemes (Jahangiri and Sepulveda, 2019; Panachakel et al., 2021). 
Because every language comprises multiple phonemes, no imagined 
speech EEG study has examined all the constituent phonemes of a 
language. An EEG BCI not requiring visual and auditory stimuli 
precludes the need to look at a distracting screen. As phonemes are 
the core component of any language, their use could make imagined 
speech BCIs significantly more intuitive.

1.4 Phonemes

Phonemes are the basic components of every spoken language, 
and English has 44 separate phonemes (Ariki, 1991). Previous research 
has identified the EEG-based separability of phonemes (Panachakel 
et al., 2021). The use of EEG corresponding to unique phonemes has 
been successfully reported in an imagined speech BCI (Suyuncheva 
et al., 2020; Panachakel et al., 2021). However, no existing EEG BCIs 
have utilized all English-language phonemes. The successful 
demonstration of an offline BCI EEG corresponding to all phonemes 
could demonstrate the viability of this concept. Training and testing 
such a system on data collected on a dry-electrode hobbyist headset 
would significantly improve the accessibility of non-invasive, thought-
to-speech systems.

2 Methods and materials

2.1 Overview

Deploying a phoneme-based imagined speech EEG BCI requires 
the correct stimuli, data acquisition, feature extraction, and 
classification. Each potential user was asked to observe and listen to a 
stimuli presentation while the EEG was recorded (Panachakel and 
Ramakrishnan, 2021). An EEG headset and acquisition software were 
used. Feature extraction required knowledge of the most reliable EEG 
features for the imagined speech of each phoneme. A classifier model 
that would provide accurate results and that did not overfit was required 
for data classification. Overall, the BCI system necessitated using the 
most reliable aspects of prior studies (Lopez-Bernal et al., 2022).
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2.2 Participants

A total of 16 participants were recruited through word of mouth 
and flyers. All participants consented to the experiment, which was 
approved by IRB 2023H0194. The average age was 27.3 ± 1.2 years, and 
the participants comprised 4 females and 12 males. Participants had 
normal hearing and normal or corrected vision. Most participants 
were native English speakers, with 5 non-native English speakers who 
demonstrated functional proficiency on the standardized exams 
required for university admission. After providing consent, 
participants were positioned at least 24 inches from a display monitor. 
The participants put on the EEG headset shown in Figure  1 and 
attached the reference electrodes. To begin the first session, 
instructions were displayed on the screen, and recording began.

2.3 Stimulus presentation

All software tasks were performed using Python (Amemaet, 
2021). Prior studies in imagined speech have used auditory and visual 

stimuli to generate training data (Panachakel and Ramakrishnan, 
2021; Shah et al., 2022). However, the repeated use of auditory stimuli 
would result in distractions. Therefore, a combination of visual and 
auditory stimuli was used for each phoneme. The presentation order 
of each phoneme was randomized at the start of each training session. 
Participants were instructed to imagine saying each phoneme. Each 
phoneme presentation had an identical format. The chronological 
sequence of stimuli is shown in Figure 2.

Data recording for each phoneme included a demonstration and 
five separate trials. The demonstration presented a white screen with 
black characters. The sequence is shown in Figure 2. The phoneme 
was shown for 2 s. An auditory pronunciation of the phoneme was 
played once, at the start of each phoneme. A screen with the word 
‘wait’ was presented as an interval for 1 s. The phoneme was 
displayed again for 2 s, and the participant was instructed to think 
of speaking during this time. The character representation for each 
phoneme was then put on screen for 2 s, followed by a ‘wait’ screen 
for 1 s. Participants were instructed to stop imagining during the 
‘wait’ interlude screen, and the corresponding EEG data from these 
interlude segments was not used. This sequence was repeated five 
times without auditory feedback for five trials per phoneme. Each 
session included five trials of 44 phonemes in random order. Each 
session lasted approximately 40 min, and three sessions were 
recorded. If all sessions could not be  recorded, as much data as 
possible was acquired. Data were discarded if a complete set of 
phonemes was not successfully recorded.

2.4 Data acquisition

To facilitate integration with open–source hardware and software, 
data were acquired using an OpenBCI Cyton board and an Ultracortex 
Mark IV headset (OpenBCI Foundation, New York). Data from 16 
EEG channels were acquired at 250 Hz. Data collection was assisted 
and timestamped using a Python script. As shown in Figure 1, the 
10–20 International System electrode channels used included Fp1, 
Fp2, F7, F3, F4, F8, T3, C3, C4, T4, T5, T6, P3, P4, O1, and O2 (Trans 
Cranial Technologies, 2012).

Each trial was saved as a separate file. The phoneme, trial, and 
participant numbers were included in the name. If a trial was not 
successfully timestamped, it was excluded from future processing. At 
least two successfully timestamped trials per phoneme per participant 
were required to include the participant in the dataset. Feature 
extraction and classification were performed offline following 
data acquisition.

FIGURE 1

Electrocephalographic headset used for data acquisition, shown with 
16 electrodes in 10–20 International System and an OpenBCI Cyton 
board.

FIGURE 2

System operation diagram for each session.
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2.5 Feature extraction

The selection of feature types was based on prior studies, 
primarily the spatiotemporal features and amplitude (Torres-
García et al., 2016). Each file was loaded, and all trials within 
each file were separated by timestamp. Each file included 
approximately 2 s of EEG data. EEG data from each channel was 
separated into two windows of 1 s each, with each processed 
separately. A non-overlapping, 1-s window length used due to 
prior work (Panachakel and Ramakrishnan, 2021). A feature 
extraction process was conducted on time series data from each 
window. If the total amplitude of the recorded values was more 
than three standard deviations away from the baseline, the 
averaged EEG amplitude, of that session, it was rejected as an 
artifact. Otherwise, the signal was bandpass filtered between 0.1 
and 125 Hz with a 4th-order Butterworth filter. Resonant 
frequencies of the overhead power, 60 Hz, were also removed. 
Then, the temporal average was calculated, a feature successfully 
used in prior imagined speech BCIs. Afterward, the percent 
intensity of each window for 99.95% was calculated. Reflecting 
other EEG studies, several average power spectral densities bands 
for the major EEG bands [delta (1–4 Hz), theta (5–8 Hz), alpha 
(8–12 Hz), beta (13–30 Hz), and gamma (30–100 Hz)] of each 
feature were calculated using Welch’s method (LaRocco et al., 
2014, 2020). The mean powers of the lower and higher frequency 
ranges of each EEG band were also calculated (e.g., 8–10 Hz for 
the lower range of the alpha band). The extracted features 
included non-normalized spectral features, and those scaled 
relative to the total spectral power.

As shown in Figure 3, the 35 features from each channel were 
concatenated into a longer 1D feature vector of 560 elements for each 
sampling window. Then, the feature vectors of the first and second 
windows were concatenated into a single array: a 1D row of 1,120 
elements. This feature vector was calculated for each successfully 
timestamped trial. There were three sessions, 44 phonemes, and five 
trials per phoneme, and the total number of trials per participant was 
660. Therefore, the final feature matrix was 660 trials (rows) by 1,120 
features (columns).

The structure of the data and label vectors is shown in 
Figure  3. If the number of successful trials or sessions was 
smaller, the feature matrix was similarly reduced in length. Each 
participant had a feature matrix.

2.6 Data classification

Two primary data classification methods were used: 
intrasubject classification and intersubject classification. 
Intrasubject classification determined a participant’s potential 
viability for an imagined speech BCI. A low classification score, 
corresponding to a low accuracy, F1 score, or area under the 
receiver operating characteristic curve (AUC-ROC), implied 
poor data quality. Intersubject classification determined the 
generalizability of the imagined speech EEG BCI system. If a 
classifier model could reliably classify EEG features from several 
subjects, an imagined speech EEG BCI may simply require a 
sufficient amount of data. The average distance between events 
and non-events (ADEN)-based feature selection, based on two 
statistical weighting methods, was used to determine the most 
important features in each configuration (LaRocco et al., 2014).

ADEN was a supervised feature selection method, used to 
select the top three to six unique features for each run, based 
solely on the available training data. The features for each class 
were averaged. A combination of a z-score transform and Cohen’s 
d were used to scale both, followed by taking the absolute value 
of the difference. The largest value corresponded to the greatest 
average distance between two classes, the second largest value to 
the second greatest average distance, and so on. The top three to 
six features, based on magnitude of the scaled distance, were 
retained for further use on the validation data (LaRocco 
et al., 2014).

Overfitting was a potential concern as there were 16 channels 
and potential noise. Measures independent of class distribution 
and indicative of low false positive rates, such as F1 and AUC-ROC, 
were prioritized over classifier accuracy to account for potential 
overfitting. Consequently, traditional machine learning models 
were used instead of deep learning. Based on prior algorithms used 
in similar BCIs, three separate algorithms were used: linear 
discriminant analysis (LDA), linear-kernel support vector 
machines (SVM), and k-nearest neighbors (KNN) (Shah et  al., 
2022). In each case, data were randomly divided into four blocks. 
Each classification problem was structured as a one-versus-rest for 
each of the 44 phonemes, and the categories were balanced based 
on small sample size technologies (Sereshkeh et  al., 2017a; 
Jahangiri and Sepulveda, 2019). Training and testing datasets were 
kept equivalent to ensure balanced class distributions. Each 

FIGURE 3

Structure of the feature matrix and label vector, including stacked feature vectors and individual phoneme labels.
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phoneme-specific classifier used 4-fold leave-one-out cross-
validation (LOOCV) to ensure the results were reliable. The fourth 
block was withheld for validation in each system configuration. 
The one-versus-rest configuration has reached a reported accuracy 
of 96.4% in prior studies, and a similar system was adapted to real-
time use as a synchronous BCI (Sereshkeh et al., 2017a; Jahangiri 
and Sepulveda, 2019). The averaged accuracy, F1, and AUC-ROC 
scores for each system and phoneme were averaged together. All 
models were run for both intrasubject and intersubject classification.

2.7 Performance assessment

Because an instinctive imagined speech BCI could significantly 
improve the performance of electronic commands and messages, the 
information transfer rate (ITR) for each system configuration was 
calculated using Eq. 1 (Blankertz et al., 2006).
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In Eq. 1, ITR is expressed as bits per trial. The performance of a BCI 
is directly related to the number of classes (N ) and accuracy (P). In the 
implemented BCI, the value for N is equal to the number of phonemes, 
44. Although a low ITR can have direct applications, the maximum ITR 
of each system configuration was calculated to model the highest possible 
performance (LaRocco and Paeng, 2020). To simplify the calculation, a 
sampling window of 1 s was assumed, following the data acquisition 
protocol. Equation 2 was used to convert ITR to bits per minute.
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Classifier performance is the key parameter for a high ITR 
calculation. Based on prior performance, it was hypothesized that 
LDA would perform the highest on average in terms of accuracy and 
F1 score (Jahangiri and Sepulveda, 2019). Based on previous studies, 
it was hypothesized that the top features in each case would be the 
spectral band power and average mean amplitude, as calculated from 
electrodes on the top and front (Torres-García et al., 2016; Panachakel 
and Ramakrishnan, 2021). Electrodes, such as C4, F3, and F7, in the 
10–20 International System have been previously related to EEG 
signatures of phonemes owing to their proximity to speech-forming 
areas of the brain, such as Broca’s region (Trans Cranial Technologies, 
2012; Pan et al., 2021; Wang et al., 2021; Lopez-Bernal et al., 2022).

3 Results

3.1 Overview

Classifier performance was examined. The first analysis examined 
intrasubject classification. The second analysis examined intersubject 
classification to determine if training data could be generalized across 
subjects. The third analysis assessed the determination of the features 
and electrodes corresponding to the most reliable separation between 
phonemes. The ITR of the most relevant results was calculated for 
each phase.

3.2 Intrasubject classification

For intrasubject classification, the highest-performing classifier 
for F1 and AUC-ROC was KNN. KNN reached a mean accuracy of 
97 ± 0.024%, a mean F1 score of 0.55 ± 0.03, and a mean AUC-ROC of 
0.69 ± 0.003. LDA achieved a mean accuracy of 98 ± 0.01%, a mean F1 
score of 0.50 ± 0.024, and a mean AUC-ROC of 0.62 ± 0.001. SVM 
achieved a mean accuracy of 98 ± 0.003%, a mean F1 score of 
0.50 ± 0.03, and a mean AUC-ROC of 0.50 ± 0.002.

Performance across subjects was plotted for KNN in Figure 4. The 
information transfer rate for KNN was 5.07 bits per trial, yielding a 
rate of 304.15 bits per minute.

None of the subjects were BCI illiterate, as indicated by their high 
accuracy and F1 scores in Figure 5.

3.3 Intersubject classification

In terms of accuracy, SVM was the highest-performing classifier 
for intersubject classification. SVM achieved a mean accuracy of 
98 ± 0.01%, a mean F1 score of 0.50 ± 0.02, and a mean AUC-ROC of 
0.50 ± 0.003. As shown in Figure  6, the highest mean F1 and 
AUC-ROC scores were with KNN at mean accuracy of 97 ± 0.001%, a 
mean F1 of 0.55 ± 0.01, and a mean AUC-ROC of 0.68 ± 0.002. LDA 
achieved a mean accuracy of 98 ± 0.002%, a mean F1 score of 
0.49 ± 0.03, and a mean AUC-ROC of 61 ± 0.002.

ITR has been calculated in prior comparable BCIs (LaRocco and 
Paeng, 2020), and the ITR was calculated for a phoneme-based EEG 
BCI. The information transfer rate for SVM and LDA was 5.07 bits per 
trial, yielding a rate of 304.15 bits per minute.

3.4 Top features

Based on the average maximum distances between phonemes, 
gamma spectral power was the most consistent feature between 
individual phonemes among the 125 highest reliably separable feature 
types. Beta band power and amplitude were also consistent between 
the 44 phonemes. Channels F7 and F3 consistently showed the most 
significant variances between phonemes.

4 Discussion

4.1 Summary

Data from all 16 participants show that phoneme-based 
classification is a viable system for EEG BCI. Using open-source 
hardware and software, all 44 phonemes of the English language 
were correctly identified in the vast majority of intrasubject and 
intersubject classification cases at a maximum average accuracy of 
98% with SVM. No prior work used a complete phoneme set for a 
language (Panachakel et al., 2021). The maximum averaged F1 
score was 0.55 ± 0.01 and an AUC-ROC of 0.68 ± 0.002 with 
KNN. Using the correct data, even older machine learning 
algorithms can reliably perform phoneme classification. The 
dominant EEG features allowing correct classification of 
phonemes included gamma band power on channels F3 and F7, 
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corroborating previous studies suggesting language-forming 
regions of the brain are most active (Jahangiri and Sepulveda, 
2019; Wang et al., 2021). These speech-forming regions include 
Broca’s region and the frontal lobes (Trans Cranial Technologies, 
2012; Pan et al., 2021; Wang et al., 2021; Lopez-Bernal et al., 2022). 
Potential users must be  fluent in English, have normal-to-
corrected vision, and have functional hearing. Unlike evoked 
potential virtual keyboard systems, imagined speech BCIs do not 
require diversion from a task, making them more practical for 
real-world application. The template established here could 
be  applied to other groups and languages to ensure reliable 
replication. While this study establishes a precedent, a follow-up 
iteration could improve it.

4.2 Limitations

The scope of BCI deployment limited this study. The highest 
average maximum F1 score, 0.55 ± 0.01, needs to be  substantially 
improved for greater reliability. Future implementations could utilize 
specialized classifier ensembles to increase the separability of 
phonemes. Other feature selection methods and dimensionality 
reduction could be investigated to improve classifier outcomes. The 
lack of real-time feedback was the primary obstacle to practical use. 
While the classifier framework detailed was an offline BCI, a similar 
method was translated to online use (Sereshkeh et al., 2017b; Jahangiri 
and Sepulveda, 2019). The trial length of 1 s is substantially longer 
than human awareness and neural processes for lexical selection, 

FIGURE 4

Averaged intrasubject classification results across classifier models.

FIGURE 5

Averaged intrasubject classification results for KNN across subjects.
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decreasing the ease of use and ITR. In addition, a longer sample size 
could improve confidence in the generalizability of the results. These 
limitations can be  overcome through iterative improvements in 
future studies.

4.3 Future work

The system should be applied to a real-time text-to-speech task to 
continue this research, directly adapting the one-versus-rest classifier 
approach by having each new feature set exposed to 44 phoneme-
specific classifiers and a selecting the category corresponding to the 
highest prior accuracy, F1 score, and/or AUC-ROC (Sereshkeh et al., 
2017b; Jahangiri and Sepulveda, 2019). The latency of human 
awareness is approximately 0.1 s, a tenth of the current trial length. 
Even decreasing the trial length by half, from 1 s to 0.5 s, could 
improve the ITR and ease of use (Wang et al., 2021). Testing a real-
time phoneme EEG BCI in the context of a brain-to-brain interface 
(BBI) could assess its advantages in a performance-related task, 
potentially alongside non-visual and non-auditory feedback, such as 
haptics or direct electrical stimulation (LaRocco and Paeng, 2020; 
Nicolelis, 2022). Developing an intuitive phoneme-based EEG BCI 
with open-source hardware and software demonstrates the potential 
ease with which the technology could be  deployed in real-
world applications.

5 Conclusion

An imagined speech EEG BCI using open-source hardware and 
software allowed 16 participants to successfully and reliably identify 
all 44 phonemes of the English language. Combining spatiotemporal 
and amplitude features with machine learning models yielded a 
maximum average accuracy of 98% for intrasubject and intersubject 

classification. The most consistently unique features across phonemes 
were gamma band activity on F3 and F7, aligning with prior research 
(Jahangiri and Sepulveda, 2019). The maximum average F1 score, 
0.55 ± 0.01, should be  increased to ensure reliability. However, 
adjustments to feature selection, trial window length, and classifier 
algorithms may improve performance. In summary, further iterative 
changes should be made to this method, which is directly deployable 
in commercially available systems and software.

Data availability statement

The datasets presented in this study can be  found in online 
repositories. The names of the repository/repositories and accession 
number(s) can be  found at: https://github.com/javeharron/
ghostTalkerAlpha.

Ethics statement

The studies involving humans were approved by Ohio State 
University IRB 2023H0194. The studies were conducted in accordance 
with the local legislation and institutional requirements. The 
participants provided their written informed consent to participate in 
this study.

Author contributions

JL: Conceptualization, Formal analysis, Funding acquisition, 
Methodology, Project administration, Writing – original draft. QT: 
Investigation, Resources, Supervision, Writing – review & editing. SL: 
Investigation, Project administration, Writing – review & editing. JM: 
Data curation, Investigation, Writing – review & editing. CH: 

FIGURE 6

Averaged results from intersubject classification across classifier models.

https://doi.org/10.3389/fninf.2023.1306277
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://github.com/javeharron/ghostTalkerAlpha
https://github.com/javeharron/ghostTalkerAlpha


LaRocco et al. 10.3389/fninf.2023.1306277

Frontiers in Neuroinformatics 08 frontiersin.org

Conceptualization, Methodology, Software, Writing – review & 
editing. SG: Data curation, Writing – review & editing.

Funding

The author(s) declare financial support was received for the research, 
authorship, and/or publication of this article. This study was funded by 
the primary investigators. The research was approved by IRB 2023H0194.

Acknowledgments

We would like to thank Saeedeh Ziaeefard for help with 
coordinating this project’s capstone component.

Conflict of interest

The authors declare that the research was conducted in the 
absence of any commercial or financial relationships that could 
be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the 
authors and do not necessarily represent those of their affiliated 
organizations, or those of the publisher, the editors and the 
reviewers. Any product that may be evaluated in this article, or 
claim that may be made by its manufacturer, is not guaranteed or 
endorsed by the publisher.

References
Allison, B., Luth, T., Valbuena, D., Teymourian, A., Volosyak, I., and Graser, A. (2010). 

BCI demographics: how many (and what kinds of) people can use an SSVEP BCI? IEEE 
Trans. Neural Syst. Rehabil. Eng. 18, 107–116. doi: 10.1109/TNSRE.2009.2039495

Amemaet, F., "Python courses," (2021). [Online]. Available: https://pythonbasics.org/
text-to-speech/ (Accessed January 28, 2022).

Ariki, Y. (1991). Phoneme probability presentation of continuous speech based on 
phoneme spotting. Stud. Phonol. 25, 42–48.

Blankertz, B., Dornhege, G., Krauledat, M., Muller, K. R., Kunzmann, V., Losch, F., 
et al. (2006). The Berlin brain-computer Interface: EEG-based communication without 
subject training. IEEE Trans. Neural Syst. Rehabil. Eng. 14, 147–152. doi: 10.1109/
TNSRE.2006.875557

Capati, F. A., Bechelli, R. P., and Castro, M. C. F., "Hybrid SSVEP/P300 BCI keyboard," 
Proceedings of the International Joint Conference on Biomedical Engineering Systems 
and Technologies, vol. 2016, no. 1, pp. 214–218 (2016).

Cardona-Alvarez, Y. N., Álvarez-Meza, A. M., Cárdenas-Peña, D. A., 
Castaño-Duque, G. A., and Castellanos-Dominguez, G. (2023). A novel OpenBCI 
framework for EEG-based neurophysiological experiments. Sensors 23:3763. doi: 
10.3390/s23073763

Di Flumeri, G., De Crescenzio, F., Berberian, B., Ohneiser, O., Kramer, J., Aricò, P., 
et al. (2019). Brain–computer interface-based adaptive automation to prevent out-of-
the-loop phenomenon in air traffic controllers dealing with highly automated systems. 
Front. Hum. Neurosci. 13:296. doi: 10.3389/fnhum.2019.00296

Guenther, F. H., Brumberg, J. S., Wright, E. J., Nieto-Castanon, A., Tourville, J. A., 
Panko, M., et al. (2009). A wireless brain-machine interface for real-time speech 
synthesis. PLoS One 4:e8218. doi: 10.1371/journal.pone.0008218

Jahangiri, A., and Sepulveda, F. (2019). The relative contribution of high-gamma 
linguistic processing stages of word production, and motor imagery of articulation in 
class separability of covert speech tasks in EEG data. J. Med. Syst. 43, 1–9. doi: 10.1007/
s10916-018-1137-9

Kim, T., Lee, J., Choi, H., Lee, H., Kim, I. Y., and Jang, D. P., "Meaning based covert 
speech classification for brain-computer interface based on electroencephalography," 
Proceedings of the International IEEE/EMBS Conference on Neural Engineering, vol. 
2013, no. 6, pp. 53–56 (2013).

Kübler, A. (2020). The history of BCI: from a vision for the future to real support for 
personhood in people with locked-in syndrome. Neuroethics 13, 163–180. doi: 10.1007/
s12152-019-09409-4

Lakshminarayanan, K., Shah, R., Daulat, S., Moodley, V., Yao, Y., Sengupta, P., et al. 
(2023). Evaluation of EEG oscillatory patterns and classification of compound limb 
tactile imagery. Brain Sci. 13:656. doi: 10.3390/brainsci13040656

LaRocco, J., Innes, C. R., Bones, P. J., Weddell, S., and Jones, R. D. (2014). Optimal 
EEG feature selection from average distance between events and non-events. Annu. Int. 
Conf. IEEE Eng. Med. Biol. Soc. 2014, 2641–2644. doi: 10.1109/EMBC.2014.6944165

LaRocco, J., Le, M. D., and Paeng, D. G. (2020). A systemic review of available low-cost 
EEG headsets used for drowsiness detection. Front. Neuroinform. 14:553352. doi: 
10.3389/fninf.2020.553352

LaRocco, J., and Paeng, D. G. (2020). Optimizing computer–brain Interface 
parameters for non-invasive brain-to-brain Interface. Front. Neuroinform. 14:1. doi: 
10.3389/fninf.2020.00001

Lopez-Bernal, D., Balderas, D., Ponce, P., and Molina, A. (2022). A state-of-the-art 
review of EEG-based imagined speech decoding. Front. Hum. Neurosci. 16:867281. doi: 
10.3389/fnhum.2022.867281

Nicolelis, M. A. (2022). Brain–machine–brain interfaces as the foundation for the next 
generation of neuroprostheses. Natl. Sci. Rev. 9:nwab206. doi: 10.1093/nsr/nwab206

Pan, C., Lai, Y. H., and Chen, F. (2021). The effects of classification method and 
electrode configuration on EEG-based silent speech classification. Annu. Int. Conf. IEEE 
Eng. Med. Biol. Soc. 2021, 131–134. doi: 10.1109/EMBC46164.2021.9629709

Panachakel, J. T., and Ramakrishnan, A. G. (2021). Decoding covert speech from 
EEG-a comprehensive review. Front. Neurosci. 15:392. doi: 10.3389/fnins.2021.642251

Panachakel, J. T., Sharma, K., Anusha, A. S., and Ramakrishnan, A. G. (2021). Can 
we identify the category of imagined phoneme from EEG? Annu. Int. Conf. IEEE Eng. 
Med. Biol. Soc. 2021, 459–462. doi: 10.1109/EMBC46164.2021.9630604

Sereshkeh, A. R., Trott, R., Bricout, A., and Chau, T. (2017a). EEG classification of 
covert speech using regularized neural networks. IEEE Trans. Audio Speech Lang. 
Process. 25, 2292–2300. doi: 10.1109/TASLP.2017.2758164

Sereshkeh, A. R., Trott, R., Bricout, A., and Chau, T. (2017b). Online EEG classification 
of covert speech for brain–computer interfacing. Int. J. Neural Syst. 27:1750033. doi: 
10.1142/S0129065717500332

Shah, U., Alzubaidi, M., Mohsen, F., Abd-Alrazaq, A., Alam, T., and Househ, M. 
(2022). The role of artificial intelligence in decoding speech from EEG signals: a scoping 
review. Sensors 22:6975. doi: 10.3390/s22186975

Suyuncheva, A., Saada, D., Gavrilenko, Y., Schevchenko, A., Vartanov, A., and 
Ilyushin, E., "Reconstruction of words, syllables, and phonemes of internal speech by 
EEG activity," Proceedings of the 9th International Conference on Cognitive Sciences, 
Intercognsci-2020, October 10-16, Moscow, Russia, pp. 319–328 (2020).

Tang, J., LeBel, A., Jain, S., and Huth, A. G. (2023). Semantic reconstruction of 
continuous language from non-invasive brain recordings. Nat. Neurosci. 26, 858–866. 
doi: 10.1038/s41593-023-01304-9

Tang, Z., Wang, X., Wu, J., Ping, Y., Guo, X., and Cui, Z. (2022). A BCI painting system 
using a hybrid control approach based on SSVEP and P300. Comput. Biol. Med. 
150:106118. doi: 10.1016/j.compbiomed.2022.106118

Torres-García, A. A., Reyes-García, C. A., Villaseñor-Pineda, L., and García-Aguilar, G. 
(2016). Implementing a fuzzy inference system in a multi-objective EEG channel 
selection model for imagined speech classification. Expert Syst. Appl. 59, 1–12. doi: 
10.1016/j.eswa.2016.04.011

Trans Cranial Technologies, P10/20 system positioning," (2012). [Online]. Available: 
https://trans-cranial.com/docs/10_20_pos_man_v1_0_pdf.pdf (Accessed February 21, 
2023).

Wang, Y., Korzeniewska, A., Usami, K., Valenzuela, A., and Crone, N. E. (2021). The 
dynamics of language network interactions in lexical selection: an intracranial EEG 
study. Cereb. Cortex 31, 2058–2070. doi: 10.1093/cercor/bhaa344

https://doi.org/10.3389/fninf.2023.1306277
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://doi.org/10.1109/TNSRE.2009.2039495
https://pythonbasics.org/text-to-speech/
https://pythonbasics.org/text-to-speech/
https://doi.org/10.1109/TNSRE.2006.875557
https://doi.org/10.1109/TNSRE.2006.875557
https://doi.org/10.3390/s23073763
https://doi.org/10.3389/fnhum.2019.00296
https://doi.org/10.1371/journal.pone.0008218
https://doi.org/10.1007/s10916-018-1137-9
https://doi.org/10.1007/s10916-018-1137-9
https://doi.org/10.1007/s12152-019-09409-4
https://doi.org/10.1007/s12152-019-09409-4
https://doi.org/10.3390/brainsci13040656
https://doi.org/10.1109/EMBC.2014.6944165
https://doi.org/10.3389/fninf.2020.553352
https://doi.org/10.3389/fninf.2020.00001
https://doi.org/10.3389/fnhum.2022.867281
https://doi.org/10.1093/nsr/nwab206
https://doi.org/10.1109/EMBC46164.2021.9629709
https://doi.org/10.3389/fnins.2021.642251
https://doi.org/10.1109/EMBC46164.2021.9630604
https://doi.org/10.1109/TASLP.2017.2758164
https://doi.org/10.1142/S0129065717500332
https://doi.org/10.3390/s22186975
https://doi.org/10.1038/s41593-023-01304-9
https://doi.org/10.1016/j.compbiomed.2022.106118
https://doi.org/10.1016/j.eswa.2016.04.011
https://trans-cranial.com/docs/10_20_pos_man_v1_0_pdf.pdf
https://doi.org/10.1093/cercor/bhaa344

	Evaluation of an English language phoneme-based imagined speech brain computer interface with low-cost electroencephalography
	1 Introduction
	1.1 Background
	1.2 EEG BCI
	1.3 Imagined speech
	1.4 Phonemes

	2 Methods and materials
	2.1 Overview
	2.2 Participants
	2.3 Stimulus presentation
	2.4 Data acquisition
	2.5 Feature extraction
	2.6 Data classification
	2.7 Performance assessment

	3 Results
	3.1 Overview
	3.2 Intrasubject classification
	3.3 Intersubject classification
	3.4 Top features

	4 Discussion
	4.1 Summary
	4.2 Limitations
	4.3 Future work

	5 Conclusion
	Data availability statement
	Ethics statement
	Author contributions

	References

